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Resum

L’objectiu d’aquesta tesi és estudiar distintes propietats dels operadors de composicié
ponderats en diferents espais ponderats de funcions analitiques.

Donat un pes v estrictament positiu i continu en el disc D del pla complex, conside-
rem els espais de Banach de funcions analitiques H® i HY en el disc complex. Aquests
espais sén, respectivament, els conjunts de les funcions holomorfes f € H(D) tals que
sup|.<1 v(2)[f(2)] < oo i les funcions que compleixen que v(z)|f(z)| tendeix a zero quan
|z| s’apropa a 1.

Per a cada o > 0 i la successié de pesos v,,, (2) := (1 — \z\)o“*'%, z € D, considerem ’espai
de Fréchet AT com el limit projectiu de la successié (HS® := Hye )n. Aquest espai esta
proveit de la topologia del limit projectiu, és a dir, la topologia de Fréchet induida per les
normes || - ||, - En canvi, si prenim 0 < a < 00 i la successi6 de pesos v,,, (2) := (1 — |z[)a+%,
podem definir I'espai LB A% com el limit inductiu de la successi6 (Hg? = Hy? ), amb la
topologia del limit inductiu. Quan «,, = n, obtenim ’espai de Korenblum A~ com el limit
inductiu dels espais H°.

Estudiem la continuitat, compacitat i invertibilitat de 'operador de composicié pesat
Wy p := MyC, on My, és I'operador de multiplicacié i Cy, el de composicid, en els espais de
tipus Korenblum A%, A”% i A7°° definits dalt. També estudiem algunes propietats del seu
espectre i del seu espectre puntual.

En el Capitol 1 compilem alguns preliminars. En el Capitol 2 estudiem la continuitat,
compacitat i invertibilitat de Wy , en els espais de tipus Korenblum A%, A”% i A™°.
Al Capitol 3 ens centrem en l'estudi de I'espectre de Wy, , en els mateixos espais i també
obtenim alguns resultats sobre I’espectre i ’espectre puntual dels operadors de multiplicacié
i composicié. FEn el Capitol 4 investiguem l’espectre de certs operadors de composicid, el
sfmbol dels quals admet una extensié analitica a un entorn obert de D. Finalment, al Capitol
5 estudiem algunes propietats de Wy , en limits projectius i inductius d’espais de Banach
ponderats de funcions analitiques amb valors en un espai de Banach.



Resumen

El objetivo de esta tesis es estudiar distintas propiedades de los operadores de composicién
ponderados en varios espacios ponderados de funciones analiticas.

Dado un peso v estrictamente positivo y continuo en el disco DD del plano complejo,
consideramos los espacios de Banach de funciones analiticas H® y H? en el disco complejo.
Estos espacios son, respectivamente, los conjuntos de las funciones holomorfas f € H(D)
tales que sup.j«; v(2)|f(2)| < oo y las funciones que cumplen que v(z2)|f(z)| tiende a cero
cuando |z| se acerca a 1.

Para cada o > 0 y la sucesién de pesos v,,, () := (1 — \z\)o“*'%, z € D, consideramos
el espacio de Fréchet A7® como el limite proyectivo de la sucesién (HS := H,f}’zn)n Este
espacio estd equipado con la topologia del limite proyectivo, es decir, la topologia de Fréchet
inducida por las normas || - ||a,. En cambio, si tomamos 0 < o < 0o y la sucesién de pesos
Vo, (2) == (1 — |z])a7%, podemos definir el espacio LB A”“ como el limite inductivo de la
sucesion (H3® = H;’zn)n, con la topologia del limite inductivo. Cuando o, = n, obtenemos
el espacio de Korenblum A~> como el limite inductivo de los espacios H;°.

Estudiamos la continuidad, compacidad e invertibilidad del operador de composiciéon
pesado Wy, ,, := My,C, donde My es el operador de multiplicacién y C, el de composicion,
en los espacios de tipo Korenblum AT, A”% y A= definidos arriba. También estudiamos
algunas propiedades de su espectro y de su espectro puntual.

En el Capitulo 1 recopilamos algunos preliminares. En el Capitulo 2 estudiamos la
continuidad, compacidad e invertibilidad de Wy , en los espacios de tipo Korenblum AL,
AZ%y A=*°. En el Capitulo 3 nos centramos en el estudio del espectro de Wy, ,, en los mismos
espacios y obtenemos también algunos resultados sobre el espectro y el espectro puntual de
los operadores de multiplicaciéon y composiciéon. En el Capitulo 4 investigamos el espectro
de ciertos operadores de composicién cuyos simbolos admiten una extensién analitica a un
entorno abierto de D. Finalmente, en el Capitulo 5 estudiamos algunas propiedades de Wy o
en limites proyectivos e inductivos de espacios de Banach ponderados de funciones analiticas
con valores en un espacio de Banach.



Summary

The aim of this thesis is to study different properties of weighted composition operators
on several weighted spaces of analytic functions.

Given a strictly positive continuous weight v on the unit disc D of the complex plane,
we consider the weighted Banach spaces of analytic functions H>® and H? on the complex
disc. These spaces are, respectively, the sets of the holomorphic functions f € H (D) such
that supy.|«; v(2)]f(2)| < oo and the functions such that v(z)|f(z)| tends to zero as |z| goes
to 1.

For each o > 0 and the sequence of weights v,,(2) := (1 — |2])*"», z € D, we consider
the Fréchet space AT as the projective limit of the sequence (HS := Hf)’jn)n This space
is endowed with the projective limit topology, that is, the Fréchet topology induced by
the norms || - ||a,. If, instead, we take some 0 < a < oo and the sequence of weights

1
a+n

Vo, (2) := (1= |z|)a_%, we can define the LB-space A~ as the inductive limit of the sequence
(HY = ijzn)n, endowed with the inductive limit topology. When «,, = n, we obtain the
Korenblum space A~ as the inductive limit of the spaces H;°.

The continuity, compactness and invertibility of the weighted composition operator
Wy o = MyC,, where M,y is the multiplication operator and C, is the composition op-
erator, is studied in the Korenblum type spaces AL%, AZ% and A™> defined above. Also we
study some properties of its spectrum and point spectrum.

In Chapter 1 we collect some preliminaries. In Chapter 2 we study the continuity, com-
pactness and invertibility of W, , on the Korenblum type spaces A7%, A% and A™*°. In
Chapter 3 we focus on the study of the spectrum of Wy, , on the same spaces and we obtain
some results about the spectrum and point spectrum of the multiplication and composition
operators. In Chapter 4 we investigate the spectrum of composition operators whose sym-
bols admit an analytic extension to an open neighbourhood of D. Finally, in Chapter 5 we
study some properties of Wy, , on projective and inductive limits of weighted Banach spaces

of analytic functions with values in a Banach space.
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Introduction

The aim of this thesis is to study different properties of weighted composition operators on
several weighted spaces of analytic functions.

A weight on the unit disc D of the complex plane is a continuous strictly positive function.
Given a weight v, we consider the weighted Banach spaces of analytic functions H® and H?
on the complex disc. These spaces are, respectively, the set of the holomorphic functions
f € H(D) such that v(z)|f(z)| < co and the functions such that v(z)|f(z)| tends to zero as
|z| goes to 1.

For each o > 0 and the set of the weights v,,, (2) := (1 — \z\)o“*'%, z € D, we consider the
Fréchet space AL” as the projective limit of the sequence (HJ® := Hxn)n,

AT = m HZ = proj,Hy”,
neN
which is endowed with the projective limit topology, that is, the Fréchet topology induced
by the norms || - ||a,. If, instead, we take some 0 < a < oo and the sequence of weights

Vo, (2) := (1— |z])°‘_%, we can define the LB-space A~ as the inductive limit of the sequence
(Hes = Hyg ns
A== | J HZ =ind, HY,
neN

endowed with the inductive limit topology. When we take the weights v, (z) := (1 — |z])"
instead of the weights v,,,, we obtain the Korenblum space A™* as the inductive limit of
the spaces H;°.

The continuity, compactness and invertibility of the weighted composition operator
Wy, = MyC,, where M, is the multiplication operator and C, is the composition
operator, is studied in the Korenblum type spaces A7%, A”% and A= defined above. Also
we study some properties of the spectrum and point spectrum.

Weighted Banach spaces of analytic functions on the disc have been extensively studied
by many autors, like Bierstedt and Summers [9] and Bierstedt, Bonet and Taskinen [13].
Weighted composition operators defined on spaces of functions of one variable have been
extensively studied, and there is a huge related literature. We refer to the books of Shapiro
[43] and Cowen, MacCluer [27]. Continuity and compactness of weighted composition
operators between spaces of type H>° were described by Contreras and Hernandez-Diaz in
[26] and Montes-Rodriguez [38] even in a more general context. Previously, the composition
operators on these Banach spaces were studied by Bonet, Domanski, Lindstrom and
Taskinen [19]. Bourdon investigated the invertibility of weighted composition operators
in [23]. Continuity of linear operators between projective and inductive limits of Banach
spaces was characterised by Albanese, Bonet and Ricker in [4] and [5]. The spectrum and
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Introduction

point spectrum of linear operators on projective and inductive limits of Banach spaces
were studied by Albanese, Bonet and Ricker in [2] and [3]. Kamowitz investigated the
spectrum and point spectrum of weighted composition operators on spaces of holomorphic
functions that contain the polynomials [34], and also determined the spectra of composition
operators in the case where the symbol is analytic on an open region containing D [33].
Aron and Lindstrom studied the spectrum of weighted composition operators on weighted
Banach spaces of analytic functions [7] and, recently, Bonet investigated the spectrum of
composition operators induced by a rotation [16].

Some properties of weighted composition operators on projective and inductive limits of
weighted Banach spaces of vector-valued analytic functions are also studied in this work.
If £ is a complex Banach space and v a weight on the unit disc, we define the weighted
Banach spaces of vector-valued analytic functions H3°(D, E) and HO(D, E). If, instead of a
weight v we consider a decreasing sequence of weights V' = (vy,),,, we can define the LB-space
VH(D, E) as the inductive limit of the Banach spaces H;°(D, E),

VH(D, E) := indHX(D, E).

Or, if we take an increasing sequence of weights W = (wy,)n, we can define the Fréchet space
HW (D, E) as the projective limit of the Banach spaces Hg® (D, E),

HW (D, E) := projH,” (D, E).
n

In particular, for the increasing and decreasing sequences of the weights v,,,, we obtain the
Korenblum type spaces for the vector-valued case, AZ*(E), AL%(E) and A™>(E).

In Chapter 2 we introduce the weighted composition operator, Wy, ,, for a symbol ¢(ID) C
D analytic and a weight ¢ € H(D). Based on some results of [26], in Section 2.1 we give
a sufficient condition for the weighted composition operator to be continuous on A7* and
A”%, and a characterization of the continuity on A=°°. In Section 2.2, we characterize the
compactness of weighted composition operators on each of the three Korenblum type spaces.
Further, as corollaries, we obtain a necessary condition where the compactness of Wy, , on
these spaces implies its compactness on some Banach spaces Hg, and that if the symbol
lies in a closed disc centered in zero inside the unit disc then Wy , is compact whenever
it is continuous on any of the Korenblum type spaces. As a consequence of two results of
Bourdon, we characterize in Section 2.3 the invertibility of Wy, , on the spaces AL, A”¢
and A™%°.

In Chapter 3 we study the spectrum and point spectrum of the weighted composition
operators on the spaces A%, A”%, A7°°. Theorem 3.3.2 in Section 3.3 shows that the
spectrum of Wy, contains the set of points {0} U {1(0)¢'(0)"}22, and that it is con-
tained in B(0, limy, Te(Wyo, Hat)) U {1(0)¢'(0)"}52, for the spaces AT and A~ and in
B(0,limy, re(Wy o, Hi®)) U {1(0)¢’(0)"}2°, for the Korenblum space A~>. Here 7.(T, X)
denotes the essential spectral radius of the operator T' in the Banach space X. In The-
orem 3.3.5 we prove that the point spectrum of Wy , in A7 and in A”® contains the
set of points {1(0)¢’(0)"}224 \ B(0,7¢(Wy.,», HY)) and it is contained in the set of points
{1(0)¢'(0)"}52, and for the space A~ we obtain that o,(Wy. ., A7) C {1(0)¢’(0)"}5,.
In Section 3.4 we investigate the spectrum and point spectrum of composition operators in
the three Korenblum type spaces. As a corollary of Theorem 3.3.2, we deduce that the spec-
trum of C, in the spaces AT and AZ* is contained in B(0,r.(Cyp, HY)) U {¢'(0)"}22, and
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contains the set of points {0} U{¢'(0)"}72,. For the Korenblum space we prove in Theorems
3.4.2 and 3.4.4 that 0(Cy,, A=) = {0} U{¢'(0)"}22, and that op,(Cyp, A=) = {¢'(0)"}22,.
In Section 3.5 we study the spectrum of the multiplication operator. Corollary 3.5.2 shows
that, in any of the spaces A7%, AZ% or A7, the point spectrum of My is empty and the
spectrum contains the image of the weight, ¢(ID), and it is contained in its closure. Moreover,
in Section 3.6 we investigate the spectrum and point spectrum of the composition operator
in the case where the symbol is a rotation. In comparison with [16, Theorems 1 and 2], for
the composition operator in the Korenblum space Cy, : A7 — A~ with ¢(z) = cz where
|c| = 1 and it is not a root of unity, we obtain that a complex number A # 1, [A\| = 1 belongs
to the resolvent set, that is, the complemetary set of the spectrum, if, and only if, there are
s> 1 and € > 0 such that |¢" — A\| > en™* for each n € N. We also obtain a characterization
of the number 1 belonging to the resolvent set in relation with Diophantine numbers.

Chapter 4 is devoted to the study of the spectrum of the composition operators whose
symbols admit an analytic extension to an open neighbourhood of the closed unit disc D of
the complex plane. We follow the argument of Kamowitz in [33, Theorem 3.4]. In Section
4.1 we introduce some Lemmas used in the proof of the main results. Theorems 4.2.1 and
4.2.4 in Section 4.2 show that for ¢ : D — D analytic, which is analytic on a neighbourhood
of the closed unit disc, with an interior fixed point and a repelling fixed point zg in the
circle, the spectrum of the composition operator C, on AZ* and A7“ contains the closed
ball B(0, |¢'(20)|~*). This enlarges the knowledge of the size of o(C,) that it is known to
be a subset of B(0,7.(C,, HY)) U {¢'(0)"}52, according to Corollary 3.4.1.

In Chapter 5 we investigate different properties of weighted composition operators on
projective and inductive limits of weighted Banach spaces of vector-valued analytic fucn-
tions. In Section 5.1 we study the continuity, compactness and weak compactness of Wy,
between two Banach spaces of vector-valued functions, in comparison with their equiv-
alents in the scalar case. That is, the operators Wy, : HX(D,E) — Hg(D,E) and
Wy HY(D, E) — H)(D, E) in comparison with Wy, , : HS® — HS® and Wy, : HY — HY.
We obtain that the operators in the vector case are continuous if, and only if, they are so in
the scalar case. Proposition 5.1.11 shows that Wy, , : H°(D, E) — Hg° (D, E) being compact
is equivalent to Wy, , : HY(D, E) — HY(D, E) being compact and that it is also equivalent to
the compactness in the scalar cases and that E has finite dimension. In Proposition 5.1.14
we have the same equivalences for the weak compactness but in there the space E has to be
reflexive instead of finite dimensional. In Proposition 5.2.10 of Section 5.2 we characterize
when linear operators between LB-spaces are bounded, Montel, reflexive, compact or weakly
compact. Then, in Section 5.2.1, we apply Proposition 5.2.10 to characterize when weighted
composition operators Wy, ,, on the space VH (D, E) are bounded, Montel, reflexive, compact
and weakly compact. As a consequence, in Section 5.2.2, we obtain the characterizations of
the same properties in the cases when weighted composition operators act on the LB-spaces
AZY(E) and A~*°(E). In Section 5.3.1 we apply [17, Proposition 4.2] to give some character-
izations of the Wy, , being bounded, Montel, reflexive, compact and weakly compact, on the
projective limits HW (D, E). These results are gathered in Proposition 5.3.11, which should
be compared with [17, Theorem 4.3]. In Section 5.3.2 we obtain the characterizations of the
same properties for weighted composition operators acting on the projective limit A7 %(E),
as consequences of Proposition 5.3.11.
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Chapter 1

Preliminaries

1.1 Previous definitions and useful results

Let X be a topological space. The space X is a Hausdorff space if for each pair of distinct
points z, y there are respective neighbourhoods Uy, U, such that U, N U, = (. We say that
X is regular if it is Hausdorff and each point possesses a base of closed neighbourhoods.
Moreover, every Hausdorff locally convex space is a topological regular space.

Let X and Y be topological spaces. A bijection b of X onto Y such that b(A) is open
in Y if, and only if, A is open in X, is called a homeomorphism. The spaces X and Y are
homeomorphic if there exists a homeomorphism of X onto Y. Two topological vector spaces
X, Y over the same field K are called isomorphic if there exists a bijective linear map u of
X onto Y which is a homeomorphism; « is called an isomorphism of X onto Y. We say that
u is an automorphism if u is an isomorphism of X onto itself. (See [42, pp. 4, 13]). A linear
operator T: X — Y between two normed spaces is called an isometry (or, more precisely,
linear isometry) if | Tz| = ||z|| for each z € X. Two normed spaces are said to be isometric
if there exists a surjective linear isometry from one space onto the other. (See [1, p. 2]).

An operator T: X — Y is said to be continuous at a € X if for each neighbourhood
V of T'(a) there exists a neighbourhood U of a such that T(U) C V. We say that T is
continuous if it is continuous at all points in X. The operator T is continuous if, and only
if, the preimage of every open set is open.

A continuous linear operator T: £ — F between Hausdorff locally convex spaces E and
F' is called:

- bounded if there exists a 0-neighbourhood U in E such that T(U) is bounded in F;
- Montel if for every bounded subset B of E, T'(B) is relatively compact in F;
- reflexive if for every bounded subset B of E, T(B) is weakly relatively compact in F’;

- compact if there exists a 0-neighbourhood U in E such that T'(U) is relatively compact in
F.

7

- weakly compact if there exists a 0-neighbourhood U in E such that T'(U) is weakly relatively
compact in F.

Let X be a vector space over a non-discrete field K. Let A and B be two subsets of
X. We say that A is circled if NA C A for each |\| < 1. A circled, convex subset is called
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Chapter 1. Preliminaries

absolutely conver. We say that A absorbs B if there exists A\g € K such that B C A\A
whenever |[A| > |Ag|. The subset A is called absorbent if absorbs every finite subset of X.

A barrel in a topological vector space F is a subset which is absorbent, absolutely convex
and closed. A locally convex space F is barreled if each barrel in F is a neighbourhood of 0.
Every Banach space and every Fréchet space is barreled (see [42, p. 60]). A locally convex
space E for which E = E” is called semi-reflexive. Every semi-reflexive space E is reflexive
if, and only if, it is barreled. Every semi-reflexive normed space is a reflexive Banach space
(see [42, p. 145]). A reflexive locally convex space in which every closed, bounded subset is
compact, is called a Montel space. Observe that in Montel spaces an operator is compact if,
and only if, it is bounded. A normed space is Montel if, and only if, it is finite dimensional
([37, Exercise 7 p. 293]). Morevoer, since the unit ball of a Banach space is bounded and it
is a 0-neighbourhood, then every operator on a Banach space is reflexive if, and only if, it is
weakly compact. For more information about barreled, reflexive or Montel spaces, see [37]
and [42].

Proposition 1.1.1 ([37], Theorem 23.18). A locally convex space E is semi-reflexive if, and
only if, every bounded set in E is relatively weakly compact.

Note that this proposition implies that if F' is a semi-reflexive locally convex space and
T : E — F an operator, then T is weakly compact if, and only if, it is bounded.

Let X be a topological vector space. A fundamental system of bounded sets of X is a
family B of bounded sets such that every bounded subset of X is contained in a suitable
member of B.

Let E be a locally convex space. A subset M C F is said to be bornivorous if for each
bounded set B in E there exists a A > 0 such that B C AM. The space FE is called DF-space
if it has the following properties:

1. E has a countable fundamental system of bounded sets.

2. If V C FE is bornivorous and is the intersection of a sequence of absolutely convex zero
neighbourhoods, then V is itself a zero neighbourhood.

Every normed space is a DF-space. For more information about DF-spaces see [37, Chapter
25].

Along all the work the set of all holomorphic functions on the complex disc D is denoted by
H (D) and the set of all bounded holomorphic functions on D is written H*°. The topology
of the uniform convergence on compact sets is denoted by 7. The weak topology in a
topological space X is denoted by o (X, X’). The weak* topology (or, the pointwise topology)
in the dual space X’ is written o(X’, X) or simply w*-topology.

1.2 Inductive and projective limits
A K—vector space F together with a family of locally convex spaces (E;);c; and linear maps
Jit B — E, i € I, is called an inductive system if | J;c; ji(£;) = E. If there exists a finest

locally convex topology on F for which all the maps j; are continuous, then it is called the
inductive topology of the system.
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1.3. About the spectrum

Proposition 1.2.1 ([37], Proposition 24.7). Let the locally convex space E have the inductive
topology of the system (j;: E; — E)icr. A linear map A: E — F into a locally conver space
F is continuous if, and only if, A o j; is continuous for all i € I.

A countable inductive system (j,: E, — E)npen is called an imbedding spectrum if the
following holds for all n € N:

1. E, is a linear subspace of F and j, is the inclusion.
2. E, is contained in F, 41 and the inclusion F,, — F, 1 is continuous.

If the inductive topology 7 of the system exists, then we refer to £ = (F, 7) as its inductive
limit, and we write E = ind, F,,. We say that a locally convex inductive limit £ = ind, E,, is
reqular if every bounded subset of E is contained and bounded in a step E,. The inductive
limit of an increasing sequence of Banach spaces is called an LB-space. Every LB-space
is barreled ([42, Corollary 2, p. 61]). For more information about inductive limits and
LB-spaces see [14].

Lemma 1.2.2 ([5], Lemma 4.1). Let X = ind,X,, and Y = ind, Y, the inductive limits
given by two increasing unions of Banach spaces X = U2, X, and Y = U_,Y,,. Let
T: X =Y be a linear map.

(i) T is continuous if, and only if, for eachn € N there exists m € N such that T'(X,) C Yy,
and the restriction T: X,, — Y,, is continuous.

(ii) Assume that Y is a reqular LB-space. Then T is bounded if, and only if, there exists
m € N such that T(X,,) C Yy, and T: X,, — Yy, is continuous for all n > m.

A K—vector space F together with a family of locally convex spaces (E;);c; and linear
maps p;: ' — E;, ¢ € I, is called a projective system if, for each x € E, x # 0, there is an
i € I with p;(z) # 0. The projective topology on E is the coarsest topology on E for which
each of the mappings p; is continuous. We write £ = [;¢; p;I(Ei).

