
Weighted composition operators
on spaces of analytic funcions

Esther Gómez Orts
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Resum

L’objectiu d’aquesta tesi és estudiar distintes propietats dels operadors de composició
ponderats en diferents espais ponderats de funcions anaĺıtiques.

Donat un pes v estrictament positiu i continu en el disc D del pla complex, conside-
rem els espais de Banach de funcions anaĺıtiques H∞v i H0

v en el disc complex. Aquests
espais són, respectivament, els conjunts de les funcions holomorfes f ∈ H(D) tals que
sup|z|<1 v(z)|f(z)| < ∞ i les funcions que compleixen que v(z)|f(z)| tendeix a zero quan
|z| s’apropa a 1.

Per a cada α ≥ 0 i la successió de pesos vαn(z) := (1−|z|)α+
1
n , z ∈ D, considerem l’espai

de Fréchet A−α+ com el ĺımit projectiu de la successió (H∞αn := H∞vαn )n. Aquest espai està
provëıt de la topologia del ĺımit projectiu, és a dir, la topologia de Fréchet indüıda per les
normes ‖ · ‖αn . En canvi, si prenim 0 < α ≤ ∞ i la successió de pesos vαn(z) := (1−|z|)α+

1
n ,

podem definir l’espai LB A−α− com el ĺımit inductiu de la successió (H∞αn ≡ H∞vαn )n, amb la
topologia del ĺımit inductiu. Quan αn = n, obtenim l’espai de Korenblum A−∞ com el ĺımit
inductiu dels espais H∞n .

Estudiem la continüıtat, compacitat i invertibilitat de l’operador de composició pesat
Wψ,ϕ := MψCϕ on Mψ és l’operador de multiplicació i Cϕ el de composició, en els espais de
tipus Korenblum A−α+ , A−α− i A−∞ definits dalt. També estudiem algunes propietats del seu
espectre i del seu espectre puntual.

En el Caṕıtol 1 compilem alguns preliminars. En el Caṕıtol 2 estudiem la continüıtat,
compacitat i invertibilitat de Wψ,ϕ en els espais de tipus Korenblum A−α+ , A−α− i A−∞.
Al Caṕıtol 3 ens centrem en l’estudi de l’espectre de Wψ,ϕ en els mateixos espais i també
obtenim alguns resultats sobre l’espectre i l’espectre puntual dels operadors de multiplicació
i composició. En el Caṕıtol 4 investiguem l’espectre de certs operadors de composició, el
śımbol dels quals admet una extensió anaĺıtica a un entorn obert de D. Finalment, al Caṕıtol
5 estudiem algunes propietats de Wψ,ϕ en ĺımits projectius i inductius d’espais de Banach
ponderats de funcions anaĺıtiques amb valors en un espai de Banach.



Resumen

El objetivo de esta tesis es estudiar distintas propiedades de los operadores de composición
ponderados en varios espacios ponderados de funciones anaĺıticas.

Dado un peso v estrictamente positivo y continuo en el disco D del plano complejo,
consideramos los espacios de Banach de funciones anaĺıticas H∞v y H0

v en el disco complejo.
Estos espacios son, respectivamente, los conjuntos de las funciones holomorfas f ∈ H(D)
tales que sup|z|<1 v(z)|f(z)| < ∞ y las funciones que cumplen que v(z)|f(z)| tiende a cero
cuando |z| se acerca a 1.

Para cada α ≥ 0 y la sucesión de pesos vαn(z) := (1 − |z|)α+
1
n , z ∈ D, consideramos

el espacio de Fréchet A−α+ como el ĺımite proyectivo de la sucesión (H∞αn := H∞vαn )n. Este
espacio está equipado con la topoloǵıa del ĺımite proyectivo, es decir, la topoloǵıa de Fréchet
inducida por las normas ‖ · ‖αn . En cambio, si tomamos 0 < α ≤ ∞ y la sucesión de pesos

vαn(z) := (1 − |z|)α−
1
n , podemos definir el espacio LB A−α− como el ĺımite inductivo de la

sucesión (H∞αn ≡ H∞vαn )n, con la topoloǵıa del ĺımite inductivo. Cuando αn = n, obtenemos
el espacio de Korenblum A−∞ como el ĺımite inductivo de los espacios H∞n .

Estudiamos la continuidad, compacidad e invertibilidad del operador de composición
pesado Wψ,ϕ := MψCϕ donde Mψ es el operador de multiplicación y Cϕ el de composición,
en los espacios de tipo Korenblum A−α+ , A−α− y A−∞ definidos arriba. También estudiamos
algunas propiedades de su espectro y de su espectro puntual.

En el Caṕıtulo 1 recopilamos algunos preliminares. En el Caṕıtulo 2 estudiamos la
continuidad, compacidad e invertibilidad de Wψ,ϕ en los espacios de tipo Korenblum A−α+ ,
A−α− y A−∞. En el Caṕıtulo 3 nos centramos en el estudio del espectro de Wψ,ϕ en los mismos
espacios y obtenemos también algunos resultados sobre el espectro y el espectro puntual de
los operadores de multiplicación y composición. En el Caṕıtulo 4 investigamos el espectro
de ciertos operadores de composición cuyos śımbolos admiten una extensión anaĺıtica a un
entorno abierto de D. Finalmente, en el Caṕıtulo 5 estudiamos algunas propiedades de Wψ,ϕ

en ĺımites proyectivos e inductivos de espacios de Banach ponderados de funciones anaĺıticas
con valores en un espacio de Banach.



Summary

The aim of this thesis is to study different properties of weighted composition operators
on several weighted spaces of analytic functions.

Given a strictly positive continuous weight v on the unit disc D of the complex plane,
we consider the weighted Banach spaces of analytic functions H∞v and H0

v on the complex
disc. These spaces are, respectively, the sets of the holomorphic functions f ∈ H(D) such
that sup|z|<1 v(z)|f(z)| <∞ and the functions such that v(z)|f(z)| tends to zero as |z| goes
to 1.

For each α ≥ 0 and the sequence of weights vαn(z) := (1 − |z|)α+
1
n , z ∈ D, we consider

the Fréchet space A−α+ as the projective limit of the sequence (H∞αn := H∞vαn )n. This space
is endowed with the projective limit topology, that is, the Fréchet topology induced by
the norms ‖ · ‖αn . If, instead, we take some 0 < α ≤ ∞ and the sequence of weights

vαn(z) := (1−|z|)α−
1
n , we can define the LB-space A−α− as the inductive limit of the sequence

(H∞αn ≡ H∞vαn )n, endowed with the inductive limit topology. When αn = n, we obtain the
Korenblum space A−∞ as the inductive limit of the spaces H∞n .

The continuity, compactness and invertibility of the weighted composition operator
Wψ,ϕ := MψCϕ, where Mψ is the multiplication operator and Cϕ is the composition op-
erator, is studied in the Korenblum type spaces A−α+ , A−α− and A−∞ defined above. Also we
study some properties of its spectrum and point spectrum.

In Chapter 1 we collect some preliminaries. In Chapter 2 we study the continuity, com-
pactness and invertibility of Wψ,ϕ on the Korenblum type spaces A−α+ , A−α− and A−∞. In
Chapter 3 we focus on the study of the spectrum of Wψ,ϕ on the same spaces and we obtain
some results about the spectrum and point spectrum of the multiplication and composition
operators. In Chapter 4 we investigate the spectrum of composition operators whose sym-
bols admit an analytic extension to an open neighbourhood of D. Finally, in Chapter 5 we
study some properties of Wψ,ϕ on projective and inductive limits of weighted Banach spaces
of analytic functions with values in a Banach space.
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Introduction

The aim of this thesis is to study different properties of weighted composition operators on
several weighted spaces of analytic functions.

A weight on the unit disc D of the complex plane is a continuous strictly positive function.
Given a weight v, we consider the weighted Banach spaces of analytic functions H∞v and H0

v

on the complex disc. These spaces are, respectively, the set of the holomorphic functions
f ∈ H(D) such that v(z)|f(z)| <∞ and the functions such that v(z)|f(z)| tends to zero as
|z| goes to 1.

For each α ≥ 0 and the set of the weights vαn(z) := (1− |z|)α+
1
n , z ∈ D, we consider the

Fréchet space A−α+ as the projective limit of the sequence (H∞αn := H∞vαn )n,

A−α+ :=
⋂
n∈N

H∞αn = projnH
∞
αn ,

which is endowed with the projective limit topology, that is, the Fréchet topology induced
by the norms ‖ · ‖αn . If, instead, we take some 0 < α < ∞ and the sequence of weights

vαn(z) := (1−|z|)α−
1
n , we can define the LB-space A−α− as the inductive limit of the sequence

(H∞αn ≡ H
∞
vαn

)n,

A−α− :=
⋃
n∈N

H∞αn = indnH
∞
αn ,

endowed with the inductive limit topology. When we take the weights vn(z) := (1 − |z|)n
instead of the weights vαn , we obtain the Korenblum space A−∞ as the inductive limit of
the spaces H∞n .

The continuity, compactness and invertibility of the weighted composition operator
Wψ,ϕ := MψCϕ, where Mψ is the multiplication operator and Cϕ is the composition
operator, is studied in the Korenblum type spaces A−α+ , A−α− and A−∞ defined above. Also
we study some properties of the spectrum and point spectrum.

Weighted Banach spaces of analytic functions on the disc have been extensively studied
by many autors, like Bierstedt and Summers [9] and Bierstedt, Bonet and Taskinen [13].
Weighted composition operators defined on spaces of functions of one variable have been
extensively studied, and there is a huge related literature. We refer to the books of Shapiro
[43] and Cowen, MacCluer [27]. Continuity and compactness of weighted composition
operators between spaces of type H∞α were described by Contreras and Hernández-Dı́az in
[26] and Montes-Rodŕıguez [38] even in a more general context. Previously, the composition
operators on these Banach spaces were studied by Bonet, Domański, Lindström and
Taskinen [19]. Bourdon investigated the invertibility of weighted composition operators
in [23]. Continuity of linear operators between projective and inductive limits of Banach
spaces was characterised by Albanese, Bonet and Ricker in [4] and [5]. The spectrum and
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Introduction

point spectrum of linear operators on projective and inductive limits of Banach spaces
were studied by Albanese, Bonet and Ricker in [2] and [3]. Kamowitz investigated the
spectrum and point spectrum of weighted composition operators on spaces of holomorphic
functions that contain the polynomials [34], and also determined the spectra of composition
operators in the case where the symbol is analytic on an open region containing D [33].
Aron and Lindström studied the spectrum of weighted composition operators on weighted
Banach spaces of analytic functions [7] and, recently, Bonet investigated the spectrum of
composition operators induced by a rotation [16].

Some properties of weighted composition operators on projective and inductive limits of
weighted Banach spaces of vector-valued analytic functions are also studied in this work.
If E is a complex Banach space and v a weight on the unit disc, we define the weighted
Banach spaces of vector-valued analytic functions H∞v (D, E) and H0

v (D, E). If, instead of a
weight v we consider a decreasing sequence of weights V = (vn)n, we can define the LB-space
V H(D, E) as the inductive limit of the Banach spaces H∞vn(D, E),

V H(D, E) := ind
n
H∞vn(D, E).

Or, if we take an increasing sequence of weights W = (wn)n, we can define the Fréchet space
HW (D, E) as the projective limit of the Banach spaces H∞wn(D, E),

HW (D, E) := proj
n
H∞vn(D, E).

In particular, for the increasing and decreasing sequences of the weights vαn , we obtain the
Korenblum type spaces for the vector-valued case, A−α− (E), A−α+ (E) and A−∞(E).

In Chapter 2 we introduce the weighted composition operator, Wψ,ϕ, for a symbol ϕ(D) ⊂
D analytic and a weight ψ ∈ H(D). Based on some results of [26], in Section 2.1 we give
a sufficient condition for the weighted composition operator to be continuous on A−α+ and
A−α− , and a characterization of the continuity on A−∞. In Section 2.2, we characterize the
compactness of weighted composition operators on each of the three Korenblum type spaces.
Further, as corollaries, we obtain a necessary condition where the compactness of Wψ,ϕ on
these spaces implies its compactness on some Banach spaces H0

β, and that if the symbol
lies in a closed disc centered in zero inside the unit disc then Wψ,ϕ is compact whenever
it is continuous on any of the Korenblum type spaces. As a consequence of two results of
Bourdon, we characterize in Section 2.3 the invertibility of Wψ,ϕ on the spaces A−α+ , A−α−
and A−∞.

In Chapter 3 we study the spectrum and point spectrum of the weighted composition
operators on the spaces A−α+ , A−α− , A−∞. Theorem 3.3.2 in Section 3.3 shows that the
spectrum of Wψ,ϕ contains the set of points {0} ∪ {ψ(0)ϕ′(0)n}∞n=0 and that it is con-
tained in B(0, limk re(Wψ,ϕ, H

∞
αk

)) ∪ {ψ(0)ϕ′(0)n}∞n=0 for the spaces A−α+ and A−α− and in

B(0, limk re(Wψ,ϕ, H
∞
k )) ∪ {ψ(0)ϕ′(0)n}∞n=0 for the Korenblum space A−∞. Here re(T,X)

denotes the essential spectral radius of the operator T in the Banach space X. In The-
orem 3.3.5 we prove that the point spectrum of Wψ,ϕ in A−α+ and in A−α− contains the
set of points {ψ(0)ϕ′(0)n}∞n=0 \ B(0, re(Wψ,ϕ, H

∞
α )) and it is contained in the set of points

{ψ(0)ϕ′(0)n}∞n=0, and for the space A−∞ we obtain that σp(Wψ,ϕ, A
−∞) ⊆ {ψ(0)ϕ′(0)n}∞n=0.

In Section 3.4 we investigate the spectrum and point spectrum of composition operators in
the three Korenblum type spaces. As a corollary of Theorem 3.3.2, we deduce that the spec-
trum of Cϕ in the spaces A−α+ and A−α− is contained in B(0, re(Cϕ, H

∞
α )) ∪ {ϕ′(0)n}∞n=0 and
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contains the set of points {0}∪{ϕ′(0)n}∞n=0. For the Korenblum space we prove in Theorems
3.4.2 and 3.4.4 that σ(Cϕ, A

−∞) = {0} ∪ {ϕ′(0)n}∞n=0 and that σp(Cϕ, A
−∞) = {ϕ′(0)n}∞n=0.

In Section 3.5 we study the spectrum of the multiplication operator. Corollary 3.5.2 shows
that, in any of the spaces A−α+ , A−α− or A−∞, the point spectrum of Mψ is empty and the
spectrum contains the image of the weight, ψ(D), and it is contained in its closure. Moreover,
in Section 3.6 we investigate the spectrum and point spectrum of the composition operator
in the case where the symbol is a rotation. In comparison with [16, Theorems 1 and 2], for
the composition operator in the Korenblum space Cϕ : A−∞ → A−∞ with ϕ(z) = cz where
|c| = 1 and it is not a root of unity, we obtain that a complex number λ 6= 1, |λ| = 1 belongs
to the resolvent set, that is, the complemetary set of the spectrum, if, and only if, there are
s ≥ 1 and ε > 0 such that |cn− λ| ≥ εn−s for each n ∈ N. We also obtain a characterization
of the number 1 belonging to the resolvent set in relation with Diophantine numbers.

Chapter 4 is devoted to the study of the spectrum of the composition operators whose
symbols admit an analytic extension to an open neighbourhood of the closed unit disc D of
the complex plane. We follow the argument of Kamowitz in [33, Theorem 3.4]. In Section
4.1 we introduce some Lemmas used in the proof of the main results. Theorems 4.2.1 and
4.2.4 in Section 4.2 show that for ϕ : D→ D analytic, which is analytic on a neighbourhood
of the closed unit disc, with an interior fixed point and a repelling fixed point z0 in the
circle, the spectrum of the composition operator Cϕ on A−α− and A−α+ contains the closed
ball B(0, |ϕ′(z0)|−α). This enlarges the knowledge of the size of σ(Cϕ) that it is known to
be a subset of B(0, re(Cϕ, H

∞
α )) ∪ {ϕ′(0)n}∞n=0 according to Corollary 3.4.1.

In Chapter 5 we investigate different properties of weighted composition operators on
projective and inductive limits of weighted Banach spaces of vector-valued analytic fucn-
tions. In Section 5.1 we study the continuity, compactness and weak compactness of Wψ,ϕ

between two Banach spaces of vector-valued functions, in comparison with their equiv-
alents in the scalar case. That is, the operators Wψ,ϕ : H∞v (D, E) → H∞w (D, E) and
Wψ,ϕ : H0

v (D, E)→ H0
w(D, E) in comparison with Wψ,ϕ : H∞v → H∞w and Wψ,ϕ : H0

v → H0
w.

We obtain that the operators in the vector case are continuous if, and only if, they are so in
the scalar case. Proposition 5.1.11 shows that Wψ,ϕ : H∞v (D, E)→ H∞w (D, E) being compact
is equivalent to Wψ,ϕ : H0

v (D, E)→ H0
w(D, E) being compact and that it is also equivalent to

the compactness in the scalar cases and that E has finite dimension. In Proposition 5.1.14
we have the same equivalences for the weak compactness but in there the space E has to be
reflexive instead of finite dimensional. In Proposition 5.2.10 of Section 5.2 we characterize
when linear operators between LB-spaces are bounded, Montel, reflexive, compact or weakly
compact. Then, in Section 5.2.1, we apply Proposition 5.2.10 to characterize when weighted
composition operators Wψ,ϕ on the space V H(D, E) are bounded, Montel, reflexive, compact
and weakly compact. As a consequence, in Section 5.2.2, we obtain the characterizations of
the same properties in the cases when weighted composition operators act on the LB-spaces
A−α− (E) and A−∞(E). In Section 5.3.1 we apply [17, Proposition 4.2] to give some character-
izations of the Wψ,ϕ being bounded, Montel, reflexive, compact and weakly compact, on the
projective limits HW (D, E). These results are gathered in Proposition 5.3.11, which should
be compared with [17, Theorem 4.3]. In Section 5.3.2 we obtain the characterizations of the
same properties for weighted composition operators acting on the projective limit A−α+ (E),
as consequences of Proposition 5.3.11.
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Chapter 1

Preliminaries

1.1 Previous definitions and useful results

Let X be a topological space. The space X is a Hausdorff space if for each pair of distinct
points x, y there are respective neighbourhoods Ux, Uy such that Ux ∩ Uy = ∅. We say that
X is regular if it is Hausdorff and each point possesses a base of closed neighbourhoods.
Moreover, every Hausdorff locally convex space is a topological regular space.

Let X and Y be topological spaces. A bijection b of X onto Y such that b(A) is open
in Y if, and only if, A is open in X, is called a homeomorphism. The spaces X and Y are
homeomorphic if there exists a homeomorphism of X onto Y . Two topological vector spaces
X, Y over the same field K are called isomorphic if there exists a bijective linear map u of
X onto Y which is a homeomorphism; u is called an isomorphism of X onto Y . We say that
u is an automorphism if u is an isomorphism of X onto itself. (See [42, pp. 4, 13]). A linear
operator T : X → Y between two normed spaces is called an isometry (or, more precisely,
linear isometry) if ‖Tx‖ = ‖x‖ for each x ∈ X. Two normed spaces are said to be isometric
if there exists a surjective linear isometry from one space onto the other. (See [1, p. 2]).

An operator T : X → Y is said to be continuous at a ∈ X if for each neighbourhood
V of T (a) there exists a neighbourhood U of a such that T (U) ⊆ V . We say that T is
continuous if it is continuous at all points in X. The operator T is continuous if, and only
if, the preimage of every open set is open.

A continuous linear operator T : E → F between Hausdorff locally convex spaces E and
F is called:

- bounded if there exists a 0-neighbourhood U in E such that T (U) is bounded in F ;

- Montel if for every bounded subset B of E, T (B) is relatively compact in F ;

- reflexive if for every bounded subset B of E, T (B) is weakly relatively compact in F ;

- compact if there exists a 0-neighbourhood U in E such that T (U) is relatively compact in
F ;

- weakly compact if there exists a 0-neighbourhood U in E such that T (U) is weakly relatively
compact in F .

Let X be a vector space over a non-discrete field K. Let A and B be two subsets of
X. We say that A is circled if λA ⊆ A for each |λ| ≤ 1. A circled, convex subset is called
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Chapter 1. Preliminaries

absolutely convex. We say that A absorbs B if there exists λ0 ∈ K such that B ⊆ λA
whenever |λ| ≥ |λ0|. The subset A is called absorbent if absorbs every finite subset of X.

A barrel in a topological vector space E is a subset which is absorbent, absolutely convex
and closed. A locally convex space E is barreled if each barrel in E is a neighbourhood of 0.
Every Banach space and every Fréchet space is barreled (see [42, p. 60]). A locally convex
space E for which E = E′′ is called semi-reflexive. Every semi-reflexive space E is reflexive
if, and only if, it is barreled. Every semi-reflexive normed space is a reflexive Banach space
(see [42, p. 145]). A reflexive locally convex space in which every closed, bounded subset is
compact, is called a Montel space. Observe that in Montel spaces an operator is compact if,
and only if, it is bounded. A normed space is Montel if, and only if, it is finite dimensional
([37, Exercise 7 p. 293]). Morevoer, since the unit ball of a Banach space is bounded and it
is a 0-neighbourhood, then every operator on a Banach space is reflexive if, and only if, it is
weakly compact. For more information about barreled, reflexive or Montel spaces, see [37]
and [42].

Proposition 1.1.1 ([37], Theorem 23.18). A locally convex space E is semi-reflexive if, and
only if, every bounded set in E is relatively weakly compact.

Note that this proposition implies that if F is a semi-reflexive locally convex space and
T : E → F an operator, then T is weakly compact if, and only if, it is bounded.

Let X be a topological vector space. A fundamental system of bounded sets of X is a
family B of bounded sets such that every bounded subset of X is contained in a suitable
member of B.

Let E be a locally convex space. A subset M ⊆ E is said to be bornivorous if for each
bounded set B in E there exists a λ > 0 such that B ⊆ λM . The space E is called DF-space
if it has the following properties:

1. E has a countable fundamental system of bounded sets.

2. If V ⊆ E is bornivorous and is the intersection of a sequence of absolutely convex zero
neighbourhoods, then V is itself a zero neighbourhood.

Every normed space is a DF-space. For more information about DF-spaces see [37, Chapter
25].

Along all the work the set of all holomorphic functions on the complex disc D is denoted by
H(D) and the set of all bounded holomorphic functions on D is written H∞. The topology
of the uniform convergence on compact sets is denoted by τco. The weak topology in a
topological space X is denoted by σ(X,X ′). The weak∗ topology (or, the pointwise topology)
in the dual space X ′ is written σ(X ′, X) or simply w∗-topology.

1.2 Inductive and projective limits

A K−vector space E together with a family of locally convex spaces (Ei)i∈I and linear maps
ji : Ei → E, i ∈ I, is called an inductive system if

⋃
i∈I ji(Ei) = E. If there exists a finest

locally convex topology on E for which all the maps ji are continuous, then it is called the
inductive topology of the system.
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Proposition 1.2.1 ([37], Proposition 24.7). Let the locally convex space E have the inductive
topology of the system (ji : Ei → E)i∈I . A linear map A : E → F into a locally convex space
F is continuous if, and only if, A ◦ ji is continuous for all i ∈ I.

A countable inductive system (jn : En → E)n∈N is called an imbedding spectrum if the
following holds for all n ∈ N:

1. En is a linear subspace of E and jn is the inclusion.

2. En is contained in En+1 and the inclusion En ↪→ En+1 is continuous.

If the inductive topology τ of the system exists, then we refer to E = (E, τ) as its inductive
limit , and we write E = indnEn. We say that a locally convex inductive limit E = indnEn is
regular if every bounded subset of E is contained and bounded in a step En. The inductive
limit of an increasing sequence of Banach spaces is called an LB-space. Every LB-space
is barreled ([42, Corollary 2, p. 61]). For more information about inductive limits and
LB-spaces see [14].

Lemma 1.2.2 ([5], Lemma 4.1). Let X = indnXn and Y = indmYm the inductive limits
given by two increasing unions of Banach spaces X = ∪∞n=1Xn and Y = ∪∞m=1Ym. Let
T : X → Y be a linear map.

