Synthesis and evaluation of antigenic determinants for β-lactam allergy diagnosis

Ph.D. DISSERTATION
Submitted by

Edurne Peña Mendizabal

Ph.D. Supervisors:
Ángel Maquieira Catalá
Sergi Morais Ezquerro

Valencia, April 2022
D. Ángel Maquieira Catalá, Full Professor in Chemistry at the Universitat Politècnica de València.

D. Sergi Morais Ezquerro, Associate Professor in Chemistry at the Universitat Politècnica de València.

DECLARE:

That the dissertation entitled “Synthesis and evaluation of antigenic determinants for β-lactam allergy diagnosis” has been carried out by Edurne Peña Mendizabal under our supervision in the Instituto de Reconocimiento Molecular y Desarrollo Tecnológico at the Universitat Politècnica de València.

In recognition whereof, we sign the present declaration in Valencia, April 2022

Dr. Ángel Maquieira Catalá

Dr. Sergi Morais Ezquerro
Re: Edurne Peña Mendizábal Certificate of Stay

To Whom It May Concern,

This letter is to verify that Edurne Peña Mendizábal was a member of my lab at the Broad Institute of MIT and Harvard from May 7, 2018 through August 6, 2018.

If you require any additional information regarding Edurne, please feel free to contact me at 716-714-7845.

Sincerely,

Stuart L. Schreiber, Ph.D.
January 20, 2021

Re: Edurne Peña Mendizábal Certificate of Stay

To Whom It May Concern,

This letter is to verify that Edurne Peña Mendizábal was a member of my lab at the Broad Institute of MIT and Harvard from May 6, 2019 through November 4, 2019.

If you require any additional information regarding Edurne, please feel free to contact me at 716-714-7845.

Sincerely,

Stuart L. Schreiber, Ph.D.
ACKNOWLEDGEMENTS

Me gustaría utilizar estas líneas para agradecer a todas esas personas que me han apoyado, ayudado y guiado a lo largo de esta etapa.

Agradecer al Ministerio de Educación, Cultura y Deporte por otorgarme una ayuda FPU para mi formación como investigadora y docente y a la Universitat Politècnica de València por acogerme en uno de sus programas de doctorado.

A mis tutores de tesis, Sergi Morais y Ángel Maquieira, por su paciencia, esfuerzo, tutorización y dedicación a lo largo de estos años y por animarme a seguir adelante y permitirme llegar al final de esta etapa. Agradecer a Sergi su especial implicación ya no solo a nivel profesional, si no también a nivel personal. Con nuestros más y nuestros menos ha sido agradable compartir esta experiencia contigo.

A todas las personas del Departamento de Química con las que he tenido la oportunidad de coincidir a lo largo de estos años: María José Bañuls, Miguel A. González, Luis Tortajada, Patricia Noguera, Julia Atienza, Isidora Sanz, Fina Lizondo, Nuria Pastor, Patricia Esteve, Eva María Brun, José Luís López, Manuel Adelantado y Pilar Aragón.

Especial mención a todos mis compañeros de laboratorio por hacer más ameno el día a día y por animarme cuando más lo necesitaba: Victoria González, Sara Martorell, Pilar Jiménez, María Isabel Lucio, Rafael Alonso, Eric Yamanaka, María José Juarez, Pedro Quintero, Salvador Mas, Amadeo Sena, Miquel Avellá, Daniel González, Augusto Juste, Estrella Fernández, Ana Lázaro, Gabriel Sancho, Zeneida Díaz, Cynthia Collantes, Andy Hernández, Yulieth Banguera, William Teixeira, Paola Zezza, Yerai Tamarit, Noelle do Nascimento, Javier Carrascosa, Sergi Colomer y todos los demás estudiantes de grado y máster que han pasado por el laboratorio.

Del mismo modo, a Carlos Ubide, Mato Knez y Sergi Díez por haber confiado en mí y darme la oportunidad de formarme en sus laboratorios.

I am really thankful to Stuart Schreiber for giving me the opportunity to work in his lab and to be part of his group, I felt at home from the first day. Special thanks to Bruce Hua for all the support, friendship and supervision during my time there. Thanks
to all my colleagues: Chris Gerry, Shawn Nelson, Wenyu Wang, Daniel Palmieri, Elaine Oberlick, Haoxin Li, Francisco Sarabia, Judith Hernández, Amit Choudhary, Liam Hudson, Jeremy Mason, and all the people from the NGC and SLS groups. Of course, I am really grateful to all the people I have met during my time in Boston; it was a pleasure and Boston would not have been the same without all of you.

A special thanks to Julia and Felix, who happily and patiently offered to review the manuscript and correct my English. I am so lucky to have met you and I am looking forward to seeing you again.

Por supuesto, me gustaría agradecer a toda mi familia porque, a pesar de las circunstancias, se han mantenido ahí. Especialmente a mi padre y a mis hermanos, Gorka y Jon, por haber compartido conmigo esta aventura en los buenos y malos momentos, me siento muy afortunada de tenerlos, muchísimas gracias. A mi abuela, Julián y a mis sobrinas, Noa y Dana, por todo el cariño que me dan, su inocencia y su bondad.

También, quiero mencionar a mis amigos, a los de siempre y a todos los que he ido encontrando a lo largo del camino. A Celina, Imanol, Natalia y Ángel, porque después de todos estos años y a pesar de la distancia, siempre han estado ahí y me han escuchado en cualquier momento. A Nuria, Christian, Diana, Eric, Vanessa y Anna, gracias por vuestra compañía y por hacerme más agradable estar en Benicarló. A Mertxe, Alex, Iñigo y Gorka, por hacer que los años de universidad pasaran más fácil. A Pablo, Raquel y Oliver, por acogerme siempre que vuelvo a Barcelona. Agradecer a toda la gente que me llevo de Valencia después de estos 5 años, especialmente a Andrea, Jose, Jordi y Natibel, ha sido un placer conoceros y que forméis parte de mi vida. Finalmente, agradecer a toda la gente que he conocido en mis otras pasiones. A aquellos con los que he tenido la oportunidad de compartir experiencias de voluntariado, especialmente a Yaiza y a Sonia, por ofrecerme vuestra amistad, solidaridad y continuo buen humor. A mis amigos salseros, Laura, Pedro y Subha, por estar ahí y alegrarme continuamente durante este último periodo de tesis.

Gracias a todos, los aquí mencionados y a los muchísimos más que he tenido el placer de conocer, por vuestra paciencia, sin vosotros esto no hubiera sido lo mismo.
ABSTRACT

About 10% of all adverse drug reactions are due to allergies, with β-lactam antibiotics causing the majority of the episodes. Although the actual incidence remains unknown, individuals suspected of being allergic to a drug end up being prescribed with other medications that are less effective, more expensive or harmful. Consequently, a correct diagnosis is key to reduce the derived economic costs and proceed to an adequate ‘delabeling’ of the population. At present, clinical approaches to diagnose allergies to β-lactam antibiotics are based on in vivo and in vitro tests. These tests present limited clinical performances since they are invasive, dangerous, and provide false positives and/or negatives. Moreover, the diagnostic sensitivity is far from what is expected, possibly because the epitopes that cause the allergic episodes are still not well detected. In this respect, the preparation of antigens has commonly been determined by the direct attachment of antibiotics to carrier molecules through the formation of an amide bond between amino lysine groups of the carrier molecule and the carboxylate group of the antibiotic. Even so, specific IgE are barely detected with such antigens.

This dissertation addresses the synthesis of haptens and the generation of antigens to β-lactam antibiotics, which develop a more reliable in vitro diagnosis of allergies to these drugs. The evaluation of the antigens has been carried out by means of multiplex in vitro tests based on compact disc technology.

This research begins by focusing on the synthesis and preparation of penicillin antigens. To this end, first, the effect of the incorporation of aliphatic spacer arms in the chemical structure of penicillin has been approached, considering the possibility that a better molecular recognition is obtained by moving the hapten away from the carrier protein. Thirteen haptens derived from benzylpenicillin and amoxicillin were synthesized in order to prepare antigens with human serum albumin. The evaluation of the antigens revealed that even though they were immunogenic and were detected by the raised IgG antibodies, they were not detected by specific IgE from allergic patients. Additionally, the next approach considered the cationization of the carrier proteins, human serum albumin and histone. The modification of carboxylate groups of the protein to amino groups allow for an increase of the molar hapten/protein ratio. This strategy led to the
generation of five antigens, four of which (only those histone-based antigens), did increase the sensitivity of the assay. Concretely, specific IgE has been determined in sera from allergic patients at low concentrations (LOD = 0.07 IU/mL) with a diagnostic specificity of 100 % and a sensitivity of 60 and 31 % for benzylpenicillin and amoxicillin, respectively. That means a 60 % improvement in the diagnostic sensitivity when compared to the in vitro reference test.

Subsequently, the idea of preparing minor antigens based on penicillin metabolites was approached. Penicilloic, penilloic, penicillic, and 6-aminopenicillanic acids, together with penicillamine, were therefore conjugated to the carrier proteins human serum albumin and histone. Except penilloic acid, the rest of antigens were selectively detected when testing a set of serum samples from allergic patients. The diagnostic specificity obtained was 100 %, 94 % in the case of penicillic acid, and the sensitivity was between 67 and 100 %.

Another approach was focused on the production of antigens for other families of β-lactam antibiotics. The generation of antigens for cephalosporins, carbapenems, monobactams or β-lactam inhibitors is essential, since in vitro tests for the detection of allergies to these antibiotics are not commercially available. Therefore, the results obtained after the preparation of major and minor antigens for the antibiotics cefuroxime, cefotaxime, ceftriaxone, meropenem, and aztreonam were evaluated. While major antigens did not detect samples from allergic patients, minor antigens did. The application of these minor antigens, prepared after acidification of their corresponding salts, improved the analytical performances of the developed microimmunoassay. Thus, high levels of analytical sensitivity (LOD < 0.01 IU/mL) and diagnostic specificity (100 %) were obtained. Furthermore, diagnostic sensitivity values of 35, 49, and 51 % were obtained for the antibiotics cefuroxime, cefotaxime, and meropenem.

Afterwards, the research was oriented to the preparation of clavulanic acid antigens since its combination with amoxicillin, commonly known as Augmentin, is today the most prescribed drug. As far as is known, there is no in vitro assay for the determination of specific IgE to clavulanic acid, which highlights the importance of addressing the synthesis of haptens. In this case, three clavulanic acid-derived haptens were synthesized and conjugated to human serum albumin, histone, and keyhole limpet hemocyanin. The results obtained revealed the importance of the chemical structure on the immunological response since two of these haptens generated IgG-type antibodies
with high selectivity to clavulanic acid. Specifically, the selectivity was three times higher (the cross-reactivity decreases from 30 to 10 %) than for other families of β-lactam antibiotics. Their evaluation with human sera revealed that only the antigen conjugated to human serum albumin and prepared after the esterification of potassium clavulanate was able to detect specific IgE in allergic patients. Therefore, the diagnostic sensitivity of the assay was 50 % and the diagnostic specificity was 100 %.

Despite the improvements achieved in the diagnostic performances with the former strategies, other non-classical pathways for the synthesis of novel haptens with greater chemical diversity were studied. This approach focused on the generation of antigens in chemical libraries of compounds, with structural diversity, to find new biologically active haptens. This strategy, to the best of our knowledge, has not been employed for synthesis of β-lactam derived haptens for drug allergy diagnosis. In order to incorporate structural diversity, 22 compounds of the precursors of penicillins and cephalosporins, 6-aminopenicillanic acid and 7-amino-deacetoxycephalosporanic acid, respectively, and the antibiotics amoxicillin and ampicillin were synthesized by diversity-oriented synthesis. Their evaluation with the in vitro immunoassay showed that the incorporation of diversity allows for the recognition of epitopes causing allergic episodes. Specially, it was observed that these antigens were capable of detecting specific IgG and IgE antibodies from sera of immunized rabbits and samples from allergic patients, with amoxicillin and ampicillin-based antigens being especially selective. In particular, excellent diagnostic sensitivity (79 %) and specificity (100 %) were achieved.
RESUMEN

Alrededor del 10% de las reacciones adversas a medicamentos son debidas a alergias, siendo los antibióticos β-lactámicos los que más episodios alérgicos ocasionan. Aunque la incidencia real sigue siendo desconocida, los individuos sospechosos de presentar alergia a algún medicamento acaban siendo prescritos con otros medicamentos, menos efectivos, más caros o perjudiciales. Así pues, un correcto diagnóstico resulta clave para disminuir los costes económicos derivados y proceder a un adecuado ‘desetiquetado’ de la población. En la actualidad, las pruebas de diagnóstico de alergias a antibióticos β-lactámicos se basan en ensayos in vivo e in vitro. Estos ensayos muestran bajas prestaciones, ya que son invasivos y peligrosos y proporcionan falsos positivos y/o negativos. Además, la sensibilidad diagnóstica está lejos de ser la esperada, posiblemente porque aún no se ha conseguido reconocer todos los epítopos causantes de los episodios alérgicos. En este sentido, la preparación de antígenos se ha basado hasta el momento, en mayor medida, en la unión directa de los antibióticos a las moléculas portadoras mediante la formación de un enlace amida entre los grupos amino de las lisinas de la molécula portadora y el grupo carboxilato del antibiótico. Aun así, las IgE específicas son vagamente detectadas con estos antígenos.

En esta tesis se ha abordado la síntesis de haptenos y la generación de determinantes antígenicos a antibióticos β-lactámicos con los que poder realizar un diagnóstico in vitro más fiable de alergias a estos fármacos. La evaluación de los mismos se ha llevado a cabo mediante ensayos in vitro multiplex basados en tecnología de disco compacto.

Esta investigación comienza centrándose en la síntesis y preparación de antígenos de penicilina. Para ello, en una primera fase se ha estudiado el efecto de la incorporación de brazos espaciadores alifáticos en la generación de antígenos, considerando la posibilidad de que se obtenga un mejor reconocimiento molecular al alejar el hapteno de la proteína portadora. Se sintetizaron trece haptenos derivados de bencilpenicilina y amoxicilina con los que se prepararon antígenos con la proteína albumina de suero humano. La evaluación de los antígenos reveló que a pesar de ser suficientemente inmunogénicos y ser reconocidos por anticuerpos IgG de conejo, éstos
no fueron reconocidos por IgE específicas de muestras de pacientes alérgicos. Así bien, por otro lado, la estrategia de cationización de las proteínas albumina de suero humano e histona fue abordada teniendo en cuenta que la modificación de grupos carboxilatos de la proteína a grupos amino aumenta la relación molar hapteno/proteína. Esta estrategia permitió la generación de 5 antígenos, 4 de los cuales (los antígenos de histona), esta vez sí, incrementaron la especificidad de la respuesta inmunológica obtenida, reconociendo IgE específicas. Concretamente, se han determinado IgE específicas en suero de pacientes alérgicos a bajas concentraciones (LOD = 0.07 IU/mL) con una especificidad diagnóstica del 100 % y una sensibilidad del 60 y 31 % para bencilpenicilina y amoxicilina, respectivamente, mejorando la sensibilidad un 60 % en comparación con el ensayo in vitro de referencia.

A continuación, se abordó la idea de preparar antígenos menores basados en metabolitos de penicilina. Así pues, los ácidos peniciloico, peniloico, penicílico y 6-aminopenicilánico, junto con la penicilamina fueron conjugados a las proteínas albumina de suero humano e histona. Su evaluación mediante el ensayo in vitro mostró que todos, excepto el ácido peniloico, fueron reconocidos específicamente y selectivamente al analizar un conjunto de muestras de suero de pacientes positivos. La especificidad diagnóstica obtenida fue del 100 %, 94 % en el caso del ácido penicílico, y la sensibilidad se situó entre el 67 y 100 %.

Evaluada la preparación de antígenos de penicilina, la tesis se centró en la producción de antígenos para otras familias de antibióticos β-lactámicos. La generación de antígenos para las cefalosporinas, carbapenemas, monobactamas o los inhibidores β-lactámicos resulta imprescindible, ya que no se encuentran actualmente en el mercado ensayos in vitro para la detección de alergias a estos antibióticos. Así bien, en primer lugar, se evaluaron los resultados obtenidos tras la preparación de antígenos mayoritarios y minoritarios para los antibióticos cefuroxima, cefotaxima, ceftriaxona, meropenem y aztreonam. Mientras los antígenos mayores no fueron reconocidos al analizar muestras de suero de pacientes, los menores sí. La utilización de estos antígenos menores, preparados tras la acidificación de sus correspondientes sales, mejoró las prestaciones analíticas del microinmuonoensayo desarrollado. Así, se obtuvieron altos niveles de sensibilidad analítica (LOD < 0.01 IU/mL) y especificidad diagnóstica (100 %). Finalmente, se obtuvieron valores de sensibilidad diagnóstica del 35, 49 y 51 % para los antibióticos cefuroxima, cefotaxima y meropenem.
A continuación, el trabajo se orientó en la preparación de antígenos de ácido clavulánico, ya que la combinación del mismo con amoxicilina, comúnmente conocido como Augmentin, es hoy en día el medicamento más prescrito. Hasta lo que se conoce, no existe un ensayo in vitro para la determinación de IgE específica de ácido clavulánico, por lo que resulta muy interesante abordar la síntesis de haptenos. En este caso, se sintetizaron tres haptenos derivados del ácido clavulánico y se conjugaron a las proteínas albumina de suero humano, histona y a la proteína inmunogénica hemocianina de lapa californiana. Los resultados obtenidos revelaron la importancia de la estructura química ya que dos de estos haptenos generaron anticuerpos tipo IgG con una elevada selectividad al ácido clavulánico. Concretamente, la selectividad fue tres veces mayor (la reactividad cruzada pasó del 30 al 10 %) que para otras familias de antibióticos β-lactámicos. Finalmente, solo el antígeno conjugado a albumina de suero humano preparado tras la esterificación del clavulanato potásico permitió la detección de IgE específica de pacientes alérgicos. Así pues, la sensibilidad diagnóstica obtenida en el ensayo fue del 50 % y la especificidad diagnóstica del 100 %.

A pesar de las mejoras obtenidas con las estrategias llevadas a cabo, se estudiaron otras vías no clásicas para la síntesis de nuevos haptenos con mayor diversidad química. Este enfoque se basa en la generación de antígenos en librerías químicas de compuestos con diversidad estructural para encontrar nuevos haptenos biológicamente activos. Dichas estrategias, hasta el momento, no han sido empleadas para la generación de antígenos y el análisis de muestras de suero de pacientes alérgicos. Con el fin de incorporar diversidad estructural, se sintetizaron, mediante la técnica combinatoria diversity-oriented synthesis, 22 compuestos de los precursores de las penicilinas y cefalosporinas, ácido 6-aminopenicilánico y ácido 7-amino-desacetoxicefalosporánico, respectivamente, y de los antibióticos amoxicilina y ampicilina. Su evaluación con el inmunoenayo in vitro basado en disco compacto ha demostrado que la incorporación de diversidad permite el reconocimiento de epítopos causantes de episodios alérgicos. Concretamente, se observó que estos antígenos eran capaces de detectar anticuerpos tipo IgG e IgE específicos procedentes de suero de conejos inmunizados y de suero humano de pacientes alérgicos, siendo especialmente selectivos los determinantes de amoxicilina y ampicilina. Concretamente, se obtuvo una sensibilidad diagnóstica del 79 % y una especificidad diagnóstica del 100 %.
RESUM

Al voltant del 10% de les reaccions adverses a medicaments són degudes a al·lèrgies, sent els antibiòtics β-lactàmics aquells que més episodis al·lèrgics obviousen. Encara que la incidència real continua sent desconeguda, els individus sospitosos de presentar al·lèrgia a algun medicament acaben sent prescrits amb altres medicaments, menys efectius, més cars o perjudicials. Així doncs, un correcte diagnòstic resulta clau per a disminuir els costos econòmics derivats i procedir a un adequat ‘desetiquetatge’ de la població. En l'actualitat, les proves de diagnòstic d'al·lèrgies a antibiòtics β-lactàmics es basen en assaigs in vivo i in vitro. Aquests assaigs mostren baixes prestacions, ja que són invasius i perillosos i proporcionen falsos positius i/o negatius. A més a més, la sensibilitat diagnòstica està lluny de ser l'esperada, possiblement perquè encara no s'ha aconseguit reconèixer tots els epitopes causants dels episodis al·lèrgics. En aquest sentit, la preparació d'antígens s'ha basat fins al moment, en major mesura, en la unió directa dels antibiòtics a les molècules portadores mitjançant la formació d'un enllaç amida entre els grups amino de les lisines de la molècula portadora i el grup carboxilat de l'antibiòtic. Així i tot, les IgE específiques són vagament detectades amb aquests antígens.

En aquesta tesi s'ha abordat la síntesi d'haptens i la generació de determinants antigènics a antibiòtics β-lactàmics amb els quals poder realitzar un diagnòstic in vitro més fiable d'al·lèrgies a aquests fàrmacs. La seua avaluació s'ha dut a terme mitjançant assaigs in vitro multiplex basats en tecnologia de disc compacte.

Aquesta investigació comença centrant-se en la síntesi i preparació d'antígens de penicil·lina. Per a això, en una primera fase s'ha estudiat l'efecte de la incorporació de braços espaiadors alifàtics en la generació d'antígens, considerant la possibilitat que s'obtinga un millor reconeixement molecular en allunyar l’hàpt de la proteïna portadora. Es van sintetitzar tretze haptens derivats de bencilpenicil·lina i amoxicil·lina amb els quals es van preparar antígens amb la proteïna albúmina de sèrum humà. L'avaluació dels antígens va revelar que malgrat ser prou immunogènics i ser reconeguts per anticossos IgG de conill, aquests no van ser reconeguts per IgE específiques de mostres de pacients al·lèrgics. Així bé, d'altra banda, l'estratègia de cationització de les proteïnes albúmina de sèrum humà i histona va ser abordada tenint en compte que la modificació dels grups
carboxilats de la proteïna a grups amino augmenta la relació molar hapten/proteïna. Aquesta estratègia va permetre la generació de 5 antígens, 4 dels quals (els antígens d'histona), aquesta vegada sí, van incrementar l' especificitat de la resposta immunològica obtinguda, reconeixent IgE específiques. Concretament, s'han determinat IgE específiques en sèrum de pacients al·lèrgics a baixes concentracions (LOD = 0.07 IU/mL) amb una especificitat diagnòstica del 100 % i una sensibilitat del 60 i 31 % per a bencilpenicil-lina i amoxicil-lina, respectivament, millorant la sensibilitat un 60 % en comparació amb l'assaig in vitro de referència.

A continuació, es va abordar la idea de preparar antígens menors basats en metabòlits de penicil-lina. Així doncs, els àcids penicil-loic, penil-loic, penicil-lic i 6-aminopenicilàn, juntament amb la penicil-lamina van ser conjugats a les proteïnes albúmina de sèrum humà i histona. La seuavaluació mitjançant l'assaig in vitro va mostrar que tots, excepte l'àcid penil-loic, van ser reconeguts específicament i selectivament en analitzar un conjunt de mostres de sèrum de pacients positius. L'especificitat diagnòstica obtinguda va ser del 100 %, 94 % en el cas de l'àcid penicil-lic, i la sensibilitat es va situar entre el 67 i 100 %.

Avaluada la preparació d'antígens de penicil-lina, la tesi es va centrar en la producció d'antígens per a altres famílies d'antibiòtics β-lactàmics. La generació d'antígens per a les cefalosporines, carbapenems, monobactàmics o els inhibidors β-lactàmics resulta imprescindible, ja que no es troben actualment assaigs in vitro comercials per a la detecció d'al·lèrgies a aquests antibiòtics. Així bé, en primer lloc, es van avaluar els resultats obtinguts després de la preparació d'antígens majoritaris i minoritaris per als antibiòtics cefuroxima, cefotaxima, ceftriaxona, meropenem i aztreonam. Mentre els antígens majors no van ser reconeguts en analitzar mostres de sèrum de pacients, els menors sí. La utilització d'aquests antígens menors, preparats després de l'acidificació de les seues corresponents sals, va millorar les prestacions analítiques del microimmunoassaig desenvolupat. Així, es van obtenir alts nivells de sensibilitat analítica (LOD < 0.01 IU/ml) i especificitat diagnòstica (100 %). Finalment, es van obtenir valors de sensibilitat diagnòstica del 35, 49 i 51 % per als antibiòtics cefuroxima, cefotaxima i meropenem.

A continuació, el treball es va orientar a la preparació d'antígens de l'àcid clavulànic, ja que la combinació del mateix amb amoxicil-lina, comunament conegut com Augmentin, és hui dia el medicament més prescrit. Fins ara, no existeix un assaig in vitro
per a la determinació de IgE específica d'àcid clavulànic, per la qual cosa resulta molt interessant abordar la síntesi d'haptens. En aquest cas, es van sintetitzar tres haptens derivats de l'àcid clavulànic i es van conjugar a les proteïnes albúmina de sèrum humà, histona i a la proteïna immunogènica hemocianina de llepassa californiana. Els resultats obtinguts van revelar la importància de l'estructura química, ja que dos d'aquests haptens van generar anticossos tipus IgG amb una elevada selectivitat a l'àcid clavulànic. Concretament, la selectivitat va ser tres vegades major (la reactivitat creuada va passar del 30 al 10 %) que per a altres famílies d'antibiòtics β-lactàmics. Finalment, només l'antigen conjugat a albúmina de sèrum humà preparat després de l'esterificació del clavulanat potàssic va permetre la detecció de IgE específica de pacients al·lèrgics. Així doncs, la sensibilitat diagnòstica obtinguda en l'assaig va ser del 50 % i l'especificitat diagnòstica del 100 %.

Malgrat les millores obtingudes amb les estratègies dutes a terme, es van estudiar altres vies no clàssiques per a la síntesi de nous haptens amb major diversitat química. Aquest enfocament es basa en la generació d'antígens en llibreries químiques de compostos amb diversitat estructural per a trobar nous haptens biològicament actius. Aquestes estratègies, fins al moment, no han sigut emprades per a la generació d'antígens i l'anàlisi de mostres de sèrum de pacients al·lèrgics. Amb la finalitat d'incorporar diversitat estructural, es van sintetitzar, mitjançant la tècnica combinatòria diversity-oriented synthesis, 22 compostos dels precursors de les penicil·lines i cefalosporines, àcid 6-aminopenicilànic i àcid 7-amino-desacetoxicefalosporànic, respectivament, i dels antibiòtics amoxicil·lina i ampicil·lina. La seua avaluació amb l'immunoassaig in vitro basat en disc compacte ha demostrat que la incorporació de diversitat permet el reconeixement d'epitops causants d'episodis al·lèrgics. Concretament, es va observar que aquests antígens eren capaços de detectar anticossos tipus IgG i IgE específics procedents de sèrum de conills immunitzats i de sèrum humà de pacients al·lèrgics, sent especialment selectius els determinants d'amoxicil·lina i ampicil·lina. Concretament, es va obtindre una sensibilitat diagnòstica del 79 % i una especificitat diagnòstica del 100 %.
DISSEMINATION OF RESULTS

The results derived from this thesis have led to the following scientific contributions.

Published articles in indexed scientific journals:

 Impact factor (5-year): 6.086

 Impact factor (5-year): 4.576

Communications in national and international conferences:

ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-APA</td>
<td>6-aminoopenicillanic acid</td>
</tr>
<tr>
<td>7-ACA</td>
<td>7-aminocephalosporanic acid</td>
</tr>
<tr>
<td>ADE</td>
<td>Adverse drug event</td>
</tr>
<tr>
<td>ADR</td>
<td>Adverse drug reaction</td>
</tr>
<tr>
<td>AHS</td>
<td>Abacavir hypersensitivity syndrome</td>
</tr>
<tr>
<td>AMP</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AMX</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen-presenting cell</td>
</tr>
<tr>
<td>ATC</td>
<td>Anatomical therapeutic chemical classification system</td>
</tr>
<tr>
<td>AZT</td>
<td>Aztreonam</td>
</tr>
<tr>
<td>BAT</td>
<td>Basophil activation test</td>
</tr>
<tr>
<td>BLC</td>
<td>β-lactam antibiotic</td>
</tr>
<tr>
<td>BPL</td>
<td>Penicilloyl-polysine</td>
</tr>
<tr>
<td>BPA</td>
<td>Benzylpenicillanyl</td>
</tr>
<tr>
<td>BPO</td>
<td>Benzylpenicilloyl</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CAF</td>
<td>Child-appropriate formulation</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control and Prevention</td>
</tr>
<tr>
<td>CFO</td>
<td>Cefotaxime</td>
</tr>
<tr>
<td>CFR</td>
<td>Cefuroxime</td>
</tr>
<tr>
<td>CFT</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td>CNBr</td>
<td>Cyanogen bromide</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T lymphocyte</td>
</tr>
<tr>
<td>CVL</td>
<td>Clavulanic acid</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DDD</td>
<td>Defined daily dose</td>
</tr>
<tr>
<td>DEL</td>
<td>DNA-encoded library</td>
</tr>
<tr>
<td>DHR</td>
<td>Drug hypersensitivity reaction</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>DOS</td>
<td>Diversity-oriented synthesis</td>
</tr>
<tr>
<td>DPT</td>
<td>Drug provocation test</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Versatile Disc</td>
</tr>
<tr>
<td>EAACI</td>
<td>European Academy of Allergy and Clinical Immunology</td>
</tr>
<tr>
<td>EC50</td>
<td>Half maximal effective concentration</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>ENDA</td>
<td>European Network on Drug Allergy</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
</tr>
<tr>
<td>GAM-HRP</td>
<td>Goat anti-mouse antibody labelled with horseradish peroxidase</td>
</tr>
<tr>
<td>GAR-HRP</td>
<td>Goat anti-rabbit antibody labelled with horseradish peroxidase</td>
</tr>
<tr>
<td>GT</td>
<td>Glycosyltransferase</td>
</tr>
<tr>
<td>H1</td>
<td>Hystone from calf thymus</td>
</tr>
<tr>
<td>HR</td>
<td>Hypersensitivity reaction</td>
</tr>
<tr>
<td>HRMS</td>
<td>High-resolution mass spectrometry</td>
</tr>
<tr>
<td>HSA</td>
<td>Human serum albumin</td>
</tr>
<tr>
<td>HTS</td>
<td>High-throughput screening</td>
</tr>
<tr>
<td>IDHR</td>
<td>Immediate drug hypersensitivity reaction</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IHR</td>
<td>Immediate hypersensitivity reaction</td>
</tr>
<tr>
<td>IL</td>
<td>Cytokine interleukin</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>KLH</td>
<td>Keyhole limpet hemocyanin</td>
</tr>
<tr>
<td>LC/MS<sup>a</sup></td>
<td>Data-dependent multiple-stage tandem mass spectrometry</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LRMS</td>
<td>Low-resolution mass spectra</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>MCR</td>
<td>Multicomponent reaction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MDM</td>
<td>Minor determinant mixture</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-morpholino)ethanesulfonic acid</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MRP</td>
<td>Meropenem</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant S. aureus</td>
</tr>
<tr>
<td>MS-MALDI-TOF</td>
<td>Matrix assisted laser desorption/ionization mass spectrometry</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxy succinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>(P-I) model</td>
<td>Pharmacological interaction model</td>
</tr>
<tr>
<td>PAMAM</td>
<td>Polyamidoamine</td>
</tr>
<tr>
<td>PBP</td>
<td>Penicillin binding protein</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PG</td>
<td>Benzylpenicillin (or Penicillin G)</td>
</tr>
<tr>
<td>PLL</td>
<td>Poly-L-lysine</td>
</tr>
<tr>
<td>PPL</td>
<td>Penicilloyl polylysine</td>
</tr>
<tr>
<td>PPR</td>
<td>Piperacillin</td>
</tr>
<tr>
<td>PV</td>
<td>Phenoxympethylpenicillin (or Penicillin V)</td>
</tr>
<tr>
<td>RAST</td>
<td>Radioallergosorbent test</td>
</tr>
<tr>
<td>sIgE</td>
<td>Specific IgE</td>
</tr>
<tr>
<td>SIT</td>
<td>Skin intradermal test</td>
</tr>
<tr>
<td>SPT</td>
<td>Skin prick test</td>
</tr>
<tr>
<td>SSRIs</td>
<td>Selective serotonin reuptake inhibitor</td>
</tr>
<tr>
<td>ST</td>
<td>Skin testing</td>
</tr>
<tr>
<td>TCR</td>
<td>T-cell receptor</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMB</td>
<td>3,3’,5,5’-tetramethylbenzidine</td>
</tr>
<tr>
<td>TOS</td>
<td>Target-oriented synthesis</td>
</tr>
<tr>
<td>tIgE</td>
<td>Total IgE</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>WAO</td>
<td>World Allergy Organization</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS

- **Hapten**

 An organic compound of low molecular weight (<1,000 Da) chemically reactive that can be covalently conjugated to high molecular weight molecules in order to elicit an immune response.

- **Antigen**

 Any foreign substance that generates a specific immune response when introduced in the organism, well by producing specific antibodies, by sensitizing T-cells or both.

- **Antigenic determinant**

 The immunodominant part of the antigen that is recognized by the immune system and consequently stimulates an immune response. It is also referred to as epitope.

- **Diagnostic sensitivity**

 The ability of a test, expressed in percentage, to correctly identify populations of individuals with the disease.

- **Diagnostic specificity**

 The ability of a test, expressed in percentage, to correctly identify populations of individuals without the disease.

- **Analytical sensitivity**

 The lowest concentration of an analyte determined or detected by an assay in a sample.
- Analytical selectivity

The ability of a method to determine particular analytes in mixtures or matrices exhibiting a degree of preference for the substance of interest.
LIST OF FIGURES

Figure 1. Scheme of the different mechanisms involved in HRs 6
Figure 2. Pathogenic mechanism of drug allergy ... 8
Figure 3. Mechanisms of action of allergic reactions to drugs. A) Hapten and Pro-hapten hypothesis, B) pharmacological interaction (P-I) model and C) altered peptide repertoire model ... 10
Figure 4. Classes of antibiotics and their mode of action in chronological order of development ... 12
Figure 5. Map of consumption of antibiotics for systemic use in the EU, expressed in DDDs .. 13
Figure 6. Chemical structures of BLCs ... 16
Figure 7. Mechanisms of action of BLCs .. 18
Figure 8. Scheme of the penicilloyl formation ... 22
Figure 9. Pathways of degradation of penicillins in acidic and alkaline conditions 23
Figure 10. Formation of the penicilleny1 antigen ... 24
Figure 11. Scheme of the formation of the penicoyl determinant 24
Figure 12. Pathway of penicillanyl formation via the carbodiimide method 25
Figure 13. Proposed structure for the formation of the metabolite penicany1 26
Figure 14. Proposed pathway for the formation of minor metabolites of PG 26
Figure 15. Pathway of the formation of the diketopiperazine and diolpyrazine-like compounds with ampicillin ... 27
Figure 16. Proposed formation of the cephalosporoyl antigens. a) Good R’ leaving group. b) Poor R’ leaving group ... 28
Figure 17. Hypothetical degradation structures for cephalosporin antigens B4-B6 29
Figure 18. Hypothetical pathway of degradation of cephalosporin C 30
Figure 19. Pathway of the formation of the pyrazinone-like antigen with cefaclor 31
Figure 20. Formation of the cephalosporanyl determinant 31
Figure 21. Scheme of the formation of the carbapenoyl determinant 32
Figure 22. Proposed pathway of the formation of the 3-iminotetrahyro-2-pyranone-like structure ... 33
Figure 23. Scheme of the -oyl formation for monobactams .. 33
Figure 24. Chemical structures of aztreonam and ceftazidime with the same R lateral chain .. 34
Figure 25. Possible epitopes of the aztreonyl antigen D2 ... 34
Figure 26. Proposed pathways for the formation of AZT metabolites A) D3, B) D4 and C) D5 .. 35
Figure 27. Proposed pathway of the formation of CVL antigens .. 36
Figure 28. Hypothetical pathway of degradation of CVL ... 37
Figure 29. Proposed degradation pathway of the β-lactam inhibitors sulbactam and tazobactam .. 38
Figure 30. Schematic representation of antigens without (antigen 1) and with (antigen 2) spacer arms .. 40
Figure 31. Scheme of the cationization of protein molecules of BSA using ethylene diamine and EDC .. 41
Figure 32. Synthetic strategies. A) traditional combinatorial library synthesis. B) diversity-oriented synthesis .. 43
Figure 33. Diagnostic approaches to IHRs to BLCs ... 45
Figure 34. Immunopathological basis of allergy skin testing .. 46
Figure 35. Principle of the BAT .. 48
Figure 36. Principles of A) ImmunoCAP, B) 3gAllergy and C) ALLERG-O-LIQ 49
Figure 37. Principles of in-house A) RAST and B) colorimetric assay 50
LIST OF TABLES

Table 1. Therapeutic groups suspected of causing most ADRs ..3
Table 2. Classification of adverse drug reactions...4
Table 3. Classification of antibiotics ...11
Table 4. RAST classification of drug allergy ..20
Table 5. Summary of the antigens prepared in this dissertation...198
TABLE OF CONTENTS

1. **INTRODUCTION** .. 1

 1.1. Adverse drug reactions .. 3

 1.2. Hypersensitivity reactions .. 5

 1.3. Drug hypersensitivity reactions and drug allergy ... 7

 1.4. Mechanisms of action of allergic reactions to drugs .. 9

 1.5. Antibiotics .. 10

 1.5.1. Consumption pattern of antibiotics .. 11

 1.6. β-lactam antibiotics .. 14

 1.6.1. Consumption pattern of β-lactam antibiotics .. 17

 1.6.2. Mechanisms of action of β-lactam antibiotics ... 18

 1.6.3. Immediate allergic reactions to β-lactam antibiotics ... 18

 1.6.4. β-lactam metabolites and structural antigens ... 20

 1.6.5. Other approaches to form antigens .. 39

 1.7. Diagnostic approaches to evaluate and detect immediate allergic reactions to β-lactam antibiotics .. 44

 1.7.1. In vivo tests .. 45

 1.7.2. In vitro tests ... 47

 1.8. Recapitulation ... 51

 1.9. References .. 53

2. **OBJECTIVES** ... 75

3. **EXPERIMENTAL RESULTS** .. 79

 Chapter 1 .. 81

 3.1. Penicillin determinants for the diagnosis of IgE-mediated allergic reactions 81

 3.1.1. Boosting the sensitivity of in vitro β-lactam allergy diagnostic tests 85
3.1.2. Penicillin antigens based on metabolites for in vitro drug allergy testing99

Chapter 2 ..115

3.2. Production of antigens and identification of antigenic determinants to cephalosporin, carbapenem, monobactam and β-lactam inhibitor antibiotics115

3.2.1. Neo-antigens for the serological diagnosis of IgE-mediated drug allergic reactions to antibiotics cephalosporin, carbapenem and monobactam119

3.2.2. Hapten synthesis for clavulanic acid ...149

Chapter 3 ..173

3.3. Synthesis of skeletally diverse β-lactam haptens for the in vitro diagnosis of IgE-mediated drug allergy ...173

4. GENERAL DISCUSSION ...189

5. CONCLUSIONS ..199

6. ANNEXES ...205

Annex 1. Electronic supplementary information (ESI†): Boosting the sensitivity of in vitro β-lactam allergy diagnostic tests ...207

Annex 2. Supplementary information: Penicillin antigens based on metabolites for in vitro drug allergy testing ...245

Annex 3. Supplementary information: Neo-antigens for the serological diagnosis of IgE-mediated drug allergic reactions to antibiotics cephalosporin, carbapenem and monobactam ...249

Annex 4. Supplementary information: Hapten synthesis for clavulanic acid269

Annex 6. Summary of all the haptens described in this dissertation343
1. INTRODUCTION
1. INTRODUCTION

1.1. Adverse drug reactions

A drug is pharmacologically a chemical substance, obtained naturally or synthetically, capable of producing a biological effect in an individual when consumed. However, drugs not only produce a therapeutic benefit, but they can also cause adverse reactions. In this respect, the World Health Organization (WHO), in 1972, coined the term “adverse drug reaction” (ADR) to underline the noxious and unintended response to a drug occurring at doses normally used in individuals for the prevention, diagnosis or therapy of a disease or for the modification of physiological functions. Although any drug can lead to an ADR, the most common drug groups causing ADRs are listed in Table 1.

<table>
<thead>
<tr>
<th>Therapeutic group</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antithrombotic agents</td>
<td>Aspirin, clopidogrel, heparin, warfarin</td>
</tr>
<tr>
<td>Antibacterials for systemic use</td>
<td>Amoxicillin, azithromycin, cephalexin, ciprofloxacin</td>
</tr>
<tr>
<td>Psycholeptics</td>
<td>Clozapine, haloperidol, olanzapine, quetiapine</td>
</tr>
<tr>
<td>Psychoanaleptics</td>
<td>Amitriptyline, citalopram, sertraline, venlafaxine</td>
</tr>
<tr>
<td>Antineoplastic agents</td>
<td>Protein kinase inhibitors (imatinib, nilotinib, ribociclib)</td>
</tr>
<tr>
<td>Antiinflammatory and antirheumatics</td>
<td>Celecoxib, diclofenac, ibuprofen, ketoprofen</td>
</tr>
<tr>
<td>Analgesics</td>
<td>Hydrocodone, metamizole, morphine, paracetamol</td>
</tr>
<tr>
<td>Antiepileptics</td>
<td>Carbamazepine, diazepam, lamotrigine, levetiracetam</td>
</tr>
<tr>
<td>Agents acting on the renin-angiotensin system</td>
<td>Benazepril, captopril, losartan, valsartan</td>
</tr>
<tr>
<td>Sex hormones and modulators of the genital system</td>
<td>Norethindrone and ethinylestradiol, norgestimate and ethinylestradiol</td>
</tr>
</tbody>
</table>
ADR should not be confused with the term “adverse drug event” (ADE), which refers to those injuries resulting from the use of a drug. In this sense, these events include the harm caused by both the drug, such as ADRs and overdoses, and medication errors, from the interaction between drugs or drug and food.4

Presently, both immune and non-immune ADRs are major causes of morbidity and mortality worldwide.5 It was recently reported that 3 to 6 % of all hospital admissions of a study including 4,802 patients was due to ADRs.6 Furthermore, they occurred in 10 to 15 % of hospitalized patients, as observed in several studies7–9 accounting for up to 3,695 patients.

ADRs were commonly distinguished between dose and non-dose-dependent, classified as type A and type B reactions.10 More recently, four new categories have been proposed,11,12 namely type C, D, E and F reactions. The classification of ADR are listed in Table 2. It is worth noting, however, that not all individuals have to be affected in the same way nor do it has to suffer from the same type of reaction.13 Indeed, ADR may not even develop for a specific individual.14

Table 2. Classification of adverse drug reactions

<table>
<thead>
<tr>
<th>Type of ADR</th>
<th>Features</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Intrinsic and predictable Related to the pharmacological action of a drug Dose-dependent Common (80 % of ADRs)</td>
<td>Digoxin toxicity Respiratory depression with opioids</td>
</tr>
<tr>
<td>B</td>
<td>Unpredictable Non-dose-dependent Idiosyncratic drug reactions</td>
<td>Drug hypersensitivity reactions Enzyme defects</td>
</tr>
<tr>
<td>C</td>
<td>Dose and time-dependent Correlates to the cumulative dose</td>
<td>Hypothalamic pituitary-adrenal axis suppression by corticosteroids</td>
</tr>
<tr>
<td>D</td>
<td>Time- and usually dose-dependent Delayed-reactions</td>
<td>Carcinogenesis Teratogenesis</td>
</tr>
<tr>
<td>E</td>
<td>Occurs soon after use of the drug</td>
<td>Myocardial ischaemia</td>
</tr>
<tr>
<td>F</td>
<td>Unexpected failure of therapy Dose-dependent Commonly caused by drug interaction</td>
<td>Administration of an inappropriate dose of an oral contraceptive in combination with other drugs</td>
</tr>
</tbody>
</table>
1.2. Hypersensitivity reactions

Clemens von Pirquet, in 1906, defined the term “allergy” as the unusual biological response shown by some individuals to develop symptoms and signs of sensitivity when exposed to certain substances. These hypersensitivity reactions (HRs) are exaggerated or inappropriate responses that cause the immune system to respond abnormally. HRs include allergies and various autoimmune disorders, produced by exogenous or endogenous substances, called antigens or autoantigens, respectively.

The hypersensitivity reaction is developed at early and later stages, namely as sensitization and effector phases. Firstly, individuals are sensitized by means of an asymptomatic primary immune response to allergens, in which this predisposition is certainly influenced by genetics and age. In this respect, however, genetic factors alone cannot explain the distinctiveness of allergic sensitizations, and sensitivity differences among individuals to the noxious effects of allergens is another factor to consider. Secondly, a symptomatic harmful secondary immune response, referred to also as the effector phase, occurs. It is in this phase when the acute inflammatory response is commonly developed. However, only those individuals previously sensitized can produce acute inflammatory response.

In early stages of the development of the hypersensitivity, the antigen-presenting cells (APCs) cause a response in T_{H2} lymphocytes that produces the cytokines interleukin (IL)-4 and specific immunoglobulin E (sIgE) in response to the allergen by interaction with B-cells. The sIgE binds to high-affinity receptors located on mast cells, basophils and activated eosinophils, and triggers the secondary immune response that finally ends in an acute inflammatory response. This acute inflammatory response differs in terms of the the effector mediating the HR and the adaptive immune response. Thus, according to the deleterious consequences to the host, Coombs and Gell classified HRs into four forms as type I, II, III and IV (Figure 1).

Type I reactions are caused by sIgE cross-linked by contact with free soluble antigens that are bound to mast cells and basophils and cause their degranulation. These reactions release histamine and other inflammatory mediators.

Type II reactions are cytotoxic and caused by IgG and IgM antibodies, which are selective to particular tissues. These antibodies bind inappropriately to new epitopes
on the surface of the cells by chemical modifications and activate the complement cascade.

Type III reactions are immune complex-mediated and involve IgG antibodies raised against a soluble foreign protein. The deposition of this antigen-IgG antibody complex initiates the complement cascade, which activates neutrophils and results in tissue damage.

Type IV reactions are caused by T-cells that respond either to peptides or to the epitopes of foreign proteins, and are the only HRs that involve sensitized T-lymphocytes rather than antibodies. Type IV HRs were further subdivided in IVa-IVd reactions, according to the immune reactant and the effector involved.

Figure 1. Scheme of the different mechanisms involved in HRs

Another common classification for HRs is based on the delay of the onset of the reaction. Therefore, they can be classified as (I) immediate hypersensitivity reactions (IHRs) because they occur within 1 hour, and (II) non-immediate (delayed) hypersensitivity reactions, occurring between 1 hour and up to several days. Type I, II and III reactions are considered as IHRs and type IV reactions are classified as non-immediate, or delayed, HRs.
1.3. Drug hypersensitivity reactions and drug allergy

The World Allergy Organization (WAO) defined drug hypersensitivity reactions (DHRs) as those reactions with reproducible responses or symptoms observed after exposure to a drug at doses normally tolerated by non-hypersensitive individuals. These responses, comprising both allergic and non-allergic reactions, are common in clinical practice and are type B, accounting for up to 15% of all ADRs. Furthermore, DHRs can be mediated by both specific and non-specific immunological mechanisms.

In this respect, in 2003, the WAO defined drug allergy as only those immunologically mediated DHRs. In total, drug allergy is estimated to account for about 10% of all ADRs. However, one controversial issue is that patients with a suspected drug allergy are commonly instantaneously categorized as “allergic” without further clinical evaluation. As a result, morbidity, mortality and economical costs may arise and that is why delabeling initiatives are now part of drug stewardship programs.

