Índice general

1.	Intr	oducci	ón		1
	1.1.	Introd	ucción		3
	1.2.	Objeti	vos y Met	odología	5
	1.3.	Plante	amiento d	el trabajo	7
2.	Con Dies	sidera sel	ciones ge	nerales sobre el ruido de combustión en motores	9
	2.1.	Introd	ucción		11
	2.2.	Fuente	es del ruido	$del motor \ldots \ldots$	11
		2.2.1.	Ruido de	${\rm combustión} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	13
		2.2.2.	Ruido me	ecánico	16
			2.2.2.1.	Cabeceo del pistón	16
			2.2.2.2.	Ruido del cigüeñal	19
	2.3.	Mecan	ismos físic	os asociados al ruido de combustión en motores Diesel	20
		2.3.1.	Fuente .		21
			2.3.1.1.	Modelo de analogía acústica	21
			2.3.1.2.	Modelo de llama turbulenta	23
		2.3.2.	Mecanism	nos de transmisión \ldots	26
		2.3.3.	Mecanism	nos de emisión	29
	2.4.	Métod	os de cuar	ntificación del ruido de combustión	37
		2.4.1.	Experime	entales	37
			2.4.1.1.	Determinación de la atenuación del bloque	38
			2.4.1.2.	Descomposición de la presión en el cilindro \ldots	41
		2.4.2.	Teóricos		45

Ι

		2.4.2.1. Análisis vibratorio mediante elementos finitos	46
		2.4.2.2. Predicción del ruido mediante métodos numéricos \dots	47
	2.5.	Análisis de la resonancia en la cámara de combustión	49
		2.5.1. Procedimientos experimentales	50
		2.5.2. Procedimientos de cálculo	55
		2.5.2.1. Teoría modal \ldots	56
		2.5.2.2. Técnicas computacionales	59
	2.6.	Resumen	62
3.	\mathbf{Des}	cripción de la metodología CFD	65
	3.1.	Introducción	67
	3.2.	Funcionamiento CFD	67
	3.3.	Ecuaciones generales	69
	3.4.	Modelo de turbulencia	71
	3.5.	Discretización	72
		3.5.1. Espacial	72
		3.5.2. Temporal \ldots	75
	3.6.	Solución de las ecuaciones discretizadas	76
	3.7.	Descripción de las geometrías calculadas	78
	3.8.	Generación de las mallas	79
		3.8.1. Malla fija	80
		3.8.2. Independencia de malla	81
		3.8.3. Malla móvil	83
	3.9.	Condiciones de contorno e iniciales	87
		3.9.1. Condiciones de contorno	87
		3.9.2. Condiciones iniciales	88
	3.10	. Resumen	90
4.	Est	udio de la sensibilidad de la resonancia a parámetros de motor	91
	4.1.	Introducción	93
	4.2.	Caracterización de la resonancia	93
	4.3.	Validación de los resultados CFD	95
	4.4.	Influencia del movimiento del aire	97

	4.5.	Influer	ncia de la	geometría del bowl	105
		4.5.1.	Parámeti DI	ros de las cámaras de combustión de los motores Diesel	106
		4.5.2.	Caracter	ísticas de las cámaras de combustión estudiadas	107
		4.5.3.	Caracter	ísticas de los cálculos realizados	107
	4.6.	Influer	ncia de la	temperatura del aire encerrado $\ldots \ldots \ldots \ldots \ldots$	116
	4.7.	Influer	ncia de las	condiciones de la excitación	119
		4.7.1.	Ubicació	n de la excitación	120
		4.7.2.	Número	de excitaciones	122
		4.7.3.	Tamaño	de la excitación	125
		4.7.4.	Intensida	d de la excitación \ldots	127
	4.8.	Resum	nen		130
F	Cál	aula di	le neger		199
5.	5 1	Introd			195
	5.1.	Drogo	limionto d	e céleule propueste	130
	J.2.	5.9.1	Caractori	re carcino propuesto	130
		5.2.1.	Decerinei	isticas del proceso de combustion en motores Dieser	197
		9.2.2.	5 2 2 1	Proprocessado, processado y posprocessado	197
			5222	Condiciones de contorne, inicioles y términes fuente	145
			5.2.2.2.	Condiciones de contorno, iniciales y terminos fuente .	140
			5 2 2 4	Comparagión de gólgulos 2D y 2D	147
	52	Diceuc	0.2.2.4.		140
	0.0.	5 2 1	Pospuost	a on frequencia	151
		529	Enorgía (152
		533	Validació		154
		0.0.0.	5 2 2 1	Nivel de precién	154
			5220	Respueste en frequencie	156
			5 2 2 2	Frequencia tomporel	150
			J.J.J.J.J. 5 2 9 4	Frecuencia temporai	150
	54	Dorr	J.J.J.4.		169
	0.4.	nesum	ieii		102