(i) T is continuous if, and only if, for each n ∈ N there exists m ∈ N such that T (Xn) ⊆ Ym
and the restriction T : Xn → Ym is continuous.

(ii) Assume that Y is a regular LB-space. Then T is bounded if, and only if, there exists
m ∈ N such that T (Xn) ⊆ Ym and T : Xn → Ym is continuous for all n ≥ m.

A K−vector space E together with a family of locally convex spaces (Ei)i∈I and linear
maps pi : E → Ei, i ∈ I, is called a projective system if, for each x ∈ E, x 6= 0, there is an
i ∈ I with pi(x) 6= 0. The projective topology on E is the coarsest topology on E for which
each of the mappings pi is continuous. We write E =

⋂
i∈I p

−1
i (Ei).

Lemma 1.2.3 ([4], Lemma 25). Let E := projmEm and F := projnFn be Fréchet spaces
such that E = ∩m∈NEm with each (Em, ‖ · ‖m) a Banach space (resp. F = ∩n∈NFn with
each (Fn, ‖ · ‖n) a Banach space). Moreover, it is assumed that E is dense in Em and that
Em+1 ⊆ Em with a continuous inclusion for each m ∈ N (resp. Fn+1 ⊆ Fn with a continuous
inclusion for each n ∈ N). Let T : E → F be a linear operator.

(i) T is continuous if, and only if, for each n ∈ N there exists m ∈ N such that T has a
unique continuous linear extension Tm,n : Em → Fn.

(ii) Assume that T is continuous. Then T is bounded if, and only if, there exists m ∈ N
such that, for every n ∈ N, the operator T has a unique continuous linear extension
Tm,n : Em → Fn.

1.3 About the spectrum

The space of all continuous linear operators between two locally convex spaces X and Y is
denoted by L(X,Y ). If X = Y then we write L(X).

Let T : X → X be a continuous linear operator on a locally convex space X. The resolvent
set ρ(T ) of T consists of all λ ∈ C such that R(λ, T ) := (T − λI)−1 is a continuous linear
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Chapter 1. Preliminaries

operator, that is, T − λI : X → X is bijective and has a continuous inverse. Here I stands
for the identity operator on X. The set σ(T ) := C \ ρ(T ) is called the spectrum of T . The
point spectrum σp(T ) of T is the set consisting of all λ ∈ C such that T −λI is not injective.
In other words, the point spectrum is the set of all eigenvalues of T . If we need to stress the
space X, then we write σ(T,X), σp(T,X) and ρ(T,X). Unlike for Banach spaces, it may
happen that ρ(T ) = ∅ or that ρ(T ) is not open.

Proposition 1.3.1 ([32], Theorem 4 p. 204). If T is a compact operator in a locally convex
topological vector space, then σ(T ) is either finite or it is formed by 0 and the points of a
sequence that converges to 0.

1.4 Weighted Banach spaces

If v : D→ R+ is a bounded continuous (strictly) positive funcion, we say that v is a weight .

Let H(D) be the space of analytic functions on D, which is endowed with the Fréchet
topology of uniform convergence on compact sets. We are interested in the following weighted
Banach spaces:

H∞v = H∞v (D) := {f ∈ H(D) : ||f ||v := sup
z∈D

v(z)|f(z)| <∞} ,

H0
v = H0

v (D) := {f ∈ H(D) : lim
|z|→1−

v(z)|f(z)| = 0} .

Those spaces are Banach, endowed with the norm || · ||v.

We say that v is radial whenever v(z) = v(|z|) for all z ∈ D. Any radial, positive
continuous funcion v : D→ R+, which is non-increasing with respect to |z| and is such that
lim|z|→1− v(z) = 0, is called a typical weight. Through the document, we just consider v to
be radial and typical.

To each weight v corresponds the so-called growth condition u : D → R+, u = 1/v, and
Bv := {f ∈ H(D) : |f | ≤ u}. A new function ũ : D→ R+ is defined by

ũ(z) := sup
f∈Bv

|f(z)|,

and the weight associated with v is defined by ṽ := 1/ũ. (See some of their properties
in [13]). In [19, Proposition 2.1] it is shown that if v is typical then ṽ is typical too and
by [19, Proposition 2.3] we have that H∞v = H∞ṽ isometrically and, if lim|z|−→1− v(z) = 0
then H0

v = H0
ṽ isometrically as well. Moreover, in [13, Observation 1.12] it is proved that

H∞v = H∞ṽ and the norms ‖ ‖v and ‖ ‖ṽ coincide. A weight v is called essential if there exists
a constant C > 0 such that v(z) ≤ ṽ(z) ≤ Cv(z), for all z ∈ D.

1.4.1 Our weights

Given α > 0, we define vα(z) := (1 − |z|)α, z ∈ D. From now on, in order to abreviate the
notation, we write H∞α and H0

α instead of H∞vα and H0
vα , and ‖ · ‖α instead of ‖ · ‖vα . For

every α, H0
α ⊂ H∞α .

Since 1 − |z| ≤ 1 − |z|2 ≤ 2(1 − |z|), the weights (1 − |z|2)α define the same space. The
vα weights are called standard weights. They are also essential, with constant C = 1 (see
Remark 1.4.1).
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Remark 1.4.1. For every α > 0, vα(z) = ṽα(z), for all z ∈ D.
Indeed, it is clear that vα ≤ ṽα. On the other hand, if we fix z0 ∈ D and prove that there

exists some f ∈ H(D) such that |f(z)| ≤ 1/vα(z) for every z ∈ D with f(z0) = 1/vα(z0),
we get the result. When z0 = 0, we take f ≡ 1. Otherwise, if z0 ∈ D \ {0}, we can write
z0 = |z0|eiθ. Define the function f ∈ H(D) as follows:

f(z) :=
1

(1− e−iθz)α
, ∀z ∈ D.

Thus,

|f(z)| = 1

|(1− e−iθz)α|
=

1

|1− e−iθz|α
≤ 1

(1− |z|)α
= 1/vα(z),

f(z0) =
1

(1− e−iθz0)α
=

1

(1− |z0|)α
.

Lemma 1.4.2. The space H0
α is a closed subspace of H∞α and coincides with the closure of

the polynomials on H∞α .

Proof. We prove that for each function in H0
α, there is a sequence of polynomials that tends

to the function in the norm ‖ ‖α.
Fix f ∈ H0

α, which can be written as f(z) =
∑∞

k=0 akz
k. The Cesàro means of the partial

sums of the Taylor series of f about zero are denoted by Cn(f), n = 0, 1, 2, . . .; that is,

(Cn(f))(z) =
1

n+ 1

n∑
i=0

(
i∑

k=0

akz
k

)
, z ∈ D .

Each Cn(f) si a polynomial of degree less than or equal to n and Cn(f) −→ f uniformly on
every compact subset of D. Applying [12, Lemma 1.1] and taking into account that (1−|z|)α
is a radial weight we obtain

sup
z∈D

(1− |z|)α|(Cn(f))(z)| ≤ sup
z∈D

(1− |z|)α(max
|λ|=1

|f(λz)|) = sup
z∈D

(1− |z|)α|f(z)| .

Now, similarly to the proof of [12, Proposition 1.2 (e)], we prove that Cn(f) −→ f with the
norm ‖ ‖α.

For each ε > 0 there exists 0 < r < 1 such that (1−|z|)α|f(z)| ≤ ε/2 for all z ∈ D\B(0, r).
On the other hand, since Cn(f)→ f uniformly on K = B(0, r) (because it is a compact set),
we can choose n0 ∈ N such that if n ≥ n0 then maxz∈K |f(z) − (Cn(f)(z))| ≤ ε. Thus, for
any n ≥ n0 we have that

sup
z∈D

(1− |z|)α|f(z)− (Cn(f))(z)| ≤

≤ max
{

max
z∈K
|f(z)− (Cn(f)(z))|, sup

z∈D\K
(1− |z|)α|f(z)− (Cn(f))(z)|

}
≤ max

{
ε,
ε

2
+ sup
z∈D\K

(1− |z|)α|(Cn(f))(z)|
}

≤ max
{
ε,
ε

2
+ sup
z∈D\K

(1− |z|)α(max
|λ|=1

|f(λz)|)
}

≤ max
{
ε,
ε

2
+ sup
z∈D\K

(1− |z|)α|f(z)|
}
≤ ε .

Here we have used that if z ∈ D \K then λz ∈ D \K for each |λ| = 1.
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Lemma 1.4.3. For every β > α > 0 the inclusion H∞α ↪→ H0
β is continuous and ‖f‖β ≤

‖f‖α for all f ∈ H∞α .

Proof. Let f ∈ H∞α . Let us call M := sup
z∈D

vα(z)|f(z)| <∞. For every ε > 0, take δ :=

(ε/M)
1

β−α > 0. Assume 1− |z| < δ. Then,

vβ(z)|f(z)| < δβ−α(1− |z|)α|f(z)| = δβ−αvα(z)|f(z)| ≤ δβ−αM = ε.

That is, f ∈ H0
β. Morevover, since β > α, vβ(z) ≤ vα(z) for all z ∈ D and so, for every

f ∈ H∞α ,
‖f‖β = sup

z∈D
vβ(z)|f(z)| ≤ sup

z∈D
vα(z)|f(z)| = ‖f‖α.

Therefore, the inclusion is continuous.

Lemma 1.4.4. For every β > α > 0, the inclusion H∞α ↪→ H∞β is compact.

Proof. Observe that β − α > 0 since β > α > 0. So,

lim
|z|−→1−

vβ(z)

vα(z)
= lim
|z|−→1−

(1− |z|)β−α = 0.

We need to see that the closed unit ball Bα of H∞α is compact in H∞β . That is, we want that

for every sequence (fk)k ⊂ Bα exists a subsequence (fkj )j such that limj ‖fkj − f0‖β = 0 for
some f0 ∈ H∞β .

The ball Bα is bounded and closed in (H(D), τco). By Montel’s Theorem, Bα is τco-
compact. Or, what it is the same, there exists a subsequence (fkj )j τco-convergent to some
f0. We prove now that such subsequence is also convergent in H∞β .

In order to do this, let us denote gj := fkj − f0. So, (gj)j converges to 0 uniformly on
compact sets of D. Also, ‖gj‖α ≤ 2, ∀j.

Now, since lim|z|→1−
vβ(z)
vα(z)

= 0, for every ε > 0, there exists r0 ∈]0, 1[ such that

vβ(z)

vα(z)
< ε, for all |z| ≥ r0.

We call M := maxz∈D vβ(z) (such maximum exists because vβ is continuous, positive, and
lim|z|→1− vβ(z) = 0). The set K := {z ∈ D : |z| ≤ r0} is compact. There exists j0 such that,
if j ≥ j0 then supz∈K |gj(z)| < ε

M . Let z ∈ D and j ≥ j0. So, when z ∈ K,

vβ(z)|gj(z)| ≤M
ε

M
= ε.

If z ∈ D \K,

vβ(z)|gj(z)| =
vβ(z)

vα(z)
vα(z)|gj(z)| < 2ε.

That is, (gj)j converges to 0 in H∞β .

Remark 1.4.5. Lemma 1.4.4 can be seen as a consequence of [19, Theorem 3.3] by taking
the symbol ϕ the identity. This way, the composition operator is the inclusion.

Lemma 1.4.6. For each α > 0, H∞α is isometrically isomorphic to the bidual Banach space
(H0

α)′′.
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1.5. Korenblum type spaces

Proof. By [9, Corollary 1.2], it is enough to prove that BH0
α

is τco-dense on BH∞α . So, we
prove this by following the argument of [9, Example 2.1].

If we fix f ∈ BH∞α , for each 0 < r < 1, the function fr(z) := f(rz) belongs to H0
α.

Indeed, since rD is a relatively compact subset of D, and f is analytic on D, we have that

sup
z∈D
|fr(z)| = sup

z∈rD
|f(z)| <∞,

what implies lim|z|−→1−(1− |z|)α|fr(z)| = 0, for all 0 < r < 1.
Moreover, given z0 ∈ D, the Maximum Modulus Principle yields λ ∈ C, |λ| = 1 such that

|f(rz0)| ≤ supz∈B(0,|z0|) |f(z)| = |f(λz0)| and

vα(z0)|fr(z0)| ≤ vα(z0)|f(λz0)| ≤ ‖f‖α ≤ 1 ,

that is, fr ∈ BH0
α

for every 0 < r < 1. Since (fr)r is a bounded set for the norm topology,
then it is bounded in the τco topology, that is, it is uniformly bounded on compact sets.
Then, by Montel’s Theorem, there exists a subsequence uniformly convergent on compact
sets. And, since limr−→1− f(rz) = f(z) for all z ∈ D (because f is continuous on each z ∈ D),
then the subsequence of (fr)r tends to f uniformly on compact sets of D as r −→ 1−. Thus,
BH0

α
is τco-dense on BH∞α .

The preceding remark explains why the spaces H∞α and (H0
α)′′ are isometrically isomor-

phic. However, by [9, Theorem 2.3] it is enough to have that the space H0
α contains the

polynomials.

1.5 Korenblum type spaces

For every n ∈ N, set vn(z) := (1 − |z|)n, z ∈ D. Clearly, vn ≥ vn+1. Thus, H∞n ⊂ H∞n+1,
with || · ||n+1 ≤ || · ||n.

The Korenblum space (see [35]) is defined as

A−∞ :=
⋃
n∈N

H∞n .

It is endowed with the inductive limit topology: A−∞ = ind
n
H∞n . It is the finest locally

convex topology on
⋃
nH

∞
n such that the inclusion H∞n ↪→ A−∞ is continuous for each

n ∈ N. The space A−∞ is a regular LB-space (see Proposition 5.2.2).

Remark 1.5.1. By Lemmas 1.4.3 and 1.4.4, taking α = n and β = n+ 1, we have H∞n ↪→
H0
n+1 is continuous and H∞n ↪→ H∞n+1 is compact.

By [37, Proposition 25.20], the space A−∞ is a DFS-space. This means that it is a DF-
space which is also Schwarz. A locally convex space is called Schwarz if for every absolutely
convex zero neighbourhood U there exists a zero neighbourhood V so that for each ε > 0
exist f1, . . . , fn ∈ V such that V ⊆

⋃n
j=1(fj + εU). In particular, A−∞ is a Montel space

(see [14, pp. 61–62]).

Remark 1.5.2. The Korenblum space is a locally convex algebra. In fact, A−∞ is a locally
convex space and an algebra because it is a vector space over the field C which has defined
a product fg for each f, g ∈ A−∞ that verifies:

� (fg)h = f(gh),
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� (f + g)h = fh+ gh, f(g + h) = fg + fh,

� (fg)α = f(gα) = (fα)g,

for any f, g, h ∈ A−∞, α ∈ C. In order to see that A−∞ is a locally convex algebra, one has to
check that the multiplication is separately continuous, because, then, due to the topological
properties of the space, it will be continuous (see [32] and [42, pp. 202]).

Multiplication is separately continous, because if we fix f ∈ A−∞, there exists k ∈ N
with f ∈ H∞k . For any g ∈ H∞n ,

‖fg‖n+k = sup
z∈D

(1− |z|)n+k|fg(z)| = sup
z∈D

(1− |z|)n|g(z)|(1− |z|)k|f(z)| <∞ .

That is, for each n ∈ N, there exist m(= n+ k) ∈ N such that the multiplication with f is a
continuous operator from H∞n to H∞m and, then, it is continuous on A−∞. Analogously, one
can prove the continuity with the second element fixed.

1.5.1 The A−α+ space

Fix α ≥ 0. Take αn := α+ 1
n . We set

A−α+ :=
⋂
n∈N

H∞αn .

The space A−α+ is an intersection of Banach spaces, and it is also a Fréchet space when en-
dowed with the locally convex topology generated by the increasing sequence of (semi)norms

||f ||αn := sup
z∈D

(1− |z|)αn |f(z)| .

This space is also a projective limit, endowed with the projective limit topology:
projnH

∞
αn . It is the coarsest topology for which the inclusion A−α+ ↪→ H∞αn is continuous

for all n ∈ N.

Remark 1.5.3. Notice that
⋂
n∈NH

∞
αn =

⋂
n∈NH

0
αn . This occurs because the inclusion

H∞αn+1
⊆ H0

αn holds for each n ∈ N (see Proposition 1.4.3).

Proposition 1.5.4. For every α ≥ 0, n ∈ N, A−α+ is dense in H0
αn.

Proof. If P = P(D) denotes the space of the polynomials over D, we know that P ⊂ H∞ ⊂
H∞αn , for every αn = α + 1

n , where α ≥ 0 and n ∈ N, since for all z ∈ D, (1− |z|)αn |f(z)| ≤
||f ||∞, when f ∈ H∞. Thus,

P ⊂
⋂
n∈N

H∞αn

(
=
⋂
n∈N

H0
αn

)
.

By Lemma 1.4.2, P is dense in H0
αn for every n ∈ N. Now, as A−α+ is Fréchet and P ⊂ A−α+ ⊂

H0
αn , it follows that P is dense in A−α+ . So, A−α+ is dense in H0

αn .
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1.5.2 The A−α− space

Fix α > 0. Take αn := α− 1
n , where n ≥ n0 such that α− 1

n0
> 0. We set

A−α− :=
⋃
n∈N

H∞αn .

The space A−α− , endowed with the inductive limit topology, that is, the finest locally
convex topology on

⋃
nH

∞
αn such that the inclusion H∞αn ↪→ A−α− is continuous, is a regular

LB-space (see Proposition 5.2.2). So,

A−α− := ind
n
H∞αn .

Notice that when α =∞, A−α− = A−∞.

Remark 1.5.5. Notice that
⋃
n∈NH

∞
αn =

⋃
n∈NH

0
αn . This occurs because the inclusions

H0
αn ⊆ H

∞
αn ⊆ H

0
αn+1

hold for all n ∈ N, as we have seen in Lemma 1.4.3.

We prevent the reader to pay attention to the implicit signification of the notation αn,
which depends on the context. The exponents αn of this section are different from those in
Section 1.5.1.
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Weighted composition operators

Consider an analytic map ϕ : D → D with ϕ(D) ⊂ D, and ψ ∈ H(D). The weighted compo-
sition operator is defined by

Wψ,ϕf(z) := ψ(z)f(ϕ(z)), z ∈ D .

In this definition, ϕ is called the symbol and ψ the weight . Observe that Wψ,ϕ = MψCϕ
where Mψ is the multiplication operator defined by Mψ(f) := ψ ·f and Cϕ is the composition
operator defined by Cϕ(f) := f ◦ ϕ. All over the text, ϕ and ψ denote as stated above.

In this chapter we investigate the properties of continuity, compactness and invertibility
of the weighted composition operator on the Korenblum space A−∞ and the Korenblum type
spaces A−α+ and A−α− . The main results of this chapter are collected in [31, Section 2].

The continuity and compactness of the operator Wψ,ϕ on weighted Banach spaces has
been deeply studied by Contreras and Hernández-Dı́az in [26] even in a more general context;
see also [19] and [38]. Below we state some characterizations of continuity and compactness
described in [26].

Proposition 2.0.1 ([26], Proposition 3.1). Let v and w be weights. Then the operator
Wψ,ϕ : H∞v → H∞w is continuous if, and only if, supz∈D |ψ(z)|w(z)/ṽ(ϕ(z)) <∞.

If v is essential, then the operator Wψ,ϕ : H∞v → H∞w is continuous if, and only if,
supz∈D |ψ(z)|w(z)/v(ϕ(z)) <∞.

Proposition 2.0.2 ([26], Proposition 3.2). Let v and w be typical weights. Then the operator
Wψ,ϕ : H0

v → H0
w is continuous if, and only if, ψ ∈ H0

w and supz∈D |ψ(z)|w(z)/ṽ(ϕ(z)) <∞.
If v is essential, then the operator Wψ,ϕ : H0

v → H0
w is continuous if, and only if, ψ ∈ H0

w

and supz∈D |ψ(z)|w(z)/v(ϕ(z)) <∞.

Proposition 2.0.3 ([26], Corollary 4.3). Let v and w be weights. Then the operator
Wψ,ϕ : H∞v → H∞w is compact if, and only if, ψ ∈ H∞w and

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)|w(z)

ṽ(ϕ(z))
= 0.

When v is essential, ṽ can be replaced by v.

Proposition 2.0.4 ([26], Corollary 4.5). Let v and w be typical weights. Then the operator
Wψ,ϕ : H0

v → H0
w is compact if, and only if,

lim sup
|z|−→1−

|ψ(z)|w(z)

ṽ(ϕ(z))
= 0.

When v is essential, ṽ can be replaced by v.
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2.1 Continuous weighted composition operators

This section is focused in the study of the continuity of Wψ,ϕ in the Korenblum type spaces.
For the spaces A−α+ and A−α− we obtain sufficient conditions for the continuity and for the
Korenblum space we get a characterization. Recall that every bounded operator is continu-
ous.

Rewriting Propositions 2.0.1 and 2.0.2 for our weights vα (which satisfy vα = ṽα, that is,
they are essential), we get the following results.

Proposition 2.1.1. Let α, β ≥ 0. Then the operator Wψ,ϕ : H∞α → H∞β is bounded if, and
only if,

sup
z∈D

|ψ(z)|vβ(z)

vα(ϕ(z))
<∞ .

Proposition 2.1.2. Let α, β ≥ 0. Then the operator Wψ,ϕ : H0
α → H0

β is bounded if, and

only if, ψ ∈ H0
β and

sup
z∈D

|ψ(z)|vβ(z)

vα(ϕ(z))
<∞ .

2.1.1 Continuity on A−α+

The following theorem characterizes the continuity of the operator Wψ,ϕ : A−α+ → A−α+ . In
order to state the theorem, we have applied Proposition 2.1.2 and Lemma 1.2.3. This lemma
can be used here because the space A−α+ is defined as the projective limit of the Banach spaces
H∞αn , that is, the projective limit of the Banach spaces H0

αn , with the inclusion H0
αn+1

↪→ H0
αn

continuous, and holding that the space A−α+ is dense in H0
αn for all n ≥ 0 (Proposition 1.5.4).

Theorem 2.1.3. Let α ≥ 0, ψ,ϕ ∈ H(D) and ϕ(D) ⊆ D. The operator Wψ,ϕ : A−α+ → A−α+

is continuous if, and only if, ψ ∈ A−α+ and for each n ∈ N there exists m > n such that

sup
z∈D

|ψ(z)|vαn(z)

vαm(ϕ(z))
<∞ .

Proof. Applying Lemma 1.2.3 we have that Wψ,ϕ : A−α+ → A−α+ is continuous if, and only
if, for every n ∈ N there exists m > n such that Wψ,ϕ has a unique continuous exten-
sion W̃ : H0

αm → H0
αn . Since A−α+ is dense in H0

αm , for each f ∈ H0
αm there exists a

sequence (fi)i ⊆ A−α+ such that fi −→ f . Then, by the continuity of W̃ , we have that

W̃ (fi) = ψ(fi ◦ ϕ) tends to W̃ (f) ∈ H0
αn . Thus, ψ(z)fj(ϕ(z)) −→ W̃f(z) for all z ∈ D, and

ψ(z)fj(ϕ(z)) −→ ψ(f ◦ ϕ)(z) for all z ∈ D. This means that W̃ = Wψ,ϕ. Now, applying
Proposition 2.1.2, the preceding holds if, and only if, ψ ∈ H0

αn for all n ∈ N, that is, ψ ∈ A−α+ ;
and supz∈D |ψ(z)|vαn(z)/vαm(ϕ(z)) <∞.

Notice that we have used Proposition 2.1.2 instead of Proposition 2.1.1 because one of the
conditions in Lemma 1.2.3 is the density, and we have that A−α+ is dense in H0

αn (Proposition
1.5.4), but not in H∞αn .

Proposition 2.1.4. Consider ψ ∈ H(D) and α ≥ 0. The operator Mψ is continuous on
A−α+ if, and only if, ψ ∈ A−0+ .
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Proof. Applying Theorem 2.1.3 to Mψ we have that Mψ ∈ L(A−α+ ) if, and only if, for every
n ∈ N there exists m > n such that ψ ∈ H∞1

n
− 1
m

.