Based on a study by Zhou et al., in 2016, the most reported drug classes causing an allergic reaction, or immunologically mediated DHR, are— in descending order of prevalence—: penicillins (12.8%), sulfonamides (7.4%), opiates (6.8%), non-steroidal anti-inflammatory drugs (3.5%), macrolides (2.6%), angiotensin-converting enzyme inhibitors (2.0%), cephalosporins (1.7%), β-hydroxy β-methylglutaryl-CoA reductase inhibitors (1.5%), fluoroquinolones (1.3%), tetracyclines (1.2%), selective serotonin reuptake inhibitors (0.6%) and phenothiazines (0.5%). In terms of specific drugs, the most reported were codeine (3.1%), amoxicillin (2.1%), and aspirin (1.6%).

Drug allergy can be antibody-mediated or cell-mediated and is clinically classified according to the deleterious consequences to the host, proposed by Coombs and Gell (see section 1.2).

IgE-mediated reactions (Type I, Figure 2) mainly cause urticaria, angioedema, maculopapular exanthema and anaphylaxis. Urticaria and angioedema are common clinical problems whose lifetime prevalence is around 20%. Urticaria manifests as raised, erythematous, and usually very itchy wheals, and can occur at any time. The mechanism involves the activation and degranulation of dermal mast cells, releasing histamine, serotonin, proteases, tumor necrosis factor α and cytokines, such as IL-1. This results in an increase of the permeability and distension of
blood capillaries which trigger the development of a continuous inflammation and, eventually, itchy skin rash that regresses within 24 hours.

Angioedema is initiated through a similar mechanism as for acute urticaria, but may last for several days.\(^{39}\) It occurs in the deep dermis and subcutaneous tissue and is commonly present with urticaria, as a non-pitting swelling of the submucosal or subcutaneous tissue.\(^ {40}\)

Maculopapular exanthema manifests as a diffuse cutaneous erythema in which some skin areas present maculopapules of different sizes and can develop to vesicles or papules.\(^ {41}\) It is considered as a non-immediate reaction.

Anaphylaxis is an immediate, severe, life-threatening, systemic reaction that occurs when a previously sensitized individual is re-exposed to an allergen.\(^ {42}\) It involves respiratory and/or cardiovascular problems, caused by a massive release of mediators.\(^ {43}\) Anaphylaxis incidences in western countries account to approximately 4-50 per 100,000 individuals per year\(^ {44}\) and its frequency is approximately 50 to 2,000 events per 100,000 individuals.\(^ {45}\)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{pathogenic_mechanism.png}
\caption{Pathogenic mechanism of drug allergy}
\end{figure}

Non-IgE-mediated drug allergies can be cytotoxic (type II), drug immune-complex (type III) or T-cell mediated (type IV) reactions. Immune hemolytic anemia or thrombocytopenia, among others, are considered type II reactions, while serum sickness and drug-induced lupus are drug immune-complex reactions. Some type IV reaction examples include severe cutaneous adverse reaction, Stevens-Johnson syndrome and toxic epidermal necrolysis, and acute generalized exanthematous pustulosis.\(^ {46}\) These latter reactions are the most largely represented\(^ {47}\) and account for the most prevalent ones.\(^ {48}\)
1.4. Mechanisms of action of allergic reactions to drugs

DHRs are explained, according to their mode of action (Figure 3),49,50 with the hapten/pro-hapten model, the pharmacological interaction with immune receptors model or the altered peptide repertoire model.

In the **hapten/pro-hapten model**, the concept of “hapten” is introduced. Drugs (< 1000 Da) are considered haptens if they are chemically reactive and can be covalently bind to molecules, such as carrier proteins, dendrimers or polypeptides. This drug complex is processed intracellularly and directly bound to the immunogenic major histocompatibility complex (MHC), to the enclosed peptide, or to the MHC/peptide complex on APCs; leading to the formation of distinct epitopes that can generate a warning signal. This signal results simultaneously in both humoral and cellular immune responses. T-cells, in particular, recognize carrier proteins and help B-cells to identify the hapten. On the other hand, the “pro-hapten” concept includes those drugs that are not chemically reactive and therefore cannot form covalent bonds with soluble or cell-bound molecules. In this case, these drugs require metabolic activation to become chemically reactive and act as haptens following the hapten model. The hapten/pro-hapten model can elicit any type of specific immune responses.51 Sensitive reactions to β-lactam antibiotics (BLCs) are one example of the hapten/pro-hapten model.

In the **pharmacological interaction with immune receptors (P-I) model**, drugs fit into specific proteins or enzymes blocking their function,52 and are not necessarily covalently bound to MHC molecules. Since chemically inert drugs cannot covalently bind to soluble or cell-bound molecules, they link directly to specific T-cell receptors (TCRs) or MHC molecules by non-covalent bonds without the intracellular processing of the drug.10 Under certain conditions, the reversible drug-receptor interaction may lead to an immune response of T-cells specific for peptide antigens. This enables to expand and cause different types of inflammatory reactions without the need of occurring a primary immune response to the drug to occur. Allergic reactions due to the drug sulfamethoxazole are a good example of this model as they are reported to bind in a non-covalent way to the TCRs.53

The **altered peptide repertoire model** consists of the drug binding inside the MHC (peptide binding groove) during the human leukocyte antigen assembly in the endoplasmic reticulum. This results in an alteration of the presented peptide self-
Introduction

repertoire, leading to the releasing of an erroneous T-cell response as the TCR does not recognize this altered peptide self-repertoire as self anymore. Furthermore, the pathomechanism of the altered peptide repertoire model may involve co-stimulators accompanied by cross-talk between dendritic cells and natural killer cells. All this leads to the formation of different profiles of severe cutaneous ADRs, depending on the key cells and cytokines involved. The drug abacavir and the abacavir hypersensitivity syndrome (AHS) was the first example of this model.

![Figure 3](image.png)

Figure 3. Mechanisms of action of allergic reactions to drugs. A) Hapten and Pro-hapten hypothesis, B) pharmacological interaction (P-I) model and C) altered peptide repertoire model. APC, antigen-presenting cell; KIRs, killer immunoglobulin-like receptor; NK, natural killer cell; pDC, plasmacytoid dendritic cell; TLRs, Toll-like receptors.

1.5. Antibiotics

The term *antibiotic*, first coined in 1942, is defined, according to the WHO, as any medicine used for the prevention and treatment of bacterial infections by killing or inhibiting the growth of bacteria. Antibiotics were first considered as those
compounds that were produced by one specific microorganism, which selectively inhibited the growth of another. Today, most of the antibiotics are semisynthetic.

Antibiotics can be classified according to their chemical structure, spectrum or mode of action (Table 3 and Figure 4).

<table>
<thead>
<tr>
<th>Table 3. Classification of antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
</tr>
<tr>
<td>Chemical structure</td>
</tr>
<tr>
<td>β-lactam antibiotics, sulfonamides, aminoglycosides, tetracyclines, macrolides, glycopeptides, ansamycins, fluoroquinolones, streptogramins, oxazolidinones and lipopetides</td>
</tr>
<tr>
<td>Spectrum</td>
</tr>
<tr>
<td>Broad- and narrow- spectrum antibiotics (depending on whether the specific type of the microorganism is known or not)</td>
</tr>
<tr>
<td>Mode of action</td>
</tr>
<tr>
<td>Bactericidal: kill bacteria by inhibiting cell wall synthesis</td>
</tr>
<tr>
<td>Bacteriostatic: reduce bacteria’s growth by inhibiting the synthesis of bacterial proteins, the replication of DNA, and other aspects related to the bacterial cellular metabolism.</td>
</tr>
</tbody>
</table>

1.5.1. Consumption pattern of antibiotics

According to the last report from the European Centre for Disease Prevention and Control (ECDC), the total consumption of antibiotics in the community in the European Union (EU) ranged from 7.1 to 26.4 DDDs in 2020 with an average of 15.0 defined daily doses (DDDs) (Figure 5). The DDD is a metric used to calculate the assumed mean maintenance dose of an antibiotic. This metric considers only the number of adults who are consuming antibiotics per 1,000 inhabitants per day. In relation to the gross worldwide consumption pattern of antibiotics, the surveillance report of antibiotic consumption from the WHO ranged from 4.4 to 64.4 DDDs per 1,000 inhabitants per day during 2015. In the last years, antibiotic consumption increased 65 %, from 21.1 to 34.8 billion DDDs, and its rate increased 39 %, from 11.3 to 15.7 DDDs. The rise of the domestic product per capita in low- and middle-income countries between 2000 and 2015, benefited this increase. This also correlates with the evolution of allergies to antibiotics, which allergy pattern changed over the years. In this respect, a study by Doña et al. evaluated the variation of DHRs, from 2005 to 2010, in a population of 4,460 subjects which developed an allergy reaction. While the general prevalence of allergies to antibiotics remained similar (from 44 to 43 %), there was an increase in DHRs to, particularly, quinolones (from 1.8 to 4.6 %) and macrolides (from 2.7 to 6.2 %), which can be attributed to the increase in their consumption rate.
Figure 4. Classes of antibiotics and their mode of action in chronological order of development. Green charts: Antibiotics that commonly act as bacteriostatic agents; Blue charts: Antibiotics commonly considered as bactericidal agents. General structure of each class of antibiotic is shown, unless expressed. Examples of some antibiotic classes are: penicillins (for β-lactams), streptomycin (for aminoglycosides), vancomycin (for glycopeptides), geldanamycin (for ansamycins), pristinamycin IIA (for streptogramins), and surfactin (for lipopeptides).
Antibiotics are also widely used in veterinary medicine and agriculture. However, their use is often non-therapeutic, it is meant to lower production costs, promote faster growth, reduce commercialization time, maintain animal’s health and prevent losses. Human consumption of products derived from food-producing animals treated with antibiotics may still contain residues or metabolites, as they can remain in the tissues or cells of the animals. Therefore, the total consumption of antibiotics in the population goes beyond that due to their therapeutic use, and increases after the intake of meat and dairy products. In conclusion, the use of antibiotics by the livestock industry is an importance concern since it can increase the number of allergic and/or toxic reactions as well as aggravate the counteraction of bacteria to the bactericidal effect of antibiotics, known as antibiotic resistance. To mention some figures, about 75 % of all antibiotics annually consumed in the United States (US) are used by the livestock industry. Concretely, a report from the US Food and Drug Administration (FDA) on antibiotics distributed for use in food-producing animals reported domestic annual sales of more than 11 million kg of active antibiotics in 2018. The largest amounts accounted for tetracyclines (66 %), BLCs (13 %), macrolides (8 %), sulfonamides (5 %), aminoglycosides (5 %) and quinolones (< 1 %). The European Medicines Agency (EMA) on antibiotic sales for use in food-producing animals reported domestic annual sales of
Introduction

ca. 6.6 million kg of active antibiotics in 2017 in the EU. The overall sales of antimicrobials accounted for tetracyclines (30 %), penicillins (27 %) and sulfonamides (9 %). In addition, annual sales of antibiotics for animal use in the EU between 2011 and 2017 dropped by more than 32 %, coinciding with the European prohibition in 2006 on the use of antibiotics as feed additives for growth promotion.

Further to this, antibiotic resistance, aroused as an emerging problem. In this respect, the U.S. Center for Disease Control and Prevention (CDC) calculated $20 billion of costs for antibiotic resistance related to overspending time in hospitals. Moreover, the Organisation for Economic Co-operation and Development (OECD) predicted that 2.4 million people in Europe, North America and Australia will die from infections related to antibiotic resistance in 30 years. This means $3.5 billion costs per year.

1.6. β-lactam antibiotics

Considered as one of the most prescribed drugs, β-lactam antibiotics (BLCs) are currently also the most widely-used group of antibiotics. These drugs are chemically characterized for having a common feature, the β-lactam ring, that is highly reactive. The antibacterial activity associated to these antibiotics is assigned to it, whereas the lateral chain determines the antibacterial spectrum of action and the pharmacological properties of each specific BLC. These antibiotics are used to treat numerous clinical infections, such as upper respiratory tract infections, pharyngitis, skin/soft tissue infections or intra-abdominal infections.

The first natural BLC, benzylpenicillin (PG), was discovered in 1928 by Fleming who showed that the fungus P. notatum prevented the growth of Staphylococci bacterium. Since the clinically approval of PG as a therapeutic agent in the 1940s, several natural and semi-synthetic BLCs, categorized in families according to their chemical structure (Figure 6), have been developed.

Penicillins are characterized for having the nucleus of the 6-animopenicillanic acid (6-APA) that presents both a β-lactam and a thiazolidine ring, and a lateral chain. This group includes natural penicillins, such as PG and penicillin V (PV), penicillinase-resistant penicillins, such as oxacillin and cloxacillin, aminopenicillins, such as (AMX) and ampicillin (AMP), carboxypenicillins, such as carbenicillin and ticarcillin, and
ureidopenicillins, such as piperacillin (PPR) and azlocillin. Another classification of penicillins is based on the Anatomical Therapeutic Chemical (ATC) code J01, which classifies antibacterials with an alphanumeric code for systemic use, and is a therapeutic subgroup of the ATC classification system. Within this system, penicillins, encoded as J01C, are classified as penicillins with extended spectrum, such as AMX, AMP, PPR, carbenicillin; β-lactamase-sensitive penicillins, such as PG and PV; and β-lactamase-resistant penicillins, like oxacillin and cloxacillin.

Cephalosporins are semisynthetic BLCs that contain a 7-aminocephalosporanic acid (7-ACA) nucleus and a side-chain containing a 3,6-dihydro-2 H-1,3-thiazane ring. According to the antibacterial spectrum of action, they are classified into five generations. This antibacterial spectrum has, however, to be redefined as cephalosporin resistance increases due to extended-spectrum β-lactamases and carbapenemases, especially for Gram-negative bacteria. Some examples include: cefazolin and cefadroxil, from the 1st generation; cefaclor and cefuroxime (CFR), from the 2nd; ceftriaxone (CFT) and cefotaxime (CFO), from the 3rd; cefepime and cefpirome, from the 4th; and ceftaroline and ceftobiprole, from the 5th generation.

The defining structure of **carbapenems** is similar to that of the penicillins, but a carbon atom has been placed where the sulphur atom of the thiazolidine ring of penicillin was, together with the increase of the degree of unsaturation. They exhibit a broader spectrum of activity compared with penicillins and cephalosporins. However, it is the lateral chain placed next to the β-lactam ring, which gives protection against most β-lactamases. Nevertheless, Gram-negative organisms to counteract their effectiveness produce carbapenemases. This group includes antibiotics such as meropenem (MRP) and imipenem.

Monobactams contain a β-lactam ring that is not fused to any other ring and a sulfonate moiety. They are active against aerobic Gram-negative organisms. Aztreonam (AZT) is the only monobactam currently approved by the FDA and in the EU.

β-lactamase inhibitors inactivate serine β-lactamases and are normally prescribed in conjunction with a BLC, such as AMX or piperacillin. 1st generation β-lactamase inhibitors include clavulanic acid (CVL), sulbactam and tazobactam; while newer generations, such as avibactam and vaborbactam, are active against carbapenemases. When used in conjunction with other BLC, this combination is active
against aerobic Gram-negative, Gram-positive and anaerobic organisms that produce β-lactamases; increasing their antibacterial spectrum of action.

Figure 6. Chemical structures of BLCs
1.6.1. Consumption pattern of β-lactam antibiotics

The consumption pattern of BLCs in the human population generates over $15 billion in annual sales, making up close to 65% of the total antibiotics sales.\(^{80}\)

Penicillins, which is the most prescribed group of BLCs, had a median consumption rate of 195 DDDs, according to the last WHO report on antibiotic consumption.\(^{63}\) In particular, the global antibiotic consumption rate of penicillins was up to 114 DDDs for penicillins with extended spectrum, 17 DDDs for β-lactamase-sensitive penicillins, 23 DDDs for β-lactamase-resistant penicillins and 41 DDDs for those combinations of penicillins with β-lactamase inhibitors. In the EU, they represent the 43% of total antibiotic consumption in the community with a median population-weighted consumption of 6.5 DDDs in 2020.\(^{62}\) The highest values of consumption of penicillins in the EU were observed in Romania (10.5 DDDs), France (10.1 DDDs), Spain (9.9 DDDs), and Greece (8.7 DDDs). By contrast, lowest values were observed in Germany (3.1 DDDs), Finland (3.1 DDDs), and the Netherlands (2.4 DDDs). In particular, AMX, a penicillin considered the most administrated BLC worldwide and the main culprit drug involved in drug allergy reactions,\(^{81,82}\) is the most consumed BLC in southern European countries. However, PV was the most administrated penicillin in Scandinavia.\(^{83,84}\)

On the other hand, the global antibiotic consumption rate for other families of BLCs, encoded as J01D, is increasing over the years. Therefore, the global antibiotic consumption rate for cephalosporins, carbapenems, monobactams and β-lactamase inhibitors were 135.45, 11.26, 6.23 and 1.00 DDDs, respectively, between 2016 and 2018.\(^{63}\) In fact, the population-weighted consumption in the community of all these other BLCs in the EU in 2020, was 1.7 DDDs, accounting for around 11% of total European intake.\(^{85}\) The highest values of consumption of J01D antibiotics in the EU were observed in Greece (5.8 DDDs), Bulgaria (4.0 DDDs) and Romania (3.9 DDDs). By contrast, Denmark and the Netherlands reported values below 0.1 DDDs.

Changes in the consumption pattern of BLCs have influenced the evolution of DHRs to them. Therefore, on the one hand, allergy prevalence to the first discovered penicillin PG is decreasing, as well as its prescription. On the other hand, AMX and its use in conjunction with CVL has been observed to increase over the years.\(^{65,86}\)
Introduction

1.6.2. Mechanisms of action of β-lactam antibiotics

DD-transpeptidases, also known as penicillin binding proteins (PBPs), are enzymes located beneath the bacterial cell wall and the cell surface membrane. In the absence of a BLC, they catalyze crosslinks between adjacent peptidoglycan chains, removing a terminal D-alanine residue from one of the former peptidoglycans. Then, covalent bonds are created by glycosyltransferases (GT) between adjacent NAM and NAG sugar molecules. These covalent bonds help creating a rigid cell wall that protects the bacterial cell from osmosis and cell rupture.

However, BLCs work by inhibiting bacterial cell-wall synthesis (Figure 7) and when a BLC is present, it binds to these PBPs. This disrupts the structure of the cell wall and interferes with the transpeptidation process, through an activation of bacterial cell wall hydrolases and autolysins which leads to an osmotic lysis. They therefore induce a futile cycle of peptidoglycan synthesis and degradation that may end in the inhibition of bacterial cell division, induction of morphology changes and cell death.

![Figure 7. Mechanisms of action of BLCs (adapted from 90). NAG: N-acetylglucosamine; NAM: N-acetylmuramic acid.](image)

1.6.3. Immediate allergic reactions to β-lactam antibiotics

Allergic reactions to BLCs are important since they can cause all four types of DHRs. Furthermore, anaphylaxis, maculopapular exanthema and urticaria are the most common clinical manifestations of BLC allergy, with allergic reactions caused by anaphylaxis being of great concern due to the risk that they entail and the sunset onset of the reactions. For instance, a study showed that the incidence of allergic reactions due to anaphylaxis was between 1 and 5 in 10,000 patients after PG was administrated, corresponding to relatively high morbidity. Another study revealed that PG caused an estimated 75 % of all anaphylactic deaths in the USA, approximately 500 to 1000 per
Consequently, special attention is given to immunologically IgE-mediated reactions (Type I). Discovered in 1960, IgE is one of the five immunoglobulin antibodies produced by the immune system and is specifically mainly found in the lungs, skin and mucous membranes of mammals. IgE antibodies are associated for their role in allergic type I reactions since they bind ($K_a \sim 1 \cdot 10^{-10} \text{ M}^{-1}$) to receptors, FcεRI and FcεRII-CD23, on the surface of mast cells and basophils. They upregulate the expression of both types of Fcε receptors and their participating role in allergic reactions, and their interaction with the complementary allergens.

Generally, total IgE (tIgE) levels increase when the allergic episode occurs, with common levels in allergic patients, in international units (IU), ranging from 100 to up to 2,500 IU/mL (1 IU/mL = 1 kU/L = 2.4 ng IgE/mL). In this respect, total IgE levels diminish over time in tune with specific IgE (sIgE) levels to BLCs. Even though sIgE levels decrease, it does not mean that the patient would tolerate the β-lactam antibiotic. A study by Hjortlund et al. showed a boosting of tIgE levels after a controlled BLC readministration in ‘formed’ allergic patients, which might lead to new allergic episodes. Regularly, total IgE levels are not considered since they do not seem to be useful to diagnose allergies to BLCs. However, the determination of the ratio of sIgE to the corresponding β-lactam to tIgE was found to be useful for the diagnosis of BLC allergies in those allergic patients with tIgE levels up to 200 IU/mL.

The presence of sIgE is at most from 20 to 50 % of the tIgE. Despite almost the entire population has detectable IgE, only from 20 to 30 % of this IgE is specific IgE. It has been stated that the remainder IgE could have similar characteristics with other immunoglobulin classes or isotype IgE could randomly switch in B cell clones. Still, these low figures are likely related to the lack of the appropriate diagnostic tools and knowledge.

In order to determine the level of specific IgE, the radioallergosorbent test (RAST) classification regarding the prevalence of allergy is used. It ranges from absent or undetectable sIgE to extremely high level of sIgE to an allergen (Table 4).
Introduction

Table 4. RAST classification of drug allergy

<table>
<thead>
<tr>
<th>IgE level (IU/mL)</th>
<th>Level of sIgE to an allergen</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.35</td>
<td>Absent or undetectable</td>
</tr>
<tr>
<td>0.35 - 0.69</td>
<td>Low</td>
</tr>
<tr>
<td>0.70 - 3.49</td>
<td>Moderate</td>
</tr>
<tr>
<td>3.50 - 17.49</td>
<td>High</td>
</tr>
<tr>
<td>17.50 - 49.99</td>
<td>Very high</td>
</tr>
<tr>
<td>50.00 - 100.00</td>
<td>Ultra high</td>
</tr>
<tr>
<td>> 100.00</td>
<td>Extremely high</td>
</tr>
</tbody>
</table>

1.6.4. β-lactam metabolites and structural antigens

In 1935, Landsteiner and Jacobs described the hapten model, reporting the inability of small molecules (haptens) to induce an immune response unless they were chemically coupled to soluble molecules as carrier proteins. In this sense, haptens would act as epitopes (antigenic determinants) being recognized by antibodies due to the immunogenicity provided by the carrier proteins, which successfully trigger the cascade of events and stimulate an immunological response in the form of anti-hapten antibodies.

The carrier proteins are most commonly proteins of different origin, like hemocyanins, albumins, globulins, and other structures such as virus-like particles or toxoids. This model provides a good explanation for the allergic reactions caused by β-lactam antibiotics, since they present a highly reactive β-lactam ring and other functional groups which have the possibility to covalently bind to carrier molecules and form antigens.

In this respect, IgE antibodies will be able to recognize small chemical differences between the formed antigens. The side-chain structures of the BLCs have been found to induce allergic episodes without the participation of the β-lactam ring and the fused ring attached to it. It is worth mentioning that, in addition to side-chain recognition, other studies revealed the β-lactam ring and/or fused ring moieties are responsible for IgE production in allergic patients. Therefore, it is proposed that all BLCs may induce DHRs due to the different metabolites, chemical moieties and degradation products formed *in vivo* when the desired antibiotic is administered and bound to a carrier protein under physiological conditions.

a) Penicillins
The penicillin-induced allergic reactions were the first IDHRs whose mechanism was studied in detail. Levine discovered that benzylpenicilloyl (BPO) is a PG metabolite that linked to polylysine forms, what he called, the major PG antigenic determinant A2, shown in Figure 8. To do this, Levine and Ovary conjugated D-benzylpenicillenic acid with various soluble molecules, forming antigens by binding both with amino groups from lysine residues and with disulfide bonds from cysteines. The characterization of the prepared antigens by quantitative hapten inhibition by precipitation, PCA inhibition, rabbit immunization and evaluation of skin-test responses in individuals demonstrated that the penicilloyl determinant was extremely important as a responsible determinant of many of the IDHRs to PG. This determinant was therefore considered the most predominant antigen, since about 95 % of penicillin molecules bound to a carrier protein under physiological conditions were thought to form penicilloyl groups that play a role in 75 % of IgE-mediated allergic reactions.

Major determinants form -oyl groups, by predomination of the 5R,6R diastereoisomer configuration. Amidation between the carboxylic acid of the β-lactam ring and the ε-amino groups of lysine residues, such as Lys_{199}, opens the β-lactam ring (Figure 8, pathway 1). Levine first demonstrated the formation of this determinant for PG at a high pH. However, later studies showed that this reaction could likewise proceed at physiological conditions. This penicilloyl determinant can also be formed after rearrangement to its isomer, penicillenic acid A6, under neutral conditions by nucleophilic attack, which has been observed to bind selectively to e.g., Lys_{199} and Lys_{525} of human serum albumin (HSA), and form BPO-lysine adducts (Figure 8, pathway 2). The preferred configuration in this case is the 5R,6S diastereoisomer as was characterized after continuous incubation of penicillenic acid A6 with HSA. Furthermore, BPO linked to HSA between Met_{123} and Met_{297} residues, and between Met_{297} and the C-terminal residue have been observed.

Insulin and lysozyme have also been used as carrier proteins to form antigens. With regard to insulin, PG antigens are formed via amidation well with the α-amino group of the N-terminus of the A chain, or with the ε-amino groups of lysine residues. For lysozyme, the ε-amino group of Lys_{116} was observed to react with PG.

The other 5 % of ADRs to penicillins are caused by **minor determinants**. These molecules are related to induce anaphylaxis in 95 % of the cases, although their implication in the mechanism of formation of IDHRs is still unknown.
particular, penicillins are supposed to remain in equilibrium with pseudopenicillin A3 under neutral conditions. However, they are characterized by susceptible ring-opening under different conditions, such as the presence of acids, bases, nucleophiles, oxidizing agents, heat, UV light, or polar solvents, as observed in Figure 9.

Figure 8. Scheme of the penicilloyl formation

Penicillin metabolites, or degradation products, that can form minor determinants include penicillin A1, penicilloic acid A4 (penicilloate in its salt form), penilloic acid A5 (or penilloate), penicillenic acid A6 (or penicillenate), penillic acid A7 (or penillate), penamaldic acid A8 (or penamaldate), penaldic acid A9, penicillamine A10, penilloaldehyde A11, 6-APA A12 and penicoyl A13 (see Figure 11).\(^{126-128}\)

Several studies using penicilloic acid A4 and its descarboxilated penilloic acid A5 revealed positive skin results in a range between 21 and 55 % of the selected patients.\(^{129-132}\) However, the specificity of penicilloic acid-directed reactions still remains unclear and it is the hapten and not its determinant the one that has been used in skin testing.\(^{129}\) Moreover, *in vivo* penicilloic acid A4 is believed to react with cysteine disulfide via its penamaldic acid A8 to form penamaldic acid cysteine mixed disulfide and finally, penicillamine and penilloaldehyde A11, as shown in Figure 9.\(^{122}\)
Figure 9. Pathways of degradation of penicillins in acidic and alkaline conditions

Penicillenate A6, penamaldate A8 and penicillamine A10 can be bound via disulfide bonds with cystine residues to form antigens (Figure 10). In particular, patients allergic to PG, even when showed higher responses to BPO, have been observed to have IgE antibodies directed against the penicillenate A6 and penicillamine A10 determinants and therefore exhibit heterogeneity in those IgE responses. Furthermore, penicillamine A10 determinants linked to poly-L-lysine (PLL) and HSA tested positive by skin testing in 35 to 41% of the studied patients, respectively. In the case of the penamaldate A8 and penaldate A9 determinants, a study using guinea pigs showed that they could act as antigens, but no specific antibodies were detected in pigs immunized with BPO. Moreover, disulfide metabolite-metabolite interactions can occur as well as penicillin polymerized metabolites. Nevertheless, no recent studies are found in the literature related to the formation of antigens from penicillin metabolites, and their
allergenic significance therefore still lacks substantial evidence. More research is needed to discover new antigens with epitopes responsible to generate sIgE.

![Figure 10. Formation of the penicillenyl antigen](image)

6-APA (compound A12) can react with lysine ε-amino groups of the protein under physiological conditions to give the penicoyl determinant A13, shown in Figure 11. What is more, polymeric 6-APA has been observed in stored solutions of potassium PG. Still, the clinical significance of 6-APA and related antigens needs to be fully evaluated since it has been stated that their immunogenicity is related to contamination with penicilloyl moieties.

![Figure 11. Scheme of the formation of the penicoyl determinant](image)

Other minor determinants have been proposed for penicillins. For instance, amidation through the carboxyl group presented in the C-3 of the thiazolidine ring of the penicillin with amino groups of lysine residues of carrier proteins leads to penicillanyl (BPA) antigen A14 (Figure 12), proposed by Feinberg in 1970. Although formation of this determinant under physiological conditions seemed improbable, clinical studies revealed that sIgE from allergic patients commonly recognize this determinant, inducing the formation of specific antibodies for the whole penicillin molecule, that differ from those to the penicilloyl. For instance, in a study by Zhao et al. they compared the in vitro reactivities of BPO and BPA determinants coupled to cyanogen bromide (CNBr) activated papers and nitrocellulose (NC) discs with serum from 47 allergic patients. The determinants were linked to different carrier molecules, HSA and PLL. The results revealed that IgE from the allergic patients detected BPA in more sera than BPO. On CNBr-activated papers, 55.3 vs. 83.0 % (BPO vs. BPA) and 41.5 vs. 58.1 % with PLL-
and HSA-based determinants, respectively, were positive, whereas on NC discs, 38.6 vs. 50.0% (BPO vs. BPA) and 75.6 vs. 70.7 % (PLL- vs. HSA-based determinants) tested positive.

Penicillanyl antigens are prepared via the mixed anhydride or the carbodiimide methods. Nevertheless, the carbodiimide method is commonly preferred over the mixed anhydride since the formation of a N-hydroxy succinimide (NHS) ester avoids the presence of cross-linking problems with carrier proteins. Theoretically, minor penicillanyl antigens of penicilloate A4, penilloate A5 and penillate A7 can be therefore obtained.

Matas et al. proposed penicanyl (A15) as a new metabolite for penicillins, after the covalent attachment of the carrier protein through the formation of a mixed anhydride intermediate, following the pathway shown in Figure 13. For that, they prepared AMX antigens linked to modified peptides, which have attached a biotin group. They were evaluated with sera from 15 allergic patients to penicillin through a magneto-enzyme-linked immunosorbent assay (ELISA). Results revealed that the new proposed epitope “penicanyl” was recognized by around 80 % of the samples, whereas only 40 % were recognized by the amoxicilloyl configuration. However, it is worth mentioning that these antigens were tested only with one serum from a pool of control patients and the diagnostic specificity remains unknown.
Ho et al. identified 5 minor metabolites of PG in real human serum samples. Figure 14 shows the structures of the 5 new minor metabolites of PG and the proposed pathway for their formation. In brief, β-lactam ring opening affords penicilloate A4 (labelled as its corresponding acid, penicilloic acid) and its decarboxylation gives penilloate A5 (or penilloic acid). From here, the formation of A16 and A17 might be based on hydroxylation and glucuronide conjugation of penilloic acid, respectively. The reactive metabolite A18 was proposed to be generated in vivo by reaction with glycerone, followed by a reduction to afford A19. Finally, reaction of PG with cysteine could form the compound A20. However, these metabolites A16-A20 have not been evaluated in sera from allergic patients.
Aminopenicillins can also experience intramolecular acylation by the amino group in the C-6-β-acyl substituent of the R side chain of aminopenicillins to form diketopiperazines-like compounds. These compounds can slowly undergo oxidation of the diketopiperazine ring in basic or neutral conditions followed by thiazolidine ring opening to give diolpyrazine-like compounds. Figure 15 shows the formation of compounds A21 and A22 with AMP. However, several studies have shown that skin testing and *in vitro* sIgE quantification using this determinant does not improve the clinical diagnosis. For instance, Torres et al. revealed that in a study of 61 patients allergic to AMX, only 3 (diagnostic selectivity of 4.9%) were positive to diketopiperazine by skin testing, and very little inhibition was observed. Positive patients were furthermore recognized with AMX itself, highlighting that the diagnosis of allergies to aminopenicillins was not enhanced after these diketopiperazine-like determinants were used. Therefore, the implementation of such determinants does not seem to be helpful for the *in vitro* drug allergy testing of aminopenicillins.

Figure 15. Pathway of the formation of the diketopiperazine and diolpyrazine-like compounds with ampicillin

b) Cephalosporins

The dihydrothiazine ring attached to the β-lactam ring confers more stability to cephalosporins in comparison to penicillins. However, they are prone to undergo a variety of chemical and enzymatic reactions whose degradation products, or metabolites, depend on both the R and R’ side chains at C-3 and C-7, respectively.

Furthermore, the allergenic structures of cephalosporins are not characterized as well as penicillins are. Preparation of **major determinants** of cephalosporins under alkaline conditions through aminolysis of cephalosporins with a carrier protein, by nucleophilic β-lactam ring opening, afforded products not well characterized. However, they are used in the same way as those for penicillins, even when uncertainty existed. Later on, studies demonstrated the influence of the leaving group in the
C-3 position of the dihydrothiazine ring for its own stability and reactivity of the \(\beta \)-lactam ring (Figure 16)."}

Figure 16. Proposed formation of the cephalosporoyl antigens. A) Good \(R' \) leaving group. B) Poor \(R' \) leaving group

Thus, nucleophilic attack and amidation through amino groups of lysines of carrier proteins and the \(\beta \)-lactam ring result in \(\beta \)-lactam ring opening and elimination of the \(R' \) leaving group, yielding labile compounds and allowing for the detection of sIgE to cephalosporin in sera from allergic patients. This procedure is different according to the properties of the \(R' \) leaving group at C-3. First, aminolysis in presence of a good leaving group at C-3, as Cl in cefaclor or acetoxy in cephalothin, forms cephalosporoyl determinant B2, which presents a double bond at \(\Delta-4 \) and a methylene group at C-3, and eliminates the \(R' \) leaving group (Figure 16a). Second, aminolysis in presence of a poor leaving group, as the methyl group in cephalaxin and cefadroxil, forms the cephalosporoyl structure B3, via its major metabolite anhydrodeacetyl cephalosporic acid, without the immediate breakdown of the dihydrothiazine ring or cleavage of the leaving group, but only temporarily (Figure 16b). Finally, unlike penicillins, both procedures end with the decomposition of these unstable cephalosporoyl intermediates to compounds presenting well the R side chain, the attached amide or parts of the \(\beta \)-lactam.
They form penaldate and penamaldate-like structures, whose amino group was observed to be part of the lysine residue and not part of the dihydrothiazine ring of the cephalosporin.

In this respect, Montañez et al. proposed the structures B4-B6 of these degradation products (Figure 17). For that, they designed and synthesized structures that mimicked a fragment of the cephalosporin determinants proposed, consisting of molecules with low molecular weight but with different functional groups at C-3 and R side chains. Specific IgE from five allergic patients recognized some of these prepared skeletons in those epitopes related to the R lateral acyl side chain of the cephalosporin. However, the number of samples from allergic patients used in this study was very low and only two concentrations (10 and 100 mM) were tested. Therefore, more studies related to their recognition by IgE antibodies need to be performed.

Regarding the formation of minor determinants of cephalosporins, enzymatic degradation of cephalosporin C in particular gives different metabolites (Figure 18), which lead to many fragmented and rearranged products. First, 7-ACA (compound B7) is obtained after enzymatic degradation with acylase, which undergoes lactonization to give the desacetyl-7-ACA lactone B8. Second, cephalosporin C gives desacetyl cephalosporin B10 followed by desacetyl cephalosporin lactone B11 in presence of the enzyme esterase. Finally, treatment of cephalosporin C with β-lactamases (as cephalosporanases) gives cephalosporic acid B12 and anhydrodesacetyl cephalosporic acid B13, which leads to the degradation products shown in Figure 17. Moreover, the action of acetyl esterase to B12 affords desacetyl cephalosporic acid B14.

Venemalm showed that a different pattern (Figure 19) involving α-amino cephalosporins, such as cefaclor, cephalaxin or cefadroxil, can also undergo aminolysis through the amino group in the 7-β-acyl substituent of the R side chain. Thus, the formation of pyrazinone degradation determinant B16 after nucleophilic attack of amino groups of lysine residues of carrier proteins and the β-lactam ring permitted the detection
of pyrazinone-specific IgE antibodies, as observed in a study by Martin-Serrano et al. They showed that five out of the eight allergic patients included in the study recognized this determinant (diagnostic sensitivity of 63%). Even so, aminolysis of these compounds can also lead to other determinants (as the cephalosporoyl B3), apart from the pyrazinone-like determinant, involving the R side chain, because it is not unusual to find patients allergic to α-amino cephalosporins who are not allergic to other BLCs with the same or similar R side chain. Again, as stated for penicillins, both studies on the subject and the quantity of sera available from allergic patients are limited, so the results are not very conclusive.

Figure 18. Hypothetical pathway of degradation of cephalosporin C

As with penicillins, formation of the cephalosporanyl determinant B17 via carbodiimide coupling has been studied, treating to maintain the structural integrity
Introduction

of the cephalosporins (Figure 20). These studies revealed the presence of immunogenic activity.

Figure 19. Pathway of the formation of the pyrazinone-like antigen with cefaclor

For instance, in a study by Pham and Baldo,142 cephalosporanyl antigens were prepared from different cephalosporins. The prepared antigens showed activity when hapten inhibition studies were performed using 12 sera from allergic patients to cefaclor, enlightening differences in the recognition pattern of the IgE antibodies regarding to the R and R' lateral chains of the cephalosporins. Another study by Zhao et al.,117 used the cephalothinanyl antigen, linked to PLL, as a solid phase and studied its inhibition by some penicillins, related molecules, and cephalothin, as a model of the cephalosporins. The diagnostic selectivity ranged from 20 to 68%. Nevertheless, this study evaluated the recognition of the cephalothinanyl antigen by IgE testing only one serum sample from an allergic patient to AMX, so this result is not conclusive.

c) Carbapenems
Introduction

Carbapenems have significant structural similarity with penicillins and the **major determinant** is a stable carbapenoyl compound, similar to that of penicillins and capable of binding to amino acid residues (Figure 21).\(^{148}\)

Lohans et al.\(^{149}\) examined the stereoselectivity of the alkaline hydrolysis of both MRP and imipenem by sodium hydroxide and observed rapid formation of the Δ^2 (enamine) hydrolysis, or 2-pyrrole-like, product C2 after the corresponding β-lactam ring opening. Its rapid tautomerization formed the (R)-Δ^1 (imine) hydrolysis product epimer C3, which slowly epimerized to afford the (S)-Δ^1 hydrolysis product C4. In any case, tautomerization of the Δ^1, or 1-pyrrole-like, epimers C3-C4 back to the hydrolytically-susceptible Δ^2 form C2 is potentially possible.\(^{149}\)

Figure 21. Scheme of the formation of the carbapenoyl determinant

However, presently, the immunochemistry of carbapenems is not fully elucidated and the possible **minor determinants** therefore remain unknown. A study by Sun et al.\(^{150}\) about the characterization of carbapenem compounds revealed the loss of one CO$_2$ molecule for the acid hydrolysis of both MRP and imipenem. This finding contradicted what was previously reported about the formation of 1-pyrrole or 2-pyrrole structures with two carbonyl acid units. Thence, they proposed the formation of the six-membered cyclic, 3-iminotetrahydro-2-pyranone compound C5 after acid hydrolysis of one of the carbonyl acids (Figure 22).
On the other hand, cross-reactivity of carbapenemas with other BLC families has been reported to be very low and rare (< 4.4 %), with the observation that IgE antibodies against the β-lactam ring were not formed. It is therefore thought that IgE antibodies against carbapenems are directed towards the R’ lateral chain at the sulfur atom at C-3 and at C-6.

d) Monobactams

The major determinant of monobactams D2 is considered to be formed similarly to that of penicillins (Figure 23).

Nevertheless, the unique chemical structure of the monobactams and their metabolites, formed only by the β-lactam ring, is responsible for the structural difference to other BLCs. Hence, no cross-reactivity has been observed for AZT with neither other monobactams with a different R side chain nor different BLCs. However, when AZT antibodies were tested against the cephalosporin ceftazidime, which has the same R...
Introduction

side chain (Figure 24), cross-reactivity existed.152,153 This result therefore reveals that the R side chain might be the major epitope of monobactam allergy.148

![Figure 24. Chemical structures of aztreonam and ceftazidime with the same R lateral chain](image)

Furthermore, Shimizu et al.154 described the production of three monoclonal antibodies (mAbs) against different epitopes on the aztreonyl antigen (Figure 25). They observed that the clone AZT-3 of mAb-producing hybridoma exhibited cross-reactivity with many other BLCs.

![Figure 25. Possible epitopes (AZT-1, AZT-2 and AZT-3) of the aztreonyl antigen D2](image)

Related to other metabolites of monobactams, Ye et al.155 identified and characterized three new metabolites of AZT. From these metabolites (Figure 26), the first metabolite D3 is proposed to be formed via reaction of AZT with dextrose and metabolite D4 is an AZT pseudo-dimer. D5 was characterized as that pseudo-dimer linked by an amide bond between AZT and the aztreonyl metabolite. These structures could be linked to carrier molecules to generate antigens with which to evaluate IgE from sera from allergic patients and controls.
Figure 26. Proposed pathways for the formation of AZT metabolites A) D3, B) D4 and C) D5

e) **β-lactamase inhibitors**

The most common prescribed β-lactamase inhibitors include: i) the oxapenam CVL and ii) the bactams sulbactam and tazobactam. Although there is a large focus on DHRs to BLCs, until now, little information has been reported related to the preparation of β-lactamase inhibitor antigens within the aim of allergic diagnosis.

CVL forms covalent adducts with *Mycobacterium tuberculosis* β-lactamase, which is the reason why CVL is considered a β-lactamase inhibitor.\(^\text{156}\) CVL has a β-hydroxyethylidene at C-2 and no substituent at C-6. At the beginning, the formation of antigens of CVL was believed to be non-immunogenic and not the cause of DHRs to Augmentin.\(^\text{157}\) However, the number of IgE-mediated allergic reactions to CVL has increased and allergic patients showed the presence of IgE antibodies to CVL.\(^\text{83}\)

Amidation between amino groups of lysine residues of carrier proteins and the carbonyl carbon of CVL at C-7 results in β-lactam ring opening forming the clavulanoyl
antigen E2 (Figure 27). Nevertheless, this clavulanoyl determinant forms multiple metabolites following further decomposition. \(^{83,158,159}\)

Figure 27. Proposed pathway of the formation of CVL antigens

The clavulanoyl determinant E2 is an oxazolidine-like intermediate which is not stable and quickly tautomerizes to the imine form E3, \(^{160}\) and results in the formation of antigens that do not have the five-membered oxazolidine ring. Determinant E3 decarboxylates to generate E4 that can be hydrolyzed or dehydrated to generate E5 and E6, respectively. Further degradation of E3-E6 affords E7 and the cross-linking E8 determinants after stabilization by NaCNBH\(_3\) reduction. \(^{159}\)

Moreover, CVL can also undergo spontaneous hydrolysis under neutral or alkaline pH (Figure 28) to generate a variety of metabolites that can further suffer from decomposition and self-condensation. \(^{160,161}\)

Neutral or alkaline hydrolysis of the \(\beta\)-lactam ring of the CVL results in \(\beta\)-lactam ring opening and formation of the oxazolidine-like compound E9 which, as well as the clavulanoyl determinant, rapidly tautomerizes to the corresponding imine E10. Thereupon, the amino ketone E13 can be formed after decarboxylation of E10 followed by a hydrolytic elimination of formylacetic acid from E11. At the same time, hydrolysis
of the imine E10 affords the α-amino-β-keto acid E12, which decarboxylates to give also E13.160 This amino ketone E13 is stable under acidic conditions. Nevertheless, its self-condensation is undergone in neutral or alkaline conditions leading, first, the pyrazine-like metabolite E14 and later, the dihydropyrazine-like compound E15 after hydrolysis of E14. The spontaneous oxidation of E15 leads to the formation of E16 and the reaction of formaldehyde, formylacetic acid and acetaldehyde can form metabolites E17-19.161 A study by Meng et al.159 characterized the antigens formed by these structures as well as the epitopes involved by employing spectroscopic methods. However, the origin and involvement of these aldehydes in the pathway still remains unclear, with multiple adducts identified \textit{in vitro} at high concentrations in four patients exposed to the drug. Further to this, these antigens have not been tested for diagnostic purposes.

\textbf{Figure 28.} Hypothetical pathway of degradation of CVL
Regarding **bactams**, only a few reports documented DHRs to sulbactam and tazobactam, but no reports about allergic reactions to other bactams, such as avibactam or vaborbactam, were found.162

The proposed pathway of degradation of sulbactam and tazobactam is shown in Figure 29.163 First, just the same as with the other BLC families, nucleophilic attack on the carbonyl group of the β-lactam ring by lysine amino groups results in β-lactam ring opening and amidation to form the bactamoyl determinant E21. Second, elimination gives the imine E22 that quickly tautomerizes to give the determinant E23 that can undergo deacylation to afford the aminosulfenic acid E24. This could react with amino acid residues of carrier molecules through the carboxyl group presented in the C-3 of the thiazolidine ring of the bactam.164 Considering that it has been observed that the aminosulfenic acid E24 of tazobactam is stable and was detected in human serum,163 the prepared antigen of E24 could be tested with human sera. However, its evaluation with sera from allergic patients and controls to diagnose allergies to this BLC has not yet been carried out.

Figure 29. Proposed degradation pathway of the β-lactam inhibitors sulbactam and tazobactam
1.6.5. Other approaches to form antigens

There is a great effort focused on the recognition of different major and minor BLC antigens. On the one hand, IgE antibodies from allergic patients still sometimes did not recognize the antigens prepared classically. On the other hand, it has been stated that some sensitive individuals can have more than one type of BLC-IgE antibodies, as observed in their recognition pattern. All this highlights the need to continue exploring the relationship between IgE antibodies and antigens that will help to improve the diagnosis of β-lactam allergy. Such exploration involves the search of other strategies referring to both the synthesis of haptens with different chemical structures that can widen the available epitopes.

Traditionally, the formation of antigens implies amide bonds where carboxylate groups of the hapten are linked to amine groups of carrier proteins, commonly through lysine residues. As observed, BLC antigens, in particular, are generally prepared by direct aminolysis with a carrier by nucleophilic β-lactam ring opening. However, the direct attachment of carrier molecules to chemically reactive moieties of specific compounds can leave these moieties less accessible, which may lead to the loss of generating high-affinity antibodies.

Different synthetic strategies to prepare antigens include the study of the R lateral chain, the use of spacer arms, cationized proteins, polymeric structures and dendrimers, among others.

For instance, the use of spacer arms to haptenize small molecules has been reported in the literature. The introduction of spacer arms cannot only move the hapten away from the direct interaction with carrier molecules, but also to avoid all the possible steric effects may permit an effective covalent link between the hapten and carrier molecules (Figure 30). Henceforth, these features award spacer arms with the possibility of improving molecular recognition, since the generated antigens would have their conformational epitopes accessible what might increase the degree of IgE recognition. Still, spacer arms encounter difficulties which range from the nonspecific adsorption and the effect of the length of the spacer arm involved to the own stability of the final complex formed.
Introduction

![Figure 30. Schematic representation of antigens without (antigen 1) and with (antigen 2) spacer arms](image)

Spacer arms have been widely studied in the literature. Some examples include the preparation of haptens for antibody production and the detection of organophosphorus pesticides, such as fenthion, as reported in studies by Kim et al.166 and Brun et al.174 However, limited experimental studies on drug-antigens are available in the bibliography. In this regard, most of them have been oriented to the preparation of antibiotic-based haptens. In particular, the studies by Peng et al.167, Peng et al.173 and Pastor-Navarro et al.177 are based on the synthesis of quinoxalines, macrolides and tetracyclines-based haptens, respectively.