Lemma 1.2.3 ([4], Lemma 25). Let E := proj,,En and F = proj, F,, be Fréchet spaces
such that E = NpenEm with each (En, || - |lm) a Banach space (resp. F = NpenFy, with
each (Ey, || - |ln) a Banach space). Moreover, it is assumed that E is dense in E,, and that
Ep+1 C Ey, with a continuous inclusion for each m € N (resp. Fp,+1 C F,, with a continuous
inclusion for eachm € N). Let T: E — F be a linear operator.

(i) T is continuous if, and only if, for each n € N there exists m € N such that T has a
unique continuous linear extension Ty, n: By — Fy.

(ii) Assume that T is continuous. Then T is bounded if, and only if, there exists m € N
such that, for every n € N, the operator T has a unique continuous linear extension
Tmn: By — Fy.

1.3 About the spectrum

The space of all continuous linear operators between two locally convex spaces X and Y is
denoted by £(X,Y). If X =Y then we write £(X).

Let T: X — X be a continuous linear operator on a locally convex space X. The resolvent
set p(T) of T consists of all A € C such that R(\,T) := (T — M)~ ! is a continuous linear
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operator, that is, T'— AI: X — X is bijective and has a continuous inverse. Here I stands
for the identity operator on X. The set o(T) := C\ p(T) is called the spectrum of T. The
point spectrum op,(T) of T is the set consisting of all A € C such that T'— AI is not injective.
In other words, the point spectrum is the set of all eigenvalues of T'. If we need to stress the
space X, then we write o(T, X), op(T, X) and p(T, X ). Unlike for Banach spaces, it may
happen that p(T) = () or that p(T) is not open.

Proposition 1.3.1 ([32], Theorem 4 p. 204). If T is a compact operator in a locally convex
topological vector space, then o(T') is either finite or it is formed by 0 and the points of a
sequence that converges to 0.

1.4 Weighted Banach spaces

If v: D — RT is a bounded continuous (strictly) positive funcion, we say that v is a weight.

Let H(D) be the space of analytic functions on D, which is endowed with the Fréchet
topology of uniform convergence on compact sets. We are interested in the following weighted
Banach spaces:

H = HF(D) :={f € HD): ||f}, := ilelﬂgv(Z)\f(Z)! < oo},

HY = HY(D) = {f € HD):  lim o(:) /()] =0} .

|2|—
Those spaces are Banach, endowed with the norm || - [|,.
We say that v is radial whenever v(z) = v(|z]) for all z € D. Any radial, positive

continuous funcion v: D — R™, which is non-increasing with respect to |z| and is such that
limy, - v(z) = 0, is called a typical weight. Through the document, we just consider v to
be radial and typical.

To each weight v corresponds the so-called growth condition u: D — RY, u = 1/v, and
B, :={f € HD): |f] <wu}. A new function @: D — R" is defined by

(z) = sup |£()],
fe€By

and the weight associated with v is defined by © := 1/a. (See some of their properties
in [13]). In [19, Proposition 2.1] it is shown that if v is typical then o is typical too and
by [19, Proposition 2.3] we have that Hp° = Hg° isometrically and, if lim|,|_,;- v(2) = 0
then HY = HY isometrically as well. Moreover, in [13, Observation 1.12] it is proved that
Hg® = H° and the norms || ||, and || || coincide. A weight v is called essential if there exists
a constant C' > 0 such that v(z) < 9(z) < Cv(z), for all z € D.

1.4.1 Owur weights

Given a > 0, we define v, (2) := (1 — |2])%, z € D. From now on, in order to abreviate the
notation, we write H3° and HY instead of Hy° and HY , and || - [|o instead of || - ||,,. For

every a, H) C HZ®.

Since 1 — |z <1 — |2|? < 2(1 — |2|), the weights (1 — |2|?)® define the same space. The
vo weights are called standard weights. They are also essential, with constant C' = 1 (see
Remark 1.4.1).
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Remark 1.4.1. For every a > 0, v,4(2) = 04(2), for all z € D.

Indeed, it is clear that v, < ¥,. On the other hand, if we fix zyp € D and prove that there
exists some f € H(D) such that |f(z)| < 1/va(z) for every z € D with f(z0) = 1/va(20),
we get the result. When zp = 0, we take f = 1. Otherwise, if zyp € D\ {0}, we can write
20 = |20/€?. Define the function f € H(D) as follows:

1

f(Z) = m, Vz S D.
Thus, . . .
IO = = cze] ~ e = @—fape
1 1

A e Sy (e )

Lemma 1.4.2. The space Hg s a closed subspace of H3° and coincides with the closure of
the polynomials on HZC.

Proof. We prove that for each function in H?, there is a sequence of polynomials that tends
to the function in the norm || |4.

Fix f € H?, which can be written as f(z) = Y o, az*. The Cesaro means of the partial
sums of the Taylor series of f about zero are denoted by C,,(f), n =0,1,2,...; that is,

(Cu())(2) = n—lk 1 Z <Zakzk> , z€D.
k=0

Each C,(f) si a polynomial of degree less than or equal to n and C,,(f) — f uniformly on
every compact subset of D. Applying [12, Lemma 1.1] and taking into account that (1—|z|)®
is a radial weight we obtain

sup(1 — [2])*[(Cn(f))(2)] < sup(l — |2[)*(max [f(Az)[) = sup(1 — [2])*[f(2)] .
2€D z€D [Al=1 z€D
Now, similarly to the proof of [12, Proposition 1.2 (e)], we prove that C,(f) — f with the

norm || ||q.

For each ¢ > 0 there exists 0 < r < 1 such that (1—|z|)¥|f(2)| < ¢/2 for all z € D\ B(0, 7).
On the other hand, since Cy,(f) — f uniformly on K = B(0,7) (because it is a compact set),
we can choose ng € N such that if n > ng then max.cx [f(z) — (Cn(f)(2))| < e. Thus, for

any n > ng we have that

sup(1 = |2))°1f(2) = (Cal£))(2)] <
< max { ma |f(2) = (Cul DD sup (1= [£)°1£) = (Cul N}
<max{z g+ sup (1= LGN
<max{e. g+ sup (1= [ (max|F(32)
< max {e, g + ziﬁ&(l 2@} <
Here we have used that if z € D\ K then Az € D\ K for each || = 1. O
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Lemma 1.4.3. For every 8 > a > 0 the inclusion Hy® — Hg is continuous and || f|lg <
| flla for all f e H.

Proof. Let f € HY. Let us call M :=supuv,(2)|f(z)] < co. For every ¢ > 0, take § :=
z€D

(a/M)ﬁ%a > 0. Assume 1 — |z| < §. Then,
vs(2) f(2)] < 6771 = |2)°1f ()] = 67 va(2)|f(2)] < 87 OM =

That is, f € Hg. Morevover, since 8 > a, vg(z) < vq(2) for all z € D and so, for every
feH,
1flls = supvs(2)|f(2)| < supva(2)|f(2)] = [|flla-
z€eD z€D
Therefore, the inclusion is continuous. ]

Lemma 1.4.4. For every > « > 0, the inclusion H® — HE® is compact.

Proof. Observe that 8 — « > 0 since 8 > a > 0. So,

im 23 _ (- P =0

lo|—1- Vo (2)  |2l—1-

We need to see that the closed unit ball B, of HS® is compact in HZ°. That is, we want that
for every sequence (fi)x C Bq exists a subsequence (fx,); such that lim; || f, — fol|g = 0 for
some fo € Hg.

The ball B, is bounded and closed in (H(D),7s). By Montel’s Theorem, B, is Teo-
compact. Or, what it is the same, there exists a subsequence (fy,); Teco-convergent to some
fo- We prove now that such subsequence is also convergent in Hg°.

In order to do this, let us denote g; := f, — fo. So, (g;); converges to 0 uniformly on
compact sets of . Also, ||gjlla <2, Vj.

Now, since lim|_,;- Zi—g; = 0, for every € > 0, there exists 79 €]0, 1 such that

vs(2)
Va(2)
We call M := max.epvg(z) (such maximum exists because vg is continuous, positive, and

lim,|,1- v5(2) = 0). The set K :={z € D: [2] <ro} is compact. There exists jo such that,
if j > jo then sup,cx |g;(2)| < 7. Let z € D and j > jo. So, when z € K,

<eg, for all |z| > ro.

vs(2)|g;(2)| < M% .

If zeD\ K,
v5(2)
va(gi ()| = 7 val)lgs ()] < 2.
That is, (g;); converges to 0 in HZ. O

Remark 1.4.5. Lemma 1.4.4 can be seen as a consequence of [19, Theorem 3.3] by taking
the symbol ¢ the identity. This way, the composition operator is the inclusion.

Lemma 1.4.6. For each o > 0, H° is isometrically isomorphic to the bidual Banach space
(HY)".
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Proof. By [9, Corollary 1.2], it is enough to prove that EHg is T.o-dense on EHgo. So, we
prove this by following the argument of [9, Example 2.1].

If we fix f € By, for each 0 < r < 1, the function f,(z) := f(rz) belongs to HY.
Indeed, since rDD is a relatively compact subset of D, and f is analytic on D, we have that

sup | fr(z)| = sup [f(z)| < o0,
zeD zerD
what implies lim|,|_,;- (1 — [2])*|fr(2)] =0, for all 0 <7 < 1.

Moreover, given zp € D, the Maximum Modulus Principle yields A € C, |\| = 1 such that
| f(rz0)| < sup.ep(o,)z)) |f(2)| = [f(A20)| and

va(20)[fr(20)] < valz0)|f(X20)] < | flla <1,

that is, f, € EHg for every 0 < r < 1. Since (f,), is a bounded set for the norm topology,
then it is bounded in the 7., topology, that is, it is uniformly bounded on compact sets.
Then, by Montel’s Theorem, there exists a subsequence uniformly convergent on compact
sets. And, since lim,__,;- f(rz) = f(z) for all z € D (because f is continuous on each z € D),
then the subsequence of (f,), tends to f uniformly on compact sets of D as r — 17. Thus,
EHg is T.,-dense on EHgo. O

The preceding remark explains why the spaces H® and (H2)” are isometrically isomor-
phic. However, by [9, Theorem 2.3] it is enough to have that the space HY contains the
polynomials.

1.5 Korenblum type spaces

For every n € N, set v,(2) := (1 — [2|)", z € D. Clearly, v, > vpq1. Thus, H® C H9,,
with [| - |lnt1 < [ - [[n-
The Korenblum space (see [35]) is defined as

AT = U H> .
neN

It is endowed with the inductive limit topology: A™>° = ind H;° . It is the finest locally
n

convex topology on |J,, Hy® such that the inclusion H° — A~ is continuous for each
n € N. The space A~ is a regular LB-space (see Proposition 5.2.2).

Remark 1.5.1. By Lemmas 1.4.3 and 1.4.4, taking « = n and 8 =n + 1, we have H>° —

HY,, is continuous and HS° < HS, is compact.

By [37, Proposition 25.20], the space A~ is a DFS-space. This means that it is a DF-
space which is also Schwarz. A locally convex space is called Schwarz if for every absolutely
convex zero neighbourhood U there exists a zero neighbourhood V so that for each € > 0
exist f1,...,fn € V such that V C U;L:1(fj + eU). In particular, A=>° is a Montel space
(see [14, pp. 61-62]).

Remark 1.5.2. The Korenblum space is a locally convex algebra. In fact, A= is a locally
convex space and an algebra because it is a vector space over the field C which has defined
a product fg for each f,g € A7 that verifies:

e (fg)h = f(gh),
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o (f+g)h=fh+gh, f(g+h)=fg+[fh,
e (fg)a= f(ga) = (fa)g,

for any f,g,h € A=, o € C. In order to see that A~ is a locally convex algebra, one has to
check that the multiplication is separately continuous, because, then, due to the topological
properties of the space, it will be continuous (see [32] and [42, pp. 202]).

Multiplication is separately continous, because if we fix f € A7, there exists k € N
with f € H°. For any g € H:°,

1£gllntr = sup(l — [2))"**| fg(2)| = sup(1 = |2])"|g(2)|(1 = |2])*| f(2)] < o0 .
z€D zeD

That is, for each n € N, there exist m(=n + k) € N such that the multiplication with f is a
continuous operator from H ° to H;° and, then, it is continuous on A~°°. Analogously, one
can prove the continuity with the second element fixed.

1.5.1 The A.* space
Fix o > 0. Take o, := ¢ + % We set

AT = ﬂHEZ
neN

The space AL” is an intersection of Banach spaces, and it is also a Fréchet space when en-
dowed with the locally convex topology generated by the increasing sequence of (semi)norms

e := sup(1 = [z])*"[f(2)] -
zeD

This space is also a projective limit, endowed with the projective limit topology:
proj, H5o. It is the coarsest topology for which the inclusion A7* < HZ® is continuous
for all n € N.

Remark 1.5.3. Notice that (,cy HY® = ey Ho,- This occurs because the inclusion
HX C chn holds for each n € N (see Proposition 1.4.3).

Qn+1

Proposition 1.5.4. For every o >0, n € N, AT” is dense in Hgn.
Proof. If P = P(D) denotes the space of the polynomials over D, we know that P C H* C

HE , for every ay = o+ %7 where a > 0 and n € N, since for all z € D, (1 — |z])*|f(2)| <
|| f||oos when f € H*. Thus,

Pc()H (:ﬂH3n>
neN neN

By Lemma 1.4.2, P is dense in Hgn for every n € N. Now, as A is Fréchet and P C AL* C
HY . it follows that P is dense in AT®. So, A7* is dense in H . O
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1.5. Korenblum type spaces

1.5.2 The A”® space
Fix a > 0. Take o, := @ — %, where n > ng such that a — nio > 0. We set

ATY = U Hg:
neN

The space AZ%, endowed with the inductive limit topology, that is, the finest locally
convex topology on | J,, H3® such that the inclusion H3° < A”® is continuous, is a regular
LB-space (see Proposition 5.2.2). So,

AT = iI’}LngZ .

Notice that when o = 0o, AZ% = A=,

Remark 1.5.5. Notice that |J,, ey H3® = U,en Ho,- This occurs because the inclusions
Hgn CHS C HgnH hold for all n € N, as we have seen in Lemma 1.4.3.

We prevent the reader to pay attention to the implicit signification of the notation ay,
which depends on the context. The exponents «,, of this section are different from those in
Section 1.5.1.
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Chapter 2

Weighted composition operators

Consider an analytic map ¢: D — D with p(D) C D, and ¢ € H(D). The weighted compo-
sition operator is defined by

Wyof(2) = $(2)f(p(2)), z€D.

In this definition, ¢ is called the symbol and v the weight. Observe that Wy, , = MyC,
where My, is the multiplication operator defined by My (f) := ¢ f and C,, is the composition
operator defined by C,(f) := f o . All over the text, ¢ and ¢ denote as stated above.

In this chapter we investigate the properties of continuity, compactness and invertibility
of the weighted composition operator on the Korenblum space A~ and the Korenblum type
spaces AL” and A”®. The main results of this chapter are collected in [31, Section 2].

The continuity and compactness of the operator Wy, , on weighted Banach spaces has
been deeply studied by Contreras and Herndndez-Diaz in [26] even in a more general context;
see also [19] and [38]. Below we state some characterizations of continuity and compactness
described in [26].

Proposition 2.0.1 ([26], Proposition 3.1). Let v and w be weights. Then the operator
Wy.o: H® — HiY is continuous if, and only if, sup,cp |¥(2)|w(2)/0(p(2)) < oo.

If v is essential, then the operator Wy ,: H3° — Hg’ is continuous if, and only if,
sup.ep [¥(2)|w(2)/v(e(2)) < oo.

Proposition 2.0.2 ([26], Proposition 3.2). Let v and w be typical weights. Then the operator
Wy o HY — HY is continuous if, and only if, v € HY, and sup,cp [¢(2)|w(z)/0(p(2)) < oc.

If v is essential, then the operator Wy ,: H? — HY is continuous if, and only if, yp € HY
and sup,cp [1(2)[w(z) /v(p(2)) < oo.

Proposition 2.0.3 ([26], Corollary 4.3). Let v and w be weights. Then the operator
Wy o H® — HgY is compact if, and only if, ¢ € HZ® and

()
S (=)

When v is essential, 0 can be replaced by v.

=0.

Proposition 2.0.4 ([26], Corollary 4.5). Let v and w be typical weights. Then the operator
Wy ot HY — HY is compact if, and only if,

msup ()

T Y

When v is essential, © can be replaced by v.
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2.1 Continuous weighted composition operators

This section is focused in the study of the continuity of Wy, , in the Korenblum type spaces.
For the spaces AL* and AZ® we obtain sufficient conditions for the continuity and for the
Korenblum space we get a characterization. Recall that every bounded operator is continu-
ous.

Rewriting Propositions 2.0.1 and 2.0.2 for our weights v, (which satisfy v, = 0, that is,
they are essential), we get the following results.

Proposition 2.1.1. Let o, 3 > 0. Then the operator Wy, ,: HY® — HE" s bounded if, and
only if,

sup 1PENVB(2)

2€D Ua(@('z»

Proposition 2.1.2. Let o, > 0. Then the operator Wy, ,: HY — Hg is bounded if, and
only if, ¥ € Hg and
|1(2)[vs(2)

sup — -+~ < 00 .
z€D Ua(%"(z))

2.1.1 Continuity on A7

The following theorem characterizes the continuity of the operator Wy, ,: A7T* — A7 In
order to state the theorem, we have applied Proposition 2.1.2 and Lemma 1.2.3. This lemma
can be used here because the space A, is defined as the projective limit of the Banach spaces
HZ® , that is, the projective limit of the Banach spaces H gn, with the inclusion H, gn o H, gn

continuous, and holding that the space A7* is dense in H) for all n > 0 (Proposition 1.5.4).

Theorem 2.1.3. Let a >0, ¢, € H(D) and (D) C D. The operator Wy, ,: AL — AL
is continuous if, and only if, v € AT and for each n € N there exists m > n such that

[9(2)[Van (2)

sup —————+—~ < 00 .
€D Va,, ((2))

Proof. Applying Lemma 1.2.3 we have that Wy ,: AT — AL® is continuous if, and only
if, for every n € N there exists m > n such that Wy, has a unique continuous exten-
sion W: Hgm — Hgn. Since AL is dense in Hgm, for each f € Hgm there exists a
sequence (f;); € AL® such that f; — f. Then, by the continuity of W, we have that
W (f;) = ¥(fi o p) tends to W(f) € HS . Thus, ¥(2)fj(¢(2)) — W f(z) for all z € D, and
V(2)fi(p(2)) — (f o @)(2) for all z € D. This means that W = Wy,o. Now, applying
Proposition 2.1.2, the preceding holds if, and only if, ¢ € Hgn for allm € N, that is, ¢ € AT,
and sup.ep [¢(2)|va,, (2)/Vay, (¢(2)) < o0 O

Notice that we have used Proposition 2.1.2 instead of Proposition 2.1.1 because one of the
conditions in Lemma 1.2.3 is the density, and we have that AL® is dense in H, 3n (Proposition
1.5.4), but not in HZ®.

Proposition 2.1.4. Consider ¢» € H(D) and o« > 0. The operator M,y is continuous on
ALY if, and only if, ¥ € A_T_O.
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Proof. Applying Theorem 2.1.3 to My, we have that My, € L(A]“) if, and only if, for every
n € N there exists m > n such that ¢ € H?® ;.

n m

Assume 3 # 0. Notice % — % < % By Lemma 1.4.3, HO 1 - HO. So, if for every

nENthereissomemGNWithwGHO 1 thenforallnEN dJEH thatis weA*O
On the other hand, if ¢ € AJr , for every n € N exists m > n such that ¢ € H01 , and

nm

Locmen 1L, e HY . Thus, My € L(A;%) if, and only if, ¢ € A7°. O

The following theorem shows a necessary condition for the continuity of Wy, , on AL
Theorem 2.1.5. Let a > 0, ¢, o € H(D) and (D) CD. Ify € A;D, then Wy, , € L(AT®).

Proof. As for each n € N, v,,, is typical, by [19, Theorem 2.3] we have Cy,: H3® — HS° and
Cy: Hgn — Hgn are continuous for all n € N. Also, by Lemma 1.4.3, for every n,m € N with
n <m (and so, ay, < o), Cp: HYX — HYP and Cy: H — HY  are continuous. Now,
as for every n € N there exists m € N (n < m) such that the composition operator has a
unique linear continuous extension C,: Hgm — Hgn, by Lemma 1.2.3, we get C, € L(AL")
for any a > 0.

Finally, since the composition of two continuous operators is also continuous, by applying
Proposition 2.1.4 we get the result. O

The next example shows that the converse of Theorem 2.1.5 does not hold.

Example 2.1.6. Set a > 0. If we take ¢(z) = 2/2, for all z € D, and some ¢ € AL \ A7,
it holds that for every n € N there exists some m > n such that

sup\w(z)!w < 295 sup [1h(2)] (1 — |2))*F 7 < 0o .

2€D (1- |z|/2)o‘+* 2€D
This way, by Theorem 2.1.3, Wy, ,,, with such symbol and weight, is continuous on A7* and
) & A7°
2.1.2 Continuity on A”* and A~

The following theorems characterize the continuity of the weighted composition operators
on A”% and A=°°. We have stated the theorems using Proposition 2.1.1 and Lemma 1.2.2.
This lemma can be used in both cases because they are inductive limits of Banach spaces.

Theorem 2.1.7. Let a > 0, ¥, € H(D) and (D) C D. The operator Wy, ,: AZ* — AZ
is continuous if, and only if, for each n € N there exists m € N such that

() va,, (2)

sup ——————= < 00 .
€D Va, (9(2))

Theorem 2.1.8. Let 1), € H(D) with (D) € D. The operator Wy, ,: A7 — A™>
continuous if, and only if, for each n € N there exists m € N such that

¥ (2)|vm(2)

sup ————— < 00 .
2D Un(p(2))

The following propositions are used in the proofs of the two theorems below.
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Proposition 2.1.9. Let p € H(D) with p(D) € D. Then C, € LIA™®) and C, € L(AZ®)
for every a > 0.

Proof. By [19, Theorem 2.3] and Lemma 1.4.3, we obtain that for every n € N exists m € N,
(m > n) such that Cy,: Hy? — HY and C,: H® — Hpy are continuous. Now, if we take
¢ = 1, by using Proposition 2.1.1, Theorem 2.1.7 and Theorem 2.1.8 we get C,: AZ% — AZ“
and C,: A7 — A7 are both continuous. O]

Proposition 2.1.10. Consider v € H(D). The operator My € L(AZ%) if, and only if,
¥ e AL

Proof. 1f we apply Theorem 2.1.7 to My, we have My € L(AZ?) iff for every n € N there
exists m € N such that v € HY ;. The rest of the proof is analogous to the proof of

Proposition 2.1.4. O

Theorem 2.1.11. Let 0 < o < o0, ¢, € H(D) with (D) C D. If¢ € Ajro then
W’l/}7<p S ﬁ(A:a).

Proof. Recall that the operator Wy, ., is the composition of the operators My, and C,. Then,
it U, and My, are both continuous and well defined, the operator Wy, , will be continuous
and well defined as well.