Assume ψ 6= 0. Notice 1
n −

1
m < 1

n . By Lemma 1.4.3, H0
1
n
− 1
m

⊆ H0
1
n

. So, if for every

n ∈ N there is some m ∈ N with ψ ∈ H0
1
n
− 1
m

then for all n ∈ N, ψ ∈ H0
1
n

, that is, ψ ∈ A−0+ .

On the other hand, if ψ ∈ A−0+ , for every n ∈ N exists m > n such that ψ ∈ H0
1
nm

, and

1
nm ≤

m−n
nm = 1

n −
1
m so, ψ ∈ H0

1
n
− 1
m

. Thus, Mψ ∈ L(A−α+ ) if, and only if, ψ ∈ A−0+ .

The following theorem shows a necessary condition for the continuity of Wψ,ϕ on A−α+ .

Theorem 2.1.5. Let α ≥ 0, ψ,ϕ ∈ H(D) and ϕ(D) ⊆ D. If ψ ∈ A−0+ , then Wψ,ϕ ∈ L(A−α+ ).

Proof. As for each n ∈ N, vαn is typical, by [19, Theorem 2.3] we have Cϕ : H∞αn → H∞αn and
Cϕ : H0

αn → H0
αn are continuous for all n ∈ N. Also, by Lemma 1.4.3, for every n,m ∈ N with

n < m (and so, αm < αn), Cϕ : H∞αm −→ H∞αn and Cϕ : H0
αm −→ H0

αn are continuous. Now,
as for every n ∈ N there exists m ∈ N (n < m) such that the composition operator has a
unique linear continuous extension Cϕ : H0

αm −→ H0
αn , by Lemma 1.2.3, we get Cϕ ∈ L(A−α+ )

for any α ≥ 0.
Finally, since the composition of two continuous operators is also continuous, by applying

Proposition 2.1.4 we get the result.

The next example shows that the converse of Theorem 2.1.5 does not hold.

Example 2.1.6. Set α > 0. If we take ϕ(z) = z/2, for all z ∈ D, and some ψ ∈ A−α+ \A−0+ ,
it holds that for every n ∈ N there exists some m > n such that

sup
z∈D
|ψ(z)| (1− |z|)α+

1
n

(1− |z|/2)α+
1
m

≤ 2α+
1
m sup
z∈D
|ψ(z)|(1− |z|)α+

1
n <∞ .

This way, by Theorem 2.1.3, Wψ,ϕ, with such symbol and weight, is continuous on A−α+ and
ψ 6∈ A−0+ .

2.1.2 Continuity on A−α− and A−∞

The following theorems characterize the continuity of the weighted composition operators
on A−α− and A−∞. We have stated the theorems using Proposition 2.1.1 and Lemma 1.2.2.
This lemma can be used in both cases because they are inductive limits of Banach spaces.

Theorem 2.1.7. Let α > 0, ψ,ϕ ∈ H(D) and ϕ(D) ⊆ D. The operator Wψ,ϕ : A−α− → A−α−
is continuous if, and only if, for each n ∈ N there exists m ∈ N such that

sup
z∈D

|ψ(z)|vαm(z)

vαn(ϕ(z))
<∞ .

Theorem 2.1.8. Let ψ,ϕ ∈ H(D) with ϕ(D) ⊆ D. The operator Wψ,ϕ : A−∞ → A−∞ is
continuous if, and only if, for each n ∈ N there exists m ∈ N such that

sup
z∈D

|ψ(z)|vm(z)

vn(ϕ(z))
<∞ .

The following propositions are used in the proofs of the two theorems below.
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Proposition 2.1.9. Let ϕ ∈ H(D) with ϕ(D) ⊆ D. Then Cϕ ∈ L(A−∞) and Cϕ ∈ L(A−α− )
for every α > 0.

Proof. By [19, Theorem 2.3] and Lemma 1.4.3, we obtain that for every n ∈ N exists m ∈ N,
(m ≥ n) such that Cϕ : H∞αn → H∞αm and Cϕ : H∞n → H∞m are continuous. Now, if we take
ψ ≡ 1, by using Proposition 2.1.1, Theorem 2.1.7 and Theorem 2.1.8 we get Cϕ : A−α− → A−α−
and Cϕ : A−∞ → A−∞ are both continuous.

Proposition 2.1.10. Consider ψ ∈ H(D). The operator Mψ ∈ L(A−α− ) if, and only if,
ψ ∈ A−0+ .

Proof. If we apply Theorem 2.1.7 to Mψ we have Mψ ∈ L(A−α− ) iff for every n ∈ N there
exists m ∈ N such that ψ ∈ H0

1
n
− 1
m

. The rest of the proof is analogous to the proof of

Proposition 2.1.4.

Theorem 2.1.11. Let 0 < α < ∞, ϕ,ψ ∈ H(D) with ϕ(D) ⊆ D. If ψ ∈ A−0+ then
Wψ,ϕ ∈ L(A−α− ).

Proof. Recall that the operator Wψ,ϕ is the composition of the operators Mψ and Cϕ. Then,
if Cϕ and Mψ are both continuous and well defined, the operator Wψ,ϕ will be continuous
and well defined as well.

Proposition 2.1.9 sets that Cϕ ∈ L(A−α− ) and, by Theorem 2.1.10, we have that if ψ ∈
A−0+ then Mψ is also continuous and well defined. Therefore, when ψ ∈ A−0+ the operator
Wψ,ϕ ∈ L(A−α− ).

The converse is not true. It can be easily checked taking ϕ(z) = z/2, as in Example
2.1.6.

Theorem 2.1.12. Let ψ,ϕ ∈ H(D) with ϕ(D) ⊆ D. Then Wψ,ϕ ∈ L(A−∞) if, and only if,
ψ ∈ A−∞.

Proof. Assume Wψ,ϕ is continuous on A−∞. The constant function 1 ∈ A−∞ so,
Wψ,ϕ(1)(z) = ψ(z) for all z ∈ D. Then ψ ∈ A−∞.

Conversely, assume now ψ ∈ A−∞. Thus, there exists some k ∈ N such that ψ ∈ H∞j for
any j ≥ k. So, for all n ∈ N there exists m ∈ N (m ≥ n) such that ψ ∈ H∞m−n. (It suffices to
take m with m − n ≥ k). Applying Proposition 2.1.1 and Theorem 2.1.8 to Mψ we obtain
Mψ is continuous on A−∞. Therefore, by Proposition 2.1.9, the result is obtained.

2.2 Compact weighted composition operators

In this section we study the compactness of Wψ,ϕ in the Korenblum type spaces. We obtain a
necessary condition where the compactness of Wψ,ϕ on these spaces implies its compactness
on some Banach spaces H0

β. Also, we prove that if the symbol satisfies that its image
is contained in a closed disc centered in zero inside the unit disc then Wψ,ϕ is compact
whenever it is continuous on any of the Korenblum type spaces.

Recall that for all Montel spaces E and T ∈ L(E), T is compact if, and only if, it is
bounded. Taking this into account we can write the following characterizations.

First, combining Lemma 1.2.3 with Proposition 2.1.2, we obtain the next characterization
of the compactness of Wψ,ϕ : A−α+ → A−α+ .
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2.2. Compact weighted composition operators

Theorem 2.2.1. Let α ≥ 0, ψ,ϕ ∈ H(D) with ϕ(D) ⊆ D. The operator Wψ,ϕ : A−α+ → A−α+

is compact if, and only if, it is continuous and there exists m ∈ N such that for each n ∈ N

sup
z∈D

|ψ(z)|vαn(z)

vαm(ϕ(z))
<∞ .

On the other hand, combining Lemma 1.2.2 with Proposition 2.1.1, we can state the
two following results, which are a characterization of the compactness of the operators
Wψ,ϕ : A−α− → A−α− and Wψ,ϕ : A−∞ → A−∞.

Theorem 2.2.2. Let α > 0, ψ,ϕ ∈ H(D) and ϕ(D) ⊆ D. The operator Wψ,ϕ : A−α− → A−α−
is compact if, and only if, it is continuous and there exists some m ∈ N such that for every
n ≥ m

sup
z∈D

|ψ(z)|vαm(z)

vαn(ϕ(z))
<∞ .

Theorem 2.2.3. Let ψ,ϕ ∈ H(D) with ϕ(D) ⊆ D. Then Wψ,ϕ : A−∞ → A−∞ is compact
if, and only if, it is continuous and there exists m ∈ N such that for all n ≥ m

sup
z∈D

|ψ(z)|vm(z)

vn(ϕ(z))
<∞ .

Corollary 2.2.4. Let ψ,ϕ ∈ H(D) with ϕ(D) ⊂ D.

(i) Let α ≥ 0. If Wψ,ϕ : A−α+ → A−α+ is compact, then there exists n ∈ N such that
Wψ,ϕ : H0

α+ 1
n

→ H0
α+ 1

n

is compact.

(ii) Let α > 0. If Wψ,ϕ : A−α− → A−α− is compact, then there exists n ∈ N such that
Wψ,ϕ : H0

α− 1
n

→ H0
α− 1

n

is compact.

(iii) If Wψ,ϕ : A−∞ → A−∞ is compact, then there exists n ∈ N such that Wψ,ϕ : H0
n → H0

n

is compact.

Proof. This is a direct consequence of Theorems 2.2.1, 2.2.2 and 2.2.3, and Proposition
2.0.4.

Corollary 2.2.5. Assume that there exists an r, 0 < r < 1, such that |ϕ(z)| ≤ r for all
z ∈ D.

(i) Let α ≥ 0. If Wψ,ϕ : A−α+ → A−α+ is continuous, then it is compact.

(ii) Let α > 0. If Wψ,ϕ : A−α− → A−α− is continuous, then it is compact.

(iii) If Wψ,ϕ : A−∞ → A−∞ is continuous, then it is compact.

Corollary 2.2.6. Assume that Mψ is continuous on A−α+ , A−α− or A−∞. If Mψ is compact,
then ψ ≡ 0.

Proof. For A−α+ and A−α− it is already shown in proof of Propositon 2.1.4 and 2.1.10.
In the case of A−∞, we have that if Mψ is compact, by Theorem 2.2.3 there exists m ∈ N

such that for all n ∈ N with n ≥ m, supz∈D |ψ(z)|(1 − |z|)m−n < ∞. But, for all z ∈ D,
limn(1− |z|)m−n =∞.

Example 2.2.7 ([19], Corollary 3.2). Let v and w be weights. If there exists an r, 0 < r < 1,
such that |ϕ(z)| ≤ r for all z ∈ D, then Cϕ : H∞v → H∞w is compact.
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Chapter 2. Weighted composition operators

2.3 Invertible weighted composition operators

In this section we study the invertibility of weighted composition operators on A−α+ , A−α−
and A−∞ as a consequence of the following results due to Bourdon.

Theorem 2.3.1 ([23], Theorem 2.2). Suppose that X is a set of analytic functions on D
such that

(i) Wψ,ϕ maps X to X,

(ii) X contains a nonzero constant function,

(iii) X contains a function of the form z 7→ z + c for some constant c,

(iv) there is a dense subset S of the unit circle such that for each point in S there is a
function in X that does not extend analytically to a neighbourhood of that point.

If Wψ,ϕ : X → X is invertible, then ϕ is an automorphism of D.

Corollary 2.3.2 ([23], Corollary 2.3). If X, ψ and ϕ satisfy the hypotheses of Theorem
2.3.1 and X is automorphism invariant, i.e., f ◦ φ ∈ X for all automorphism φ of D, then
Wψ,ϕ is invertible on X if, and only if, ϕ is an automorphism of D and ψ as well as 1/ψ
are multipliers of X.

Remark 2.3.3. That the space H∞αn or H∞n is automorphism invariant is equivalent to the
composition operator Cφ : H∞αn → H∞αn or Cφ : H∞n → H∞n being well defined for all φ ∈
Aut(D). By [19, Theorem 2.3] the composition operators Cφ : H∞αn → H∞αn and Cφ : H∞n →
H∞n are well defined for all φ ∈ Aut(D). Now, since H∞αn and H∞n are automorphism invariant
for all n ∈ N, then A−α+ , A−α− and A−∞ are too.

Recall that a function g is a multiplier of a set X provided that gf ∈ X whenever f ∈ X.
As a consequence of Closed Graph Theorem, if X is a Fréchet space or an LB-space, g is a
multiplier if, and only if, the multiplication operator Mg is continuous on X. In our cases
this holds because A−α+ is a Fréchet space and A−α− and A−∞ are LB-spaces.

Lemma 2.3.4. Let α > 0, a ∈ ∂D. Consider the function gα,a(z) := 1/(a − z)α. Then
gα,a ∈ H∞α and does not extend analytically to any neighbourhood of a.

Proof. Since |a − z| ≥ 1 − |z| for each z ∈ D, it follows that supz∈D(1 − |z|)α|gα,a(z)| ≤ 1.
Besides, notice gα,a has a pole at a, so it does not extend analytically to a neighbourhood of
a.

Now, we can state the characterizations of the invertibility of the weighted composition
operator.

Theorem 2.3.5. Assume ψ,ϕ ∈ H(D) and ϕ(D) ⊆ D.

(i) Let α ≥ 0. The operator Wψ,ϕ is invertible on A−α+ if, and only if, ϕ is an automorphism
of D and ψ, 1/ψ ∈ A−0+ .

(ii) Let α > 0. The operator Wψ,ϕ is invertible on A−α− if, and only if, ϕ is an automorphism
of D and ψ, 1/ψ ∈ A−0+ .

(iii) The operator Wψ,ϕ is invertible on A−∞ if, and only if, ϕ is an automorphism of D
and ψ, 1/ψ ∈ A−∞.
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2.3. Invertible weighted composition operators

Proof. The operator Wψ,ϕ satisfies hypotesis (i) of Theorem 2.3.1 whenever it is continuous,
and our spaces A−α+ , A−α− and A−∞ verify hypothesis (ii) of Theorem 2.3.1. Moreover, they
are linear spaces which contain the constants and the polynomials, thus Theorem 2.3.1(iii)
is equally satisfied. Therefore, just the last hypothesis is left.

If α > 0 then H∞α ⊂ H∞αn for all n ∈ N, where αn = α+ 1
n , we get that the function gα,a of

Lemma 2.3.4 belongs to A−α+ . Also, applying Lemma 2.3.4 to some α− 1
n , n ∈ N, we obtain

gα,a ∈ A−α− . And, for any α ≥ 0 there exists n ∈ N, n ≥ α such that H∞α ⊆ H∞n ⊂ A−∞.
Therefore, by Lemma 2.3.4 hypothesis (iv) of Theorem 2.3.1 is satisfied. On the other hand,
if we take α = 0, we can work with a suitable branch of log(a − z) instead of gα,a. The
function defined by each branch of log(a− z) is in the Bloch space of D, B, and it holds that
B ⊂ A−α+ , A−α− , A−∞ (see [45, p. 82]). With this, hypothesis (iv) of Theorem 2.3.1 would be
verified too.

Now, by Corollary 2.3.2, Wψ,ϕ is invertible if, and only if, ϕ is an automorphism of D
and ψ and 1/ψ are multipliers of A−α+ or, what is the same, operators Mψ and M1/ψ are

continuous on A−α+ . Now, applying Proposition 2.1.4 we get the result.
Analogously, we can prove the cases of A−α− and A−∞, by applying Proposition 2.1.10

and Theorem 2.1.12.

Remark 2.3.6. Observe that in Theorem 2.3.5 (iii), ψ and 1/ψ must be in A−∞ instead of
A−0+ , because in that case, the multiplication operator Mg is continuous whenever g ∈ A−∞.
Nevertheless, although it is enough that ψ, 1/ψ ∈ H∞, the next example shows a multiplier,
ψ, which is in A−0+ and A−∞, but ψ 6∈ H∞ and 1/ψ ∈ H∞.

Example 2.3.7. Consider the funcion ψ(z) = Log(z+1)−5 where Log denotes the principal
branch of the logarithm. We know ψ is not bounded on D, but ψ ∈ B, so ψ ∈ A−0+ and
ψ ∈ A−∞. Now, we see that 1/ψ is also in those spaces, that is, ψ satisfies the condition of
Theorem 2.3.5.

If we call z = a+ bi, with a, b ∈ [0, 1[, we have

|Log(a+ bi+ 1)− 5| =
∣∣∣log

√
(a+ 1)2 + b2 − 5 + iArg(a+ bi)

∣∣∣
=

√(
log
√

(a+ 1)2 + b2 − 5
)2

+ Arg2(a+ bi+ 1)

≥
∣∣∣log

√
(a+ 1)2 + b2 − 5

∣∣∣ .
Case 1: if we assume log

√
(a+ 1)2 + b2 < 0, then

∣∣∣log
√

(a+ 1)2 + b2 − 5
∣∣∣ > 5.

Case 2: suppose log
√

(a+ 1)2 + b2 ≥ 0. It is clear that |a + 1| ≤ |a| + 1 < 2 so,
(a + 1)2 + b2 < 5. Thus, 0 ≤ log

√
(a+ 1)2 + b2 < log

√
5 < 2 (because log is increasing).

Therefore,
∣∣∣log

√
(a+ 1)2 + b2 − 5

∣∣∣ > 3.

In conclusion, |Log(z + 1)− 5| ≥ 3 so, 1
|Log(z+1)−5| ≤

1
3 for all z ∈ D. Then, 1/ψ ∈ H∞.
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Chapter 3

Spectrum

This chapter is focused in the study of the spectrum of the weighted composition operators
on the spaces A−α+ , A−α− and A−∞. Thanks to two general versions of two lemmas due
to Kamowitz in [34] and two lemmas of Albanese, Bonet and Ricker in [2] and [3], we are
able to obtain some information about the spectrum and the point spectrum of Wψ,ϕ in the
three Korenblum type spaces. Moreover, we investigate the spectrum of the multiplication
operator and the composition operator in the case when the symbol is a rotation. For this
last part we use a recent paper of Bonet [16]. The main results of this chapter are presented
in [31, Section 3].

3.1 Useful general results

In this section we collect some results that we use along the chapter.

Lemma 3.1.1 ([2], Lemma 2.1). Let X = ∩n∈NXn be a Fréchet space which is the in-
tersection of a sequence of Banach spaces ((Xn, || · ||n))n∈N satisfying Xn+1 ⊆ Xn with
||x||n ≤ ||x||n+1 for each n ∈ N and x ∈ Xn+1. Let T ∈ L(X) satisfy that for each n ∈ N
there exists Tn ∈ L(Xn) such that the restriction of Tn to X (resp. of Tn to Xn+1) coincides
with T (resp. with Tn+1). Then, σ(T,X) ⊆ ∪n∈Nσ(Tn, Xn).

Lemma 3.1.2 ([3], Lemma 5.2). Let E = indn(En, || · ||n) be a Hausdorff inductive limit of
Banach spaces. Let T ∈ L(E) satisfy that for each n ∈ N the restriction Tn of T to En maps
En into itself and Tn ∈ L(En). Then, the following properties are satisfied.

(i) σp(T,E) = ∪n∈Nσp(Tn, En).

(ii) σ(T,E) ⊆ ∩m∈N(∪∞n=mσ(Tn, En)).

We also need a general version of two lemmas due to Kamowitz [34, Lemmas 2.3 and
2.4]. The first one is proved as in the original version. In the second one, we had to modify
some aspects.

Lemma 3.1.3 (General version of [34], Lemma 2.3). Let E be a space of holomorphic func-
tions containing the polynomials, and being the inclusion E ⊆ H(D) continuous. Consider
ϕ,ψ ∈ H(D), with ϕ(D) ⊂ D and ϕ(0) = 0 such that Wψ,ϕ acts continuously from E into
itself. Then, ψ(0) ∈ σ(Wψ,ϕ) and ψ(0)ϕ′(0)n ∈ σ(Wψ,ϕ) for all n ∈ N.
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Proof. (1) Suppose ψ(0) 6∈ σ(Wψ,ϕ). That is, the operator ψ(0)I − Wψ,ϕ is invertible.
Then, it is surjective. So, since 1 ∈ E, there exists one f ∈ E such that ψ(0)f(z) −
ψ(z)f(ϕ(z)) = 1 for all z ∈ D. Now, evaluating at z = 0, we get a contradiction.

(2) If ϕ′(0) = 0, then 0 ∈ σ(Wψ,ϕ). Suppose not. Then Wψ,ϕ is invertible. Let f ∈ E be
such that Wψ,ϕ(f)(z) = z for all z ∈ D. Then, ψ(0)f(0) = 0 and, after differentiating,
ψ′(0)f(0) = 1. This leads to ψ(0) = 0, which means ψ(0) 6∈ σ(Wψ,ϕ) against the just
proved statement (1).

Therefore, when ϕ′(0) = 0, ψ(0)ϕ′(0)n = 0 ∈ σ(Wψ,ϕ) for every positive integer n.

(3) If ψ(0) = 0, by (1) we get Wψ,ϕ is not invertible and, ψ(0)ϕ′(0)n = 0 ∈ σ(Wψ,ϕ) for
every positive integer n.

(4) Finally, assume ψ(0)ϕ′(0) 6= 0. Suppose that for some positive integer n the opera-
tor ψ(0)ϕ′(0)nI − Wψ,ϕ is surjective. So, there exists f ∈ E with ψ(0)ϕ′(0)nf(z) −
ψ(z)f(ϕ(z)) = zn for all z ∈ D.

Write f(z) = zmf0(z), where f0 ∈ H(D) and f0(0) 6= 0. Then, f0(z) = f0(0) + O(z).
Also, let ψ(z) = ψ(0) +O(z) and ϕ(z) = ϕ′(0)z +O(z2).

Then,

ψ(0)ϕ′(0)nf(z)− ψ(z)f(ϕ(z)) = zn

is equivalent to

ψ(0)ϕ′(0)nzm(f0(0) +O(z))− (ψ(0) +O(z))(ϕ′(0)mzm +O(zm+1))(f0(0) +O(z)) = zn

or (
ψ(0)ϕ′(0)nf0(0)− ψ(0)ϕ′(0)mf0(0)

)
(∗)

zm +O(zm+1) = zn

Now, if m 6= n, the left side has order m and the right one has order n, a contradiction.
On the other hand, if m = n, (∗) vanishes, and we get that the left side has order n+ 1
and the right side has order n, which is again a contradiction.

Hence, for each positive integer n, ψ(0)ϕ′(0)n ∈ σ(Wψ,ϕ).

Lemma 3.1.4 (General version of [34], Lemma 2.4). Let E be a space of holomorphic func-
tions containing the polynomials, and being the inclusion E ⊆ H(D) continuous. Consider
ϕ,ψ ∈ H(D), ψ 6≡ 0, ϕ(D) ⊆ D, ϕ(0) = 0 and that ϕ is not a constant function. If λ is an
eigenvalue of Wψ,ϕ : E → E, then λ ∈ {ψ(0)ϕ′(0)n}∞n=0 \ {0}.

Proof. Suppose λ is an eigenvalue of Wψ,ϕ with f ∈ E as corresponding eigenvector.

If λ = 0, ψ(z)f(ϕ(z)) = 0 for all z ∈ D. Define G := {z ∈ D : ψ(z) 6= 0}, which is a non
empty open set because ψ 6≡ 0. Then, f ◦ ϕ ≡ 0 on G. Now, ϕ cannot be constant on G
because if it were, it would be necessarily constant on D, by the Identity Principle, which
contradicts the hypothesis. So, ϕ is not constant on G, which means ϕ(G) is open and non
empty. If f ≡ 0 on ϕ(G), f ≡ 0, which is again a contradiction. Hence, λ 6= 0.

Write f(z) = azm + O(zm+1), m ≥ 0, ψ(z) = bzr + O(zr+1), r ≥ 0 and ϕ(z) = czs +
O(zs+1), s ≥ 0, where abc 6= 0.
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Then, λf(z) = ψ(z)f(ϕ(z)) becomes

λ(azm +O(zm+1)) = (bzr +O(zr+1))(a(czs +O(zs+1)m +O(zms+1)))

or

aλzm +O(zm+1) = abcmzr+ms +O(zr+ms+1) .