The use of spacer arms for the synthesis of BLC haptens remains quite unexploited. Some achievements include the preparation of BLC-anyl antigens (explained in Section 1.6.4), which involves the use of carboxylate activating agents, such as zero-length crosslinkers based on carbodiimides, in conjunction with NHS to form NHS-esters. These esters would therefore react with amines from carrier molecules to form the BLC-anyl antigens. To achieve this, several carbodiimides are used depending on the desired conditions.168 On the one hand, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) is water-soluble and its use together with sulfo-NHS allow for the preparation of reactive NHS esters in those buffers commonly used for biomolecular conjugations. The by-product formed can be removed by dialysis. On the other hand, the formation of reactive esters using dicyclohexyl carbodiimide (DCC) and NHS is performed in organic media and therefore hydrolysis problems that can arise with EDC/sulfo-NHS are avoided. Furthermore, the by-product formed is an insoluble salt that can be easily removed by filtration.
Apart from the preparation of BLC-anyl antigens, only one study was found in the literature regarding the synthesis of BLC-based haptens with spacer arms. In this study, they prepared cephalosporin-based structures in order to help understand the relationship of these structures in the development of allergies. The evaluation of these structures in *in vitro* studies proved that molecular recognition existed, but few samples from allergic patients were used. Furthermore, the use of diamines and dicarboxylates of different alkyl lengths might be a promising practice not only to ensure that the desired functional groups are placed at a suitable distance from the epitope, but also to modify the carrier molecules via **protein cationization**. In this respect, cationization of the carrier protein bovine serum albumin (BSA) has been reported in the literature. From the 59 lysine e-amine groups that BSA possesses, only 30-35 of them are thought to be available for bioconjugation. In this regard, protein cationization allow for the conversion of the native carboxylates to positively charged amines. To achieve this, the model protein, BSA, is treated with EDC and the original carboxylates converted to active esters, which then react with the selected diamine to create amide bonds (Figure 31). This will help obtain electrically charged proteins with more available amino groups to link to the desired hapten, reducing crosslinking and steric hindrance.

![Figure 31. Scheme of the cationization of protein molecules using ethylene diamine and EDC](image)

Cationized proteins are known to improve the cellular uptake and intracellular delivery compared with the unmodified carrier proteins, which is the reason why they are frequently used in drug delivery. Within the capabilities of protein haptenization, it could be expected that cationized proteins were also frequently used to generate antigens. However, they had been rarely used in the preparation of antigens and therefore few data are found in the literature related to drug antigen preparation using cationized proteins. One example is the study by Zhang et al. In this study, they prepared tetracycline-based immunogens using BSA and cationized BSA to develop antibodies for the detection of tetracycline residues in milk. The sera raised with the immunogens using cationized BSA
rendered more sensitive and selective immunoassays, highlighting the utility of this strategy for the preparation of antigens. Nevertheless, any study was found in the literature regarding the preparation of antigens for their application to allergic diagnosis.

Dendrimers, well-defined globular, highly-branched macromolecules, are another alternative to the conventional preparation of antigens since their surface is segregated. Therefore, all haptens linked to the dendrimer remain in the peripheral area and become accessible for binding. Several studies used polyamidoamine (PAMAM) dendrimers to diagnose allergy to AMX and PG. However, the number of human samples studied is far from becoming a representative population and the results obtained has to be taken with caution.

However, the preparation of antigens, either through traditional methods or through the synthetic strategies just presented herein, as well as the selection of the most promising ones has, to a wide extent, been based on previous knowledge of the chemical structure of the natural or synthetic desired compound (hapten). Modern methodologies have also claimed the importance of assessing the ability of these haptens to bind to preselected carrier proteins, but, amazingly, have suggested that greater possibilities of finding biologically active molecules exist when samples with higher number of compounds are screened and when functionally diverse compound libraries are evaluated. Therefore, it makes sense to consider also these techniques in the preparation of antigens that can be recognized by IgE antibodies provoking allergic episodes.

In regards to the study of diverse compound libraries, **diverse structural techniques** range from combinatorial libraries, high-throughput screening (HTS) to target-oriented synthesis (TOS) and diversity-oriented synthesis (DOS). On the one hand, HTS allows automated testing of a biochemical or cellular event against chemical structures. These HTS libraries are focused on specific chemistry areas and therefore do not cover a wide chemical spectrum, which may lead to the lack of important biological targets of interest. The TOS of haptens, individually or as collections (focused libraries), for its part, are directed to the identification of preselected targets rather than the reactants, which commonly are small molecules. In this sense, TOS libraries are planned retrosynthetically (Figure 32a). This means that starting from a chemically complex target, the repetitive application of the process would increase the knowledge of
these preselected targets and would therefore allow to find those small molecules able to initiate the synthetic pathway proposed.188

On the other hand, DOS, first coined by Stuart Schreiber in 2000, underlines the necessity to generate small molecules that would permit the identification and regulation of biological targets.189 DOS libraries are aimed at the direction of any chemical reaction, forward synthetic analysis, from reactants to products, which in this case is from small molecules to biological targets (Figure 32b). Furthermore, the probability of finding out small molecules able to bind to any biological target in a novel manner boosts as the structural diversity between these small molecules also increases.190

DOS is an attractive route to synthetize compounds that have both structural complexity and diversity containing familiar chemical scaffolds of natural products, such as sp^3-hybridized basic nitrogen atoms, stereogenic elements, and novel skeletons.191 The need for a divergent synthesis, where small molecules are transformed into many distinct structures, implies the use of complexity-generating reactions to develop novel chemical scaffolds, which allow for the use of the product of the former reaction to be the substrate for the next. These complexity-generating reactions commonly consist of multi-component reactions (MCRs), which use three or more starting materials and are one-step reactions.192 Moreover, the use of combinatorial techniques involves chemical building blocks to be systematically mixed and fitted to finally generate libraries of small molecules by different methods, such as parallel synthesis or split-pool synthesis.187

![Figure 32. Synthetic strategies. A) traditional combinatorial library synthesis. B) diversity-oriented synthesis184](image)

Despite the high potential of combinatorial techniques, up to now, it has been more directed to create or select new drug candidates. For instance, Sarabia and Sánchez-Ruiz193 synthetized bengamide analogues by using a diversity-oriented approach to
modify specific moieties where the interaction with enzymes proved to be important. Hergenrother et al.194 prepared small molecule microarrays by their covalent attachment on alcohol-containing glass slides by using DOS technique. They were then screened with proteins labeled with Cy5 and streptavidin and demonstrated the process of split-pool synthesis on glass slides and the detection of the interaction between these small molecules and carrier proteins. Moreover, Gordon et al.195 described the synthesis of a library including β-lactam and pyrrolidine heterocycles, and Kumagai et al.196 used a MCR and intramolecular cyclization reactions to yield derived 6-APA compounds, among others. More recently, deoxyribonucleic acid (DNA)-encoded libraries (DELs) arose, which identify small molecules from DOS libraries that bind to unique DNA-encoded sequences. In this respect, Gerry et al.197 synthetized and validated a DEL of saturated N-heterocycles and showed the success of some compounds as high carbonic anhydrase inhibitors.

However, the use of combinatorial techniques in the synthesis of haptens that allow the preparation of antigens to diagnose allergies remains unexplored. Given that the diagnostic sensitivity and specificity with the antigens commonly used for the diagnosis of allergies remains low, it is challenging and scientifically interesting to apply these techniques as a very promising way to generate and discover new haptens. Specifically, the ability of these techniques to increase both the spatial and the structural diversity could allow for the detection and coverage of a wider range of epitopes responsible for allergic episodes.

1.7. Diagnostic approaches to evaluate and detect immediate allergic reactions to β-lactam antibiotics

According to the general European Network for Drug Allergy (ENDA)/European Academy of Allergy and Clinical Immunology (EAACI) guidelines, diagnostic approaches to IHRs to BLCs comprise clinical histories, physical examinations, and \textit{in vivo} (skin and oral provocation tests) and \textit{in vitro} (basophil activation test and specific IgE quantification) assays (Figure 33). However, a common diagnosis frequently only includes a detailed clinical history with physical examination, skin testing and sometimes IgE quantification. Lack of sensitivity of these assays often requires the use of drug provocation tests too.
The first approach to diagnose BLC allergy is reporting the clinical history, which implies knowing all prescription drugs taken, clinical symptoms and their duration, together with a list of possible previous ADRs. Furthermore, in order to reduce differences in evaluation, it is recommended to complete the ENDA questionnaire that includes 43 possible symptoms related to DHRs in addition to the time lapse between the last drug administration and the reaction.

1.7.1. *In vivo* tests

The term *in vivo* testing refers to those medical tests performed directly in patients. The most used *in vivo* assays include skin tests and oral provocation tests. Nevertheless, prior to performing any *in vivo* test, it has to be first evaluated the likely risk of adverse acute reactions or resistance to the medical treatment, together with a real evaluation of the utility of performing it. These tests should be avoided in patients with any previous severe allergic reaction to the drug or with chronic medical conditions, such as angina and pregnancy. Furthermore, *in vivo* tests can sensitize people to the antibiotics used when screening the response of them in drug studies.

a) Skin testing

The skin testing (ST) approach is a well known assay to diagnose BLC allergy that comprises prick, intradermal and patch tests. Skin prick tests (SPTs) consist on pricking the skin with the antigen of interest in the volar forearm, and are commonly the
most used as they not only are rapid and simple but also cheap. A positive SPT consists on a wheal larger than 2 mm together with erythema. Only when the result is negative, skin intradermal tests (SITs) are performed. For that, a small bleb is marked followed by an injection of 0.02-0.05 mL of the desired antigen, and the result is positive if there is an increase in diameter greater than 3 mm in the wheal area (Figure 34). Finally, patch testing involves applying patches with the allergen solution on a person’s back, although these tests are rather used for delayed HRs to BLCs.201

In the case of PG, available antigen commercial solutions to perform STs ranged from the minor determinant mixture (MDM) to BPO linked to different carriers: BPO-polylysine (BPL), BPO-HSA and BPO-poly-L-lysine (PPL). This selection raises as HSA is a suitable carrier protein to in vitro haptenize molecules because it presents a high ligand-binding capacity202 and is considered as the carrier protein responsible for the generation of IgE antibodies in vivo, as observed in about 90 % of serum-bound penicilloyl groups.203 Poly-L-lysine, PLL, for its side, is the most used carrier to prepare drug antigens because it is easily available in different polymeric sizes, presents low toxicity, high reactivity, and yields determinants with higher hapten-carrier density ratios.204 On the other side, MDM is formed by the combination of PG, penicilloate, and penilloate. They can be administered together because they do not inhibit or degrade the reactivity of each other. However, reactions to PPL can be inhibited, and therefore PPL must be given separately.125 In respect to other BLCs, it can be any BLC solution freshly prepared from the intravenous form under sterile conditions. However, these antigen commercial solutions have to be soluble in saline media at a non-irritant concentration, ranging from 2 to 20 mg/mL for most BLC antigens.205

Figure 34. Immunopathological basis of allergy skin testing206

The sensitivity of these tests is not so high and varies according to the studies. In one study of 290 patients, sensitivities of 22, 21, 43 and 33 % were obtained for PPL,
MDM, AMX and AMP, respectively, with specificity values of 98-99 % in all cases. However, ST alone is not a good technique since its sensitivity decreases with time and non-exposure to the desired BLC.

b) Drug oral provocation tests

Drug oral provocation tests (DPTs) are widely considered to be the method of reference, a good standard for a definitive BLC allergy diagnosis, because they reproduce both allergic symptoms and other adverse clinical manifestations that are non-mechanism related. In this respect, DPTs can discriminate patients with a BLC allergy from those without it. For instance, Bousquet et al have demonstrated that 17.4 % of allergic patients with negative skin tests to a BLC were positive when using the DPT technique.

Nevertheless, DPTs are time-consuming and should be carried out only when other diagnostic tests do not allow relevant conclusions since DPT is of high risk. For this reason, DPT must be performed under medical surveillance with controlled administration.

1.7.2. In vitro tests

In vitro tests refer to those assays performed in the laboratory using samples of serum containing the targeted IgE. The main goal of these tests is the determination of sIgE to the desired antigen, in the form of the drug itself or its metabolites. For that, basophil activation tests and immunoassays related to quantification of sIgE are the most currently used in vitro methods. However, sIgE levels in blood are very low, compromising the clinical sensitivity of these tests and their incorporation in regular clinical protocols. Furthermore, to induce an immune response, BLCs have to be able to covalently bind to carrier proteins in the form of haptens. Thus, the search for the best conjugation proteins and antigens is key to achieve an appropriate IgE recognition together with an improvement in the clinical performances of these in vitro methods.

a) Basophil activation test

The basophil activation test (BAT), also referred to as ex vivo testing in the bibliography, consists of the determination of basophil degranulation using flow cytometry. Basophils express the high-affinity IgE receptor, FceRI, resulting from antigen or anti-IgE stimulation and carrying sIgE antibodies on their surface. For that, the antigens normally used are BPO-PLL, MDM, PLL, and the desired BLC
antibiotic. Activation markers, such as CD63 CD203c, and the expression of the inhibitory receptor CD300a are then expressed and degranulated following the cross-linking of these sIgE/ FcεRI complexes (Figure 35), and quantified by flow cytometry techniques.

Different protocols are available, but the most common is based on the analysis of whole blood. In order to maximize viability and functionality of basophils, this test is performed within a 4-hour time-frame after blood recollection. Yet, BAT clinical sensitivity and specificity values from BLCs range from 50 to 77.7 % and from 89 % to 97 %, respectively, according to previous studies, which is far from what would be desired for an in vitro diagnosis test.

![Figure 35. Principle of the BAT.](image)

Dao: Intracellular fluorochrome-labeled diamine oxidase

b) Specific IgE quantification

In order to determine sIgE to the desired drug allergen, the currently used commercial immunoassays are mainly ImmunoCAP (PHADIA, Thermo Fisher Scientific), the 3gAllergy™ Universal Kit (IMMULITE, Siemens) and ALLERG-O-LIQ (Dr. Fooke-Achterrath Laboratorien). These tests are based on fluorescence, enzyme-enhanced chemiluminescence and reversed enzyme-linked immunosorbance using biotinylated reagents, respectively (Figure 36).

Their clinical sensitivities depend on the BLC involved, but they are rather low, insufficient, and variable (0 - 50 %), with high specificity values (83.3 - 100 %). These tests have a limit of detection (LOD), related to the WHO IgE standard, of 0.35 IU/mL, which is also far from being optimal. Furthermore, all are devoted to detect only sIgE to 4 penicillins (PG, PV, AMX and AMP) and 1 cephalosporin (Cefaclor).
Other immunoassays developed to detect sIgE comprise singleplex methods, such as NOVEOS (HYCOR Biomedical) and Euroimmun (PerkinElmer), which are based on chemiluminescence and dot-blot technique, respectively. On the other hand, multiplex methods are referred to MeDALL-chip, developed within the MeDALL European project; ALEX (Allergen explorer, Macro-ArrayDX); and EUROLINE (PerkinElmer). These multiplex tests are based on fluorescence, nano-particles and western blot, respectively.201 The goal of the multiplex techniques is to allow simultaneous detection and quantification of IgE specific to a large number of allergen molecules with the use of small serum sample volumes.221 However, these aforementioned immunoassays are only available for the detection of food, inhalation and/or insect venom allergies. Therefore, they do not allow for the detection of drug allergies and, more specifically, β-lactam allergy testing. This is most likely because they were not able to identify the appropriate determinant causing the allergic episode, compromising the sensitivity.

The limited availability of these tests to only a few BLCs (if any) has led to the use of other in-house immunoassays (Figure 37), such as the radioallergosorbent test
Introduction

(RAST) based on gamma spectroscopy, developed by Garcia et al.,222 and the colorimetric223,224 and chemiluminescence225 assays prepared in our lab. The polycarbonate surface used in our immunoassay platform is a commercial digital versatile disc (DVD), allowing for its chemical functionalization, mass production, and multiplex screening capacity in a short time.226 Furthermore, it allows for the evaluation and the selection of antigens, feature not possible with the reference \textit{in vitro} test, ImmunoCAP. This, therefore, would permit the selection of the most appropriate antigens that would help us to set-up and develop good \textit{in vitro} sIgE quantification tests.

\textbf{Figure 37.} Principles of in-house A) RAST and B) colorimetric assay. BLC-PLL, β-lactam antibiotic-poly-L-lysine antigen; α-IgE, anti-human IgE; GAR-HRP, goat anti-rabbit labelled with horseradish peroxidase (HRP); TMB, 3,3’,5,5’-tetramethylbenzidine.
1.8. Recapitulation

The evaluation and management of β-lactam allergy is still an ongoing challenge. The commercially available in vivo assays used in the clinical practice are, in brief, singleplex, invasive, can give false positives and are not recommended in patients with a positive allergy history. In this respect, the aforementioned limitations have been partially overcome by the application of in vitro tests that quantify sIgE. However, current in vitro tests show poor sensitivity for β-lactam allergy diagnosis and the number of BLCs that can be tested is low. These limited clinical performances are a consequence of multiple factors, which the antigens used (both major and minor) are a crucial point. Moreover, the number of serum samples available is still very low for those less prescribed antibiotics and the concentration determined by the current in vitro tests is very low as well.

So far, the preparation of antigens has been commonly based on the conjugation of the desired β-lactam directly to a carrier protein through the functional groups available in the antibiotic. All this in order to keep the chemical structure of the antibiotic minimally modified to mimic the in vivo behavior. In consequence, the effects that the proximity of the carrier protein may have when generating the antigens or the effect of incorporating other functional groups in the haptens may allow for a better recognition of the antigens by IgE antibodies. In this regard, there is still much to improve on the development of suitable β-lactam antigens for the in vitro diagnosis of allergy to these drugs. For these reasons, there is an important need to synthesize novel haptens for the preparation of antigens, which may support the development of in vitro methods with better sensitivity and specificity.
1.9. References

Introduction

(23) Janeway, C.; Travers, P.; Walport, M.; Schlomchik, M. The Production of IgE. In
Introduction

(34) Rimawi, R. H.; Cook, P. P.; Gooch, M.; Kabchi, B.; Ashraf, M. S.; Rimawi, B. H.; Gebregziabher, M.; Siraj, D. S. The Impact of Penicillin Skin Testing on Clinical
Introduction

Introduction

(67) National Research Council (US) Committee to Study the Human Health Effects of Subtherapeutic Antibiotic Use in Animal Feeds. Appendix K, Antibiotics In

(70) U. S. Food and Drug Administration. 2018 Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals; Food and Drug Administration Center for Veterinary Medicine, Department of Health and Human Services, 2019.

(78) Lemke, T. L.; Williams, D. A.; Roche, V. F.; Zito, S. W. Foye’s Principles of Medicinal Chemistry, 7th Ed.; Lippincott Williams & Wilkins: Philadelphia, PA,
Introduction

2013.

Introduction

(110) Harle, D. G.; Baldo, B. A. Identification of Penicillin Allergenic Determinants

Introduction

(131) Ariza, A.; Mayorga, C.; Fernández, T. D.; Barbero, N.; Martín-Serrano, A.; Pérez-
Introduction

Introduction

(151) Frumin, J.; Gallagher, J. C. Allergic Cross-Sensitivity between Penicillin,
Introduction

(159) Meng, X.; Earnshaw, C. J.; Tailor, A.; Jenkins, R. E.; Waddington, J. C.; Whitaker, P.; French, N. S.; Naisbitt, D. J.; Park, B. K. Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in
Introduction

Introduction

(200) Torres, M. J.; Blanca, M. Diagnosis of Immediate Allergic Reactions to Beta-
Introduction

Introduction

38 (1), 185–190.

(217) Popescu, F.-D.; Vieru, M. Precision Medicine Allergy Immunoassay Methods for Assessing Immunoglobulin E Sensitization to Aeroallergen Molecules. *World J.*
Introduction

2. OBJECTIVES
2. OBJECTIVES

The main objective of the present dissertation is to establish the chemical basis to improve the clinical performances of the current in vitro tests for β-lactam allergy diagnosis. To that end, haptens will be synthetized with which to prepare antigens that permit the detection of specific IgE causing the allergic episodes to β-lactam antibiotics. This will allow the development of immunoanalytical approaches to determine specific IgE antibodies to the most common β-lactam antibiotic in vitro tests. This main objective is pursued throughout the following specific objectives:

1. To study the effect of the incorporation of spacer arms in the development of antigens accessible and free of hindrance effects for improving the diagnosis of allergies to β-lactam antibiotics. To this end, aliphatic spacer arms of different length will be used in the synthesis of diamine-based haptens to benzylpenicillin and amoxicillin.

2. To evaluate the use of cationized proteins as a novel strategy for the production of selective antigens, pursuing the generation of additional amino residues in the carrier proteins to increase the hapten/protein molar ratio.

3. To evaluate the antigens based on benzylpenicillin metabolites 6-aminopenicillanic acid, penicillamine, penicillic acid, benzylpenicilloic acid, and benzylpenilloic for β-lactam in vitro testing, using samples from allergic patients and controls. The results obtained will be compared with those using both in vivo and in vitro assays.
4. To explore the applicability of major and minor determinants to β-lactam antibiotics cefuroxime, cefotaxime, ceftriaxone, meropenem and aztreonam to quantify specific anti-β-lactam IgE antibodies with high sensitivity and specificity.

5. To synthesize novel clavulanic haptens to rise specific immunoreagents and quantify specific IgE antibodies.

6. To determine the feasibility of the incorporation of structural diversity into β-lactams in the development of unique antigens. A cohort of skeletally diverse compounds will be synthetized using diversity-oriented synthesis for the penicillin and cephalosporin precursors, 6-aminopenicillanic acid and 7-amino-deacetoxycephalosporanic acid, and the β-lactam antibiotics amoxicillin and ampicillin. The haptens will be conjugated to carrier proteins in order to be evaluated by specific IgG and IgE from rabbits and human samples.
3. EXPERIMENTAL RESULTS
Chapter 1

3.1. Penicillin determinants for the diagnosis of IgE-mediated allergic reactions
Penicillins are by far responsible for most of the immunologically mediated drug hypersensitivity reactions. Even though penicillin allergy has been extensively studied, diagnostic tests are often either not performed, leading to the direct classification of patients as allergic when in fact they are not, or lack the necessary diagnostic specificity and sensitivity for a good diagnosis test. Therefore, the goal is to synthesize new haptens with which several antigens will be prepared within the aim to improve the diagnostic sensitivity of the *in vitro* immunoassays.

Concretely, the first part of this chapter (Section 3.1.1.) describes the utilization of aliphatic diamines of different alkyl chain lengths by two different approaches. First, the use of diamines of different alkyl chain lengths as spacer arms to haptenize benzylpenicillin and amoxicillin antibiotics is attempted. With these haptens, the corresponding antigens are prepared after conjugation to two carrier proteins (human serum albumin and histone) through two different conjugation routes, generating major and minor determinants. On the other hand, the second approach is based on the use the aliphatic diamines of different alkyl chain lengths as modifier compounds to generate cationized proteins. In this respect, the incorporation of additional amino groups in carrier proteins can result in an increase of the hapten-carrier protein molar ratio.

On the other hand, although the immunological properties of penicillin metabolites were studied in detail in the past, the results obtained were not conclusive. Furthermore, recent studies are more focused in discover new structures with the immunological properties needed than in the evaluation of the well known *in vivo*-formed metabolites, as stated in the Introduction (Section 1.6.4). Therefore, the second part of this chapter (Section 3.1.2.) deals with the evaluation of the metabolites 6-aminopenicillanic acid, penicillamine, penicillic acid, benzylpenicilloic acid and benzylpenilloic acid. For that, benzylpenicilloic acid and benzylpenilloic acid are synthetized from sodium benzylpenicillin and the other metabolites used as commercially supplied. Then, all these metabolites are conjugated to the aforementioned carrier proteins by three different routes, depending on the corresponding metabolite, to generate the metabolite-based antigens.

Finally, all the produced antigens are evaluated in a multiplex *in vitro* colorimetric microimmunoassay to stablish the molecular recognition pattern against sera from immunized rabbits and from a cohort of allergic patients and controls.
3.1.1. Boosting the sensitivity of *in vitro* β-lactam allergy diagnostic tests
ABSTRACT

The synthesis of structurally new haptens and the development of suitable antigens are essential for boosting the sensitivity of drug allergy diagnostic testing. Unprecedented structural antigens for benzylpenicillin and amoxicillin are characterised and evaluated in a cohort of 70 subjects with a turnkey solution based on consumer electronics.

1. Introduction

β-lactams (BLCs) are the most extensively used antibiotics for the treatment of bacterial infections, but also the most frequently involved in allergic reactions. Penicillins - BLC antibiotics - represent 37% of the total antibiotic consumption in the European Union. Between 2016 and 2018, the median intake was 7.1 defined daily doses per 1000 inhabitants per day.

According to the hapten hypothesis on the mechanism of antigen presentation, a drug (e.g., a hapten) covalently binds to specific lysine residues of endogenous proteins (carrier molecule) to be processed and presented by cells, eliciting an immune response. This mechanism involves the production of major (-oyl) and minor (-anyl) antigens.
Approximately 95% of penicillin molecules are in the penicilloyl configuration, involved in 75% of IgE-mediated allergic reactions.8,9

Quantitative inhibition methods have allowed the establishment of a correlation between fine structural features of haptens and allergic sensitivities in patients.10,11 For effective development of sensitive and selective \textit{in vitro} tests, the chemical structure of the hapten, among other critical variables, is essential to define the specific epitope that binds to the carrier molecule. Spacer arms have been widely used in the haptenization of small molecules,12–14 to increase the exposure of the epitope, and also to covalently link the hapten to a carrier molecule, to reduce steric hindrances.15 Experimental data on drug-derived antigens are limited. Montañez \textit{et al.} synthesized different cephalosporin skeletons conjugated to carrier molecules to establish the structure-IgE molecular recognition relationships,16 while Pastor-Navarro \textit{et al.} synthesized various haptens for tetracyclines using spacer arms to induce heterology in their chemical structures.17 Some results suggest that the conformational epitope should be accessible to generate antigens that are better recognized by specific IgEs.18,19 According to certain researchers the ideal spacer arm should have:14 (I) a proper length (at least three atoms), (II) no active centre that could lead to non-specific adsorption, and (III) bifunctional groups to react with the hapten and the carrier molecule. Another strategy to enhance drug-IgE molecular recognition is to prepare effective antigens with a higher hapten:carrier ratio to increase the strength and specificity of the immune response and subsequent antibody generation.20 This may be achieved by forming additional amines on the carrier protein by using cross-linkers to convert negatively charged carboxylates to positively charged amines.21 Cationized proteins are known to increase the immune response compared to their native forms making them possible promising molecules to boost the molecular recognition events.22

2. Results and discussion

In this work, a collection of 13 diamine-derived haptens for benzylpenicillin (PG) and amoxicillin (AMX) was synthesized with aliphatic diamines of different alkyl chain lengths. To this end, the spacer arm was placed (1) at the carbonyl carbon after β-lactam ring opening (-oyl) and (2) at the carboxylic acid of the thiazolidine ring (-anyl), maintaining the β-lactam ring common to all BLCs, maximizing exposure to the lateral
of the 13 haptens (see nuclear magnetic resonance spectra, ESI†), six were -oyl (1-6, Scheme 6.1.S1) and seven were -anyl (7-13) haptens, using PG (haptens 1-3 and 7-9) and AMX (haptens 4-6 and 10-13) as the starting materials. These haptens were used to develop antigens (Scheme 1.1.1) conjugated to human serum albumin (HSA) prepared following the carbodiimide chemistry. HSA was employed due to its content of glutamic and aspartic residues, 60 and 30, respectively. Next, five antigens, one for HSA and four for histone H1, were prepared using cationized carrier proteins (Scheme 1.1.2). The effect of diamine chain length on molecular recognition of the diamine-based antigens was assessed using a multiplex microimmunoassay developed on a DVD with colorimetric detection (Figures 6.1.S1 and 6.1.S2, ESI†), using a hacked disc drive as the detector.23

Using the results of a reference antigen 14, three comparisons were made. First, polyclonal IgGs to PG were used. These specific IgGs were obtained by immunizing a rabbit with the reference -lloyl antigen linked to keyhole limpet haemocyanin (Scheme 6.1.S2, ESI†). Sera dilutions ranging from 1/1000 to 1/32 000 were tested and PBS-T was used as a blank control. The results were plotted and are shown in Figure 1.1.1. No recognition was observed for either HSA (< 500 arbitrary units) or the antigen prepared with aztreonam (AZT) (< 700 arbitrary units), used as negative controls. The term molar

\[R = \begin{align*}
\text{PG} & : \text{benzylpenicillin} \\
\text{AMX} & : \text{amoxicillin}
\end{align*} \]
Experimental results

recognition ratio (MRR) is used to compare antigenic-specific responses, representing the ratio between the signal given by the -oyl and/or -anyl antigen(s) to the reference signal (antigen 14) and is expressed as a percentage. Overall, all synthesized antigens detected polyclonal IgG to PG and the assay signals were similar to those obtained for the reference antigen. For -oyl antigens (Figure 1.1.1a), PG-based antigens 1-3 showed higher MRRs (ca. 103-123 %), while for AMX-based antigens 4-6, the MRRs ranged between 86 and 102 %.

Scheme 1.1.2. Chemical structures of the antigens using diamine cationized proteins.
Reaction conditions: -oyl haptens: sodium carbonate 0.5 M, pH 11.0.

Furthermore, the results revealed that -oyl antigens linked to 1,5-diaminopentane had the best responses, with MRR values of 123 % and 102 % for PG and AMX-based antigens, respectively. On the other hand, 1,7-diaminoheptane-based antigens had the lowest MRR values. For antigen 1b, for which cationized carrier molecules were used, the results were similar, with an MRR of 95 %. Signals of -anyl antigens (Figure 1.1.1b) were lower than those of the reference. PG and AMX-based antigens 7-9 and 10-13 had MRRs between 76 % and 98 % and 58 % and 88 %, respectively. In terms of the protective effect of the free amine on AMX, antigen 13 achieved higher MRR values (ca. 86 %) than its corresponding non-protected antigen 10, with an MRR value of 58 %. Contrarily, no general agreement was reached regarding diamine alkyl chain length. Indeed, antigen 10, linked to 1,3-diaminopropane, showed the lowest serum response (ca. 58 %) for AMX, while PG antigen 9, linked to 1,7-diaminopentane, reached a higher MRR value (76 %). In short, the recognition of PG-modified antigens was better than that of AMX.

90
Figure 1.1.1. Signals (in arbitrary units, a.u.) of the modified β-lactam antigens with specific rabbit IgG to benzylpenicillin (n = 5; dilution factors represented: 1/1000, 1/4000 and 1/16 000). (a) -oyl antigens and (b) -anyl antigens.
Figure 1.1.2 shows the results of the evaluation of artificial human serum to PG. Variations were observed in PG-based antigens depending on the conjugation strategy. Antigens 1b and 2b, in which diamines were used to cationize the carrier, reached a specific IgE (sIgE) concentration of 23 IU mL\(^{-1}\), ten times higher than that of the reference, indicating good recognition of the sera for these antigens. Regarding AMX-antigens, the best results were observed for antigens 5 and 6 with an sIgE concentration of 20 IU mL\(^{-1}\).
improving the molecular recognition yield. It may also explain the better response for AMX antigens, prepared by using diamines as spacer arms for the hapten synthesis in comparison to PG-based antigens, even in PG-specific artificial human serum. Furthermore, spacer arm length showed different patterns regarding the BLC antigen selected. This is in line with the results of a previous study in which molecular recognition differed on the selected hapten.24

A cohort of 70 subjects, 35 of whom developed an immediate reaction to β-lactams (Table 6.1.S1, ESI†), was tested. Results of the prick tests (in vivo), ImmunoCAP, and the multiplex immunoassay (in vitro) are shown in Table 6.1.S2 (ESI†). When diamines were used as spacer arms (both -oyl and -anyl antigens) the results were negative, with values below the limit of detection. Prick tests showed that four out of 31 PG patients (13 %) and 21 out of 31 AMX patients (68 %) were positive. The in vitro ImmunoCAP reference test showed that out of 35 allergic patients, seven PG (20 %) and thirteen AMX (37 %) patients were positive. The in vitro ImmunoCAP test allows sIgE to be quantified within a range of 0.01 to 100 IU mL⁻¹, with a cut-off point of 0.35 for positive results and levels above 0.10 IU mL⁻¹ indicating sensitization. Furthermore, recent data indicate that the specificity of the ImmunoCAP system ranges from 85.7 % to 100 %, while the sensitivity ranges from 0 % to 25 %, depending on initial clinical symptoms.25 The evaluation of our antigens with multiplex DVD-microimmunoassay in a cohort of 35 allergic patients resulted in 21 PG (60 %) and 11 AMX (31 %) positive subjects with antigen 3b. The 35 control patients were negative. Figure 1.1.3 shows a dot plot diagram of the clinical performance of the developed multiplex microimmunoassay.

Evaluation of the different diamines used to modify the carrier proteins with AMX (antigens 3b, 4b and 5b) revealed that the shorter diamine, ethylene diamine, provided the best results. Its short chain length ensures minimal steric effects and virtually no hydrophobic interactions, while the aromatic ring present in 1,4-phenylenediamine may induce extreme steric effects and become less accessible. For instance, patient 04 had a specific IgE value to AMX of 0.44 IU mL⁻¹ when ethylene diamine was used, and 0.02 IU mL⁻¹ when both 1,4-diaminobutane and 1,4-phenylenediamine were used. The same was observed with patient 09 with values of 2.75, 0.04, and 0.06 IU mL⁻¹, respectively.
Figure 1.1.3. Dot plot of the specific IgE levels to PG and AMX determined using the multiplex DVD-assay. Positive and negative refer to samples from allergic patients and control subjects, respectively. The cut-off considered is the limit of detection of the developed multiplex DVD-assay and is represented as a blue line (> 0.07). Sens and Spec stand for sensitivity and specificity using antigens 1b and 3b for PG and AMX, respectively.

3. Conclusions

In conclusion, the search for new antigens for allergy testing involves the synthesis and screening of chemical entities to delineate the selectivity and the strength of interaction between the antigens and the IgE targets. Given the need to consider the side-chain on individual β-lactam derived antigens and the heterogeneity of the target β-lactam antibiotics, this research contributes a new approach to synthesize structural hapten and generate specific antigens for immunoanalytical determination of IgEs, going beyond the state of the art. As we demonstrate, the synthesis of structurally new hapten to generate antigens for β-lactam allergy is key for developing highly sensitive in vitro tests to determine specific IgG and IgE antibodies. The purpose of our study was to synthesize a collection of hapten to produce a panel of major and minor antigens for PG and AMX to determine sIgE for these BLCs. We obtained a panel of 18 antigens, as well as a collection of different hapten (epitopes), using diamines of various length and different linkage strategies. To the best of our knowledge, this is the first report that describes the development of modified major and minor -oyl and -anyl antigens for benzylpenicillin and amoxicillin, demonstrating the potential for an improved serological diagnosis of IgE-mediated drug allergic reactions for commonly prescribed and consumed β-lactam antibiotics. We henceforth determine the presence of IgE antibodies in a defined allergic population in whom Augmentin and amoxicillin were the most
common inducers of immediate reactions. The results with patients showed that antigens for which diamines were used as spacer arms were not detected, although they recognized both specific IgG and IgE from immunized rabbits and artificial human sera to PG. We found a good correlation between our multiplex DVD immunoassay and ImmunoCAP for positive samples to both PG and AMX. Cationization of carrier molecules with diamines and their subsequent use to generate antigens is a suitable approach to detect specific IgE at low concentrations in allergic patients, improving the sensitivity of the existing in vitro tests for drug allergy. This result reveals that cationized antigens are a promising alternative to current -oyl derived antigens for boosting the sensitivity of the current in vitro test for antibiotic allergy. Synthesized amoxicillin -oyl haptens enhance drug-IgE molecular recognition, with a three-fold increase in sensitivity compared to the existing in vitro diagnostic testing for antibiotic allergy. The current lack of clinically standardized reagents makes the panel of synthesized structural haptens and the generated specific antigens a promising approach for mass detection of antibiotic allergies. In this way, better drug sensitization profiles could be defined, which will be of valuable support for allergy screening campaigns and antibiotic delabeling processes.

ACKNOWLEDGMENTS

This work was funded by the H2020 program (project COBIOPHAD, grant agreement No. 688448), an initiative of the Photonics Public Private Partnership; Agencia Estatal de Investigación (CTQ2016-75749-R, FEDER) and program UPV-La FE 2019 (PI05 VALBIOAL). E. P. M. holds a FPU doctoral fellowship from Ministerio de Educación, Cultura y Deporte.

REFERENCES

3.1.2. Penicillin antigens based on metabolites for *in vitro* drug allergy testing
Penicillin antigens based on metabolites for *in vitro* drug allergy testing

1. Introduction

Benzylpenicillin acid (PG) remains in equilibrium with pseudopenicillin under neutral conditions. However, it quickly decomposes under several conditions which lead to β-lactam ring opening (major configuration) and the formation of several minor metabolites (see Figure 9, Section 1.6.4.). Therefore, it is coherent to expect that these metabolites conjugated to carrier proteins could elicit an immunogenic response that could explain the diverse IgE recognition patterns observed in allergic patients.

Several studies show the recognition patterns of penicillin metabolites by specific IgE antibodies from allergic patients. However, the results obtained are still inconclusive and the molecular recognition pattern metabolite-IgE is unclear. For instance, penamaldic acid, formed from penicilloic acid (PGoyl), has been claimed to react *in vivo* with cystine residues from carrier proteins by formation of disulfide bonds. This would lead to the formation of several antigens, such as benzylpenamaldic acid cysteine mixed disulfide, penicillamine cysteine mixed disulfide and benzylpenilloaldehyde. Although these metabolites have the functional groups needed to be linked to amino acid residues of carrier proteins to form antigens, they have been commonly used for skin testing in their native forms, as haptens. For instance, the diagnostic sensitivity for haptons PGoyl, benzylpenilloic acid (BPG) and penicillamine (PA) ranged from 21 to 55 %, depending on the study. Interestingly, the precursor of the penicillins, 6-aminopenicillanic acid (6-APA), has also been evaluated and not being immunogenic by its own. By contrast, the metabolite penicillic acid (PLA), formed by acid degradation of penicillins, is considered a mycotoxin that has been thoroughly evaluated by the food industry due to the risk that it entails. However, its recognition by specific IgE antibodies from allergic patients has not been studied yet.

In this study, several metabolites to penicillins (6-APA, PA, PLA, PGoyl and BPG, Figure 1.2.1) were tested after conjugation to the carrier proteins human serum
Experimental results

albumin (HSA) and histone from calf thymus (H1). The suitability of the PG antigens based on its metabolites was evaluated testing a cohort of 36 subjects, using a multiplex in vitro DVD-microimmunoassay. This study aims to get insight into the identification of metabolite-based antigens to penicillins with properties to be recognized by specific IgE antibodies.

![Chemical structures of the studied penicillin metabolites](image)

Figure 1.2.1. Chemical structures of the studied penicillin metabolites

2. Experimental section

General methods

Oxygen- and/or moisture-sensitive reactions were carried out in flame-dried glassware under nitrogen atmosphere. All reagents and solvents were purchased and used as received or synthesized according to cited procedures.

All yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Reaction progress was monitored by analytical thin-layer chromatography (TLC) and 1H-NMR spectroscopy. TLC analyses were performed using E. Merck silica gel 60 F254 pre-coated plates (250 µm). A handheld 254 nm UV lamp and potassium permanganate staining solution (with light heating) were used for detection.

NMR spectra were recorded on Bruker UltraShield 300 MHz and Ascend 400 MHz spectrometers. Compounds were characterized by 1H-NMR and 13C-NMR. 1H- and 13C-NMR chemical shifts (δH, δC) are reported in parts per million (ppm) relative to the appropriate solvent–DMSO-d$_6$: 2.50 (H), 39.52 (C) ppm. Resonances are described using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quin.
(quintet), m (multiplet), br (broad), dd (doublet of doublets), etc. Coupling constants (J) are given in Hz and are rounded to the nearest 0.1 Hz. All NMR data were collected at 25 °C.

Chemicals, Reagents and Buffers

6-aminopenicillanic acid 96 %, penicillic acid ≥ 98 %, benzylpenicillin sodium salt, Tween 20, human serum albumin, N,N'-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS), histone from calf thymus are from Sigma-Aldrich (Madrid, Spain). DL-penicillamine 97 % is from VWR. Dimethylformamide (DMF), hydrochloric acid 37 % (HCl), sodium hydroxide (NaOH), isopropanol, ethanol, cupric sulphate and buffer salts are from Scharlau (Sentmenat, Spain) and used without further purification. Deuterated dimethyl sulfoxide (DMSO-d_6) was supplied by ACROS Organics (New Jersey, USA). Goat anti-rabbit antibody labeled with horseradish peroxidase (GAR-HRP) and goat anti-mouse antibody labelled with horseradish peroxidase (GAM-HRP) are from Abcam (San Francisco, USA). Tetramethylbenzidine (TMB) substrate is from SDT GmbH (Baesweiler, Germany) and Coomassie Brilliant Blue R-250 staining solution is from Bio-Rad (Madrid, Spain). Amicon Ultra 0.5 pre-concentred 10 K MWCO filters and Dextran Desalting Columns, 5K MWCO, 5 mL are from Fisher Scientific (Madrid, Spain) and DVDs are from CD Rohling-up GmbH (Saarbrücken, Germany).

The employed buffers are (I) potassium carbonate 0.5 M, pH 11.0; (II) phosphate buffer saline (PBS 1X, 0.008 M sodium phosphate dibasic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M potassium chloride, pH 7.4); (III) PBS-T (PBS 1X containing 0.05 % Tween 20); (IV) sodium carbonate/bicarbonate buffer 0.1 M, pH 9.6; and (V) potassium phosphate dibasic 0.1 M. All buffers are filtered through a 0.45-μm pore size nitrocellulose membrane from Thermo Fisher Scientific (Madrid, Spain) before used.

Synthesis of metabolites

6-APA, PA and PLA were used as supplied. PGoyl and BPG were synthetized from the commercial benzylpenicillin sodium salt as follows:^{13}
Experimental results

- Benzylpenilloic acid (PGoyl)

To a stirred solution of benzylpenicillin sodium salt (200.0 mg, 0.56 mmol, 1 eq) in H₂O (1.0 mL) was added NaOH (100 mg/mL) at room temperature. The resulting solution was stirred at 40 °C for 2 h. Then, the solution was cooled down to 5-10 °C and the pH adjusted to 6 by slow addition of concentrated HCl (80 µL). Isopropanol (5 mL) was added slowly with rapid stirring and the solution was allowed to cool at 4 °C. Finally, the solution was filtered under vacuum, washed with isopropanol and the crystalized product dried over high vacuum to give a white solid in 97% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.29 – 7.18 (m, 5H), 4.95 (d, J = 2.9 Hz, 1H), 4.30 (dd, J = 8.3, 3.1 Hz, 1H), 3.53 (q, J = 14.7 Hz, 2H), 3.01 (s, 1H), 1.49 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 172.54, 172.03, 170.32, 136.60, 129.83, 129.54, 128.69, 128.58, 126.78, 78.09, 59.48, 58.26, 58.10, 43.30, 29.65, 29.18.

- Benzylpenilloic acid (BPG)

Benzylpenicillin sodium salt (300.0 mg, 0.84 mmol, 1 eq) was dissolved in H₂O (1.5 mL) and NaOH (100 mg/mL) was added at room temperature and stirred at 40 °C for 2 h. Then, the solution was cooled down to 5-10 °C and the pH adjusted to 4 by slow addition of concentrated HCl (100 µL). Ethanol (1.5 mL) was added and the resulting solution stirred and heated at 80 °C until the effervescence ceased. The progress of the reaction was followed by TLC. Afterwards, the solution was filtered under vacuum and washed with H₂O/ethanol (1/1 v/v). Finally, the desired product was allowed to crystallize at 4°C and dried over high vacuum to give a white solid in 79% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 8.28 (dt, J = 38.2, 5.9 Hz, 1H), 7.29 – 7.19 (m, 5H), 4.60 (t, J = 5.7 Hz, 1H), 3.42 (s, 2H), 3.40 (dt, J = 6.4 Hz, 1H), 3.37 (dt, J = 6.2 Hz, 1H), 3.09 (t, J = 6.4 Hz, 1H), 1.54 (s, 3H), 1.16 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 171.41, 170.58, 137.00, 129.33, 128.61, 128.58, 126.74, 126.69, 73.12, 66.04, 59.67, 58.96, 42.60, 28.82, 27.91.

Preparation of the antigens

The conjugation of the metabolite-based antigens was performed following the carbodiimide chemistry to obtain minor determinants. Briefly, the corresponding metabolite (6.0 mg) was reacted with DCC (1 equiv.) and NHS (1 equiv.) in DMF (0.1
M) for 4 h at room temperature. Afterwards, the mixture was centrifuged at 12,000 rpm to remove the acyl urea precipitate. Finally, the volume of the supernatant corresponding to 6.3-18.9 μmol of the metabolite (depending on the carrier protein used) was mixed up with DMF to 100 μL and added to 900 μL of the carrier protein solution (2.0 mg) in PBS 1X, pH 7.4 overnight at 37 °C.

Furthermore, antigens 6-APA-2 and PGoyl-2, 6-APA and PGoyl were also linked to the carrier proteins by amidation between the carbonyl carbon of the β-lactam ring after β-lactam ring opening and lysine residues of the carrier proteins (considered as the major configuration). For that, 30-90 μmol (depending on the carrier protein used) of 6-APA and PGoyl were conjugated to the carrier protein (2.0 mg) in basic media (potassium carbonate 0.5 M, pH 11.0) overnight at 37°C. PA-2 antigen was formed via disulphide bonds between the thiol group of the PA and cysteine residues of the carrier protein. For that, the carrier protein (2.0 mg) and PA (4.5 mg) were dissolved in potassium phosphate dibasic 0.1 M (1 mL) and stirred at 37°C for 2 h. Then, cupric sulphate (5 ppm) was added and the solution was allowed to oxidized at 4°C for 3 days.

All antigens were purified by gel filtration chromatography on Amicon Ultra 0.5 pre-concentrated 10 K filters using PBS 1X, pH 7.4, as elution buffer. Afterwards, antigens were diluted to 1.0 mg/mL and stored at -20 °C until used. The concentration of the antigens was determined by the Bradford protein assay.

Protocol of the multiplex in vitro DVD-microimmunoassay

Human samples from allergic patients and controls were analyzed as described in the Section 3.1.1.14, and the level of specific IgE was quantified following the heterologous total IgE calibration scheme (Section 3.2.1).15

3. Results and discussion

The panel of antigens were evaluated, using a cohort of 36 subjects of which 18 developed an allergic reaction to one β-lactam antibiotic (Supplementary Table 6.2.S1). In this respect, the combination of amoxicillin (AMX) and the β-lactam inhibitor clavulanic acid, brand-named as Augmentin, was the culprit drug most commonly provoking the allergic episode, followed by AMX alone (13 and 3 subjects, respectively).
Experimental results

The remaining two subjects had an allergic reaction to cefuroxime and cefazolin. Regarding to the clinical data provided, 15 allergic reactions occurred by re-exposure to the culprit drug (immediate) and the other three were considered delayed allergic reactions provoked between 2 and 6 h after the exposure to the culprit drug.