6.	Apli	icación	del procedimiento al análisis de la resonancia	163		
	6.1.	Introd	$\operatorname{ucción}$	165		
	6.2.	3.2. Descripción del estudio paramétrico				
	6.3.	Anális	is de los resultados	168		
		6.3.1.	Influencia de las condiciones de inyección	168		
		6.3.2.	Influencia del régimen de giro	170		
		6.3.3.	Influencia del grado de carga	173		
		6.3.4.	Influencia de la geometría del bowl	175		
	6.4.	Resum	$nen \ldots $	187		
7.	Con	clusio	nes y desarrollos futuros	189		
	7.1.	Conclu	isiones	191		
	7.2.	Desarr	ollos futuros	193		
А.	Apé	ndice		195		
	A.1.	Descri	pción de las instalaciones experimentales $\ldots \ldots \ldots \ldots \ldots$	197		
		A.1.1.	Descripción de la sala	197		
		A.1.2.	Sistema de medida de la presión en el cilindro	198		
		A.1.3.	Torso binaural	199		
		A.1.4.	Calibración de los transductores de presión	199		
	A.2.	Caract	erísticas del motor ensayado	201		
	A.3.	Descri	pción de los ensayos	202		
	A.4.	Progra	amas desarrollados para el cálculo de la resonancia	202		
		A.4.1.	Generación de autoencendidos	203		
		A.4.2.	Control de términos fuente	208		
в	Bibl	iografi	ía	229		

Índice de figuras

1.1.	Esquema de la metodología seguida	6
2.1.	Identificación de las fuentes de ruido en un vehiculo	12
2.2.	Distribución del ruido del motor [4]	14
2.3.	Relación entre el ruido de combustión y las fuerzas de excitación $\left[4\right]$.	14
2.4.	Fuerza de excitación directa (a) y fuerza de excitación secundaria (b), según Anderton [6]	15
2.5.	Mecanismo físico del "piston slap" [17]	17
2.6.	Modelo del "piston slap" [17] \ldots	18
2.7.	Procesos físicos asociados al ruido de combustión [6] $\ldots \ldots \ldots$	20
2.8.	Fotografía (A) y esquema (B) de una llama turbulenta [182]	24
2.9.	Espectro del ruido de combustión para una llama de gases premezclados en campo libre [178]	25
2.10.	"piston slap"	27
2.11.	Acoplamiento FE-WB a lo largo de la interface acústica-estructural	35
2.12.	Modelo híbrido FE-WB para un problema 2D de acústica estructural interna	35
2.13.	Comparación de la aproximación de presión (en la posición indicada en la figura 2.12 como "p") para un problema 2D de acústica estructural	9.6
		36
2.14.	Comparación de la convergencia de presión a 211 Hz para un problema 2D de acústica estructural interna [192]	37
2.15.	Curvas de atenuación del bloque definidas por Anderton, Rusell y CMT-Motores Térmicos	39
2.16.	Evidencia experimental de la sensibilidad de la curva de atenuación para diferentes condiciones de operación del motor. Estimación del nivel de ruido de un motor de 1.6 l con la curva de atenuación [189]	40