Equating powers, we get m = r +ms and aλ = abcm.

Since r and m are non negative integers and s is a positive integer, m = r +ms implies
that r = m = 0 or that r = 0 and s = 1. In the first case, b = ψ(0) and so, aλ = abcm

implies λ = ψ(0). On the other hand, if r = 0 and s = 1, then b = ψ(0), c = ϕ′(0) and
aλ = abcm implies λ = ψ(0)ϕ′(0)m for some positive integer m.

3.2 Essential norm and essential spectral radius

The spectral radius of an operator T on a Banach space X is defined as r(T ) := sup{|λ| :
λ ∈ σ(T )}. Let us denote by K(X) ⊆ L(X) the space of all compact operators on X. The
quotient vector space L(X)/K(X) is a unital algebra called Calkin algebra. The canonical
projection of an operator T to the Calkin algebra is denoted by π(T ). The essential spectrum
σe(T ) is the spectrum of π(T ) in the Calkin algebra. The essential norm of an operator T ∈
L(X) is defined as ‖T‖e := inf{‖T−K‖ : K ∈ K(X)}, that is, the distance of the operator to
the set of compact operators on X. Notice that ‖T‖e = 0 if, and only if, T is compact. The
essential norm is indeed a norm in the Calkin algebra. The essential spectral radius, denoted
by re(T ), is the spectral radius of π(T ), that is, re(T ) = r(π(T )) = max{|λ| : λ ∈ σe(T )}.
We write σe(T,X) and re(T,X) if we need to stress the space X. For more information
about the essential norm and essential spectral radius, we refer the reader to the book [1,
Section 7.5].

Montes-Rodŕıguez in [38] studied the essential norm of weighted composition operators
on weighted Banach spaces of analytic functions and gave formula in terms of the weights
and the symbols. We recall the following results of such investigation.

Proposition 3.2.1 ([38], Theorem 2.1). Let v and w be weights and let Wψ,ϕ : H∞v → H∞w
be a weighted composition operator. Then, either ψ 6∈ H∞w and ‖Wψ,ϕ‖e = ∞ or, ψ ∈ H∞w
and

‖Wψ,ϕ‖e = lim
r−→1−

sup
|ϕ(z)|>r

w(z)

ṽ(ϕ(z))
|ψ(z)|.

Proposition 3.2.2 ([38], Theorem 2.2). Let v and w be weights and let Wψ,ϕ : H0
v → H0

w be
a weighted composition operator. Then, either ψ 6∈ H0

w and ‖Wψ,ϕ‖e =∞ or, ψ ∈ H0
w and

‖Wψ,ϕ‖e = lim sup
|z|−→1−

w(z)

ṽ(ϕ(z))
|ψ(z)|.

Proposition 3.2.3. Let v and w be two typical weights, ϕ ∈ H(D) with ϕ(D) ⊂ D and
ψ ∈ H0

w. Then,

lim
r−→1−

sup
|ϕ(z)|>r

w(z)

ṽ(ϕ(z))
|ψ(z)| = lim sup

|z|−→1−

w(z)

ṽ(ϕ(z))
|ψ(z)| .
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The equation in Proposition 3.2.3 is exactly the equation (4) that appears in the proof
of [38, Theorem 2.2]. The proof can be seen in there.

Taking into account Propositions 3.2.1, 3.2.2 and 3.2.3, we get that the essential norm
of the weighted composition operator on the Banach space H∞p or H0

p for some p > 0, when
ψ ∈ H0

p , is

‖Wψ,ϕ‖e = lim sup
|z|−→1−

(1− |z|)p

(1− |ϕ(z)|)p
|ψ(z)| . (3.2.1)

Moreover, by [1, Definition 7.46 and Theorem 6.12], its essential spectral radius is the
following limit:

re(Wψ,ϕ, H
∞
p ) = lim

k
||W k

ψ,ϕ||
1
k
e , (3.2.2)

where

‖W k
ψ,ϕ‖e = lim sup

|z|−→1−

|ψ(z)| . . . |ψ(ϕk−1(z))|(1− |z|)p

(1− |ϕk(z)|)p
,

and ϕk(z) denotes the n-th iterate of the symbol: ϕk(z) = (ϕ
(k times)
◦ . . . ◦ ϕ)(z).

Remark 3.2.4. In the particular case of the composition operators the constant function 1
belongs to H0

p , hence we have

re(Cϕ, H
∞
p ) = lim

k
‖Ckϕ‖

1
k
e = lim

k
‖Cϕk‖

1
k
e = lim

k

(
lim sup
|z|−→1−

(
1− |z|

1− |ϕk(z)|

)p) 1
k

.

Lemma 3.2.5. Let ϕ,ψ ∈ H(D), ϕ(0) = 0, ϕ not constant. Then,

re(Wψ,ϕ, H
∞
β ) ≤ re(Wψ,ϕ, H

∞
α )

whenever 0 < α ≤ β <∞.

Proof. By Schwarz’s Lemma, |ϕ(z)| ≤ |z| for all z ∈ D. Then, since 0 < α ≤ β <∞,(
1− |z|

1− |ϕ(z)|

)β
≤
(

1− |z|
1− |ϕ(z)|

)α
for every z ∈ D.

Thus, considering (3.2.1) and (3.2.2), and taking into account that for any n ∈ N, ϕn has
the same properties than ϕ, we get that ||Wn

ψ,ϕ||e,H∞β ≤ ||W
n
ψ,ϕ||e,H∞α for all n ∈ N.

The following lemma is useful in Section 3.4.

Lemma 3.2.6. Let ϕ ∈ H(D) not a rotation with ϕ(D) ⊂ D and ϕ(0) = 0. Then, there is
r0 ∈]0, 1[ such that re(Cϕ, H

∞
p ) < rp0 , for each p > 0. In particular, limp−→∞ re(Cϕ, H

∞
p ) =

0.
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Proof. If for some n ∈ N, |ϕn(z)| < 1/2 for all z ∈ D, then |ϕj(z)| < 1/2 for every z ∈ D,
j ≥ n. Appealing to Remark 3.2.4, we get that

re(Cϕ, H
∞
p ) = lim

k

(
lim sup
|z|−→1−

(
1− |z|

1− |ϕk(z)|

)p) 1
k

< lim
k

(
lim sup
|z|−→1−

2(1− |z|)p
) 1

k

= 0,

and the statement is clear.

Now, suppose that for every n ∈ N, ϕn satisfies |ϕn(z)| ≥ 1/2 for some z ∈ D. Then, by
Schwarz Lemma, |ϕj(z)| ≥ 1/2 for every j = 0, . . . , n− 1.

By [27, Lemma 7.33] there exists r0 ∈]0, 1[ such that

1− |z|
1− |ϕ(z)|

< r0 for all |z| ≥ 1/2.

Thus,

1− |z|
1− |ϕn(z)|

=
n−1∏
j=0

1− |ϕj(z)|
1− |ϕj+1(z)|

≤ rn0 < r0 .

So, for all n ∈ N,

sup
|ϕn(z)|≥ 1

2

1− |z|
1− |ϕn(z)|

≤ rn0 ,

and

sup
|ϕn(z)|≥ 1

2

(
1− |z|

1− |ϕn(z)|

)p
≤ rnp0 .

Now, for 1
2 ≤ s < 1, it holds that for all n ∈ N,

sup
|ϕn(z)|≥s

(
1− |z|

1− |ϕn(z)|

)p
≤ rnp0 .

Furthermore,

||Cϕn ||e,H∞p = inf
s∈]0,1[

sup
|ϕn(z)|≥s

(
1− |z|

1− |ϕn(z)|

)p
= lim

s→1−
sup

|ϕn(z)|≥s

(
1− |z|

1− |ϕn(z)|

)p
≤ rnp0 ,

and

||Cϕn ||
1
n
e,H∞p

≤ rp0.

As a Corollary of Lemma 3.2.6, we obtain the following result, which can be also found
in [6].

Corollary 3.2.7 ([6], Theorem 5.1). Let ϕ ∈ H(D), with ϕ(D) ⊂ D, 0 < |ϕ′(0)| < 1 and
ϕ(0) = 0. Then, re(Cϕ, H

∞
p ) < 1 for all p > 0.

Proposition 3.2.8. Let ϕ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0, 0 < |ϕ′(0)| < 1. Then,
re(Cϕ, H

∞
p ) = re(Cϕ, H

∞
1 )p for each p > 0. Moreover, the function R : ]0,+∞[→ [0, 1[

defined by R(p) = re(Cϕ, H
∞
p ) is continuous.
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Proof. Consider the function R defined by:

R(p) := lim
k

(
lim sup
|z|−→1−

(
1− |z|

1− |ϕk(z)|

)p) 1
k

.

Observe that we can rewrite R as:

R(p) =

lim
k

(
lim sup
|z|−→1−

1− |z|
1− |ϕk(z)|

) 1
k

p

.

Then, since both limits exist, the function R is continuous because

lim
k

(
lim sup
|z|−→1−

1− |z|
1− |ϕk(z)|

) 1
k

= re(Cϕ, H
∞
1 ) .

Corollary 3.2.9. Let ϕ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0, 0 < |ϕ′(0)| < 1. Denote the essential
spectral radius re(Cϕ, H

∞
p ) = re,p.

a) If α > 0, αn := α+ 1
n , then lim

n
re,αn = re,α.

b) If α ≥ 1, αn := α− 1
n , then lim

n
re,αn = re,α.

Proof. The function R in Proposition 3.2.8 can be written as R(p) = (re,1)
p and is contin-

uous. Since (αn)n tends to α in both cases, then R(αn) tends to R(α). In other words,
lim
n
re,αn = re,α.

3.3 Spectra of Wψ,ϕ

In this section we study the spectrum of the weighted composition operators on the spaces
A−α+ , A−α+ and A−∞. From the next theorem of Aron and Lindström for the weighted Banach
spaces H∞αn we deduce some of the results for the Korenblum type spaces.

Theorem 3.3.1 ([7], Theorem 7). Let p > 0 and suppose ϕ, not an automorphism, has fixed
point a ∈ D and Wψ,ϕ : H∞p → H∞p is bounded. Then

σ(Wψ,ϕ, H
∞
p ) = {λ ∈ C : |λ| ≤ re(Wψ,ϕ, H

∞
p )} ∪ {ψ(a)ϕ′(a)n}∞n=0 .

The next theorem gives some information about the spectrum of Wψ,ϕ on the Korenblum
type spaces.

Theorem 3.3.2. Let α ≥ 0, ψ,ϕ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0, 0 < |ϕ′(0)| < 1. Then,

(i) if αk := α+ 1
k and Wψ,ϕ ∈ L(A−α+ ),

{0} ∪ {ψ(0)ϕ′(0)n}∞n=0 ⊆ σ(Wψ,ϕ, A
−α
+ ) ⊆ B(0, lim

k
re(Wψ,ϕ, H

∞
αk

)) ∪ {ψ(0)ϕ′(0)n}∞n=0,

(ii) if αk := α− 1
k and Wψ,ϕ ∈ L(A−α− ),

{0} ∪ {ψ(0)ϕ′(0)n}∞n=0 ⊆ σ(Wψ,ϕ, A
−α
− ) ⊆ B(0, lim

k
re(Wψ,ϕ, H

∞
αk

)) ∪ {ψ(0)ϕ′(0)n}∞n=0,
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3.3. Spectra of Wψ,ϕ

(iii) if Wψ,ϕ ∈ L(A−∞),

{0} ∪ {ψ(0)ϕ′(0)n}∞n=0 ⊆ σ(Wψ,ϕ, A
−∞) ⊆ B(0, lim

k
re(Wψ,ϕ, H

∞
k )) ∪ {ψ(0)ϕ′(0)n}∞n=0 .

Proof. (i) First inclusion: If 0 6∈ σ(Wψ,ϕ, A
−α
+ ), the operator Wψ,ϕ : A−α+ → A−α+ would

be invertible and, by Theorem 2.3.5 (i), ϕ would be an automorphism, which is a
contradiction. Also, {ψ(0)ϕ′(0)n}∞n=0 ⊂ σ(Wψ,ϕ, A

−α
+ ) (see Lemma 3.1.3).

Second inclusion: by Lemma 3.1.1 and Theorem 3.3.1,

σ(Wψ,ϕ, A
−α
+ ) ⊆

⋃
k∈N

(
B(0, re(Wψ,ϕ, H

∞
αk

) ∪ {ψ(0)ϕ′(0)n}∞n=0

)
.

If λ ∈ ∪kB(0, re(Wψ,ϕ, H
∞
αk

)), there exists k0 ∈ N such that |λ| ≤ re(Wψ,ϕ, H
∞
αk0

) ≤
supk re(Wψ,ϕ, H

∞
αk

). Taking into account (re(Wψ,ϕ, H
∞
αk

))k is an increasing sequence of
positive real numbers bounded by re(Wψ,ϕ, H

∞
α ), it follows that limk re(Wψ,ϕ, H

∞
αk

) =
supk re(Wψ,ϕ, H

∞
αk

).

(ii) Analogously to (i), the first inclusion is obtained directly from Theorem 2.3.5 (ii) and
Lemma 3.1.3.

Second inclusion: by Lemma 3.1.2 and Theorem 3.3.1,

σ(Wψ,ϕ, A
−α
− ) ⊆

⋂
k∈N

( ∞⋃
m=k

(
B(0, re(Wψ,ϕ, H

∞
αm) ∪ {ψ(0)ϕ′(0)n}∞n=0

))
.

Moreover, the sequence (re(Wψ,ϕ, H
∞
αm))m is decreasing. Thus,

∞⋃
m=k

B(0, re(Wψ,ϕ, H
∞
αm)) = B(0, re(Wψ,ϕ, H

∞
αk

)) .

Then,

σ(Wψ,ϕ, A
−α
− ) ⊆

⋂
k∈N

B(0, re(Wψ,ϕ, H
∞
αk

)) ∪ {ψ(0)ϕ′(0)n}∞n=0

= B(0, inf
k
re(Wψ,ϕ, H

∞
αk

)) ∪ {ψ(0)ϕ′(0)n}∞n=0

= B(0, lim
k
re(Wψ,ϕ, H

∞
αk

)) ∪ {ψ(0)ϕ′(0)n}∞n=0 .

(iii) From Theorem 2.3.5 (iii), we obtain 0 ∈ σ(Wψ,ϕ, A
−∞). Also, using Lemma 3.1.3 we

obtain that {ψ(0)ϕ′(0)n}∞n=0 ⊆ σ(Wψ,ϕ, A
−∞).

On the other hand, applying Lemma 3.1.2 and Theorem 3.3.1, we get

σ(Wψ,ϕ, A
−∞) ⊆

⋂
k∈N

 ⋃
m≥k

B(0, re(Wψ,ϕ, H
∞
m ) ∪ {ψ(0)ϕ′(0)n}∞n=0


Moreover, since the sequence (re(Wψ,ϕ, H

∞
m ))m is decreasing,

∪m≥kB(0, re(Wψ,ϕ, H
∞
m ) = B(0, re(Wψ,ϕ, H

∞
k )). Then,

σ(Wψ,ϕ, A
−∞) ⊆

⋂
k∈N

B(0, re(Wψ,ϕ, H
∞
k )) ∪ {ψ(0)ϕ′(0)n}∞n=0 =

= B(0, lim
k
re(Wψ,ϕ, H

∞
k )) ∪ {ψ(0)ϕ′(0)n}∞n=0 .
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Remark 3.3.3. Recall that if T is a compact operator, then ‖T‖e = 0 and then, re(T ) = 0
as well. From Theorem 3.3.2 and Proposition 1.3.1, we have that if Wψ,ϕ is compact on A−α+ ,
A−α− or A−∞ then σ(Wψ,ϕ) = {0} ∪ {ψ(0)ϕ′(0)n}∞n=0.

Remark 3.3.4. When ϕ′(0) = 0, {ψ(0)ϕ′(0)n}∞n=0 = {0, ψ(0)}. Then, we have that

{0, ψ(0)} ⊆ σ(Wψ,ϕ, A
−α
+ ) ⊆

⋃
n

σ(Wψ,ϕ, H
∞
αn),

{0, ψ(0)} ⊆ σ(Wψ,ϕ, A
−α
− ) ⊆

⋂
m∈N

( ∞⋃
n=m

σ(Wψ,ϕ, H
∞
αn)
)
, and

{0, ψ(0)} ⊆ σ(Wψ,ϕ, A
−α
− ) ⊆

⋂
m∈N

( ∞⋃
n=m

σ(Wψ,ϕ, H
∞
n )
)
.

The first inclusion is clear in all the cases applying Lemma 3.1.3. In the second one we
use Lemmas 3.1.1 and 3.1.2.

In the case when ϕ is not an automorphisim, applying Theorem 3.3.1 and reasoning as
in Theorem 3.3.2 we obtain:

{0, ψ(0)} ⊆ σ(Wψ,ϕ, A
−α
+ ) ⊆ B(0, lim

n
re,αn) ∪ {0, ψ(0)},

{0, ψ(0)} ⊆ σ(Wψ,ϕ, A
−α
− ) ⊆ B(0, lim

n
re,αn) ∪ {0, ψ(0)}, and

{0, ψ(0)} ⊆ σ(Wψ,ϕ, A
−∞) ⊆ B(0, lim

n
re,n) ∪ {0, ψ(0)}.

The following Theorem collects some information about the point spectrum of the
weighted composition operator on the spaces A−α+ , A−α− and A−∞.

Theorem 3.3.5. Let ϕ,ψ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0, 0 < |ϕ′(0)| < 1.

(i) If 0 ≤ α <∞ and Wψ,ϕ is continuous on A−α+ , then

{ψ(0)ϕ′(0)n}∞n=0 \B(0, re(Wψ,ϕ, H
∞
α )) ⊆ σp(Wψ,ϕ, A

−α
+ ) ⊆ {ψ(0)ϕ′(0)n}∞n=0 .

(ii) If 0 < α <∞ and Wψ,ϕ is continuous on A−α− , then σp(Wψ,ϕ, A
−α
− ) ⊆ {ψ(0)ϕ′(0)n}∞n=0.

(iii) If Wψ,ϕ ∈ L(A−∞), then σp(Wψ,ϕ, A
−∞) ⊆ {ψ(0)ϕ′(0)n}∞n=0 .

Proof. (i) By Lemma 3.1.4, σp(W,A
−α
+ ) ⊆ {ψ(0)ϕ′(0)n}∞n=0. On the other hand, fix n ∈ N.

If |ψ(0)ϕ′(0)n| > re(Wψ,ϕ, H
∞
α ) then ψ(0)ϕ′(0)n ∈ σp(Wψ,ϕ, H

0
α) (see [1, Theorem 7.44]).

That is, there exists f ∈ H0
α such that Wψ,ϕf = ψ(0)ϕ′(0)nf . But H0

α ⊂ A−α+ , thus
ψ(0)ϕ′(0)n ∈ σp(Wψ,ϕ, A

−α
+ ).

The inclusions of (ii) and (iii) follow again from Lemma 3.1.4.
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3.4 Spectra of Cϕ

From Theorem 3.3.2 in the preceding section we can obtain, as a corollary, the following result
about the spectrum of the composition operators on A−α+ and A−α− spaces. The spectrum
and point spectrum of Cϕ on the Korenblum space, A−∞, are studied in Theorems 3.4.2 and
3.4.4.

Corollary 3.4.1. Let ϕ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0, 0 < |ϕ′(0)| < 1. Then,

(i) for any α ≥ 0,

{0} ∪ {ϕ′(0)n}∞n=0 ⊆ σ(Cϕ, A
−α
+ ) ⊆ B(0, re(Cϕ, H

∞
α )) ∪ {ϕ′(0)n}∞n=0 .

(ii) for any 0 < α <∞,

{0} ∪ {ϕ′(0)n}∞n=0 ⊆ σ(Cϕ, A
−α
− ) ⊆ B(0, re(Cϕ, H

∞
α )) ∪ {ϕ′(0)n}∞n=0 .

Proof. This is a direct consequence of Theorem 3.3.2 and Corollary 3.2.9.

Theorem 3.4.2. Let ϕ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0 and 0 < |ϕ′(0)| < 1. Then,

σ(Cϕ, A
−∞) = {0} ∪ {ϕ′(0)n}∞n=0 .

Proof. The operator Cϕ : A−∞ → A−∞ is continuous (because it is continuous on each H0
n

(or H∞n )).

By Lemma 3.1.3, ϕ′(0)n ∈ σ(Cϕ, A
−∞) for each n ∈ N.

Assume 0 6∈ σ(Cϕ, A
−∞), then Cϕ : A−∞ → A−∞ is a surjective isomorphism. Since A−∞

satisfies the assumptions on X in [23, Theorem 2.1], then ϕ would be an automorphism, but
this is not the case. We then have {0} ∪ {ϕ′(0)n : n ∈ N} ⊆ σ(Cϕ, A

−∞) .

Now, denote Tk = Cϕ : H∞k → H∞k . By Theorem 3.3.1,

σ(Cϕ, H
∞
k ) = σ(Tk, H

∞
k ) = B(0, re(Cϕ, H

∞
k )) ∪ {ϕ′(0)n}∞n=0 .

We know (by Lemma 3.2.5) that , since k < k+ 1, re(Cϕ, H
∞
k+1) ≤ re(Cϕ, H∞k ). This implies⋃

j≥k
σ(Tj) = B(0, re(Tk)) ∪ {ϕ′(0)n}∞n=0 .

But Lemma 3.1.2 yields

σ(Cϕ, A
−∞) ⊆

⋂
k

⋃
j≥k

σ(Tj) =

(⋂
k

B(0, re(Tk))

)
∪ {ϕ′(0)n}∞n=0 .

Moreover, re(Tk) tends to 0 when k goes to infinity (see Lemma 3.2.6). Therefore,

σ(Cϕ, A
−∞) ⊆ {0} ∪ {ϕ′(0)n}∞n=0 .

Corollary 3.4.3. Let ϕ ∈ H(D) with ϕ(D) ⊆ D, ϕ(0) = 0 and 0 < |ϕ′(0)| < 1. Then,
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(i) for any 0 ≤ α <∞,

{ϕ′(0)n}∞n=0 \B(0, re(Cϕ, H
∞
α )) ⊆ σp(Cϕ, A−α+ ) ⊆ {ϕ′(0)n}∞n=0.

(ii) for any 0 < α <∞,

{ϕ′(0)n}∞n=0 \B(0, re(Cϕ, H
∞
α )) ⊆ σp(Cϕ, A−α− ) ⊆ {ϕ′(0)n}∞n=0.

Proof. By Theorem 3.3.5 we obtain (i) and the second inclusion of (ii). For the first inclusion
of (ii), assume |ϕ′(0)n| > re(Cϕ, H

∞
α ). According to Corollary 3.2.9 there exists k ∈ N such

that |ϕ′(0)n| > re(Cϕ, H
∞
αk

), where αk = α − 1
k . Then, by [1, Theorem 7.44], ϕ′(0)n ∈

σp(Cϕ, H
∞
αk

), that is, there exists f ∈ H∞αk such that Cϕ(f) = ϕ′(0)nf . Finally, we obtain
that ϕ′(0)n ∈ σp(Cϕ, A−α− ), since H∞αk ⊆ A

−α
− .

The eigenfunction equation for the composition operator Cϕ, f ◦ ϕ = λf , is called
Schröder’s equation. For holomorphic maps ϕ with an interior fixed point a, the eigenvalues
of Schröder’s equation lie among the numbers {ϕ′(a)n}. Königs showed that if 0 < |ϕ′(a)| < 1
then there is a solution σ for ϕ′(a) and, σn is the solution for ϕ′(a)n. The symbol σ denotes
the unique eigenfunction of Schröder’s equation for λ = ϕ′(a) that has σ′(a) = 1. This func-
tion is called the Königs function of ϕ. For more information about the Königs function, see
[43, pp. 90].

Theorem 3.4.4. Consider Cϕ : A−∞ → A−∞ where ϕ ∈ H(D), ϕ(D) ⊂ D, ϕ(0) = 0,
0 < |ϕ′(0)| < 1. Then, σp(Cϕ, A

−∞) = {ϕ′(0)n}∞n=0.