The results of both in vivo (prick test) and in vitro (ImmunoCAP and multiplex DVD immunoassay) tests are shown in Table 1.2.1.

The analysis of the human samples by prick test showed that 10 out of 14 patients were positive to AMX (71 %), 8 out of 12 to ampicillin (AMP) (67 %) and 2 out of 14 to PG (14 %). Contrarily, none of the 13 patients tested for MDM and PPL were positive. On the other hand, the results of the reference in vitro test, ImmunoCAP, were less satisfactory. This is in agreement with previous studies that claimed that ImmunoCAP does not identify IgE to minor antigens or metabolites. Therefore, the evaluation by ImmunoCAP showed that from the 18 allergic patients, 8 to AMX (44 %), 5 to phenoxyethylpenicillin (PV) (28 %) and 4 to PG (22 %) were positive. In the case of AMP, 5 out of 13 patients studied tested positive (38 %).

When the human samples were analyzed with the multiplex DVD-immunoassay, we observed that the pool of 18 control patients was negative to all the metabolite-based antigens, except to PLA (specific IgE = 0.11 IU/mL) antigen. The analysis of serum samples from the 18 allergic patients showed that all were positive to PLA (100 %), 17 to 6-APA (94 %), 16 to PGoyl (89 %), 12 to PA (67 %) and 6 to PGoyl-2 (33 %).

The detection of specific IgE by the penicillin based metabolite antigens revealed that minor antigens, prepared through the carbodiimide method, gave the best results. Therefore, it is important to maintain the β-lactam ring structure, common to all penicillin metabolites (except to BPG), unaltered in order to develop antigens which can be recognized by specific IgE antibodies.

Major antigens were not specifically recognized by IgE antibodies, as also observed by ImmunoCAP. Consequently, IgE antibodies from none of the selected allergic patients recognized antigen 6-APA-2. Although IgE antibodies from 6 allergic patients recognized antigen PGoyl-2, IgE concentration levels were generally lower (in 88 % of the cases) than those corresponding to minor antigen PGoyl. For instance, IgE
concentration was two fold increased when minor antigen PGoyl was used. What is more, 16 out of the 18 recruited allergic patients were positive to antigen PGoyl.

None of the allergic tested serum from allergic patients were detected using antigen PA-2. This antigen was prepared by forming disulphide bonds in physiological media (pH = 7). However, a study by Foster et al.17 suggested that the protein has to be denaturalized with urea prior conjugation to PA, which can explain why antigen PA-2 did not recognize the selected allergic patients.

If the different tests (both \textit{in vivo} and \textit{in vitro} assays) are compared, at least one metabolite was recognized by IgE from those patients that were positive by prick test when the \textit{in vitro} multiplex immunoassay was used. On the other hand, patients 5, 6, 8, 10, 13, 15, 16 and 18 tested negative (or tests were not realized) by prick test not only to MDM, PPL, PG, AMP (not patient 16), but also to AMX, even when the drugs involved in provoking these allergic episodes were AMX and augmentin. In particular, patients 5, 13 and 18 were also not detected by ImmunoCAP. Interestingly, these patients were positive to our prepared antigens PA and PGoyl (e.g., patient 18: [sIgE] = 0.11 and 0.62 IU/mL to antigens PA and PGoyl, respectively).

Finally, it is worth mentioning that, from all the tested allergic patients, none was positive by prick test to the minor determinant mixture (MDM) and the penicillin major determinant, PPL. In the past, MDM consisted of PG, the metabolites PGoyl (and its corresponding salt form, sodium benzylpenicilloate) and BPG. Nowadays, however, MDM only comprises sodium benzylpenicilloate (named as PGoyl in its acid form).18 On the other hand, penicillin major determinant includes PG-antigen whose PG has been conjugated through the major configuration to poly-L-lysine, forming antigen PPL.

The fact that the selected patients tested negative by prick test to MDM and PPL but not to antigen PGoyl-2 (major configuration) can confuse the results obtained by \textit{in vitro} assays. However, this is not the case and a report by Adkinson et al.4 showed that the diagnostic sensitivity of \textit{in vivo} testing with antigen PPL ranges from 36 to 90 %. A possible explanation for this, pointed out by Mayorga et al.,19 suggests that the chemical stability of the antigens influences its recognition by IgE. To a large extent, PGoyl is better recognized in \textit{in vitro} assays because otherwise it can epimerize in neutral conditions.
4. Conclusions

The incorporation of penicillin metabolites to the panel of in-use antigens is a promising approach to improve the detection of allergies to penicillins. In particular, minor metabolite-based antigens to penicillins have proven to be useful for the detection of allergic patients and discrimination of control subjects of a cohort of 36 human samples. As a result, a diagnostic specificity of 100 % was achieved (94 % when PLA was the antigen used) as well as improved diagnostic sensitivity. Therefore, the diagnostic sensitivities obtained ranged from 67 to 100 %, depending on the metabolite used. Interestingly, these values were higher than those corresponding to in vivo prick test or in vitro ImmunoCAP, analyzing the same serum samples. Herein, we demonstrated that multiplexing of metabolite-based antigens may tackle the difficulties still existing today regarding to the selectivity and the specificity of the current diagnostic tests.
Table 1.2.1. Results of the analysis of human serum samples

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Culprit drug</th>
<th>Prick-Test[a]</th>
<th>ImmunoCAP[b]</th>
<th>Multiplex DVD Immunoassay[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MDM</td>
<td>PPL</td>
<td>PG</td>
<td>AMP</td>
</tr>
<tr>
<td>1</td>
<td>Augmentin[e]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>Cefuroxime</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>Cefazolin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>Augmentin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>6</td>
<td>Augmentin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>Amoxicillin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>9</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>12</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>13</td>
<td>Augmentin</td>
<td>NR</td>
<td>NR</td>
<td>P</td>
</tr>
<tr>
<td>14</td>
<td>Amoxicillin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>15</td>
<td>Amoxicillin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>17</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>18</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Pool -

<table>
<thead>
<tr>
<th>MDM</th>
<th>PPL</th>
<th>PG</th>
<th>AMP</th>
<th>AMX</th>
<th>PG</th>
<th>PV</th>
<th>AMP</th>
<th>AMX</th>
<th>6-APA</th>
<th>6-APA 2</th>
<th>PA</th>
<th>PA 2</th>
<th>PLA</th>
<th>PGoyl</th>
<th>PGoyl 2</th>
<th>BPG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MDM: minor determinant mixture (sodium benzylpenicilloate), PPL: penicillimajor determinant (benzylpenicilloyl poly-L-lysine), PG: benzylpenicillin, AMP: ampicillin, AMX: amoxicillin, PV: phenoxymethylpenicillin, 6-APA: 6-amino penicillanic acid, PA: penicillamine, PLA: penicillic acid, PGoyl: benzylpenicilloic acid and BPG: benzylpenilloic acid. [a] P= Positive, N= Negative, NR= Not Realized; [b] The range of quantification of ImmunoCAP is from 0.01 to 100 IU/mL, with levels above 0.10 and 0.35 IU/mL indicating sensitization and positivity, respectively; [c] Multiplex immunoassay values are the mean of three replicates using H1-based antigens. The limits of detection and quantification are 0.01 and 0.06 IU/mL, respectively. Relative standard deviation (RSD) ranged from 3 to 15%: [d] IU/mL= 2.4 ng/mL; [e] Augmentin is a combination of amoxicillin and potassium clavulanate.
REFERENCES

(10) Macy, E.; Richter, P. K.; Falkoff, R.; Zeiger, R. Skin Testing with Penicilloate and

In this chapter we addressed the preparation of antigens to penicillins and their evaluation by a multiplex *in vitro* colorimetric microimmunoassay.

On the one hand, 18 major and minor antigens based on amoxicillin and benzylpenicillin have been prepared, in the first part of this chapter (Section 3.1.1.), using aliphatic diamines of different alkyl chain lengths. Specifically, 13 of them were addressed using these diamines as spacer arms, while in the remaining five, diamines were utilized to generate cationizing proteins. The latter antigens were specifically recognized by IgE at low concentrations and the diagnostic sensitivity of the assay was three-fold improved in comparison with the current commercial *in vitro* diagnostic test for penicillin allergy.

On the other hand, the preparation of 8 major and minor antigens based on penicillin metabolites has been accomplished in the second part of this chapter (Section 3.1.2.). Their evaluation revealed that minor antigens permitted the detection of specific IgE as well as an improvement in terms of the diagnostic sensitivity and specificity of the developed *in vitro* assay obtained.
Chapter 2

3.2. Production of antigens and identification of antigenic determinants to cephalosporin, carbapenem, monobactam and β-lactam inhibitor antibiotics
The quick development of resistance to the most commonly prescribed β-lactam antibiotics, AMX and PG, has gradually led to the use of less effective and broader spectrum antibiotics. In this respect, these families include new spectrum cephalosporins, carbapenems, monobactams and β-lactam inhibitors. However, the diagnostic of allergic reactions to these antibiotics is still an ongoing challenge. While these antibiotics have been used and included in in vivo tests, these tests still lack on diagnostic sensitivity (≤ 50 %). Furthermore, there is any in vitro tests available on the market for the detection of allergies to these drugs. Only one cephalosporin, cephaclor, can be detected by using a commercial in vitro assay and, although a good diagnostic specificity is obtained, the reported diagnostic sensitivity can range from 25 to 80 %.

The first section of this chapter (Section 3.2.1) describes the preparation of major and minor antigens for the antibiotics CFR, CFO, CFT, MRP and AZT. To evaluate the effect of the carrier protein used in the conjugation of the antibiotics, HSA and H1 are the carrier proteins used. Finally, these antigens will be evaluated by means of the in vitro multiplex immunoassay developed on the polycarbonate surface of DVDs, using serum samples from rabbits and from allergic patients and controls. This section highlights the relevance of both the carrier protein and the conjugation route to prepare the antigens, since the recognition patterns of IgE antibodies observed are significantly different.

On the other hand, the second section of this chapter (Section 3.2.2) addresses the production of IgG antibodies to clavulanic acid. To achieve that, three haptens derived from clavulanic acid are synthetized and conjugated to carrier proteins HSA and H1. The antibody sera raised in rabbits are also tested by immunoassay.

This chapter assesses the preparation of antigens to other families of β-lactam antibiotics in order to shed light on the the detection of specific IgG and IgE that might help to improve both the diagnostic sensitivity and specificity of the current in vitro tests.

3.2.1. Neo-antigens for the serological diagnosis of IgE-mediated drug allergic reactions to antibiotics cephalosporin, carbapenem and monobactam
ABSTRACT

New antigens deriving from -lloyl and -llanyl, major and minor determinants, respectively, were produced for β-lactam antibiotics cefuroxime, cefotaxime, ceftriaxone, meropenem and aztreonam. Twenty β-lactam antigens were produced using human serum albumin and histone H1 as carrier proteins. Antigens were tested by multiplex in vitro immunoassays and evaluated based on the detection of specific IgG and IgE in the serum samples. Both major and minor determinants were appropriate antigens for detecting specific anti-β-lactam IgG in immunized rabbit sera. In a cohort of 37 allergic patients, we observed that only the minor determinants (-llanyl antigens) were suitable for determining specific anti-β-lactam IgE antibodies with high sensitivity (< 0.01 IU/mL; 24 ng/L) and specificity (100 %). These findings reveal that not only the haptenization of β-lactam antibiotics renders improved molecular recognition events when the 4-member β-lactam ring remains unmodified, but also may contribute to develop promising minor antigens suitable for detecting specific IgE-mediated allergic reactions. This will facilitate the development of sensitive and selective multiplexed in vitro tests for drug-allergy diagnoses to antibiotics cephalosporin, carbapenem and monobactam.
1. Introduction

Between 2000 and 2015, antibiotic consumption, expressed in defined daily doses (DDD), increased 65% (21.1-34.8 billion DDDs) and its rate rose 39% (11.3-15.7 DDDs per 1000 inhabitants/day). This increase was driven by low- and middle-income countries, where rising consumption has been correlated with gross domestic product per capita growth. In fact, β-lactams (BLCs) are the most widely used antibiotics for treating bacterial infections and, consequently, the most frequent cause of allergic reactions. They represent one of the world’s major biotechnology markets with annual sales of around $15 billion, and make up around 65% of the total antibiotics market (world’s antibiotic sales of 3·10^7 kg/year of a total 5·10^7 kg/year produced worldwide). For many years, the most commonly prescribed and studied BLCs were penicillins like benzylpenicillin (PG), amoxicillin (AMX) or ampicillin (AMP). Due to the increased allergies related to penicillins, antibiotic research rapidly led to the discovery and use of several other BLC families. Indeed the global antibiotic consumption rate of cephalosporins, carbapenems and monobactams were 135.45, 11.26 and 6.23 DDDs, respectively, between 2016 and 2018. In fact, the consumption of all these other BLCs in 2018 was 2.0 DDDs per 1000 inhabitants per day, which accounts for around 11% of the total European intake.

The chemical structure differences among BLC antibiotics promote the allergenic recognition of a broad spectrum of immune system specificities and may therefore help to provoke adverse reactions. BLCs generate -lloyl determinants after β-lactam ring opening under physiologic conditions. According to the bibliography, this -lloyl determinant is considered to be the ‘major’ determinant for penicillins because it is responsible for almost 95% of all allergic reactions to penicillins. The other determinants are classified as ‘minor’ or -llanyl determinants, and are associated with causing anaphylaxis in immediate immunoglobulin E (IgE)-mediated reactions in 95% of cases, but the explanation for the direct involvement of these determinants in provoking immediate hypersensitivity reactions still remains unclear. To date, many studies have focused on major determinants. However, BLC allergic reactions caused by minor determinants have been considered extremely important in penicillin allergies (e.g., skin tests for diagnosing β-lactam allergy), and have been associated with specific systemic anaphylaxis. For this reason, it is necessary to systematically and clinically study the relevance and relative importance of these -llanyl derivatives as a new range of
‘minor’ determinants for β-lactam allergy. Several prospective studies are found in the literature that have evaluated the use of cephalosporins, carbapenems or monobactams in patients with documented penicillin allergy who specifically require BLC treatment, but very few in vitro assays are available for these studies. In any case, many patients supposedly allergic to a BLC, or at least present allergic episode to them, are usually classified as allergic to a drug with no further investigation or are not treated with BLCs because patients might be affected by them and at risk for anaphylaxis. The use of other antibiotics may contribute to the development of multiple drug-resistant bacteria, the emergence of other potentially dangerous side effects and a lead-in of higher healthcare costs. Whatever the case, those patients self-reporting a penicillin allergy can be safely tested for the presence of a true allergy, normally by allergy diagnosis tests.

Allergy diagnoses must include a detailed clinical history, physical examination and in vivo tests (skin and/or drug provocation tests). However, these tests pose life-threatening risks and can entail false-positive skin test results. Currently, the gold standard in vitro test is based on ImmunoCap technology, but it is available only for five BLCs: PG, phenoxymethyl penicillin, AMP, AMX, cefaclor. Therefore, good antigenic determinants are lacking to develop accurate immunoassays with the potential for determining specific IgE to other BLCs in order to cover other subfamilies of BLCs to improve clinical diagnoses. A good diagnosis that relies on both in vivo and in vitro tests could allow a significant delabeling of the reported BLC allergy, and the majority of patients tolerate BLCs without incidents. Furthermore, effective immunoassays for allergy diagnosis rely on the selection of appropriate hapten and metabolites to elicit an immune response. An examination of the specificities of BLC-reactive IgE antibodies in sera revealed a heterogeneous group of allergenic determinants, probably because the authors did not take into account the fine structural heterogeneity of the allergenic determinants of the complete range of BLCs. When designing determinants, it is important to retain the functional groups that are unique to hapten.

In this work, the main objective was to design and produce major and minor -lloyl- and -llanyl-derived antigens, respectively, for cefuroxime (CFR), cefotaxime (CFO), ceftriaxone (CFT), meropenem (MRP) and aztreonam (AZT). Compounds were evaluated by a multiplex direct microimmunoassay developed on the Digital Versatile Disk (DVD) using sera from immunized rabbits, and allergic patients and controls. To the best of our knowledge, this is the first report of major and minor -lloyl and -llanyl
antigens for these antibiotics, and this work demonstrates the potential for an improved serological diagnosis of IgE-mediated drug allergic reactions for commonly prescribed and consumed β-lactam antibiotics.

2. Experimental section

Chemicals, immunoreagents and buffers

Benzylpenicillin sodium salt, meropenem trihydrate, aztreonam, cefuroxime sodium salt, cefotaxime sodium salt, ceftriaxone disodium salt hemi(heptahydrate), N,N'-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS), Tween 20, human serum albumin (HSA), histone from calf thymus (H1) and keyhole limpet hemocyanin (KLH) came from Sigma-Aldrich (Madrid, Spain). The chemical structures of the studied BLCs are shown in Figure 2.1.1. Dichloromethane (DCM), dimethylformamide (DMF), hydrochloric acid 37% (HCl) and buffer salts were purchased from Scharlau (Sentmenat, Spain) and used without further purification. Deuterated dimethyl sulfoxide (DMSO-d6) was supplied by ACROS Organics (New Jersey, USA). The anti-human IgE monoclonal antibody was purchased from Ingenasa, S.A. (Madrid, Spain). The goat anti-rabbit antibody labelled with horseradish peroxidase (GAR-HRP) and the goat anti-mouse antibody labelled with horseradish peroxidase (GAM-HRP) were supplied by Abcam (Cambridge, UK). IgE human serum (3rd WHO International Standard) was supplied by the National Institute for Biological Standards and Control (NIBSC, Hertfordshire, UK). The tetramethylbenzidine (TMB) substrate came from SDT GmbH (Baesweiler, Germany) and Coomassie Brilliant Blue R-250 staining solution was acquired from Bio-Rad (Madrid, Spain). Amicon Ultra 0.5 pre-concentrated 10K MWCO filters and Dextran Desalting Columns, 5K MWCO, 5 mL were from Fisher Scientific (Madrid, Spain).

Buffers were: (I) potassium carbonate 0.5 M, pH 11.0; (II) phosphate buffer saline (PBS 1X, 0.008 M sodium phosphate dibasic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M potassium chloride, pH 7.4); (III) PBS-T (PBS 1X containing 0.05 % Tween 20); (IV) sodium carbonate/bicarbonate buffer 0.1 M, pH 9.6, as the printing buffer. All the buffers were filtered through a 0.45-μm pore size nitrocellulose membrane from Thermo Fisher Scientific (Madrid, Spain) before being used.
Acidification of cephalosporin salts

Firstly, cephalosporin salts were acidified as follows: a round-bottom flask was filled with a solution of the corresponding BLC salt dissolved in water. Then the solution was acidified with HCl 6 M followed by vacuum filtration. The compound was washed twice with acidified water and dried in a high vacuum to obtain the desired acid. The detailed procedures and data characterization of all the acidified cephalosporins are shown in the online Supplementary Information (SI).

Preparation of the structural antigens

KLH was used to produce the immunogenic antigens (-lloyl and -llanyl), with which New Zealand white rabbits were immunized to raise specific IgG for CFT as a model of cephalosporin, MRP and AZT. Two carrier proteins, HSA and H1, were employed to produce the antigens. The preparation was as follows:

The β-lactam-lloyl determinants were linked through the lysine residues of the carrier proteins by β-lactam ring opening, through the amidation between the carbonyl carbon of the β-lactam ring and the amino group of the lysine residues, as previously
Experimental results

described27 with few modifications (Figure 2.1.2). In short, the carrier protein (2.0 mg) dissolved in potassium carbonate 0.5 M, pH 11.0, was reacted with the corresponding BLC salt (22 – 30 μmol depending on the used protein) overnight at room temperature.

\textbf{Figure 2.1.2.} Conjugation of protein CFT -lloyl determinant

The conjugation of the β-lactam -llanyl determinants was performed following the carbodiimide chemistry (Figure 2.1.3).28 For that purpose, 22 – 30 μmol (depending on the employed carrier protein) of the corresponding BLC as its free acid were reacted with 55 μmol of NHS and DCC in DMF (500 μL) for 4 h at room temperature. Afterwards, the mixture was centrifuged at 12,000 rpm to remove the acyl urea precipitate. Finally, 250 μL of the supernatant were added to 2.25 mL of the carrier protein solution (2.0 mg) in PBS 1X, pH 7.4, for 4 h at room temperature.

\textbf{Figure 2.1.3.} Conjugation of protein CFT -llanyl determinant

Instead of the chemical structure of AZT having a free carboxylic acid, it had a sulfonate moiety attached to the β-lactam ring (Figure 2.1.1). For this reason, the AZT-llanyl determinant was prepared with the free carboxylic acid presented in its side chain following the same procedure as described for the -llanyl determinants.
The HSA and H1 -lloyl and -llanyl determinants were purified by gel filtration chromatography using Amicon Ultra 0.5 pre-concentred 10 K filters and PBS 1X, pH 7.4, as the elution buffer. The KLH -lloyl and -llanyl determinants were purified by size exclusion chromatography on dextran desalting columns using PBS 1X, pH 7.4, as an elution buffer.

All the determinants were diluted to 1.0 mg/mL and stored at -20 °C until used. The concentration of the determinants was established by the Bradford protein assay. The β-lactam/carrier protein molar ratio for the HSA determinants was established by MS-MALDI-TOF. Histone H1 is an isolated lysine-rich fraction of mainly subfraction f1, with the other subfractions still present. The H1 antigens could not be analyzed by MS-MALDITOF. However, antigens HSA and H1 were prepared following the same experimental procedure and according to the formation of the major or minor determinants. As both proteins presented approximately 60 free lysine residues, the molar ratios of antigens H1 were estimated to be the same as those obtained for the respective HSA antigens. The KLH determinants were difficult to characterize because of the protein’s high molecular weight. The selectivity of the raised rabbit IgGs was tested during the immunization by the dot blot technique and the conjugation was considered positive when the sera obtained from the immunized rabbit specifically recognized the corresponding antigen.

Assay protocol to evaluate antigens

The assays consisted in detecting specific IgG (Figure 2.1.4a, assay I) and IgE (Figure 2.1.4b, assay II) on standard DVDs (CD Rohling-up GmbH, Saarbrücken, Germany). To this end, determinants (40 μg/mL) and controls (negative and positive), prepared in printing buffer, were spotted in a microarray format (20 arrays per disk of 5 × 4 spots) by dispensing 25 nL of each one using a non-contact printing device (AD 1500 BioDot, Inc., Irvine, CA, USA). Spots were 500 μm in diameter with a centre-to-centre distance of 1.0 mm. In each microarray (Figure 2.1.5), the spots for the produced determinants (two replicates, position 2–9) and the negative (HSA, position 1) and positive (rabbit IgG or human IgE, position 10) controls were included. After printing, the DVD was incubated for 16 h at 37 °C.
Experimental results

To detect specific IgG against CFT, MRP and AZT, different dilutions (1/250-1/16,000) of the rabbit sera and control (PBS-T) (25 μL per sample) were added to each array and incubated for 15 min. Then the DVD was washed with PBS-T and water before adding 25 μL of polyclonal secondary antibody GAR-HRP in PBS-T buffer (dilution 1/400) for 15 min, followed by the washing step. To detect specific IgE, 25 μL of the sample (allergic patients and controls) was added to each array and incubated for 30 min. After washing, 25 μL of the mAb-IgE in PBS-T buffer (1 μg/mL) were added and incubated for 15 min. After washing like before, 25 μL of a 1/100 dilution of GAM-HRP were added for 15 min. Finally, an immunoreaction was run in both immunoassays by homogeneously dispensing 1.0 mL of TMB over the entire disc surface. The reaction was stopped by washing the disk with water after 15 min. Signals were read by a modified DVD drive and data were analysed as previously described. All the experiments were repeated 3 times.

The affinity of the specific IgGs to CFT, MRP and AZT towards the antigens was calculated by measuring the apparent affinity constant (K_{d}^{app}) in the saturation assays. K_{d}^{app} represents the apparent equilibrium dissociation constant between specific IgG and the corresponding antigenic determinant, and is related to the in vitro concentration (expressed as the dilution factor) of the specific IgG antibodies that reached half the maximum signal in the saturation assay. Binding curves were fitted by the SigmaPlot 11 software.
Figure 2.1.5. (a) Layout of the multiplexed microarray. Position 1: HSA, negative control, C(−); and Position 10: rIgG or hIgE, positive control, C(+); (b) Image of an array on the DVD after immunoassay I with α-IgG to CFT, dilution factor 1/1,000 (Position P1: HSA, negative control; P2: CFT-HSA-llanyl determinant; P3: CFT-HSA-lloyl determinant; P4: CFT-H1-lloyl determinant; P5: CFR-HSA-llanyl determinant; P6: CFO-H1-llanyl determinant; P7: CFR-H1-lloyl determinant; P8: CFR-H1-llanyl determinant; P9: CFO-H1-lloyl determinant; P10: rIgG); (c) Representative result of the array with specific determinants and controls printed on the DVD after immunoassay II with patient 002 (determinants in the same positions as in (b), except for P10: hIgE).

The BLC-specific IgE levels expressed as units of specific IgE (IU/mL) were determined by the 3rd WHO standard for total serum IgE determinations, which involves heterologous interpolation as a calibration scheme. The calibration curve was built by performing a sandwich immunoassay where the 3rd WHO International Standard was used as a calibrator and Omalizumab34 as the capture antibody. All the other immunoreagents were the same as those used for determining specific IgE (assay II). The standard data points, signal versus semilog concentration, were the mean of 10 curves performed on different disks on distinct days. A four-parameter logistic (4PL) curve was fitted (Supp. Fig. 6.3.S1) using the SigmaPlot 11 software. The specific IgE concentrations were calculated from the calibration curve for the total IgE.

Serum samples

The study of the reactivity of the prepared determinants to the sera from the allergic patients included those patients (I) who had been diagnosed with an immediate allergic reaction to a BLC by prick tests; (II) whose culprit drug was one BLC (e.g., antibiotics amoxicillin, augmentin, benzylpenicillin, cefuroxime and ceftriaxone); (III) with the total IgE (IgE) values between 100 and 400 IU/mL (clinically considered the normal range for total IgE in a healthy population).35 The clinical characteristics of the 37 patients included in this study are shown in Table 2.1.1. Thirty-seven subjects with
negative skin tests to BLCs and good tolerance to them were used as controls. Their clinical characteristics are shown in Table 6.3.S1. All the serum samples were kindly provided by the Hospital Universitari i Politènic La Fe in Valencia, Spain. All participants were enrolled after giving written informed consent according to protocols approved by the ethics review board at La Fe University Hospital (registry no. COBIOPHAD). The procedures followed were in accordance with the Helsinki Declaration of 1975 as revised in 2008. The patients were diagnosed following the procedure described in the European Network of Drug Allergy (ENDA) protocol based on skin testing, *in vitro* tests or drug provocation test, whenever necessary.

Table 2.1.1. Clinical characteristics of the cohort of allergic patients. The terms immediate and delayed refer to an allergic reaction provoked by re-exposure to a specific allergen and to late-phase allergic reactions that generally occur between 2 and 6 h after exposure to a specific allergen, respectively. *F* female, *M* male; *NR* not reported in the clinical history.

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Sexa</th>
<th>Age (Years)</th>
<th>Culprit Drug</th>
<th>Clinical Manifestation</th>
<th>Route</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>M</td>
<td>68</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>002</td>
<td>F</td>
<td>46</td>
<td>Cefuroxime</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>003</td>
<td>F</td>
<td>53</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>004</td>
<td>M</td>
<td>49</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>005</td>
<td>M</td>
<td>80</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>006</td>
<td>F</td>
<td>37</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>007</td>
<td>M</td>
<td>40</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>008</td>
<td>F</td>
<td>24</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>009</td>
<td>M</td>
<td>27</td>
<td>Ceftriaxone</td>
<td>Cutaneous</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>010</td>
<td>F</td>
<td>68</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>011</td>
<td>F</td>
<td>49</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>NRb</td>
<td>Immediate</td>
</tr>
<tr>
<td>012</td>
<td>F</td>
<td>52</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>013</td>
<td>M</td>
<td>61</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>014</td>
<td>F</td>
<td>34</td>
<td>Cefuroxime</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>015</td>
<td>M</td>
<td>54</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>016</td>
<td>M</td>
<td>10</td>
<td>Amoxicillin</td>
<td>Unspecific</td>
<td>Oral</td>
<td>NR</td>
</tr>
<tr>
<td>017</td>
<td>F</td>
<td>41</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>018</td>
<td>M</td>
<td>45</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>019</td>
<td>F</td>
<td>53</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>020</td>
<td>M</td>
<td>39</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>NR</td>
</tr>
<tr>
<td>021</td>
<td>F</td>
<td>56</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>Patient Number</td>
<td>Sex</td>
<td>Age (Years)</td>
<td>Culprit Drug</td>
<td>Clinical Manifestation</td>
<td>Route</td>
<td>Time</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>022</td>
<td>F</td>
<td>68</td>
<td>Amoxicillin</td>
<td>Unspecific</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>023</td>
<td>M</td>
<td>40</td>
<td>Penicillin G</td>
<td>Cutaneous</td>
<td>NR</td>
<td>Delayed</td>
</tr>
<tr>
<td>024</td>
<td>M</td>
<td>53</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>025</td>
<td>F</td>
<td>49</td>
<td>Ceftriaxone</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>026</td>
<td>F</td>
<td>53</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>027</td>
<td>M</td>
<td>35</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>028</td>
<td>F</td>
<td>36</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>029</td>
<td>F</td>
<td>54</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>NR</td>
</tr>
<tr>
<td>030</td>
<td>F</td>
<td>46</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>031</td>
<td>F</td>
<td>71</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>032</td>
<td>F</td>
<td>32</td>
<td>Cefuroxime</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>NR</td>
</tr>
<tr>
<td>033</td>
<td>F</td>
<td>55</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>034</td>
<td>F</td>
<td>39</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>035</td>
<td>M</td>
<td>46</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>036</td>
<td>F</td>
<td>80</td>
<td>Cefuroxime</td>
<td>Anaphylaxis</td>
<td>NR</td>
<td>Immediate</td>
</tr>
<tr>
<td>037</td>
<td>F</td>
<td>72</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>NR</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

3. Results and discussion

Production of β-lactam antigens

Firstly, acidification of cephalosporin salt (CFR, CFO and CFT) was attempted to obtain the corresponding carboxylic acid. The reaction proceeded easily with a high yield (ca. 90%). The purity of the acidified BLC was high (see the NMR spectra in the Supplementary Information). The production of antigens relied on the conjugation of the acidified BLC (CFR, CFO, CFT, MRP and AZT) to the carrier proteins. In this study, human serum albumin and histone H1 were used, and both presented approximately 60 free lysine residues to approach two different conjugation routes in order to obtain the corresponding major and minor determinants for each β-lactam antibiotic. The initial molar ratio (β-lactam/carryer protein) was set at 1,000/1 and 240/1 for HSA and H1, respectively, to ensure the conjugation of antibiotics. No elucidation method was followed for the characterization of the determinants. However, according to the MS-MALDI-TOF results (see the online Supplementary MS-MALDI-TOF spectra), the molar ratio of the HSA antigens ranged from 1 to 8. In particular, the molar ratios of both the aztreonam and ceftriaxone major and minor antigens were similar, whereas the molar
ratios were 1 and 8, respectively, for the meropenem antigens. In general, the conjugation yield was very low for the HSA antigens (< 0.8 %). This could be due to the protecting-group-free production of the -llanyl antigens. Most of the studied BLCs bear a primary amine group in their R substituent, which could compete with that amino from Lys to form some kind of oligomers of β-lactam by amidation.

Evaluation of antigens

The antigens were firstly evaluated as a proof of concept using sera raised to both the -lloyl and -llanyl antigens for CFT, MRP and AZT. As observed in Supplementary Figures 6.3.S2-6.3.S4, the sera obtained from the immunized rabbit with the -lloyl-based determinants specifically recognized the corresponding antigen in the dot-blot assay. Conversely, this was not the case with the -llanyl determinants, which showed no specific recognition. For instance, as seen in online Supplementary Figure 6.3.S4, the AZT sera obtained from the immunized rabbit with the -lloyl-based determinant specifically recognized both the -lloyl and -llanyl determinant antigens at a dilution factor of 1/100 (v/v), but only recognized the AZT -lloyl antigen when the dilution factor was 1/500 (v/v). However, the AZT sera obtained with the -llanyl determinant did not recognize any determinant at any of the studied sera dilutions.

In order to evaluate the effect of the conjugation on assay sensitivity, each -lloyl and -llanyl antigen was screened by a direct multiplex immunoassay with the -lloyl immunized sera to CFT, MRP and AZT. The tested sera dilutions were 1/250, 1/1,000, 1/4,000 and 1/16,000, while PBS-T was used as a blank. The obtained results are plotted in Figures 2.1.6 and 2.1.7 for the -lloyl and -llanyl determinants, respectively. The values represented the mean of the signals (n = 3) obtained in each assay, together with the standard deviation (SD) expressed as error bars. As shown in the figures, the signals corresponding to the positive control (rIgG) were around 15,000 a.u. (± 8 %) for all studied sera with no recognition observed for HSA (< 500 a.u) used as a negative. The dilution of the different sera allowed immunoassay sensitivity to be estimated. As we can see in Figure 2.1.7b, using sera raised to MRP (α-IgG-MRP) detected the meropenem -llanyl antigen up to the 1/16,000 dilution, and gave a signal value of 1,500 a.u, which corresponded to the limit of detection.
When focusing on the 1/1,000 dilution, the response and cross-reactivity between the determinants for the different rabbit sera were compared. As we can see in Figure 2.1.6, the -lloyl determinants for cephalosporin (CFR, CFO, CFT) were specifically identified mostly by the serum raised for CFT and no cross-reactivity was observed for AZT and MRP. A similar pattern was detected when using the AZT determinants and the serum raised for it. Indeed, as expected, no other produced determinants were recognized, which indicates that recognition was specific for monobactams. Conversely, the MRP-derived determinants were recognized mostly by the corresponding serum, but values were similar to those obtained for the cephalosporin antigens, which suggests than the selectivity of the serum raised in rabbit was not high.

As far as cross-reactivity was concerned, there was evidence for different patterns with the case -llanyl determinants (Figure 2.1.7), depending on the used carrier protein. As we can see, the serum raised for CFT mostly detected the antigens produced for CFO and no cross-reactivity to AZT and MRP was identified. However, the results were the opposite for CFR due to the poor recognition of these determinants in any studied immunization sera. With CFT, the serum raised for it actually detected the HSA-antigen and cross-reactivity against other sera. In general, the sera increased for MRP and AZT detected the -llanyl MRP and AZT antigens, respectively, with no cross-reactivity to other BLCs, although AZT responses were higher than those observed with MRP.

In order to study the affinity of the structural determinants to the serum raised for the different β-lactam families, the binding values were analyzed. The results are provided in online Supplementary Figures 6.3.S5 and 2.1.S6. The affinity values (as K_a^{app} and coefficient of determination, R^2) for all the rabbit IgG antibodies to each antigenic determinant are shown in online Supplementary Tables 6.3.S2 and 6.3.S3. The K_a^{app} values ranged from 10^{-4} to 10^{-2} (dilution factors from ~1/1000 to ~1/20), whereas R^2 ranged between 0.9605 and 0.9994 and 0.6111 and 0.9984 for the -lloyl and -llanyl determinants, respectively.

It can be concluded that the HSA -lloyl determinants for CFR and AZT showed the best affinity (higher dilution) to the sera raised against CFT and AZT with K_a^{app} values corresponding to a dilution factor of 1/1,011 and 1/5,587, respectively. However, the H1-lloyl determinants for CFT and CFO showed the best recognition to the sera raised against ceftriaxone at dilution factors of 1/1,157 and 1/2,271, respectively.
Experimental results

For the HSA -llanyl determinants, AZT showed the best affinity to the sera raised against it with a K_{d}^{app} value corresponding to a dilution factor of 1/2,228. However, the H1 -llanyl CFT and MRP determinants indicated the best recognition to the sera raised against them with K_{d}^{app} values corresponding to dilution factors of 1/2,168 and 1/1,437, respectively.

Even though some determinants had an affinity to serum, this did not necessarily mean that they gave a good response; e.g., this is the case with H1 -llanyl antigens CFT and CFO to the sera raised against AZT. It was generally concluded that the prepared major and minor determinants were selective to the recognized specific IgGs, with significant differences between the employed carrier proteins.

Evaluation of the structural determinants with human serum samples

A cohort of 74 subjects was studied, of whom 37 positively developed an immediate reaction to BLC. According to the clinical data available for the allergic patients, 14 were men and 23 were women aged 10 and 80 years. The most frequent culprit drug was augmentin, a combination of AMX and potassium clavulanate (12 subjects), followed by CFR (9), AMX (7), CFT (2) and PG in one subject (Table 2.1.1).

The results of the prick test and the multiplex immunoassay are described in Table 2.1.2. It is worth mentioning that all the -lloyl and HSA -llanyl determinants did not render any positive results, with values below the LOD (< 0.01 IU/mL). Only the values given by the H1 -llanyl determinants are included in Table 2.1.2.
Figure 2.1.6. Signals obtained for the -lloyl determinants with polyclonal rabbit IgG. Dilution factors: 1/1,000, 1/4,000 and 1/16,000). (a) HSA determinants; (b) H1 determinants.
Figure 2.1.7. Signals obtained for the -llanyl determinants with polyclonal rabbit IgG. Dilution factors: 1/1,000, 1/4,000 and 1/16,000). (a) HSA determinants; (b) H1 determinants.
Firstly, it is important to highlight the lack of clinical information available for skin prick-tests for most of the studied antibiotics. Skin tests were performed only for CFR, and sometimes for CFT. In order to assess tests’ clinical sensitivity and selectivity, a gold standard is needed, defined as the diagnostic method that can discriminate patients with an allergic reaction to BLCs from those without one. It is difficult to calculate the sensitivity of skin tests because drug provocation tests cannot be performed as a gold standard to classify subjects as allergic or not allergic because of the high risk they entail.39

The skin test results showed that 6 of the 33 patients for CFR (18 %), 3 of the 19 for CFT (29 %) and 0 of the 2 for CFO were positive. As far as MRP and AZT were concerned, only 2 and 1 of 7 and 3 patients were skin tested, which corresponded to 29 % and 33 %, respectively. It is noteworthy that the skin-tested patients to CFO, MRP and AZT obtained low percentage values (in terms of being positive to skin tests versus all the skin-tested patients), which must not be considered a general statement.

In order to determine the LOD and BLC-specific IgE levels, a sandwich immunoassay for total serum IgE determinations was performed as a calibration scheme. As the LOD of the multiplex immunoassay was 0.01 IU/mL (online Suppl. Fig. 6.3.S2), which corresponded to 24 ng/L of specific IgE, we chose this LOD as the cut-off threshold for evaluation purposes. When the determinants with the sera of the 37 recruited patients were evaluated, 13 for CFR (35 %), 6 for CFT (16 %), 19 for CFO (51 %), 18 for MRP (49 %) and 1 for AZT (3 %) were positive. The mean IgE values ± SD of the studied BLCs were 0.27 ± 0.77, 0.02 ± 0.01, 0.05 ± 0.05, 0.23 ± 0.46 and 0.05 ± 0 IU/mL to CFR, CFT, CFO, MRP and AZT, respectively. All the 37 control patients recruited in this study tested negative. Finally, no correlation was found between the total IgE levels from patients and the BLC-specific IgE levels.

Regarding the culprit drug that caused the allergic reaction, for CFR only five patients tested positive by prick tests, two were negative and two were not tested (see Table 2.1.2). The H1 CFR -llanyl determinant detected five patients diagnosed as positive for CFR with values ranging from 0.03 to 2.80 IU/mL. Interestingly, this antigen detected patient 006 that tested negative by prick tests. The IgE values for CFR were 0.37 and 2.80 IU/mL for patients 002 and 014, respectively. Fortunately, no cross-reactivity was observed for patient 014 to CFR, CFO, CFT, MRP or AZT. However, patient 002 was tested positive by skin tests for CFT and MRP. As the results of the skin tests and BLC-
specific IgE quantifications differed, special attention was paid to these patients owing to the high health risk for CFR administration and the possibility of cross-reactivity. With patients 009 and 025, for whom CFT provoked an allergic reaction, our determinant was not selective enough to detect it, but both patients were skin-tested positive.

To CFO, MRP and AZT, none of the studied patients had an allergic episode. Of the 17 patient samples with specific IgE values to MRP, four had specific IgE values above 0.35 IU/mL (patients 006, 012, 016 and 017) and two between 0.10 and 0.20 IU/mL (patients 018 and 019). With CFO, of the 15 positive patients detected, four had specific IgE values between 0.10 and 0.20 IU/mL (patients 004, 005, 006 and 011). It is emphasized that none of these patients was skin-tested for MRP nor CFO. This fact could have potential effects because patients can be affected by them or be at-risk for anaphylaxis.

The purpose of our study was to produce a panel of major and minor determinants for CFR, CFO, CFT, MRP and AZT to develop a multiplex in vitro assay to detect specific IgE for these BLCs. We not only produced a panel of determinants, but also worked on developing a panel of possible epitopes using different carrier proteins. Firstly, our results with patients showed that no major (-lloyl) determinants were detected in any of the selected subjects, nor in the HSA-based determinants. These results reveal the importance of the conjugation route and the selection of the appropriate carrier protein. However, it cannot exclude HSA as a carrier protein candidate with immunogenic properties or -lloyl determinants as antigenic determinants to be used in further studies as this study followed a specific conjugation methodology. Besides, a good correlation was also found between positive in vitro immunoassay responses to CFR and skin test results, which reveals that the produced determinant is specific and can be used for in vitro diagnosis, especially if we consider that both assays (specific IgE quantification and prick test) confirmed five positive patients. Moreover, the multiplex assay with the appropriate antigens was able to detect specific IgE values to CFR in one patient with a negative prick-test result (patient 006) and in two patients in whom prick tests were not performed (patients 002 and 014). Therefore, IgE assays might be suitable when skin tests have not been done, when using non-soluble BLCs, with severe reactions or with high-risk patients. In fact, for MRP for which no skin tests were performed, four patients were positive according to the specific IgE amount determined with values above 0.35 IU/mL.
(patients 006, 012, 016 and 017) with the meropenem determinant. This confirmed the utility of the multiplexed assay for drug allergy diagnoses.

The use of in vivo and in vitro tests to diagnose allergic patients to BLCs needs to be adapted to the current scenario in which the consumption pattern of these antibiotics has changed, and penicillins are being progressively replaced mainly with other antibiotics like cephalosporins, carbapenems, monobactams, quinolones and tetracyclines. Some authors suggest that skin testing with antigenic determinants of penicillins is no longer sufficient for evaluating patients for BLC allergy and that cross-reactivity between penicillins and cephalosporins or carbapenems can exist. For instance, cephalosporins with identical R side chains should be avoided for patients believed to be selectively allergic to aminopenicillins (e.g., cefatrizine and cefadroxil for amoxicillin or cefaclor for ampicillin). However, these patients may receive other cephalosporins that can also promote an allergic episode, which could be avoided by analyzing these sera by a multiplex in vitro assay.

In our study, specific IgE levels to CFT and MRP were observed in the patients whose culprit drug was augmentin or AMX. This was the case, for instance, of patients 012, 016 and 017 whose specific MRP IgE values ranged from 0.35 to 1.91 IU/mL. Cross-reactivity between CFR and MRP was noted in patient 006 whose culprit drug was CFR and was positive to MRP (IgE = 0.64 IU/mL). Data about related to cross-reactivity between cephalosporins and carbapenems is insufficient, but some authors suggest that carbapenems should be considered potentially cross-reactive with cephalosporins because of similarities to the β-lactam ring. In patient 006, IgE antibodies were probably directed against the β-lactam ring, a common nuclear determinant shared by all BLCs, but no recognition was observed for CFT. The acetyl and carbamoyl groups of the R’ lateral chain of cefotaxime and cefuroxime, respectively, can be easily hydrolyzed when producing antigens. However, the thiotriazinedione moiety of CFT is stable and may take part in the epitope of the antigen, which was probably the reason for the negative response to CFT.

Consequently, it is necessary to use a panel of BLCs because there are no clinically approved validated reagents. A well-established multiplex in vitro method was herein followed to evaluate the presence of IgE antibodies in a defined allergic population in which augmentin, CFR and AMX were the drugs that most often induced immediate reactions. As some authors suggest that anaphylaxis predominates the cutaneous
Experimental results

condition46 (presented as urticaria) in allergic reactions to BLCs, using a multiplex \textit{in vitro} test is a good alternative to \textit{in vivo} assays to detect positive patients in short times and to study a conjunction of BLCs together and instantaneously given this multiplex capacity. The problem with false-negatives is also noteworthy. For instance, Demoly and Romano indicate a positive provocation test for 8 – 17\% of patients with negative skin tests to penicillin.22 Therefore, in those patients who are shown negative by skin and/or drug provocation tests, the combination of both \textit{in vivo} and \textit{in vitro} tests is a useful approach to detect all the potential allergic patients.

4. Conclusions

The production and evaluation of structural determinants for \(\beta\)-lactam allergy is key for developing sensitive and selective \textit{in vitro} tests to determine specific IgE that can complement \textit{in vivo} tests, data and clinical history, whenever possible. The conjunction of both techniques can allow better diagnoses and allow significant delabeling that should allow improvements in future antibiotic treatments of reported BLC allergy. Unlike all the studies related to penicillins reactivity, in which the chemical structures of their antigenic determinants are already established, the chemistry of other \(\beta\)-lactam antibiotics lacks this information.