V

2.17.	Curvas de atenuación para dos tipos de motores [189] $\ldots \ldots \ldots$	40
2.18.	Presión a 1500 RPM y 38 % de carga en tiempo. Aplicación de la técnica de descomposición de la presión \ldots	42
2.19.	Respuesta en frecuencia a 1500 RPM y 38% de carga en frecuencia. Aplicación de la técnica de descomposición de la presión	42
2.20.	Modelo FE del bloque	46
2.21.	Evidencia experimental de la resonancia para dos ciclos y dos cilindros, a 3500 RPM y 28 % de carga [187]	51
2.22.	Espectro obtenido de la señal de presión en cilindro para cuatro trans- ductores de presión [67]	52
2.23.	Sistema de adquisición de 12 transductores de presión $\ldots \ldots \ldots$	53
2.24.	Comparación de la ubicación del knock entre la medida con sensores convencionales y el sistema de adquisición en la junta de culata [114] .	54
2.25.	Geometría cilíndrica del bowl y sistema de referencia para la aplicación de la teoría modal acústica	56
2.26.	Patrones de oscilación de los tres modos relevantes	58
2.27.	Sección transversal de los cinco pistones de diferente diámetro, calcu- lados mediante el método de elementos finitos [66]	59
2.28.	Influencia de la posición del pistón en el comportamiento de los cuatro primeros modos (α_{mn}) , motor 1 (izquierda) y motor 5 (derecha) [66].	60
3.1.	Un volumen de control unidireccional alrededor del nodo P [126]	74
3.2.	Método de solución basado en la densidad [53]	77
3.3.	Geometrías de las cámaras de combustión estudiadas	78
3.4.	Vista isométrica de la topología de malla y condiciones de contorno del bowl cilíndrico	80
3.5.	Detalle de la topología de malla del bowl cilíndrico: vista desde el plano de simetría (izquierda) y vista desde la culata (derecha)	81
3.6.	Respuesta en frecuencia de un monitor localizado cerca de la pared en función del número de celdas	81
3.7.	Energía de resonancia de un monitor localizado cerca de la pared en función del número de celdas	82
3.8.	Ubicación del captador experimental y puntos CFD de monitorización de presión	83
3.9.	Influencia del número de celdas en el tiempo CPU por iteración	83
3.10.	Plano de simetría en el modelo tridimensional	84
3.11.	Zonas que comprende el dominio de cálculo del modelo CFD	84

3.12.	Metodología seguida para la construcción de la malla tridimensional $% \mathcal{A}(\mathcal{A})$.	85
3.13.	Características de la malla en la zona simétrica de la geometría tridi- mensional en dos instantes: en el PMS (A) y a 24.18° APMS (instante en que se inicia la inyección piloto) (B)	86
4.1.	Patrones de oscilación obtenidos: con la teoría modal (izquierda) y con la aportación CFD (derecha) para 1 fuente de excitación	95
4.2.	Patrones de oscilación obtenidos: con la teoría modal (izquierda) y con la aportación CFD (derecha) para 5 fuentes de excitación $\ldots \ldots \ldots$	96
4.3.	Geometría cilíndrica de la cámara de combustión, distribución de los monitores en el plano transversal 0°, con indicación de la fuente de excitación	98
4.4.	Comportamiento de los tres modos de oscilación	99
4.5.	Evolución temporal de la temperatura en el interior del bowl para di- ferentes niveles de swirl	100
4.6.	Variación de la frecuencia del primer modo de oscilación entre los casos: $V_t = 34,7 \text{ m/s y } V_t = 0 \text{ m/s} \dots \dots$	101
4.7.	Respuesta en frecuencia de un monitor CFD ubicado en la posición del transductor de presión experimental, para diferentes condiciones de flujo en el interior del cilindro	101
4.8.	Influencia del swirl en la evolución de la $ER(-)$ en diferentes secciones transversales del bowl, para cuatro posiciones radiales $R(-)$ del monitor	102
4.9.	Evolución radial de la $ER(-)$ para distintas condiciones de funcionamient	o103
4.10.	Diferencia de la $ER(-)$ entre los casos con $V_t = 34.7$ m/s y $V_t = 11.2$ m/s en función del radio adimensional $R(-)$, estimado para diferentes instantes de la simulación	104
4.11.	Geometrías de las cámaras de combustión estudiadas, distribución de los monitores en el plano 0° , con indicación de la fuente de excitación	105
4.12.	Patrones de oscilación en un plano transversal a la mitad del bowl para las cinco geometrías simuladas con CFD con una sola excitación	108
4.13.	Respuesta en frecuencia en un monitor ubicado en una posición equiva- lente a la posición del captador experimental, para las cinco geometrías estudiadas	109
4.14.	Frecuencia de los tres modos en función del diámetro máximo adimensional de cada geometría, calculados mediante la técnica de CFD y estimados mediante la teoría modal (TM)	110
4.15.	Geometría "C" con detalle del cilindro imaginario para la estimación del diámetro característico	111