Proof. By Theorem 3.4.2, we know σ(Cϕ, A
−∞) = {0} ∪ {ϕ′(0)n}∞n=0 . If we denote

re(Cϕ, H
∞
n ) by re,n then we have that (re,n)n is a decreasing sequence that tends to 0 when

n tends to infinity (see Lemma 3.2.6). Thus, for a certain n0 ∈ N, |ϕ′(0)| > re,n0 . But,
Bourdon proved in [22] that the Königs eigenfunction σ ∈ H0

n0
if, and only if, |ϕ′(0)| > re,n0 .

So, we have σ ∈ H0
n0

. That is, ϕ′(0) is an eigenvalue. Therefore, since A−∞ is an algebra
and the operator Cϕ is an algebra homomorphism, ϕ′(0)n is also an eigenvalue for all n ∈ N
and the proof is finished.

3.5 Spectra of Mψ

Given ψ ∈ H(D), the multiplication operator Mψ is a weighted composition operator for the
selfmap ϕ(z) = z. In this section we study the spectrum of multiplication operators.

Proposition 3.5.1. Let E be a space which is continuously included in H(D), containing
the polynomials and such that for any η ∈ H∞ the multiplication operator Mη : E → E is
continuous. Let ψ ∈ H(D) be non constant. If Mψ : E → E is continuous, then σp(Mψ) = ∅
and ψ(D) ⊆ σ(Mψ) ⊆ ψ(D).

Proof. Point spectrum: suppose that λ ∈ C is an eigenvalue of Mψ, that is, there exists
f ∈ E, f 6≡ 0 sucht that ψ(z)f(z) = λf(z) for every z ∈ D. However, since f 6≡ 0, the set U
of the points where f does not vanish is an open set. Then, ψ(z) = λ for all z ∈ U , which
implies ψ is a constant function by the Identity Principle. This contradicts the hypothesis.
Accordingly, σp(Mψ) = ∅.

Now we study the spectrum. On one hand, if λ 6∈ ψ(D), then there exists ε > 0 with
|ψ(z)− λ| ≥ ε for all z ∈ D. Thus, the function η(z) := 1

ψ(z)−λ ∈ H
∞ and Mη is continuous
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on E by assumption. This implies that Mψ − λI is a surjective operator. Indeed, for any

g ∈ E, function f(z) := Mηg(z) = g(z)
ψ(z)−λ verifies (Mψ − λI)f = g and f ∈ E. Moreover,

Mψ − λI is injective because σp(Mψ) = ∅. Thus, λ 6∈ σ(Mψ).

On the other hand, if λ ∈ ψ(D) then there exists z0 ∈ D such that ψ(z0) = λ. Every
function in (Mψ−λI)(E) vanishes at z0. Indeed, (Mψ−λI)f(z0) = ψ(z0)f(z0)−λf(z0) = 0.
Thus, Mψ−λI is not a surjective operator because since all functions in the range vanish at
the same point, we can not have in the range constant functions different from the 0 function.

Therefore, ψ(D) ⊆ σ(Mψ, E) ⊆ ψ(D).

Corollary 3.5.2. If Mψ is continuous on any of the spaces A−α+ , α ≥ 0, A−α− , 0 < α ≤ ∞
for some non-constant function ψ ∈ H(D) then, σp(Mψ) = ∅ and ψ(D) ⊆ σ(Mψ) ⊆ ψ(D).

Proof. This is a direct consequence of Proposition 3.5.1 since, by Propositions 2.1.4, 2.1.10
and Theorem 2.1.12 its assumptions are satisfied.

Remark 3.5.3. Notice that if we apply Proposition 3.5.1 to H∞p for any p > 0, we obtain

that σ(Mψ, H
∞
p ) = ψ(D), since the spectrum of any operator on a Banach space is a compact

set.

Unlike in Banach spaces, the spectrum of Mψ is not necessarily a closed set. The following

example shows that the spectrum may not coincide with ψ(D).

Example 3.5.4. The analytic function ψ(z) := 1
1−z belongs to A−∞. Thus, the multiplica-

tion operator Mψ is continuous on A−∞ (see Theorem 2.1.12). Observe 1
2 = ψ(−1) ∈ ψ(D).

But, 1
2 ∈ ρ(Mψ, A

−∞). In fact, the inverse of Mψ− 1
2I = Mψ− 1

2
is the operator M 1

ψ− 1
2

. And,

for each n > 1,

sup
z∈D

(1− |z|)n 1

|ψ(z)− 1
2 |

= sup
z∈D

(1− |z|)n 2|1− z|
|1 + z|

≤ sup
z∈D

(1− |z|)n 2|1− z|
1− |z|

= sup
z∈D

2(1− |z|)n−1|1− z| <∞ .

Therefore, since 1
ψ− 1

2

∈ A−∞ then, M 1

ψ− 1
2

∈ L(A−∞) and 1
2 ∈ ρ(Mψ, A

−∞).

3.6 Spectra of Cϕ whose symbol is a rotation

If ϕ is an automorphism of the disc such that ϕ(0) = 0, then it is a rotation. That is, there is
c ∈ C with |c| = 1 such that ϕ(z) = cz for all z ∈ D. In this section we present a few results
about the spectrum of composition operators on Korenblum type spaces when the symbol
is a rotation. The first lemma shows the spectrum and point spectrum for the weighted
Banach spaces.

Lemma 3.6.1. Let α > 0, ϕ ∈ H(D), ϕ(z) = cz for all z ∈ D, with |c| = 1. Then

(i) σp(Cϕ, H
∞
α ) = {cn}∞n=0.

(ii) If c is a root of unity, then σ(Cϕ, H
∞
α ) = σp(Cϕ, H

∞
α ) = {cn}∞n=0.

(iii) If c is not a root of unity, then σ(Cϕ, H
∞
α ) = ∂D.
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Proof. (i) Lemma 3.1.4 implies σp(Cϕ, H
∞
α ) ⊆ {cn}∞n=0. For each m = 0, 1, 2, . . . the function

fm(z) := zm belongs to H∞α . Moreover, for each m, fm(ϕ(z)) = cmfm(z) = cmzm for all
z ∈ D. So, every cm is an eigenvalue of Cϕ with eigenvector fm.

(ii) If c is a root of unity, then there exists m ∈ N with ϕm(z) = z for every z ∈ D.
That is, Cmϕ = Cϕm = I. By applying the Spectral Mapping Theorem [1, Theorem 6.31],
we obtain that (σ(Cϕ))m = σ(Cmϕ ) = σ(I) = {1}. Then σ(Cϕ) ⊆ {λ : λm = 1}. But, we
already had that {cn}∞n=0 ⊆ σ(Cϕ), then {cn}∞n=0 = {λ : λm = 1} and we get the result.

(iii) Suppose c is not a root of unity. If |λ| > 1 = ||Cϕ|| = ||C−1ϕ ||, then λ ∈ ρ(Cϕ) and
λ ∈ ρ(C−1ϕ ) by [1, Theorem 6.3]. It is easy to check that −λC−1ϕ (λI−C−1ϕ )−1 is the inverse of
1
λI − Cϕ, which implies 1/λ ∈ ρ(Cϕ). This shows that {cn}∞n=0 ⊂ σ(Cϕ, H

∞
α ) ⊂ ∂D. Since c

is not a root of unity, Kronecker’s Theorem [40, Theorem 2.2.4] implies that {cn}∞n=0 is dense
in ∂D. Since the spectrum of an operator on a Banach space is compact, this completes the
proof of part (iii).

Corollary 3.6.2. Let ϕ ∈ H(D), ϕ(z) = cz for all z ∈ D, with |c| = 1. Let E be any of the
spaces A−α+ , α ≥ 0, or A−α− , 0 < α <∞. Then

(i) σp(Cϕ, E) = {cn}∞n=0.

(ii) If c is a root of unity, then σ(Cϕ, E) = σp(Cϕ, E) = {cn}∞n=0.

(iii) If c is not a root of unity, then {cn}∞n=0 ⊂ σ(Cϕ, E) ⊂ ∂D.

Proof. The point spectrum is obtained with the same argument as in Lemma 3.6.1. And,
for the spectrum, both cases follow from Lemmas 3.1.2 and 3.6.1.

In the case of the Korenblum space we can characterize which points of the unit circle
belong to the spectrum of Cϕ when ϕ(z) = cz for all z ∈ D and c ∈ ∂D is not a root of unity.
Theorem 3.6.5 is a similar result to [16, Theorem 1]. We first need the following known
characterization of the functions in the Korenblum space in terms of their Taylor expansion,
Lemma 3.6.4. We use Lemma 3.6.3 to prove it.

Lemma 3.6.3. Let k > 0, n ∈ N∪{0}, ϕ(r) = (1−r)krn with ϕ(0) = ϕ(1) = 0 when n > 0.

(i) If n = 0,
max
r∈[0,1]

ϕ(r) = max
r∈[0,1]

(1− r)k = 1.

(ii) If n ∈ N,

max
r∈[0,1]

ϕ(r) =
kknn

(n+ k)n+k
.

Proof. (i) It is clear. (ii) For n ∈ N, we have that

ϕ′(r) = n(1− r)krn−1 − k(1− r)k−1rn = rn−1(1− r)k−1(n(1− r)− kr).

Since the differentiable function ϕ has a maximum at the interior point r, ϕ′ vanishes at r.
Thus, if we solve ϕ′(r) = 0, we have just three options: r = 0, r = 1 or r = n/(n + k). We
discard the first two because ϕ(0) = ϕ(1) = 0 by hypothesis. Then,

max
r∈[0,1]

ϕ(r) = ϕ

(
n

n+ k

)
=

kknn

(n+ k)n+k
.
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Lemma 3.6.4. A function f(z) =
∑∞

n=0 anz
n on the unit disc D belongs to A−∞ if, and

only if, there is k ∈ N such that supn n
−k|an| <∞.

Proof. Since limn n
k(n+ k)−k = 1, it is enough to prove that f ∈ A−∞ if, and only if, there

is k ∈ N such that supn |an|(n+ k)−k <∞.
Suppose that f ∈ A−∞, that is, there is k ∈ N such that supz∈D(1−|z|)k|f(z)| <∞. Fix

0 < r < 1. By Cauchy estimates [30, p. 118],

|an| ≤
1

rn
max
|z|=r
|f(z)| ≤ ‖f‖k

1

rn(1− r)k
.

From this, we can deduce that for all n ∈ N,

|an| max
r∈[0,1]

rn(1− r)k ≤ ‖f‖k.

Applying Lemma 3.6.3, we obtain that

|an|
(n+ k)k

≤ (n+ k)n

nn
‖f‖k
kk

.

Since limn(n+ k)nn−n = ek, it follows that

sup
n

|an|
(n+ k)k

<∞.

On the other hand, assume now that there is a certain k ∈ N satisfying
supn |an|(n+ k)−k < ∞. That is, there exists M > 0 such that |an| ≤ M(n + k)k for
all n ∈ N. For z ∈ D we have that

(1− |z|)k+2|f(z)| ≤
∞∑
n=0

|an||z|n(1− |z|)k+2 ≤ C
∞∑
n=0

1

(n+ k + 2)2
<∞,

for some positive constant C. Therefore, f ∈ H∞k+2 ⊂ A−∞.

Theorem 3.6.5. Let c ∈ C be an element of the unit circle |c| = 1 which is not a root of
unity. Let Cϕ : A−∞ → A−∞ be the composition operator with symbol ϕ(z) = cz, z ∈ D. A
complex number λ 6= 1, |λ| = 1, belongs to the resolvent set ρ(Cϕ, A

−∞) if, and only if, there
are s ≥ 1 and ε > 0 such that |cn − λ| ≥ εn−s for each n ∈ N.

Proof. First, assume that there are s ≥ 1 and ε > 0 such that |cn−λ| ≥ εn−s for each n ∈ N.
In particular, Cϕ − λI is injective by Corollary 3.6.2 (i). We prove that it is also surjective.
Given g(z) =

∑∞
n=0 anz

n ∈ A−∞, we define

f(z) :=

∞∑
n=0

an
cn − λ

zn, z ∈ D.

It is easy to check that (Cϕ − λI)f = g. To conclude the proof of this implication it is
enough to show that f ∈ A−∞. Since g ∈ A−∞, we apply Lemma 3.6.4 to find some k ∈ N
and M > 0 such that n−k|an| ≤ M for each n = 0, 1, 2, . . .. Hence, for each n = 0, 1, 2, . . .,
we get that

|an|
|cn − λ|

≤ Mnkns

ε
=
M

ε
nk+s,

45



Chapter 3. Spectrum

which implies that f is analytic and belongs to A−∞ by Lemma 3.6.4.
Now, suppose that λ 6= 1, |λ| = 1, belongs to ρ(Cϕ, A

−∞). Then, the inverse operator
(Cϕ − λI)−1 : A−∞ → A−∞ exists, is continuous and necessarily has the form

(Cϕ − λI)−1(
∞∑
n=0

anz
n) =

∞∑
n=0

an
cn − λ

zn.

The continuity of this inverse implies that for m = 1 there are k > 1 and M > 0 such that
for each

∑∞
n=0 anz

n ∈ H∞1 we have

sup
z∈D

(1− |z|)k
∣∣∣∣∣
∞∑
n=0

an
cn − λ

zn

∣∣∣∣∣ ≤M sup
z∈D

(1− |z|)

∣∣∣∣∣
∞∑
n=0

anz
n

∣∣∣∣∣ .
Evaluating this inequality for each monomial zn, n = 0, 1, 2... we get, for each n = 0, 1, 2, ...,

sup
z∈D

(1− |z|)k |zn|
|cn − λ|

≤M sup
z∈D

(1− |z|)|zn|.

Therefore, evaluating the maximum of rn(1− r)k, we get for each n = 0, 1, 2, ...

kknn

(n+ k)n+k
≤M |cn − λ| nn

(n+ 1)n+1
.

This implies, for each n = 0, 1, 2, ...,

|cn − λ| ≥ 1

M

(
n+ 1

n+ k

)n+1 1

(n+ k)k−1
,

which yields the desired inequality.

A real number x ∈ R is called Diophantine if there are δ ≥ 1 and d(x) > 0 such that∣∣∣∣x− p

q

∣∣∣∣ ≥ d(x)

q1+δ

for all rational numbers p/q, p, q ∈ Z. As we can see in [24, p. 43], this occurs if, and only
if, λ = e2πix satisfies

|λn − 1| ≥ d(x)n−δ, n ≥ 1.

In the next proposition, a characterization of the complex number 1 belonging to the
resolvent set in relation with Diophantine numbers is stated. In this result, A−∞0 denotes
the space of all functions f ∈ A−∞ such that f(0) = 0. This proposition should be compared
with [16, Theorem 2].

Proposition 3.6.6. Let ϕ(z) = cz, z ∈ D, where |c| = 1 and c is not a root of unity. Let
Cϕ : A−∞0 → A−∞0 be the composition operator with symbol ϕ. Then 1 ∈ ρ(Cϕ, A

−∞
0 ) if, and

only if, c = e2πix, where x is a Diophantine number.

Proof. Notice 1 6∈ σp(Cϕ) because if it were true, it would exist f(z) =
∑∞

n=1 anz
n ∈ A−∞0 ,

f 6≡ 0 such that
∞∑
n=1

anz
n =

∞∑
n=1

anc
nzn, z ∈ D.
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However, since f 6≡ 0, there exists k ∈ N with ak 6= 0, what implies ck = 1, which is a
contradiction.

Now, suppose c = e2πix with x Diophantine. Then, by [24, pp. 43] there exist s ≥ 1 and
ε > 0 such that |cn − 1| ≥ εn−s for each n ∈ N. Since 1 6∈ σp(Cϕ), to see 1 6∈ σ(Cϕ) it only
remains to show Cϕ − I is surjective.

Given g(z) =
∑∞

n=1 anz
n, z ∈ D, define

f(z) :=
∞∑
n=1

an
cn − 1

zn, z ∈ D.

Clearly, g = (Cϕ − I)f and f(0) = 0. We want to check Lemma 3.6.4 for the function f .
Since g ∈ A−∞, for some k ∈ N, M > 0, |an| ≤ Mnk for all n ∈ N. And, by hypothesis,

1
|cn−1| ≤

ns

ε . Thus,

|an|
|cn − 1|

≤ M

ε
nk+s .

Therefore, f ∈ A−∞.
The converse follows as in the proof of Theorem 3.6.5, taking into account [24, p. 43].
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Chapter 4

The spectrum of some composition
operators on Korenblum type
spaces

In this chapter we consider composition operators Cϕ whose symbol ϕ : D → D admits an
analytic extension to an open neighbourhood of the closed unit disc D of the complex plane.
We prove that for a family of symbols singled out by H. Kamowitz in [33], the spectrum
contains a closed ball of positive radius.

A new insight in the approach of Kamowitz study of the spectrum of some composition
operators on Hp spaces ([33, Theorem 3.4]) allows us to use his method to prove that
for ϕ : D → D analytic on an open neighbourhood of D, with an interior fixed point and a
repelling fixed point z0 in ∂D, the spectrum of the composition operator Cϕ on A−α− and A−α+ ,
contains the closed ball B(0, |ϕ′(z0)|−α). This enlarges the knowledge of the size of σ(Cϕ)
that it is known to be a subset of B(0, re(Cϕ, H

∞
α )) ∪ {ϕ′(0)n}∞n=0 according to Corollary

3.4.1.

The investigation described in this chapter is collected in [29].

4.1 Preliminaries

For a positive integer m and α > 0, let H∞α,m denote the closed subspace of H∞α given by

H∞α,m := {f ∈ H∞α : f has a zero of at least order m at 0}.

Lemma 4.1.1. Let 0 < p < ∞. For any positive integer m ∈ N, the map F ∈ H∞p →
zmF ∈ H∞p,m is an isomorphism.

Proof. First, we see it is continuous. The norm in H∞p,m is the same as in H∞p . Let F ∈ H∞p .

‖zmF‖p = sup
z∈D

(1− |z|)p|z|m|F (z)| ≤ sup
z∈D

(1− |z|)p|F (z)| = ‖F‖p .

On the other hand, any f ∈ H∞p,m can be written as f = zmF , for some holomorphic
function F that indeed belongs to H∞p . Take 0 < r < 1 and so,

sup
z∈D

(1− |z|)p|F (z)| = max
{

sup
z∈B(0,r)

(1− |z|)p|F (z)|, sup
z∈D\B(0,r)

(1− |z|)p|F (z)|
}
.
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Since F is holomorphic and B(0, r) compact, there is M > 0 such that

sup
z∈B(0,r)

(1− |z|)p|F (z)| = M <∞.

Moreover, since f ∈ H∞p ,

sup
z∈D\B(0,r)

(1− |z|)p|F (z)| = sup
z∈D\B(0,r)

(1− |z|)p |z
mF (z)|
|z|m

≤ sup
z∈D\B(0,r)

(1− |z|)p |z
mF (z)|
rm

=
‖f‖p
rm

<∞.

Thus, the map is surjective and in addition it is clearly one-to-one, hence an isomorphism
by the Open Mapping Theorem.

We include a number of lemmas needed in the sequel.

Recall that a sequence (zk) ⊂ D is an iteration sequence for ϕ if ϕ(zk) = zk+1 for all k.
We need the following crucial lemmas due to Cowen and MacCluer.

Lemma 4.1.2 ([27], Lemma 7.34). If ϕ is an analytic map, not an automorphism, of the
unit disk into itself and ϕ(0) = 0. For a given 0 < r < 1, there exists 1 ≤ M < ∞ such
that if (zk)

∞
k=−K is an iteration sequence with |zn| ≥ r for some non-negative integer n and

if (wk)
n
k=−K are arbitrary numbers, then there is f ∈ H∞ such that

f(zk) = wk, −K ≤ k ≤ n

and

||f ||∞ ≤M sup{|wk| : −K ≤ k ≤ n}.

Lemma 4.1.3 ([27], Lemma 7.35). Let ϕ be as in the previous lemma. For any iteration
sequence (zk)k there exists c < 1 such that

|zk+1|
|zk|

≤ c

whenever |zk| ≤ 1/2.

Lemma 4.1.4. Let 1 ≤ p <∞, m ∈ N. Suppose ϕ : D→ D is analytic on D with ϕ(0) = 0.
Consider λ 6= ϕ′(0)n for all non-negative integers n and g ∈ H∞p,m. If there is an analytic
function f ∈ H∞p with g = λf − f ◦ ϕ, then f also belongs to H∞p,m.

Proof. Observe that f(0) = 0 since 0 = g(0) = λf(0)−f(0). If we differentiate the expression
g(z) = λf(z)− f(ϕ(z)) we obtain:

g′(z) = λf ′(z)− f ′(ϕ(z))ϕ′(z)

g′′(z) = λf ′′(z)− f ′′(ϕ(z))ϕ′(z)2 − f ′(ϕ(z))ϕ′′(z)

g′′′(z) = λf ′′′(z)− f ′′′(ϕ(z))ϕ′(z)3 − f ′′(ϕ(z))2ϕ′′(z)− f ′′(ϕ(z))ϕ′(z)ϕ′′(z)− f ′(ϕ(z))ϕ′′′(z)

...
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In particular, for z = 0,

0 = g′(0) = λf ′(0)− f ′(0)ϕ′(0)

0 = g′′(0) = λf ′′(0)− f ′′(0)ϕ′(0)2 − f ′(0)ϕ′′(0)

0 = g′′′(0) = λf ′′′(0)− f ′′′(0)ϕ′(0)3 − f ′′(0)2ϕ′′(0)− f ′′(0)ϕ′(0)ϕ′′(0)− f ′(0)ϕ′′′(0)

...

Since λ 6= ϕ′(0)n for all n ∈ N, from the first equation we get that f ′(0) = 0, from the second
one, that f ′′(0) = 0, and so on, we get that

f(0) = f ′(0) = f ′′(0) = . . . = fm−1)(0) = 0.

Thus, f(z) = zmF (z) for some holomorphic function F and from Lemma 4.1.1, F ∈ H∞p .
Therefore f ∈ H∞p,m.

Let ϕ : D→ D be analytic and (xk)
+∞
k=−∞ be an iteration sequence, that is, xk+1 = ϕ(xk)

for all integers k. For f, g ∈ A−α− and a complex number λ 6= 0, satisfying λf − f ◦ ϕ = g,
one can check inductively that

λkf(x−k) = f(xk)λ
−k + λ−1

k−1∑
i=−k

g(xi)λ
−i for each positive integer k. (4.1.1)

Lemma 4.1.5 ([33], Theorem 2.5). Suppose ϕ is analytic in a neighbourhood of a fixed
point z1 and c = ϕ′(z1), 0 < |c| < 1. Then there is a function A, analytic at z1 such that
((ϕn(z) − z1)/cn) → A(z) uniformly near z1. In fact, ϕn(z) = z1 + cnA(z) +O(|cnA(z)|2).
Further, if ϕ : D → D is analytic on D and z1 is a fixed point of ϕ with |z1| = 1 and
ϕ′(z1) = c < 1, then for each z ∈ D, z near z1, we have A0(z) = ReA(z) > 0 and |ϕn(z)| =
1 + cnA0(z) +O(|cnA(z)|2).

4.2 Results

Recall that for an operator T on a locally convex Hausdorff space, unlike for Banach spaces,
the resolvent ρ(T ) might be the empty set or even not an open set.

The following theorem provides the same conclusion as [33, Theorem 3.4], but for the
space A−α− .

Theorem 4.2.1. Consider A−α− with α > 0. Suppose that ϕ : D → D has an analytic
extension to an open neighbourhood of D and that has a fixed point a ∈ D. Suppose that
there is a positive integer N such that ϕN has, at least, a fixed point z0 in the unit circle and
that |ϕ′(z0)| > 1. Then σ(Cϕ, A

−α
− ) ⊇ {λ : |λ| ≤ ϕ′N (z0)

−α/N}.

Proof. Since A−α− is automorphism invariant (Remark 2.3.3), without loss of generality we
assume that a = 0. Notice that ϕ cannot be an automorphism of D since then ϕN would
be as well an automorphism and its fixed point structure prevents it. Thus 0 ∈ σ(Cϕ) (see
Theorem 2.3.1).