Proposition 2.1.9 sets that C, € L(AZ®) and, by Theorem 2.1.10, we have that if ¢ €
A;O then My is also continuous and well defined. Therefore, when ¢ € A;O the operator
Wq/)#p S ﬁ(A:a) OJ

The converse is not true. It can be easily checked taking ¢(z) = z/2, as in Example
2.1.6.

Theorem 2.1.12. Let ¢, p € H(D) with (D) CD. Then Wy, € L(AT) if, and only if,
e AT,

Proof. Assume Wy , is continuous on A~>°. The constant function 1 € A~ so,
Wy (1)(2) = 1(2) for all z € D. Then ¢p € A7,

Conversely, assume now 1) € A~*°. Thus, there exists some k € N such that ¢ € H]OO for
any j > k. So, for all n € N there exists m € N (m > n) such that ¢ € H>? . (It suffices to
take m with m —n > k). Applying Proposition 2.1.1 and Theorem 2.1.8 to M, we obtain
M, is continuous on A~°°. Therefore, by Proposition 2.1.9, the result is obtained. O

2.2 Compact weighted composition operators

In this section we study the compactness of Wy, , in the Korenblum type spaces. We obtain a
necessary condition where the compactness of Wy, , on these spaces implies its compactness
on some Banach spaces Hg. Also, we prove that if the symbol satisfies that its image
is contained in a closed disc centered in zero inside the unit disc then W, , is compact
whenever it is continuous on any of the Korenblum type spaces.

Recall that for all Montel spaces E and T' € L(FE), T is compact if, and only if, it is
bounded. Taking this into account we can write the following characterizations.

First, combining Lemma 1.2.3 with Proposition 2.1.2, we obtain the next characterization
of the compactness of Wy, ,: AL* — A%
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Theorem 2.2.1. Let a >0, ¥, ¢ € H(D) with (D) C D. The operator Wy, ,: A7* — AL
is compact if, and only if, it is continuous and there exists m € N such that for each n € N

[9(2)[Van (2)

sup ——————= < 00 .
2D Vo, (9(2))

On the other hand, combining Lemma 1.2.2 with Proposition 2.1.1, we can state the
two following results, which are a characterization of the compactness of the operators
Wyt AZ* = AZ% and Wy, 0 A7 — A=

Theorem 2.2.2. Let a >0, ¢, € H(D) and (D) € D. The operator Wy, ,: AZ* — A”*
is compact if, and only if, it is continuous and there exists some m € N such that for every

ne ()t (2)
w Vo, \ R
W o (p(z)) ©%

Theorem 2.2.3. Let 1, € H(D) with ¢(D) C D. Then Wy, ,: A= — A= is compact
if, and only if, it is continuous and there exists m € N such that for alln > m

¥ (2)[vm(2)

sup ————— < 00
zeD  Un(p(2))

Corollary 2.2.4. Let 1, p € H(D) with (D) C D.
(i) Let o > 0. If Wy, AL" — AL is compact, then there exists n € N such that
Wy.o: HY atl —>H0 1 is compact.
(i) Let o« > 0. If Wy ,: AZ* — AT is compact, then there exists n € N such that
Wyt 1‘]2_l — Hg_; 18 compact.
(iii) If Wy o A7 — A~ is compact, then there exists n € N such that Wy, H? — HY

18 compact.

Proof. This is a direct consequence of Theorems 2.2.1, 2.2.2 and 2.2.3, and Proposition
2.0.4. O

Corollary 2.2.5. Assume that there exists an r, 0 < r < 1, such that |¢(z)| < r for all
z € D.

(i) Let a > 0. If Wy, 2 AL* — AL® is continuous, then it is compact.
(i1) Let o« > 0. If Wy, 0 AZ* — AZ® is continuous, then it is compact.
(iii) If Wy, o2 A7 — A7 is continuous, then it is compact.

Corollary 2.2.6. Assume that My is continuous on AL, A_* or A=>°. If My, is compact,
then ¢ = 0.

Proof. For A7 and A”* it is already shown in proof of Propositon 2.1.4 and 2.1.10.

In the case of A7, we have that if My, is compact, by Theorem 2.2.3 there exists m € N
such that for all n € N with n > m, sup,cp [¢(2)[(1 — |2])™™ < oco. But, for all z € D,
lim, (1 — |2])™™" = oo. O

Example 2.2.7 ([19], Corollary 3.2). Let v and w be weights. If there exists an r, 0 < r < 1,
such that |p(2)| < r for all z € D, then C,: Hy® — Hg® is compact.
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Chapter 2. Weighted composition operators

2.3 Invertible weighted composition operators

In this section we study the invertibility of weighted composition operators on A%, AZ“
and A~ as a consequence of the following results due to Bourdon.

Theorem 2.3.1 ([23], Theorem 2.2). Suppose that X is a set of analytic functions on D
such that

(i) Wy, maps X to X,
(i) X contains a nonzero constant function,
(iii) X contains a function of the form z — z + ¢ for some constant c,
(iv) there is a dense subset S of the unit circle such that for each point in S there is a

function in X that does not extend analytically to a neighbourhood of that point.
If Wy o2 X — X is invertible, then ¢ is an automorphism of .

Corollary 2.3.2 (]23], Corollary 2.3). If X, 1 and ¢ satisfy the hypotheses of Theorem
2.3.1 and X is automorphism invariant, i.e., f o ¢ € X for all automorphism ¢ of D, then
Wy, is invertible on X if, and only if, ¢ is an automorphism of D and v as well as 1/1)
are multipliers of X .

Remark 2.3.3. That the space H3® or H;° is automorphism invariant is equivalent to the
composition operator Cy: HS® — HZ or Cy: H — HZ° being well defined for all ¢ €
Aut(DD). By [19, Theorem 2.3] the composition operators Cy: H? — H3® and Cy: H° —
Hp° are well defined for all ¢ € Aut(ID). Now, since H® and H° are automorphism invariant
for all n € N, then AT, A”% and A~ are too.

Recall that a function g is a multiplier of a set X provided that gf € X whenever f € X.
As a consequence of Closed Graph Theorem, if X is a Fréchet space or an LB-space, ¢ is a
multiplier if, and only if, the multiplication operator M, is continuous on X. In our cases
this holds because AL is a Fréchet space and A_® and A~ are LB-spaces.

Lemma 2.3.4. Let o > 0, a € dD. Consider the function go.(2) == 1/(a — 2)*. Then
Jo,a € H® and does not extend analytically to any neighbourhood of a.

Proof. Since |a — z| > 1 — |z| for each z € D, it follows that sup,cp(1 — [2])%|ga,qa(2)| < 1.
Besides, notice gq,, has a pole at a, so it does not extend analytically to a neighbourhood of
a. [

Now, we can state the characterizations of the invertibility of the weighted composition
operator.

Theorem 2.3.5. Assume ¢, € H(D) and p(D) C D.

(i) Leta > 0. The operator Wy, , is invertible on AL® if, and only if, ¢ is an automorphism
of D and ,1/¢ € AL°.

(ii) Leta > 0. The operator Wy, , is invertible on A_* if, and only if, ¢ is an automorphism
of D and ¥, 1/¢ € A;O.

(iii) The operator Wy, is invertible on A% if, and only if, ¢ is an automorphism of I
and Y, 1/ € A=,

30



2.3. Invertible weighted composition operators

Proof. The operator Wy, ,, satisfies hypotesis (i) of Theorem 2.3.1 whenever it is continuous,
and our spaces AL%, AZ® and A~ verify hypothesis (%) of Theorem 2.3.1. Moreover, they
are linear spaces which contain the constants and the polynomials, thus Theorem 2.3.1 (iii)
is equally satisfied. Therefore, just the last hypothesis is left.

If o> 0 then H® C Hy? for all n € N, where o, = a+ %, we get that the function g, , of
Lemma 2.3.4 belongs to AL*. Also, applying Lemma 2.3.4 to some o — %, n € N, we obtain
Joa € AZ%. And, for any o > 0 there exists n € N, n > a such that H;° C H° C A=,
Therefore, by Lemma 2.3.4 hypothesis (iv) of Theorem 2.3.1 is satisfied. On the other hand,
if we take a = 0, we can work with a suitable branch of log(a — z) instead of go4. The
function defined by each branch of log(a — z) is in the Bloch space of D, B, and it holds that
BcC A% AZ% A7 (see [45, p. 82]). With this, hypothesis (iv) of Theorem 2.3.1 would be
verified too.

Now, by Corollary 2.3.2, Wy, is invertible if, and only if, ¢ is an automorphism of
and v and 1/t are multipliers of A7” or, what is the same, operators M, and M, /i are
continuous on AL *. Now, applying Proposition 2.1.4 we get the result.

Analogously, we can prove the cases of A”% and A~°°, by applying Proposition 2.1.10
and Theorem 2.1.12. O

Remark 2.3.6. Observe that in Theorem 2.3.5 (iii), ¥ and 1/¢) must be in A~ instead of
A;O, because in that case, the multiplication operator M, is continuous whenever g € A=,

Nevertheless, although it is enough that v, 1/¢ € H*, the next example shows a multiplier,
1, which is in A;O and A=, but ¢ ¢ H* and 1/¢ € H*.

Example 2.3.7. Consider the funcion ¢(z) = Log(z+1)—5 where Log denotes the principal
branch of the logarithm. We know v is not bounded on D, but ¢ € B, so ¢ € Ajro and
1 € A=, Now, we see that 1/1 is also in those spaces, that is, ¢ satisfies the condition of
Theorem 2.3.5.

If we call z = a + bi, with a,b € [0, 1[, we have

|Log(a+bi+1) — 5| = ‘log V(a+1)2+02—5+iArg(a + bz)‘

2
:\/(log\/(a+1)2+b25> + Arg?(a + bi + 1)
> llog V(@ + 17+ - 5 .

Case 1: if we assume log+\/(a + 1)2 4+ b? < 0, then )log Via+1)2 40— 5’ > 5.

Case 2: suppose log+/(a+1)2+b> > 0. It is clear that |a + 1| < |a| +1 < 2 so,
(a+1)2 + b2 < 5. Thus, 0 < log+/(a+1)2+ b2 < log\/5 < 2 (because log is increasing).

log \/(a + 12 + 6% — 5‘ > 3.

In conclusion, |Log(z + 1) — 5| > 3 so, m < 4 for all z € D. Then, 1/¢ € H*.

Therefore,

31






Chapter 3

Spectrum

This chapter is focused in the study of the spectrum of the weighted composition operators
on the spaces A7%, A”® and A~*°. Thanks to two general versions of two lemmas due
to Kamowitz in [34] and two lemmas of Albanese, Bonet and Ricker in [2] and [3], we are
able to obtain some information about the spectrum and the point spectrum of Wy, , in the
three Korenblum type spaces. Moreover, we investigate the spectrum of the multiplication
operator and the composition operator in the case when the symbol is a rotation. For this
last part we use a recent paper of Bonet [16]. The main results of this chapter are presented
in [31, Section 3].

3.1 Useful general results
In this section we collect some results that we use along the chapter.

Lemma 3.1.1 (2], Lemma 2.1). Let X = NuenX,, be a Fréchet space which is the in-
tersection of a sequence of Banach spaces ((Xn,|| - ||n))nen satisfying Xp+1 C X, with
llz|ln < ||Z|[n+1 for each n € N and x € Xp41. Let T € L(X) satisfy that for each n € N

there exists T,, € L(X,,) such that the restriction of T,, to X (resp. of T), to X,41) coincides
with T' (resp. with Ty4+1). Then, o(T, X) C Upeno(Th, Xn).

Lemma 3.1.2 ([3], Lemma 5.2). Let E = ind,(Ey, || - ||n) be a Hausdorff inductive limit of
Banach spaces. Let T' € L(E) satisfy that for each n € N the restriction T,, of T to E, maps
E,, into itself and T,, € L(Ey). Then, the following properties are satisfied.

(i) op(T, E) = Unenoy(Tn, En).
(ii) o(T, E) C Nmen(U,, 0(Tn, En)).

We also need a general version of two lemmas due to Kamowitz [34, Lemmas 2.3 and
2.4]. The first one is proved as in the original version. In the second one, we had to modify
some aspects.

Lemma 3.1.3 (General version of [34], Lemma 2.3). Let E be a space of holomorphic func-
tions containing the polynomials, and being the inclusion E C H(D) continuous. Consider
o, € HD), with ¢(D) C D and ¢(0) = 0 such that Wy, , acts continuously from E into
itself. Then, 1(0) € 0(Wy.,) and 1(0)¢’(0)" € o(Wy,) for all n € N.
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Chapter 3. Spectrum

Proof. (1) Suppose 9(0) & o(Wy,,). That is, the operator 1(0)I — Wy, is invertible.
Then, it is surjective. So, since 1 € F, there exists one f € FE such that ¢(0)f(z) —
¥(2)f(p(z)) =1 for all z € D. Now, evaluating at z = 0, we get a contradiction.

(2) If ¢'(0) =0, then 0 € 6(Wy,,). Suppose not. Then Wy, , is invertible. Let f € E be
such that Wy ,(f)(z) = 2 for all z € D. Then, 1 (0)f(0) = 0 and, after differentiating,
¥'(0)f(0) = 1. This leads to ¥(0) = 0, which means (0) € o(Wy,,) against the just
proved statement (1).

Therefore, when ¢’(0) = 0, 1(0)¢’(0)" =0 € o(Wy,,) for every positive integer n.
(3) If 4(0) = 0, by (1) we get Wy, is not invertible and, (0)¢'(0)” = 0 € o(Wy,,) for

every positive integer n.

(4) Finally, assume ¥(0)¢’(0) # 0. Suppose that for some positive integer n the opera-
tor 1(0)¢’'(0)"1 — Wy, is surjective. So, there exists f € E with ¥(0)¢'(0)" f(z) —
Y(2)f(p(z)) = 2™ for all z € D.

Write f(z) = 2™ fo(z), where fo € H(D) and fp(0) # 0. Then, fo(z) = fo(0) + O(z).
Also, let 9(z) = 1(0) + O(z) and p(2) = ¢'(0)z + O(22).
Then,

$(0)¢'(0)"f(2) = ¥(2) f(p(2)) = 2"

is equivalent to

$(0)¢'(0)"2" (fo(0) + O(2)) = (¥(0) + O(2)) (¢ (0)™ =" + O(="*1))(fo(0) + O(2)) = ="

or

(¥(0)¢/(0)"£o(0) = w(0) (0" fo(0)) 2™ + O(="+1) = ="

(%)

Now, if m # n, the left side has order m and the right one has order n, a contradiction.
On the other hand, if m = n, (*) vanishes, and we get that the left side has order n + 1
and the right side has order n, which is again a contradiction.

Hence, for each positive integer n, 1(0)¢’(0)" € o(Wy o).
0

Lemma 3.1.4 (General version of [34], Lemma 2.4). Let E be a space of holomorphic func-
tions containing the polynomials, and being the inclusion E C H (D) continuous. Consider
p,p € HD), v £ 0, (D) €D, ¢(0) =0 and that ¢ is not a constant function. If X is an
eigenvalue of Wy, ,: E — E, then A € {4(0)¢'(0)"}22, \ {0}.

Proof. Suppose A is an eigenvalue of Wy, , with f € E as corresponding eigenvector.

IfA=0, ¢¥(z)f(p(z)) =0 for all z € D. Define G := {z € D : ¢(z) # 0}, which is a non
empty open set because ¢ Z 0. Then, f oy = 0 on G. Now, ¢ cannot be constant on G
because if it were, it would be necessarily constant on I, by the Identity Principle, which
contradicts the hypothesis. So, ¢ is not constant on G, which means ¢(G) is open and non
empty. If f =0 on ¢(G), f =0, which is again a contradiction. Hence, A # 0.

Write f(z) = az™ 4+ O™, m > 0, ¥(2) = b2" + O(z"), r > 0 and ¢(z) = cz* +
O(2°*1), s > 0, where abc # 0.
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Then, Af(2) = ¥(2)f(p(z)) becomes
Maz™ + O(z™h) = (b2" + 0" ) (a(cz® + O(z5TH)™ 4 O(z™51)))

or
ad2™ + 02" = abc™ 2T £ Q2T

Equating powers, we get m = r + ms and aA = abc™.

Since r and m are non negative integers and s is a positive integer, m = r 4+ ms implies
that » = m = 0 or that » = 0 and s = 1. In the first case, b = ¢(0) and so, a\ = abc™
implies A = ¢(0). On the other hand, if » = 0 and s = 1, then b = ¥(0), ¢ = ¢/(0) and
aX = abc™ implies A = ¢(0)¢’(0)™ for some positive integer m. O

3.2 [Essential norm and essential spectral radius

The spectral radius of an operator T' on a Banach space X is defined as r(T") := sup{|}| :
A € o(T)}. Let us denote by K(X) C £(X) the space of all compact operators on X. The
quotient vector space £(X)/K(X) is a unital algebra called Calkin algebra. The canonical
projection of an operator T to the Calkin algebra is denoted by 7(T"). The essential spectrum
0e(T) is the spectrum of 7(7) in the Calkin algebra. The essential norm of an operator T' €
L(X) is defined as ||T||e := inf{||T— K|| : K € K(X)}, that is, the distance of the operator to
the set of compact operators on X. Notice that ||T'||. = 0 if, and only if, T" is compact. The
essential norm is indeed a norm in the Calkin algebra. The essential spectral radius, denoted
by r(T), is the spectral radius of 7(7T), that is, 7.(T) = r(m(T)) = max{|A| : A € 0.(T)}.
We write 0.(T, X) and r.(T, X) if we need to stress the space X. For more information
about the essential norm and essential spectral radius, we refer the reader to the book [1,
Section 7.5].

Montes-Rodriguez in [38] studied the essential norm of weighted composition operators
on weighted Banach spaces of analytic functions and gave formula in terms of the weights
and the symbols. We recall the following results of such investigation.

Proposition 3.2.1 ([38], Theorem 2.1). Let v and w be weights and let Wy, ,: HY°* — Hg®
be a weighted composition operator. Then, either ¢ & Hg® and ||Wy ,lle = 0o or, ¢ € HgY

and
) w(z)
Wyolle= lim  sup =
Woselle = Iy 50 50D

[ (2)]-

Proposition 3.2.2 ([38], Theorem 2.2). Let v and w be weights and let Wy, ,: HY — HY be
a weighted composition operator. Then, either ¢ & HY and ||Wy,|le = 0o or, ¢ € H) and

- w(z)
Wi olle = limsup =
vl 2l—1- 0((2))

[(2)]-

Proposition 3.2.3. Let v and w be two typical weights, ¢ € H(D) with ¢(D) C D and
Y € HY. Then,

im su w(2) z)| = limsu w(z) z
lim sup < 2 (z)| = lmsup s (2)]

17 e (z)>r v 2| —1~
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The equation in Proposition 3.2.3 is exactly the equation (4) that appears in the proof
of [38, Theorem 2.2]. The proof can be seen in there.

Taking into account Propositions 3.2.1, 3.2.2 and 3.2.3, we get that the essential norm
of the weighted composition operator on the Banach space H;° or H[? for some p > 0, when
NS Hg, is

1 — [2])?
Wyl = limsup- 2D

\zHl—WW@' : (3.2.1)

Moreover, by [1, Definition 7.46 and Theorem 6.12], its essential spectral radius is the
following limit:

1
e (W H®) = Timn [[W |1 (3:22)

where

N 11 O o B
IVl = i sup GEPAEIT ’

. (k times)
and @i (z) denotes the n-th iterate of the symbol: ¢i(z) = (p o...0" ¢)(z).

Remark 3.2.4. In the particular case of the composition operators the constant function 1
belongs to Hg, hence we have

re(Co, HyY) = li,ngQIZHe% = lingC%He% = lim <|linfﬁlp (%)ﬁ -
Lemma 3.2.5. Let ¢, € H(D), ¢(0) =0, ¢ not constant. Then,
re(Wpp, HE) < 1e(Wp e, HYY)
whenever 0 < a < f < oo.

Proof. By Schwarz’s Lemma, |¢(z)| < |z| for all z € D. Then, since 0 < a < 8 < 00,
( 1|z >ﬁ<( 1|z >
L—le(2)[ /] = \1—=le(z2)]
for every z € D.
Thus, considering (3.2.1) and (3.2.2), and taking into account that for any n € N, ¢,, has

the same properties than ¢, we get that |[[Wy [le,zge < [[W] lle,nee for all n € N. O

The following lemma is useful in Section 3.4.

Lemma 3.2.6. Let ¢ € H(D) not a rotation with (D) C D and ¢(0) = 0. Then, there is
1o €]0, 1[ such that 7.(Cyp, H°) < b, for each p > 0. In particular, limy,_, re(Clp, HX) =
0.
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Proof. If for some n € N, |p,(z)| < 1/2 for all z € D, then |p;(2)| < 1/2 for every z € D,
j > n. Appealing to Remark 3.2.4, we get that

Te(Cypy, Hy°) = lim | limsu <1_’z‘>7’
cTer k |Z|H1I—) 1 — [pr(2)]

and the statement is clear.

Now, suppose that for every n € N, ,, satisfies |¢,(z)| > 1/2 for some z € D. Then, by
Schwarz Lemma, |¢;(z)| > 1/2 for every j =0,...,n — 1.

By [27, Lemma 7.33] there exists ro €]0, 1] such that

e
==

< lilgn <limsup 2(1 - |z|)p> =0,

|z]—1—

11—_\@’2)! <ro forall [z > 1/2.
Thus,
1 — || n—1 1—|p;(2)] .
1—lea(2)] - };[0 Til(z)‘ <rg<ro .
So, for all n € N,
sup RS I <

en(2)23 1= [#n(2)]
and ,
1—
sup (M) < rgp .
lon(2)>2 \1 = [@n(2)]

Now, for % < s < 1, it holds that for all n € N,

1— p
sup <|Z|> <ry’.
lon(2)]>s 1- ’(pn(z)|

Furthermore,

- -]z \"_ . 1—1]zl \’_ »
|Coplleice = inf  sup (——= ] =lim sup [(——~] <ry?,
P 5€]0,10 |, (2)|>s 1- |(Pn(z)‘ 5717 |, (2)>s 1- |(Pn(z)|

and
1

HaanzHgo <7
O

As a Corollary of Lemma 3.2.6, we obtain the following result, which can be also found
in [6].

Corollary 3.2.7 ([6], Theorem 5.1). Let ¢ € H(D), with ¢(D) C D, 0 < |¢'(0)] < 1 and
©(0) = 0. Then, re(Cy, H°) < 1 for all p > 0.