4.16.	Frecuencia de los tres modos en función del diámetro característico adimensional $Dc(-)$ de cada geometría, calculados mediante la técnica CFD y estimados mediante la teoría modal (TM)	112
4.17.	Comparación de la evolución radial de la $ER(-)$ en el plano $0^{\rm o}$ entre las cinco geometrías de bowl estudiadas, a diferentes profundidades .	113
4.18.	Evolución radial de la $ER(-)$ de monitores ubicados en el plano 0° a diferentes profundidades del bowl, para cada geometría de bowl	114
4.19.	Influencia del diámetro máximo y diámetro característico sobre la $ER(-)$ máxima	115
4.20.	Geometría "B" con detalle de la ubicación de los puntos de monitori- zación CFD, punto de monitorización experimental y punto de auto- encendido	116
4.21.	Respuesta en frecuencia para las diferentes temperaturas de aire en el interior del bowl (A) y su respectivo zoom (B) $\ldots \ldots \ldots \ldots \ldots$	117
4.22.	Frecuencia de los modos de resonancia a diferentes temperaturas, esti- mados con la Teoría Modal (TM) y calculados mediante CFD	118
4.23.	Evolución radial de la energía de resonancia adimensional en el plano 0° para diferentes temperaturas de aire, para monitores ubicados a distintas profundidades	119
4.24.	Geometría "B" con detalle de la ubicación de los puntos de monitorización CFD, punto de monitorización experimental, punto de autoencendido de referencia y otros puntos de autoencendido	120
4.25.	Respuesta en frecuencia para diferentes ubicaciones de autoencendido	121
4.26.	Energía de resonancia adimensional máxima y mínima para diferentes posiciones de autoencendido	121
4.27.	Localización de las zonas de autoencendido en un plano transversal del bowl re-entrante para los casos con: uno, dos y cinco puntos de autoencendido	123
4.28.	Influencia del número de autoencendidos sobre la respuesta en frecuencia	123
4.29.	Comparación de los máximos y mínimos niveles de ER(-) para uno, dos y cinco autoencendidos	124
4.30.	Patrones de oscilación obtenidos con CFD en los casos de uno y cinco autoencendidos	124
4.31.	Tamaño de la zona de autoencendido en el plano transversal del bowl re-entrante para casos con: mitad, referencia, y doble volumen de la excitación	125
4.32.	Influencia del tamaño de la zona de autoencendido sobre la respuesta en frecuencia	126