Lemma 4.1.5 can be applied to ϕ−1N because it exists locally near its fixed point z0 and
(ϕ−1N )′(z0) = 1

(ϕN )′(z0)
< 1. Here we have applied the chain rule: (ϕ−1N ◦ ϕN )′(z) = z′ = 1 if,
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and only if, (ϕ−1N )′(ϕN (z))ϕ′N (z) = 1 and, for the fixed point z0, we obtain (ϕ−1N )′(ϕN (z0)) =
(ϕ−1N )′(z0) = 1/ϕ′N (z0). Moreover, by [33, Lemma 1.1], ϕ′N (z0) > 0.

Thus we may choose x0 ∈ D with limn ϕ
−n
N (x0) = z0. Relying on it we construct an

iteration sequence (xk)
+∞
k=−∞ as follows. Define

xk :=


ϕk(x0) if k > 0,

ϕ−nN (x0) if k = −nN with n > 0,

ϕp(x−nN ) if k = −nN + p with p = 1, . . . , N − 1 and n > 0.

Then, for all integers k, ϕ(xk) = xk+1.

Again by Lemma 4.1.5, if n > 0, we have

z0 − x−nN = z0 − ϕ−nN (x0) ∼ ϕ′N (z0)
−nA(x0) (4.2.1)

and
1− |x−nN | ∼ ϕ′N (z0)

−nA0(x0), (4.2.2)

where A(x0) and A0(x0) = ReA(x0) are not zero.

Since the point x0 is chosen in a neighbourhood of z0, and |z0| = 1, we can assume that
|x0| > 1

2 . Let m0 := max{k : |xk| ≥ 1/4}. Observe that this maximum exists because
the sequence (xk)k has decreasing norms (Schwarz Lemma) and, since limn x−n = z0, the
sequence (xn)n tends to z0 when n goes to −∞, and the norms tend to 1. Then, the set
{k : |xk| ≥ 1/4} can have so many negative integers, but just a finite number of positive
ones, because when n goes to +∞, (xn)n tends to 0 (see [30, Exercise 8, p. 261]).

Then m0 ≥ 0 and |xk| < 1/4 for k > m0. By Lemma 4.1.3 there is b with 1/2 ≤ b < 1
for which |xk+1/xk| ≤ b for all k ≥ m0. This implies that

|xk| ≤ bk−m0 |xm0 |, for k ≥ m0 . (4.2.3)

Denote c := ϕ′N (z0) = (ϕ′(z0))
N . Thus c > 1.

Fix λ so that 0 < |λ| ≤ c−α/N . Suppose for a contradiction that λ 6∈ σ(Cϕ).
Choose n0 so large that

bn

|λ|
< 1 ∀n ≥ n0. (4.2.4)

Fix m ∈ N, m > n0 such that |ϕ′(0)|m < |λ|. Given f ∈ A−α− , there exists 0 < β < α
such that f ∈ H∞β , so |f(x−nN )| ≤ ‖f‖β(1− |x−nN |)−β. Therefore bearing in mind (4.2.2),

|λnNf(x−nN )| . ‖f‖β
1

A0(x0)β

(
|λ|N

c−β

)n
. (4.2.5)

Consequently, taking into account that |λ| < c−α/N implies |λ|N/c−α < 1 and that
|λ|N/c−β < |λ|N/c−α < 1, for all f ∈ A−α− we have

lim
n
|λnNf(x−nN )| = 0. (4.2.6)

Let us denote by A−α−,m the inductive limit

A−α−,m :=
⋃

0<β<α

H∞β,m.
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We claim that
(
Cϕ − λI

)
(A−α−,m) = A−α−,m. Let g ∈ A−α−,m. Since Cϕ − λI is onto, there is

f ∈ A−α− such that g = (Cϕ − λI)(f). Thus there is 0 < β < α such that f ∈ H∞β , and so
also g ∈ H∞β , hence g ∈ H∞β,m. According to Lemma 4.1.4, f belongs as well to H∞β,m, as
claimed. In addition, f(z) = zmF (z) for some F ∈ H∞β , as pointed out by Lemma 4.1.1,
therefore |f(xnN )| = |ϕnN (x0)

mF (ϕnN (x0))|. Now applying [33, Lemma 2.6], we obtain for
such an f,

lim
n
|λ|−nN |f(xnN )| = lim

n
|ϕnN (x0)|m|λ|−nN |F (ϕnN (x0))|

≤ lim
n
|ϕ′(0)|mnN |λ|−nN |F (ϕnN (x0))| = 0. (4.2.7)

From (4.1.1), we have

λnNf(x−nN ) = f(xnN )λ−nN + λ−1
Nn−1∑
i=−nN

g(xi)λ
−i, (4.2.8)

which together with limits (4.2.6) and (4.2.7) above show that if g ∈ (Cϕ − λI)(A−α−,m),
then

+∞∑
k=−∞

g(xk)λ
−k = 0. (4.2.9)

Next, given the iteration sequence (xk)
+∞
k=−K , define the linear functionals LK on A−α−,m

by

LK(f) :=
∞∑

k=−K

f(xk)

λk
. (4.2.10)

If we denote the topological dual of A−α−,m with the inductive limit topology by (A−α−,m)′,

then the functionals LK ∈ (A−α−,m)′. In order to prove this, recall that LK : A−α−,m → C is
continuous if LK : H∞β,m → C is continuous for all β < α. That is, if for all β < α there exists
a positive constant C such that |LK(f)| ≤ C‖f‖β for all f ∈ H∞β,m. Fix β < α. For each
f ∈ H∞β,m there is F ∈ H∞β such that f(z) = zmF (z) for all z ∈ D and, applying equation
(4.2.3) we obtain:

|LK(f)| ≤
∞∑

k=−K

(1− |xk|)β|f(xk)|
(1− |xk|)β|λ|k

≤
∞∑

k=−K

(1− |xk|)β|xk|m|F (xk)|
(1− |xk|)β|λ|k

≤
∞∑

k=−K

|xk|m‖F‖β
(1− |xk|)β|λ|k

≤ ‖F‖β
m0∑

k=−K

|xk|m

(1− |xk|)β|λ|k
+ ‖F‖β

∞∑
k=m0+1

|xk|m

(1− |xk|)β|λ|k

≤ ‖F‖β
m0∑

k=−K

|xk|m

(1− |xk|)β|λ|k
+ ‖F‖β

(
4

3

)β ∞∑
k=m0+1

|xk|m

|λ|k

= ‖F‖β
m0∑

k=−K

|xk|m

(1− |xk|)β|λ|k
+ ‖F‖β

(
4

3

)β ∞∑
i=1

|xm0+i|m

|λ|m0+i

≤ ‖F‖β
m0∑

k=−K

|xk|m

(1− |xk|)β|λ|k
+ ‖F‖β

(
4

3

)β ∞∑
i=1

bim|xm0 |m

|λ|m0+i

= ‖F‖β
m0∑

k=−K

|xk|m

(1− |xk|)β|λ|k
+ ‖F‖β

(
4

3

)β |xm0 |m

|λ|m0

∞∑
i=1

bim

|λ|i
.
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But, since m > n0, applying estimate (4.2.4) we obtain bm/|λ| < 1 and so,

|LK(f)| ≤ C‖F‖β ,

for some positive constant C.
Moreover, the map F ∈ H∞β → zmF ∈ H∞β,m is an isomorphism (see Lemma 4.1.1), which

implies that has a continuous inverse. Therefore,

‖F‖β ≤M‖zmF‖β = M‖f‖β

for certain M > 0. Thus, |LK(f)| ≤ CM‖f‖β, that is, LK is continuous.
Furthermore, as proved previously, the operator Cϕ − λI|A−α−,m is surjective and so, by

(4.2.9), limK LK(f) = 0 for all f ∈ A−α−,m. That is, the sequence (LK) converges to 0 in the

weak* topology σ
(
(A−α−,m)′, A−α−,m

)
.

Fix 0 < β < α, then there exists fx0 ∈ H∞β ⊂ A
−α
− such that ||fx0 ||β ≤ 1 and |fx0(x0)| =

1/(1− |x0|)β. Let 1 ≤ M < ∞ be the constant in Lemma 4.1.2 for r = 1/4. Then there is
fK ∈ H∞ with ‖fK‖∞ ≤M, |fK(x0)| = 1 and satisfying

xm0 fK(x0)fx0(x0) > 0 and fK(xk) = 0 for −K ≤ k ≤ m0, k 6= 0.

Now, the function gK(x) := xmfK(x)fx0(x) belongs to H∞β,m and ‖gK‖β ≤ M . Observe
that the constant M does not depend on m. Further,

LK(gK) = xm0 fK(x0)fx0(x0) +
∞∑

k=m0+1

λ−kxmk fK(xk)fx0(xk).

If, in addition, we choose m so that

M
1

|λ|m0

1

vβ(xm0)

bm

|λ| − bm
<

1

2vβ(x0)
,

and use again (4.2.3) and (4.2.4), we obtain

∣∣ +∞∑
k=m0+1

λ−kgK(xk)
∣∣ ≤ |xm0 |m

2vβ(x0)
≤ |x0|m

2vβ(x0)
.

And then,

|LK(gK)| ≥ |x0|m

2vβ(x0)
. (4.2.11)

To conclude, recall that the embedding H∞ ↪→ H∞β is a compact operator and the
multiplication operator Mzmfx0

is a continuous self map of H∞β . Hence (gK)K is a relatively

compact subset of H∞β,m ⊂ A−α−,m because gK = Mzmfx0
(fK). That is, since ‖fK‖∞ ≤

M , and compact operators transform bounded sets in relatively compact sets, (fK)K is
relatively compact. Additionally, since continuous operators transform relatively compact
sets in relatively compact, (gK)K is relatively compact in H∞β,m.

This way we are led into a contradiction with (4.2.11) since we must have limK LK(gK) =
0 because the pointwise bounded set (LK)K is an equicontinuous set in the dual of the
barreled space A−α−,m (Banach-Steinhauss Theorem) and, in this case, the topolgy of uniform
convergence on compact sets coincides with the weak* topology. This contradiction proves
that λ belongs to the spectrum.
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Remark 4.2.2. If ϕ satisfies the assumptions of Theorem 4.2.1 with N = 1 and ϕ′(0) 6= 0,
then we can complete the information about the spectrum of Cϕ by using Corollary 3.4.1 to
obtain

{ϕ′(0)n}∞n=0 ∪ {λ : |λ| ≤ ϕ′(z0)−α} ⊆ σ(Cϕ, A
−α
− ) ⊆ B(0, re(Cϕ, H

∞
α )) ∪ {ϕ′(0)n}∞n=0.

Example 4.2.3. Consider the symbol ϕ(z) = z
2−z , z ∈ D. It is analytic on D and 0 is

an interior fixed point, while z0 = 1 is a boundary fixed point with ϕ′(1) = 2 > 1. Then,
the hypotheses of Theorem 4.2.1 hold and, for a given α > 0, the composition operator
Cϕ : A−α− → A−α− verifies σ(Cϕ, A

−α
− ) ⊇ {λ : |λ| ≤ 2−α}. In [21, Example 1] it is noticed that

ϕn(z) = z
2n−(2n−1)z .

Recall that the essential norm of Cϕ : H∞α → H∞α can be computed according to ‖Cϕ‖e =

lim sup|z|→1
(1−|z|)α

(1−|ϕ(z)|)α (see Section 3.2). Moreover, from [27, Proposition 2.46] we obtain that

‖Cϕ‖e = max|ξ|=1 |ϕ′(ξ)|−α . For the iterates ϕn, this maximum is achieved at ξ = 1, with

value (ϕn)′(1) = 2n. So ‖Cnϕ‖e = (2n)−α, from where it follows that re(Cϕ, H
∞
α ) = (12)α.

And σ(Cϕ, H
∞
α ) = {0} ∪ {ϕ′(0)n : n ∈ N} ∪ B(0, re(Cϕ, H

∞
α )) as proved in [7, Theorem 8].

Realize that in this example σ(Cϕ, H
∞
α ) = σ(Cϕ, A

−α
− ).

The following theorem is analogous to Theorem 4.2.1 for the Fréchet space A−α+ . Since
the proof is quite similar we simply mention the claims that have been proved in Theorem
4.2.1 and detail the differences. The main difference is the choice of the function fx0 .

Theorem 4.2.4. Consider A−α+ , with α ≥ 0. Suppose that ϕ : D → D has an analytic
extension to an open neighbourhood of D and that has a fixed point a ∈ D. Suppose that
there is a positive integer N such that ϕN has, at least, a fixed point z0 in the unit sphere
and that ϕ′(z0) > 1. Then σ(Cϕ, A

−α
+ ) ⊇ {λ : |λ| ≤ ϕ′N (z0)

−α/N}.

Proof. Without loss of generality, we assume that a = 0. Notice that ϕ cannot be an
automorphism of D since then ϕN would be as well an automorphism and its fixed point
structure prevents it. Thus 0 ∈ σ(Cϕ). Construct the sequence (xk)k as in Theorem 4.2.1,
which verifies the statements (4.2.1), (4.2.2) and (4.2.3). Denote c := ϕ′N (z0) then c > 1.

Let |λ| ≤ c−α/N and suppose it does not belong to σ(Cϕ). We now choose n0 so large
that (4.2.4) holds.

Fix m ∈ N, m > n0 such that |ϕ′(0)|m < |λ|. Each f ∈ A−α+ satisfies |f(z)| ≤ ‖f‖α+ε(1−
|z|)−(α+ε) for all z ∈ D, ε > 0 and so,

|λnNf(x−nN )| ≤ ‖f‖α+ε
1

A0(x0)α+ε

(
|λ|N

c−(α+ε)

)n
.

This implies that (4.2.6) holds for all f ∈ A−α+ .
Consider f, g ∈ A−α+ with λf − f ◦ ϕ = g. Then they satisfy equation (4.2.8).
Let us denote by A−α+,m the projective limit

A−α+,m :=
+∞⋂
n=1

H∞
α+ 1

n
,m

=
⋂
ε>0

H∞α+ε,m.

We claim that
(
Cϕ − λI

)
(A−α+,m) = A−α+,m. Let g ∈ A−α+,m. Since Cϕ − λI is onto, there is

f ∈ A−α+ such that g = (Cϕ − λI)(f). Thus, for all ε > 0, f ∈ H∞α+ε, and so also g ∈ H∞α+ε,
hence g ∈ H∞α+ε,m. According to Lemma 4.1.4, f belongs as well to H∞α+ε,m, as claimed and
(4.2.7) holds.
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Therefore, we deduce that if g ∈ (Cϕ − λI)(A−α+,m) and |ϕ′(0)|m < |λ| then,

+∞∑
k=−∞

g(xk)λ
−k = 0.

The functionals LK are defined on A−α+,m according to the same expression as in (4.2.10).

They are continuous and the sequence (LK) is σ
(
(A−α+,m)′, A−α+,m

)
-null.

In order to obtain an inequality as (4.2.11) we have to deal separately with the cases α > 0
and α = 0. Let’s begin with α > 0. There exists fx0 ∈ H∞α ⊂ A−α+ such that ||fx0 ||α ≤ 1
and |fx0(x0)| = 1/(1− |x0|)α. Let 1 ≤M <∞ be the constant in Lemma 4.1.2 for r = 1/4.
Then, there is fK ∈ H∞ with ‖fK‖∞ ≤M, |fK(x0)| = 1 and satisfying

xm0 fK(x0)fx0(x0) > 0 and fK(xk) = 0 for −K ≤ k ≤ m0, k 6= 0.

Now, the function gK(x) := xmfK(x)fx0(x) belongs to H∞α,m and ‖gK‖α ≤M . Further,

LK(gK) = xm0 fK(x0)fx0(x0) +
+∞∑

k=m0+1

λ−kxmk fK(xk)fx0(xk).

If, in addition, we choose m so that

M
1

|λ|m0

1

vα(xm0)

bm

|λ| − bm
<

1

2vα(x0)
,

and use again (4.2.3) and (4.2.4), we obtain

|LK(gK)| ≥ |x0|m

2vα(x0)
. (4.2.12)

And now the case α = 0. The function

ρ(r) :=


1, r ∈ [0, 1− 1

e
[

− log(1− r), r ∈ [1− 1

e
, 1[

is non-decreasing, continuous and limr→1− ρ(r) = +∞. We define v(z) := 1
ρ(|z|) , z ∈ D. For

each 0 < ε < 1, it can be seen that there exists Cε such that

(1− |z|)ε ≤ Cεv(z), for all z ∈ D.

In other words, the space H∞v is contained in A−0+ . We can take fx0 ∈ H∞v ⊂ A−0+ such that
‖fx0‖v ≤ 1 and |fx0(x0)| = 1/v(x0). Let 1 ≤ M < ∞ be the constant in Lemma 4.1.2 for
r = 1/4. Then there is fK ∈ H∞ with ‖fK‖∞ ≤M and |fK(x0)| = 1, satisfying

xm0 fK(x0)fx0(x0) > 0 and fK(xk) = 0 for −K ≤ k ≤ m0, k 6= 0.

Now, the function gK(x) := xmfK(x)fx0(x) belongs to H∞v,m and ‖gK‖v ≤M . Further,

LK(gK) = xm0 fK(x0)fx0(x0) +
+∞∑

k=m0+1

λ−kxmk fK(xk)fx0(xk).
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If, in addition, we choose m so that

M
1

|λ|m0

1

v(xm0)

bm

|λ| − bm
<

1

2v(x0)
,

and use again (4.2.3) and (4.2.4), we obtain

|LK(gK)| ≥ |x0|m

2v(x0)
. (4.2.13)

However, since (gK)K is a relatively compact subset of A−α+,m and the sequence (LK)K
is weak*-null and equicontinuous, we would have that limK LK(gK) = 0, which contradicts
(4.2.12) and (4.2.13). This contradiction means that λ must belong to the spectrum, as
wanted.
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Chapter 5

Weighted composition operators on
projective and inductive limits of
weighted Banach spaces of
vector-valued analytic functions

In this chapter we characterize several properties of weighted composition operators when
acting between weighted spaces of analytic functions with values on a Banach space. These
results are applied to operators between weighted inductive and projective limits of spaces
of analytic functions. The case of vector-valued Korenblum type spaces is also considered.
The main results of this chapter are collected in [18].

5.1 The operator Wψ,ϕ on weighted Banach spaces of vector-
valued functions

In this section we study the continuity, compactness and weak compactness of the weighted
composition operators between two weighted Banach spaces of vector-valued functions, in
comparison with their equivalents in the scalar valued case.

Definition 5.1.1. Let E be a complex Banach space. Let F : D → E be a holomorphic
mapping and v(z) a weight on the unit disc D. Then,

� F ∈ H∞v (D, E) if sup
z∈D
‖F (z)‖v(z) <∞.

� F ∈ H0
v (D, E) if lim

|z|→1−
‖F (z)‖v(z) = 0.

For the norm ‖F‖v = supz∈D ‖F (z)‖v(z), the spaces H∞v (D, E) and H0
v (D, E) are

Banach spaces. As in the scalar case, we also have that H∞v (D, E) = H∞ṽ (D, E) and the
norms ‖ ‖v and ‖ ‖ṽ coincide. To prove this it is enough to consider, by the Hahn-Banach
Theorem, for every F (z) ∈ E, an element u′ ∈ E′ with ‖u′‖ ≤ 1 such that ‖F (z)‖ = u′(F (z))
and then, the scalar function u′ ◦ F .
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A subset A for a Hausdorff locally convex space E is precompact if for every absolutely
convex 0-neighbourhood U ⊆ E there exist x1, . . . , xs ∈ A such that

A ⊆
s⋃
i=1

(xi + U).

Every precompact set is bounded. If α ∈ K and A is precompact, then αA is precompact.
Moreover, a finite union of precompact sets is precompact.

Remark 5.1.2 ([37], Remark 4.4(a)). If for every absolutely convex 0-neighbourhood U in
E there exist y1, . . . , yk ∈ E such that A ⊆

⋃k
i=1(yi + U), then A is precompact.

Proposition 5.1.3. Let F : D → E be a mapping and v a weight. Then F ∈ H∞v (D, E)
if, and only if, u′ ◦ F ∈ H∞v for all u′ ∈ E′. Further, F ∈ H0

v (D, E) if, and only if,
{u′ ◦ F : ‖u′‖ ≤ 1} is a precompact subset of H0

v .

Proof. Consider the subset A := {v(z)F (z) : z ∈ D} of E. Then, u′(A) = {u′(v(z)F (z)) :
z ∈ D} = {v(z)u′(F (z)) : z ∈ D}, for all u′ ∈ E′. Recall that A is bounded if, and only if, it
is weakly bounded (see [37, Proposition 8.11]). Since, in addition F is holomorphic if, and
only if, it is weakly holomorphic ([39, Theorem 8.12]), we get the first asertion.

Suppose F ∈ H0
v (D, E). Clearly, u′ ◦ F ∈ H0

v for all u′ ∈ BE′ . We define the mapping
F̃ : D→ E by F̃ (z) := v(z)F (z) whenever |z| < 1 and F̃ (z) = 0 when |z| = 1. The mapping
F̃ is continuous in D and the set F̃ (D) is compact since it is the image of a compact set.
The set L := {v(z)F (z) : z ∈ D} = F̃ (D) is relatively compact because it is a subset of
the compact set F̃ (D). Since the closed unit ball BE′ is an equicontinuous and w∗-compact
set (Banach-Alaoglu’s Theorem), by Arzelà-Ascoli Theorem it is also a compact set for the
topology of uniform convergence on compact subsets of E. In particular, BE′ is compact
with the norm ‖u′‖L := supx∈L |u′(x)|. Hence, given ε > 0, there are u′1, . . . , u

′
n ∈ BE′ such

that for every u′ ∈ BE′ , there is u′k such that

sup
z∈D
| < u′ − u′k, v(z)F (z) > | < ε.

That is,
ε > sup

z∈D
|v(z)u′(F (z))− v(z)u′k(F (z))| = ‖u′ ◦ F − u′k ◦ F‖v.

Or, in other words,

{u′ ◦ F : ‖u′‖ ≤ 1} ⊂ {u′1 ◦ F, . . . , u′n ◦ F}+BH0
v
(0, ε), (5.1.1)

which proves the precompactness of {u′ ◦ F : ‖u′‖ ≤ 1}.
Converserly, if {u′ ◦ F : ‖u′‖ ≤ 1} is a precompact subset of H0

v , given ε > 0, formula
(5.1.1) holds and, since u′k ◦ F ∈ H0

v , there is 0 < r < 1 such that

sup
|z|>r
|v(z)(u′k ◦ F )(z)| ≤ ε, for all k ∈ {1, . . . , n}.

Hence, for all u′ ∈ BE′ , we have that sup|z|>r |v(z)(u′ ◦ F )(z)| ≤ 2ε. From where it follows

that F ∈ H0
v (D, E) because

sup
|z|>r
|v(z)|‖F (z)‖ = sup

|z|>r
sup

u′∈BE′
|v(z)(u′ ◦ F )(z)| ≤ 2ε.
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We recall that for an analytic map ϕ : D → D with ϕ(D) ⊂ D, and ψ ∈ H(D), the
weighted composition operator is defined by Wψ,ϕf(z) := ψ(z)f(ϕ(z)), for all z ∈ D.

Remark 5.1.4. Applying the Closed Graph Theorem we observe that if Wψ,ϕ : H∞v (D, E)→
H∞w (D, E) is well defined, then it is continuous. Indeed, we see that if Wψ,ϕ is well defined,
then Graph(Wψ,ϕ) is closed.

Take a sequence (Fn,Wψ,ϕ(Fn))n ⊂ Graph(Wψ,ϕ) convergent to a certain (F,G) ∈
H∞v (D, E) ×H∞w (D, E). On one hand, since the evaluation functionals δz : H∞v (D, E) → E
defined by δz(F ) := F (z) are continuous for all z ∈ D, we have that Fn(z) −→ F (z) and
Fn(ϕ(z)) −→ F (ϕ(z)) for all z ∈ D. On the other hand, Wψ,ϕ(Fn(z)) −→ G(z) for every
z ∈ D. But, Wψ,ϕ(Fn(z)) = ψ(z)Fn(ϕ(z)) and ψ(z)Fn(ϕ(z)) −→ ψ(z)F (ϕ(z)) for all z ∈ D.
Thus, ψ ·F ◦ϕ = G. In conclusion, every convergent sequence on Graph(Wψ,ϕ) converges to
an element of Graph(Wψ,ϕ). That is, Graph(Wψ,ϕ) is closed.