Allergic reactions to these families may occur by sensitization to them or to determinants that share similar chemical chains to those of penicillins. Different epitopes have not yet been identified. This study develops a multiplex sensitive immunoassay for the \textit{in vitro} determination of both specific IgG and IgE levels by using major and minor determinants of a wide variety of less-studied \(\beta\)-lactam antibiotics, such as cefuroxime, cefotaxime, ceftriaxone, meropenem and aztreonam. It demonstrates that all the produced antigenic determinants are selective for detecting specific anti-\(\beta\)-lactam IgG in rabbit sera, but only minor determinants are able to detect specific anti-\(\beta\)-lactam IgE in human serum samples from allergic patients because the -lloyl determinants formed with this protocol are not recognized. This work also demonstrates that the carrier protein plays an important role in molecular recognition pattern terms as only the prepared H1-derived determinants were specifically recognized using allergic patient samples. Thus in patients with a history of a serious and potentially IgE-mediated reaction to a cephalosporin, it is critical to avoid re-exposure to the same cephalosporin, a cephalosporin compound that shares
Table 2.1.2. Results of the analysis of human serum samples by *in vivo* (prick test) and *in vitro* (multiplex DVD assay) tests

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Culprit Drug</th>
<th>ImmunoCAP tIgE (IU/mL)</th>
<th>Prick-Testa</th>
<th>BLC-specific IgEb (IU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MDM</td>
<td>PPL</td>
<td>PG</td>
</tr>
<tr>
<td>001 Augmentin</td>
<td>265</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>002 Cefuroxime</td>
<td>129</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>003 Cefuroxime</td>
<td>27</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>004 Augmentin</td>
<td>14</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>005 Augmentin</td>
<td>7,686</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>006 Cefuroxime</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>007 Augmentin</td>
<td>146</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>008 Amoxicillin</td>
<td>95</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>009 Ceftriaxone</td>
<td>401</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>010 Augmentin</td>
<td>300</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>011 Augmentin</td>
<td>36</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>012 Augmentin</td>
<td>30</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>013 Augmentin</td>
<td>124</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>014 Cefuroxime</td>
<td>1,847</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>015 Amoxicillin</td>
<td>206</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>016 Amoxicillin</td>
<td>152</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>017 Amoxicillin</td>
<td>114</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>018 Augmentin</td>
<td>42</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>019 Augmentin</td>
<td>126</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>020 Amoxicillin</td>
<td>353</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>021 Augmentin</td>
<td>287</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>022 Amoxicillin</td>
<td>273</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 2.1.2. (continuation). Results of the analysis of human serum samples by *in vivo* (prick test) and *in vitro* (multiplex DVD assay) tests

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Culprit Drug</th>
<th>ImmunoCAP tIgE (IU/mLc)</th>
<th>Prick-Testa</th>
<th>BLC-specific IgEb (IU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prick-Test</td>
<td>BLC-specific IgE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CFT</td>
<td>CFR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CFO</td>
<td>MRP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZT</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>Benzylpenicillin</td>
<td>286</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>024</td>
<td>Augmentin</td>
<td>228</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>025</td>
<td>Ceftriaxone</td>
<td>8</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>026</td>
<td>Augmentin</td>
<td>187</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>027</td>
<td>Amoxicillin</td>
<td>135</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>028</td>
<td>Augmentin</td>
<td>434</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>029</td>
<td>Augmentin</td>
<td>130</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>030</td>
<td>Augmentin</td>
<td>267</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>031</td>
<td>Augmentin</td>
<td>241</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>032</td>
<td>Cefuroxime</td>
<td>245</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>033</td>
<td>Cefuroxime</td>
<td>9</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>034</td>
<td>Cefuroxime</td>
<td>47</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>035</td>
<td>Augmentin</td>
<td>348</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>036</td>
<td>Cefuroxime</td>
<td>177</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>037</td>
<td>Cefuroxime</td>
<td>457</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Controls</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

MDM: minor determinants mixture (benzylpenicillin, sodium benzylpenicilloate and benzylpenicilloic acid), PPL: penicillin major determinant (benzylpenicilloyl poly-L-lysine), PG: benzylpenicillin, AMP: ampicillin, AMX: amoxicillin, CFR: cefuroxime, CFT: ceftriaxone, CFO: cefotaxime, MRP: meropenem and AZT: aztreonam. Immunoassay values are the mean of three replicates. Relative standard deviation (RSD) ranged from 4 to 13%. aP= Positive, N= Negative, NR=Not Realized; bMultiplex-DVD assay, using the H1-lilanyl determinants; cIU/mL= 2.4 ng/mL; dAugmentin is a combination of amoxicillin and potassium clavulanate; e<LOD= Value below the limit of detection (LOD).
the same side chain, and even to other BLC sharing the same side chain, such as ceftazidime and cefadroxil and aztreonam.

These findings reveal that haptenization of β-lactam antibiotics renders enhanced and interesting molecular recognition events, even when the β-lactam ring remains unmodified. This contribution may improve the current clinical diagnostics of allergies to antibiotics cephalosporin, carbapenem and monobactam together with drug provocation tests used as the gold standard. Indeed, future studies are needed to corroborate these in vitro findings with oral provocation tests.

ACKNOWLEDGEMENTS

This work has been funded by the H2020 programme (Project COBIOPHAD, grant agreement No. 688448), and is an initiative of the Photonics Public Private Partnership (www.photonics21.org); Agencia Estatal de Investigación (CTQ2016-75749-R, FEDER) and programme UPV-LA FE 2019 (PI05 VALBIOAL). The authors acknowledge the Instituto de Investigación Sanitaria La Fe, Valencia, Spain, which provided the samples from both allergic patients and controls. E.P.M acknowledges an FPU grant from the Ministerio de Educación, Cultura y Deporte.

REFERENCES

Experimental results

3.2.2. Hapten synthesis for clavulanic acid
Chapter 2.2

Hapten synthesis for clavulanic acid

ABSTRACT

Three derivatives of the β-lactam inhibitor clavulanic acid have been synthetized and conjugated to carrier proteins and further used to raise polyclonal antibodies. Two of the three antigens generated IgG antibodies highly specific to clavulanic acid, highlighting the importance of the chemical structure. Thus, esterification of the potassium carboxylate and oxidation of the alcohol at the C-6 side chain have proven to be valuable in the production of specific IgG. Therefore, the prepared antigens could be incorporated in the panel of the selected antigens employed to commercially test allergies to clavulanic acid as well as applied to developed serum prepared ad hoc.

1. Introduction

Clavulanic acid is considered a β-lactam inhibitor as it forms covalent adducts with the β-lactamase *Mycobacterium tuberculosis*. Although it is not effective enough on its own as an antibiotic, its use is widely widespread. The potassium salt, potassium clavulanate (CVL), is administered in conjunction with amoxicillin (AMX), forming a combination commonly brand-named as Augmentin (AMX-CVL), or co-amoxiclav. It is referred as one of the most administrated drugs, together with AMX alone. According to a report from the World Health Organization (WHO), AMX and AMX-CVL were the most frequently consumed oral antibiotics to treat and prevent infections in the European Union (EU), between 2016 and 2018. They accounted for a median proportional use of 16 and 15 %, respectively. Moreover, AMX-CVL generated sales exceeding $100 million only in the United States (US) in 2003. It is not surprising, therefore, that AMX and AMX-CVL are the major cause of drug hypersensitivity reactions (DHRs) in the last decades. According to a survey by the European Academy of Allergy and Clinical Immunology (EAACI), allergies to AMX-CVL accounted for 76 % of a total 54 cases of DHRs in the EU during 2016. However, the true incidence of AMX-CVL allergy is still unknown. For instance, a study by Heng et al. reported that from 75 (43.1 %) up to
173 allergic episodes to AMX-CVL, only 8.1% tested positive to AMX-CVL after skin testing.

Initially, it was thought that AMX-CVL allergy was only due to AMX, since the antigens or metabolites formed by CVL were considered to be non-immunogenic. However, the presence of IgE antibodies to CVL was observed in allergic patients to this drug. From that point on, several studies focused on the allergenicity of CVL antigens. For instance, a study by Torres et al. indicated that 16 (29%) up to 55 allergic patients to AMX-CVL were due to CVL and Sánchez-Morillas et al. reported nine allergic episodes to CVL after intradermal skin testing. However, the number of true allergic patients to CVL is still very low and more studies with a larger number of samples are needed. Thus, the need to work on the quantification of clavulanic acid and the elucidation of the mechanisms and antigens involved in its immunological recognition still remains challenging.

CVL belongs to clavams. Its chemical structure consists of an oxazolidine ring fused to the β-lactam ring, which is characteristic of all the β-lactam antibiotics (BLCs). The most abundant antigen, known as clavulanoyl antigen, is formed by amidation between amine groups of lysine residues of the carrier proteins and the resulting carbonyl carbon after β-lactam ring opening. However, this antigen has been observed to be an unstable oxazolidine-like intermediate that tautomerizes and decomposes to form other antigens without the oxazolidine moiety (Figure 2.2.1). These structures have been observed in vitro at high concentrations in four patients exposed to clavulanic acid. However, the immunogenecity of these degradation antigens still remains unclear and they have not been fully tested for diagnostic purposes.

![Scheme of the antigens formed during CVL conjugation to carrier proteins](image)

Figure 2.2.1. Scheme of the antigens formed during CVL conjugation to carrier proteins
Instead of studying the immune response of the mentioned degradation antigens, in this work the preparation of major antigens based on potassium clavulanate has been evaluated through the synthesis of three haptens that maintain the characteristic structure of the clavulanate intact (Figure 2.2.2). The chemical entities incorporated may facilitate the stabilization of the conjugates formed, allowing the identification of possible epitopes that can be recognized by specific IgE to clavulanic acid. The first derivative, CVL-1, has a similar structure to CVL, but the potassium carboxylate has been esterificated with benzyl bromide. Oxidation of the primary alcohol to aldehyde at the C-6 substituent generated the second hapten, CVL-2, modifying the β-hydroxyethylidene side chain to β-oxoethylidene. Finally, a diene has been formed in CVL-3 and the oxazolidine ring characteristic of oxapenams modified into a 2,3-dihydrooxazoline ring linked to a vinyl as a side chain. These haptens have been conjugated to the carrier proteins human serum albumin (HSA) and histone (H1), and the immunogenic protein keyhole limpet hemocyanin (KLH).

This study aims to get insight into the identification of CVL-antigens with the immunological properties needed to produce rabbit IgG antibodies. For that, the evaluation of the produced sera has been carried out by means of two direct immunoassays, the enzyme linked immunosorbent assay (ELISA) and an in vitro microimmunoassay based on digital versatile disc (DVD) technology. The production of IgG antibodies will not only allow for the construction of rabbit antibody libraries highly specific and selective, but also will permit their use as standards for drug allergy diagnostic immunoassays.

![Figure 2.2.2. Scheme of the synthetized clavulanic derivatives. a) DMP, DMC 0.05 M, 0 \degree C, 30 min; b) MsCl, Et\textsubscript{3}N. DCM 0.10 M, 0 \degree C, 30 min; then rt, 3 h.](image)
2. **Experimental section**

General methods

Oxygen- and/or moisture-sensitive reactions were carried out in flame-dried glassware under nitrogen atmosphere. All reagents and solvents were purchased and used as received from commercial vendors or synthesized according to cited procedures.

All yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Reaction progress was monitored by analytical thin-layer chromatography (TLC) and 1H-NMR spectroscopy. TLC analyses were performed using E. Merck silica gel 60 F254 pre-coated plates (250 µm). A handheld 254 nm UV lamp and potassium permanganate staining solution (with light heating) were used for detection. Flash column chromatography was performed using a Teledyne ISCO CombiFlash Rf+ purification system with RediSep Rf Gold Normal-Phase Silica columns.

NMR spectra were recorded on Bruker UltraShield 300 MHz and Ascend 400 MHz spectrometers. Known compounds were characterized by, at minimum, 1H-NMR. Further NMR experiments were performed as needed to confirm structural assignment. 1H- and 13C-NMR chemical shifts (δH, δC) are reported in parts per million (ppm) relative to the appropriate solvent–CDCl$_3$: 7.26 (1H), 77.16 (13C) ppm. Resonances are described using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), m (multiplet), br (broad), dd (doublet of doublets), etc. Coupling constants (J) are given in Hz and are rounded to the nearest 0.1 Hz. All NMR data were collected at 25 ºC.

Low-resolution mass spectra (LRMS) were acquired on a Waters 2795 separations module coupled to a 3100 mass detector operating in ESI+ mode.

Chemicals, Reagents and Buffers

Potassium clavulanate is from Combi-Blocks. Benzylpenicillin sodium salt, ceftriaxone disodium salt hemi(heptahydrate), aztreonam, meropenem trihydrate, benzyl bromide, Dess Martin periodinane, mesyl chloride, trimethylamine, o-phenylenediamine (OPD), Tween 20, human serum albumin (HSA), histone from calf thymus (H1) and
keyhole limpet hemocyanin (KLH) are from Sigma-Aldrich (Madrid, Spain). Dimethylformamide (DMF), dichloromethane (DCM) and buffer salts are from Fisher Scientific (MA, USA) and used without further purification. Hydrogen peroxide, solution 30 % w/w, and sulfuric acid, 95-97 %, are from Scharlau (Sentmenat, Spain). Deuterated chloroform (CDCl$_3$) is from Cambridge Isotope Laboratories (MA, USA). Goat anti-rabbit antibody labeled with horseradish peroxidase (GAR-HRP) and the goat anti-mouse antibody labelled with horseradish peroxidase (GAM-HRP) are purchased from Abcam (San Francisco, USA). IgE human serum (3rd WHO International Standard) was bought from the National Institute for Biological Standards and Control (NIBSC, Hertfordshire, UK). Tetramethylbenzidine (TMB) substrate is from SDT GmbH (Baesweiler, Germany) and Coomassie Brilliant Blue R-250 staining solution is from Bio-Rad (Madrid, Spain). Amicon Ultra 0.5 pre-concentrated 10 K MWCO filters and Dextran Desalting Columns, 5K MWCO, 5 mL are from Fisher Scientific (Madrid, Spain). ELISA plates (96-well polystyrene, high-binding) are from Costar (NY, USA) and DVDs are from CD Rohling-up GmbH (Saarbrücken, Germany).

The employed buffers are (I) potassium carbonate 0.5 M, pH 11.0; (II) phosphate buffer saline (PBS 1X, 0.008 M sodium phosphate dibasic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M potassium chloride, pH 7.4); (III) PBS-T (PBS 1X containing 0.05 % Tween 20); (IV) sodium carbonate/bicarbonate buffer 0.1 M, pH 9.6; and (V) substrate buffer (0.03 M citric acid, 0.06 M sodium phosphate dibasic, pH 5.5). All buffers are filtered through a 0.45-μm pore size nitrocellulose membrane from Thermo Fisher Scientific (Madrid, Spain) before used.

Synthesis of modified haptens

![Chemical structure of benzyl clavulanate](image)

Benzyl clavulanate (CVL-1)

Potassium clavulanate (200 mg, 0.81 mmol) in dry DMF (2.03 mL, 0.4 M) was treated with benzyl bromide (0.58 mL, 4.85 mmol, 6 equiv). The solution was kept at room temperature (approx. 17-18 °C) for 3 h under anhydrous conditions. The solution was
Experimental results

Concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give **CVL-1** as a colorless oil (124 mg, 52% yield). 1H NMR (400 MHz, CDCl$_3$) δ: 7.45 – 7.32 (m, 5H), 5.72 (d, $J = 2.8$ Hz, 1H), 5.23 (s, 2H), 5.11 (s, 1H), 4.90 (dt, $J = 7.0$, 1.5 Hz, 1H), 4.24 (dd, $J = 7.1$, 3.3 Hz, 2H), 3.51 (dd, $J = 16.7$, 2.8 Hz, 1H), 3.10 (d, $J = 16.7$ Hz, 1H), 1.39 (br, 1H). LRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{15}$NO$_5$ ([M+H$^+$]+): 290.10, found: 290.10.

![Structure of CVL-1](image)

Oxidized benzyl clavulanate (CVL-2)

Benzyl clavulanate (400 mg, 1.38 mmol) in 10.00 mL of DCM was added at 0 ºC to a solution of Dess Martin periodinane (1.17 g, 2.77 mmol, 2 equiv.) in 17.60 mL of DCM. The mixture was stirred for 1 h at room temperature, and filtered through a pad of Na$_2$SO$_4$. The solution was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give the yellow oil **CVL-2** as a 1:1.2 mixture of the E- and Z- isomers (176 mg, 40% yield). 1H NMR (400 MHz, CDCl$_3$) δ (E-isomer): 9.63 (d, $J = 5.3$ Hz, 1H), 7.45-7.29 (m, 5H), 5.95 (d, $J = 2.8$ Hz, 1H), 5.92 (d, $J = 5.2$ Hz, 1H), 5.71 (s, 1H), 5.21 (s, 2H), 3.61 (dd, $J = 3.4$, 2.5 Hz, 1H), 3.20 (d, $J = 16.9$ Hz, 1H); (Z-isomer): 9.92 (d, $J = 7.7$ Hz, 1H), 7.45-7.29 (m, 5H), 5.84 (d, $J = 2.9$ Hz, 1H), 5.41 (d, $J = 7.7$ Hz, 1H), 5.30 (s, 1H), 5.22 (s, 2H), 3.67 (dd, $J = 2.9$, 2.5 Hz, 1H), 3.27 (d, $J = 17.0$ Hz, 1H). 13C-NMR (100 MHz, CDCl$_3$) δ (E-isomer): 189.1, 176.7, 173.1, 164.4, 134.4, 129.0, 128.9, 128.9, 128.8, 128.4, 103.7, 91.8, 68.4, 62.5, 46.9; (Z-isomer): 188.2, 176.7, 173.1, 164.4, 134.4, 129.0, 128.9, 128.9, 128.8, 128.4, 103.5, 89.2, 68.7, 65.3, 46.9. LRMS (ESI$^+$) m/z calculated for C$_{15}$H$_{13}$NO$_5$ ([M+H$^+$]+): 288.08, found: 288.27.

![Structure of CVL-2](image)
Diene benzyl clavulanate (CVL-3)

This compound was obtained when benzyl clavulanate was reacted with mesyl chloride. Benzyl clavulanate (80 mg, 0.28 mmol) was dissolved in anhydrous DCM (2.77 mL) at 0°C. Then, mesyl chloride (26 μL, 0.33 mmol, 1.2 equiv.) was added dropwise via syringe under a N₂ atmosphere followed by triethylamine (48 μL, 0.36 mmol, 1.3 equiv.). The solution was kept at 0 °C and stirred for 30 min and at room temperature (approx. 17-18 °C) for 3 h under anhydrous conditions. The resulting mixture was extracted with dichloromethane (3x4 mL) and water (4 mL), and combined organic layers were washed with brine and dried over Na₂SO₄. The solution was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give diene CVL-3 as a colorless oil (6 mg, 8 % yield). ¹H NMR (400 MHz, CDCl₃) δ: 7.41 – 7.31 (m, 5H), 6.61 (dd, J = 17.0, 10.8 Hz, 1H), 6.32 (d, J = 16.8 Hz, 1H), 5.77 (d, J = 10.9 Hz, 1H), 5.66 (dd, J = 4.1, 2.1 Hz, 1H), 5.33 – 5.25 (m, 2H), 3.54 (dd, J = 15.9, 4.2 Hz, 1H), 3.24 (dd, J = 15.6, 2.0 Hz, 1H). LRMS (ESI⁺) m/z calculated for C₁₅H₁₃NO₄ ([M+H⁺]⁺): 272.09, found: 271.84.

Antigen preparation

0.5 mg of the carrier protein (HSA or H1) were added to a solution of the desired compound CVL-1, CVL-2 and CVL-3 (7 μmol, 1,000 and 240 equiv. for HSA and H1, respectively) in potassium carbonate 0.5 M, pH 11.0, in 10 % DMF and stirred overnight at room temperature. Moreover, CVL, PG, CFR, AZT and MRP antigens were prepared and used as models for the clavam, penicillin, cephalosporin, monobactam, and carbapenem families, respectively. To prepare them, the corresponding BLC was dissolved, as commercially supplied, in potassium carbonate 0.5 M, pH 11.0 and stirred overnight. Antigens were purified by gel filtration chromatography on Amicon Ultra 0.5 pre-concentrated 10 K filters using PBS 1X, pH 7.4, as elution buffer.

Two New Zealand white rabbits per antigen were immunized with CVL-1, CVL-2 and CVL-3 and boosted every 15 days for 3 months. To prepare the immunogenic antigens, the same protocol as for the preparation of the coating antigens was followed, but KLH (5 mg, 5,000 equiv.) was used as the immunogenic protein. All immunogens were purified by size exclusion chromatography on dextran desalting columns using PBS 1X, pH 7.4, as elution buffer.
Experimental results

All antigens were diluted to 1.0 mg/mL and stored at -20 °C until used. The concentration of the antigens was determined by UV-Vis absorbance and the Bradford protein assay and the molar ratio β-lactam/carrier protein for HSA antigens was established by MS-MALDI-TOF. The selectivity was tested measuring the sera antibody titers.

ELISA procedure

ELISA plates were coated with 50 µL of each antigen (5 µg/mL) in sodium carbonate/bicarbonate buffer 0.1 M, pH 9.6, and incubated overnight at 37 °C. Then, the plates were washed five times thoroughly with PBS-T using a manual microplate washer. Sera incubation was done for 60 min at 37 °C by adding 50 µL per well of the corresponding antibody solutions diluted two-fold down columns in PBS-T at dilution factors of 1/500-1/512,000, and the blank, PBS-T.

After incubation, the plates were again washed five times thoroughly with PBS-T. Then, they were incubated with 50 µL per well of GAR-HRP (1/2,000 dilution in PBS-T) for 60 min at 37 °C. The plates were washed as before, and the reaction was developed by adding 50 µL per well of a freshly prepared OPD solution, containing 2 mg/mL of OPD and 1 µL/mL of H$_2$O$_2$ 30 % v/v in substrate buffer.

The reaction was stopped by the addition of 50 µL per well of H$_2$SO$_4$ 2,5 M. Absorbance at 490 nm was measured by a dual wavelength automated plate reader (Wallac VICTOR, Perkin Elmer) with the reference wavelength set at 650 nm. All experiments were repeated three times.

Multiplexed in vitro microimmunoassay protocol

To detect specific IgE, the protocol explained in Peña-Mendizabal et al. was followed.21 Briefly, reagents (25 nL, 40 µg/mL) were spotted in microarray format, using a noncontact printing device (AD 1500 BioDot, Inc., CA, USA), in DVDs that were later incubated overnight at 37 °C. HSA and human IgE (hIgE) were used as positive and negative controls of the assay. Finally, signals were read and data was analyzed by a modified DVD drive.22 The level of specific IgE was quantified following the heterologous total IgE calibration scheme (Section 3.2.1).21
All experiments were repeated three times. Statistical significances between the prepared antigens and the reference were determined by the Holm-Sidak method using the SigmaPlot 11 software and P values of <0.001 were considered significant.

Serum samples

All samples from allergic patients and controls were kindly provided by the Hospital Universitari i Politènic La Fe, Valencia, Spain, and informed consent for the diagnostic procedures was obtained from all patients. Participants were enrolled after giving written informed consent according to protocols in accordance with the Helsinki Declaration of 1975 as revised in 2008 and approved by the Hospital Universitari i Politènic La Fe.

A cohort of 12 human samples from allergic patients and a pool of negative controls were tested. Clinical characteristics from the selected allergic patients is detailed in Section 3.3, Table S2.

3. Results and discussion

Preparation of the antigens

Three derivatives of clavulanic acid have been obtained with yields ranging from 8 to 52 %. The syntheses consisted of benzyl esterification (CVL-1), alcohol oxidation (CVL-2) and formation of a diene derivative (CVL-3). These syntheses have been fast, simple and did not require complex instrumentation. Formation of CVL-2 derivative allow for the modification of the CVL-side chain to β-oxoethylidene. In the case of the synthesis of CVL-3, the initial envisaged idea was the azidation of benzyl clavulanate. For that, the reaction proceeded in two steps: (I) mesylation of the alcohol by using mesyl chloride and (II) azide incorporation with sodium azide. Characterization by 1H-NMR of the crude after the first step showed the formation of a diene derivative of clavulanic acid (as well as the presence of trimethylamine) in front of the mesylation of the alcohol. This, modified the oxazolidine ring characteristic of CVL to a 2,3-dihydrooxazoline ring. Then, it was decided to study its immunological capacities and raise specific polyclonal IgG also using this compound, CVL-3. Finally, compounds CVL-1, CVL-2 and CVL-3 were obtained and selected for rabbit immunization.
Experimental results

Antigen generation via amidation in basic media proceeded as expected. In this work, coating antigens were prepared through the use of two different carrier proteins: HSA and H1. This is important since the nature of the carrier protein and the antigen formed are critical for generating antibodies, as observed in previous studies which showed that epitope recognition of specific IgG and IgE in allergic patients varies according to the carrier protein used. In the case of immunogenic antigens, the immunogenic protein used was KLH, different from the proteins used for antigen conjugation, to avoid non-specific interactions and/or false positives. Protein quantification by the Bradford colorimetric assay showed recovery yields ranging from 54 to 85% for coating antigens and from 32 to 48% in the case of immunogenic antigens. The conjugation yield was low, as observed by the determination of the molar ratios (synthesized compound/cARRIER protein) by MS-MALDI-TOF, ranging from 2 to 13.

Sera titration

Six rabbits were immunized with the CVL-based antigens to produce allergen-polyclonal antibodies. The sera antibody titers obtained were depicted as S1-S6. S1 and S2 sera correspond to immunized antigen CVL-1, S3 and S4 to immunized antigen CVL-2, and S5 and S6 to immunized antigen CVL-3.

All antigens were tested for their immunogenicity by studying the antibody titers of each serum after immunization by direct homogeneous and heterogeneous ELISA assays. The results of the antibody titers are presented in Figure 2.2.3 (homogeneous assays). (3a and 3b indicate HSA and H1-antigens, respectively). Absorbance (A) values are the mean of all the signals (n = 3) obtained in each assay together with the standard deviation (SD) expressed as error bars. Dilutions assayed ranged from 1/500 (2.00·10⁻³) to 1/512,000 (2.00·10⁻⁶) with respect to the IgG antibody titer, together with the blank, PBS-T.

Firstly, sera S5 and S6, corresponding to rabbits immunized with antigen CVL-3, showed weak recognition in the homogeneous ELISA assay, as observed in Figure 2.2.3. A maximum absorbance of 0.2 was obtained for serum S5 at a dilution factor 1/1,000 when it was tested with the HSA coating antigen, and of 0.1 when the antigen tested was the H1-based. For serum S6, the maximum absorbances were obtained at a dilution factor 1/500 (AHSA-antigen = 0.2 and AH1-antigen = 0.1). As noted, these absorbance
values are very low and can be considered negligible. This indicates that the antigen prepared with KLH is not immunogenic enough. Therefore, the modification of the oxazolidine ring, characteristic of the CVL, to a 2,3-dihydrooxazoline ring seems to be not of great value for raising IgG antibodies for the detection of clavulanic acid.

Figure 2.2.3. Dose-response curves obtained with polyclonal IgG by homologous ELISA assays. A) HSA antigens, B) H1 antigens

On the other hand, high titers of anti-IgG antibodies to CVL were obtained for the other S1-S4 sera, which specifically recognized CVL-1 and CVL-2 coating antigens. A maximum absorbance of 2.7 - 2.8 was reached at a dilution factor 1/500 that was mostly maintained up to a dilution factor 1/2,000.

The titer of the sera was evaluated by determining the maximum dilution of serum that achieved the arbitrary value of A = 1.0. As for CVL-1, the serum titer was 1/8,000 in all cases (both HSA and H1-based antigens screened against S1 and S2 sera) with absorbance values between 1.2 (HSA-based antigen screened against S2) and 1.8 (S1 and H1-based antigen). When it comes to CVL-2, results were not as general. As HSA coating antigens reached a serum titer of 1/8,000 and 1/4,000 for S4 and S3, the serum titer obtained for H1 antigens was 1/4,000 (A = 1.9) and 1/2,000 (A = 1.4) for S4 and S3, respectively.

The limit of detection (LOD) and the sensitivity (EC50) were established and are summarized in Supplementary Table 6.4.S1 (together with the coefficient of determination, R²). LOD ranged from dilution factor 1/50,000 to 1/20,000 (S5 and S6 were not considered), whereas EC50 ranged from ca. 1/10,000 to 1/1,667. R² ranged from 0.99715 to 0.99934. In particular, CVL-1 antigen showed the best affinity to S1 and S2.
Experimental results

sera with EC\textsubscript{50} values corresponding to a dilution factor of 1/9,346 and 1/7,407, respectively (1/10,320 and 1/8,000 for H1-based antigen). As for CVL-2, EC\textsubscript{50} values were ca. 1/2,500 and 1/5,000 for sera S3 and S4 (1/1,580 and 1/5,556 for H1-based antigen). In general, the behavior of both HSA and H1-based antigens for the different sera is similar, indicating that the carrier protein used to prepared the antigens did not affect in the selectivity of the assay.

Results of the direct immunoassay

The development of routine evaluation immunoassays was carried out with our multiplex \textit{in vitro} microimmunoassay based on DVDs due to the multiplexed capacity offered by the DVD.24 For this, polyclonal IgG antibodies S1-S6 against CVL-based antigens were used, as in the previous section. Dilutions tested were 1/250, 1/1,000, 1/4,000 and 1/16,000, with respect to the IgG antibody titer, and the blank, PBS-T. All values obtained for all dilutions and all antigens were considered, as shown in Supplementary Table 6.4.S2. The results (Figure 2.2.4) showed that there is a good correlation between HSA- and H1-based antigens (\(R^2 = 0.9079\)). Although this difference was not statistically significant, only H1-based antigens were considered in the following studies.

![Figure 2.2.4](image_url)

\textbf{Figure 2.2.4.} Representation of signals obtained (in arbitrary units, a.u.) for coating antigens in serum S1. X and Y axes represent HSA and H1-based antigen values. Values from all dilutions were considered.

The selectivity of the coating antigens to polyclonal IgG antibodies S1-S6 was tested and the results shown in Figure 2.2.5. Apart from H1 antigens, reference antigens
(PG, CFR, AZT, MRP, CVL), together with both positive (rIgG) and negative (HSA) controls are included. Values are expressed in arbitrary units (a.u.) and are the mean of all the signals (n=3) obtained in each immunoassay, with SD expressed as error bars. Only values corresponding to the dilution factor 1/1,000 are shown for clarification.

Values for the positive and negative controls were as expected and those corresponding to rIgG oscillated around 15,000 a.u. for all sera and HSA was not recognized by any sera. The specificity of the immunoassay and the cross reactivity of the antigens was studied with antigens corresponding to other BLC families, concretely PG, CFR, AZT and MRP antigens. In general, the recognition of specific IgG antibodies to clavulanic acid with these antigens was not as high as with clavulanic-based ones. Maximum values of ca. 6,500 a.u. were obtained at a dilution factor 1/1,000. However, IgG antibodies from S1 and S2 have shown to be the most specific to clavulanic acid when compared to antigens from other families (> 50 %).

Figure 2.2.5. Signals obtained (in arbitrary units, a.u.) for controls and H1-based antigens with polyclonal IgG at a dilution factor 1/1,000. * indicates statistically significant difference as compared to the reference CVL (P = < 0.001).
Experimental results

In general, it has been observed that responses obtained by all S1-S6 sera regarding to CVL-based antigens match with those corresponding to the ELISA assay (Figure 2.2.3). In this respect, the results are shown in the Supplementary Figure 6.4.S1. Dilution factors tested were 1/2,000, 1/4,000 and 1/8,000, but only the dilution factor 1/4,000 was represented for clarification (proportional results were obtained with the other dilutions). In general, the response of the antigens was identical to that corresponding to the colorimetric immunoassay. For this reason, immunoassay responses would be considered and compared in the manuscript.

CVL, used as reference antigen, is generally detected by specific IgG generated in sera with good selectivity. Concretely, signals were almost equal to that offered by the other antigens, as shown in S1 and S2, reaching signals around 15,000 a.u. for all CVL-based antigens. However, statistical differences were sometimes observed. In this respect, specific IgG generated in S4 is capable of recognizing the CVL-2 antigen with significate difference (signal ca. 15,700 a.u.). Moreover, antigen CVL-1 is recognized by specific IgG generated in serum S3 and S5 with statistically significant difference as compared to the reference CVL (P < 0.001), with values of ca. 12,000 and 5,200 a.u., respectively. This highlights that not only homogeneous assays reached good recognition profiles, but also heterogeneous assays are capable of detect specific IgG with great sensitivity and good specificity, as observed with antigen CVL-1.

We have therefore proven that the prepared CVL-based antigens are recognized by specific IgG raised in immunized rabbit to the aforementioned antigens, sometimes in values better to that corresponding to the clavulanic reference antigen.

Analysis of serum samples

A cohort of 12 patients was evaluated who developed an immediate reaction to AMX or AMX-CVL. Furthermore, a negative pool from 18 control patients was used to screened the diagnostic specificity of the immunoassay. The results obtained by in vivo and in vitro assays are described in Table 2.2.1.

The in vivo evaluation was carried out by skin tests. These results showed that 7 out of 11 patients for AMX (64 %), 8 out of 9 for AMX-CVL (89 %) and 3 out of 4 for CVL (75 %) were positive. To this respect, it is worth noting the lack of clinical information available for prick tests to CVL, in particular. As far as CVL was concerned,
only 4 patients were evaluated by prick test, corresponding to 33 % of the entire selected cohort.

On the other hand, no commercial *in vitro* assay to diagnose allergies to CVL is available, dificulating the quantification of specific IgE. To this aim, the proposed DVD *in vitro* microimmunoassay permitted the evaluation of these antigens. The diagnostic specificity of the assay was 100 %, since the negative pool was not detected by any of the antigens. However, when the antigens were tested with the sera of the 12 recruited allergic patients, only antigen CVL-1 detected specific IgE. Therefore, 6 out of 12 patients (diagnostic selectivity = 50 %) were detected with antigen CVL-1 linked to HSA.

Concretely, even when the levels of specific IgE were low, the culprit drug of all the patients who tested positive to antigen CVL-1 was AMX-CVL. To mention some figures, patients 10 and 11, positive by prick test, were not detected by any of the prepared antigens. Interestingly, however, antigen CVL-1 linked to HSA detected patient 007 that tested negative by prick test to CVL and AMX.

Table 2.2.1. Results of the analysis of human serum samples by *in vivo* (prick test) and *in vitro* (DVD microimmunoassay) tests

<table>
<thead>
<tr>
<th>No</th>
<th>Culprit drug</th>
<th>AMX</th>
<th>AMX-CVL</th>
<th>CVL</th>
<th>CVL-1 HSA</th>
<th>CVL-1 H1</th>
<th>CVL-2 HSA</th>
<th>CVL-2 H1</th>
<th>CVL-3 HSA</th>
<th>CVL-3 H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Augmentin</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>0.06</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>2</td>
<td>Amoxicillin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>< LQ<sup>e</sup></td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>3</td>
<td>Augmentin</td>
<td>P</td>
<td>P</td>
<td>NR</td>
<td>0.10</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>4</td>
<td>Augmentin</td>
<td>P</td>
<td>P</td>
<td>NR</td>
<td>0.11</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>5</td>
<td>Augmentin</td>
<td>P</td>
<td>P</td>
<td>NR</td>
<td>0.12</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>6</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>NR</td>
<td>0.12</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>7</td>
<td>Augmentin</td>
<td>N</td>
<td>NR</td>
<td>N</td>
<td>0.09</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>8</td>
<td>Amoxicillin</td>
<td>P</td>
<td>P</td>
<td>NR</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>9</td>
<td>Augmentin</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>10</td>
<td>Augmentin</td>
<td>N</td>
<td>NR</td>
<td>P</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>11</td>
<td>Unspecific</td>
<td>P</td>
<td>P</td>
<td>NR</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>12</td>
<td>Amoxicillin</td>
<td>P</td>
<td>P</td>
<td>NR</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>Pool</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
</tbody>
</table>

AMX: amoxicillin, AMX-CVL: augmentin, CVL: clavulanic acid. Immunoassay values are the mean of three replicates. Relative standard deviation (RSD) ranged from 4 to 13 %. ^aP= Positive, N= Negative, NR= Not Realized; ^bValues correspond to IgE concentration expressed in IU/mL= 2.4 ng/mL; ^e< LQ= Value below the limit of quantification.
Experimental results

In conclusion, the combination of both techniques (in vivo and in vitro assays) is an appropriate tool to diagnose allergies to CVL. Concretely, results revealed that the antigen CVL-1 linked to HSA is selective and can be used for in vitro diagnosis, especially if we consider that the assay confirmed six patients as positive, versus the three patients confirmed by prick test as positive to CVL.

4. Conclusion and future trends

The high consumption of clavulanic acid, which associates with a large number of DHRs, made it of great interest to identify the chemical structures involved in the generation of specific antigens to clavulanic acid. In this respect, three haptens derived from clavulanic acid were synthetized, CVL-1, CVL-2 and CVL-3, and their respective antigens tested by an ELISA and a colorimetric microimmunoassay based on DVDs.

The results highlighted the importance of the chemical structure for drug allergic diagnosis. On the one hand, modification of the characteristic oxazolidine ring of oxapenams to a 2,3-dihydrooxazoline ring (CVL-3) was neither recognized by IgG nor IgE antibodies. This emphasizes that the antigen recognition by specific antibodies has to maintain the general structure characteristic of this β-lactam family, which correlates with why in vitro diagnosis of clavulanic acid allergies tests negative when other antigens from other families are involved. However, on the other hand, the selectivity of CVL-1 and CVL-2 to detect polyclonal IgG antibodies raised to CVL has been demonstrated. The detection was three-fold higher than those to other families of BLCs when these antigens were tested with IgG antibodies. Moreover, it has been therefore proven that esterification of the potassium carboxylate to produce CVL-1 is of great value in the production of specific IgE antibodies to clavulanic acid when tested with a cohort of 12 allergic patients.
REFERENCES

(10) Edwards, R. G.; Dewdney, J. M.; Dobrzanski, R. J.; Lee, D. Immunogenicity and

In this chapter we addressed the preparation of antigens to other families of β-lactam antibiotics and their evaluation by a multiplex *in vitro* colorimetric microimmunoassay.

On the one hand, the preparation of 20 major and minor antigens based on cephalosporin, carbapenem and monobactam antibiotics has been described in the first part of this chapter (Section 3.2.1.). Their evaluation by the developed assay revealed that only those minor antigens permitted the detection of specific IgE, improving the clinical performances of the *in vitro* assays to other families of β-lactam antibiotics.

On the other hand, three haptens derived from clavulanic acid have been synthetized in the second part of this chapter (Section 3.2.2.). They were conjugated to proteins to prepare 6 antigens as well as to produce specific IgG antibodies to clavulanic acid. Furthermore, antigen CVL-1, prepared after esterification of potassium clavulanate, was recognized by specific IgE from a set of allergic patients.
3.3. Synthesis of skeletally diverse β-lactam haptens for the *in vitro* diagnosis of IgE-mediated drug allergy
The preparation of antigens for the diagnosis of allergies has been commonly based on the direct and covalent attachment of the hapten to carrier proteins, which confer the immunogenic capacity. When this attachment is not possible, for example when the hapten does not have the functional groups needed, the solution usually comes from incorporating spacer arms or crosslinkers, as has been demonstrated in Chapter 1. But even then, it has been stated that IgE antibodies from some allergic patients still do not recognize all this set of antigenic determinants.

Nowadays, new and modern methodologies related to the synthesis of compounds are emerging that seek a broader approach, in which it is suggested that the search for antigens in libraries with functionally diverse compounds increases the chances of finding biologically active molecules. However, until now, these techniques have been oriented in the search for new and promising drugs, without accounting for the high potential that they confer. In this respect, DOS provides the spatial diversity and the structural complexity needed to cover a wide spectrum of possible epitopes responsible for allergic episodes.

In this chapter, a cohort of skeletally-diverse compounds will be synthetized for the β-lactam antibiotics AMX and AMP and the precursors of the penicillins and cephalosporins, 6-APA and 7-ACDA, that will be later linked to carrier proteins to generate immunogenic antigens. The evaluation of the most promising antigens will be performed using a multiplex *in vitro* colorimetric immunoassay and by detecting specific IgG from rabbits and IgE from a cohort of 30 samples from allergic patients to these β-lactam antibiotics and controls.
Synthesis of skeletally diverse β-lactam hapten for the in vitro diagnosis of IgE-mediated drug allergy

Edurne Peña-Mendizabal, Bruce K. Hua*, Ethel Ibañez-Echevarria, Dolores Hernández-Fernández de Rojas, Ángel Maquieira, Stuart L. Schreiber, and Sergi Morais

ABSTRACT

We present the first synthesis of β-lactam-derived hapten, leveraging the principles of diversity-oriented synthesis to discover compounds for drug allergy in vitro testing. We designed, synthesized, and performed in vitro immunological evaluation on 18 structurally diverse hapten derived from β-lactam antibiotics. The obtained hapten—conjugated to carrier proteins—allow for the detection of specific anti-β-lactam immunoglobulins G and E. Excellent diagnostic sensitivity (79%) and specificity (100%) were achieved when the panel of antigens were tested against a cohort of 38 human serum samples using a CD technology-based in vitro testing tool.
1. Introduction

Currently over 6.5% of the globally studied population carries a penicillin or β-lactam allergy label. The overdiagnosis of β-lactam allergy has several clinical consequences. Inpatients with such a label often receive second-line treatments, which are less effective, often more toxic, and associated with a higher risk of antibiotic-resistant infections. To reduce the risk of near-fatal reactions from in vivo allergy tests, the clinical guidelines advise that—for subjects who have a history of severe immediate reactions—the in vivo allergy tests should be preceded by in vitro IgE tests. However, current in vitro tests provide only a gross prediction of drug allergy, and negative results (< 0.35 IU/mL) do not necessarily exclude the possibility of β-lactam allergy, with the mean clinical sensitivity at only ~25%. As such, there is a need for additional reagents (haptens and antigens) to enable the development of accurate in vitro assays to discriminate selectively and with high sensitivity allergic from non-allergic subjects. Experimental studies on the synthesis of β-lactam-derived haptens are limited. Recent studies have described the synthesis of new haptens that incorporate spacers to create distance between the antibiotic molecule and the carrier protein, revealing that the inclusion of different drug-derived conjugates during sIgE evaluation can improve the accuracy of diagnosis. Other study reports pyrazinone derivatives as novel antigenic determinants of α-aminocephalosporins showing low percentage of positivity. Indeed, to meet the challenge of the accumulated burden and increasing demand, allergy specialists need to be supported with innovative, evidence-based approaches for drug-allergy assessment and delabeling. In this respect, diversity-oriented synthesis (DOS) provides an appealing route to access compounds that have both structural complexity and diversity, and incorporate chemical features common to natural products, such as sp3-hybridized carbon atoms, basic nitrogen atoms, stereogenic elements, and novel skeletons. To this aim, we synthesized using DOS a collection of 22 haptens using different β-lactam antibiotics containing greater structural diversity than typically observed for these antibiotics.

2. Results and discussion

Using 6-aminopenicillanic acid (6-APA)—the precursor of all semi-synthetic penicillins—we performed a Petasis three-component, boronic-acid Mannich reaction followed by amine propargylation to yield β-amino alcohols, which were subjected to an array of skeletal diversification reactions. Herein, we improve the yield of the three-
component reaction involving 6-APA using different organic solvents and conditions (Table 6.5.S1, ESI†). Using these improved conditions, we began with 6-APA methyl ester (1a) to gain access to compounds 4a-11a (Scheme 3.1). The best conditions comprised a solvent system of 9:1 EtOH/HFIP (v/v) at 40 °C for 72 h, using an excess of both the antibiotic-based ester 1a and (E)-2-cyclopropylvinylboronic acid 3, and 3Å molecular sieves as a water scavenger. As for L-3-phenyllactic acid, it was protected as the acetonide using 2,2-dimethoxypropane and p-toluenesulfonic acid to obtain the (S)-lactone in 96 % yield, and subsequently reduced with DIBAL-H to afford the corresponding (S)-lactol 2 in 84% yield. The Petasis reaction with 1a afforded the anti-diestereomer 4a exclusively in 53 % yield, again demonstrating the diastereoselectivity of this transformation. In order to prepare a probe for the diversification reactions, N-alkylation of 4a with propargyl bromide was performed to provide the desired compound 5a in 72 % yield. Next, skeleton-diversifying reactions were performed using different catalysts to provide five 6-APA-based compounds (6a-11a).

The conditions of the Petasis reaction and metal-catalyzed cyclizations were also used with other antibiotic cores (Figure 3.1). This pathway allowed for the preparation of a set of haptens derived from 7-amino-deacetoxycephalosporanic acid (7-ACDA)—the precursor of almost one-third of all commercial cephalosporins—, amoxicillin (AMX), and ampicillin (AMP). As for 6-APA, 7-ACDA and the antibiotics amoxicillin and ampicillin were esterified with TMS-diazomethane to obtain the methyl esters 1b-1d. Compound 1b, the methyl ester of 7-ACDA, was thus incorporated into the synthetic pathway using the same conditions as for 6-APA. β-amino alcohols 4b and 5b were generated and were subjected to the Pd-catalyzed cycloisomerization with [Pd(PPh3)2(OAc)2], the Pauson–Khand reaction with [Co2(CO)8], and the Au-catalyzed alkyne activation and cyclization to afford structurally diverse compounds 7b-9b, respectively. In the process, we observed the displacement of the double ring in the 3,6-dihydro-2H-1,3-thiazine ring, forming a byproduct that compromised the yield of the reactions.

AMX and AMP, two of the most prescribed β-lactam antibiotics and having an additional free amine group on their side chains, were also selected as building blocks and incorporated into the synthetic pathway. We observed that heating at 70 °C for 72 h led to decomposition of AMX methyl ester (1c) and AMP methyl ester (1d). Mild conditions (room temperature for 72 h) were sufficient to obtain the desired compounds
Scheme 3.1. Scheme of the synthesized 6-APA-derived haptens. a) NaH, toluene 0.1 M, rt, 16 h; b) [Pd(PPh₃)₂(OAc)₂] (10 mol %), benzene 0.05 M, 80 °C, 1 h; c) [Co₂(CO)₈], TMANO, benzene 0.1 M, rt, 4 h; d) NaAuCl₄ (10 mol %), MeOH 0.05 M, rt, 1 h; e) Grubbs second-generation catalyst (10 mol %), DCM 0.05 M, reflux, 1 h; f) 4-phenyl-1,2,4-triazoline-3,5-dione, DCM 0.1 M, rt, 1 h.
4c and 4d in reasonable yields (ca. 45%), but 2D-NMR studies confirmed that the β-lactam ring opens during the Petasis reaction. After amine propargylation to afford the desired amino alcohols 5c and 5d in a reasonable yield (56 and 38%, respectively), cycloadditions were attempted with AMX without success. To assess the feasibility of this pathway, enyne metathesis was chosen as a proof-of-concept in the synthesis of an AMP-based compound, and the desired diene 10d was obtained in 60% yield.

The synthesized β-lactam-derived haptens were used to prepare structural antigens following the ‘major’ configuration. Two carrier proteins were selected—human serum albumin (HSA) and histone (H1)—each of which contains approximately 60 free lysine residues. The antigens were prepared via amide-bond linkage between the lysine
Experimental results

residues and the carbonyl carbon atoms of the open β-lactam ring. A collection of 44 antigens were prepared, 22 for each carrier protein.

The antigens were first evaluated using a CD technology-based *in vitro* testing tool\(^\text{10}\), heron CD test, with rabbit sera raised for benzylpenicillin (PG) and ceftriaxone (CFT). The results are depicted in Figure 3.2. We determined which antigens could be considered ‘active’ by identifying those that exhibited signals significantly different from that produced by the negative control. The histogram depicting the ability of all antigens to elicit activity in the immunoassay is shown in Figure 3.2A and comprises assay data for compounds against sera raised against PG (S1) and CFT (S2). Compounds with assay responses greater than the threshold —corresponding to the mean of the negative control plus three standard deviations—were considered ‘active.’ Twenty-two (50\%) of the antigens were found to be ‘active’ with either serum S1 (PG) or S2 (CFT). Four of the 44 antigens (7b-HSA, 8b-HSA, 7b-H1, and 1d-H1) were found ‘active’ across both sera, and can therefore be considered generic for the detection of IgG (Figure 2B).

![Figure 3.2](image)

Figure 3.2. A) Histogram of the ‘activity’ of the antigens. B) Heatmaps for the cohort of the HSA- and H1-derived antigens representing the signals obtained in the immunoassays for each immunized sera (S1 and S2). 1) 6-APA, 2) 7-ACDA, 3) AMX, and 4) AMP-derived antigens.

We next explored whether this activity was serum-specific with respect to each β-lactam antibiotic derivative. As is depicted in Figure 3.2B, 6-APA-derived antigens were selectively identified by the IgGs of serum S1 with very negligible cross-reactivity.
with S2, with 4a-, 7a-, 8a- and 11a-derived antigens showing the highest responses independent of the carrier protein used.

A similar pattern was detected for AMX- and AMP-derived antigens. These antigens were also highly selective except 1d-H1. This is in good agreement with expectations since 6-APA, AMX, and AMP haptens share a common structure (β-lactam fused to a saturated five-membered ring) and serum S1 was raised against benzylpenicillin. On the other hand, 9b-HSA was the only antigen that was selective for serum S2, although haptens 7b and 8b were strongly recognized by the specific IgGs.