4.33.	Influencia del tamaño de la zona de autoencendido sobre los niveles máximos y mínimos de $ER(-)$	127
4.34.	Influencia de la intensidad del autoencendido sobre la respuesta en frecuencia	128
4.35.	Influencia de la intensidad del autoencendido sobre los niveles máximos y mínimos de ER (-)	129
5.1.	Paso 1 de la metodología CFD	138
5.2.	Paso 2 de la metodología CFD	139
5.3.	Paso 3 de la metodología CFD	140
5.4.	Distribución de autoencendidos y posición del transductor de presión en la pared con ocho chorros de inyección (A); retraso de la velocidad del sonido asumiendo que el autoencendido ocurre al final del chorro con una temperatura en cámara de 1000 K (B) y efectos de la velocidad del sonido sobre la tasa de liberación de calor (DFQL) en tres casos: DFQL para un transductor ubicado en la pared, DFQL para un transductor central y DFQL corregido con la velocidad del sonido. [68]	141
5.5.	Paso 4 de la metodología CFD	142
5.6.	Paso 5 de la metodología CFD	143
5.7.	Paso 6 de la metodología CFD $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	145
5.8.	Geometría y condiciones de contorno consideradas en la simulación CFD de la configuración 2D-axisimétrica	149
5.9.	Representación de la presión (A) y temperatura (B) a 1500 RPM y 37 Nm de carga, tomada por un monitor ubicado en la misma coordenada que el captador experimental para las configuraciones 2D-axisimétrica y tridimensional	149
5.10.	Respuesta en frecuencia (A) y zoom de picos de resonancia (B), obte- nida de los casos 2D-axisimétrico y tridimensional a 1500 RPM y 37 Nm de carga, a partir de monitores CFD en la misma posición que el transductor experimental	150
5.11.	Geometría tipo "C" del bowl de la cámara de combustión utilizada en los ensayos experimentales y simulada mediante cálculo tridimensional, con detalle de la distribución de los monitores CFD	151
5.12.	Respuesta en frecuencia CFD a 1500 RPM y 37 Nm de carga, obtenida de monitores en tres posiciones radiales y en los tres planos: 0° (A), 180° (B), y 90° (C)	152
5.13.	Evoluciones radiales de la ER para monitores ubicados a diferentes profundidades del bowl, sobre los planos: 0° (A), 180° (B) y 90° (C), obtenida de la simulación CFD con la geometría del bowl tipo "C".	154

5.14.	Comparación de la evolución de la presión entre el captador experi- mental y los monitores CFD en los planos 0°, 90° y 180°, vista general (A) y zoom de combustiones piloto (B) y principal (C). Punto de fun- cionamiento a 1500 RPM, 37 Nm de carga	156
5.15.	Comparación de la respuesta en frecuencia de la combustión piloto (izquierda), principal (medio) y total (derecha) entre el método experimental y la aportación CFD	157
5.16.	Evolución de la frecuencia CFD y experimental del primer modo de resonancia durante la combustión principal	159
5.17.	Variación ciclo a ciclo de la ER obtenido por el transductor en el cilindro 1	160
5.18.	Comparación del nivel de ER entre la medida experimental y la simulación CFD sobre los planos: 0°(A), 180°(B) y 90°(C)	161
6.1.	Geometría de cámara de combustión utilizada en los ensayos experi- mentales y simulados mediante cálculo tridimensional, con detalle de la distribución de los monitores CFD y zonas de autoencendido	166
6.2.	Comparación a 1500 RPM y 37 Nm de carga entre los puntos de funcio- namiento con una y dos inyecciones en dominio tiempo (A) y frecuencia (B), registrada por un monitor CFD en el plano 0° en la misma coor- denada radial y profundidad que el captador experimental	168
6.3.	Comparación de la evolución radial de ER a distintas profundidades del bowl en el plano $0^{\rm o},$ entre los casos con una y dos inyecciones	169
6.4.	Comparación a 37 Nm de carga con dos inyecciones entre los casos a 1500 RPM y 2850 RPM en dominio tiempo (A) y frecuencia (B) tomada por un monitor CFD ubicado en el plano 0° en la misma coordenada radial y profundidad que el captador experimental $\ldots \ldots \ldots \ldots$	171
6.5.	Comparación de la evolución temporal de la temperatura en el interior del cilindro entre las simulaciones a 1500 RPM y 2850 RPM	171
6.6.	Comparación de la evolución radial de la $ER,$ a distintas profundidades $h(-)$ del bowl en el plano $0^{\rm o},$ entre los casos a 1500 RPM y 2850 RPM	172
6.7.	Comparación a 1500 RPM con dos inyecciones entre los casos a 37 Nm y 151 Nm de carga en dominio tiempo (A) y frecuencia (B) tomada por un monitor CFD ubicado en el plano 0° en la misma coordenada radial y profundidad que el captador experimental	173
6.8.	Comparación de la evolución de la temperatura en el interior del cilindro entre las simulaciones a 37 Nm y 151 Nm	174
6.9.	Comparación de la evolución radial ER , a distintas profundidades del bowl en el plano 0°, entre los casos a 37 Nm y 151 Nm de carga	175
6.10.	Efecto de la geometría del bowl sobre la resonancia	176