Remark 5.1.4 gives us that the operator Wψ,ϕ : H∞v (D, E) → H∞w (D, E) is well defined
if, and only if, it is continuous. The argument also works for the space H0

v (D, E) thus, we
also have this characterization for Wψ,ϕ : H0

v (D, E)→ H0
w(D, E).

Remark 5.1.5. From Remark 5.1.4 and Propositions 2.0.1 and 2.0.2, we have that if
Wψ,ϕ : H0

v → H0
w is well defined then Wψ,ϕ : H∞v → H∞w is also well defined.

Recall that any radial, positive continuous funcion v : D → R+, which is non-increasing
with respect to |z| and is such that lim|z|→1− v(z) = 0, is called a typical weight. To each
weight v corresponds the growth condition u : D → R+, u = 1/v, and Bv := {f ∈ H(D) :
|f | ≤ u}. A new function ũ : D → R+ is defined by ũ(z) := supf∈Bv |f(z)|, and the weight
associated with v is defined by ṽ := 1/ũ. A weight v is called essential if there exists a
constant C > 0 such that v(z) ≤ ṽ(z) ≤ Cv(z), for all z ∈ D.

Proposition 5.1.6. Suppose that ϕ,ψ ∈ H(D), ϕ(D) ⊆ D, that v, w are two typical weights
and that E is a Banach space. The weighted composition operator Wψ,ϕ : H∞v (D, E) →
H∞w (D, E) is continuous if, and only if, Wψ,ϕ : H∞v → H∞w is continuous.

Proof. First, suppose Wψ,ϕ : H∞v → H∞w is continuous. By Proposition 2.0.1, we have that

sup
z∈D
|ψ(z)| w(z)

ṽ(ϕ(z))
=: M <∞.

That is, |ψ(z)|w(z) ≤Mṽ(ϕ(z)) for all z ∈ D. Then, for each F ∈ H∞v (D, E) we obtain that:

‖Wψ,ϕ(F )‖w = sup
z∈D
‖ψ(z)F (ϕ(z))‖w(z) = sup

z∈D
|ψ(z)|‖F (ϕ(z))‖w(z) ≤ sup

z∈D
M‖F (ϕ(z))‖ṽ(ϕ(z))

= M sup
ξ∈ϕ(D)

‖F (ξ)‖ṽ(ξ) ≤M sup
z∈D
‖F (z)‖ṽ(z) = M‖F‖ṽ = M‖F‖v.

On the other hand, suppose now that Wψ,ϕ : H∞v (D, E) → H∞w (D, E) is continuous.
Choose x0 ∈ E and u′0 ∈ E′ such that u′0x0 = 1. Consider the following diagram:

H∞v (D, E) H∞w (D, E)

H∞v H∞w

Wψ,ϕ

TS
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where S(f(z)) := f(z)x0 for all f ∈ H∞v , z ∈ D and, T (F ) := u′0◦F for all F ∈ H∞w (D, E).
The operators S and T are continuous since

‖S(f)‖v = sup
z∈D

v(z)‖S(f(z))‖ = sup
z∈D

v(z)‖f(z)x0‖ ≤ sup
z∈D

v(z)‖x0‖|f(z)| = ‖x0‖‖f‖v

and

‖T (F )‖ = sup
z∈D

w(z)|T (F )(z)| = sup
z∈D

w(z)|(u′0 ◦ F )(z)| ≤ sup
z∈D

w(z)‖u′0‖‖F (z)‖ ≤ ‖u′0‖‖F‖w.

Now, observe that T ◦Wψ,ϕ ◦ S is exactly the weighted composition operator Wψ,ϕ for the
scalar case. In fact, for each f ∈ H∞v and z ∈ D we have

(T ◦Wψ,ϕ ◦ S)(f)(z) = (T ◦Wψ,ϕ)(f(z)x0) = T (ψ(z)f(ϕ(z))x0)

= u′0(ψ(z)f(ϕ(z))x0) = ψ(z)f(ϕ(z))u′0x0 = Wψ,ϕ(f)(z).

Therefore, Wψ,ϕ : H∞v → H∞w is continuous since it is the composition of continuous opera-
tors.

Proposition 5.1.7. Suppose that ϕ,ψ ∈ H(D) with ϕ(D) ⊆ D. Let v and w be two typical
weights and let E be a Banach space. The weighted composition operator Wψ,ϕ : H0

v (D, E)→
H0
w(D, E) is continuous if, and only if, Wψ,ϕ : H0

v → H0
w is continuous.

Proof. First, suppose Wψ,ϕ : H0
v → H0

w is continuous. By Proposition 2.0.2,

sup
z∈D
|ψ(z)| w(z)

ṽ(ϕ(z))
=: M <∞.

That is, |ψ(z)|w(z) ≤ Mṽ(ϕ(z)) for all z ∈ D. By the proof of the Proposition 5.1.6, we
know that for every F ∈ H0

v (D, E), ‖Wψ,ϕ(F )‖w ≤ c‖F‖v. It remains to see that for any
F ∈ H0

v (D, E), the function Wψ,ϕ(F ) belongs to H0
w(D, E).

By Proposition 5.1.3 we know that {u′ ◦ F : ‖u′‖ ≤ 1} is a precompact subset of H0
v .

Since for every u′ ∈ E′ and z ∈ D

(u′ ◦Wψ,ϕ(F ))(z) = ψ(z)u′(F (ϕ(z))) = ψ(z)(u′ ◦ F )(ϕ(z)) = Wψ,ϕ(u′ ◦ F )(z),

then u′ ◦Wψ,ϕ(F ) = Wψ,ϕ(u′ ◦ F ) and the set {u′ ◦Wψ,ϕ(F ) : ‖u′‖ ≤ 1} is the image of the
precompact set {u′ ◦F : ‖u′‖ ≤ 1} by the linear and continuous map Wψ,ϕ : H0

v → H0
w. This

proves that for every u′ ∈ E with ‖u′‖ ≤ 1 the operator u′ ◦Wψ,ϕ(F ) belongs to H0
w and

applying again Proposition 5.1.3 we obtain that Wψ,ϕ(F ) ∈ H0
w(D, E).

By using the operators S : H0
v → H0

v (D, E) and T : H0
w(D, E)→ H0

w defined as in Proposi-
ton 5.1.6, the converse is obtained analogously.

Remark 5.1.8. Suppose dimE = N , then H(D, E) is canonically isomorphic to H(D)N .
To see this, we prove that there is a canonical isomorphism between H(D, E) and H(D,CN )
and also that H(D,CN ) = H(D)N .

Take F ∈ H(D, E). If i : E → CN is a canonical isomorphism,

D E

CN

F

i◦F
i
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then i ◦ F ∈ H(D,CN ). The canonical isomorphism is F ∈ H(D, E) 7−→ i ◦ F ∈ H(D,CN ).
On the other hand, if we take the canonical projections we obtain that pj ◦(i◦F ) ∈ H(D)

for all 1 ≤ j ≤ N , because the composition of holomorphic funcions is holomorphic. In other
words, i ◦ F ∈ H(D)N . With this, we have that H(D,CN ) = H(D)N .

Remark 5.1.9. If dimE = N , the space H(D, E) is Fréchet Montel. Recall that H(D, E) '
H(D)N (Remark 5.1.8). The space H(D)N is Fréchet because H(D) is. Further, H(D, E) is
Montel. In fact, if we take a bounded sequence (Fn)n ⊂ H(D, E), the sequence (i ◦ Fn)n ⊂
H(D,CN ) = H(D)N is also bounded. Since H(D) is Montel, for the first coordinate we have
that (p1 ◦ (i ◦ Fn))n has a convergent subsequence denoted by (p1 ◦ (i ◦ Fk1))k1 . For the
second coordinate, we obtain that (p2 ◦ (i ◦ Fk1))k1 is bounded too and has a convergent
subsequence, (p2 ◦ (i ◦ Fk2))k2 . Repeating this procedure, we get that the sequence (i ◦ Fn)n
has the subsequence (i ◦ FkN )kN , which is convergent. Therefore, the subsequence (FkN )kN
of (Fn)n is convergent too.

Another way to see it is applying that the product of Fréchet Montel spaces is also Fréchet
Montel.

Remark 5.1.10. Observe that, if the operator Wψ,ϕ : H0
v (D, E)→ H0

w(D, E) is continuous,
then the operators Wψ,ϕ : H0

v → H0
w, Wψ,ϕ : H∞v → H∞w and Wψ,ϕ : H∞v (D, E)→ H∞w (D, E)

are also continuous. See, respectively, Proposition 5.1.7, Propositions 2.0.1 and 2.0.2, and
Proposition 5.1.6.

Proposition 5.1.11. Let v, w be two typical weights, ϕ,ψ ∈ H(D) with ϕ(D) ⊆ D and
ψ ∈ H0

w, and let E be a Banach space. Suppose Wψ,ϕ : H0
v (D, E)→ H0

w(D, E) is continuous.
The following statements are equivalent:

i) Wψ,ϕ : H∞v (D, E)→ H∞w (D, E) is compact,

ii) Wψ,ϕ : H0
v (D, E)→ H0

w(D, E) is compact,

iii) Wψ,ϕ : H∞v → H∞w is compact and E has finite dimesion,

iv) Wψ,ϕ : H0
v → H0

w is compact and E has finite dimension.

Proof. First of all, recall that, since Wψ,ϕ : H0
v (D, E)→ H0

w(D, E) is continuous, the operator
Wψ,ϕ is also continuous in all the other spaces used in this proposition (see Remark 5.1.10).

i)⇒ ii) Assume Wψ,ϕ : H∞v (D, E)→ H∞w (D, E) is compact. Then, Wψ,ϕ : H0
v (D, E)→

H0
w(D, E) is compact because it is the restriction of a compact operator.

iii)⇒ i) Suppose Wψ,ϕ : H∞v → H∞w is compact. Since H∞v (D, E) and H∞w (D, E) are

Banach spaces, it is enough to see that for each bounded sequence (Fn)n ⊂ H∞v (D, E), the
sequence (Wψ,ϕ(Fn))n ⊂ H∞w (D, E) is a relatively compact set.

Let (Fn)n ⊂ H∞v (D, E) be a sequence such that there is M > 0 with

sup
z∈D
‖Fn(z)‖ṽ(z) = sup

z∈D
‖Fn(z)‖v(z) < M, for all n ∈ N. (5.1.2)

Since H∞v (D, E) is a subspace of H(D, E) and (H(D, E), τco) is a Fréchet Montel space
because dim E < ∞ (Remark 5.1.9), then each τco-bounded sequence has a τco-convergent
subsequence. Here, τco denotes the topology of the uniform convergence on the compact
subsets of D. The sequence (Fn)n is norm bounded then, in particular, it is τco-bounded.
Thus, (Fn)n has a subsequence that we denote in the same way which is τco-convergent to
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a certain F ∈ H(D, E). Moreover, since ψ,ϕ ∈ H(D), Wψ,ϕ : H(D, E) → H(D, E) is well
defined and, by Closed Graph Theorem, Wψ,ϕ is τco−continuous (analogous to Remark 5.1.4).
Thus, (Wψ,ϕ(Fn))n −→

τco
Wψ,ϕ(F ). It only remains to prove that (Wψ,ϕ(Fn))n converges to

Wψ,ϕ(F ) in norm, and that Wψ,ϕ(F ) ∈ H∞w (D, E).
According to Proposition 2.0.3, the compactness of Wψ,ϕ : H∞v → H∞w shows that

lim
r→1

sup
|ϕ(z)|>r

|ψ(z)| w(z)

ṽ(ϕ(z))
= 0. (5.1.3)

Furthermore, by Proposition 3.2.3 we have that for all ε > 0 there is 0 < r < 1 such that

sup
z∈D\B(0,r)

|ψ(z)| w(z)

ṽ(ϕ(z))
< ε. (5.1.4)

Now, applying (5.1.4) and (5.1.2) we obtain that there exists m0 ∈ N such that if n ≥ m0

then

sup
z∈D\B(0,r)

‖(Wψ,ϕ(Fn)−Wψ,ϕ(F ))(z)‖w(z) = sup
z∈D\B(0,r)

‖ψ(z)(Fn − F )(ϕ(z))‖w(z)

≤ sup
z∈D\B(0,r)

|ψ(z)|‖(Fn − F )(ϕ(z))‖ṽ(ϕ(z))
w(z)

ṽ(ϕ(z))

≤ 2M sup
z∈D\B(0,r)

|ψ(z)| w(z)

ṽ(ϕ(z))
< 2Mε.

Observe that, since w is a weight, there exists a positive constant C such that w(z) ≤ C
for every z ∈ D. In addition, if we apply the τco-convergence, we get that there exists n0 ∈ N
such that if n ≥ n0 then

sup
z∈B(0,r)

‖(Wψ,ϕ(Fn)−Wψ,ϕ(F ))(z)‖w(z) ≤ C sup
z∈B(0,r)

‖(Wψ,ϕ(Fn)−Wψ,ϕ(F ))(z)‖ < Cε.

Consequently, for all n ≥ max{m0, n0},

‖Wψ,ϕ(Fn)−Wψ,ϕ(F )‖w = sup
z∈D
‖(Wψ,ϕ(Fn)−Wψ,ϕ(F ))(z)‖w(z)

≤ max

{
sup

z∈B(0,r)

‖(Wψ,ϕ(Fn)−Wψ,ϕ(F ))(z)‖w(z),

sup
z∈D\B(0,r)

‖(Wψ,ϕ(Fn)−Wψ,ϕ(F ))(z)‖w(z)

}
≤ max {Cε, 2Mε}.

Then, since ε is arbitrary, these computations show that Wψ,ϕ(Fn) − Wψ,ϕ(F ) ∈
H∞w (D, E). Hence, Wψ,ϕ(F ) ∈ H∞w (D, E) and Wψ,ϕ(Fn) −→ Wψ,ϕ(F ) since Wψ,ϕ(F ) =
Wψ,ϕ(F )−Wψ,ϕ(Fn) +Wψ,ϕ(Fn).

i)⇒ iii) Consider the diagram of Proposition 5.1.6, with the same operators S and T ,

H∞v (D, E) H∞w (D, E)

H∞v H∞w

Wψ,ϕ

TS

Wψ,ϕ
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Since T ◦Wψ,ϕ ◦ S = Wψ,ϕ : H∞v → H∞w , is the composition of compact and continuous
operators, it is also compact. On the other hand, we construct the next diagram

H∞v (D, E) H∞w (D, E)

E E

Wψ,ϕ

QP

where P (x) = fx such that fx : D → E, fx(z) := x for all z ∈ D and, Q : H∞w (D, E) → E is
defined by Q(F ) = F (z0)/ψ(z0), for some z0 ∈ D with ψ(z0) 6= 0. We can take ψ(z0) 6= 0
because ψ 6≡ 0. Both mappings P and Q are well defined, linear and continuous. Following
the diagram, we can observe that

Q ◦Wψ,ϕ ◦ P (x) := Q(Wψ,ϕ(fx)) = Wψ,ϕ(fx)(z0)/ψ(z0) =

= ψ(z0)fx(ϕ(z0))/ψ(z0) = fx(ϕ(z0)) = x.

Thus, Q ◦Wψ,ϕ ◦ P = I and I is compact because it is the composition of compact and
continuous operators. Moreover, since the identity operator in a Banach space I : E → E
is compact if, and only if, the space E is finite dimensional ([28, Theorem 1.24]), we obtain
the result.

iii)⇔ iv) This follows from Propositions 2.0.1, 2.0.2, 2.0.3, 2.0.4 and 3.2.3, since ψ ∈
H0
w.

ii)⇔ iv) Consider the following diagram

H0
v (D, E) H0

w(D, E)

H0
v H0

w

Wψ,ϕ

TS

where operators S and T are defined as in Proposition 5.1.6. Both are well defined, indeed,
for any f ∈ H0

v and F ∈ H0
w(D, E),

lim
|z|→1

v(z)‖S(f)(z)‖ = lim
|z|→1

v(z)‖f(z)x0‖ = ‖x0‖ lim
|z|→1

v(z)|f(z)| = 0,

lim
|z|→1

w(z)|T (F )(z)| = lim
|z|→1

w(z)|(u′0 ◦ F )(z)| ≤ ‖u′0‖ lim
|z|→1

w(z)‖F (z)‖ = 0.

Moreover, consider now the diagram

H0
v (D, E) H0

w(D, E)

E E

Wψ,ϕ

QP

where operators P and Q are the same as in i)⇔ iii). Since for every x ∈ E,

lim
|z|→1

v(z)‖P (x)(z)‖ = lim
|z|→1

v(z)‖fx(z)‖ = lim
|z|→1

v(z)‖x‖ = ‖x‖ lim
|z|→1

v(z) = 0,

operators P and Q are also well defined. The rest of the proof is analogous to i)⇔ iii).

Lemma 5.1.12. Let E be a Banach space and T : E → E an isomorphism. If T is weakly
compact, then E is reflexive.
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Proof. By [37, Proposition 23.18] it is enough to show that BE is weakly compact. Since T
is open and surjective, there is λ > 0 such that λBE ⊆ T (BE). The set T (BE) is relatively
weakly compact by assumption, hence so is λBE , and then BE .

Lemma 5.1.13. Let v, w be two typical weights, E be a Banach space and ϕ,ψ ∈ H(D)
with ϕ(D) ⊆ D. Assume that the operator Wψ,ϕ : H∞v → H∞w is compact. If E is a reflexive
space, then Wψ,ϕ : H∞v (D, E)→ H∞w (D, E) is weakly compact.

Proof. Consider the transpose operator W t
ψ,ϕ : (H∞w )′ → (H∞v )′. The predual of H∞v is

defined and denoted by ′H∞v := {u ∈ (H∞v )′ : u|BH∞v is τco-continuous}, as in [20, 5(c)].

Applying [20, 5(d)] to our space, we have that

′H∞v = span{δz : z ∈ D}(H
∞
v )′

, ′H∞w = span{δz : z ∈ D}(H
∞
w )′

. (5.1.5)

Since W t
ψ,ϕ(δz) = ψ(z)δϕ(z) is contained in span{δz : z ∈ D} because it is the product of the

scalar ψ(z) and the functional δϕ(z), then

W t
ψ,ϕ(span{δz : z ∈ D}) ⊆ span{δz : z ∈ D}. (5.1.6)

Now, by applying 5.1.5, 5.1.6 and the continuity of W t
ψ,ϕ, we obtain that

W t
ψ,ϕ(′H∞w ) = W t

ψ,ϕ(span{δz : z ∈ D}) ⊆W t
ψ,ϕ(span{δz : z ∈ D}) ⊆ span{δz : z ∈ D} = ′H∞v .

Thus, the restricted operator W t
ψ,ϕ|′H∞w : ′H∞w → ′H∞v is well defined.

On the other hand, consider the following diagram:

H∞v (D, E) H∞w (D, E)

L(′H∞v , E) L(′H∞w , E)

φ

Wψ,ϕ

W t
ψ,ϕ|′H∞w ∧IE

χ

where operators χ and φ are, respectively, the operators χ and ψ of [20, Lemma 10]. The
map χ : L(′H∞w , E) → H∞w (D, E) is defined by χ(T ) := T ◦ ∆, where ∆: D → ′H∞w is
given by ∆(z) = δz. For a fixed F ∈ H∞v (D, E), the map φ : H∞v (D, E) → L(′H∞v , E)
is defined by (φ(F )(g))(u′) := g(u′ ◦ F ) for all g ∈ ′H∞v and u′ ∈ E′. Both operators
are well defined, linear, continuous and their norms are less or equal to 1. The wedge
operator W t

ψ,ϕ|′H∞w ∧ IE : L(′H∞v , E) → L(′H∞w , E) maps each operator X ∈ L(′H∞v , E) to

the composed operator IE ◦X ◦W t
ψ,ϕ|′H∞w , that is,

′H∞w
′H∞v E E

IE◦X◦W t
ψ,ϕ|′H∞w

W t
ψ,ϕ|′H∞w X IE

Now, since for every F ∈ H∞v (D, E)

(χ ◦ (W t
ψ,ϕ|′H∞w ∧ IE) ◦ φ)(F )(z) = χ ◦ (IE ◦ φ(F ) ◦W t

ψ,ϕ|′H∞w )(z) =

= (IE ◦ φ(F ) ◦W t
ψ,ϕ|′H∞w ) ◦∆(z) =

= IE ◦ φ(F ) ◦ (W t
ψ,ϕ|′H∞w (δz)) = φ(F )(ψ(z)δϕ(z)) =

= ψ(z)φ(F )(δϕ(z)) = ψ(z)F (ϕ(z)) = Wψ,ϕ(F )(z)
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for all z ∈ D, then Wψ,ϕ = χ ◦ (W t
ψ,ϕ|′H∞w ∧ IE) ◦ φ. Moreover, taking into account that in

Banach spaces an operator is reflexive in the sense of [17] if, and only if, it is weakly compact,
we can apply [17, Corollary 2.11] (or [41, Theorem 2.9] applied to four different spaces, as it
is said in the comment below the theorem) and obtain that Wψ,ϕ : H∞v (D, E) → H∞w (D, E)
is weakly compact, since W t

ψ,ϕ|′H∞w is compact, IE is weakly compact and χ and φ are
continuous.

Proposition 5.1.14. Let ϕ,ψ ∈ H(D), v, w be two typical weights and let E be a Banach
space. Suppose Wψ,ϕ : H0

v (D, E) → H0
w(D, E) is continuous. The following statements are

equivalent:

i) Wψ,ϕ : H∞v (D, E)→ H∞w (D, E) is weakly compact,

ii) Wψ,ϕ : H0
v (D, E)→ H0

w(D, E) is weakly compact,

iii) Wψ,ϕ : H∞v → H∞w is compact and E is reflexive,

iv) Wψ,ϕ : H0
v → H0

w is compact and E is reflexive.

Proof. i)⇒ ii) Assume Wψ,ϕ : H∞v (D, E) → H∞w (D, E) is weakly compact. Since

Wψ,ϕ : H0
v (D, E)→ H0

w(D, E) is well defined (because it is continuous by hypothesis) then it
is weakly compact because it is the restriction of a weakly compact operator.

ii)⇒ iv) Consider the following diagram

H0
v (D, E) H0

w(D, E)

H0
v H0

w

Wψ,ϕ

TS

where the operators S and T are the same as in Proposition 5.1.6. As we have seen in the
proof of Proposition 5.1.11, both operators are well defined. Thus, since T ◦Wψ,ϕ ◦ S =
Wψ,ϕ : H0

v → H0
w, is the composition of weakly compact and continuous operators, it is

also weakly compact. If it was not compact, by [26, Theorem 5.1], there would exist a
subspace F ⊂ H0

v isomorphic to c0 such that Wψ,ϕ|F : F → F would be an isomorphism.
However, since Wψ,ϕ|F is weakly compact, by Lemma 5.1.12, c0 would be reflexive, which is
a contradiction (see [37, Corollary 7.10]).

On the other hand, consider now the diagram

H0
v (D, E) H0

w(D, E)

E E

Wψ,ϕ

QP

where operators P and Q are the same as in Proposition 5.1.11. Since Q◦Wψ,ϕ ◦P = IE , IE
is weakly compact because it is the composition of weakly compact and continuous operators.
Then, by Lemma 5.1.12, E is reflexive.

iii)⇔ iv) The same way as in Proposition 5.1.11, this follows from Propositions 2.0.1,

2.0.2, 2.0.3, 2.0.4 and 3.2.3, since ψ ∈ H0
w.

iii)⇒ i) It is done in Lemma 5.1.13.
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5.2 Inductive limits of weighted Banach spaces of vector-
valued functions

Let V = (vn)n be a sequence of strictly positive, radial, typical, continuous, decreasing
weights on D such that vn(z) ≥ vn+1(z) for each n ∈ N and z ∈ D. We assume sometimes
later that for every n ∈ N there exists m > n such that

lim
r→1−

vm(r)

vn(r)
= 0. (V)

This is condition (V) as described in [10, Section 0.4].
Let E be a Banach space. The space V H(D, E) is defined as the inductive limit of the

Banach spaces H∞vn(D, E). That is,

V H(D, E) := ind
n
H∞vn(D, E).