Furthermore, we tested a cohort of 38 subjects, of which 15 developed an immediate reaction, four suffered from a delayed reaction to β-lactams (Table 6.5.S2, ESI†), and 19 were control individuals. The results of the prick test and the in vitro immunoassays (ImmunoCAP and CD test) are shown in Table 3.1. Also, notable is the observation that for PG, the 16 tested patients were diagnosed as negative by the prick test. In contrast, ten and nine were diagnosed as positive for AMX and AMP, respectively. Only one was positive for CFT among the 13 patients tested for CFT. Drug provocation tests were not performed for ethical reasons since they are potentially dangerous and must be performed at specialized centres.11

Sera from these patients were also tested using two in vitro immunoassays: ImmunoCAP and CD test.10 None of the 19 control subjects tested positive using either in vitro immunoassay, achieving a specificity of 100 %. On one hand, four allergic patients tested positive for AMX (21 %) and one for PG and AMP (5 % each) using ImmunoCAP. This is consistent with previous reports that show high variability in the sensitivity for ImmunoCAP, especially with respect to the β-lactam antibiotics involved (sensitivity values range from 0 to 50 %).12 On the other hand, when we evaluated the sera of allergic patients using the synthesized haptens with the CD test, we found that nine antigens were recognized by specific IgE. Notably, 15 patients tested positive using at least one of the nine antigens. Specifically, we obtained positive results for 6 patients for 1d (32 %), 4 for 10a (21 %), 3 for 1c (16 %), 2 for 10d and 8a (10.5 %), and 1 for 1b, 4b, 7b, and 9b (5 % each). We found that—of the four best haptens—two (1c and 1d) were structurally similar to amoxicillin, being the methyl esters of amoxicillin and ampicillin, respectively. This is perhaps unsurprising given the patients' known allergies to amoxicillin and augmentin (a combination of amoxicillin and clavulanate). However,
we also found that haptens based on 10a and 10d were specifically recognized by IgE of allergic patients, with these compounds exhibiting more substantial structural differences from their respective antibiotic precursors. Interestingly, both compounds share the same 3-vinyl-2,5-dihydropyrrole moiety arising from enyne metathesis, and are the only two compounds tested that contain this group. While anecdotal, this observation suggests that chemically diverse antigens can successfully mimic the epitopes responsible for provoking an allergic episode, and demonstrates that even when the chemical structures of the antibiotics have been considerably modified and the level of specific IgE in serum is very low (< 0.5 IU/mL), patients can be accurately diagnosed as allergic.

3. Conclusions

Overall, we have shown that, in contrast to other standard antigens, those prepared using DOS-derived haptens were good candidate reagents for detecting even low levels of specific IgE in the serum of allergic patients, representing a significant improvement upon the diagnostic sensitivity of in vitro allergy tests, in particular the reference assay ImmunoCAP.

In fact, for the cohort of serum samples analyzed, while only four allergic patients (21 %) tested positive for amoxicillin with ImmunoCAP, 15 tested positive using the DOS-derived antigens (79 %) in a multiplex configuration, considering the set of the nine selected antigens as a whole what represents an almost four-fold increase over the reference test. Of the 10 patients who tested positive using the skin prick test, eight were identified using the DOS hapten-derived antigen collection, double that identified using the reference method ImmunoCAP. Lastly, the four patients detected as positive by ImmunoCAP also tested positive using the DOS derived antigens, although the concentration values were significantly different. In summary, we designed, synthesized, and performed in vitro immunological evaluation on 18 structurally diverse haptens derived from β-lactam antibiotics. The synthesis of these new haptens and the preparation of the corresponding antigens is key for accurate β-lactam allergy testing. Furthermore, the elucidation of new antigenic determinants for β-lactam antibiotics might provide new insights about the mechanism involved in allergy and improve the clinical performances of the current in vitro tests. Taken together, these results suggest that the incorporation of structural diversity into β-lactam antibiotics can drive molecular IgE recognition—even
when the chemical structures of the antibiotics are highly modified—and, therefore, the allergic episode, demonstrating the potential of DOS for the preparation of structurally diverse β-lactam-derived haptens. We posit that adoption of this strategy could help inform decision-making by allergists, define allergen-avoidance regimes, aid β-lactam delabeling initiatives and improve the quality of life of allergic people.
Table 3.1. Assaying human serum samples using *in vivo* (prick test) and *in vitro* (ImmunoCAP and multiplex DVD assay) tests

<table>
<thead>
<tr>
<th>Sample</th>
<th>Culprit drug</th>
<th>Prick test<sup>a</sup></th>
<th>ImmunoCAP<sup>b</sup></th>
<th>Multiplex DVD assay<sup>bc</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG</td>
<td>CFT</td>
<td>AMX</td>
<td>AMP</td>
</tr>
<tr>
<td>1</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>Amoxicillin</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>3</td>
<td>Augmentin</td>
<td>N</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>Augmentin</td>
<td>N</td>
<td>NP</td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>Augmentin</td>
<td>N</td>
<td>NP</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>Amoxicillin</td>
<td>NP</td>
<td>NP</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>Augmentin</td>
<td>NP</td>
<td>NP</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>Amoxicillin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>12</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>13</td>
<td>Cefuroxime</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>Cefuroxime</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>15</td>
<td>Amoxicillin</td>
<td>NP</td>
<td>NP</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>17</td>
<td>Amoxicillin</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>18</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>19</td>
<td>Augmentin</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
</tbody>
</table>

^aP= Positive, N= Negative, NP=Not performed; ^bValues correspond to IgE concentration (1 IU/mL= 2.4 ng/mL) and are the mean of three replicates. RSD ranged from 4 to 13 %. ^cHistone-derived antigens; ^dLD= limit of detection.
ACKNOWLEDGMENTS

This work was supported by the H2020 program (project COBIOPHAD, grant agreement No. 688448 awarded to A.M.), being an initiative of the Photonics Public Private Partnership; Agencia Estatal de Investigación (PID2019-110713RB-I00, FEDER awarded to S.M.); Generalitat Valenciana (PROMETEO/2020/094 awarded to A.M. & S.M.); program UPV-La FE 2019 (P105 VALBIOAL awarded to S.M & E. I-E.); and the National Institute of General Medical Sciences (GM-1R35GM127045 awarded to S.L.S.). E.P.M. was supported by a FPU fellowship from the Ministerio de Educación, Cultura y Deporte (FPU15/01738 and EST18/00360). B.K.H. was supported by a fellowship from the National Science Foundation (DGE1144152 and DGE1745303).

REFERENCES

4. GENERAL DISCUSSION
4. GENERAL DISCUSSION

As it is well known, to dispose of suitable reagents, mainly haptens or determinants and antigens, is key to determine specifically IgE to β-lactam antibiotics. Apart from the synthesis of novel structures, the carrier protein used, the chemical reactive group taking part in the conjugation and the conjugation route itself are also fundamental factors in the molecular recognition of specific IgE. Therefore, this thesis aims to gain insight in the determination of specific IgE by working on the synthesis of novel haptens, which have been chemically modified from the respective antibiotics, in order to generate selective antigens to β-lactam antibiotics.

In this respect, the generation of promising antigens will help to set up reliable drug allergy tests with proper diagnostic sensitivity and specificity. So far, in vivo skin tests are the quintessential assays for the detection of drug allergies. These tests, although fast and specific (specificity > 98 %), generate a large percentage of false positives (ca. 66 %), and are invasive and risky.205 This is problematic, since there is a risk of not prescribing drugs to patients who really need and, most importantly, tolerate them. On the other hand, the in vitro reference assay, ImmunoCAP detects only 5 BLCs, 4 of which correspond to the most prescribed penicillins, PG and AMX. In addition, it is established that ImmunoCAP can provide an extremely high percentage of false negatives (negative predictive value2 ca. 53 %),207 which correlates with the low diagnostic sensitivity (ca. 50 %) achieved.207 In particular, according to the scientific literature, the diagnostic specificity of this test for these antibiotics ranged from 83 to 100 % and the sensitivity from 32 % for PG to 43 % for AMX.

This dissertation reports the synthesis of novel AMX- and PG-based haptens to prepare antigens that may help to overcome the deficiencies, in terms of diagnostic sensitivity and specificity, in the currently available tests. To do this, first, aliphatic diamines of different lengths have been used as spacer arms. According to the scientific literature, the incorporation of spacer arms can separate the hapten from the carrier

2 Negative predictive value considers the predicted percentage of individuals with a negative test result who are actually not allergic.
protein, reducing steric hindrances and leaving the hapten more accessible. Therefore, 13 diamine-based major and minor haptens have been synthetized and characterized. These haptens were used to generate minor antigens, with HSA as the carrier protein, following the carbodiimide crosslinker chemistry. The evaluation of all the prepared antigens by the in-house in vitro multiplex colorimetric assay showed that all of them were immunogenic and were able to recognize specific IgG from immunized rabbits. Nonetheless, the effect of the spacer arm length showed different profiles depending on the antibiotic used, without a clear pattern. Furthermore, differences were observed depending on the conjugation strategy followed. In short, major antigens were better recognized by specific IgG than the corresponding minor antigens. When artificial human serum was used, AMX antigens led to detect specific IgE concentration of ca. 20 IU/mL, ten-fold increase compared to the reference antigen BPO. Unfortunately, antigens prepared through this strategy did not detect specific IgE from a cohort of 35 allergic patients to AMX and/or PG, probably because they did not recognize the specific epitopes provoking the allergic episode.

On the other hand, the next strategy considered in this dissertation was the cationization of carrier proteins, since the rise of the amino groups available in the protein were expected to have an effect in antibody recognition. In this respect, five AMX- and PG-based antigens using HSA and H1 as cationized carrier proteins were prepared. To modify and cationize the carrier proteins, aliphatic and aromatic diamines of different length were also used. When artificial human serum was used, these cationized antigens reached values of a sIgE concentration of 23 IU/mL. However, it is even more of concern the fact that these antigens detected specific IgE from a cohort of 35 allergic patients. Specifically, the limit of detection was reduced to 0.07 IU/mL compared to the reference assay, which only allows the detection of concentrations equal to or greater than 0.35 IU/mL. Even better, the sensitivity of the in vitro diagnostic test for PG was three-fold improved when cationized determinants were used. Furthermore, none of the 35 controls patients tested positive (specificity = 100 %). Regarding to the diamine-length for the generation of the cationized proteins, it has been proven that the use of the antigen prepared with the shorter diamine achieves the best sensitivity. The short chain of the diamine helps by reducing steric and hydrophobic effects. The selection of the carrier protein was also proven to be key for the discrimination of allergic patients and controls. In fact, H1 antigens were able to detect more allergic patients than HSA antigens did.
Furthermore, it is well known that penicillins can decompose in vivo, leading to the formation of multiple metabolites after the β-lactam ring opening. In this respect, several studies aim to identify metabolite-based determinants by specific IgE antibodies. Herein, it has been reported the evaluation of several penicillin metabolites by the in vitro microimmunoassay. To this aim, penicillin based-metabolites PGoyl and BPG were synthetized using sodium benzylpenicillin and the other metabolites (6-APA, PA and PLA) used as commercially supplied. First, all the metabolites were conjugated to the carrier proteins HSA and H1 by the carbodiimide crosslinker method. Furthermore, major antigens of 6-APA and PGoyl were prepared as well as a minor antigen of PA by the formation of disulphide bonds between cysteine residues of the carrier protein and the thiol group of the metabolite. The former antigens were linked only to the carrier protein H1 as a proof of concept since the previous strategy showed that H1 antigens were better recognized by IgE antibodies than those referring to HSA.

In a set of 36 allergic patients and controls, H1-based antigens worked better than the corresponding HSA ones: a pattern that is in agreement with what was observed previously. Secondly, the selected 18 control patients tested negative to 4 out of 5 metabolite-based antigens. Concretely, the diagnostic specificity of the assay with antigen PLA was 94 %. When these antigens were screened against sera from allergic patients, only the antigen to BPG was not able to detect allergic patients. This may be due to the loss of immunological activity after the decarboxylation of the carboxylic acid after opening of the β-lactam ring, characteristic of penicillins. Having said this, IgE antibodies from most of the 18 recruited allergic patients to β-lactam antibiotics (mostly to penicillins) recognized all the metabolite antigens prepared through the carbodiimide crosslinker chemistry. On the other hand, major antigens as well as the minor antigen to PA linked to cysteine residues did not detect allergic patients, highlighting the importance of the conjugation route in the preparation of antigens. In this case, the great recognition by IgE antibodies of antigens prepared through the carbodiimide chemistry may come from the preservation of the β-lactam ring intact. In conclusion, the in vitro microimmunoassay allows for the quantification of sIgE in allergic patients that were not detected by other in vivo and in vitro tests. In particular, the diagnostic specificity of the microimmunoassay was of 100 % (94 % to PLA) and the diagnostic sensitivity ranged from 67 to 100 %, depending on the metabolite used.
Other families of β-lactam antibiotics, such as cephalosporins, carbapenems, monobactams or β-lactam inhibitors are not as beneficial as penicillins and lack an in vitro immunoassay for the detection of allergies to them. In fact, the consumption of these other families stands at 11% of the total consumption of antibiotics in the EU between 2016 and 2018, which highlights their importance. In this respect, only one cephalosporin, cefaclor, can be tested for positivity using ImmunoCAP. Thus, this dissertation has also investigated the preparation of antigens of other less known and prescribed families. To this end, the major and minor antigens generated for several cephalosporin (CFT, CFR and CFO), carbapenem (MRP) and monobactam (AZT) antibiotics, using, again, HSA and H1 as carrier proteins show a great potential. In this respect, the preparation of minor antigens following the carbodiimide chemistry has been previously based on the acidification of those antibiotics in their salt forms (CFT, CFR and CFO). Major and minor antigens were, first, tested, as a proof of concept, with polyclonal IgG for each of these families but that were conjugated using KLH as the immunogen protein. Their evaluation yielded similar results regardless of the carrier protein used. Furthermore, in general, no cross-reactivity has been observed between these families, especially in the case of the major antigens. Interesting results have been observed when testing allergic patients and controls. Only those minor antigens prepared with H1 as the carrier protein were able to detect allergic patients. The sensitivity obtained in the immunoassay was high (LOD < 0.01 IU/mL). Furthermore, a diagnostic specificity of 100% was achieved when the antigens were tested in the immunoassay with 37 control patients. Specifically, 35, 51 and 49% of a set of 37 patients were recognized and gave positive results when they were tested with the minor antigens of CFR, CFO and MRP. This is an important point because routine diagnostic tests were not performed for most of these patients, except in some cases for the detection of allergies to CFR. These results are valuable to highlight both the importance of the different conjugation routes, as well as the carrier protein used, when generating antigens.

In the case of clavulanic acid, in vitro diagnostic test to quantify sIgE to this drug has been developed. To this aim, three derivatives of CVL were synthetized, since the combination of CVL and AMX is the antibiotic most frequently administred and provokes the major cases of DHRs. In this respect, from the three derivatives prepared, it has been observed that the antigen CVL-3 has weak recognition towards clavulanic acid. To generate this antigen, the characteristic ring of CVL was modified to a 2,3-
dihydrooxazoline ring. On the other hand, it has been proven that CVL-1, with a similar structure to CVL, but in which the potassium carboxylate has been esterificated, and CVL-2, with the alcohol at the C-6 side chain oxidized, are important and valuable because after conjugation to proteins as immunogens develop specific IgG antibodies to clavulanic acid. However, when these antigens were tested with a set of 12 allergic patients, only antigen CVL-1 linked to HSA recognize the epitopes causing allergic reactions, being able to detect specific IgE to clavulanic acid, at low levels, in 6 out of 12 allergic patients (diagnostic sensitivity = 50 %). Finally, the diagnostic specificity of the assay was 100 % when the antigens were tested with a pool of 18 controls patients.

The classical way of generating determinants for allergy diagnosis has commonly been based on maintaining the original structure of the antibiotic intact. To this aim, the covalent attachment of the carrier protein is usually accomplished either through direct attachment with the functional and reactive groups of the antibiotic or by incorporating spacer arms, dendrimers, or previously chemically modified proteins. However, the chemical modification of the antibiotic itself to obtain structurally different and/or more accessible compounds from a spatial point of view had not been addressed. The hypothesis was that combinatorial techniques, which aim to discover clinically effective drugs, could also be applied to explore the generation of antigens to improve the clinical performances of the in vitro tests. Moreover, these approaches may facilitate the discovery of the allergy-causing epitopes, which might make it possible to be an alternative to the "classical" antigens.

For that purpose, DOS has been the technique proposed to generate novel β-lactam determinants in this dissertation. This technique provides the necessary structural diversity and complexity by incorporating sp³-hybridized carbon atoms, basic nitrogen atoms, stereogenic elements, and novel skeletons. In this respect, 20 haptens derived from the β-lactam antibiotics AMX, AMP, MRP and AZT antibiotics, and the precursors of the penicillins and cephalosporins, 6-APA and 7-ACDA, have been synthesized using the Petasis-three component reaction, amine propargylation and metal-catalyzed cyclizations. Subsequently, major antigens were prepared using the HSA and H1 as carrier proteins and were evaluated using the in vitro multiplex-immunoassay. Interestingly, all the antigens prepared by this technique, except those 7-ACDA-derived, have been specific to detect IgG antibodies when tested with rabbit sera for PG and CFT. Those antigens to 7-ACDA proved to be highly inspecific, which may be due to a bad
recognition of these antigens by the IgG antibodies from rabbits specific to the antibiotic CFT. In this respect, ceftriaxone has a metabolically stable thiotriazinedione moiety instead of the easily hydrolyzed acetyl group present in 7-ACDA.

Thereafter, the suitability of the antigens was evaluated, testing human serum samples from a cohort of 19 allergic patients and the specificity when testing a set of 19 control human samples (diagnostic specificity = 100 %). In this respect, although a high correlation between HSA and H1 antigens was observed when these antigens where tested with slgG from immunized rabbits, H1 antigens did work better for the discrimination of allergic patients. Regarding antigen recognition, 15 patients gave a positive result using the DOS-derived antigens, while with ImmunoCAP only four patients tested positive. Although more work related to the preparation of antigens by combinatorial techniques needed to be done, this study set unprecedented results. Therefore, a diagnostic sensitivity of 79 % was obtained when considering the set of the nine selected antigens as a whole, indicating that sIgE from allergic patients recognized the β-lactam ring. The results demonstrate the potential of DOS as well as the Petasis three-component reaction as a suitable antigen preparation strategy.

To sum up, Table 5 shows the main features of the haptens and antigens developed throughout this dissertation. From the results, it is concluded that 41 novel haptens have been synthetized in order to prepare 100 antigens. Therefore, the approaches assessed in this dissertation covered from the study of well known metabolites to penicillins to the exploration of combinatorial techniques in the production of haptens to prepare antigens.

Both the diagnostic sensitivity and specificity of the developed in vitro immunoassay were improved by using the prepared antigens presented in this dissertation, apart from the antigens based on spacer arms. Concretely, the diagnostic specificity of the immunoassay was improved compared with the in vivo tests currently in use. Therefore, the diagnostic specificity ranged from 94 % for PLA to 100 % for all the other prepared antigens. In the case of the diagnostic sensitivity, values varied according to the antibiotic used in the haptenization process, and ranged from 16 to 100 %. In this respect, those strategies using cephalosporin and AMX-based antigens achieved the lowest diagnostic sensitivities in the assay. However, the results obtained
with the AMX-based antigens correlate well with those obtained by the reference ImmunoCAP.

On the other hand, however, the preparation of novel antigens to less studied β-lactam families, such as cephalosporins, carbapenems and monobactams, permitted the quantification of specific IgE for the first time. Furthermore, values obtained for diagnostic sensitivities are even better than those corresponding to the prick test.

According to the scientific literature, multiple studies have been focused on the detection of specific IgE from allergic patients to β-lactam antibiotics. Both the diagnostic sensitivity and specificity of the proposed in vitro immunoassays render positive results.

In this respect, the multiplexed capacity of the microimmunoassay allows for the simultaneous in vitro detection of sIgE to several antibiotics in the same assay. This platform would permit the identification of the epitopes provoking the allergic episodes to up to ten different well and less known antibiotics, improving the currently commercial in vitro assays. Nevertheless, the combination of all the different approaches is necessary and the complementation of all of them will permit a better diagnosis of drug allergies. Furthermore, the in vitro immunoassay using the prepared antigens presented in this dissertation allows the detection of cross-reactivity between different β-lactam antibiotics. This may enable the avoidance of incorrect delabelings and the prevention of prescribing medications to patients who cannot tolerate them. In conclusion, the antigens generated from the synthesized haptens might be suitable to be used to diagnose allergies to β-lactam antibiotics when used supporting the current diagnostic methods.
Table 5. Summary of the antigens prepared in this dissertation

<table>
<thead>
<tr>
<th>Antigens based on:</th>
<th>Spacer arms</th>
<th>Cationized proteins</th>
<th>Metabolites</th>
<th>Neo-antigens</th>
<th>Clavulanic acid</th>
<th>DOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLC involved</td>
<td>Penicillins (AMX and PG)</td>
<td>Penicillins (AMX and PG)</td>
<td>Penicillins (PLA, 6-APA, PGoyl, PA and BPG)</td>
<td>Cephalosporins (CFT, CFR, CFO) Carbenemps (MRP)</td>
<td>Clavulanic acid (CVL)</td>
<td>Penicillins (AMX, AMP, 6-APA) Cephalosporins (7-ACDA)</td>
</tr>
<tr>
<td>Haptens synthetized</td>
<td>13 (13)</td>
<td>0 (5)</td>
<td>2 (16)</td>
<td>3 (20)</td>
<td>3 (6)</td>
<td>20 (40)</td>
</tr>
<tr>
<td>(antigens generated)</td>
<td>70 (35)</td>
<td>70 (35)</td>
<td>36 (18)</td>
<td>74 (37)</td>
<td>30 (12)</td>
<td>38 (19)</td>
</tr>
<tr>
<td>No human samples</td>
<td>No</td>
<td>Yes (only H1 and carbodiimide chemistry)</td>
<td>Yes (better H1 and carbodiimide chemistry)</td>
<td>Yes (only H1 and carbodiimide chemistry)</td>
<td>Yes (only antigen CVL-1 HSA)</td>
<td>Yes (only H1)</td>
</tr>
<tr>
<td>(N₀ allergic patients)</td>
<td>70 (35)</td>
<td>70 (35)</td>
<td>36 (18)</td>
<td>74 (37)</td>
<td>30 (12)</td>
<td>38 (19)</td>
</tr>
<tr>
<td>Positive results with allergic patients (conjugation conditions)</td>
<td>70 (35)</td>
<td>70 (35)</td>
<td>36 (18)</td>
<td>74 (37)</td>
<td>30 (12)</td>
<td>38 (19)</td>
</tr>
<tr>
<td>Diagnostic sensitivity</td>
<td>-</td>
<td>60 (PG)</td>
<td>100 (PLA)</td>
<td>35 (CFR)</td>
<td>50 (CVL)</td>
<td>26 (6-APA)</td>
</tr>
<tr>
<td>DVD immunoassay (%)</td>
<td>31 (AMX)</td>
<td>94 (6-APA)</td>
<td>94 (PLA)</td>
<td>100</td>
<td>100</td>
<td>16 (AMX)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89 (PGoyl)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>37 (AMP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67 (PA)</td>
<td></td>
<td></td>
<td></td>
<td>21 (7-ACDA)</td>
</tr>
<tr>
<td>Diagnostic specificity</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVD immunoassay (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOD (IU/mL)</td>
<td>-</td>
<td>0.07</td>
<td>0.01</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Diagnostic sensitivity</td>
<td>20 (PG)</td>
<td>20 (PG)</td>
<td>22 (PG)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ImmunoCAP (%)</td>
<td>37 (AMX)</td>
<td>37 (AMX)</td>
<td>38 (AMP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic sensitivity</td>
<td>13 (PG)</td>
<td>13 (PG)</td>
<td>14 (PG)</td>
<td>6 out of 33: 18 (CFR)</td>
<td>3 out of 4: 75 (CVL)</td>
<td>0 out of 10: 0 (PG)</td>
</tr>
<tr>
<td>Prick test (%)</td>
<td>68 (AMX)</td>
<td>68 (AMX)</td>
<td>71 (AMX)</td>
<td>3 out of 19: 29 (CFT)</td>
<td>8 out of 9: 89 (AMX-CVL)</td>
<td>7 out of 11: 64 (AMX)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67 (AMP)</td>
<td>0 out of 2: 0 (CFO)</td>
<td></td>
<td>6 out of 10: 60 (AMP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 out of 7: 29 (MRP)</td>
<td></td>
<td>1 out of 7: 14 (CFT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 out of 3: 33 (AZT)</td>
<td></td>
<td>1 out of 3: 33 (AZT)</td>
</tr>
</tbody>
</table>
5. CONCLUSIONS
5. CONCLUSIONS

The most relevant conclusions are summarized, according to the objectives initially proposed.

☑ A set of 13 diamine-derived haptens for AMX and PG has been synthesized for the first time with aliphatic diamines of different alkyl chain lengths in order to prepare HSA major and minor antigens. Their assessment in a multiplex assay revealed that even when they were recognized by specific IgG from immunized rabbits, they were not recognized after the analysis of a set of 35 allergic patients. On the other hand, the evaluation of five antigens prepared using both HSA and histone cationized carrier proteins has allowed the detection of specific IgE, even at low concentrations, only for H1-antigens (LOD = 0.07 IU/mL). In this respect, the importance of the selection of the carrier molecule in the production of antigens has been highlighted. The sensitivity of the developed assay resulted in 31 % for AMX and 60 % for PG, improving three-fold the sensitivity compared to the results obtained by using the existing in vitro diagnostic test for PG allergy (20 %). Therefore, the preparation of antigens by means of the employment of cationized proteins is a crucial strategy to improve the diagnostic sensitivity of in vitro tests.

☑ Penicillin metabolites PLA, 6-APA, PGoyl and PA permitted the formation of minor antigens which were specifically recognized by IgE from a cohort of 36 human samples. The clinical performances of the developed immunoassay were improved with respect to the current diagnostic tests, with a diagnostic specificity of 100 % (94 % to PLA). The diagnostic sensitivity ranged from 67 to 100 %, depending on the metabolite studied, with PLA, 6-APA and PGoyl antigens achieving the best sensitivities.
Conclusions

- The evaluation of major antigens to the β-lactam antibiotics CFR, CFO, CFT, MRP and AZT showed that they are not recognized by specific IgE in a cohort from 37 allergic patients. However, when minor antigens were prepared, it has been demonstrated that they show immunogenic capacity, with high sensitivity (<0.01 IU/mL) and specificity (100%). It has been concluded that the conjugation route followed when preparing antigens for β-lactam allergy diagnosis is a key step in order to specifically and selectively recognize IgE antibodies.

- The generation of reagents to determine specific IgE to clavulanic acid for the in vitro diagnostics of this target has been studied. To this end, the importance of the chemical structure for allergic diagnosis to clavulanic acid has been highlighted. The esterification of potassium clavulanate and the oxidation of the alcohol at the C-6 side chain permitted to use them for the production of specific IgG antibodies in a three-fold higher ratio than to other families of β-lactam antibiotics. However, only the antigen linked to HSA after esterification of potassium clavulanate, CVL-1, was able to detect specific IgE to clavulanic acid. Therefore, the diagnostic sensitivity was 50%, permitting the in vitro quantification of specific IgE to clavulanic acid for the first time.

- A cohort of 20 skeletally-diverse compounds for the β-lactam antibiotics AMX, AMP, MRP and AZT, and the precursors 6-APA and 7-ACDA has been synthetized by DOS. These compounds have proved to be capable of recognizing different epitopes when tested with specific IgG from immunized rabbits, even when their chemical structures had been highly modified. Not only the diagnostic specificity of the in vitro immunoassay has been observed to be high, but also was the diagnostic selectivity, mostly with the AMX and AMP-based antigens. The use of a combinatorial technique in the production of selective antigens for β-lactam allergy testing has been assessed for the first time to the best of our knowledge. It has been demonstrated that the incorporation of skeletally diversity resulted in the recognition of additional epitopes, highlighting the potential of this approach for the preparation of antigens.
In conclusion, all the developed approaches contribute to the synthesis of novel haptns derived of β-lactam antibiotics. In consequence, the unprecedented haptns help to optimize an \textit{in vitro} test with the diagnostic sensitivity and specificity needed to identify and discriminate allergic patients to β-lactam antibiotics, improving the performance of the tests currently in use.

Beyond the results presented herein, this dissertation opens up new possibilities for the diagnosis of allergies to β-lactam antibiotics that might help to improve the quality of life of allergic people to β-lactam antibiotics. The produced antigens could be integrated in commercial diagnostic tests in conjunction with the antigens currently in use what might improve the reliability of drug allergy diagnosis. This might enable clinical evidences that support the decision-making of the allergist, inform allergen-avoidance regimes, ameliorate the design of personalized therapeutic strategies, and advance the β-lactam delabeling initiatives in the clinical practice.
6. ANNEXES
6.1. Annex 1

Electronic supplementary information (ESI†)

Boosting the sensitivity of in vitro β-lactam allergy diagnostic tests
Edurne Peña-Mendizabal, Sergi Morais and Ángel Maquieira

Experimental section

1. General Experimental

NMR Spectra: 1H and 13C-NMR spectra were recorded on Bruker AVIII HD NanoBay 400MHz spectrometer using TOPSPIN software. Proton and carbon chemical shifts (δ^1H, δ^{13}C) are quoted in ppm and referenced to tetramethylsilane with residual protonated solvent as the internal standard. Resonances are described using the following abbreviations; s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), m (multiplet), br (broad), app (apparent), dd (doublet of doublets), etc. Coupling constants (J) are given in Hz and are rounded to the nearest 0.1 Hz.

Mass Spectra: High resolution mass spectra (HRMS) were recorded using a AB SCIEX TripleTOFTM 5600 LC/MS/MS System. The LC system used was an Agilent 1290 HPLC system. The analyses were performed using an Agilent EC-C$_{18}$. The date acquisition used are in positive mode, over a mass range of 100 - 950 m/z. The MS was using an IDA acquisition method with: the survey scan type (TOF-MS) and the dependent scan type (product ion) using 35 V of collision energy. Data was evaluated using the qualitatively evaluated using the Peak View™ software. m/z values are reported in Daltons; high resolution values are calculated to four decimal places from the molecular formula, all found values being within a tolerance of 5 ppm.
Chromatography techniques: TLC was performed on Merck Glass TLC silica gel 60 F₂₅₄ 0.2 mm precoated plates and visualised using ultraviolet light and potassium permanganate stain.

MS-MALDI-TOF: The samples were analyzed in a 5800 MALDI TOF-TOF (ABSciex) in positive linear mode (1,500 shots every position) in a mass range of 15,000-100,000 m/z.

2. Chemicals, immunoreagents and buffers

Benzylenicillin sodium salt, amoxicillin trihydrate, aztreonam (AZT), 1,3-diaminopropane, 1,5-diaminopentane, 1,7-diaminoheptane, ethylene diamine dihydrochloride, 1,4-diaminobutane dihydrochloride, 1,4-phenylenediamine dihydrochloride, N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), N,N’-dicyclohexylcarbodiimide (DCC), anhydrous di-tert-butyl dicarbonate ((Boc)₂O), sodium bicarbonate, Tween 20, human serum albumin (HSA), histone from calf thymus (H1) and keyhole limpet hemocyanin (KLH) are from Sigma-Aldrich (Madrid, Spain). Dichloromethane (DCM), N,N-dimethylformamide (DMF), dioxane, ethyl acetate, hydrochloric acid 37 % (HCl) and buffer salts are from Scharlau (Sentmenat, Spain) and used without further purification. Deuterated dimethyl sulfoxide (DMSO-d₆) is from ACROS Organics (New Jersey, USA). Specific anti-β-lactam IgE artificial human sera (ARTHUS) to PG is kindly provided by Dr. Fooke (Neuss, Germany) and anti-human IgE monoclonal antibody is from Ingenasa, S.A. (Madrid, Spain). Polyclonal secondary antibody goat α-rabbit IgG labelled with horseradish peroxidase (GAR-HRP) and goat anti-mouse antibody labelled with horseradish peroxidase (GAM-HRP) are purchased from Abcam (San Francisco, USA). IgE human serum (3rd WHO International Standard) is purchased from National Institute for Biological Standards and Control (NIBSC) (Hertfordshire, UK) and tetramethylbenzidine (TMB) substrate is from SDT GmbH (Baesweiler, Germany). Omalizumab antibody and Coomassie Brilliant Blue R-250 staining solution are from Bio-Rad (Madrid, Spain). Amicon Ultra 0.5 pre-concentred 10 K filters are from Fisher Scientific (Madrid, Spain).

The employed buffers are: (I) sodium phosphate buffer 0.1 M, sodium chloride 0.15 M, pH 7.2; (II) MES 0.1 M, pH 4.7; (III) sodium carbonate 0.5 M, pH 11.0; (IV)
phosphate buffer saline (PBS 1X, 0.008 M sodium phosphate dibasic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M potassium chloride, pH 7.4); (V) PBS-T (PBS 1X containing 0.05 % Tween 20); and (VI) sodium carbonate/bicarbonate buffer 0.1 M, pH 9.6, as printing buffer. All buffers are filtered through a 0.45-μm pore size nitrocellulose membrane from Thermo Fisher Scientific (Madrid, Spain) before being used.

3. Synthesis of BLC-derived haptens

Boc-amoxicillin

\[
\text{NaHCO}_3 (200 \text{ mg}, 2.38 \text{ mmol, 2 equiv.}) \text{ is added to a solution of amoxicillin (440 mg, 1.19 mmol) in 150 mL H}_2\text{O and stirred at 5 °C. Anhidrious (Boc)}_2\text{O (390 mg, 1.79 mmol, 1.5 equiv.) dissolved in 1.5 mL dioxane is added dropwise and the mixture is allowed to react at 0 °C for 1 h and then overnight at room temperature. The organic layer is extracted and washed twice with EtOAc and saturated NaHCO}_3, respectively. Aqueous layers are mixed and acidified with HCl 6 M to pH 1 and extracted three times with EtOAc. Organic layers are collected and dried over NaSO}_4. The solvent was evaporated and the desired compound dried under reduced pressure. Yield: 97 %.}
\]

\[
{^1}H \text{ NMR (400 MHz, DMSO-d}_6\): } \delta 9.36 (s, 1H), 8.73 (d, J = 7.9 Hz, 1H), 7.18 (d, J = 9.7 Hz, 2H), 6.66 (d, J = 8.3 Hz, 2H), 5.45 (dd, J = 7.8, 4.2 Hz, 1H), 5.37 (d, J = 4.2 Hz, 1H), 5.25 (d, J = 8.5 Hz, 1H), 4.15 (s, 1H), 1.91 (s, 1H), 1.55 (s, 3H), 1.41 (s, 3H), 1.38 (s, 9H). {^{13}}C \text{ NMR (100 MHz, DMSO-d}_6\): } \delta 173.30, 170.46, 168.99, 156.80, 128.46, 114.86, 78.16, 70.47, 67.50, 66.36, 64.19, 59.80, 57.91, 30.52, 28.19, 26.71, 13.85. HRMS (ESI-TOF) m/z calculated for C$_{21}$H$_{27}$N$_3$O$_7$S ([M+H$^+$]): 466.1642, found 466.2539.

3.1. BLC-oyl derivates
0.150 mmol of the corresponding BLC dissolved in deionized water (0.1 M) was basified by slow addition of sodium carbonate 0.5 M, pH 11.0. Then, 0.165 mmol (1.1 equiv) of the corresponding diamine was added dropwise at 0 °C under nitrogen atmosphere. The reaction was stirred at room temperature for 3 h followed by an acidification to pH 4.0 with HCl 6.0 M. The solution was filtrated and the desired precipitate washed twice with acidified water. The compound was allowed to dry under vacuum to give a white powder that was characterized by NMR and MS and used without further purification. Yield of the reaction was corrected by measuring the amount of salts (Na₂CO₃ and NH₄Cl) present. Haptens 1-6 (Scheme S1) were obtained though this route.

Hapten 1

![Hapten 1 Reaction Scheme]

Yield: 97 %. HRMS (ESI-TOF) m/z calculated for C₁₉H₂₈N₄O₄S ([M+H⁺]): 409.1904, found 409.1906.

Hapten 2

![Hapten 2 Reaction Scheme]

Yield: 61 %. HRMS (ESI-TOF) m/z calculated for C₂₁H₃₂N₄O₄S ([M+H⁺]): 437.2217, found 437.2222.

Hapten 3
Yield: 77 %. HRMS (ESI-TOF) m/z calculated for C_{23}H_{36}N_{4}O_{4}S ([M+H^+]): 465.2530, found 465.2527.

Hapten 4

Yield: 100 %. HRMS (ESI-TOF) m/z calculated for C_{19}H_{29}N_{5}O_{5}S ([M+H^+]): 440.1962, found 440.1971.

Hapten 5

Yield: 80 %. HRMS (ESI-TOF) m/z calculated for C_{21}H_{33}N_{5}O_{5}S ([M+H^+]): 468.2275, found 468.3913.

Hapten 6
Yield: 100 %. HRMS (ESI-TOF) m/z calculated for C_{23}H_{37}N_{5}O_{5}S([M+H^+]): 496.2588, found 496.2589.

3.2. **BLC-anyl derivates**

0.165 mmol (1.1 equiv) of the corresponding diamine was added dropwise at 0 °C under nitrogen atmosphere to 0.150 mmol of the corresponding BLC (the free acid) dissolved in DCM/DMF (0.1 M), treated with NHS and DCC (1 equiv.). The reaction was stirred for 3 h at room temperature. The solution mixture was filtered under vacuum, concentrated and dried under reduced pressure to give a white powder that was characterized by NMR and MS and used without further purification. Haptens 7-13 (Scheme S1) were obtained though this route.

Hapten 7

Yield: 100 %. HRMS (ESI-TOF) m/z calculated for C_{19}H_{26}N_{4}O_{3}S ([M+H^+]): 391.1798, found 391.1802.

Hapten 8
Yield: 66 %. HRMS (ESI-TOF) m/z calculated for C_{21}H_{30}N_{4}O_{3}S ([M+H^+]): 419.2111, found 419.2119.

Hapten 9

Yield: 77 %. HRMS (ESI-TOF) m/z calculated for C_{23}H_{34}N_{4}O_{3}S ([M+H^+]): 447.2424, found 447.2430.

Hapten 10

Yield: 51 %. HRMS (ESI-TOF) m/z calculated for C_{19}H_{27}N_{5}O_{4}S ([M+H^+]): 422.1857, found 422.1862.

Hapten 11
Yield: 14%. HRMS (ESI-TOF) m/z calculated for C_{21}H_{31}N_{5}O_{4}S ([M+H^+]): 450.2170, found 450.2911.

Hapten 12

Yield: 81%. HRMS (ESI-TOF) m/z calculated for C_{23}H_{35}N_{5}O_{4}S ([M+H^+]): 478.2483, found 478.3226.

Hapten 13

Yield: 85%. HRMS (ESI-TOF) m/z calculated for C_{24}H_{38}N_{5}O_{6}S ([M+H^+]): 522.2381, found 522.2561.

[a] Isolated yields were reported. [b] Reaction conditions: (I) -oyl haptens: Na₂CO₃ 0.5 M, pH 11.0, then HCl 6.0 M, pH=4.0, 3h, rt; (II) -anyl haptens: DCM/DMF 0.1 M, 3h, rt. [c] Poor yield due to transfer loses.
4. NMR spectra

Boc-amoxicillin

\(^1\)H NMR (400 MHz, DMSO-d6) δ 8.36 (s, 1H), 8.73 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 5.45 (d, J = 7.8 Hz, 1H), 5.37 (d, J = 4.2 Hz, 1H), 5.25 (s, J = 8.5 Hz, 1H), 4.15 (s, 1H), 1.91 (s, 3H), 1.55 (s, 3H), 1.41 (s, 3H), 1.38 (s, 9H).

\(^13\)C NMR (100 MHz, DMSO-d6) δ 173.30, 170.49, 168.99, 156.80, 128.46, 114.86, 78.16, 70.47, 67.50, 66.38, 64.18, 59.80, 57.91, 30.52, 28.19, 26.71, 13.83.
Annex 1

Hapten 1

[Chemical structure image]

[1H NMR spectrum]

[13C NMR spectrum (100 MHz, DMSO-d6)]
Annex 1

Hapten 2

![Hapten 2](image)

H-NMR (400 MHz, DMSO-d6)

![H-NMR spectrum](image)

C-NMR (100 MHz, DMSO-d6)

![C-NMR spectrum](image)
Annex 1

Hapten 3

H-NMR (400 MHz, DMSO-d6)

1^3C-NMR (100 MHz, DMSO-d6)
Annex 1

Hapten 4

\[\text{H-NMR (400 MHz, DMSO-}d_6) \]

\[\text{^13C-NMR (100 MHz, DMSO-}d_6) \]
Annex 1

Hapten 5

[Chemical structure images and NMR spectra]

\[\text{H-NMR (400 MHz, DMSO-\text{d6})}\]

\[\text{13C-NMR (100 MHz, DMSO-\text{d6})}\]
Annex 1

Hapten 6

1H-NMR (400 MHz, DMSO-d_6)

13C-NMR (100 MHz, DMSO-d_6)
Hapten 7

1H-NMR (400 MHz, DMSO-d_6)

13C-NMR (100 MHz, DMSO-d_6)
Annex 1

Hapten 8
Hapten 9

1H-NMR (400 MHz, DMSO-d_6)

13C-NMR (100 MHz, DMSO-d_6)
Annex 1

Hapten 10

1H-NMR (400 MHz, D2O)

13C-NMR (100 MHz, DMSO-d$_6$)
Hapten II

1H-NMR (400 MHz, DMSO-d$_6$)

13C-NMR (100 MHz, DMSO-d$_6$)
Annex 1

Hapten I2

\[\text{H-NMR (400 MHz, DMSO-}\delta\text{)}\]

\[\text{1H-NMR (100 MHz, DMSO-}\delta\text{)}\]
Hapten 13
5. Preparation of the antigens

Strategy I) Using synthesized haptens

In the case of the PG reference antigen (Scheme S1, entry 14) and the negative control (AZT), the conjugation was performed through the lysine residues of the protein HSA by β-lactam ring opening, through amidation between the carbonyl carbon of the β-lactam ring and amino group of lysine residues (Scheme S2), as previously described,\(^1\) with few modifications. Briefly, HSA (2.0 mg) dissolved in sodium carbonate 0.5 M, pH 11.0, reacted with PG or AZT (0.03 mmol, 1,000 equiv.) overnight at room temperature.

![Scheme 6.1.S2. PG-oyl formation after β-lactam ring opening.](image)

Modified -oyl and -anyl antigens were prepared following the carbodiimide chemistry. For that, HSA (2.0 mg) and the corresponding impure modified BLC hapten (4.0 mg) were dissolved in 200 µL and 1 mL, respectively, of sodium phosphate buffer 0.1 M, NaCl 0.15 M, pH=7.2. Then, 500 µL of the BLC hapten solution was mixed up in an Eppendorf with the HSA solution (200 µL) and EDC (10.0 mg) was added. The solution was allowed to react at room temperature for 2 hours.

All antigens were purified by gel filtration chromatography on Amicon Ultra 0.5 pre-concentred 10 K filters using PBS 1X, pH 7.4, as elution buffer. Finally, they were diluted to 1.0 mg/mL and stored at -20 ºC until used. Protein quantification was performed by the Coomassie/Bradford colorimetric assay.\(^2\) Molar ratios protein-hapten were determined by MS-MALDI-TOF.\(^3\)
Strategy II) Using cationized carrier molecules

Diamine dihydrochloride salts used in this study were ethylene diamine, 1,4-diaminobutane and 1,4-phenylenediamine. Major antigens were produced with this strategy and the carrier proteins used were HSA and H1.

In order to cationize carrier proteins, 1.0 mmol of the corresponding diamine dihydrochloride salt (1 equiv) dissolved in 600 µL of MES 0.1 M, pH 4.7 (coupling buffer) was mixed up with 2.0 mg of the carrier protein dissolved in 200 µL of coupling buffer. Then, an EDC hydrochloride solution of 10 mg/mL in coupling buffer was prepared and 200 µL of this solution was added to the reaction mixture. The solution was allowed to react overnight at room temperature. Cationized proteins were purified by gel filtration chromatography on 10 K preconcented filters using sodium carbonate 0.5 M, pH 11.0, as the elution buffer for the following conjugation step.

Then, a solution of the corresponding BLC (1,000 equiv.) in sodium carbonate 0.5 M, pH 11.0, was added to the solutions. The reactions were allowed to stir at room temperature overnight. Purification and quantification of the protein-modified antigens were performed as explained in Strategy I.
6. MS-MALDI-TOF spectra

The molecular weight (MW) of each antigenic determinant was calculated from the peak centroid of the peaks according to the following equation:

\[
\text{MW(determinant)} - \text{MW(protein)} / \text{MW(hapten)}.
\]

The incremental change in molecular weight due to incorporation of hapten molecules to protein corresponds to the number of hapten molecules per protein molecule.

Control HSA
PG antigens

Antigen 7
Antigen 8
Antigen 9
Annex 1

AMX antigens

Antigen 10

Antigen 11
Antigen 12
7. Assay protocol for the evaluation of the structural antigens

Assays consist on the detection of specific IgG (Figure S1, assay I) and IgE (Figure S1, assays II and III) on standard DVDs (CD Rohling-up GmbH, Saarbrücken, Germany). For that, antigens (40 µg/mL) and controls (negative and positive), prepared in printing buffer, were spotted in microarray format (20 arrays per disk of 4 × 4 spots, Figure S2a) by dispensing 25 nL of each one, using a noncontact printing device (AD 1500 BioDot, Inc., Irvine, CA). The spots were 500 µm in diameter with a center-to-center distance of 1.0 mm. Within each microarray (Figure S2b-c), spots for each antigen (two replicates, position 3-8) and negative (HSA, position 1) and positive (rabbit IgG or human IgE, position 2) controls are included. After printing, the DVD was incubated for 16 h at 37 ºC.

Figure 6.1.S1. Scheme of the microimmunoassays I, II and III based on a direct format with colorimetric detection. aα-IgE serum from allergic patients and controls was used in assay III.

Figure 6.1.S2. A) Image of the array on the DVD surface; B) Lay-out of the antigens and controls printed on the DVD (Position 1: HSA, negative control, C(-); 2: human IgE, positive control, C(+); 3: Aztreonam-oyl antigen, negative control C(-); 4-7: antigen 1-4; 8: Reference antigen); C) Representative image of the array with specific antigens and controls printed on the DVD. Artificial human serum specific to PG was used.

For the detection of specific IgG to penicillins, different dilutions (1/1,000-1/32,000) of rabbit sera and control (PBS-T) (25 µL per sample) were added to each array and incubated for 15 min. Then, the DVD was washed with PBS-T and water and 25 µL
of the polyclonal secondary antibody GAR-HRP in PBS-T buffer (dilution 1/400) was added for 15 min followed by the washing step. For the detection of specific IgE, 25 µL of sample was added to each array. Samples were incubated for 15 min when artificial human serum was used, while serum samples from allergic patients and controls were incubated for 30 min. After washing, 25 µL of mAb-IgE in PBS-T buffer (1.0 µg/mL) was added and incubated for 15 min. After washing as before, 25 µL of a 1/100 dilution of GAM-HRP was added for 15 min. Finally, immunoreaction was developed in all immunoassays by homogenously dispensing 1.0 mL of TMB along the whole disc surface. The reaction was stopped by washing the disk with water after 15 min. Signals were read by a modified DVD drive and the data was analyzed as previously described. All experiments were repeated 3 times.