Proposition 3.2.8. Let ¢ € H(D), ¢(D) C D, (0) = 0, 0 < [¢'(0)] < 1. Then,
7e(Cp, Hy®) = 1e(Cyp, HY®)P for each p > 0. Moreover, the function R: ]0,+oo[— [0,1]
defined by R(p) = re(Cyp, H®) is continuous.
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Proof. Consider the function R defined by:

1

. L—l2l \"\"

R(p) :=lim | lim sup (> .
)= 1 <Z|H1— 1 — [pr(2)]

Observe that we can rewrite R as:

1
) 1—|z| i
R(p) = hlgn limsup———

p

12|—1- 1 — ler(2)]

Then, since both limits exist, the function R is continuous because

1
"
lim (hmsup 2 )‘) =1¢(Cyp, H®) .

lzl—1- 1 — lpx(z
O

Corollary 3.2.9. Let ¢ € H(D), (D) C D, ¢(0) =0, 0 < |¢'(0)| < 1. Denote the essential
spectral radius re(Cy, H°) = T¢ p.

a) Ifa>0, o, ' =+ %, then limreq, = Teq-
n

b) Ifa>1, a i= v — %, then limreq, = Teq-
n

Proof. The function R in Proposition 3.2.8 can be written as R(p) = (r¢,1)P and is contin-

uous. Since (ay), tends to a in both cases, then R(«,,) tends to R(«). In other words,

limre o, = Tea- O
n

3.3 Spectra of Wy,

In this section we study the spectrum of the weighted composition operators on the spaces
A%, AT” and A=*°. From the next theorem of Aron and Lindstrém for the weighted Banach
spaces H3® we deduce some of the results for the Korenblum type spaces.

Theorem 3.3.1 ([7], Theorem 7). Let p > 0 and suppose @, not an automorphism, has fized
point a €D and Wy, ,: Hy® — HZ° is bounded. Then

oWy, Hp?) ={X € C 1 |A| < re(Wyp, Hp)} U {tp(a)¢'(a)" }20 -

The next theorem gives some information about the spectrum of Wy, , on the Korenblum
type spaces.

Theorem 3.3.2. Let a >0, ¢, p € H(D), (D) C D, »(0) =0, 0 < |¢'(0)] < 1. Then,
(i) if o ==+ ¢ and Wy, € L(ALY),

{0} U {w(0)¢"(0)" 1520 € 0 (Wi, AL) € B(O,limre (W, o, Ho?)) U {(0)'(0)" 1o,

(i) if ag == o — + and Wy, € L(AZ®),
{0} U{w(0)#(0)" iz  0(Wyp, AZ%) © B(O, limre(Wy o, Ha)) U {2 (0)¢(0)" i,
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(iii) if Wy € L(A™),
{0} U{e(0)#'(0)"}io © 0 (Wi, A7) € B(O, limre(Wy, o, HY)) U{3(0)¢(0)" 1o -

Proof. (i) First inclusion: If 0 € o(Wy,,, A7), the operator Wy, ,: A% — AT would
be invertible and, by Theorem 2.3.5 (i), ¢ would be an automorphism, which is a
contradiction. Also, {1(0)¢’(0)"}22y C (Wi, AL) (see Lemma 3.1.3).

Second inclusion: by Lemma 3.1.1 and Theorem 3.3.1,

J(Wwyﬁp,AIa) C U ( (0 re(WdJ goa )U{w( ) ( )n ;1.0:0) :

keN
If A\ € UpB(0, re(de,, o)), there exists ko € N such that [\ < re(Wy, o, HSS ) <
supy, re(Wiy o, HSY ) Taklng into account (re(Wy, o, HgY))k is an increasing sequence of

positive real numbers bounded by 7 (Wy o, HS), it follows that limg 7e(Wy,o, HS,) =
supy, 7e (W, HS ).

(ii) Analogously to (i), the first inclusion is obtained directly from Theorem 2.3.5 (ii) and
Lemma 3.1.3.

Second inclusion: by Lemma 3.1.2 and Theorem 3.3.1,

oWy, AZ) C ﬂ (U (E(O re(Wy o, Ha, ) U{(0)¢ '(0)" ?:0))'

keN

m=k

Moreover, the sequence (re(Wy, o, HS ))m is decreasing. Thus,

U BO,re(Wy p, H.)) = B(0,7e(Wy 0, H)) -
Then,
oWy AZY) C [ ) B(0,1e(Wy. o, Hey ) U {1(0)¢'(0)" 1o2o
B0, infre(Wy, ., Hg)) U (0)#'(0)" 1o
B0, limre(Wy, g, H3)) U{v(0)9'(0)" 12 -

(iii) From Theorem 2.3.5 (iii), we obtain 0 € o(Wy, 4, A™>°). Also, using Lemma 3.1.3 we
obtain that {1(0)¢’(0)"}52y C o(Wy 4, A™).

On the other hand, applying Lemma 3.1.2 and Theorem 3.3.1, we get

(W, A7) C ﬂ U B(0,me(Wy,p, Hpy) U {1(0)¢'(0)" 220

keN \m>k

Moreover, since the sequence (re (W s HO) )m is decreasing,
UmZkB(O,Te(Ww(p,Hﬁ?) = (0 Te(Ww (p, )) Then,

(Wi, A=) C (1) B0, 7e(Wepp, H)) U {0 (0)'(0)" 12 =
keN

= B0, lim e (Wi, ) U {0(0)(0)" 152
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Remark 3.3.3. Recall that if T" is a compact operator, then ||T'|| = 0 and then, 7.(7") =0
as well. From Theorem 3.3.2 and Proposition 1.3.1, we have that if Wy, , is compact on A7,
AP0t A= then 0(Wy,) = {0} U{(0)¢(0)" 122,

Remark 3.3.4. When ¢/(0) =0, {(0)¢’'(0)"}52, = {0,%(0)}. Then, we have that

10,9(0)} < U(Ww sm ) € U Ww o H )7

o0

{0,9(0)} C oWy, A=) € () (| oWy, HY)), and
meN n=m
{0,4(0)} € oWy, A=) € () (| oWy, HY)).

meN n=m

The first inclusion is clear in all the cases applying Lemma 3.1.3. In the second one we
use Lemmas 3.1.1 and 3.1.2.

In the case when ¢ is not an automorphisim, applying Theorem 3.3.1 and reasoning as
in Theorem 3.3.2 we obtain:

{0,9(0)} € o(Wy,e, ATY) C E(O,h;rnr&an) U {0,%(0)},

{0,9(0)} € o(Wy,e, AZ) C E(O,liTan Tean) U {0,9(0)}, and

{0,9(0)} C a(Wy,,, A=) C B(0, liyrln Ten) U {0,7(0)}.

The following Theorem collects some information about the point spectrum of the
weighted composition operator on the spaces A7%, A”% and A=

Theorem 3.3.5. Let ¢, € H(D), o(D) C D, p(0) =0, 0 < |/ (0)] < 1.

(1) If 0 < a < oo and Wy, is continuous on AL*, then

{£(0)¢'(0)" 1520 \ B0, re(W o, HEY)) € 0p(Ws ALY) € {0(0)0(0)" 1520 -

(ii) If 0 < oo < 00 and Wy, , is continuous on AZ*, then op(Wy, », AZ*) C {1(0)¢’'(0)"}52,.
(iit) If Wy € LIAT), then op(Wy,p, A7) € {(0)¢"(0)" 172, -
)"} 5. On the other hand, fix n € N.

(0
€ op(Wy, @,HO) (see [1, Theorem 7.44]).
= (0)¢'(0)"f. But H) C AT“, thus

Proof. (i) By Lemma 3.1.4, 0,(W, A7*) C {¢(0

)¢
IE [ (0)@"(0)"] > re(Wyp, H5") then $(0)¢'(0)"
That is, there exists f € HY such that Wy, of

$(0)¢'(0)" € op(Wy,p, A7)

The inclusions of (ii) and (iii) follow again from Lemma 3.1.4. O
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3.4. Spectra of C,

3.4 Spectra of C,

From Theorem 3.3.2 in the preceding section we can obtain, as a corollary, the following result
about the spectrum of the composition operators on AL* and AZ® spaces. The spectrum
and point spectrum of C, on the Korenblum space, A=, are studied in Theorems 3.4.2 and
3.4.4.

Corollary 3.4.1. Let ¢ € H(D), ¢(D) C D, p(0) =0, 0 < |[¢'(0)] < 1. Then,
(i) for any a >0,
{0} U{e'(0)"}320 € 0(Cy, AY™) € B(0,7e(Cyp, He?)) U{£'(0)" 132 -
(ii) for any 0 < a < o0,
{0} U{e'(0)"}nZ0 € 0(Cyp, A=) € B(0,7e(Clp, Hy?)) U {9 (0)" 152, -
Proof. This is a direct consequence of Theorem 3.3.2 and Corollary 3.2.9. O
Theorem 3.4.2. Let ¢ € H(D), (D) C D, (0) =0 and 0 < |¢'(0)| < 1. Then,
o(Cp, A7) = {0} U{¢'(0)"}7%, -
Proof. The operator C,: A7 — A~ is continuous (because it is continuous on each HY
(or H®)).
By Lemma 3.1.3, ¢'(0)" € 0(C,, A™>°) for each n € N.
Assume 0 € o(C,,, A=), then Cyy: A7 — A~ is a surjective isomorphism. Since A=
satisfies the assumptions on X in [23, Theorem 2.1], then ¢ would be an automorphism, but

this is not the case. We then have {0} U {¢/(0)" : n € N} C o(Cyp, A7) .
Now, denote T}, = C,: H° — HZ°. By Theorem 3.3.1,

0(Cy, Hi?) = 0T, HYY) = B(0,7¢(Cyp, Hi?)) U{¢/(0)" 152, -

We know (by Lemma 3.2.5) that , since k < k+1, 7e(Cy, HZS () < 1e(Cyp, HP°). This implies
U o(T3) = B0, re(T3r)) U {¢'(0)" 1o -

But Lemma 3.1.2 yields

_ (mBmm»> UL 0N
k

7(Cp, A7)
k

Jjzk

Moreover, r.(T}) tends to 0 when k goes to infinity (see Lemma 3.2.6). Therefore,

7(Coy A7) {0} U{£'(0)"}%0 -

Corollary 3.4.3. Let ¢ € H(D) with (D) CD,p(0) =0 and 0 < |¢'(0)| < 1. Then,
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(i) for any 0 < o < o0,

{£'(0)"}320 \ B(0,7¢(Cyp, HZY)) € 0p(Cp, AT?) S {¢'(0)" 720
(ii) for any 0 < a < o0,

{£'(0)"}320 \ B(0,7e(Cy, HZY)) € 0p(Cip, AZ%) € {¢'(0)" 720

Proof. By Theorem 3.3.5 we obtain (i) and the second inclusion of (ii). For the first inclusion
of (ii), assume |¢’(0)"| > re(Cy, H®). According to Corollary 3.2.9 there exists k € N such
that |/ (0)"| > re(Cy, HY), where oy = o — 7. Then, by [1, Theorem 7.44], ¢'(0)" €
0p(Cyp, HYY ), that is, there exists f € HS® such that Cy,(f) = ¢’(0)"f. Finally, we obtain
that ¢'(0)" € 0,(Cyp, AZ7), since H3? C A”“. O

The eigenfunction equation for the composition operator C,, f o = Af, is called
Schréder’s equation. For holomorphic maps ¢ with an interior fixed point a, the eigenvalues
of Schroder’s equation lie among the numbers {¢'(a)™}. Konigs showed that if 0 < |¢’(a)| < 1
then there is a solution o for ¢'(a) and, o™ is the solution for ¢'(a)”™. The symbol ¢ denotes
the unique eigenfunction of Schréder’s equation for A = ¢/(a) that has o’(a) = 1. This func-
tion is called the Kdnigs function of . For more information about the Konigs function, see
[43, pp. 90].

Theorem 3.4.4. Consider C,: A= — A~ where ¢ € H(D), p(D) C D, ¢(0) = 0,
0 <[ (0)] < 1. Then, 0,(Cp, A=) = {¢'(0)"}0,.

Proof. By Theorem 3.4.2, we know o(Cy,, A=) = {0} U {¢/(0)"}52, . If we denote
7e(Cyp, H°) by re, then we have that (re,), is a decreasing sequence that tends to 0 when
n tends to infinity (see Lemma 3.2.6). Thus, for a certain ng € N, [¢/(0)] > ren,. But,
Bourdon proved in [22] that the Kénigs eigenfunction o € HY) if, and only if, [¢/(0)| > 7e -
So, we have o € H,go. That is, ¢’(0) is an eigenvalue. Therefore, since A~ is an algebra
and the operator C, is an algebra homomorphism, ¢'(0)" is also an eigenvalue for all n € N
and the proof is finished. O

3.5 Spectra of M,

Given ¢ € H(DD), the multiplication operator My, is a weighted composition operator for the
selfmap ¢(z) = z. In this section we study the spectrum of multiplication operators.

Proposition 3.5.1. Let E be a space which is continuously included in H(D), containing
the polynomials and such that for any n € H* the multiplication operator M, : E — E is
continuous. Let 1 € H(D) be non constant. If My,: E — E is continuous, then o,(My) =0

and (D) € o(My) C $(D).

Proof. Point spectrum: suppose that A € C is an eigenvalue of My, that is, there exists
f € E, f#0sucht that ¥(2)f(z) = A\f(z) for every z € D. However, since f # 0, the set U
of the points where f does not vanish is an open set. Then, ¥ (z) = A for all z € U, which
implies 1 is a constant function by the Identity Principle. This contradicts the hypothesis.
Accordingly, o, (My) = 0.

Now we study the spectrum. On one hand, if A ¢ W, then there exists ¢ > 0 with
|t(z) — A| > € for all z € D. Thus, the function 7(z) := W € H* and M, is continuous
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on E by assumption. This implies that M, — Al is a surjective operator. Indeed, for any

g € E, function f(z) := M,g(z) = 111([]()2) verifies (My, — AI)f = g and f € E. Moreover,
My, — M is injective because o,(My) = 0. Thus, A & o(My).

On the other hand, if A € (D) then there exists zp € D such that ¥ (z9) = A. Every
function in (My, — AI)(E) vanishes at zg. Indeed, (My, —AI) f(20) = ¥(20) f(20) — Af(20) = 0.
Thus, My, — Al is not a surjective operator because since all functions in the range vanish at
the same point, we can not have in the range constant functions different from the 0 function.

Therefore, ¥(D) C o(My, E) C (D). O
Corollary 3.5.2. If My, is continuous on any of the spaces AL%, a >0, AZ*, 0 < a < 00
for some non-constant function ¢ € H(D) then, op(My) =0 and (D ) Co(M, ) Y(D).
Proof. This is a direct consequence of Proposition 3.5.1 since, by Propositions 2.1.4, 2.1.10
and Theorem 2.1.12 its assumptions are satisfied. O

Remark 3.5.3. Notice that if we apply Proposition 3.5.1 to H,° for any p > 0, we obtain

that o(My, Hy°) = (D), since the spectrum of any operator on a Banach space is a compact
set.

Unlike in Banach spaces, the spectrum of M, is not necessarily a closed set. The following
example shows that the spectrum may not coincide with ¢(D).

Example 3.5.4. The analytic function ¢ (z) := i belongs to A~*°. Thus, the multiplica-

tion operator M, is continuous on A= (see Theorem 2.1.12). Observe & = ¢(—1) € ¥(D).

But, 3 € p(My, A=>°). In fact, the inverse of My, — 31 = Mw 1 is the operator Mwl And,
f

for each n > 1,

2|11 — z|
sup(l — |z|)" ———7 = sup(l — [2[)"
2€D [¥(2) — 5| eb 1+ 2]
2|1 —
< sup(l—|z])" 11— =sup2(l — |z])" 1 -2 < .
z€D 1—|z] z€D

€ A= then, M 1 € L{(A™°) and 3 € p(My, A™).

Therefore, since —
w 2 w_,

3.6 Spectra of C, whose symbol is a rotation

If ¢ is an automorphism of the disc such that ¢(0) = 0, then it is a rotation. That is, there is
¢ € C with |¢| = 1 such that ¢(z) = cz for all z € D. In this section we present a few results
about the spectrum of composition operators on Korenblum type spaces when the symbol
is a rotation. The first lemma shows the spectrum and point spectrum for the weighted
Banach spaces.

Lemma 3.6.1. Let a >0, p € H(D), p(2) = cz for all z € D, with |c| = 1. Then
(i) op(Cp, HY) = {c"}7Z
(i1) If ¢ is a root of unity, then 0(Cyp, HY®) = 0p(Cyp, HY) = {c"}22

(iii) If c is not a root of unity, then o(Cyp, HY®) = OD.
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Proof. (i) Lemma 3.1.4 implies 0,,(Cy, H3®) C {c"}72. For each m =0,1,2,... the function
fm(2) := 2™ belongs to HY°. Moreover, for each m, fmn(¢(z)) = ™ fin(z) = ™2™ for all
z € D. So, every ¢™ is an eigenvalue of C,, with eigenvector f,.

(ii) If ¢ is a root of unity, then there exists m € N with ¢ (z) = z for every z € D.
That is, CF' = Cym = I. By applying the Spectral Mapping Theorem [1, Theorem 6.31],
we obtain that (0(Cy))™ = o(Cy') = o(I) = {1}. Then o(C,) € {X : A™ = 1}. But, we
already had that {c"}7°, C 0(C,), then {c"}22, = {A: A™ = 1} and we get the result.

(iii) Suppose ¢ is not a root of unity. If [A| > 1 = [|[Cy|| = [|C,!|], then X € p(C,,) and
A€ p(C;l) by [1, Theorem 6.3]. It is easy to check that —/\Cgl()\I—Cgl)*l is the inverse of
+I — Cyp, which implies 1/X € p(Cy). This shows that {¢"}22, C 0(Cy, H®) C OD. Since ¢
is not a root of unity, Kronecker’s Theorem [40, Theorem 2.2.4] implies that {c"}7°, is dense
in 0. Since the spectrum of an operator on a Banach space is compact, this completes the
proof of part (iii). O

Corollary 3.6.2. Let ¢ € H(D), ¢(z) = cz for all z € D, with |c| = 1. Let E be any of the
spaces A%, a >0, or AZ%,0 < a < oo. Then

(i) op(Co, E) = {c"}72,-

(i1) If ¢ is a root of unity, then 0(Cy, E) = 0,(Cyp, E) = {c"}7%,.

(iii) If ¢ is not a root of unity, then {c"}>2, C 0(Cy, E) C OD.

Proof. The point spectrum is obtained with the same argument as in Lemma 3.6.1. And,
for the spectrum, both cases follow from Lemmas 3.1.2 and 3.6.1. O

In the case of the Korenblum space we can characterize which points of the unit circle
belong to the spectrum of C,, when ¢(2) = cz for all z € D and ¢ € dD is not a root of unity.
Theorem 3.6.5 is a similar result to [16, Theorem 1]. We first need the following known
characterization of the functions in the Korenblum space in terms of their Taylor expansion,
Lemma 3.6.4. We use Lemma 3.6.3 to prove it.

Lemma 3.6.3. Let k > 0, n € NU{0}, p(r) = (1 —7)Fr™ with ¢(0) = ¢(1) = 0 when n > 0.
(i) If n =0,

= 1—r)F=1.
oz elr) = mmax (1 =)
(i) If n € N,
max_ ¢(r) K"
X = ——.
r€l0,1] 7 (n + k)nthk
Proof. (i) It is clear. (ii) For n € N, we have that
o'(r)y=n(1- r)krnfl — k(1 - r)kilr" = 7“"*1(1 — r)kil(n(l —r)—kr).

Since the differentiable function ¢ has a maximum at the interior point r, ¢’ vanishes at r.
Thus, if we solve ¢/(r) = 0, we have just three options: r =0, r =1 or r =n/(n+ k). We
discard the first two because ¢(0) = ¢(1) = 0 by hypothesis. Then,

. r) n kknn
max p(r) = = .
o) T P\t k) T (nt k)R
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Lemma 3.6.4. A function f(z) = Y .7 anz" on the unit disc D belongs to A~ if, and
only if, there is k € N such that sup,, n"|a,| < co.

Proof. Since lim,, nF(n + k)% = 1, it is enough to prove that f € A= if, and only if, there
is k € N such that sup,, |a,|(n + k)% < co.

Suppose that f € A=, that is, there is k € N such that sup,cp (1 — |2])¥|f(2)| < oo. Fix
0 < r < 1. By Cauchy estimates [30, p. 118],

lan < — max | £(2)] < [l

' Jel=r ri(l—r)k
From this, we can deduce that for all n € N,

|an| max r™(1—r)* < || f|x.
relo,

Applying Lemma 3.6.3, we obtain that

A
(n+ k) = nn Kk

Since lim,, (n + k)"n~" = €, it follows that

On the other hand, assume now that there is a certain k& € N satisfying
sup,, lan|(n + k)% < co. That is, there exists M > 0 such that |a,| < M(n + k)* for
all n € N. For z € D we have that

> 1
(1= 2)*215(2) |<Z|an||z e ) Y o
n=0

F 2 < o0,

for some positive constant C. Therefore, f € HgS, C A7, O

Theorem 3.6.5. Let ¢ € C be an element of the unit circle |c| = 1 which is not a root of
unity. Let Cp: AT — A7 be the composition operator with symbol p(z) =cz, z € D. A
complex number X # 1, |A\| = 1, belongs to the resolvent set p(Cyp, A~°) if, and only if, there
are s > 1 and € > 0 such that | — \| > en™* for each n € N.

Proof. First, assume that there are s > 1 and € > 0 such that |¢" — | > en™* for each n € N.
In particular, C, — Al is injective by Corollary 3.6.2 (i). We prove that it is also surjective.
Given g(z) = Y 02 yanz™ € A=, we define

o0

an o,
f(z):zzcn_)\z, z € D.

n=0

It is easy to check that (C, — AI)f = g. To conclude the proof of this implication it is
enough to show that f € A=°. Since g € A~™°°, we apply Lemma 3.6.4 to find some k € N
and M > 0 such that n*|a,| < M for each n = 0,1,2,.... Hence, for each n = 0,1,2,...,
we get that
’an| < MnFn? _ %nk—l—s
lem — A 5 5
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which implies that f is analytic and belongs to A= by Lemma 3.6.4.
Now, suppose that A # 1,|A\| = 1, belongs to p(Cy,, A=>°). Then, the inverse operator
(Cp— AI)7L: A7%° — A~ exists, is continuous and necessarily has the form

[e.e]

— )™ Z anz"” Z Cnaﬁ )\z”.

n=0

The continuity of this inverse implies that for m = 1 there are k > 1 and M > 0 such that
for each Y 0 a,z" € H® we have

o0
Y s
cr— A\

n=0

sup(1 — [2])
z€eD

< M sup(1 — |z|)
zeD

g apz"

n=0

Evaluating this inequality for each monomial 2™, n = 0,1,2... we get, for each n =0,1,2, ...,

2"

sup(1 — [2])*
(= BN

< Msup(1 — |])]2"].
z€D
Therefore, evaluating the maximum of r™(1 — r)¥, we get for each n =0, 1,2, ...

kknn nm
P M - A
(n+ ke = " )"( et

This implies, for each n =0,1,2, ...,

1 /n+1 1
" =Al= g7 <n+k> (n+ k)1’

which yields the desired inequality. O

A real number x € R is called Diophantine if there are 6 > 1 and d(z) > 0 such that

_ )

-3l

q
for all rational numbers p/q, p,q € Z. As we can see in [24, p. 43|, this occurs if, and only
if, A = e?™* satisfies

A" — 1| > d(z)n™°, n>1.