6.11.	Geometrías de las cámaras de combustión estudiadas	176
6.12.	Patrones de oscilación en planos transversales del bowl (columna iz- quierda) y vista isométrica (columna derecha) de cada geometría cerca del PMS	177
6.13.	Nivel de presión de las cuatro geometrías estudiadas mediante cálculo CFD para la combustión: piloto (A) y principal (B)	178
6.14.	Respuesta en frecuencia de las cuatro geometrías estudiadas mediante cálculo CFD para un monitor ubicado en una posición equivalente a la posición del captador experimental en el plano 0°	179
6.15.	Zoom de la figura 6.14 con detalle del primer pico (A) y segundo pico (B) del primer modo de resonancia	179
6.16.	Comparación de la evolución de la frecuencia del primer pico (A) y del segundo pico (B) de resonancia durante la combustión principal en función de la posición del pistón	180
6.17.	Comparación de la evolución de la temperatura en el interior del cilindro en la geometrías del bowl "B", "C", "D" y "E" para un punto de funcionamiento de 1500 RPM - 37 Nm de carga	181
6.18.	Comparación de la evolución de $\alpha_{(1,0)}$ (A) y $\alpha_{(0,1)}$ (B) durante la combustión principal en función de la posición del pistón	182
6.19.	Evolución de la amplitud del primer pico (A) y del segundo pico (B) durante la combustión principal en función de la posición del pistón .	183
6.20.	Evolución radial de la ER , a diferentes profundidades del bowl, para las cuatro geometrías de bowl estudiadas	184
6.21.	Influencia de la geometría del bowl sobre la evolución radial de la ER , para cuatro profundidades del bowl	185
6.22.	Influencia de la relación geométrica AR del bowl en los niveles de ${\cal ER}$	185
6.23.	Influencia de la inclinación de las paredes del bowl en los niveles de ER	2186
A.1.	Esquema de la cámara anecóica	197
A.2.	Fotografía del equipo binaural	199
A.3.	Posición del torso binaural	200
A.4.	Ejemplo de calibración de transductores	201
A.5.	Geometría del bowl del pistón del motor ensayado	201

Indice de tablas

2.1.	Parámetros estadísticos del nivel de ruido estimado con la curva de atenuación [189]	41
2.2.	Coeficientes C_i obtenidos para dos familias de motores y coeficiente de correlación de los dos componentes [128] $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44
2.3.	Coeficientes C_i obtenidos para dos familias de motores y coeficiente de correlación de los tres componentes [189]	45
2.4.	Coeficientes de Bessel para modos radiales	57
3.1.	Valores para los coeficientes del modelo de turbulencia $k\text{-}\varepsilon$	72
4.1.	Valores de inicialización de la velocidad tangencial y turbulencia de los cálculos CFD, asociados a las condiciones de operación del motor, estimadas en el PMS	98
4.2.	Características de los cálculos	108
4.3.	Valores de $Dmax(-)$ y $Dc(-)$ obtenidos para cada geometría	111
4.4.	Relaciones geométricas de las cámaras de combustión estudiadas	113
4.5.	Variación de la temperatura del aire en el interior del bowl, usada en el estudio paramétrico CFD	117
4.6.	Variación del tamaño de la excitación usada en el estudio paramétrico CFD	126
4.7.	Condiciones de carga experimental usadas para la inicialización del autoencendido en los cálculos CFD	128
5.1.	Condiciones térmicas en las paredes	145
5.2.	Condiciones CFD iniciales, al cierre de la válvula de admisión	146
6.1.	Resumen del estudio paramétrico realizado mediante herramientas CFD	165
6.2.	Características de los cálculos	167

XII

6.3.	Resumen de las condiciones iniciales	167
6.4.	Resumen de las condiciones de contorno \hdots	167
6.5.	Resumen de datos geométricos y resultados en frecuencia de los dos primeros picos	180