BLC-specific IgE levels expressed as units of specific IgE (IU/mL) were determined, using the 3rd WHO standard for total serum IgE content involving heterologous interpolation. The calibration curve was built performing a sandwich immunoassay where 3rd WHO International Standard was used as calibrator, and Omalizumab as the capture antibody. All the other immunoreagents were the same as used for the determination of specific IgE (assays II and III). The standard data points, signal versus semi-log concentration, were the mean of 10 curves performed on different disks during several days. A four-parameter logistic (4PL) curve was fitted through the points, using SigmaPlot 11 software.

Concentrations of specific IgE were calculated from the calibration curve for total IgE. Statistical significances between the obtained IgE concentrations for the diamine-derived antigens and the reference were determined by the Holm-Sidak method using the SigmaPlot 11 software and P values of < 0.001 were considered significant.
8. Patients

The study of the reactivity of the prepared antigens towards the sera from allergic patients included patients (I) whose culprit drug was PG, AMX or augmentin and (II) whose culprit drug was another BLC. A cohort of 35 subjects with negative skin test to BLCs and with good tolerance to them were used as controls. Clinical characteristics from the 35 patients included in the study are shown in Supplementary Table S1. All samples from patients and controls were kindly provided by the Hospital Universitari i Politènic La Fe, Valencia, Spain, and informed consent for the diagnostic procedures was obtained from all patients. Patients were diagnosed following the procedure described in the European Network of Drug Allergy (ENDA) protocol based on skin testing, in vitro tests or drug provocation test, when necessary. This study was approved by the Hospital Universitari i Politènic La Fe ethical review committee. All experiments were performed in accordance with the relevant guidelines and regulations.
Table 6.1.S1. Clinical characteristics of the allergic patients.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex([a])</th>
<th>Year birth</th>
<th>Clinical manifestation</th>
<th>Clinical Entity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>M</td>
<td>1969</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>02</td>
<td>F</td>
<td>1978</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>03</td>
<td>M</td>
<td>1936</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>04</td>
<td>F</td>
<td>1939</td>
<td>Cefazolin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>05</td>
<td>M</td>
<td>1949</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>06</td>
<td>F</td>
<td>1948</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>07</td>
<td>F</td>
<td>1967</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>08</td>
<td>F</td>
<td>1960</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>09</td>
<td>M</td>
<td>1956</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>1982</td>
<td>Cefuroxime</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>1972</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>1964</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>1978</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>NR([b])</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>1961</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>1948</td>
<td>Amoxicillin</td>
<td>Inespecific</td>
<td>Immediate</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>1946</td>
<td>Penicillin G</td>
<td>Inespecific</td>
<td>Delayed</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>1977</td>
<td>Penicillin G</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>1953</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>1951</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>1964</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>1976</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>1961</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>1968</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>NR</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>1965</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Delayed</td>
</tr>
<tr>
<td>25</td>
<td>M</td>
<td>1982</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>1982</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>1970</td>
<td>Piperacillin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>28</td>
<td>F</td>
<td>1951</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>29</td>
<td>F</td>
<td>1982</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>1984</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>31</td>
<td>F</td>
<td>1963</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>NR</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>1972</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Immediate</td>
</tr>
<tr>
<td>33</td>
<td>F</td>
<td>1962</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Delayed</td>
</tr>
<tr>
<td>34</td>
<td>M</td>
<td>1963</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Immediate</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>1975</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>NR</td>
</tr>
</tbody>
</table>

\([a]\) Sex: F=Female, M=Male; \([b]\) NR=No reported in the clinical history
Table 6.1.S2. Results of the analysis of human serum samples

<table>
<thead>
<tr>
<th>Patient</th>
<th>Prick-test</th>
<th>ImmunoCAP Immunocap (in IU/mL)</th>
<th>Multiplex Immunoassay[c] (in IU/mL)</th>
<th>Antigen No</th>
<th>PG</th>
<th>AMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>PG</td>
<td>AMX</td>
<td>PG</td>
<td>AMX</td>
<td>1b</td>
<td>3b</td>
</tr>
<tr>
<td>01</td>
<td>N</td>
<td>N</td>
<td>13.60</td>
<td>10.20</td>
<td>0.23</td>
<td>0.48</td>
</tr>
<tr>
<td>02</td>
<td>N</td>
<td>P</td>
<td>0.03</td>
<td>0.16</td>
<td>0.34</td>
<td>0.23</td>
</tr>
<tr>
<td>03</td>
<td>N</td>
<td>P</td>
<td>2.16</td>
<td>1.64</td>
<td>3.65</td>
<td>0.20</td>
</tr>
<tr>
<td>04</td>
<td>N</td>
<td>P</td>
<td>0.00</td>
<td>0.82</td>
<td><LOD</td>
<td>0.44</td>
</tr>
<tr>
<td>05</td>
<td>NR</td>
<td>NR</td>
<td>2.14</td>
<td>1.01</td>
<td>0.66</td>
<td>0.18</td>
</tr>
<tr>
<td>06</td>
<td>N</td>
<td>P</td>
<td>1.83</td>
<td>0.91</td>
<td>3.47</td>
<td><LOD</td>
</tr>
<tr>
<td>07</td>
<td>NR</td>
<td>NR</td>
<td>1.02</td>
<td>0.79</td>
<td>1.11</td>
<td>0.21</td>
</tr>
<tr>
<td>08</td>
<td>N</td>
<td>P</td>
<td>0.08</td>
<td>0.13</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>09</td>
<td>N</td>
<td>N</td>
<td>0.00</td>
<td>0.95</td>
<td><LOD</td>
<td>2.75</td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td>P</td>
<td>0.09</td>
<td>0.74</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>11</td>
<td>N</td>
<td>P</td>
<td>0.01</td>
<td>0.03</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>12</td>
<td>N</td>
<td>P</td>
<td>0.02</td>
<td>0.04</td>
<td><LOD</td>
<td>0.20</td>
</tr>
<tr>
<td>13</td>
<td>N</td>
<td>P</td>
<td>0.00</td>
<td>0.15</td>
<td>0.11</td>
<td><LOD</td>
</tr>
<tr>
<td>14</td>
<td>N</td>
<td>P</td>
<td>0.12</td>
<td>0.29</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>15</td>
<td>N</td>
<td>N</td>
<td>0.03</td>
<td>0.07</td>
<td>0.18</td>
<td><LOD</td>
</tr>
<tr>
<td>16</td>
<td>N</td>
<td>N</td>
<td>0.01</td>
<td>0.03</td>
<td>0.16</td>
<td><LOD</td>
</tr>
<tr>
<td>17</td>
<td>N</td>
<td>N</td>
<td>0.04</td>
<td>0.06</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>18</td>
<td>N</td>
<td>P</td>
<td>0.30</td>
<td>0.24</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>19</td>
<td>NR</td>
<td>N</td>
<td>0.02</td>
<td>0.12</td>
<td>0.16</td>
<td><LOD</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>NR</td>
<td>0.03</td>
<td>0.08</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>21</td>
<td>N</td>
<td>P</td>
<td>0.17</td>
<td>0.46</td>
<td>0.08</td>
<td><LOD</td>
</tr>
<tr>
<td>22</td>
<td>P</td>
<td>P</td>
<td>0.00</td>
<td>0.03</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>23</td>
<td>P</td>
<td>P</td>
<td>0.00</td>
<td>0.09</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>24</td>
<td>N</td>
<td>P</td>
<td>0.17</td>
<td>0.33</td>
<td>0.21</td>
<td><LOD</td>
</tr>
<tr>
<td>25</td>
<td>N</td>
<td>P</td>
<td>0.03</td>
<td>0.24</td>
<td>0.20</td>
<td><LOD</td>
</tr>
<tr>
<td>26</td>
<td>N</td>
<td>N</td>
<td>0.43</td>
<td>0.99</td>
<td>0.62</td>
<td><LOD</td>
</tr>
<tr>
<td>27</td>
<td>N</td>
<td>N</td>
<td>0.00</td>
<td>0.00</td>
<td>0.46</td>
<td><LOD</td>
</tr>
<tr>
<td>28</td>
<td>N</td>
<td>P</td>
<td>0.00</td>
<td>0.00</td>
<td>0.25</td>
<td><LOD</td>
</tr>
<tr>
<td>29</td>
<td>NR</td>
<td>NR</td>
<td>3.01</td>
<td>7.02</td>
<td>2.62</td>
<td>1.39</td>
</tr>
<tr>
<td>30</td>
<td>N</td>
<td>N</td>
<td>0.05</td>
<td>0.41</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>31</td>
<td>N</td>
<td>P</td>
<td>0.00</td>
<td>0.01</td>
<td>0.15</td>
<td><LOD</td>
</tr>
<tr>
<td>32</td>
<td>P</td>
<td>P</td>
<td>0.03</td>
<td>0.24</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>33</td>
<td>N</td>
<td>N</td>
<td>0.00</td>
<td>0.01</td>
<td>0.49</td>
<td><LOD</td>
</tr>
<tr>
<td>34</td>
<td>N</td>
<td>P</td>
<td>0.01</td>
<td>0.69</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>35</td>
<td>N</td>
<td>P</td>
<td>0.08</td>
<td>0.09</td>
<td><LOD</td>
<td><LOD</td>
</tr>
</tbody>
</table>

Immunoassay values are the mean of at least three replicates and relative standard deviation (RSD) ranged from 4 to 13%. [a] P= Positive, N= Negative, NR= Not Realized; [b] IU/mL= 2.4 ng/mL; [c]: Multiplex-DVD assay, using H1 - oyl antigens; [d] Augmentin is a combination of AMX and potassium clavulanate; [e] <LOD= Value below the limit of detection (LOD).
REFERENCES

6.2. Annex 2

Supplementary Information

Penicillin antigens based on metabolites for *in vitro* drug allergy testing

Experimental section

Table 6.2. S1. Clinical characteristics of the allergic patients

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Sex[a]</th>
<th>Age (Years)</th>
<th>Culprit Drug</th>
<th>Clinical Manifestation</th>
<th>Route</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>68</td>
<td>Augmentin[b]</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>72</td>
<td>Cefuroxime</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>37</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>77</td>
<td>Cefazolin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>57</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>67</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>68</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>49</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>52</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>61</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>56</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>64</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>53</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>41</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>35</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>34</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>24</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>39</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

[a] F: female, M: male; [b] Augmentin is a combination of amoxicillin and potassium clavulanate
Annex 2

1H NMR (CDCl$_3$, 400 MHz)

PGoy1

13CNMR (CDCl$_3$, 100 MHz)

PGoyl
Annex 2

1H NMR (CDCl$_3$, 400 MHz)

BPG

^{13}C NMR (CDCl$_3$, 100 MHz)

BPG
6.3. Annex 3

Supplementary information

Neo-antigens for the serological diagnosis of IgE-mediated drug allergic reactions to antibiotics cephalosporin, carbapenem and monobactam

Edurne Peña-Mendizabal, Sergi Morais and Ángel Maquieira

Experimental section

1. Instrumental methods

NMR Spectra: 1H and 13C-NMR spectra were recorded on Bruker AVIIIHD NanoBay 400 MHz spectrometer using TOPSPIN software. Proton and carbon chemical shifts (δH, δC) are quoted in ppm and referenced to tetramethylsilane with residual protonated solvent as the internal standard. Resonances are described using the following abbreviations; s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), m (multiplet), br (broad), app (apparent), dd (doublet of doublets), etc. Coupling constants (J) are given in Hz and are rounded to the nearest 0.1 Hz.

Mass Spectra: High resolution mass spectra were recorded using an AB SCIEX Triple TOF™ 5600 LC/MS/MS System. The LC system used was an Agilent 1290 HPLC system. The analyses were performed using an Agilent EC-C$_{18}$. The date acquisition used are in positive mode, over a mass range of 100 – 950 m/z. The MS was using an IDA acquisition method with the survey scan type (TOF-MS) and the dependent scan type (product ion) using 35 V of collision energy. Data was evaluated using the qualitatively evaluated using the PeakView™ software. m/z values are reported in Daltons; high resolution values are calculated to four decimal places from the molecular formula, all found values being within a tolerance of 5 ppm.
Chromatography techniques: TLC was performed on Merck Glass TLC silica gel 60 F\textsubscript{254} 0.2 mm precoated plates and visualised using ultraviolet light and potassium permanganate stain.

MS-MALDI-TOF: The samples were analyzed in a 5800 MALDI TOF-TOF (ABSciex) in positive linear mode (1500 shots every position) in a mass range of 15,000-100,000 m/z. For that, 1.0 μL of every sample solution was spotted onto the MALDI plate. After the droplets were air-dried at room temperature, 1.0 μL of matrix (10 mg/mL sinapinic acid in 0.1 % TFA-ACN/H\textsubscript{2}O (7:3, v/v)) was added and allowed to air-dry at room temperature.

2. Chemical and characterization procedures

Acidification of cephalosporin salts

Acidification of ceftriaxone sodium salt hemi(heptahydrate)

4-((E)-2-(((6R,7R)-2-carboxy-3-(((2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio)methyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-7-yl)amino)-1-(methoxyimino)-2-oxoethyl)thiazol-2-aminium

A dried round bottom flask (RBF) is filled with a solution of ceftriaxone sodium salt hemi(heptahydrate) (508.4 mg, 0.77 mmol, 1 eq) in H\textsubscript{2}O (7 mL). Then, the solution is acidified with 280 μL of HCl 6 M to pH=1 and vacuum filtration is performed. Finally, the product is dried over high vacuum to give a yellow solid in 99 % yield. 1H NMR (400 MHz, DMSO-\textit{d}_{6}): δ 13.73 (s, 1H), 11.87 (s, 1H), 9.58 (d, \textit{J} = 8.1 Hz, 1H), 7.23 (s, 2H), 6.73 (s, 1H), 5.76 (dd, \textit{J} = 7.9, 4.8 Hz, 1H), 5.13 (d, \textit{J} = 4.8 Hz, 1H), 4.38 (d, \textit{J} = 13.3
Acidification of cefuroxime sodium salt

(6R,7R)-3-((carbamoyloxy)methyl)-7-((E)-2-(furan-2-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid monohydrate

A dried RBF is filled with a solution of cefuroxime sodium salt (301.8 mg, 0.68 mmol, 1 eq) in H$_2$O (3 mL). Then, the solution is acidified with 200 µL of HCl 6 M to pH=1 and vacuum filtration is performed. Finally, the product is dried over high vacuum to give a yellow solid in 79 % yield. 1H NMR (400 MHz, DMSO-d$_6$): δ 13.62 (s, 1H), 9.77 (d, $J = 7.9$ Hz, 1H), 7.84 (d, $J = 1.2$ Hz, 1H), 6.69 (d, $J = 3.4$ Hz, 1H), 6.65 – 6.61 (m, 1H), 5.79 (dd, $J = 7.6$, 4.8 Hz, 1H), 5.19 (d, $J = 4.8$ Hz, 1H), 4.89 (d, $J = 12.9$ Hz, 1H), 4.61 (d, $J = 12.8$ Hz, 1H), 3.89 (s, 3H), 3.63 (d, $J = 17.6$ Hz, 2H), 3.45 (d, $J = 17.6$ Hz, 1H). 13C NMR (100 MHz, DMSO-d$_6$): δ 163.40, 162.84, 161.61, 156.43, 145.39, 144.91, 112.87, 112.02, 62.32, 62.27, 58.72, 57.37, 25.72. HRMS (ESI-TOF) m/z calculated for C$_{16}$H$_{16}$N$_4$O$_8$S ([M+H$^+$]): 443.0867, found: 443.1064.

Acidification of cefotaxime sodium salt

(6R,7R)-3-(acetoxymethyl)-7-((E)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid
A dried RBF is filled with a solution of cefotaxime sodium salt (300.6 mg, 0.63 mmol, 1 eq) in H₂O (4 mL). Then, the solution is acidified with 160 µL of HCl 6 M to pH=1 and vacuum filtration is performed. Finally, the product is dried over high vacuum giving a yellow solid in 69 % yield. ¹H NMR (400 MHz, DMSO-d₆): δ 13.68 (s, 1H), 9.59 (d, J = 8.2 Hz, 1H), 7.21 (s, 2H), 6.74 (s, 1H), 5.79 (dd, J = 7.9, 4.9 Hz, 1H), 5.15 (d, J = 4.8 Hz, 1H), 4.99 (d, J = 12.8 Hz, 1H), 4.69 (d, J = 12.8 Hz, 1H), 3.84 (s, 3H), 3.62 (d, J = 18.1 Hz, 1H), 3.48 (d, J = 18.1 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 170.22, 168.46, 164.15, 162.89, 148.69, 126.40, 123.00, 108.95, 62.70, 61.93, 58.67, 57.48, 54.92, 25.77, 20.58. HRMS (ESI-TOF) m/z calculated for C₁₆H₁₇N₅O₇S₂ ([M+H⁺]): 456.0642, found: 456.0646.
3. NMR spectra

4-((E)-2-(((6R,7R)-2-carboxy-3-(((2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio)methyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-7-yl)amino)-1-(methoxyimino)-2-oxoethyl)thiazol-2-aminium

H NMR (400 MHz, DMSO-d6) δ 13.75 (s, 1H), 11.87 (s, 1H), 9.58 (d, J = 8.1 Hz, 1H), 7.23 (s, 1H), 7.33 (s, 1H), 5.78 (d, J = 7.5, 4.8 Hz, 1H), 3.33 (d, J = 4.8 Hz, 1H), 4.34 (d, J = 13.3 Hz, 1H), 4.09 (d, J = 13.2 Hz, 1H), 3.83 (s, 3H), 3.73 (d, J = 18.4 Hz, 1H), 3.59 (s, 3H), 3.35 (d, J = 14.7 Hz, 1H).

DCl NMR (101 MHz, DMSO-d6) δ 167.85, 164.59, 162.98, 160.34, 156.19, 153.23, 148.52, 125.92, 128.93, 81.89, 58.64, 56.94, 42.79, 32.04, 26.21.
(6R,7R)-3-((carbamoyloxy)methyl)-7-((E)-2-(furan-2-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid monohydrate
(6R,7R)-3-(acetoxyethyl)-7-((E)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

1H NMR (400 MHz, DMSO-d$_6$) δ 13.68 (s, 1H), 9.59 (d, $J = 8.2$ Hz, 1H), 7.21 (s, 2H), 6.74 (s, 1H), 5.79 (d, $J = 7.9$ Hz, 1H), 5.15 (d, $J = 4.8$ Hz, 1H), 4.95 (d, $J = 12.8$ Hz, 1H), 4.69 (d, $J = 12.8$ Hz, 1H), 3.84 (s, 3H), 3.61 (s, 1H), 3.60 (d, $J = 18.1$ Hz, 1H), 3.48 (s, $J = 18.1$ Hz, 1H), 2.95 (s, 3H).

13C NMR (101 MHz, DMSO-d$_6$) δ 170.22, 168.46, 164.15, 162.89, 148.69, 128.40, 123.00, 108.95, 62.70, 61.93, 58.67, 57.68, 54.92, 22.77, 20.38.
4. **MS-MALDI-TOF spectra**

The histone H1 used in this study is an isolated lysine rich fraction of the mainly subfraction f1, which still have presence of the other subfractions that appear as multiple peaks in the spectra. Although H1 is not able to be analyze by MS-MALDI-TOF, HSA and H1 antigens were prepared following the same experimental procedure and both proteins present approximately 60 free lysine residues. These are the reasons why molar ratios (β-lactam/carrier protein) of H1 antigens were estimated to be the same as those obtained for the respective HSA antigens. Spectra showed corresponded to the HSA antigens. Both control HSA and H1 spectra have been included.

The molecular weight (MW) of each antigenic determinant was calculated from the peak centroid of the peaks according to the following equation: \[\frac{\text{MW(determinant)} - \text{MW(protein)}}{\text{MW(hapten)}} \]. The incremental change in molecular weight due to incorporation of hapten molecules to protein corresponds to the number of hapten molecules per protein molecule.
Control HSA

Control H1

Control H1
Annex 3

Ceftriaxone determinants

CFT –lloyl determinant

CFT –llanyl determinant
Meropenem determinants

MRP –lloyl determinant

MRP –llanyl determinant
Annex 3

Aztreonam determinants

AZT –lloyl determinant

AZT –llanyl determinant
5. Control samples

Table 6.3.S1. Clinical characteristics of the cohort of control patients

<table>
<thead>
<tr>
<th>Control Number</th>
<th>Sex</th>
<th>Age (Years)</th>
<th>Control Number</th>
<th>Sex</th>
<th>Age (Years)</th>
<th>Control Number</th>
<th>Sex</th>
<th>Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>M</td>
<td>21</td>
<td>14</td>
<td>M</td>
<td>56</td>
<td>27</td>
<td>M</td>
<td>68</td>
</tr>
<tr>
<td>02</td>
<td>F</td>
<td>32</td>
<td>15</td>
<td>M</td>
<td>46</td>
<td>28</td>
<td>F</td>
<td>58</td>
</tr>
<tr>
<td>03</td>
<td>M</td>
<td>55</td>
<td>16</td>
<td>F</td>
<td>69</td>
<td>29</td>
<td>F</td>
<td>45</td>
</tr>
<tr>
<td>04</td>
<td>F</td>
<td>35</td>
<td>17</td>
<td>F</td>
<td>35</td>
<td>30</td>
<td>F</td>
<td>72</td>
</tr>
<tr>
<td>05</td>
<td>F</td>
<td>79</td>
<td>18</td>
<td>F</td>
<td>42</td>
<td>31</td>
<td>F</td>
<td>49</td>
</tr>
<tr>
<td>06</td>
<td>F</td>
<td>71</td>
<td>19</td>
<td>M</td>
<td>31</td>
<td>32</td>
<td>F</td>
<td>55</td>
</tr>
<tr>
<td>07</td>
<td>F</td>
<td>64</td>
<td>20</td>
<td>F</td>
<td>61</td>
<td>33</td>
<td>F</td>
<td>49</td>
</tr>
<tr>
<td>08</td>
<td>F</td>
<td>60</td>
<td>21</td>
<td>F</td>
<td>71</td>
<td>34</td>
<td>F</td>
<td>50</td>
</tr>
<tr>
<td>09</td>
<td>M</td>
<td>82</td>
<td>22</td>
<td>M</td>
<td>63</td>
<td>35</td>
<td>F</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>56</td>
<td>23</td>
<td>F</td>
<td>66</td>
<td>36</td>
<td>F</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>62</td>
<td>24</td>
<td>F</td>
<td>49</td>
<td>37</td>
<td>F</td>
<td>76</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>63</td>
<td>25</td>
<td>F</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>76</td>
<td>26</td>
<td>F</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. **Calibration curve for IgE**

The calibration curve obtained for IgE determination using 3rd WHO International Standard for serum IgE and the capture antibody Omalizumab is shown in Figure 4. Calibrators used are 0, 0.35, 0.70, 3.50, 17.5 and 100. IU/mL. The standard data points (signal vs. semi-log concentration) were the mean of 5 curves performed in different days and on different disks. A four-parameter logistic (4PL) curve was fitted through the points, using SigmaPlot 11 software.

The data obtained shows a sensitivity (EC_{50}) of 0.92 ± 0.03 IU/mL, a slope of 1.24 and a regression coefficient (r^2) of 0.9998. Limit of detection (LOD) was calculated as the concentration corresponding to the signal of the blank plus 3 times its relative standard deviation, 0.008 IU/mL. The limit of quantification was 0.06 IU/mL, with a relative standard deviation ranging from 3 to 15%. The concentration of specific IgE for human serum samples was calculated using the calibration curve.

![Figure 6.3.S1. Calibration curve for IgE](image-url)
7. Dot blot results of rabbit sera for -lloyl and -llanyl determinants

Figures 6.3.S2-S4. Dot Blot results using sera raised from immunized rabbit to CFT, MRP and AZT with the corresponding HSA antigens to CFT, MRP and AZT. a) pre-immune sera diluted 1/100 (v/v), b) Sera diluted 1/100 (v/v) and c) 1/500 (v/v) in PBST.
8. Affinity parameters of rabbit sera for the different antigenic determinants

Table 6.3.S2. Affinity parameters (K_{d}^{\text{app}} and R^2) values of the polyclonal rabbit antibodies raised towards the BLC families of the -lloyl determinants

<table>
<thead>
<tr>
<th>Determinant</th>
<th>α-IgG-CFT</th>
<th>α-IgG-MRP</th>
<th>α-IgG-AZT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{d}^{\text{app}}</td>
<td>Dilution factor</td>
<td>R^2</td>
</tr>
<tr>
<td>HSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFR</td>
<td>9.896 \cdot 10^{-4}</td>
<td>1/1,011</td>
<td>0.9944</td>
</tr>
<tr>
<td>CFT</td>
<td>1.265 \cdot 10^{-3}</td>
<td>1/791</td>
<td>0.9989</td>
</tr>
<tr>
<td>CFO</td>
<td>1.201 \cdot 10^{-3}</td>
<td>1/833</td>
<td>0.9927</td>
</tr>
<tr>
<td>MRP</td>
<td>4.515 \cdot 10^{-3}</td>
<td>1/22</td>
<td>0.9989</td>
</tr>
<tr>
<td>AZT</td>
<td>9.678 \cdot 10^{-3}</td>
<td>1/1,033</td>
<td>0.9854</td>
</tr>
<tr>
<td>HI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFR</td>
<td>7.304 \cdot 10^{-4}</td>
<td>1/1,369</td>
<td>0.9865</td>
</tr>
<tr>
<td>CFT</td>
<td>8.642 \cdot 10^{-4}</td>
<td>1/1,157</td>
<td>0.9939</td>
</tr>
<tr>
<td>CFO</td>
<td>4.404 \cdot 10^{-4}</td>
<td>1/2,271</td>
<td>0.9975</td>
</tr>
<tr>
<td>MRP</td>
<td>4.515 \cdot 10^{-3}</td>
<td>1/22</td>
<td>0.9989</td>
</tr>
<tr>
<td>AZT</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

K_{d}^{\text{app}}= Apparent affinity constant (or apparent binding affinity) determined as the concentration of the specific α-IgG sera to achieve 50% of the maximum signal (expressed as 1/dilution factor); R^2= coefficient of determination, R-squared; NR^a=No recognition.
Table 6.3.S3. Affinity parameters (K_{d}^{app} and R^2) values of the polyclonal rabbit antibodies raised towards the BLC families of the -llanyl determinants

<table>
<thead>
<tr>
<th>-llanyl determinants</th>
<th>HSA</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-IgG-CFT</td>
<td>α-IgG-MRP</td>
</tr>
<tr>
<td></td>
<td>K_{d}^{app}</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>CFR</td>
<td>3.028·10^{-4}</td>
<td>1/3,303</td>
</tr>
<tr>
<td>CFT</td>
<td>2.314·10^{-4}</td>
<td>1/432</td>
</tr>
<tr>
<td>CFO</td>
<td>NR*</td>
<td>NR</td>
</tr>
<tr>
<td>MRP</td>
<td>9.891·10^{-4}</td>
<td>1/101</td>
</tr>
<tr>
<td>AZT</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

K_{d}^{app}= Apparent affinity constant (or apparent binding affinity) determined as the concentration of the specific α-IgG sera to achieve 50% of the maximum signal (expressed as 1/dilution factor); R^2= coefficient of determination, R-squared; NR*=No recognition.
9. Dose-response affinity curves obtained with polyclonal rabbit IgG

-lloyl determinants

a) HSA determinants

\[\text{Signal (a.u.)} \]

b) H1 determinants

\[\text{Signal (a.u.)} \]

Figure 6.35. Dose-response curves obtained for -lloyl determinants with polyclonal rabbit IgG. Dilution factors: 1/250, 1/1,000, 1/4,000 and 1/16,000 and blank, PBS-T. a) HSA determinants, b) H1 determinants
Figure 6.3.S6. Dose-response curves obtained for -llanyl determinants with polyclonal rabbit IgG. Dilution factors: 1/250, 1/1,000, 1/4,000 and 1/16,000 and blank, PBS-T. a) HSA determinants, b) H1 determinants
6.4. Annex 4

Supplementary information

Hapten synthesis for clavulanic acid

Experimental section

1H NMR (CDCl$_3$, 400 MHz)

![NMR Spectrum](image)
Annex 4

1H NMR (CDCl$_3$, 400 MHz)

1C NMR (CDCl$_3$, 100 MHz)
\(^1\)H COSY NMR (CDCl\(_3\), 400 MHz)

\(^1\)H-\(^{13}\)C HSQC NMR (CDCl\(_3\), 400/100 MHz)
Annex 4

1H-1C HMBC NMR (CDCl$_3$, 400/100 MHz)

1H NMR (CDCl$_3$, 400 MHz)
Table 6.4.S1. Limit of detection (LOD), sensitivity values (EC$_{50}$, dilution factor) and coefficient of determination (R2) for the homologous ELISA assays. A) HSA antigens. B) H1 antigens

<table>
<thead>
<tr>
<th></th>
<th>HSA</th>
<th></th>
<th>H1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOD</td>
<td>EC$_{50}$</td>
<td>R2</td>
<td>LOD</td>
</tr>
<tr>
<td>A)</td>
<td></td>
<td></td>
<td></td>
<td>B)</td>
</tr>
<tr>
<td>S1</td>
<td>2.450·10$^{-5}$ (or 1/40,816)</td>
<td>1.067·10$^{-4}$ (1/9,372)</td>
<td>0.99717</td>
<td>S1</td>
</tr>
<tr>
<td>S2</td>
<td>3.059·10$^{-5}$ (1/32,690)</td>
<td>1.354·10$^{-4}$ (1/7,386)</td>
<td>0.99806</td>
<td>S2</td>
</tr>
<tr>
<td>S3</td>
<td>4.121·10$^{-5}$ (1/24,266)</td>
<td>3.799·10$^{-4}$ (1/2,639)</td>
<td>0.99812</td>
<td>S3</td>
</tr>
<tr>
<td>S4</td>
<td>2.402·10$^{-5}$ (1/41,632)</td>
<td>1.788·10$^{-4}$ (1/5,593)</td>
<td>0.99715</td>
<td>S4</td>
</tr>
<tr>
<td>S5</td>
<td>NRa</td>
<td>NR</td>
<td>NR</td>
<td>S5</td>
</tr>
<tr>
<td>S6</td>
<td>5.906·10$^{-4}$ (1/1,693)</td>
<td>6.665·10$^{-4}$ (1/1,500)</td>
<td>0.93479</td>
<td>S6</td>
</tr>
</tbody>
</table>

The LOD was calculated as the signal of the blank plus 3 times its standard deviation. The half maximum effective concentration (EC$_{50}$) is determined as the concentration of the specific α-IgG serum to achieve 50% of the maximum signal; *NR=No recognition.

Table 6.4.S2. Values obtained (in arbitrary units, a.u.) for HSA and H1-based antigens using polyclonal IgG raised in serum S1

<table>
<thead>
<tr>
<th>Dilution factor</th>
<th>4.00·10$^{-3}$</th>
<th>1.00·10$^{-3}$</th>
<th>2.50·10$^{-4}$</th>
<th>6.25·10$^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVL HSA</td>
<td>15,909</td>
<td>15,533</td>
<td>10,773</td>
<td>3,908</td>
</tr>
<tr>
<td>CVL H1</td>
<td>15,749</td>
<td>15,553</td>
<td>11,306</td>
<td>6,918</td>
</tr>
<tr>
<td>CVL-1 HSA</td>
<td>12,887</td>
<td>11,803</td>
<td>8,464</td>
<td>2,656</td>
</tr>
<tr>
<td>CVL-1 H1</td>
<td>15,059</td>
<td>13,708</td>
<td>11,210</td>
<td>7,158</td>
</tr>
<tr>
<td>CVL-2 HSA</td>
<td>15,812</td>
<td>14,137</td>
<td>11,718</td>
<td>4,312</td>
</tr>
<tr>
<td>CVL-2 H1</td>
<td>15,027</td>
<td>12,654</td>
<td>9,645</td>
<td>3,312</td>
</tr>
</tbody>
</table>
Figure 6.4.S1. Cross-reactivity signals obtained with polyclonal rabbit IgG by heterogeneous ELISA assays for H1 coating antigens. Dilution factor represented: 2.50×10^{-4} (1/4,000).
6.5. Annex 5

Electronic supplementary information (ESI†)

Synthesis of skeletally diverse β-lactam haptens for the in vitro diagnosis of IgE-mediated drug allergy

Edurne Peña-Mendizabal, Bruce K. Hua, Ethel Ibañez-Echevarria, Dolores Hernández-Fernández de Rojas, Ángel Maquieira, Stuart L. Schreiber, and Sergi Morais

Experimental section

1. General methods

Oxygen- and/or moisture-sensitive reactions were carried out in flame-dried glassware under nitrogen atmosphere. All reagents and solvents were purchased and used as received from commercial vendors or synthesized according to cited procedures.

All yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Reaction progress was monitored by analytical thin-layer chromatography (TLC) and 1H-NMR spectroscopy. TLC analyses were performed using E. Merck silica gel 60 F254 pre-coated plates (250 µm). A handheld 254 nm UV lamp and potassium permanganate staining solution (with light heating) were used for detection. Flash column chromatography was performed using a Teledyne ISCO CombiFlash Rf+ purification system with RediSep Rf Gold Normal-Phase Silica columns.

Known compounds were characterized by, at minimum, 1H NMR spectroscopy. Novel synthetic intermediates and final compounds were characterized by, at minimum, 1H-NMR and 13C-NMR spectroscopy and HRMS. Further NMR experiments were performed as needed to confirm structural assignment.
NMR spectra were recorded on Bruker UltraShield 300 MHz and Ascend 400 MHz spectrometers. 1H and 13C-NMR chemical shifts (δH, δC) are reported in parts per milon (ppm) relative to the appropriate solvent—CDCl$_3$: 7.26 (δH), 77.16 (δC) ppm. (CD$_3$)$_2$SO: 2.50 (δH), 39.52 (δC) ppm. C$_6$D$_6$: 7.16 (δH), 128.06 (δC) ppm. Resonances are described using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), m (multiplet), br (broad), dd (doublet of doublets), etc. Coupling constants (J) are given in Hz and are rounded to the nearest 0.1 Hz. All NMR data were collected at 25 °C. All deuterated solvents were purchased from Cambridge Isotope Laboratories.

Low-resolution mass spectra (LRMS) were acquired on a Waters 2795 separations module coupled to a 3100 mass detector operating in ESI+ mode.
2. Experimental procedures

(E)-2-Cyclopropylboronic acid (3) was purchased from Combi-Blocks and dried over 3Å molecular sieves.

General Procedure A: Trimethylsilyldiazomethane methylation.

A flame-dried round-bottom flask was charged with a solution of corresponding BLC (1 equiv.) in methanol (1 mL) and DCM (0.2 M) under N₂ atmosphere. Then, (diazomethyl)trimethylsilane (2 M, 1 equiv.) was added dropwise and the reaction was allowed to stir at room temperature until the yellow solution turned clear. The solution was concentrated by rotary evaporation and purified by flash column chromatography (ISCO) to give the desired compound.

General Procedure B: Petasis reaction.

A flame-dried round-bottom flask was charged with (4R,5S)-5-benzyl-2,2-dimethyl-4-hydroxy-1,3-dioxolane 2 (1 equiv., 0.2 M) in the solvent system of 9:1 EtOH–hexafluoroisopropanol (v/v) and 3Å molecular sieves. To this stirred solution were added the corresponding BLC methyl ester 1a-1f (1.5 equiv) and (E)-2-cyclopropylvinylboronic acid 3 (1.5 equiv), successively. After stirring for 72 h at 40 °C, the resulting mixture was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give the desired compound.

General Procedure C: N-alkylation of the Petasis product.

A solution of the Petasis product (1 equiv., 0.2 M) and NaHCO₃ (10 equiv.) in DMF was stirred for 30 min at 0°C. Then, propargyl bromide (10 equiv., 80 % in toluene) was added under N₂. After stirring for 24 h at 70 °C, the reaction mixture was cooled to room temperature and quenched with NH₄Cl solution (50 mL). The resulting mixture was extracted with ether (3x50 mL), and combined organic layers were washed with brine, and dried over MgSO₄. The solution was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give the desired compound.
(5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-ol (2)

1. (S)-5-Benzyl-2,2-dimethyl-4-oxo-1,3-dioxolane

A flame-dried round-bottom flask was charged with a mixture of (S)-2-hydroxy-3-phenylpropanoic acid (10.00 g, 60.00 mmol) and p-TsOH·H₂O (500 mg) in 2,2-dimethoxypropane (30 mL) and acetone (100 mL) and was stirred at room temperature for 22 h. After concentration by rotary evaporation, the resulting residue was dissolved in ethyl acetate (150 mL), washed with sat. NaHCO₃ (100 mL), brine (100 mL), dried (MgSO₄), passed through a short pad of silica gel, and concentrated to provide a white solid (11.70 g, 96 % yield). ¹H-NMR (400 MHz, CDC1₃) δ: 7.28 – 7.23 (m, 5H), 4.65 (dd, 1H), 3.12 (ABq, 2H), 1.49 (s, 3H), 1.35 (s, 3H). ¹³C NMR (100 MHz, CDC1₃) δ: 172.49, 135.79, 129.81, 128.38, 127.03, 110.84, 75.04, 37.65, 26.93, 26.16. Characterization data consistent with those reported in the literature.
2. (4R,5S)-5-Benzyl-2,2-dimethyl-4-hydroxy-1,3-dioxolane (2)

To a stirred solution of (5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-one (1.83 g, 8.89 mmol) in toluene (37.5 mL) was added DIBAL-H (9.8 mL of a 1M solution in toluene, 9.78 mmol) at -78 °C. The resulting solution was stirred at the same temperature for 60 min and to this solution was added 1N HCl (9.8 mL) very slowly. After warming to room temperature, the solution was extracted with ethyl acetate (3 x 10 mL), filtered with MgSO₄, and concentrated to provide a pale yellow oil 2 (1.53 g, 84 % yield) after purification by flash chromatography (ISCO). ¹H-NMR (400 MHz, CDCl₃) δ: 7.36 – 7.20 (m, 5H), 5.28 – 5.21 (m, 1H), 4.31 – 4.26 (m, 1H), 3.06 (d, J = 6.8 Hz, 1H), 2.94 (qd, J =14.0, 6.6 Hz, 2H), 2.82 (br, 1H), 1.46 and 1.51 (two s, 6H, C(CH₃)₂ for major isomer), 1.35 and 1.57 (two s, 6H, C(CH₃)₂ for minor isomer); ratio of diastereomers was approximately 2: 1. Characterization data consistent with those reported in the literature.
6-aminopenicillanic acid (6-APA) methyl ester (1a)

General procedure A was followed using 6-APA (2.00 g, 9.25 mmol), methanol (1 mL), and (diazomethyl)trimethylsilane (4.6 mL, 9.25 mmol) to give the desired compound 1a as a viscous yellow oil (2.07 g, 97% yield). 1H-NMR (400 MHz, CDCl$_3$) δ: 5.51 (d, $J = 4.3$ Hz, 1H), 4.57 (d, $J = 4.3$ Hz, 1H), 4.40 (s, 1H), 3.77 (s, 3H), 1.79 (br, 2H), 1.66 (s, 3H), 1.50 (s, 3H).

(2S,3R,E)-5-Cyclopropyl-2-hydroxy-3-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)amino-1-phenyl-4-pentene (4a)

General procedure B was followed using (4R,5S)-5-benzyl-2,2-dimethyl-4-hydroxy-1,3-dioxolane 2 (759 mg, 3.64 mmol, 0.2 M) in 18.2 mL of the solvent system of 9:1 EtOH–hexafluoroisopropanol (v/v), 6-APA methyl ester 1a (1.26 g, 5.47 mmol, 1.5 equiv.) and (E)-2-cyclopropylvinylboronic acid 3 (590 mg, 5.27 mmol, 1.5 equiv.) to give the desired product 4a as a pale yellow oil (834 mg, 53% yield). 1H-NMR (400 MHz, CDCl$_3$) δ: 7.31 – 7.19 (m, 5H), 5.47 (dd, $J = 15.5$, 9.0 Hz, 1H), 5.43 (d, $J = 3.7$ Hz, 1H), 5.20 (dd, $J = 15.3$, 8.6 Hz, 1H), 4.44 (d, $J = 2.9$ Hz, 1H), 4.40 (s, 1H), 4.03 – 3.95 (m, 1H), 3.77 (s, 3H), 3.16 (d, $J = 9.1$ Hz, 1H), 2.73 (d, $J = 6.6$ Hz, 2H), 2.42 (br, 2H), 1.65 (s, 3H), 1.49 (s, 3H), 1.47 – 1.42 (m, 1H), 0.77 (d, $J = 8.0$ Hz, 2H), 0.42 (s, 2H). 13C-NMR (100 MHz, CDCl$_3$) δ: 177.1, 168.8, 140.4, 138.4, 129.5, 128.6, 126.5, 124.3, 74.2, 70.6, 70.5, 67.3,
64.7, 64.3, 52.4, 40.1, 31.4, 27.4, 13.8, 7.0, 6.9. LRMS (ESI⁺) m/z calculated for C_{23}H_{30}N_{2}O_{4}S ([M+H⁺]⁺): 431.19, found: 431.21.

(2S,3R,E)-5-Cyclopropyl-2-hydroxy-3-\{((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)(2-propynyl)amino\}-1-phenyl-4-pentene (5a)

General procedure C was followed using 4a (834 mg, 1.94 mmol, 0.2 M) and NaHCO₃ (1.63 g, 19.35 mmol, 10 equiv.) in DMF (9.7 mL) and propargyl bromide (2.2 mL, 19.35 mmol, 10 equiv., 80 % in toluene) to give the desired compound 5a (656 mg, 72 % yield).

\(^1\)H-NMR (400 MHz, CDCl₃) δ: 7.33 – 7.19 (m, 5H), 5.57 (dd, \(J = 15.4, 9.8 \) Hz, 1H), 5.30 (d, \(J = 3.7 \) Hz, 1H), 5.28 (dd, \(J = 15.0, 8.0 \) Hz, 1H), 4.48 (d, \(J = 4.0 \) Hz, 1H), 4.47 (s, 1H), 4.21 (d, \(J = 18.0 \) Hz, 1H), 3.79 (s, 3H), 3.74 (d, \(J = 18.5 \) Hz, 1H), 3.34 (dd, \(J = 9.7, 2.7 \) Hz, 1H), 2.78 (dd, \(J = 13.9, 8.0 \) Hz, 1H), 2.62 (dd, \(J = 14.0, 5.4 \) Hz, 1H), 2.22 (s, 1H), 1.67 (s, 3H), 1.57 – 1.49 (m, 1H), 1.48 (s, 3H), 0.83 (d, \(J = 8.1 \) Hz, 2H), 0.53 – 0.42 (m, 2H). \(^{13}\)C-NMR (100 MHz, CDCl₃) δ: 172.6, 168.7, 143.0, 138.8, 129.4, 128.5, 126.4, 121.1, 100.1, 74.3, 70.7, 70.5, 70.4, 69.3, 68.5, 63.8, 52.5, 39.9, 38.9, 31.2, 26.8, 13.9, 7.2, 7.0. LRMS (ESI⁺) m/z calculated for C_{29}H_{32}N_{2}O_{4}S ([M+H⁺]⁺): 469.21, found: 469.51.
(3R,5R,6S)-6-Benzyl-5-((E)-2-cyclopropylvinyl)-3-((2R,4R)-4-methoxycarbonyl-5,5-dimethylthiazolidin-2-yl)-4-propynylmorpholin-2-one (6a)

To a stirred solution of 5a (47.1 mg, 0.10 mmol) in toluene (1.0 mL), was added NaH (ca 60% mineral oil dispersion, 6.2 mg, 0.15 mmol, 1.5 equiv.) at 0 °C. After stirring at room temperature for 14 h under N₂, 2 mL sat. NaHCO₃ aq. was added to the reaction mixture. The resulting mixture was extracted with ethyl acetate (3x2 mL), and combined organic layers were washed with brine and dried over Na₂SO₄. The solution was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give 6a as a colorless oil (23.4 mg, 50% yield). ¹H-NMR (400 MHz, C₆D₆) δ: 7.32 – 7.18 (m, 5H), 5.37 (t, 1H), 5.29 (dd, J = 15.2, 9.8 Hz, 1H), 5.19 (dd, J = 15.2, 8.5 Hz, 1H), 4.96 (d, J = 3.6 Hz, 1H), 4.26 (s, 1H), 3.69 – 3.58 (m, 2H), 3.54 (d, J = 3.5 Hz, 1H), 3.25 (d, J = 2.5 Hz, 1H), 3.20 (d, J = 2.3 Hz, 1H), 3.19 (s, 3H), 2.98 (dd, J = 14.2, 7.2 Hz, 1H), 2.65 (dd, J = 14.2, 7.4 Hz, 1H), 1.73 (s, 1H), 1.60 (s, 3H), 1.23 – 1.11 (m, 1H), 1.09 (s, 3H), 0.52 (d, J = 7.8 Hz, 2H), 0.28 – 0.24 (m, 2H).

(2R,3R)-3-((1E)-Buta-1,3-dienyl)-2-((S)-1-hydroxy-2-phenylethyl)-N-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)-4-methyleneperpyrrolidine (7a)

To a stirred solution of 5a in benzene (76.3 mg, 0.16 mmol, 0.05 M), was added bis(triphenylphosphine)palladium acetate (24.0 mg, 0.03 mmol, 0.2 equiv.) at room
temperature under N₂. After stirring for 1 h at 80 °C, the resulting solution was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give 7a as a colorless oil (31.0 mg, 39 % yield, 5/1 inseparable diastereomixture). Selected spectroscopic data for major diastereomer: ¹H-NMR (400 MHz, CDCl₃) δ: 7.35 – 7.15 (m, 5H), 6.36 (dd, J = 11.3, 7.2 Hz, 1H), 6.18 (t, J = 11.6, 10.1 Hz, 1H), 5.60 (dd, J = 8.4, 7.5 Hz, 1H), 5.34 (d, J = 3.9 Hz, 1H), 5.21 (d, J = 16.8 Hz, 1H), 5.08 (d, J = 10.1 Hz, 1H), 5.00 (s, 1H), 4.90 (s, 1H), 4.51 (d, J = 4.0 Hz, 1H), 4.42 (s, 1H), 4.31 – 4.22 (m, 1H), 3.87 (d, J = 13.8 Hz, 1H), 3.78 (s, 3H), 3.55 (d, J = 13.1 Hz, 2H), 3.01 (d, J = 5.5 Hz, 1H), 2.82 (d, J = 7.3 Hz, 1H), 2.76 (d, J = 14.0 Hz, 1H), 1.69 (s, 3H), 1.48 (s, 3H). ¹³C-NMR (100 MHz, C₆D₆) δ: 173.1, 168.1, 149.5, 139.8, 136.9, 135.8, 132.4, 129.7, 128.5, 126.2, 116.2, 107.1, 72.4, 72.3, 71.6, 69.9, 67.0, 64.4, 56.9, 51.4, 47.2, 39.6, 30.6, 26.5.