In the next proposition, a characterization of the complex number 1 belonging to the
resolvent set in relation with Diophantine numbers is stated. In this result, A;> denotes
the space of all functions f € A~ such that f(0) = 0. This proposition should be compared
with [16, Theorem 2].

Proposition 3.6.6. Let p(z) = cz, z € D, where |c| = 1 and c is not a root of unity. Let
Co: Ay™ — Aaoo be the composition operator with symbol . Then 1 € p(Cy, Ay™) if, and
only if, ¢ = €™ where x is a Diophantine number.

Proof. Notice 1 & 0,(Cy,) because if it were true, it would exist f(z) = Y o0 | an2" € Ay,
f # 0 such that

o0 o0

E anz" = E a,c*z", zeD.

n=1 n=1
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However, since f # 0, there exists k € N with a; # 0, what implies ¢ = 1, which is a
contradiction.

Now, suppose ¢ = e2™ with z Diophantine. Then, by [24, pp. 43] there exist s > 1 and
e > 0 such that [¢" — 1| > en™* for each n € N. Since 1 ¢ 0,(C,,), to see 1 & o(C,) it only
remains to show C, — I is surjective.

Given g(z) = > .77, anz"™, z € D, define

o)
fz):=3 "2, zeD.

n=1

Clearly, g = (Cp, — I)f and f(0) = 0. We want to check Lemma 3.6.4 for the function f.
Since g € A7, for some k € N, M > 0, lan| < Mn* for all n € N. And, by hypothesis,
L < ”g Thus,

1]

|an| < %nlﬁ»s )
len —1| = €

Therefore, f € A™°.
The converse follows as in the proof of Theorem 3.6.5, taking into account [24, p. 43]. O
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Chapter 4

The spectrum of some composition
operators on Korenblum type
spaces

In this chapter we consider composition operators C, whose symbol ¢: D — D admits an
analytic extension to an open neighbourhood of the closed unit disc D of the complex plane.
We prove that for a family of symbols singled out by H. Kamowitz in [33], the spectrum
contains a closed ball of positive radius.

A new insight in the approach of Kamowitz study of the spectrum of some composition
operators on HP spaces ([33, Theorem 3.4]) allows us to use his method to prove that
for p: D — D analytic on an open neighbourhood of D, with an interior fixed point and a
repelling fixed point zg in D, the spectrum of the composition operator C;, on A~ and A} ?,
contains the closed ball B(0, |¢'(z0)|~*). This enlarges the knowledge of the size of o(C,)
that it is known to be a subset of B(0,7.(Cy,, HP)) U {¢'(0)"}5°, according to Corollary
3.4.1.

The investigation described in this chapter is collected in [29].

4.1 Preliminaries
For a positive integer m and a > 0, let Hg",, denote the closed subspace of Hg® given by
Hy, ={f € HY : f has a zero of at least order m at 0}.

Lemma 4.1.1. Let 0 < p < oo. For any positive integer m € N, the map F' € H)° —

m o . .
ZME € HpS, is an isomorphism.

Proof. First, we see it is continuous. The norm in H,7, is the same as in H)°. Let ' € H7°.

[2"Flp = sup(1 — |2])"|2|™F(2)| < sup(1 — |z|)P|F ()] = [ F|-
zeD zeD

On the other hand, any f € H;7, can be written as f = z™F, for some holomorphic
function F' that indeed belongs to H,°. Take 0 < r <1 and so,

sup(1 — [2|)P|F(2)] = max { sup (1—[])'|F(2)], sup (1—|2)P|F(2)|}.
zeD 2€B(0,r) 2€D\B(0,r)
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Since F is holomorphic and B(0,7) compact, there is M > 0 such that

sup (1 —[z])P|F(z)] = M < oc.

2€B(0,r)
Moreover, since f € Hp°,
2" (z
sup (1= |2)P|F(z)| = sup (1— !z\)pil ng )
2€D\B(0,r) z€D\B(0,r) 2]
< sup (1 _ ’Z‘)p’ZmF(Z)’ — HfHP < o0
N 2€D\B(0,r) i r

Thus, the map is surjective and in addition it is clearly one-to-one, hence an isomorphism
by the Open Mapping Theorem. O

We include a number of lemmas needed in the sequel.
Recall that a sequence (zx) C D is an iteration sequence for ¢ if ¢(z) = 2z, for all k.
We need the following crucial lemmas due to Cowen and MacCluer.

Lemma 4.1.2 ([27], Lemma 7.34). If ¢ is an analytic map, not an automorphism, of the
unit disk into itself and ¢(0) = 0. For a given 0 < r < 1, there exists 1 < M < oo such
that if (21)72 _j s an iteration sequence with |z,| > 7 for some non-negative integer n and

if (wg)}__j are arbitrary numbers, then there is f € H> such that
flzp) =wr, —-K<k<n

and
1 flloo < Msup{|wg|: —K <k <n}.

Lemma 4.1.3 ([27], Lemma 7.35). Let ¢ be as in the previous lemma. For any iteration
sequence (zx)y there exists ¢ < 1 such that

|2k 41
|2k |

<c

whenever |z < 1/2.

Lemma 4.1.4. Let 1 < p < oo, m € N. Suppose p: D — D is analytic on D with p(0) = 0.
Consider X # ¢'(0)" for all non-negative integers n and g € HpS,. If there is an analytic
function f € H)° with g = \f — f o, then f also belongs to Hy5, .

Proof. Observe that f(0) = 0 since 0 = g(0) = Af(0)— f(0). If we differentiate the expression
9(2) = Af(2) — f(¢(z)) we obtain:

§(2) = M)~ F9(2)0'2)
§'(:) = M) — (@) — (22" (2)
§"(:) = AP"(2) = F (PR () — F(0(2)26(2) = P ()0 () — 1 (0l2)e"(2)
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In particular, for z = 0,
0=g'(0) = Af'(0) — f/(0)¢'(0)
0= g"(0) = Af"(0) = f"(0)¢'(0)* = f(0)¥"(0)
0= "(0) = Af"(0) = ["(O)F(0)° — 1"(0)2"(0) — 1" (0)' (0} (0) — F'(0)"(0)

Since A # ¢'(0)™ for all n € N, from the first equation we get that f/(0) = 0, from the second
one, that f”(0) = 0, and so on, we get that

f(0) = f1(0) = f"(0) = .. = f"7D(0) = 0.
Thus, f(z) = 2™F(z) for some holomorphic function F' and from Lemma 4.1.1, F' € H°.
Therefore f € H)3,. O
Let ¢: D — D be analytic and (zj)>° __ be an iteration sequence, that is, zy+1 = ¢(zy)

for all integers k. For f,g € AZ® and a complex number \ # 0, satisfying A\f — fop =g,
one can check inductively that

k—1
MNefz_y) = flapAF+ A7t Z g(x;)A\™"  for each positive integer k. (4.1.1)
i=—k

Lemma 4.1.5 ([33], Theorem 2.5). Suppose ¢ is analytic in a neighbourhood of a fixed
point z1 and ¢ = ¢'(21), 0 < |c¢| < 1. Then there is a function A, analytic at 21 such that
((pn(2) — 21)/c) = A(2) uniformly near z1. In fact, o,(2) = 21 + " A(2) + O(|c"A(2)|?).
Further, if o: D — D is analytic on D and 2z, is a fived point of ¢ with |z1| = 1 and
¢'(z1) = ¢ < 1, then for each z € D, z near z1, we have Ag(z) = ReA(z) > 0 and |pn(2)| =
1+ c"Ao(2) + O(|c"A(2)]?).

4.2 Results

Recall that for an operator T" on a locally convex Hausdorff space, unlike for Banach spaces,
the resolvent p(7T') might be the empty set or even not an open set.

The following theorem provides the same conclusion as [33, Theorem 3.4], but for the
space A_.

Theorem 4.2.1. Consider A~% with a > 0. Suppose that o: D — D has an analytic
extension to an open neighbourhood of D and that has a fived point a € . Suppose that

there is a positive integer N such that o has, at least, a fived point zo in the unit circle and
that | (z0)| > 1. Then o(Cypy A=) 2 {}: ]A| < @ly(20) /"

Proof. Since AZ® is automorphism invariant (Remark 2.3.3), without loss of generality we
assume that ¢ = 0. Notice that ¢ cannot be an automorphism of D since then ¢y would
be as well an automorphism and its fixed point structure prevents it. Thus 0 € o(C,) (see
Theorem 2.3.1).

Lemma 4.1.5 can be applied to gpj_v because it exists locally near its fixed point zg and
(o) (20) = on ) oy < 1. Here we have applied the chain rule: (P 0 on)(2) = 2/ = 1f,
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and only if, (p3") (N (2))¢@y(2) = 1 and, for the fixed point zg, we obtain (¢5') (pn(20)) =
(on") (20) = 1/ (20). Moreover, by [33, Lemma 1.1], ¢y (20) > 0.

Thus we may choose xo € I with lim, ¢ " (20) = 20. Relying on it we construct an

iteration sequence (z5);2>° __ as follows. Define

ng(x()) if k> 0,
T = oN (x0) if k= -—nN with n >0,
op(x_py) fk=-nN+pwithp=1,....,N—1andn > 0.

Then, for all integers k, ¢(zx) = Tgt1.
Again by Lemma 4.1.5, if n > 0, we have

20 — T_nN = 20 — " (T0) ~ @'\ (20) " A(z0) (4.2.1)

and
1 —|z_nn| ~ ¢y (20) " Ao (o), (4.2.2)
where A(z¢) and Ag(zo) = ReA(xg) are not zero.

Since the point xg is chosen in a neighbourhood of zy, and |zp| = 1, we can assume that
lzo| > 5. Let mo := max{k : |vx| > 1/4}. Observe that this maximum exists because
the sequence (z)r has decreasing norms (Schwarz Lemma) and, since lim, z_,, = zp, the
sequence (z,), tends to zp when n goes to —oo, and the norms tend to 1. Then, the set
{k : |zx| > 1/4} can have so many negative integers, but just a finite number of positive
ones, because when n goes to +00, (), tends to 0 (see [30, Exercise 8, p. 261]).

Then mo > 0 and |z;| < 1/4 for k > mg. By Lemma 4.1.3 there is b with 1/2 <b < 1

for which |xg41/zk| < b for all k& > mg. This implies that
| < BT, for k> myg (4.2.3)

Denote ¢ := ¢\ (20) = (¢'(20))". Thus ¢ > 1.

Fix ) so that 0 < |A| < ¢=*/N. Suppose for a contradiction that A & (C,).
Choose ng so large that

'

i <1 Vn > ny. (4.2.4)

Fix m € N, m > ng such that |¢'(0)]™ < |\|. Given f € AZ®, there exists 0 < f < «
such that f € HP, so |f(z—nn)| < || fllp(1 — |2—nn])~P. Therefore bearing in mind (4.2.2),

XY £ )] < Il (A (4.2.5)
T-nN)|l ~ ﬂAo(CL‘o)IB C*IB . L.

Consequently, taking into account that [A| < ¢ /N implies |A|V/c™® < 1 and that
NN/ P < AN/ < 1, for all f € A”* we have

lim NN f(x_pn)| = 0. (4.2.6)

Let us denote by AZS, the inductive limit

A:?;n = U H[(fm
0<fB<a
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We claim that (C, — M )(AZS,) = A5, Let g € AZS,. Since Cp, — Al is onto, there is
f € AZ® such that g = (C, — )\I)(f) Thus there is 0 < 8 < « such that f € HY, and so
also g € Hg°, hence g € Hgf’m. According to Lemma 4.1.4, f belongs as well to Hg‘fm, as
claimed. In addition, f(z) = 2™F(2) for some F € Hg, as pointed out by Lemma 4.1.1,
therefore |f(x,n)| = |onn(x0)™F (©nn(20))|. Now applying [33, Lemma 2.6], we obtain for
such an f,

it A £ ()| = T g () AT [F (e (20))|

< Tim [ (0)"™™ AT [F (@nv (w0))| = 0. (4.2.7)
From (4.1.1), we have
Nn—1 .
AN f(@ny) = F@nn) AN 270 Y gla)aT (4.2.8)
i=—nN

which together with limits (4.2.6) and (4.2.7) above show that if g € (Cy, — M)(AZS,),

then
o0

> glaaF=o. (4.2.9)

k=—o0

Next, given the iteration sequence (x3);>° ;-, define the linear functionals Lx on AZS,

by
=Y f(;’“). (4.2.10)
k=—K

If we denote the topological dual of A%, with the inductive limit topology by (AZ%,)’,
then the functionals Ly € (A:f“ )’. In order to prove this, recall that Lx: A~ — Cis

m
continuous if Ly : HE, — Cis continuous for all § < a. That is, if for all § < « there exists
a positive constant C such that Lk (f)| < C| fl|p for all f € HE,. Fix 8 < a. For each
f € HE, there is F' € H® such that f(z) = 2mF(z) for all z € D and, applying equation

(4.2. 3) we obtain:

o0 o0 oo
(1 — o)1 ()] (1 — [ao])? i ()| x|l
L <
I e o . PV ey e vty VD S s P Y.
<1Fls S ey,
= B — ENE B — B\ |k
RO ALY 2 =[P
mo B [ee)
|2k ™ 4 |2k ™
< | F - F -
k=—K k= m0+1
1Pl 3 ey (£) Y bl
— (1 — Jzi)BIAF o\3 \ww
k=—K
mo ﬂ
™ $ 0"
SHFHBkZK(l ‘ D'Bp\‘k—’_HF”B 1 |)\|m0+z
=— 'L
TP e 1) ool $ B
=IFls > G pp s 1715 (5) e 2y
k=—K
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But, since m > ng, applying estimate (4.2.4) we obtain " /|\| < 1 and so,
LNl < ClFs,

for some positive constant C.
Moreover, the map F' € HZ® — 2™F € HES is an isomorphism (see Lemma 4.1.1), which
implies that has a contlnuous inverse. Therefore

1Flls < M|z"Flls = M]|fll5

for certain M > 0. Thus, |Lg(f)| < CM||f]| g, that is, Lk is continuous.

Furthermore, as proved previously, the operator Cy, — A| 4—o 1s surjective and so, by
(4.2.9), limg Li(f) =0 for all f € AZG,. That is, the sequence (L) converges to 0 in the
weak* topology a((A:?;n)’, A:?;n).

Fix 0 < B < a, then there exists f, € HZ® C AZ® such that || fy[|s < 1 and | fs,(z0)| =

1/(1 — |xo|)?. Let 1 < M < oo be the constant in Lemma 4.1.2 for » = 1/4. Then there is
fr € H® with || fx|lco < M, |fr(zo)| =1 and satisfying

x5 fr(20) foo(x0) > 0 and fr(xp) =0for — K <k <mg, k#0.

Now, the function gx (z) := 2™ fi () fz,(z) belongs to HZ, and gk ||z < M. Observe
that the constant M does not depend on m. Further,

Li(9x) = 20" K (%0) fao (o) Z AR fre (@) fao (1)

k=mo+1
If, in addition, we choose m so that

1 1 b < 1
7 05 (mg) [l — 57~ 205(x0)

and use again (4.2.3) and (4.2.4), we obtain

Z A g ()] < |Zime|™ |zo|™
g ()| = 2vs(z0) 21) (o)
k‘ mo+1 6 B
And then,
Liclor)] = 2o (42.11)
~ 2ug(zo)

To conclude, recall that the embedding H* — Hpg° is a compact operator and the
multiplication operator M;my, is a continuous self map of Hgz°. Hence (9r) K is a relatively
compact subset of HZ C A m because gx = Mymy, (fx). That is, since [|fx[lec <
M, and compact operators transform bounded sets in relatlvely compact sets, (fx)x is
relatively compact. Additionally, since continuous operators transform relatively compact
sets in relatively compact, (gx )k is relatively compact in Hgo

This way we are led into a contradiction with (4.2.11) since we must have limg Li (9x) =
0 because the p01ntW1se bounded set (Lx)x is an equicontinuous set in the dual of the
barreled space AZ9, (Banach-Steinhauss Theorem) and, in this case, the topolgy of uniform
convergence on compact sets coincides with the weak* topology. This contradiction proves
that A belongs to the spectrum. O
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Remark 4.2.2. If ¢ satisfies the assumptions of Theorem 4.2.1 with N =1 and ¢'(0) # 0,
then we can complete the information about the spectrum of C, by using Corollary 3.4.1 to
obtain

{£'(0)" 3020 U [ < ¢'(20) ™} € 0(Cy, A=) € B(0,7e(Cyp, HZ)) U{$'(0)" }220-

Example 4.2.3. Consider the symbol ¢(z) = 5%, z € D. It is analytic on D and 0 is
an interior fixed point, while zg = 1 is a boundary fixed point with ¢'(1) = 2 > 1. Then,
the hypotheses of Theorem 4.2.1 hold and, for a given a > 0, the composition operator
Cp: AZ® — AZ% verifies 0(Cyp, AZ%) D {X: [A] £27%}. In [21, Example 1] it is noticed that
Spn(z) = m

Recall that the essential norm of C,,: H3® — HS° can be computed according to ||Cy|le =

limsup,| 1 % (see Section 3.2). Moreover, from [27, Proposition 2.46] we obtain that

|Cylle = maxe— [¢'(£)|7* . For the iterates ", this maximum is achieved at § = 1, with
value (¢")'(1) = 2" So [|Cgle = (2")~%, from where it follows that r.(Cy,, H®) = (3)~.
And o(Cy, HY) = {0} U {¢'(0)" : n € N} U B(0,7.(C,, HY)) as proved in [7, Theorem 8.
Realize that in this example 0(Cy, HY) = 0(Cyp, AZ®).

’—Oc

The following theorem is analogous to Theorem 4.2.1 for the Fréchet space A, . Since
the proof is quite similar we simply mention the claims that have been proved in Theorem
4.2.1 and detail the differences. The main difference is the choice of the function f,.

Theorem 4.2.4. Consider A[%, with o > 0. Suppose that ¢: D — D has an analytic
extension to an open neighbourhood of D and that has a fized point a € D. Suppose that
there is a positive integer N such that N has, at least, a fived point zy in the unit sphere
and that ¢'(20) > 1. Then a(Cyp, A7*) D {X: |A| < @y (20)"/N}.

Proof. Without loss of generality, we assume that a = 0. Notice that ¢ cannot be an
automorphism of I since then ¢y would be as well an automorphism and its fixed point
structure prevents it. Thus 0 € 0(C,). Construct the sequence (xy); as in Theorem 4.2.1,
which verifies the statements (4.2.1), (4.2.2) and (4.2.3). Denote ¢ := ¢y (z0) then ¢ > 1.

Let |A| < ¢=*/N and suppose it does not belong to o(C,). We now choose ng so large
that (4.2.4) holds.

Fix m € N, m > ng such that |¢’(0)|™ < [A]. Each f € AT® satisfies | f(2)| < || fllage(1—
|z|)~(@+) for all z €D, e > 0 and so,

’ f($an)’ = HfHOH-EAO(xO)aJrE —(ate) :
This implies that (4.2.6) holds for all f € A7*.
Consider f,g € A7* with Af — f o = g. Then they satisfy equation (4.2.8).
Let us denote by A;O;n the projective limit

—+00
—a . 00 _ o)
A-i—,m T ﬂ Ha+l’m - ﬂ HaJre,m‘
n
n=1 e>0

We claim that (C, — )\I)(A:Lffn) = AL, Let g € ALT,. Since C, — Al is onto, there is
f € A% such that g = (Cp, — M )(f). Thus, for all e > 0, f € HSS ., and so also g € HZS

ater

hence g € Hg . ,,,- According to Lemma 4.1.4, f belongs as well to Hg< ., as claimed and

(4.2.7) holds.
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Therefore, we deduce that if g € (C, — A)(ALY,) and [¢'(0)[™ < [A] then,

—+00

Z glzp) A F =0.

k=—o00

The functionals Lk are defined on AL, according to the same expression as in (4.2.10).
They are continuous and the sequence (L) is U((Ajrf:n)’ , Ajrf:n)—null.

In order to obtain an inequality as (4.2.11) we have to deal separately with the cases o > 0
and a = 0. Let’s begin with a > 0. There exists f,, € H3® C AL such that ||fz[la <1
and | fyz,(zo)] = 1/(1 — |zo])®. Let 1 < M < oo be the constant in Lemma 4.1.2 for r = 1/4.
Then, there is fx € H>® with ||fx|cc < M, |frx(x0)| =1 and satisfying

2" i (20) fuo(x0) > 0 and  fr(zg) =0 for — K <k < mg, k #0.

Now, the function gx (v) := 2™ fx () fz, (z) belongs to HZS,, and [|gk|la < M. Further,

Lk(9r) = g K (0) fao (20) Z AR frc(on) fa (1)

k=mo+1
If, in addition, we choose m so that

1 1 b - 1
A0 Vo (Tmg ) [A] = 0™~ 2va(z0)

and use again (4.2.3) and (4.2.4), we obtain

Liclgre)] > 2 (4.2.12)
200, ()
And now the case @ = 0. The function
1
1, rel0,1——|
p(r) = L
—log(l—r), re[l——,1]
e
is non-decreasing, continuous and lim,_,;- p(r) = +o0o0. We define v(z) := 5 ‘12|), z € D. For

each 0 < € < 1, it can be seen that there exists C. such that
(1 —|z|)° < C.v(z), forall zeD.

In other words, the space H.° is contained in Ajro. We can take f,, € H° C Ajro such that
| faolle < 1 and |fz,(x0)] = 1/v(xo). Let 1 < M < oo be the constant in Lemma 4.1.2 for
r = 1/4. Then there is fx € H*>® with || fx|cc < M and |fx(zo)| = 1, satisfying

x5 fr(20) foo (o) > 0 and fr(xp) =0 for — K <k <mg, k#0.
Now, the function g (z) := 2™ fx () fz,(z) belongs to HpS, and | gk |, < M. Further,

Li(9x) = 2" fx (20) fro (x0) Z ATRTP i () foo (20).-

k=mo+1
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If, in addition, we choose m so that

1 1 b 1
M < ,
A0 v(@me ) [Al =™ 2v(z0)

and use again (4.2.3) and (4.2.4), we obtain

|z0|™

Lr(or)| 2 5.

(4.2.13)

However, since (gk)x is a relatively compact subset of AL, and the sequence (Lk)x
is weak*-null and equicontinuous, we would have that limy L (gx) = 0, which contradicts
(4.2.12) and (4.2.13). This contradiction means that A\ must belong to the spectrum, as
wanted. O]
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Chapter 5

Weighted composition operators on
projective and inductive limits of
weighted Banach spaces of
vector-valued analytic functions

In this chapter we characterize several properties of weighted composition operators when
acting between weighted spaces of analytic functions with values on a Banach space. These
results are applied to operators between weighted inductive and projective limits of spaces
of analytic functions. The case of vector-valued Korenblum type spaces is also considered.
The main results of this chapter are collected in [18].

5.1 The operator W, , on weighted Banach spaces of vector-
valued functions

In this section we study the continuity, compactness and weak compactness of the weighted
composition operators between two weighted Banach spaces of vector-valued functions, in
comparison with their equivalents in the scalar valued case.

Definition 5.1.1. Let E be a complex Banach space. Let F': D — E be a holomorphic
mapping and v(z) a weight on the unit disc D. Then,

e Fe HX(D,E) if sup || F(2)||v(z) < oo.
z€eD

e Fc HY)D,E) if| ‘hIIll |F(2)|lv(z) = 0.
z|—17

For the norm ||F|l, = sup,cp ||F(2)|v(2), the spaces HX(D,E) and HJ(D,E) are
Banach spaces. As in the scalar case, we also have that H°(D, F) = H>°(D, E) and the
norms || ||, and || ||z coincide. To prove this it is enough to consider, by the Hahn-Banach

Theorem, for every F(z) € E, an element v’ € E’ with ||o/|| < 1 such that |F(z)|| = «/(F(2))
and then, the scalar function v’ o F.
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A subset A for a Hausdorff locally convex space E is precompact if for every absolutely
convex 0-neighbourhood U C FE there exist x1,...,xs € A such that

Oxz—i-U

Every precompact set is bounded. If o € K and A is precompact, then A is precompact.
Moreover, a finite union of precompact sets is precompact.

Remark 5.1.2 ([37], Remark 4.4(a)). If for every absolutely convex 0-neighbourhood U in
E there exist y1,...,yr € FE such that A C Ule(yi + U), then A is precompact.

Proposition 5.1.3. Let F: D — E be a mapping and v a weight. Then F € H}°(D, E)
if, and only if, ' o F € H for all W' € E'. Further, F € HY(D,E) if, and only if,
{' o F : ||| <1} is a precompact subset of HY.

Proof. Consider the subset A := {v(z)F(2) : z € D} of E. Then, u/(A) = {v/(v(2)F(2)) :
z € D} = {v(2)u/(F(2)) : z € D}, for all ' € E’. Recall that A is bounded if, and only if, it
is weakly bounded (see [37, Proposition 8.11]). Since, in addition F' is holomorphic if, and
only if, it is weakly holomorphic ([39, Theorem 8.12]), we get the first asertion.

Suppose F € H)(D, E). Clearly, u' o F € H? for all u' € Bg. We define the mapping
F:D — E by F(z) := v(2)F(2) whenever |z| <1 and F(z) = 0 when |z| = 1. The mapping
F is continuous in D and the set F' (ﬁ) is compact since it is the image of a compact set.
The set L := {v(2)F(2) : 2 € D} = F(D) is relatively compact because it is a subset of
the compact set F(D). Since the closed unit ball Bgs is an equicontinuous and w*-compact
set (Banach-Alaoglu’s Theorem), by Arzela-Ascoli Theorem it is also a compact set for the
topology of uniform convergence on compact subsets of E. In particular, Bps is compact
with the norm [|u/[|7 := sup, 7 |u/(x)|. Hence, given € > 0, there are u,...,u; € Bgs such
that for every u' € By, there is u) such that

sup| < v —wup,v(2)F(z) > | <e.

zeD
That is,
£ > sup [0(2)u/ (F(2)) = v(2)up(F(2))] = [lu" o F = uj, 0 Fll,.
Or, in other words,
{' o F: |l <1} C{uyoF,...,up 0 F} + Bpo(0,¢), (5.1.1)

which proves the precompactness of {u' o F : ||u/|] < 1}.
Converserly, if {u’ o F : ||«/|| < 1} is a precompact subset of H?, given ¢ > 0, formula
(5.1.1) holds and, since u}, o F' € HY, there is 0 < r < 1 such that

sup [v(2)(u), o F)(2)] <e, forallke{l,...,n}.

|z|>7

Hence, for all ' € Bgs, we have that sup|,s, [v(z)(u’ o F)(z)| < 2e. From where it follows
that F € H)(D, E) because

sup [v(2)|[[F(2)] = sup sup |v(z)(u' o F)(2)] < 2e.
|z[>r |z|>r u'€Bgy
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5.1. The operator Wy, , on weighted Banach spaces of vector-valued functions

We recall that for an analytic map ¢: D — D with ¢(D) C D, and ¢ € H(D), the
weighted composition operator is defined by Wy, ., f(2) := 9(2) f(¢(2)), for all z € D.

Remark 5.1.4. Applying the Closed Graph Theorem we observe that if Wy, ,: H°(D, E) —
H (D, E) is well defined, then it is continuous. Indeed, we see that if Wy, ., is well defined,
then Graph(Wy, ) is closed.

Take a sequence (F,, Wy ,(Fn))n C Graph(Wy ) convergent to a certain (F,G) €
H*(D,E) x Hy*(D, E). On one hand, since the evaluation functionals 6,: H°(D, F) — E
defined by 0,(F) := F(z) are continuous for all z € D, we have that F,(z) — F(z) and
Fo(¢(2)) — F(p(z)) for all z € D. On the other hand, Wy ,(F,(2)) — G(z) for every
z €. But, Wy ,(Fn(2)) = ¥(2)Fn(p(2)) and ¥(2)F(p(2)) — ¥(2)F(¢(2)) for all z € D.
Thus, ¢ - F op = G. In conclusion, every convergent sequence on Graph(W, ) converges to
an element of Graph(W, ). That is, Graph(Wy, ) is closed.

Remark 5.1.4 gives us that the operator Wy, ,: Hy°(D, E) — HiX(D, E) is well defined
if, and only if, it is continuous. The argument also works for the space H?(D, E) thus, we
also have this characterization for Wy, ,: H)(D, E) — HY (D, E).

Remark 5.1.5. From Remark 5.1.4 and Propositions 2.0.1 and 2.0.2, we have that if
Wy o HY — HY is well defined then Wy, ,: H3® — H is also well defined.

Recall that any radial, positive continuous funcion v: D — R™, which is non-increasing
with respect to [2| and is such that lim,|_,;- v(z) = 0, is called a typical weight. To each
weight v corresponds the growth condition u: D — R*, w = 1/v, and B, := {f € H(D) :
|f| < u}. A new function @: D — R* is defined by @(z) := supjcp, |f(2)|, and the weight
associated with v is defined by ¢ := 1/4. A weight v is called essential if there exists a
constant C' > 0 such that v(z) < 9(z) < Cv(z), for all z € D.

Proposition 5.1.6. Suppose that v, € H(D), (D) C D, that v,w are two typical weights
and that E is a Banach space. The weighted composition operator Wy, ,: H*(D,E) —
HX (D, E) is continuous if, and only if, Wy, ,: H3® — H® is continuous.

Proof. First, suppose Wy, ,: H7° — Hp° is continuous. By Proposition 2.0.1, we have that

w(z)
S W) o))

That is, [¢(2)|w(z) < Mo(p(z)) for all z € D. Then, for each F' € H°(D, E) we obtain that:

=: M < oo.

HVV¢W(FWHw==§25H¢%Z)FT¢(ZDHUKz)==225\¢(ZHHFTw(Z»HuKZ)féiggﬂ4HFTw(z»H5(w(z»

=M sup [|F(§)[[o(§) < Msup [|[F(z)|[v(z) = M||Flls = MI|F|,.
£€p(D) z€D

On the other hand, suppose now that Wy ,: H°(D,E) — HX(D,E) is continuous.
Choose =g € E and u;, € E’ such that ujzg = 1. Consider the following diagram:

Wy,
H¥(D,E) —% HY¥(D, E)
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where S(f(2)) := f(z)zp forall f € H®, z € Dand, T(F) := uyoF forall F € H*(D, E).
The operators S and T are continuous since

I1S(H)llo = supv()IS(f ()] = ilelgv(Z)Hf(Z)on < ilelgv(Z)llonlf(Z)l = llzollll 1

zeD

and

ITE) = supw(2)|T(F)(z)] = iggw@)\(% o F)(z)| < iggw(Z)ll%HHF(Z)ll < ol F |-

Now, observe that T'o Wy, , 0 S is exactly the weighted composition operator Wy, , for the
scalar case. In fact, for each f € H;° and z € D we have

(T'o Wy 0 S)(F)(2) = (T 0 Wy,p)(f(2)z0) = T((2) f(p(2))20)
= up(¥(2) f(e(2))0) = ¥(2) f((2))upro = Wy o (f)(2).

Therefore, Wy, ,: Hy° — HZ’ is continuous since it is the composition of continuous opera-
tors. O

Proposition 5.1.7. Suppose that ¢,y € H(D) with ¢(D) CD. Let v and w be two typical
weights and let E be a Banach space. The weighted composition operator Wy, - H)(D, E) —
HY(D, E) is continuous if, and only if, Wy.o: HY — HY is continuous.

Proof. First, suppose Wy, ., H? — HY is continuous. By Proposition 2.0.2,

=: M < oc0o.

w(z)
B
That is, |[¢(2)|w(z) < Mo(p(z)) for all z € D. By the proof of the Proposition 5.1.6, we
know that for every F € H)(D, E), [|[Wyo(F)|lw < ¢||F|lv. It remains to see that for any
F € H)(D, E), the function Wy, ,(F) belongs to H3,(D, E).
By Proposition 5.1.3 we know that {u’ o F : ||u/|| < 1} is a precompact subset of H.
Since for every v’ € E/ and z € D

(u' 0 Wy, (F))(2) = ¥(2)u'(F(p(2))) = () (' 0 F)(p(2)) = Wy, (u' 0 F)(2),

then u' o Wy, ,(F) = Wy, ,(u' o F) and the set {u/ o Wy, ,(F) : ||o/|| < 1} is the image of the
precompact set {u/o F : [[u/|| < 1} by the linear and continuous map Wy ,: HY) — HO. This
proves that for every v’ € E with ||u/|| < 1 the operator v’ o Wy, ,(F) belongs to H, and
applying again Proposition 5.1.3 we obtain that Wy, ,(F) € H)(D, E).

By using the operators S: H) — HY(D, E) and T: H2 (D, E) — HY defined as in Proposi-
ton 5.1.6, the converse is obtained analogously. O

Remark 5.1.8. Suppose dim E = N, then H(D, E) is canonically isomorphic to H (D)
To see this, we prove that there is a canonical isomorphism between H (DD, E) and H (D, C")
and also that H(D,CY) = H(D)V.

Take F € H(D, E). If i: E — C" is a canonical isomorphism,

DX E

ok
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then i o ' € H(D,C"). The canonical isomorphism is F € H(D, E) — io F' ¢ H(D,CY).

On the other hand, if we take the canonical projections we obtain that pjo(ioF) € H(D)
for all 1 < j < N, because the composition of holomorphic funcions is holomorphic. In other
words, i o F € H(D)N. With this, we have that H(D,CY) = H(D)V.

Remark 5.1.9. If dim £ = N, the space H(D, F) is Fréchet Montel. Recall that H(D, E) ~
H(D)N (Remark 5.1.8). The space H(D)" is Fréchet because H(D) is. Further, H(D, E) is
Montel. In fact, if we take a bounded sequence (F,), C H(D, E), the sequence (i o F},),, C
H(D,CY) = H(D)¥ is also bounded. Since H (D) is Montel, for the first coordinate we have
that (p1 o (i o F},)), has a convergent subsequence denoted by (p; o (i o F,))k,. For the
second coordinate, we obtain that (ps o (i o Fj,))k, is bounded too and has a convergent
subsequence, (p2 o (i o Fy,))k,. Repeating this procedure, we get that the sequence (i o F,),
has the subsequence (i o F,, )k, , which is convergent. Therefore, the subsequence (Fj, )iy
of (F,), is convergent too.

Another way to see it is applying that the product of Fréchet Montel spaces is also Fréchet
Montel.

Remark 5.1.10. Observe that, if the operator Wy, ,: H)(D, E) — H2 (D, E) is continuous,
then the operators Wy, ,: H) — HY,, Wy o2 H® — HZ® and Wy, ,: H(D, E) — HX(D, E)
are also continuous. See, respectively, Proposition 5.1.7, Propositions 2.0.1 and 2.0.2, and
Proposition 5.1.6.

Proposition 5.1.11. Let v,w be two typical weights, ¢, € H(D) with (D) C D and
¢ € HY, and let E be a Banach space. Suppose Wy, ,: H)(D, E) — HY(D, E) is continuous.
The following statements are equivalent:

i) Wy ot HX(D,E) — Hy(D, E) is compact,

i) Wyt HY(D, E) — H)(D, E) is compact,
iii) Wy Hy® — HgY is compact and E has finite dimesion,
w) Wy, HY — HY is compact and E has finite dimension.

Proof. First of all, recall that, since Wy, ,: H)(D, E) — HY (D, E) is continuous, the operator
Wy, is also continuous in all the other spaces used in this proposition (see Remark 5.1.10).
i) = ii) | Assume Wy ,: H°(D, E) — HY (D, E) is compact. Then, Wy, ,: H)(D, E) —
HY(D, F) is compact because it is the restriction of a compact operator.
iii) = 1) | Suppose Wy, ,: Hy® — Hg® is compact. Since H°(D, E) and HiX(D, E) are
Banach spaces, it is enough to see that for each bounded sequence (F,), C H°(D, E), the

sequence (Wy, ,(F))n C Hy (D, E) is a relatively compact set.
Let (F,)n, C H°(D, E) be a sequence such that there is M > 0 with

sup || Fy,(2)]|9(2) = sup || Fn(2)||v(2) < M, for all n € N. (5.1.2)
zeD z€D

Since H°(D, E) is a subspace of H(D, E) and (H(D, E), 7.,) is a Fréchet Montel space
because dim E < oo (Remark 5.1.9), then each 7.,-bounded sequence has a 7.,-convergent
subsequence. Here, 7., denotes the topology of the uniform convergence on the compact

subsets of ID. The sequence (F},), is norm bounded then, in particular, it is 7.,-bounded.
Thus, (F},), has a subsequence that we denote in the same way which is 7.,-convergent to
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a certain F' € H(D, E). Moreover, since ¥, € H(D), Wy ,: HD,E) — H(D, E) is well
defined and, by Closed Graph Theorem, Wy, , is 7,—continuous (analogous to Remark 5.1.4).
Thus, (Wy,o(Fn))n — Wy o(F). It only remains to prove that (Wy ,(F,)), converges to
Tco
Wy.o(F) in norm, and that Wy, ,(F) € Hy*(D, E).
According to Proposition 2.0.3, the compactness of Wy, ,: H;° — Hy® shows that
w(2)

1i =0. 5.1.3
i s WIS (5:1.)

Furthermore, by Proposition 3.2.3 we have that for all ¢ > 0 there is 0 < r < 1 such that

w(z)

sup  [Y(z)] (5.1.4)

2eD\B(0,r) 0(p(2))

Now, applying (5.1.4) and (5.1.2) we obtain that there exists mgy € N such that if n > myg
then

sup  [|(Wypo(Fn) = Wy o(F))(2)lw(z) = sup  [[¢(2)(Fn = F)(p(2))]lw(z)

2€D\B(0,r) 2€D\B(0,r)
su z — 2))|v(p(z w(z)
SZGD\EIEMW( IFn = F)(e(2)[[o(e( ))ﬁ(@(z))
su z w(z)
<2M zeD\EIzO,r) [ ( )|ﬁ(¢(z)) < 2Me.

Observe that, since w is a weight, there exists a positive constant C' such that w(z) < C
for every z € . In addition, if we apply the 7.,-convergence, we get that there exists ng € N
such that if n > ng then

sup [|(Wyo(Fn) = Wy o (F))(2)|[w(z) < C sup  [[(Wy,o(Frn) = Wy o (F))(2)]| < Ce.
2€B(0,r) z€B(0,r)

Consequently, for all n > max{mq,no},

Wy o(Fn) = Wy, o(F)[lw = Sup [(Wep,p (Fn) = Wy o(F)) (2) [w(2)

< maX{ sup |[[(Wyo(Fn) — Wy o(F))(2)|[w(z),
z€B(0,r)

sup [[(Wyo(Fn) = Ww,so(F))(Z)Hw(Z)}
2€D\B(0,r)
< max{Ce,2Me}.

Then, since € is arbitrary, these computations show that Wy ,(F,) — Wy o(F) €
HY (D, E). Hence, Wy ,(F) € HiY(D,E) and Wy, ,(F,) — Wy o(F) since Wy, ,(F) =
W o(F) = W o (Fn) + Wy o ().

i) = i) | Consider the diagram of Proposition 5.1.6, with the same operators S and T,

H(D, B) —2% H(D, E)
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Since T'o Wy, , 08 = Wy, ,: H* — HZ°, is the composition of compact and continuous
operators, it is also compact. On the other hand, we construct the next diagram

W,
H¥(D,E) —% HY¥(D, E)

where P(z) = f, such that f;: D — E, fy(2) :==z for all z € D and, Q: H’(D,E) — E is
defined by Q(F) = F(z0)/v(z0), for some zy € D with ¢(z9) # 0. We can take 9(zp) # 0
because ¥ # 0. Both mappings P and @ are well defined, linear and continuous. Following
the diagram, we can observe that

Qo Wy o P(x) := Q(Wyp(fz)) = Wy, w(fx)(Zo)/@ﬁ(Zo) =
= ¢(20) f2(#(20))/9(20) = fo(p(20)) = .

Thus, Q o Wy, , 0 P = I and I is compact because it is the composition of compact and
continuous operators. Moreover, since the identity operator in a Banach space [: E — E
is compact if, and only if, the space E is finite dimensional (|28, Theorem 1.24]), we obtain
the result.

M This follows from Propositions 2.0.1, 2.0.2, 2.0.3, 2.0.4 and 3.2.3, since @ €

HU

w*

i1) < iv) | Consider the following diagram

HY(D, E) —2% HO(D, )
5] |r
HO oo s HY

where operators S and T are defined as in Proposition 5.1.6. Both are well defined, indeed,
for any f € H? and F € H)(D, E),

lim o(2)|S()(E) = lm v()]F (ol = o] lim v()]£(2)] =

lim w(2)|T(F)(2)| = lim w(2)|(ug o F)(2)] < ||ug Jim w(@)[F(2)] =0

|z]—1 |z]—1

Moreover, consider now the diagram

HOD, E) 4% HO(D, E)

pT l@

E - » B

where operators P and ) are the same as in i) < #ii). Since for every = € E,

lim 0(2)| P@)(2)] = lim o) £o()] = lim o)l = ] lim v(z) =0,

operators P and @ are also well defined. The rest of the proof is analogous to i) < iii). [

Lemma 5.1.12. Let E be a Banach space and T: E — E an isomorphism. If T is weakly
compact, then E is reflexive.
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Proof. By [37, Proposition 23.18] it is enough to show that By is weakly compact. Since T
is open and surjective, there is A > 0 such that ABpg C T(EE). The set T'(Bg) is relatively
weakly compact by assumption, hence so is ABg, and then Bg. O

Lemma 5.1.13. Let v,w be two typical weights, E be a Banach space and ¢, € H(D)
with (D) C D. Assume that the operator Wy, - Hy® — HyY is compact. If E is a reflexive
space, then Wy, ,: H*(D, E) — HX (D, E) is weakly compact.

Proof. Consider the transpose operator Wj ot (HZ) — (Hy°)'. The predual of H° is
defined and denoted by 'H° := {u € (H{®) : ulp, . is Teo-continuous}, as in (20, 5(c)].
Applying [20, 5(d)] to our space, we have that

(HZ)

"H® = span{d, : z € ]D)}\HSO) , 'Hg =span{é, : z € D} (5.1.5)

Since WQZW((SZ) = 1)(2)0,(2) is contained in span{d, : z € D} because it is the product of the
scalar 1(z) and the functional d,.y, then
Wiw(span{éz :z € D}) C span{d, : z € D}. (5.1.6)

Now, by applying 5.1.5, 5.1.6 and the continuity of Wé),so’ we obtain that

Wy J(HY) =W, (span{d. : z € D}) C Wy (span{d; : z € D}) C span{d, : z € D} = "H;".

Thus, the restricted operator Wy |rpe: "HgY — "H® is well defined.
On the other hand, consider the following diagram:

H®(D,E) ——%* s HZ(D, E)
al [x
LOHF,E) LOHE, E)

Wy ol age Me

where operators y and ¢ are, respectively, the operators x and v of [20, Lemma 10]. The
map x: LUHX,E) — HX(D,E) is defined by x(T') := T o A, where A: D — 'HX is
given by A(z) = §,. For a fixed F € H{(D, E), the map ¢: H°(D,E) — L('HX,E)
is defined by (¢(F)(g))(v') := g(u' o F) for all ¢ € '"H3° and v’ € E’. Both operators
are well defined, linear, continuous and their norms are less or equal to 1. The wedge
operator W e A Ip: LOH, E) — L('Hy, E) maps each operator X € L("H®, F) to
the composed operator Ig o X o Wi,w|’H$°’ that is,

W | poo I
,HE)O w

IEOXOW}ZJ#P‘/H%O

E

Now, since for every F' € H°(D, E)

(x o Wy gl NME) 0 ¢)(F)(2) = x 0 (Ig 0 $(F) 0 Wy, lrze ) (2) =
= (Ig o d(F) o Wy  |rmge) 0 Alz) =
= I 0 §(F) o (Wy |tz (82)) = &(F)(1(2)d,2)) =
= P(2)0(F)(0p(z)) = V() F(0(2)) = Wy o (F)(2)
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for all z € D, then Wy, , = x o (Wi,w"Hﬁ‘J A Ig) o ¢. Moreover, taking into account that in
Banach spaces an operator is reflexive in the sense of [17] if, and only if, it is weakly compact,
we can apply [17, Corollary 2.11] (or [41, Theorem 2.9] applied to four different spaces, as it
is said in the comment below the theorem) and obtain that Wy, ,: Hy°(D, E) — Hy°(D, E)
is weakly compact, since W{Z,,@"Hgo is compact, I is weakly compact and x and ¢ are
continuous. O

Proposition 5.1.14. Let ¢, € H(D), v,w be two typical weights and let E be a Banach
space. Suppose Wy, 2 HY(D, E) — HO(D, E) is continuous. The following statements are
equivalent:

i) Wyo: HX(D,E) = H(D, E) is weakly compact,
i) Wy H)(D, E) — HO(D, E) is weakly compact,
iii) Wy o2 Hy® — HZY is compact and E is reflexive,
i) Wyo: HY — HY is compact and E is reflexive.

Proof. |i) = ii) | Assume Wy ,: H*(D,E) — Hg(D,E) is weakly compact. Since
Wy HY(D, E) — HJ(D, E) is well defined (because it is continuous by hypothesis) then it
is weakly compact because it is the restriction of a weakly compact operator.

i1) = iv) | Consider the following diagram

W,
H)(D,E) —% HY(D,E)

where the operators S and T are the same as in Proposition 5.1.6. As we have seen in the
proof of Proposition 5.1.11, both operators are well defined. Thus, since T o Wy, , 0S5 =
Wy HY? — HY, is the composition of weakly compact and continuous operators, it is
also weakly compact. If it was not compact, by [26, Theorem 5.1], there would exist a
subspace F' C H? isomorphic to ¢y such that Wy.elp: F — F would be an isomorphism.
However, since Wy, ,|r is weakly compact, by Lemma 5.1.12, cg would be reflexive, which is
a contradiction (see [37, Corollary 7.10]).