(1R,2R,5E,8R)-8-Cyclopropyl-2-(((S)-1-hydroxy-2-phenylethyl)-3-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-thiabicyclo[3.2.0]heptan-6-yl)-3-azabicyclo[3.3.0]oct-5-en-6-one (8a)

To a stirred solution of 5a in benzene (47.8 mg, 0.10 mmol, 0.1 M), was added Co₂(CO)₈ (52.3 mg, 0.15 mmol, 1.5 equiv.) and 3Å molecular sieves (activated) at room temperature under N₂. After stirring for 90 min at the same temperature, trimethylamine N-oxide (76.6 mg, 1.02 mmol, 10 equiv.) was added at 0 °C and the resulting indigo suspension was warmed to room temperature, opened to air and stirred for 4 h at room temperature. The suspension was filtered under vacuum, concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 8a as a colorless oil (14.4 mg, 29 % yield). ¹H-NMR (400 MHz, C₆D₆) δ: 7.37 – 7.19 (m, 4H), 7.14 – 7.06 (m, 1H), 5.65 (s, 1H), 5.00 (d, J = 3.7 Hz, 1H), 4.43 (s, 1H), 4.13 (d, J = 9.8 Hz, 1H), 4.09 (d, J = 3.6 Hz, 1H), 3.81 (d, J = 14.0 Hz, 1H), 3.37 (d, J = 15.7 Hz, 1H), 3.16 (s, 3H), 2.93 (dd, J = 13.8, 3.6 Hz, 1H), 2.88 (s, 1H), 2.66 (dd, J = 14.0, 3.1 Hz, 1H), 2.66 (dd, J = 14.0, 3.1 Hz, 1H),
2.59 (dd, J = 9.0, 2.0 Hz, 1H), 1.64 (s, 1H), 1.32 (s, 3H), 1.21 (s, 3H), 0.81 – 0.72 (m, 2H), 0.61 – 0.50 (m, 1H), 0.39 – 0.26 (m, 2H).

(2R,5R,6S)-6-Benzyl-5-((E)-2-cyclopropylvinyl)-2-methoxy-4-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-thiabicyclo[3.2.0]heptan-6-yl)-2-methylmorpholine (9a)

To a stirred solution of 5a in MeOH (73.7 mg, 0.16 mmol, 0.05 M), was added NaAuCl₄·2H₂O (7.2 mg, 17.00 μmol, 0.1 equiv.) at room temperature under N₂. After stirring for 1 h at room temperature, reaction mixture was concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 9a as a colorless oil (28.6 mg, 31 % yield). ¹H-NMR (400 MHz, CDCl₃, δ: 7.26 – 7.15 (m, 5H), 5.87 (dd, J = 15.4, 10.1 Hz, 1H), 5.30 (dd, J = 15.4, 8.8 Hz, 1H), 5.22 (d, J = 4.0 Hz, 1H), 4.43 (d, J = 4.0 Hz, 1H), 4.35 (s, 1H), 4.29 – 4.23 (m, 1H), 3.75 (s, 3H), 3.36 (dd, J = 10.0, 2.5 Hz, 1H), 2.92 (s, 3H), 2.80 (d, J = 11.5 Hz, 1H), 2.67 (dd, J = 13.8, 8.8 Hz, 1H), 2.61 (d, J = 11.5 Hz, 1H), 2.54 (dd, J = 13.8, 5.1 Hz, 1H), 1.70 (s, 3H), 1.54 – 1.47 (m, 1H), 1.44 (s, 3H), 1.25 (s, 3H), 0.77 (d, J = 8.0 Hz, 2H), 0.47 – 0.39 (m, 2H). LRMS (ESI+) calculated for C₂₇H₃₆N₂O₅S [M+H⁺]: 501.23, found: 501.57.
(2R)-4-((E)-2-Cyclopropylvinyl)-2-((S)-1-hydroxy-2-phenylethyl)-N-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)-3-pyrroline (10a)

To a stirred solution of 5a in CH$_2$Cl$_2$ (56.7 mg, 0.12 mmol, 0.05 M), was added Grubbs catalyst second generation (11.0 mg, 12.70 μmol, 0.1 equiv.) at room temperature under N$_2$. After stirring for 1 h under reflux, the reaction mixture was concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 10a as a yellow oil (32.5 mg, 88 % yield, trans/cis = 5.6/1, inseparable mixture). 1H-NMR (400 MHz, CDCl$_3$) δ: 7.32 – 7.27 (m, 4H), 7.23 – 7.17 (m, 1H), 6.28 (d, J = 15.8 Hz, 1H), 5.58 (s, 1H), 5.36 (d, J = 3.6 Hz, 1H), 5.03 (dd, J = 15.7, 8.9 Hz, 1H), 4.50 (d, J = 3.4 Hz, 1H), 4.43 (s, 1H), 4.20 – 4.07 (s, 2H), 4.15 – 4.09 (m, 1H), 3.77 (s, 3H), 3.50 (d, J = 10.3 Hz, 1H), 2.84 (dd, J = 13.8, 8.4 Hz, 1H), 2.72 (dd, J = 14.0, 5.1 Hz, 1H), 1.67 (s, 3H), 1.47 (s, 3H), 1.45 – 1.40 (m, 1H), 0.79 (d, J = 8.4 Hz, 2H), 0.45 – 0.38 (m, 2H). 13C-NMR (100 MHz, CDCl$_3$) δ: 171.4, 168.7, 139.0, 137.0, 129.2, 128.4, 126.2, 121.2, 119.4, 75.08, 72.67, 72.05, 70.12, 65.6, 64.6, 59.4, 52.4, 39.4, 30.8, 26.8, 14.3, 7.6, 7.5.

Methyl (2S,5R)-6-((5R,9aR)-5-cyclopropyl-9-((R)-1-hydroxy-2-phenylethyl)-1,3-dioxo-2-phenyl-2,3,5,7,9,9a-hexahydro-1H,8H-pyrrolo[3,4-c][1,2,4]triazolo[1,2-a]pyridazin-8-yl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptan-2-carboxylate (11a)

To a stirred solution of 10a (trans/cis = 5.6/1) in CH$_2$Cl$_2$ (28.9 mg, 0.06 mmol, 0.1 M), was added 4-phenyl-1,2,4-triazolin-3,5-dione (21.6 mg, 0.12 mmol, 2 equiv.) at room temperature under N$_2$. After stirring for 30 min at room temperature, the reaction mixture was concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 11a as a colorless oil (14.5 mg, 37 % yield). 1H-
NMR (400 MHz, CDCl₃) δ: 7.58 – 7.45 (m, 4H), 7.43 – 7.36 (m, 1H), 7.28 – 7.23 (m, 3H), 7.22 – 7.14 (m, 1H), 5.85 (s, 1H), 5.38 (d, J = 3.7 Hz, 1H), 4.55 (s, 1H), 4.52 (d, J = 3.7 Hz, 1H), 4.47 (s, 1H), 4.18 (dd, J = 8.2, 3.8 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.86 – 3.79 (m, 1H), 3.78 (s, 3H), 3.68 (d, J = 13.9 Hz, 1H), 3.36 (d, J = 13.9 Hz, 1H), 3.20 (d, J = 14.0 Hz, 1H), 2.68 (dd, J = 14.0, 10.4 Hz, 1H), 1.74 (s, 3H), 1.49 (s, 3H), 1.16 – 1.07 (m, 1H), 0.98 – 0.90 (m, 1H), 0.72 – 0.56 (m, 2H), 0.41 – 0.32 (m, 1H). LRMS (ESI+) calculated for C₃₄H₇₇N₅O₆S [M+H⁺]: 644.25, found: 644.70.

7-amino-deacetoxycephalosporanic acid (7-ACDA) methyl ester (1b)
General procedure A was followed using 7-ACDA (2.00 g, 9.34 mmol), methanol (4 mL), and (diazomethyl)trimethylsilane (4.7 mL, 9.34 mmol) to give the desired compound 1b as a pale yellow solid (1.35 g, 64 % yield). ¹H-NMR (400 MHz, CDCl₃) δ: 4.89 (s, 1H), 4.69 (s, 1H), 3.79 (s, 3H), 3.47 (d, J = 18.0 Hz, 1H), 3.17 (d, J = 17.9 Hz, 1H), 2.11 (s, 3H), 1.82 (s, 2H).

Methyl (6R,7R)-7-(((4R,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)amino)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (4b)
General procedure B was followed using (4R,5S)-5-benzyl-2,2-dimethyl-4-hydroxy-1,3-dioxolane 2 (770 mg, 3.70 mmol, 0.2 M) in 18.5 mL of the solvent system of 9:1 EtOH–hexafluoroisopropanol (v/v), 7-ACDA methyl ester 1a (1.27 g, 5.55 mmol, 1.5 equiv) and (E)-2-cyclopropylvinylboronic acid 3 (621 mg, 5.55 mmol, 1.5 equiv) to give the desired product 4b as a pale yellow oil (1.03 g, 65 % yield). ¹H-NMR (400 MHz, CDCl₃) δ: 7.34
Methyl (6R,7R)-7-(((4R,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)(prop-2-yn-1-yl)amino)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (5b)

General procedure C was followed using 4b (897 mg, 2.09 mmol, 0.2 M) and NaHCO₃ (1.76 g, 20.93 mmol, 10 equiv.) in DMF (10.5 mL) and propargyl bromide (3.1 mL, 20.93 mmol, 10 equiv., 80 % in toluene) to give the desired compound 5b (640 mg, 66 % yield).

1H-NMR (400 MHz, CDCl₃) δ: 7.35 – 7.19 (m, 5H), 5.73 (dd, $J = 15.3$, 9.5 Hz, 1H), 5.33 (dd, $J = 15.5$, 8.8 Hz, 1H), 4.80 (dd, $J = 4.4$ Hz, 1H), 4.72 (dd, $J = 4.5$ Hz, 1H), 4.10 – 4.07 (m, 1H), 3.99 (d, $J = 17.8$ Hz, 1H), 3.85 (s, 3H), 3.71 (d, $J = 17.7$ Hz, 1H), 3.51 (d, $J = 18.3$ Hz, 1H), 3.39 (dd, $J = 9.6$, 3.5 Hz, 1H), 3.23 (d, $J = 18.3$ Hz, 1H), 2.75 (d, $J = 6.6$ Hz, 2H), 2.51 (br, 1H), 2.23 (s, 1H), 2.12 (s, 3H), 1.57 – 1.46 (m, 1H), 0.79 (d, $J = 8.0$ Hz, 2H), 0.52 – 0.42 (m, 2H). 13C-NMR (100 MHz, CDCl₃) δ: 171.1, 162.9, 143.0, 138.6, 129.3, 128.4, 126.3, 122.5, 120.6, 73.6, 71.5, 69.7, 67.5, 60.4, 59.4, 52.4, 40.2, 39.9, 30.7, 20.0, 13.8, 7.1, 7.0. LRMS (ESI$^+$) m/z calculated for C$_{26}$H$_{30}$N$_2$O$_6$S ([M+H$^+$]$^+$): 467.20, found: 467.53.
Methyl (6R,7R)-7-((2R,3R)-3-((Z)-buta-1,3-dien-1-yl)-2-((S)-1-hydroxy-2-phenylethyl)-4-methylenepeyrrolidin-1-yl)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (7b)

To a stirred solution of 5b in benzene (57.8 mg, 0.12 mmol, 0.05 M), was added bis(triphenylphosphine)palladium acetate (18.4 mg, 25.00 μmol, 0.2 equiv.) at room temperature under N₂. After stirring for 1 h at 80 °C, the resulting solution was concentrated by rotary evaporation and the residue was purified by flash column chromatography (ISCO) to give 7b as a colorless oil (32.4 mg, 56 % yield). Selected spectroscopic data for major diastereomer: ¹H-NMR (400 MHz, C₆D₆) δ: 7.42 – 7.20 (m, 5H), 6.28 (dd, J = 10.8, 9.4 Hz, 1H), 6.06 (dd, J = 15.2, 10.4 Hz, 1H), 5.57 (dd, J = 15.1, 8.7 Hz, 1H), 5.07 (d, J = 16.9 Hz, 1H), 4.95 (d, J = 8.4 Hz, 1H), 4.86 (dd, J = 14.6, 2.2 Hz, 1H), 4.20 (d, J = 4.4 Hz, 1H), 4.14 (d, J = 4.4 Hz, 1H), 3.95 (d, J = 13.8 Hz, 1H), 3.72 (d, J = 2.1 Hz, 1H), 3.63 – 3.56 (m, 1H), 3.54 (s, 3H), 3.25 (dd, J = 6.0, 2.5 Hz, 1H), 2.90 (d, J = 8.9 Hz, 1H), 2.78 (dd, J = 13.9, 4.2 Hz, 1H), 2.61 (d, J = 18.5 Hz, 1H), 2.29 (d, J = 18.1 Hz, 1H), 1.67 (s, 3H), 0.43 (br, 1H). ¹³C-NMR (100 MHz, C₆D₆) δ: 163.7, 162.3, 149.7, 139.8, 136.9, 135.5, 132.3, 129.5, 128.2, 125.8, 122.8, 115.9, 106.8, 72.6, 71.6, 71.1, 57.4, 57.2, 51.6, 47.0, 39.5, 29.4, 19.2.

Methyl (6R,7S)-7-((3S,3aS,4S)-4-cyclopropyl-3-((R)-1-hydroxy-2-phenylethyl)-5-oxo-3,3a,4,5-tetrahydropyridine[4,1-c]pyrrol-2(1H)-yl)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (8b)
To a stirred solution of 5b in benzene (80.0 mg, 0.17 mmol, 0.1 M), was added Co\(_2\)(CO)\(_8\) (87.9 mg, 0.26 mmol, 1.5 equiv.) and 3Å molecular sieves (activated) at room temperature under N\(_2\). After stirring for 90 min at the same temperature, trimethylamine N-oxide (128.78 mg, 1.71 mmol, 10 equiv.) was added at 0 °C and the resulting indigo suspension was warmed to room temperature, opened to air and stirred for 4 h at room temperature. The suspension was filtered under vacuum, concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 8a as a colorless oil (24.4 mg, 30 % yield).

\(^1\)H-NMR (400 MHz, C\(_6\)D\(_6\)) \(\delta\): 7.32 – 7.18 (m, 4H), 7.13 – 7.08 (m, 1H), 5.72 (s, 1H), 4.43 (d, \(J = 4.2\) Hz, 1H), 4.17 (d, \(J = 4.2\) Hz, 1H), 3.99 (d, \(J = 10.0\) Hz, 1H), 3.71 (dd, \(J = 62.8, 15.6\) Hz, 2H), 3.58 (s, 1H), 3.16 (s, 1H), 2.95 – 2.88 (m, 1H), 2.90 – 2.88 (m, 1H), 2.87 (s, 1H), 2.66 (d, \(J = 18.0\) Hz, 1H), 2.64 (s, 1H), 2.31 (d, \(J = 18.2\) Hz, 1H), 1.69 (s, 3H), 0.81 – 0.69 (m, 1H), 0.61 – 0.52 (m, 2H), 0.37 – 0.31 (m, 1H), 0.29 – 0.23 (m, 1H).

\(^{13}\)C-NMR (100 MHz, C\(_6\)D\(_6\)) \(\delta\): 178.6, 163.3, 162.8, 129.8, 128.9, 128.8, 128.7, 126.7, 124.2, 122.9, 71.8, 71.5, 70.5, 57.5, 54.2, 52.1, 51.9, 39.0, 38.7, 30.3, 19.5, 11.9, 3.6, 3.3. LRMS (ESI\(^+\)) m/z calculated for C\(_{27}\)H\(_{30}\)N\(_2\)O\(_5\)S ([M+H\(^+\)]\(^+\)): 495.19, found: 495.56.

Methyl (6R,7R)-7-((6R)-6-benzyl-5-((E)-2-cyclopropylvinyl)-2-methoxy-2-methylmorpholino)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (9b)

To a stirred solution of 5b in MeOH (33.7 mg, 0.07 mmol, 0.05 M), was added NaAuCl\(_4\)·2H\(_2\)O (2.9 mg, 7.00 μmol, 0.1 equiv.) at room temperature under N\(_2\). After stirring for 1 h at room temperature, reaction mixture was concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 9b as a colorless oil (12.0 mg, 33 % yield).

\(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.28 – 7.13 (m, 5H), 5.86 (dd, \(J = 15.5, 9.9\) Hz, 1H), 5.49 (dd, \(J = 15.4, 8.9\) Hz, 1H),
Annex 5

4.78 (d, J = 4.4 Hz, 1H), 4.39 (d, J = 4.3 Hz, 1H), 4.33 – 4.27 (m, 1H), 3.85 (s, 3H), 3.61 (d, J = 10.6 Hz, 1H), 3.45 (d, J = 18.1 Hz, 1H), 3.21 (d, J = 18.2 Hz, 1H), 2.94 (s, 3H), 2.73 (q, J = 11.1 Hz, 2H), 2.66 (d, J = 8.4 Hz, 1H), 2.57 (d, J = 5.1 Hz, 1H), 2.06 (s, 3H), 1.58 – 1.48 (m, 1H), 1.28 (s, 3H), 0.83 – 0.73 (m, 2H), 0.52 – 0.43 (m, 2H). 13C-NMR (100 MHz, CDCl$_3$) δ: 163.1, 162.7, 143.5, 138.8, 129.3, 128.4, 126.3, 122.8, 117.0, 96.8, 72.3, 71.4, 60.0, 59.4, 57.1, 54.2, 52.3, 48.1, 38.7, 30.9, 21.9, 20.2, 14.1, 7.0, 7.0. LRMS (ESI+) calculated for C$_{27}$H$_{34}$N$_2$O$_5$S [M+H$^+$]$^+$: 499.22, found: 499.55.

Amoxicillin methyl ester (1c)

General procedure A was followed using amoxicillin (500 mg, 1.37 mmol), methanol (1 mL), and (diazomethyl)trimethylsilane (685 µL, 1.37 mmol) to give the desired compound 1c as a pale yellow solid (383 g, 74 % yield). 1H-NMR (400 MHz, CDCl$_3$) δ: 8.10 (br, 1H), 7.06 (d, J = 7.8 Hz, 2H), 6.61 (d, J = 7.7 Hz, 2H), 5.60 (s, 1H), 5.52 (s, 1H), 4.44 (s, 2H), 4.28 (br, 2H), 3.77 (s, 3H), 1.61 (s, 3H), 1.47 (s, 3H).

(R)-2-((R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)amino)-2-(4-hydroxyphenyl)acetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid (4c)
General procedure B was followed using (4R,5S)-5-benzyl-2,2-dimethyl-4-hydroxy-1,3-dioxolane 2 (526 mg, 2.52 mmol, 0.2 M) in 12.5 mL of the solvent system of 9:1 EtOH–hexafluoropropanol (v/v), AMX methyl ester 1c (1.14 g, 3.00 mmol, 1.2 equiv) and (E)-2-cyclopropylvinylboronic acid 3 (418 mg, 2.88 mmol, 1.5 equiv) to give the desired product 4c as a pale yellow solid (671 mg, 46 % yield). ¹H-NMR (400 MHz, CDCl₃) δ: 7.37 (d, J = 9.1 Hz, 2H), 7.33 – 7.21 (m, 5H), 7.17 (d, J = 6.9 Hz, 2H), 6.66 (d, J = 6.8 Hz, 2H), 5.52 (dd, J = 15.4, 8.7 Hz, 1H), 5.15 – 5.12 (m, 1H), 5.11 (dd, J = 15.4, 8.9 Hz, 1H), 4.58 (dd, J = 8.9, 3.3 Hz, 1H), 4.36 (s, 1H), 3.95 – 3.84 (m, 1H), 3.67 (s, 3H), 3.49 (s, 1H), 1.51 (s, 3H), 1.49 – 1.42 (m, 1H), 1.18 (s, 3H), 0.78 (d, J = 7.2 Hz, 2H), 0.42 (d, J = 5.1 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ:173.0, 169.9, 169.7, 140.6, 129.4, 129.3, 128.5, 126.5, 126.3, 123.1, 116.1, 74.2, 72.7, 65.8, 63.2, 62.6, 58.8, 57.1, 52.3, 39.5, 26.5, 26.2, 13.7, 7.1, 7.0.

(R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)(prop-2-yn-1-yl)amino)-2-(4-hydroxyphenyl)acetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid (5c)

General procedure C was followed using 4c (671 mg, 1.16 mmol, 0.2 M) and NaHCO₃ (145 mg, 1.74 mmol, 1.5 equiv.) in DMF (5.8 mL) and propargyl bromide (155 µL, 1.39 mmol, 1.2 equiv., 80 % in toluene) at room temperature to give the desired compound 5c (404 mg, 56 % yield). ¹H-NMR (400 MHz, CDCl₃) δ: 7.99 (d, J = 8.8 Hz, 1H), 7.32 – 7.24 (m, 3H), 7.22 – 7.15 (m, 2H), 7.05 (d, J = 8.1 Hz, 2H), 6.57 (d, J = 8.1 Hz, 2H), 5.78 (dd, J = 15.4, 8.9 Hz, 1H), 5.11 (dd, J = 15.4, 8.9 Hz, 1H), 5.06 (d, J = 5.9 Hz, 1H), 4.71 (s, 1H), 4.67 (d, J = 5.9 Hz, 2H), 4.22 – 4.10 (m, 1H), 3.79 (s, 1H), 3.72 (s, 3H), 3.54 (d,
\[J = 17.6 \text{ Hz}, 1\text{H}), \ 3.33 \ (s, 1\text{H}), \ 3.28 \ (d, \ J = 17.5 \text{ Hz}, 1\text{H}), \ 2.80 \ (d, \ J = 4.1, 3.4 \text{ Hz}, 1\text{H}), \ 2.64 \ (dd, \ J = 13.7, 8.9 \text{ Hz}, 1\text{H}), \ 2.15 \ (s, 1\text{H}), \ 1.54 \ (s, 3\text{H}), \ 1.52 - 1.43 \ (m, 1\text{H}), \ 1.19 \ (s, 3\text{H}), \ 0.76 \ (d, \ J = 8.1 \text{ Hz}, 2\text{H}), \ 0.46 - 0.37 \ (m, 2\text{H}). \ \]

\[^{13}\text{C-NMR (100 MHz, CDCl}_3\text{)} \ \delta: 173.8, \ 170.1, \ 169.8, \ 142.5, \ 131.1, \ 129.5, \ 128.5, \ 127.0, \ 126.3, \ 120.9, \ 115.8, \ 81.3, \ 73.6, \ 73.0, \ 72.6, \ 68.4, \ 66.2, \ 58.9, \ 57.2, \ 52.3, \ 41.4, \ 39.2, \ 27.1, \ 26.9, \ 13.9, \ 7.1, \ 7.0. \]

Ampicillin methyl ester (1d)

General procedure A was followed using amoxicillin (500 mg, 1.37 mmol), methanol (1 mL), and (diazomethyl)trimethylsilane (685 µL, 1.37 mmol) to give the desired compound 1d as a pale yellow solid (383 g, 74 % yield). \(^1\text{H NMR (400 MHz, CDCl}_3\text{)} \ \delta: 8.03 \ (d, \ J = 9.2 \text{ Hz}, 1\text{H}), \ 7.29 - 7.42 \ (m, 5\text{H}), \ 5.68 \ (dd, \ J = 9.4, 4.1 \text{ Hz}, 1\text{H}), \ 5.56 \ (d, \ J = 4.2 \text{ Hz}, 1\text{H}), \ 4.60 \ (s, 1\text{H}), \ 4.47 \ (s, 1\text{H}), \ 3.79 \ (s, 3\text{H}), \ 2.62 \ (br, 2\text{H}), \ 1.66 \ (s, 3\text{H}), \ 1.51 \ (s, 3\text{H}). \]

(R)-2-(((R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)amino)-2-phenylacetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid (4d)

General procedure B was followed using (4R,5S)-5-benzyl-2,2-dimethyl-4-hydroxy-1,3-dioxolane 2 (200 mg, 0.96 mmol, 0.2 M) in 4.8 mL of the solvent system of 9:1 EtOH–
hexafluoroisopropanol (v/v), AMP methyl ester 1d (418 mg, 1.15 mmol, 1.2 equiv) and (E)-2-cyclopropylvinylboronic acid 3 (161 mg, 1.44 mmol, 1.5 equiv) to give the desired product 4d as a pale yellow solid (234 mg, 41 % yield). 1H-NMR (400 MHz, CDCl$_3$) δ: 7.73 (s, 1H), 7.49 – 7.08 (m, 10H), 5.53 (dd, J = 15.3, 8.7 Hz, 1H), 5.13 (d, J = 3.8 Hz, 1H), 5.08 (dd, J = 15.3, 8.7 Hz, 1H), 4.60 (dd, J = 9.1, 3.8 Hz, 1H), 4.42 (s, 1H), 3.86 – 3.70 (m, 2H), 3.68 (s, 3H), 3.46 (s, 1H), 3.01 (dd, J = 8.8, 3.7 Hz, 1H), 2.78 (dd, J = 13.9, 3.8 Hz, 1H), 2.67 (dd, J = 13.8, 9.2 Hz, 1H), 2.45 (s, 1H), 2.29 (br, 1H), 1.48 (s, 3H), 1.48 – 1.41 (m, 1H), 1.17 (s, 3H), 0.84 – 0.67 (m, 2H), 0.48 – 0.29 (m, 2H). 13C-NMR (100 MHz, CDCl$_3$) δ: 169.8, 169.7, 164.8, 142.8, 129.3, 129.1, 128.5, 126.3, 122.3, 76.0, 72.7, 65.5, 62.8, 62.7, 58.6, 57.0, 52.2, 39.7, 26.5, 26.3, 13.7, 7.1, 7.0.

(R)-2-((R)-2-((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)(prop-2-yn-1-yl)amino)-2-phenylacetamido)-2-(2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid (5d)

General procedure C was followed using 4d (108 mg, 0.19 mmol, 0.2 M) and NaHCO$_3$ (24.1 mg, 0.29 mmol, 1.5 equiv.) in DMF (1.0 mL) and propargyl bromide (25 µL, 0.23 mmol, 1.2 equiv., 80 % in toluene) at room temperature to give the desired compound 5d (44.0 mg, 38 % yield). 1H-NMR (400 MHz, CDCl$_3$) δ: 7.73 (s, 1H), 7.36 – 7.16 (m, 10H), 5.81 (dd, J = 15.3, 9.5 Hz, 1H), 5.18 – 5.07 (m, 1H), 5.05 (d, J = 5.9 Hz, 1H), 4.84 (s, 1H), 4.71 (dd, J = 9.1, 6.0 Hz, 1H), 4.16 – 4.11 (m, 1H), 3.75 (s, 1H), 3.74 (s, 3H), 3.64 – 3.52 (m, 1H), 3.43 – 3.30 (m, 2H), 2.84 – 2.74 (m, 1H), 2.73 – 2.63 (m, 1H), 2.16 (br, 1H), 1.69 – 1.57 (m, 1H), 1.51 (s, 3H), 1.19 (s, 3H), 0.82 – 0.74 (m, 2H), 0.49 – 0.39 (m, 2H). 13C-NMR (100 MHz, CDCl$_3$) δ: 173.4, 170.2, 169.8, 148.6, 129.8, 129.3, 128.4,
Annex 5

126.3, 121.5, 78.5, 73.5, 73.2, 72.4, 68.4, 66.2, 66.1, 58.7, 56.7, 52.2, 41.4, 39.4, 27.0, 26.8, 13.8, 7.0, 6.9.

(2R)-2-((2R)-2-(4-((E)-2-cyclopropylvinyl)-2-((R)-1-hydroxy-2-phenylethyl)-2,5-dihydro-1H-pyrrol-1-yl)-2-phenylacetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid (10d)

To a stirred solution of 5d in CH$_2$Cl$_2$ (20.0 mg, 0.03 mmol, 0.05 M), was added Grubbs catalyst second generation (2.8 mg, 3.30 μmol, 0.1 equiv.) at room temperature under N$_2$. After stirring for 1 h under reflux, the reaction mixture was concentrated by rotary evaporation and the resulting residue was purified by flash column chromatography (ISCO) to give 10a as a yellow oil (11.9 mg, 60 % yield). 1H-NMR (400 MHz, CDCl$_3$) δ: 7.47 – 7.15 (m, 10H), 7.04 – 6.91 (m, 1H), 6.29 (d, J = 15.8 Hz, 1H), 5.60 (d, J = 51.8 Hz, 1H), 5.22 – 5.13 (m, 1H), 5.10 – 5.00 (m, 1H), 4.83 (s, 1H), 4.70 (dd, J = 8.9, 5.4 Hz, 1H), 4.20 – 4.07 (m, 2H), 4.15 – 4.09 (m, 1H), 3.77 (s, 3H), 3.58 – 3.48 (m, 1H), 3.37 (s, 1H), 2.71 – 2.62 (m, 1H), 2.52 (dd, J = 13.7, 5.3 Hz, 1H), 1.51 (s, 3H), 1.50 – 1.38 (m, 1H), 1.22 (s, 3H), 0.82 – 0.74 (m, 2H), 0.47 – 0.38 (m, 2H).
3. NMR spectrum

1H NMR (CDCl$_3$, 400 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

![NMR spectrum of compound 1a]

F1 (ppm)
1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
1H NMR (CD$_3$OD, 400 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

1H COSY NMR (CDCl$_3$, 400 MHz)
Annex 5

1H NMR ($CDCl_3$, 400 MHz)
1H NMR (CDCl$_3$, 400 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

10a

13C NMR (CDCl$_3$, 100 MHz)

10a

304
1H COSY NMR (CDCl$_3$, 400 MHz)

1H-13C HSQC NMR (CDCl$_3$, 400/100 MHz)
1H-1C HMBC NMR (CDCl$_3$, 400/100 MHz)
1H NMR (CDCl$_3$, 400 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

1b
1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
1H-13C HMBC NMR (CDCl$_3$, 400/100 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
Annex 5

1H COSY NMR (CDCl$_3$, 400 MHz)

1H-13C HSQC NMR (CDCl$_3$, 400/100 MHz)
1H-1C HMBC NMR (CDCl$_3$, 400/100 MHz)
1H NMR (CD$_3$OD, 400 MHz)

13C NMR (CD$_3$OD, 100 MHz)
1H-13C HMBC NMR (CDCl$_3$, 400/100 MHz)
Annex 5

1H NMR (C$_\text{D}_6$, 400 MHz)

13C NMR (C$_\text{D}_6$, 100 MHz)
1H COSY NMR (CD$_3$OD, 400 MHz)

1H-13C HSQC NMR (CD$_3$OD, 400/100 MHz)
Annex 5

1H/13C HMBC NMR (C$_2$D$_2$, 400/100 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

1H COSY NMR (CDCl$_3$, 400 MHz)
Annex 5

1H-1C HSQC NMR (CDCl$_3$, 400/100 MHz)

1H-1C HMBC NMR (CDCl$_3$, 400/100 MHz)
1H NMR (CDCl\textsubscript{3}, 400 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
Annex 5

1H-1C HMBC NMR (CDCl$_3$, 400/100 MHz)
1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
Annex 5

1H COSY NMR (CDCl$_3$, 400 MHz)

1H-1C HSQC NMR (CDCl$_3$, 400/100 MHz)
^{1}H-^{13}C HMBC NMR (CDCl$_3$, 400/100 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)
1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
1H-13C HMBC NMR (CDCl$_3$, 400/100 MHz)
Annex 5

1H NMR (CDCl$_3$, 400 MHz)

13C NMR (CDCl$_3$, 100 MHz)
1H COSY NMR (CDCl$_3$, 400 MHz)

1H-13C HSQC NMR (CDCl$_3$, 400/100 MHz)
1H-1C HMBC NMR (CDCl$_3$, 400/100 MHz)
1H NMR (CDCl$_3$, 400 MHz)
Table 6.5.S1. Optimization conditions for the Petasis reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Conditions</th>
<th>Molarity (M)</th>
<th>Equivalents 2:1a-f:3</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EtOH/HFIP 9:1</td>
<td>40 °C, 72 h</td>
<td>0.20</td>
<td>1:1:1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>EtOH/HFIP 9:1</td>
<td>0 °C, 72 h</td>
<td>0.20</td>
<td>1:1:1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>EtOH</td>
<td>rt, 72 h</td>
<td>0.25</td>
<td>1:1:1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>DCM</td>
<td>rt, 72 h</td>
<td>0.25</td>
<td>1:1:1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>DCM</td>
<td>rt, 24 h, 3Å molecular sieves</td>
<td>0.20</td>
<td>1:1:1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>EtOH/HFIP 9:1</td>
<td>40 °C, 72 h, 3Å molecular sieves</td>
<td>0.20</td>
<td>1:1.5:1.5</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>EtOH/HFIP 9:1</td>
<td>40 °C, 72 h, 3Å molecular sieves, glycerol</td>
<td>0.20</td>
<td>1:1.5:1.5</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>EtOH/HFIP 9:1</td>
<td>rt, 24 h, (E)-2-Cyclopropylvinylboronic acid pinacol ester</td>
<td>0.20</td>
<td>1:1:1</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>EtOH/HFIP 9:1</td>
<td>40 °C, 72 h, 3Å molecular sieves, (E)-2-Cyclopropylvinylboronic acid pinacol ester</td>
<td>0.20</td>
<td>1:1.5:1.5</td>
<td>9</td>
</tr>
</tbody>
</table>
4. Immunoassay

Antigen preparation

All synthetized compounds (7.0 μmol, 1,000 and 240 equiv. for HSA and H1, respectively), dissolved in potassium carbonate 0.5 M, pH 11.0 in 10 % DMF, were mixed with the carrier protein (0.5 mg) and stirred overnight at room temperature. Reference antigens for PG, AMX, CFT, AZT and MRP were also prepared following the major configuration. The corresponding BLC, as commercially supplied from Sigma (240 equiv), dissolved in potassium carbonate 0.5 M, pH 11.0, was reacted with the carrier protein (2.0 mg) and stirred overnight at room temperature. Prepared antigens were purified by gel filtration chromatography on Amicon Ultra 0.5 pre-concentrated 10 K filters using PBS 1X, pH 7.4, as elution buffer. Carrier proteins used were HSA and H1.

New Zealand white rabbits were immunized to raise specific IgG for PG, CFT, AZT, and MRP. To prepare the immunogenic antigens, the same protocol as for the preparation of the reference antigens was followed, but KLH (1,000 equiv.) was used as the immunogenic protein. Immunogens were purified by size exclusion chromatography on dextran desalting columns using PBS 1X, pH 7.4, as the elution buffer.

All antigens were diluted to 1.0 mg/mL and stored at -20 ºC until use. Antigen concentrations were determined by the Bradford protein assay[1] and the protein-hapten molar ratio was established by MS-MALDI-TOF.[2]

Multiplexed DVD in vitro assay protocol

Reagents printed were (I) the prepared and reference antigens and (II) controls. HSA and rabbit IgG (or human IgE) were used as negative and positive controls of the assay, respectively. Reference antigens were used to test the specificity of each serum. Antigens were prepared in sodium carbonate/bicarbonate buffer 0.1 M, pH 9.6, and controls in PBS 1X, pH 7.4.

Reagents (25 nL, 40 μg/mL) were spotted in microarray format (20 arrays per disk of 5 × 4 spots), using a noncontact printing device (AD 1500 BioDot, Inc., Irvine, CA) and DVDs (CD Rohling-up GmbH, Saarbrücken, Germany). After printing, the DVDs were incubated overnight at 37 ºC.
To detect specific IgG against PG, CFT, MRP, and AZT, different dilutions (1/250-1/16,000) of rabbit sera and control (PBS-T) (25 µL per sample) were added to each array and incubated for 15 min. Then, the DVD is washed with PBS-T and water. 25 µL of goat anti-rabbit antibody labelled with horseradish peroxidase (Abcam, Cambridge, UK) in PBS-T (dilution 1/400) was added and incubated for 15 min followed by the final washing step.

To detect specific IgE from allergic patients and controls, 25 µL of sample was added to each array and incubated for 30 min. Then, the DVD was washed and 25 µL of α-human IgE monoclonal antibody (Ingenasa, Madrid, Spain) in PBS-T (1 µg/mL) was added and incubated for 15 min. After washing as before, 25 µL of a 1/100 dilution of goat anti-mouse antibody labelled with horseradish peroxidase (Abcam, Cambridge, UK) was added and incubated for 15 min.

The immunoreaction was developed by homogeneously dispensing 1.0 mL of TMB (SDT GmbH, Baesweiler, Germany) along the whole disc surface. The reaction was stopped by washing the disk with water after 8 min. Signals were read by a modified DVD drive and data analyzed as previously described. All experiments were repeated 3 times in parallel.

Figure 6.5.S1. Calibration curve for IgE using IgE human serum (3rd WHO International Standard) and the capture antibody Omalizumab
5. Samples from allergic patients and controls

All samples from allergic patients and controls were provided by the Hospital Universitari i Politènic La Fe (Valencia, Spain) and informed consent for the diagnostic procedures was obtained from all patients. All participants were enrolled after giving written informed consent according to protocols approved by the ethics review board at La Fe University Hospital (registry no. COBIOPHAD). The procedures followed were in accordance with the Helsinki Declaration of 1975 as revised in 2008. The patients were diagnosed following the procedure described in the European Network of Drug Allergy (ENDA) protocol based on skin testing, in vitro tests or drug provocation test, whenever necessary.

Table 6.5.S2. Clinical characteristics of the cohort of allergic patients

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Sex[a]</th>
<th>Age (years)</th>
<th>Culprit drug</th>
<th>Clinical manifestation</th>
<th>Route</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>68</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>36</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>42</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>49</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>80</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Parenteral</td>
<td>Immediate</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>44</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>32</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>47</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>56</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>32</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>56</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>73</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>75</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>44</td>
<td>Cefuroxime</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>76</td>
<td>Amoxicillin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>76</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Delayed</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>30</td>
<td>Amoxicillin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>53</td>
<td>Augmentin</td>
<td>Anaphylaxis</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>40</td>
<td>Augmentin</td>
<td>Cutaneous</td>
<td>Oral</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

[a]Sex: F=Female, M=Male.
REFERENCES

6.6. Annex 6

Summary of all the haptens described in this dissertation

(2R,4S)-2-((R)-2-((3-aminopropyl)amino)-2-oxo-1-(2-phenylacetamido)ethyl)-5,5-dimethylthiazolidine-4-carboxylic acid
Described in Chapter 1.1 and labeled as Hapten 1. Synthetic procedure and data characterization included in Annex 1 (pp. 210 and 217).

(2R,4S)-2-((R)-2-((5-aminopentyl)amino)-2-oxo-1-(2-phenylacetamido)ethyl)-5,5-dimethylthiazolidine-4-carboxylic acid
Described in Chapter 1.1 and labeled as Hapten 2. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 210 and 218).
Described in Chapter 1.1 and labeled as Hapten 3. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 211 and 219).

Described in Chapter 1.1 and labeled as Hapten 4. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 211 and 220).

Described in Chapter 1.1 and labeled as Hapten 5. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 211 and 221).
(2R,4S)-2-((R)-1-((R)-2-amino-2-(4-hydroxyphenyl)acetamido)-2-((7-aminoheptyl)amino)-2-oxoethyl)-5,5-dimethylthiazolidine-4-carboxylic acid
Described in Chapter 1.1 and labeled as Hapten 6. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 212 and 222).

(2S,5R,6R)-N-(3-aminopropyl)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamide
Described in Chapter 1.1 and labeled as Hapten 7. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 212 and 223).

(2S,5R,6R)-N-(5-aminopentyl)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamide
Described in Chapter 1.1 and labeled as Hapten 8. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 213 and 224).
(2S,5R,6R)-N-(7-aminoheptyl)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamide
Described in Chapter 1.1 and labeled as Hapten 9. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 213 and 225).

(2S,5R,6R)-6-((R)-2-amino-2-(4-hydroxyphenyl)acetamido)-N-(3-aminopropyl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamide
Described in Chapter 1.1 and labeled as Hapten 10. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 213 and 226).
Described in Chapter 1.1 and labeled as Hapten 11. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 214 and 227).

(2S,5R,6R)-6-((R)-2-amino-2-(4-hydroxyphenyl)acetamido)-N-(7-aminoheptyl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamide

Described in Chapter 1.1 and labeled as Hapten 12. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 214 and 228).

Tert-butyl ((R)-2-(((2S,5R,6R)-2-((3-aminopropyl)carbamoyl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptan-6-yl)amino)-1-(4-hydroxyphenyl)-2-oxoethyl)carbamate

Described in Chapter 1.1 and labeled as Hapten 13. Synthetic procedure and NMR spectrum included in Annex 1 (pp. 214 and 229).

6-aminopenicillanic acid

Described in Chapter 1.2 and labeled as Hapten 6-APA. Used as commercially supplied.
Annex 6

DL-penicillamine
Described in Chapter 1.2 and labeled as Hapten PA. Used as commercially supplied.

Penicillic acid
Described in Chapter 1.2 and labeled as Hapten PLA. Used as commercially supplied.

Benzylpenicilloic acid
Described in Chapter 1.2 and labeled as Hapten PGoyl. Synthetic procedure and data characterization included in Chapter 1.2 (p. 104). NMR spectrum included in Annex 2 (p. 246).

Benzylpenilloic acid
Described in Chapter 1.2 and labeled as Hapten BPG. Synthetic procedure and data characterization included in Chapter 1.2 (p. 104). NMR spectrum included in Annex 2 (p. 247).
4-((E)-2-(((6R,7R)-3-carboxy-3-(((2-methyl-5,6-dioxo-1,2,5,6-tetrahydro-1,2,4-triazin-3-yl)thio)methyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-7-yl)amino)-1-(methoxyimino)-2-oxoethyl)thiazol-2-aminium

Described in Chapter 2.1 and labeled as Hapten CFT. Synthetic procedure, data characterization and NMR spectrum included in Annex 3 (pp. 250 and 253).

(6R,7R)-3-((carbamoyloxy)methyl)-7-((E)-2-(furan-2-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid monohydrate

Described in Chapter 2.1 and labeled as Hapten CFR. Synthetic procedure, data characterization and NMR spectrum included in Annex 3 (pp. 251 and 254).
Annex 6

(6R,7R)-3-(acetoxyethyl)-7-((E)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid
Described in Chapter 2.1 and labeled as Hapten CFO. Synthetic procedure, data characterization and NMR spectrum included in Annex 3 (pp. 252 and 255).

(4R,5S,6S)-3-(((3S,5S)-5-(dimethylcarbamoyl)pyrrolidin-3-yl)thio)-6-((R)-1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid
Described in Chapter 2.1 and labeled as Hapten MRP. Used as commercially supplied.

2-(((2S,3S)-2-methyl-4-oxo-1-sulfoazetidin-3-yl)amino)-2-oxoethylidene)amino)oxy)-2-methylpropanoic acid
Described in Chapter 2.1 and labeled as Hapten AZT. Used as commercially supplied.

Benzyl (2R,5R,Z)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate
Described in Chapter 2.2 and labeled as Hapten CVL-1. Synthetic procedure and data characterization included in Chapter 2.2 (pp. 155 and 156). NMR spectrum included in Annex 4 (p. 269).
Benzyl (2R,5R)-7-oxo-3-(2-oxoethylidene)-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate

Described in Chapter 2.2 and labeled as Hapten CVL-2. Synthetic procedure and data characterization included in Chapter 2.2 (p. 156). NMR spectrum included in Annex 4 (pp. 270-272).

Benzyl (R)-7-oxo-3-vinyl-4-oxa-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate

6-aminopenicillanic acid methyl ester

Described in Chapter 3 and labeled as Hapten 1a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 280 and 296).
(2S,3R,E)-5-Cyclopropyl-2-hydroxy-3-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)amino-1-phenyl-4-pentene
Described in Chapter 3 and labeled as Hapten 4a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 280 and 297).

(2S,3R,E)-5-Cyclopropyl-2-hydroxy-3-{((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)(2-propynyl)amino}-1-phenyl-4-pentene
Described in Chapter 3 and labeled as Hapten 5a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 281 and 298).

(3R,5R,6S)-6-Benzyl-5-((E)-2-cyclopropylvinyl)-3-((2R,4R)-4-methoxycarbonyl-5,5-dimethylthiazolidin-2-yl)-4-propynylmorpholin-2-one
Described in Chapter 3 and labeled as Hapten 6a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 282 and 299).
(2R,3R)-3-((1E)-Buta-1,3-dienyl)-2-((S)-1-hydroxy-2-phenylethyl)-N-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)-4-methyleneppyrrolidine

Described in Chapter 3 and labeled as Hapten 7a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 282 and 300-301).

(1R,2R,5E,8R)-8-Cyclopropyl-2-((S)-1-hydroxy-2-phenylethyl)-3-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)-3-azabicyclo[3.3.0]oct-5-en-6-one

Described in Chapter 3 and labeled as Hapten 8a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 283 and 302).
Annex 6

(2R,5R,6S)-6-Benzyl-5-((E)-2-cyclopropylvinyl)-2-methoxy-4-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)-2-methylmorpholine

Described in Chapter 3 and labeled as Hapten 9a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 284 and 303).

(2R)-4-((E)-2-Cyclopropylvinyl)-2-((S)-1-hydroxy-2-phenylethyl)-N-((2S,5R,6R)-2-methoxycarbonyl-3,3-dimethyl-1-aza-7-oxo-4-thiabicyclo[3.2.0]heptan-6-yl)-3-pyrrolidine

Described in Chapter 3 and labeled as Hapten 10a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 285 and 304-306).

Methyl (2S,5R)-6-((5R,9aR)-5-cyclopropyl-9-((R)-1-hydroxy-2-phenylethyl)-1,3-dioxo-2-phenyl-2,3,5,7,9,9a-hexahydro-1H,8H-pyrrolo[3,4-c][1,2,4]triazolo[1,2-a]pyridazin-8-yl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate

Described in Chapter 3 and labeled as Hapten 11a. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 285 and 307).
7-amino-deacetoxycephalosporanic acid (7-ACDA) methyl ester

Described in Chapter 3 and labeled as Hapten 1b. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 286 and 308).

\[\text{Methyl} \ \ (6R,7R)-7-((4R,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)amino)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate\]

Described in Chapter 3 and labeled as Hapten 4b. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 286 and 309-311).

\[\text{Methyl} \ \ (6R,7R)-7-((4R,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)(prop-2-yn-1-yl)amino)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate\]

Described in Chapter 3 and labeled as Hapten 5b. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 287 and 312-314).

\[\text{Methyl} \ \ (6R,7R)-7-((2R,3R)-3-((Z)-buta-1,3-dien-1-yl)-2-((S)-1-hydroxy-2-phenylethyl)-4-methylenelepyrrolidin-1-yl)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate\]
Described in Chapter 3 and labeled as Hapten 7b. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 288 and 315-317).

Methyl (6R,7S)-7-((3S,3aS,4S)-4-cyclopropyl-3-((R)-1-hydroxy-2-phenylethyl)-5-oxo-3,3a,4,5-tetrahydrocyclopenta[c]pyrrol-2(1H)-yl)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate

Described in Chapter 3 and labeled as Hapten 8b. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 288 and 318-320).

Methyl (6R,7R)-7-((6R)-6-benzyl-5-((E)-2-cyclopropylvinyl)-2-methoxy-2-methylmorpholino)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate

Described in Chapter 3 and labeled as Hapten 9b. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 289 and 321-322).

Amoxicillin methyl ester

Described in Chapter 3 and labeled as Hapten 1c. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 290 and 323).
(R)-2-((R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)amino)-2-(4-hydroxyphenyl)acetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid

Described in Chapter 3 and labeled as Hapten 4c. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 290 and 324-326).

(R)-2-((R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)(prop-2-yn-1-yl)amino)-2-(4-hydroxyphenyl)acetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid

Described in Chapter 3 and labeled as Hapten 5c. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 291 and 327-329).
Annex 6

Ampicillin methyl ester
Described in Chapter 3 and labeled as Hapten 1d. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 292 and 330).

(R)-2-((R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)amino)-2-phenylacetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid
Described in Chapter 3 and labeled as Hapten 4d. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 292 and 331-333).

(R)-2-((R)-2-(((3R,4S,E)-1-cyclopropyl-4-hydroxy-5-phenylpent-1-en-3-yl)(prop-2-yn-1-yl)amino)-2-phenylacetamido)-2-((2R,4S)-4-(methoxycarbonyl)-5,5-dimethylthiazolidin-2-yl)acetic acid
Described in Chapter 3 and labeled as Hapten 5d. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 293 and 334-336).
Described in Chapter 3 and labeled as Hapten 10d. Synthetic procedure, data characterization and NMR spectrum included in Annex 5 (pp. 294 and 337).