On the other hand, consider now the diagram

7%
H)(D, E) —% H)(D, E)

PT l@

E - y B

where operators P and @) are the same as in Proposition 5.1.11. Since Qo Wy, ,o P = I, Ig
is weakly compact because it is the composition of weakly compact and continuous operators.
Then, by Lemma 5.1.12, E' is reflexive.

i71) < iv) | The same way as in Proposition 5.1.11, this follows from Propositions 2.0.1,
2.0.2, 2.0.3, 2.0.4 and 3.2.3, since v € HY.
ii1) = i) | It is done in Lemma 5.1.13. O
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5.2 Inductive limits of weighted Banach spaces of vector-
valued functions
Let V' = (v,)n be a sequence of strictly positive, radial, typical, continuous, decreasing

weights on D such that v,(z) > v,41(2) for each n € N and z € D. We assume sometimes
later that for every n € N there exists m > n such that

im Um(r) =
7”1—>1* v (1) 0 (V)

This is condition (V) as described in [10, Section 0.4].

Let E be a Banach space. The space VH (D, F) is defined as the inductive limit of the
Banach spaces Hyo(D, E/). That is,

VH(D, E) := ind HX(D, E).

This space is a DF-space (see [25, Proposition 8.3.16] and [36, (5) p. 403]). In the same way
the space Vo H (D, E) is defined:

VoH(D, E) := ind H) (D, E).

Observe that, in the scalar case, Korenblum type LB-spaces A~ and AZ% with o > 0 are
of this type. The space VH (D, E) is an LB-space because each of the step spaces Hyo (D, E)
is a Banach space.

Definition 5.2.1. A locally convex inductive limit F' = ind, F}, is called:
- regular if every bounded subset of F' is contained and bounded in a step Fj;
- compactly reqular if every compact subset of F' is contained and compact in a step Fj;

- boundedly retractive if every bounded subset B of F' is contained in a step F;, and the
topologies of F' and F}, coincide on B;

- strongly boundedly retractive if F' is regular and, for each n € N there is m > n such that
F and F},, induce the same topology on the bounded subsets of F};;

- sequentially retractive if every convergent sequence in F' is contained in a step F, and
converges there.

We say that a Hausdorff locally convex space X satisfies the countable neighbourhood
property (c.n.p.) if for every sequence (U,), of 0—neighbourhoods in X there are ¢, > 0
such that (1, ¢,U, is a O0—neighbourhood in X. For more information about spaces
satisfying the countable neighbourhood property, see [15].

In Proposition 5.2.2, we show that V H(D, F) is a regular LB-space. Further, if condition
(V) is satisfied, VH (D, E) is strongly boundedly retractive (Proposition 5.2.4). In particular,
every relatively (weakly) compact subset of VH (DD, E) is contained and satisfies the same
properties in a step. See Proposition 5.2.7.

Observe that, if given n € N, m is selected as in condition (V), then Hy°(D, E)
HY (D, E) with continuous inclusion. Therefore, condition (V) implies that VH(D, E)
VoH (D, E) (with the same locally convex topology).

1M
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Proposition 5.2.2. If E is a Banach space, then VH(D, E) is a regular LB-space.
Proof. Consider the following inductive limit of spaces of continuous functions

VCO(D, E) :=ind C,, (D, E)

where C,, (D, E) := {F € C(D,E) : sup,ep vn(2)||F(2)|]| < oo} and C(D, E) denotes the
space of all continuous functions from D into E. For every n € N, the space C,,, (D, E) is a
Banach space with the norm || F||,, = sup,cp vn(2)||F(2)]-

The space E satisfies the c.n.p.. Indeed, let (Uy), be a sequence of 0-neighbourhoods.
Then, there exists a sequence of balls centered in 0, (B,,),, with radii r,, such that B,, C U,
for all n € N. Take (c,)n := (1/7n)n, thus, N, cnUn 2 (), cnBrn = B(0,1). Then, (N, ¢, Uy is
a 0-neighbourhood.

By [8, Corollary 2.5], VC(D, E) is a regular inductive limit. Moreover, since Hy°(DD, E) C
Cy,, (D, E) with continuous inclusion for all n € N, then VH (D, E) C VC (D, E) with contin-
uous inclusion by Lemma 1.2.2.

Let B ¢ VH(D, E) be bounded, then B C VC(D, E) is bounded because the inclusion
VH(D,E) — VC(D, E) is continuous. There is n € N such that B C C,,(D, E) and it is
bounded. Thus, B C HyS(D, E) because all elements of B are analytic, and B is bounded
there because both spaces H;°(D, E) and C,, (D, E) have the same norm || [|,. O

The following theorem gives some equivalences of the concepts seen before, for an in-
ductive limit of Banach spaces E = ind, E,. This theorem is [44, Theorem 6.4], where it is
written for countable inductive limits of Fréchet spaces.

Theorem 5.2.3. Let E = ind, E, be an LB-space. The following conditions are equivalent:
(i) E is sequentially retractive,

(ii) E is compactly regular,

(iii) E is boundedly retractive,

(iv) E is strongly boundedly retractive,

(v) E is reqular and for each n € N there is m > n such that for all k > m the spaces E,,
and Ey induce the same topology on the bounded subsets of E,,.

Moreover, these conditions imply that E is complete.

Proposition 5.2.4. If V = (v,)y satisfies condition (V), then VH(D, E) = VoH(D, E) is
strongly boundedly retractive.

Proof. This is stated explicitly in the consequences of condition (V) in [10, p. 114]. It is
consequence (b). O

Moreover, by consequence (a) in [10, p. 114], if m > n is selected for n according to
(V), the spaces Hg (D, E), VH(D, E) and the compact open topology all induce the same
topology on the bounded subsets of Hy°(D, ).

Proposition 5.2.5. If V = (vy,), satisfies condition (V), then every weakly (relatively) com-
pact subset of VH (D, E) is contained and weakly (relatively) compact in some step HyO(D, E).
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This is a consequence of Proposition 5.2.7, which is a more general result. In its proof,
we use the following definition.

Definition 5.2.6 ([14], Definition 10, p. 105). A countable locally convex inductive limit
F = ind, F,, of metrizable locally convex spaces satisfies

- condition (M) if there exists an increasing sequence of absolutely convex
0—neighbourhoods U,, C E, such that, for each n € N, there is m > n with the
property that, for every k > m, the topologies of E and E,, induce the same topology
on Upy;

- condition (Mp) if there exists an increasing sequence of absolutely convex
0—neighbourhoods U, C E, such that, for each n € N, there is m > n with the
property that, for every k > m, for every f € E/ and for every ¢ > 0, there exists
g € E} with

|f(z) —g(x)] <e forall x € U,.

In [44] condition (M) of ind, E,, is called acyclic. [44, Theorem 6.4] implies that all
conditions in Theorem 5.2.3 are equivalent to condition (M) for LB-spaces.

Proposition 5.2.7. Let £ = ind,E, be a strongly boundedly retractive LB-space. Then
every weakly compact subset of E is contained and weakly compact in some E,,.

Proof. If E is strongly boundedly retractive then E has condition (M), hence condition (M)
(see [14, p. 105]).

By condition (Mp) there is an increasing sequence (U,), such that U, is an abso-
lutely convex neighbourhood in F, such that for every n € N there exists m > n with
(s B, = o(E, ).

Take B C E weakly compact (o0(F,E’)-compact). Since F is regular, then there is
n € N such that B C FE, and is bounded in E,. Find A > 0 with B C AU,. Since
o(E,E" v, = 0(Em, El)|av, and B is o(FE, E')-compact, it follows that B is o(E,,, E/,)-
compact. O

Next we characterize when linear operators T': F' — G between LB-spaces F' = ind, F,
and G = ind,,G,, are bounded, Montel, reflexive, compact or weakly compact.

Lemma 5.2.8. Let E be a locally convex metrizable space, and let (Ay), C E be a sequence
of precompact subsets. Then, there exists (ep)n with e, > 0 for all n € N such that |J,, nAn
18 precompact.

Proof. Let (U,), be a basis of absolutely convex 0-neighbourhoods in E with U, +; C U, for
all n € N. Since each A, is bounded, for each n € N there exists ¢, > 0 with ¢,4,, C U,.

Now, fix m € N. If n > m then ¢,4, C U, C Uy, and so, Up_,,.1ndn C Upn.
On the other hand, U 1 €nAy, is precompact. Thus, there exist x1,...,zs € E such that
Uneiendn CU (@i + U m). Therefore,

o0

GenAng LmJEnAnU U O$Z+U U,
n=1 n=1 i=1

n=m+1

Applying Remark 5.1.2, (o2, £, A, is precompact. O
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Lemma 5.2.9. Let (B,) be a sequence of weakly relatively compact subsets in a complete
metrizable locally convex space H. Then, there is a sequence (), with £, > 0 for alln € N
such that |J,, en By is weakly relatively compact in H.

Proof. Let (U,), be a basis of absolutely convex 0-neighbourhoods in H with U,+; C U, for
all n € N. Since, for each n € N, B,, is bounded, there exists ¢, > 0 such that ¢, B,, C U,.
Now, fix a 0-neighbourhood V' C H. Thus, there exists m € N with U, C V for all

k > m. Moreover, Uzi_ll g; B; is weakly relatively compact (since it is a finite union of weakly
relatively compact sets). By [17, Lemma 2.2(a)], there is a weakly compact set Cyy C H such
that (JI";' &;B; C V + Cy. Since Cy U {0} is also weakly compact and V C V + (Cy U{0}),
we have that

JenBn €V + (Cv U{0}).

n

Applying again [17, Lemma 2.2(a)] we obtain the result. O

Proposition 5.2.10. Let T: F — G be a continuous linear operator between two LB-spaces
F =ind,F, and G = ind,Gy,.

a) Assume that G is reqular. Then T is bounded if, and only if, there is m such that
T: F, = Gy, is continuous for all n € N.

b) Assume that F is reqular and that G is strongly boundedly retractive.

(i) T is Montel if, and only if, for all n € N there exists m € N such that T(F,) C G,
and T: F, — G, is compact.

(i1) T is reflexive if, and only if, for alln € N there exists m € N such that T'(F,,) € G,
and T: Fy, — Gy, is weakly compact.

(iii) T is compact if, and only if, there exists m € N such that T'(F,,) C Gy, and T: F,, —
G ts compact for all n € N.

(iv) T is weakly compact if, and only if, there exists m € N such that T'(F;,) C Gy, and
T: F, — Gy, is weakly compact for allm € N.

Proof.  (a) If T is bounded, then there exists a 0-neighbourhood U C F' such that T'(U) is
bounded in G. Since G is regular there is some m € N such that T'(U) C G, and is
bounded there. Since U can be taken absolutely convex, it is absorbent, that is, F' =
Uren kU. Then, for each f € F there is some k € N with T'(f) = kT'(u) € kG = G,
which implies that T'(F) C Gy, and so, T(F,) C Gy, for all n € N. Moreover, since,
for each n € N, U N F,, is a neighbourhood of F,, and T'(U N F,,) is bounded in G,
(because T'(U) is), then T': F,, — Gy, is well defined and bounded (or, equivalently,
continuous, since we are in Banach spaces).

On the other hand, assume that there is some m € N such that T: F,, — G, is
continuous for all n € N. Then, there exists m € N such that for all n € N there is
en, > 0 such that T(enPFn) - Ecm- If U denotes the absolutely convex hull of enﬁpn,
then U is a O-neighbourhood in F and T'(U) C Bg,, is bounded in Gy, hence, in G.

(b.i) Assume T is Montel. Fix n € N. The closed unit ball Bf, of F, is bounded in F.
By hypothesis, T(Bf,) si relatively compact in G. Since G is strongly boundedly
retractive, by Theorem 5.2.3, G is compactly regular. Then, there is some m € N
such that T(Bp,) is relatively compact in G,,. This implies that T'(Bp,) C G, and
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(b.ii)

(b.iii)

(b.iv)

T: F, — G, is compact. Moreover, B, is absorbent since it is absolutely convex,
then T'(F},) C Gpy,.

For the converse, let B C F' be bounded. Since F' is regular, there is some n € N such
that B C F,, and it is bounded there. By hypothesis, T'(B) C Gy, and T(B) relatively
compact in G,,, hence in G.

Suppose T is reflexive. Fix n € N. Since B, is bounded in F, by hypothesis T'(Bg, )
is weakly relatively compact in G. Since G is strongly boundedly retractive, by Propo-
sition 5.2.7 there exists m € N such that T'(Bp,) is weakly relatively compact in Gy,.
This implies that T(Bp,) C Gy, and T: F,, — Gy, is weakly compact.

On the other hand, let B be a bounded set of F'. Since F' is regular, there is n € N
such that B C F), and it is bounded there. By hypothesis there is some m € N such
that T'(B) is weakly relatively compact in G,,, hence in G.

First, suppose T is compact. That is, there exists a O-neighbourhood U C F' such that
T(U) is relatively compact in G. Since G is strongly boundedly retractive, by Theorem
5.2.3, it is compactly regular and so, there is m € N such that T'(U) is relatively compact
in G,,. Now, since T'(F') C G,,, (because T(U) C Gy,), then T'(F,,) C Gy, for all n € N.
Moreover, for each n € N, U N F,, is a neighbourhood in F,, and T'(U U F,,) is relatively
compact in G,,. Therefore, T': F,, — G,, is compact.

For the converse, we have, by assumption, that there is m € N such that for each n € N
T(Bp,) is relatively compact in G,,. Since in Banach spaces relatively compact and
precompact sets are the same, we use Lemma 5.2.8 and we get that there exists (g,,)n,
with &, > 0 for all n € N, such that |J,, €,7(Bp,) is relatively compact in G,y,.

If A denotes the absolutely convex hull of |J, enT(BF,), by Krein’s Theorem ([36,
24.5(4) p. 325]), A is also relatively compact in G,,,. Now, if we call B the absolutely
convex hull of |, enBp,, B is a 0-neighbourhood in F and T(B) C A is relatively
compact.

First, assume T is weakly compact. Then, there is a 0-neighbourhood U in F' such
that T'(U) is relatively weakly compact. Since G is strongly boundedly retractive, we
can apply Proposition 5.2.7 and obtain that there exists some m € N such that T'(U)
is relatively weakly compact in G,,. For each n € N, U N F}, is a neighbourhood in
F,. Since T'(F) C G, (because T'(U) C Gy,) thus T(F,,) C Gy,. Then, T(U N F,) is
relatively weakly compact in G,,.

On the other hand, by hypothesis there is m € N such that T(Bf,) C G, is relatively
weakly compact for all n € N. By Lemma 5.2.9 there exist (¢,), with €, > 0 for all
n € N such that |J,, e,T(BF,) is relatively weakly compact in Gp,.

If A denotes the absolutely convex hull of |J, e,T(BF,) then A is relatively weakly
compact in the Banach space Gy, (see [36, 24.5(47) p. 325]). If B denotes the absolutely
convex hull of | J,, £, B, then B is a 0-neighbourhood in F and T'(B) C A is relatively
weakly compact.

O
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5.2.1 Weighted composition operators on inductive limits of vector-valued
spaces

We now investigate the weighted composition operator
Wyo: VH(D,E) - VH(D, E)

where ¢: D — D is analytic, v € H(D) and E is a Banach space. We consider V = (v,),
and VH (D, E) as in Section 5.2.

Since VH(D, E) is regular (see Proposition 5.2.2), from Propositions 2.0.1, 5.1.6 and
Lemma 1.2.2(i) we obtain the next result.

Proposition 5.2.11. Let E be a Banach space, ¢: D — D analytic and ¢ € H(D). The
following are equivalent:

(i) Wyo: VH(D,E) — VH(D, E) is continuous,
(ii) for all n € N there is m > n such that Wy, ,: Hy°(D, E) — Hy° (D, E) is continuous,
(111) for all m € N there is m > n such that sup,cp [¥(2)|vm(2)/0n(p(2)) < +00.

Proposition 5.2.12. Let E be a Banach space, ¢: D — D analytic and ¢ € H(D). The
following are equivalent:

(i) Wyo: VH(D,E) — VH(D, E) is bounded,
(ii) there is m € N such that Wy, ,: H°(D, E) — H° (D, E) is continuous for alln € N,
(iii) there is m € N such that sup,cp |¥(2)|vm(2)/0n(p(2)) < +00 for all n € N.

Proof. Since every bounded operator is continuous and VH (D, F) is regular, we can apply
Proposition 5.2.10(a) and obtain (i) < (ii). Implications (ii) < (iii) are a direct consequence
of Propositions 2.0.1 and 5.1.6. ]

Proposition 5.2.13. Let E be a Banach space, ¢: D — D analytic and v € VH(D,C).
Suppose that V = (vp)n has condition (V) and Wy, ,: VH(D,E) — VH(D, E) is continuous.
The following are equivalent:

(i) Wy o: VH(D,E) — VH(D, E) is Montel,
1) for all n € N there 1s m > n such that : , — , 18 compact,
i) f Il N th ] h that Wy, ,: Hy"(D, E Hy® (D, E) i

(iii) for alln € N there is m > n such that Wy, ,: H3° — HZ° is compact and E has finite
dimension,

(iv) E has finite dimension and for all n € N there is m > n such that

lm  sup [(z)] =)

_UmlZ) g,
P17 (2> On(p(2))

Proof. Since VH (D, FE) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.i) and obtain (i) < (i7). Implications (i) < (iii) and (i17) < (iv) are
direct consequences of Propositions 5.1.11, 3.2.3, 2.0.3 and 2.0.4. 0
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Proposition 5.2.14. Let E be a Banach space, ¢: D — D analytic and v € VH(D,C).
Suppose that V = (vyn)yn has condition (V) and Wy, ,: VH(D, E) — VH(D, E) is continuous.
The following are equivalent:

(i) Wyo: VH(D,E) — VH(D, E) is reflexive,

1) for all n € N there is m > n such that Wy, ,: H°(D,F) — HX (D, E) is weakly
TZMP Un Um
compact,

(iii) for alln € N there is m > n such that Wy, ,: H;® — HZ° is compact and E is reflexive,

(iv) E is reflexive and for all n € N there is m > n such that

lm  sup f(s)|-ml)

—— =0.
r—17 o (z)[>r On(p(2))

Proof. Since VH (D, E) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.ii) and obtain (i) < (i7). Implications (i7) < (iii) and (iii) < (iv) are
direct consequences of Propositions 5.1.14, 3.2.3, 2.0.3 and 2.0.4. O

Proposition 5.2.15. Let E be a Banach space, ¢: D — D analytic and v € VH(D,C).
Suppose that V = (vy)n has condition (V) and Wy, ,: VH(D,E) — VH(D, E) is continuous.
The following are equivalent:

(i) Wyo: VH(D,E) - VH(D, E) is compact,
(ii) there is m € N such that Wy, ,: H3°(D, E) — Hp° (D, E) is compact for alln € N,

(iii) there is m € N such that Wy, ,: H;° — Hy° is compact for alln € N and E has finite
dimension,

(iv) E has finite dimension and there is m € N such that

lim  sup [¥(2)] Um(2)

———— =0 foralln eN.
P17 (2 [>r Un(p(2))

Proof. Since VH (D, E) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.iii) and obtain (i) < (ii). Implications (ii) < (iii) and (iii) < (iv) are
direct consequences of Propositions 5.1.11, 3.2.3, 2.0.3 and 2.0.4. O

Proposition 5.2.16. Let E be a Banach space, ¢: D — D analytic and ¢ € VH(D,C).
Suppose that V = (vp)n has condition (V) and Wy, ,: VH(D,E) — VH(D, E) is continuous.
The following are equivalent:

(i) Wy o: VH(D, E) = VH(D, E) is weakly compact,

(ii) there is m € N such that Wy, ,: Hy°(D, E) — H° (D, E) is weakly compact for all
n €N,

(iii) there is m € N such that Wy, ,: H3° — Hp° is compact for alln € N and E is reflexive,

(iv) E is reflexive and there is m € N such that

lim sup [¢(z)] Um(2)

——— =0 forallneN.
P17 (2 [>r On(p(2))
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Proof. Since VH (D, F) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.iv) and obtain (i) < (i¢). Implications (i7) < (ii7) and (ii7) < (iv) are
direct consequences of Propositions 5.1.14, 3.2.3, 2.0.3 and 2.0.4. ]

5.2.2 Weighted composition operators on Korenblum type spaces of
vector-valued functions

Following the notation of Korenblum type spaces in section 1.5, we denote by A~°°(FE) the
space
A™(E) = |  HX(D, E) .
neN
Here, H°(D, E') denotes the weighted Banach space of vector-valued functions for the weight
vn(z) = (1 — |z])™. Such weights are typical and essential (See Section 1.4.1). The space
A™°(E) is endowed with the inductive limit topology: A™>°(F) = igld H°(D, E). Observe
that A=°(E) = VH(D, E) when V = (v,), = ((1 — |2])™)n is such decreasing sequence of
weights.
Also, we denote by AZ“(E) the space

AZ(E):= | HZ(D,E) ,
neN

where H3° (DD, E) denotes the weighted Banach space of vector-valued functions with the

1

weight vy, (2) = (1 — |z])°‘_%, where n > ng such that a — .~ > 0. These weights are

also typical and essential. The space AZ%(F) is endowed with the inductive limit topology:
ATY(E) = ind,H3S (D, E). Observe that AZ*(E) = VH(D, E) when V = (va,)n = (1 —
|z])°‘_% is such decreasing sequence of weights.

Both spaces, A7*°(E) and AZ%(FE), are regular (see Proposition 5.2.2). Notice that both
sequences of weights, (v,), and (vq, )n, satisfy condition (V). Thus, A=*°(F) and AZ%(E)
are strongly boundedly retractive (see Proposition 5.2.4).

Corollary 5.2.17. Let E be a Banach space, ¢: D — D analytic and ¢ € H(D). The
following are equivalent:

(i) Wy, AC(E) — A™(E) is continuous,
(ii) for alln € N there is m > n such that Wy, ,: Hy°(D, E) — H¥(D, E) is continuous,

(11i) for all n € N there is m > n such that

sup f(z)| L 12D

N Tt < T

Corollary 5.2.18. Let E be a Banach space, ¢: D — D analytic and ¢ € H(D). The
following are equivalent:

(i) Wy o2 AZY(E) = AZY(E) is continuous,
(it) for all n € N there is m > n such that Wy, ,: H3® (D, E) — HZ® (D, E) is continuous,
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(ii1) for all m € N there is m > n such that

sup |¢(2)] (1= [e])*m < 4o00.

_1
=€D (1= le(z)))* =
Corollaries 5.2.17 and 5.2.18 are consequences of Proposition 5.2.11.

Corollary 5.2.19. Let E be a Banach space, ¢: D — D analytic and ¢ € H(D). The
following are equivalent:

(i) Wy,p: A=F(E) = A™(E) is bounded,
(i1) there is m € N such that Wy, ,: H*(D, E) — Hy2(D, E) is continuous for all n € N,

(i1i) there is m € N such that

ilelﬂg |¢(Z)(1(1__|90|2(:L);|;n < 400 forallm € N.

Corollary 5.2.20. Let E be a Banach space, ¢: D — D analytic and ¢ € H(D). The
following are equivalent:

(i) Wy o2 AZY(E) = AZY(E) is bounded,
(ii) there is m € N such that Wy, ,: H (D, E) — Hg° (D, E) is continuous for all n € N,

(ii1) there is m € N such that

sup |¢(2)] (1= |2 - < 400 foralln e N.
e = ()

Corollaries 5.2.19 and 5.2.20 are consequences of Proposition 5.2.12.

Corollary 5.2.21. Let E be a Banach space, ¢: D — D analytic and yp € A™°. Suppose
that Wy, ,: A=®(E) = A™®°(E) is continuous. The following are equivalent:

(i) Wy,p: ATC(E) — A=®(E) is Montel,
(i) for alln € N there is m > n such that Wy, ,: Hy°(D, E) — H¥ (D, E) is compact,

(iii) for alln € N there is m > n such that Wy, ,: H° — Hp¥ is compact and E has finite
dimension,

(iv) E has finite dimension and for all n € N there is m > n such that

| (1 - |
1 — . =(.
S s Wl o

Corollary 5.2.22. Let E be a Banach space, ¢: D — D analytic and p € A%, Suppose
that Wy 2 AZ(E) — AZ*(E) is continuous. The following are equivalent:

(i) Wy o2 AZY(E) — AZY(E) is Montel,
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1) for all n € N there is m > n such that Wy, ,: HX (D, E) — H° (D, E) is compact,
Py Qn Qam

1) for alln € ere i1s m > n such tha : — is compact an as finite
1 N th ] h that Wy ,: HY — HZ 1 tand E h 1
dimension,

(iv) E has finite dimension and for all n € N there is m > n such that

=0.

lm  sup Jue)| D
T |p(2)[>r (1 —lp(z))* n

Corollaries 5.2.21 and 5.2.22 are consequences of Proposition 5.2.13.

Corollary 5.2.23. Let E be a Banach space, ¢: D — D analytic and yp € A™°. Suppose
that Wy, o+ A=®(E) — A™°(E) is continuous. The following are equivalent:

(1) Wy o2 AT(E) = A™°(E) is reflexive,

1) for all n € N there is m > n such that Wy ,: H(D,E) — H(D, F) is weakly
P n m
compact,

1) for allm € N there is m > n such that Wy, ,: HS° — HS° is compact and E is reflexive,
wv‘p n m

(iv) E is reflexive and for all n € N there is m > n such that

Corollary 5.2.24. Let E be a Banach space, ¢: D — D analytic and ¢» € A”*. Suppose
that Wy, o+ AZ*(E) — AZ*(E) is continuous. The following are equivalent:

(i) Wy o2 AZY(E) = AZY(E) is reflexive,

(ii) for all n € N there is m > n such that Wy ,: H® (D, E) — H (D, E) is weakly
compact,

(iii) for alln € N there is m > n such that Wy, ,: H3° — HS° is compact and E is reflevive,

(iv) E is reflexive and for all n € N there is m > n such that

lim sup [Y(z)] (1= |=])* =0.

P17 Jo(z)|>r (1—|p(z))* n

Corollaries 5.2.23 and 5.2.24 are consequences of Proposition 5.2.14.

Corollary 5.2.25. Let E be a Banach space, p: D — I analytic and ¥ € A™°. Suppose
that Wy o2 A°(E) = A7°(E) is continuous. The following are equivalent:

(i) Wy,p: AC(E) = A™®(E) is compact,
(i1) there is m € N such that Wy, ,: H>°(D, E) — Hy(D, E) is compact for all n € N,

(iii) there is m € N such that Wy, ,: Hy® — HZ is compact for all n € N and E has finite
dimension,
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() E has finite dimension and there is m € N such that

lim  sup f(s)| 1)

—————— =0 forallneN.
r—1- lp(2)|>r (1 - ‘(,0(2’)‘)"

Corollary 5.2.26. Let E be a Banach space, ¢: D — D analytic and p € A%, Suppose
that Wy 2 AZ*(E) — AZ*(E) is continuous. The following are equivalent:

(i) Wy, AZY(E) = AZ%(E) is compact,
(ii) there is m € N such that Wy, ,: HY (D, E) — HZ® (D, E) is compact for alln € N,

(iii) there is m € N such that Wy ,: HY — HS is compact for alln € N and E has finite
dimension,

(iv) E has finite dimension and there is m € N such that

L
lim  sup [¢(z)] (1= Jz) - =0 forallneN
r—17 (2> (1= lp())* =

Corollaries 5.2.25 and 5.2.26 are consequences of Proposition 5.2.15.

Corollary 5.2.27. Let E be a Banach space, p: D — I analytic and ¥ € A™°. Suppose
that Wy ,: A°(E) = A7°(E) is continuous. The following are equivalent:

(1) Wy o2 ATC(E) = A™(E) is weakly compact,

(ii) there is m € N such that Wy ,: Hy°(D, E) — HX(D, E) is weakly compact for all
neN,

(iii) there is m € N such that Wy, ,: H® — H is compact for alln € N and E is reflexive,
(iv) E is reflexive and there is m € N such that

lim  sup ]w(z)|%:0 for alln € N.

17 e (2)[>r

Corollary 5.2.28. Let E be a Banach space, p: D — D analytic and v € AZ%. Suppose
that Wy, o+ AZ*(E) — AZ*(E) is continuous. The following are equivalent:

(i) Wy, AZY(E) = AZY(E) is weakly compact,

(ii) there is m € N such that Wy, ,: H3° (D, E) — H° (D, E) is weakly compact for all
n €N,

(iii) there is m € N such that Wy, ,: HY — HZ® is compact for alln € N and E is reflexive,
(i) E is reflexive and there is m € N such that

ol
m  sup Jue)| D
P er (1= p(@))

=0 forallnéeN.

Corollaries 5.2.27 and 5.2.28 are consequences of Proposition 5.2.16.
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5.3 Projective limits of weighted Banach spaces of vector-
valued functions

Let W = (wy), be a sequence of strictly positive, radial, typical, continuous, decreasing
weights on D such that w,(z) < wy,41(z) for each n € N and z € D. We say that W satisfies
condition (W) if for all n € N there exists m > n such that

lim Wn(r)
r—1— Wy (1)

~0. (W)

Let E be a Banach space. The space HW (D, E) is defined as the projective limit of the
Banach spaces Hy, (D, E). That is,

HW(D,E) = (| Hy (D, E) = proj Hyy (D, E).
neN "

This space is a Fréchet space endowed with the norms

[F[lw, = supwn(2)[|F'(2)], neN.
z€D

If we assume that (W) holds and m > n is selected as in (W), then H® (D, E) C H) (D, E)
and HW (D, E) = HWy(D, E) = proj, H?, (D, E).

If we denote by B, the closed unit ball of H, (D, E), a basis of absolutely convex
neighbourhoods of HW (D, E) is given by (1B, N HW (D, E)))s.

We associate with W = (wy,),, the following family of weights on D:

V(W) :={v: D —]0, +o0[ ; v is continuous, radial and wy,v is bounded in D for each n}.

Definition 5.3.1 ([11], Definitions 1.1). Let P be a set of real valued functions defined on
an index set I. The set P is said to be a Kéthe set on I if the following three properties are
satisfied:

- a(i) > 0 for each i € I and each o € P;

- for every pair («, 3) € P x P there exists v € P such that max(«(7), 5(7)) < (i) for
allic I,

- for each i € I there exists a € P with a(i) > 0.

Corresponding to each index set I and Kothe set P we associate the echelon space

Aoo(I, P) :={x: I — R such that sup «a(i)|z(i)| < oo for all « € P}.
el

Lemma 5.3.2. A subset B C HW (D, E) is bounded if, and only if, there is v € V(W) such
that
BCB,:={Fe€ HW(D,E) : |F(2)| <wv(z) for all z € D}.

Proof. Since for each F' € B,

sup wy (2)||F(2)]| < supwy(2)v(z) < +00,
zeD zeD
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we have that B, is bounded in HW (D, E).
Given a bounded set B C HW (D, E), for each n € N there is M,, such that

sup sup wy, (2)[|F(z)|| < M,.
FEB zeD

Then, the set B := {|F(-)| : D — R ; F € B} is bounded in the Kothe echelon space
Ao (D, W). By the characterization of bounded subsets in the Kéthe echelon space of infinite
order, [11, Proposition 2.5], there exists w: D —]0, +oo[ such that w,w is bounded for each
n € N and

IEG)

pP— <1 foreach F € B.
z€D w(z)
We can apply [10, Proposition in p. 112] to show that w is dominated by v € V(W). This
implies that ||F(z)|| < wv(z) for all z € D, and B C B,,. O

Let X be a locally convex space, and A an absolutely convex subset of X. The space

Xa = U nA
©>0
is a normed space with the norm

pa(x) :=inf{\>0:2 € \A}, z€ Xy4.

The norm p4 is called Minkowski functional. For more information about this functional,
we refer the reader to [37, p. 47].

Remark 5.3.3. If (X, || - ||) is a Banach space and By its closed unit ball, then
|z|| = inf{A >0:2 € ABx}.

In fact, for each x € X, x/||z| € By if, and only if z € |lz|Bx. Suppose there exists
0 < A < ||z|| with z € ABx, that is, /X € Bx. This implies that ||z||/A <1 and [|z|| < 1,
which is a contradiction. Thus, the norm coincides with the infimum.

Lemma 5.3.4. If v € V(W), then the Banach space HW (D, E) g, is isometrically isomor-
phic to the Banach space H? (D, E).

Proof. Observe that ' € HW (D, E)p, if, and only if, there exists u > 0 with F' € uB,, that
is, F/u € B,. This occurs if, and only if, ||F(z)/ul < v(z) for all z € D or, equivalently,
sup,ep | F(2)]|/v(z) < p. That is, F € H°(D, E).

Moreover, since B, is the closed unit ball of H (D, E), by Remark 5.3.3 we have that

the norm || - || 1 coincides with pp, . O

Given any holomorphic function F' € H(D, E) there is (zx)r C E such that
o
F(z) = kazk, z €D,
k=0

and the series converges uniformly on the compact subsets of D. The k-th Taylor polynomial
of F' is denoted by Pg:

k
Py(z) == Z z;20.
=0
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Clearly, if w is a strictly positive radial decreasing weight on D with lim,__,;- w(r) =0,
then every (vector-valued) polynomial P(z) = Z?:o x;27 belongs to H°(D, E).

Given G € H(D, E), G(2) = Y72, xx2*, z € D, we denote by Cy(G) the Cesaro sums of
the Taylor polynomial of GG. That is,

CHG)(z) == t+1 (ZW)

Clearly, C(G) tends to G uniformly on compact sets in I whenever ¢t — +o0.

Lemma 5.3.5. Let w be a strictly positive, continuous, radial weight on D with
lim, ;- w(r) =0. Then, for each G € H°(D, E) we have

supw()|Ca(@) ()] < supw(=)|G(2)]. for allm e N

Proof. For every v/ € E' and G € H(D, E), v’ o G € HS®. By [12, Proposition 1.2],

supw(2)|Cp(u' 0 G)(2)| < supw(2)|(v' o G)(z)|, for all n € N.
zeD zeD

Moreover, applying this inequality and the Hahn-Banach Theorem, that is, |z| =
sup{|u/(z)],u" € E', ||v/|| < 1}, we obtain that, for each n € N,

igpw( C(G)(2)]| = iggw(@ A [’ 0 (Cn(G))(2)] = iggw(@ e |Cn(u' 0 G)(2)|

=sup sup w(z)|Cp(u 0 G)(2)] = sup supw(z)|Cp(u’ o G) ()]
2€D |u’|<1 |w/|[<1 z€D

< sup supw(z)|(u 0 G)(2)| = sup sup w(z)|(u' o G)(2)|
u/[|<1 €D 2€D ||u/||<1

=supw(z) sup |(u' o G)(2)| = supw(2)[|G(2)].
z€D [Ju']|<1 z€D

O]

Corollary 5.3.6. For each F' € H3 (D, E) there is a sequence (Gy)r C HW(D, E) such
that

sup wy (2)||Gr(2)|| < sup wn(2)[|F(2)]]
zeD zeD

and G — F uniformly on the compact subsets of D, as k — oo.
Proof. Tt is enough to take G := Cy(F) for all k € N. O

Proposition 5.3.7. Let w be a strictly positive, continuous, radial weight on D with
lim,__ ;- w(r) = 0. For each F € HY(D,E) the sequence (Cx(F))r converges to F in
H)(D, E).

Proof. Since F € HO (D, E), for each € > 0 there is 0 < r < 1 with w(2)||F(2)|| < &/2 for all
|z| > 7. Take M > 0 such that max|,|<, w(z) < M, and choose ko € N with

_— > .
max|[F(2) ~ Cy(F)()] < g for all k> ko
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Then, applying [12, Lemma 1.1] and the Hahn-Banach Theorem to the vector case, we obtain
that for all k > ko,

SupUKZHHWZ)—C%(FHISlnaX{HwXUKZNHWZ)—CQKFXZNLSupUKZHPT@-—C%GW(@H}

2D |z|<r |2|>r

3 I3
< max {MM S lszgw<z>||ck<m<z>u}

IN

=

o]

i
——

€ €
—, = 4+ sup w(z) max ||F(Az
35+ s wle) s )H}

E £ g g
C Sy sup w(2)||F(2)| Snmx{fﬂf}::a
2°2 |z|>7 272

That is, ||F' — Ci(F)|w» tends to 0 as k — oo. O

Corollary 5.3.8. If the sequence W = (wy,), satisfies condition (W), then HW (D, E) is
dense in HY, (D, E) for each n € N.

5.3.1 Weighted composition operators on projective limits of vector-
valued spaces

Let H be a Hausdorff locally convex space. For each n € N, E,, and F),, are Banach spaces
with closed unit balls Cg, and Cp, with norms || - ||z, and | - |5, respectively. We assume
that F,+1 C E, C E; C H with continuous inclusion, Cg CCg,, Fny1CF,CF CH
with continuous inclusion and Cg,,, C CF, for all n € N.

We define the Fréchet spaces

E:=()En, F:=()Fa,

both endowed with the projective limit topology.
We also assume the following two conditions:

n+1

(C1) For alln € N, x € E, there is (yx)r C E such that y, — x in H and ||yx||g
for each k.

< |lzllz,

n —

(C2) Each Cp, is closed in H.

Proposition 5.3.9 ([17], Proposition 4.2). Let H be a Hausdorff locally convex space and
T: H — H continuous. Let E,F C H be two projective limits of Banach spaces, £ =
proj, En, F = proj, Fy, where E,41 C E, C By C H and Fy1 C F,, C 7 C H with
continuous inclusion for all n € N. Also, assume conditions (C1) and (C2) are satisfied.

a) The following conditions are equivalent:
(i) T(E) C F,
(ii) T € L(E,F),
(iii) for all m € N there exists m € N with T(E,,) C F,,

(iv) for all n € N there exists m € N such that T: E,, — F,, is well-defined and contin-
uous.
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b) The following conditions are equivalent:

(i) T: E— F is bounded,
(ii) there exists m € N such that T(E,,) C F,, for alln € N,

(i1i) there exists m € N such that T: E,, — F, is well-defined and continuous for all
n € N.

c) The following conditions are equivalent:

(i) T: E — F is Montel (respectively reflezive),

(ii) for all absolutely convex closed bounded subset B C E, T: Eg — F), is compact
(resp. weakly compact) for all n € N.

d) The following conditions are equivalent:

(i) T: E — F is compact (respectively weakly compact),

(ii) there exists m € N such that T: E,, — F, is compact (resp. weakly compact) for
allm € N.

Proof. Part a). The equivalences (i)<(ii) and (iii)<(iv) follow from the Closed Graph
Theorem. The definition of projective topology yields (iv)=-(ii). We show (ii)=-(iii). Fix
m € N. Since T' € L(E, F), we find n € N, A > 0 such that T(E N Cg,) C ACF,,. We show
that T'(E,) C F,,. Given x € E,, there exists y > 0 such that z/u € Cg,. By condition
(C1), there is a sequence (yx)r € E N Cpg, such that y; tends to z/p in H. This implies
that T'(yx) — T'(z)/p in H. Since T'(yx) € ACF,, for all k € N and Cp,, is closed in H by
condition (C2), then T'(z)/n € ACF,, and so, T'(z) € pACE,, C F,,. The other parts of the
proof are exactly like in [17, Proposition 4.2].

O

In the applications we have in mind, H is H(D, F) with the compact-open topology,
E,=F,=Hy (D,E) for each n € N, and

Cp,=Cp,={fecHD,E): suﬂgwn(z)HF(z)H <1}

ze
We denote this closed unit balls by C), in the rest of this chapter.

Remark 5.3.10. Observe that condition (C1) for HW (D, E) follows from Corollary 5.3.6.

We show that condition (C2) is also satisfied. We need to see that (), is closed in
H(D, E) for the 7., topology. Fix n € N. Let (Fx)r C C,, be a sequence that converges to
some F' € H(D, E) with the 7., topology. Since for every z € D the set {z} is a compact
set, we have that for a fixed z € D, Fj(z) — F(z). Then, for every € > 0 there is kg such
that wy,(2)||Fx(z) — F(z)]] < e for all k > kq. Since Fj, € C, for all k € N, we have that
wp(2)]| Fi(2)]| < 1 for each k € N. Therefore,

wn(2)[F(2)[| < wn(2)[|Fi(z) = F(2)]| + wn(2) [ Fr(2)[| <1+4e, forall k> k.
Now, since z is arbitrary, we have that sup,cp wy(2)||F(2)|| < 1. That is, F' € C,,.

In the next proposition we give some characterizations that should be compared with
[17, Theorem 4.3] and the comments below it.
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Proposition 5.3.11. Let W = (wy,), be an increasing sequence of strictly positive, radial,
continuous weights on D with lim,__,1— w,(r) = 0 for each n € N. Let v, € H(D) with
©(D) CD. Let E be a Banach space.

a) The following conditions are equivalent:

(i) Wy o: HW (D, E) - HW (D, E) is continuous,
1) for all n € there exists m € such that : , — , 18
1 Il N th ) N h that Wy, ,: Hy® (D, E Hy (D, E) i
continuous,
11) for all n € N there exists m € N such that : — 18 continuous,
Il N th ' N h that Wy, .. Hy Hg i }
(iv) for all n € N there exists m € N such that

sup ~wn(z)

P () ) <o

b) The following conditions are equivalent:
(i) Wy, p,: HW (D, E) = HW (D, E) is bounded,
(ii) there exists m € N such that Wy, ,: He — H® is continuous for alln € N,
(111) there exists m € N such that

sup MW(ZH < oo forallneN.

zeD W (9(2))
c) The following conditions are equivalent:
(i) Wy,o: HW (D, E) — HW (D, E) is Montel (reflexive),
(it) for all v € V(W) there is n € N such that v € HY and Wy ,: H(D,E) —
Hy (D, E) is compact (resp. weakly compact),
(iti) for all v € V(W) there is n € N such that 1 € HY , Wy, 2 HS® — H is compact
and E has finite dimension (resp. E is reflexive),

(iv) E has finite dimension (resp. E is reflexive) and for all v € V(W) there isn € N
such that ¢ € HY, —and

lim sup Wn ()

[zl =17 (1/v)(#(2))

d) The following conditions are equivalent:

[¥(2)] = 0.

(i) Wy o: HW(D,E) - HW (D, E) is (weakly) compact,
(ii) there exists m € N such that Wy ,: Hgy (D, E) — Hgy (D, E) is compact (resp.
weakly compact) and ¢ € Hloun for alln € N,
(i1i) E has finite dimension (resp. E is reflexive) and there exists m € N such that
Y € HY), and

1;711_8)1;{)%@(2” =0 forallneN.

Proof. Equivalences of (a) and (b) can be directly deduced from Propositions 5.3.9, 5.1.6
and 2.0.1. Applying Propositions 5.3.9, 5.1.11, 5.1.14, 2.0.4 and Lemma 5.3.4 we obtain (c).
For part (d) we use Propositions 5.3.9, 5.1.11, 5.1.14 and 2.0.4. O
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5.3.2 Weighted composition operators on projective limits of Korenblum
type of vector-valued functions

Following the notation of Korenblum type spaces in section 1.5, for a fixed o > 0, we denote
by AL%(E) the space
ALNE) = () HZ(D,E) .
neN
Here, H3® (D, E') denotes the weighted Banach space of vector-valued functions where the
weights are v,, (z) = (1 — |z])°‘+% It is endowed with the projective limit topology:
ATY(E) = proj HY (D, E). Observe that AL%(E) = HW(D, E) when W = (vq,, )n is the
n

increasing sequence of weights, which are essential (see Section 1.4.1).
Corollary 5.3.12. Let E be a Banach space, o > 0 and ¢, € H(D) with (D) C D.
a) The following conditions are equivalent:

(i) Wy o2 ATY(E) — A7Y(E) is continuous,
(ii) for all n € N there exists m € N such that Wy ,: HY (D,E) — H (D, E) is
continuous,
(iii) for alln € N there exists m € N such that Wy, ,: HS® — HSS is continuous,
(iv) for all n € N there exists m € N such that
(1= [s)**

su L (z)] < .
2eb (1— [p(2)) ™

b) The following conditions are equivalent:
(i) Wy, o2 AT%(E) — ATY(E) is bounded,
(ii) there exists m € N such that Wy, ,: H3° — HS is continuous for alln € N,
(111) there exists m € N such that

(L~ |zt
sup +[Y(2)| < oo foralln €N.

zeb (1 — [e(2)))*"

c) The following conditions are equivalent:

(i) Wy, ATY(E) = ATY(E) is Montel (reflexive),
(it) for all v € V((va,)n) there is n € N such that ¢ € H) and Wy ,: H*(D, E) —
H (D, E) is compact (resp. weakly compact), ’
(iii) for all v € V((va,)n) there is n € N such that ¢ € HY , Wy H® — H s
compact and E has finite dimension (resp. E is reflexive), ’

(iv) E has finite dimension (resp. E is reflexive) and for all v € V((va, )n) there is
n € N such that ¢ € HY and

1— |z])oF
lim sup%lw(zﬂ =0.

l2l—=17 (1/v)(p(2))
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d) The following conditions are equivalent:

(i) Wy,p: AL%(E) = ATY(E) is (weakly) compact,
(ii) there exists m € N such that Wy, ,: HY (D, E) — H3S (D, E) is compact (resp.
weakly compact) and ¢ € Hgn for alln € N,

(iii) E has finite dimension (resp. E is reflexive) and there exists m € N such that
¢ € HY and

— |zPetw
lim sup (1= Jz]) |(2)] =0 for alln € N.
A1 (1= [p(2) )
zl—1= (1 — |p(z m
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