This space is a DF-space (see [25, Proposition 8.3.16] and [36, (5) p. 403]). In the same way
the space V0H(D, E) is defined:

V0H(D, E) := ind
n
H0
vn(D, E).

Observe that, in the scalar case, Korenblum type LB-spaces A−∞ and A−α− with α > 0 are
of this type. The space V H(D, E) is an LB-space because each of the step spaces H∞vn(D, E)
is a Banach space.

Definition 5.2.1. A locally convex inductive limit F = indnFn is called:

· regular if every bounded subset of F is contained and bounded in a step Fn;

· compactly regular if every compact subset of F is contained and compact in a step Fn;

· boundedly retractive if every bounded subset B of F is contained in a step Fn and the
topologies of F and Fn coincide on B;

· strongly boundedly retractive if F is regular and, for each n ∈ N there is m > n such that
F and Fm induce the same topology on the bounded subsets of Fn;

· sequentially retractive if every convergent sequence in F is contained in a step Fn and
converges there.

We say that a Hausdorff locally convex space X satisfies the countable neighbourhood
property (c.n.p.) if for every sequence (Un)n of 0−neighbourhoods in X there are cn > 0
such that

⋂
n cnUn is a 0−neighbourhood in X. For more information about spaces

satisfying the countable neighbourhood property, see [15].

In Proposition 5.2.2, we show that V H(D, E) is a regular LB-space. Further, if condition
(V) is satisfied, V H(D, E) is strongly boundedly retractive (Proposition 5.2.4). In particular,
every relatively (weakly) compact subset of V H(D, E) is contained and satisfies the same
properties in a step. See Proposition 5.2.7.

Observe that, if given n ∈ N, m is selected as in condition (V), then H∞vn(D, E) ⊆
H0
vm(D, E) with continuous inclusion. Therefore, condition (V) implies that V H(D, E) =

V0H(D, E) (with the same locally convex topology).
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Proposition 5.2.2. If E is a Banach space, then V H(D, E) is a regular LB-space.

Proof. Consider the following inductive limit of spaces of continuous functions

V C(D, E) := ind
n
Cvn(D, E)

where Cvn(D, E) := {F ∈ C(D, E) : supz∈D vn(z)‖F (z)‖ < ∞} and C(D, E) denotes the
space of all continuous functions from D into E. For every n ∈ N, the space Cvn(D, E) is a
Banach space with the norm ‖F‖vn = supz∈D vn(z)‖F (z)‖.

The space E satisfies the c.n.p.. Indeed, let (Un)n be a sequence of 0-neighbourhoods.
Then, there exists a sequence of balls centered in 0, (Bn)n, with radii rn, such that Bn ⊆ Un
for all n ∈ N. Take (cn)n := (1/rn)n, thus,

⋂
n cnUn ⊇

⋂
n cnBn = B(0, 1). Then,

⋂
n cnUn is

a 0-neighbourhood.

By [8, Corollary 2.5], V C(D, E) is a regular inductive limit. Moreover, since H∞vn(D, E) ⊆
Cvn(D, E) with continuous inclusion for all n ∈ N, then V H(D, E) ⊆ V C(D, E) with contin-
uous inclusion by Lemma 1.2.2.

Let B ⊂ V H(D, E) be bounded, then B ⊂ V C(D, E) is bounded because the inclusion
V H(D, E) ↪→ V C(D, E) is continuous. There is n ∈ N such that B ⊂ Cvn(D, E) and it is
bounded. Thus, B ⊂ H∞vn(D, E) because all elements of B are analytic, and B is bounded
there because both spaces H∞vn(D, E) and Cvn(D, E) have the same norm ‖ ‖vn .

The following theorem gives some equivalences of the concepts seen before, for an in-
ductive limit of Banach spaces E = indnEn. This theorem is [44, Theorem 6.4], where it is
written for countable inductive limits of Fréchet spaces.

Theorem 5.2.3. Let E = indnEn be an LB-space. The following conditions are equivalent:

(i) E is sequentially retractive,

(ii) E is compactly regular,

(iii) E is boundedly retractive,

(iv) E is strongly boundedly retractive,

(v) E is regular and for each n ∈ N there is m > n such that for all k ≥ m the spaces Em
and Ek induce the same topology on the bounded subsets of En.

Moreover, these conditions imply that E is complete.

Proposition 5.2.4. If V = (vn)n satisfies condition (V), then V H(D, E) = V0H(D, E) is
strongly boundedly retractive.

Proof. This is stated explicitly in the consequences of condition (V) in [10, p. 114]. It is
consequence (b).

Moreover, by consequence (a) in [10, p. 114], if m > n is selected for n according to
(V), the spaces H∞vm(D, E), V H(D, E) and the compact open topology all induce the same
topology on the bounded subsets of H∞vn(D, E).

Proposition 5.2.5. If V = (vn)n satisfies condition (V), then every weakly (relatively) com-
pact subset of V H(D, E) is contained and weakly (relatively) compact in some step H∞vn(D, E).
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This is a consequence of Proposition 5.2.7, which is a more general result. In its proof,
we use the following definition.

Definition 5.2.6 ([14], Definition 10, p. 105). A countable locally convex inductive limit
E = indnEn of metrizable locally convex spaces satisfies

- condition (M) if there exists an increasing sequence of absolutely convex
0−neighbourhoods Un ⊆ En such that, for each n ∈ N, there is m ≥ n with the
property that, for every k ≥ m, the topologies of Ek and Em induce the same topology
on Un;

- condition (M0) if there exists an increasing sequence of absolutely convex
0−neighbourhoods Un ⊆ En such that, for each n ∈ N, there is m ≥ n with the
property that, for every k ≥ m, for every f ∈ E′m and for every ε > 0, there exists
g ∈ E′k with

|f(x)− g(x)| < ε for all x ∈ Un.

In [44] condition (M) of indnEn is called acyclic. [44, Theorem 6.4] implies that all
conditions in Theorem 5.2.3 are equivalent to condition (M) for LB-spaces.

Proposition 5.2.7. Let E = indnEn be a strongly boundedly retractive LB-space. Then
every weakly compact subset of E is contained and weakly compact in some En.

Proof. If E is strongly boundedly retractive then E has condition (M), hence condition (M0)
(see [14, p. 105]).

By condition (M0) there is an increasing sequence (Un)n such that Un is an abso-
lutely convex neighbourhood in En such that for every n ∈ N there exists m > n with
σ(Em, E

′
m)|Un = σ(E,E′)|Un .

Take B ⊂ E weakly compact (σ(E,E′)-compact). Since E is regular, then there is
n ∈ N such that B ⊂ En and is bounded in En. Find λ > 0 with B ⊂ λUn. Since
σ(E,E′)|λUn = σ(Em, E

′
m)|λUn and B is σ(E,E′)-compact, it follows that B is σ(Em, E

′
m)-

compact.

Next we characterize when linear operators T : F → G between LB-spaces F = indnFn
and G = indmGm are bounded, Montel, reflexive, compact or weakly compact.

Lemma 5.2.8. Let E be a locally convex metrizable space, and let (An)n ⊂ E be a sequence
of precompact subsets. Then, there exists (εn)n with εn > 0 for all n ∈ N such that

⋃
n εnAn

is precompact.

Proof. Let (Un)n be a basis of absolutely convex 0-neighbourhoods in E with Un+1 ⊆ Un for
all n ∈ N. Since each An is bounded, for each n ∈ N there exists εn > 0 with εnAn ⊆ Un.

Now, fix m ∈ N. If n > m then εnAn ⊆ Un ⊆ Um and so,
⋃∞
n=m+1 εnAn ⊆ Um.

On the other hand,
⋃m
n=1 εnAn is precompact. Thus, there exist x1, . . . , xs ∈ E such that⋃m

n=1 εnAn ⊆
⋃s
i=1(xi + Um). Therefore,

∞⋃
n=1

εnAn ⊆
m⋃
n=1

εnAn ∪
∞⋃

n=m+1

εnAn ⊆
s⋃
i=1

(xi + Um) ∪ Um.

Applying Remark 5.1.2,
⋃∞
n=1 εnAn is precompact.
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Lemma 5.2.9. Let (Bn) be a sequence of weakly relatively compact subsets in a complete
metrizable locally convex space H. Then, there is a sequence (εn)n with εn > 0 for all n ∈ N
such that

⋃
n εnBn is weakly relatively compact in H.

Proof. Let (Un)n be a basis of absolutely convex 0-neighbourhoods in H with Un+1 ⊆ Un for
all n ∈ N. Since, for each n ∈ N, Bn is bounded, there exists εn > 0 such that εnBn ⊆ Un.

Now, fix a 0-neighbourhood V ⊆ H. Thus, there exists m ∈ N with Uk ⊆ V for all
k ≥ m. Moreover,

⋃m−1
i=1 εiBi is weakly relatively compact (since it is a finite union of weakly

relatively compact sets). By [17, Lemma 2.2(a)], there is a weakly compact set CV ⊆ H such
that

⋃m−1
i=1 εiBi ⊆ V +CV . Since CV ∪{0} is also weakly compact and V ⊆ V + (CV ∪{0}),

we have that ⋃
n

εnBn ⊆ V + (CV ∪ {0}).

Applying again [17, Lemma 2.2(a)] we obtain the result.

Proposition 5.2.10. Let T : F → G be a continuous linear operator between two LB-spaces
F = indnFn and G = indmGm.

a) Assume that G is regular. Then T is bounded if, and only if, there is m such that
T : Fn → Gm is continuous for all n ∈ N.

b) Assume that F is regular and that G is strongly boundedly retractive.

(i) T is Montel if, and only if, for all n ∈ N there exists m ∈ N such that T (Fn) ⊆ Gm
and T : Fn → Gm is compact.

(ii) T is reflexive if, and only if, for all n ∈ N there exists m ∈ N such that T (Fn) ⊆ Gm
and T : Fn → Gm is weakly compact.

(iii) T is compact if, and only if, there exists m ∈ N such that T (Fn) ⊆ Gm and T : Fn →
Gm is compact for all n ∈ N.

(iv) T is weakly compact if, and only if, there exists m ∈ N such that T (Fn) ⊆ Gm and
T : Fn → Gm is weakly compact for all n ∈ N.

Proof. (a) If T is bounded, then there exists a 0-neighbourhood U ⊆ F such that T (U) is
bounded in G. Since G is regular there is some m ∈ N such that T (U) ⊆ Gm and is
bounded there. Since U can be taken absolutely convex, it is absorbent, that is, F =⋃
k∈N kU . Then, for each f ∈ F there is some k ∈ N with T (f) = kT (u) ∈ kGm = Gm,

which implies that T (F ) ⊆ Gm and so, T (Fn) ⊆ Gm for all n ∈ N. Moreover, since,
for each n ∈ N, U ∩ Fn is a neighbourhood of Fn and T (U ∩ Fn) is bounded in Gm
(because T (U) is), then T : Fn → Gm is well defined and bounded (or, equivalently,
continuous, since we are in Banach spaces).

On the other hand, assume that there is some m ∈ N such that T : Fn → Gm is
continuous for all n ∈ N. Then, there exists m ∈ N such that for all n ∈ N there is
εn > 0 such that T (εnBFn) ⊆ BGm . If U denotes the absolutely convex hull of εnBFn ,
then U is a 0-neighbourhood in F and T (U) ⊆ BGm is bounded in Gm, hence, in G.

(b.i) Assume T is Montel. Fix n ∈ N. The closed unit ball BFn of Fn is bounded in F .
By hypothesis, T (BFn) si relatively compact in G. Since G is strongly boundedly
retractive, by Theorem 5.2.3, G is compactly regular. Then, there is some m ∈ N
such that T (BFn) is relatively compact in Gm. This implies that T (BFn) ⊆ Gm and
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T : Fn → Gm is compact. Moreover, BFn is absorbent since it is absolutely convex,
then T (Fn) ⊆ Gm.

For the converse, let B ⊆ F be bounded. Since F is regular, there is some n ∈ N such
that B ⊆ Fn and it is bounded there. By hypothesis, T (B) ⊆ Gm and T (B) relatively
compact in Gm, hence in G.

(b.ii) Suppose T is reflexive. Fix n ∈ N. Since BFn is bounded in F , by hypothesis T (BFn)
is weakly relatively compact in G. Since G is strongly boundedly retractive, by Propo-
sition 5.2.7 there exists m ∈ N such that T (BFn) is weakly relatively compact in Gm.
This implies that T (BFn) ⊆ Gm and T : Fn → Gm is weakly compact.

On the other hand, let B be a bounded set of F . Since F is regular, there is n ∈ N
such that B ⊆ Fn and it is bounded there. By hypothesis there is some m ∈ N such
that T (B) is weakly relatively compact in Gm, hence in G.

(b.iii) First, suppose T is compact. That is, there exists a 0-neighbourhood U ⊆ F such that
T (U) is relatively compact in G. Since G is strongly boundedly retractive, by Theorem
5.2.3, it is compactly regular and so, there ism ∈ N such that T (U) is relatively compact
in Gm. Now, since T (F ) ⊆ Gm (because T (U) ⊆ Gm), then T (Fn) ⊆ Gm for all n ∈ N.
Moreover, for each n ∈ N, U ∩Fn is a neighbourhood in Fn and T (U ∪Fn) is relatively
compact in Gm. Therefore, T : Fn → Gm is compact.

For the converse, we have, by assumption, that there is m ∈ N such that for each n ∈ N
T (BFn) is relatively compact in Gm. Since in Banach spaces relatively compact and
precompact sets are the same, we use Lemma 5.2.8 and we get that there exists (εn)n,
with εn > 0 for all n ∈ N, such that

⋃
n εnT (BFn) is relatively compact in Gm.

If A denotes the absolutely convex hull of
⋃
n εnT (BFn), by Krein’s Theorem ([36,

24.5(4) p. 325]), A is also relatively compact in Gm. Now, if we call B the absolutely
convex hull of

⋃
n εnBFn , B is a 0-neighbourhood in F and T (B) ⊆ A is relatively

compact.

(b.iv) First, assume T is weakly compact. Then, there is a 0-neighbourhood U in F such
that T (U) is relatively weakly compact. Since G is strongly boundedly retractive, we
can apply Proposition 5.2.7 and obtain that there exists some m ∈ N such that T (U)
is relatively weakly compact in Gm. For each n ∈ N, U ∩ Fn is a neighbourhood in
Fn. Since T (F ) ⊆ Gm (because T (U) ⊆ Gm) thus T (Fn) ⊆ Gm. Then, T (U ∩ Fn) is
relatively weakly compact in Gm.

On the other hand, by hypothesis there is m ∈ N such that T (BFn) ⊆ Gm is relatively
weakly compact for all n ∈ N. By Lemma 5.2.9 there exist (εn)n with εn > 0 for all
n ∈ N such that

⋃
n εnT (BFn) is relatively weakly compact in Gm.

If A denotes the absolutely convex hull of
⋃
n εnT (BFn) then A is relatively weakly

compact in the Banach space Gm (see [36, 24.5(4’) p. 325]). If B denotes the absolutely
convex hull of

⋃
n εnBFn then B is a 0-neighbourhood in F and T (B) ⊆ A is relatively

weakly compact.
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5.2.1 Weighted composition operators on inductive limits of vector-valued
spaces

We now investigate the weighted composition operator

Wψ,ϕ : V H(D, E)→ V H(D, E)

where ϕ : D → D is analytic, ψ ∈ H(D) and E is a Banach space. We consider V = (vn)n
and V H(D, E) as in Section 5.2.

Since V H(D, E) is regular (see Proposition 5.2.2), from Propositions 2.0.1, 5.1.6 and
Lemma 1.2.2(i) we obtain the next result.

Proposition 5.2.11. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ H(D). The
following are equivalent:

(i) Wψ,ϕ : V H(D, E)→ V H(D, E) is continuous,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞vn(D, E)→ H∞vm(D, E) is continuous,

(iii) for all n ∈ N there is m > n such that supz∈D |ψ(z)|vm(z)/ṽn(ϕ(z)) < +∞.

Proposition 5.2.12. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ H(D). The
following are equivalent:

(i) Wψ,ϕ : V H(D, E)→ V H(D, E) is bounded,

(ii) there is m ∈ N such that Wψ,ϕ : H∞vn(D, E)→ H∞vm(D, E) is continuous for all n ∈ N,

(iii) there is m ∈ N such that supz∈D |ψ(z)|vm(z)/ṽn(ϕ(z)) < +∞ for all n ∈ N.

Proof. Since every bounded operator is continuous and V H(D, E) is regular, we can apply
Proposition 5.2.10(a) and obtain (i)⇔ (ii). Implications (ii)⇔ (iii) are a direct consequence
of Propositions 2.0.1 and 5.1.6.

Proposition 5.2.13. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ V H(D,C).
Suppose that V = (vn)n has condition (V) and Wψ,ϕ : V H(D, E)→ V H(D, E) is continuous.
The following are equivalent:

(i) Wψ,ϕ : V H(D, E)→ V H(D, E) is Montel,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞vn(D, E)→ H∞vm(D, E) is compact,

(iii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞vn → H∞vm is compact and E has finite
dimension,

(iv) E has finite dimension and for all n ∈ N there is m > n such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| vm(z)

ṽn(ϕ(z))
= 0.

Proof. Since V H(D, E) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.i) and obtain (i) ⇔ (ii). Implications (ii) ⇔ (iii) and (iii) ⇔ (iv) are
direct consequences of Propositions 5.1.11, 3.2.3, 2.0.3 and 2.0.4.
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Proposition 5.2.14. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ V H(D,C).
Suppose that V = (vn)n has condition (V) and Wψ,ϕ : V H(D, E)→ V H(D, E) is continuous.
The following are equivalent:

(i) Wψ,ϕ : V H(D, E)→ V H(D, E) is reflexive,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞vn(D, E) → H∞vm(D, E) is weakly
compact,

(iii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞vn → H∞vm is compact and E is reflexive,

(iv) E is reflexive and for all n ∈ N there is m > n such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| vm(z)

ṽn(ϕ(z))
= 0.

Proof. Since V H(D, E) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.ii) and obtain (i)⇔ (ii). Implications (ii)⇔ (iii) and (iii)⇔ (iv) are
direct consequences of Propositions 5.1.14, 3.2.3, 2.0.3 and 2.0.4.

Proposition 5.2.15. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ V H(D,C).
Suppose that V = (vn)n has condition (V) and Wψ,ϕ : V H(D, E)→ V H(D, E) is continuous.
The following are equivalent:

(i) Wψ,ϕ : V H(D, E)→ V H(D, E) is compact,

(ii) there is m ∈ N such that Wψ,ϕ : H∞vn(D, E)→ H∞vm(D, E) is compact for all n ∈ N,

(iii) there is m ∈ N such that Wψ,ϕ : H∞vn → H∞vm is compact for all n ∈ N and E has finite
dimension,

(iv) E has finite dimension and there is m ∈ N such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| vm(z)

ṽn(ϕ(z))
= 0 for all n ∈ N.

Proof. Since V H(D, E) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.iii) and obtain (i)⇔ (ii). Implications (ii)⇔ (iii) and (iii)⇔ (iv) are
direct consequences of Propositions 5.1.11, 3.2.3, 2.0.3 and 2.0.4.

Proposition 5.2.16. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ V H(D,C).
Suppose that V = (vn)n has condition (V) and Wψ,ϕ : V H(D, E)→ V H(D, E) is continuous.
The following are equivalent:

(i) Wψ,ϕ : V H(D, E)→ V H(D, E) is weakly compact,

(ii) there is m ∈ N such that Wψ,ϕ : H∞vn(D, E) → H∞vm(D, E) is weakly compact for all
n ∈ N,

(iii) there is m ∈ N such that Wψ,ϕ : H∞vn → H∞vm is compact for all n ∈ N and E is reflexive,

(iv) E is reflexive and there is m ∈ N such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| vm(z)

ṽn(ϕ(z))
= 0 for all n ∈ N.
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Proof. Since V H(D, E) is strongly boundedly retractive (see Proposition 5.2.4), we can apply
Proposition 5.2.10(b.iv) and obtain (i)⇔ (ii). Implications (ii)⇔ (iii) and (iii)⇔ (iv) are
direct consequences of Propositions 5.1.14, 3.2.3, 2.0.3 and 2.0.4.

5.2.2 Weighted composition operators on Korenblum type spaces of
vector-valued functions

Following the notation of Korenblum type spaces in section 1.5, we denote by A−∞(E) the
space

A−∞(E) :=
⋃
n∈N

H∞n (D, E) .

Here, H∞n (D, E) denotes the weighted Banach space of vector-valued functions for the weight
vn(z) = (1 − |z|)n. Such weights are typical and essential (See Section 1.4.1). The space
A−∞(E) is endowed with the inductive limit topology: A−∞(E) = ind

n
H∞n (D, E). Observe

that A−∞(E) = V H(D, E) when V = (vn)n = ((1 − |z|)n)n is such decreasing sequence of
weights.

Also, we denote by A−α− (E) the space

A−α− (E) :=
⋃
n∈N

H∞αn(D, E) ,

where H∞αn(D, E) denotes the weighted Banach space of vector-valued functions with the

weight vαn(z) = (1 − |z|)α−
1
n , where n ≥ n0 such that α − 1

n0
> 0. These weights are

also typical and essential. The space A−α− (E) is endowed with the inductive limit topology:
A−α− (E) = indnH

∞
αn(D, E). Observe that A−α− (E) = V H(D, E) when V = (vαn)n = (1 −

|z|)α−
1
n is such decreasing sequence of weights.

Both spaces, A−∞(E) and A−α− (E), are regular (see Proposition 5.2.2). Notice that both
sequences of weights, (vn)n and (vαn)n, satisfy condition (V). Thus, A−∞(E) and A−α− (E)
are strongly boundedly retractive (see Proposition 5.2.4).

Corollary 5.2.17. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ H(D). The
following are equivalent:

(i) Wψ,ϕ : A−∞(E)→ A−∞(E) is continuous,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞n (D, E)→ H∞m (D, E) is continuous,

(iii) for all n ∈ N there is m > n such that

sup
z∈D
|ψ(z)| (1− |z|)m

(1− |ϕ(z)|)n
< +∞.

Corollary 5.2.18. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ H(D). The
following are equivalent:

(i) Wψ,ϕ : A−α− (E)→ A−α− (E) is continuous,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞αn(D, E)→ H∞αm(D, E) is continuous,
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(iii) for all n ∈ N there is m > n such that

sup
z∈D
|ψ(z)| (1− |z|)α−

1
m

(1− |ϕ(z)|)α−
1
n

< +∞.

Corollaries 5.2.17 and 5.2.18 are consequences of Proposition 5.2.11.

Corollary 5.2.19. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ H(D). The
following are equivalent:

(i) Wψ,ϕ : A−∞(E)→ A−∞(E) is bounded,

(ii) there is m ∈ N such that Wψ,ϕ : H∞n (D, E)→ H∞m (D, E) is continuous for all n ∈ N,

(iii) there is m ∈ N such that

sup
z∈D
|ψ(z)| (1− |z|)m

(1− |ϕ(z)|)n
< +∞ for all n ∈ N.

Corollary 5.2.20. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ H(D). The
following are equivalent:

(i) Wψ,ϕ : A−α− (E)→ A−α− (E) is bounded,

(ii) there is m ∈ N such that Wψ,ϕ : H∞αn(D, E)→ H∞αm(D, E) is continuous for all n ∈ N,

(iii) there is m ∈ N such that

sup
z∈D
|ψ(z)| (1− |z|)α−

1
m

(1− |ϕ(z)|)α−
1
n

< +∞ for all n ∈ N.

Corollaries 5.2.19 and 5.2.20 are consequences of Proposition 5.2.12.

Corollary 5.2.21. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−∞. Suppose
that Wψ,ϕ : A−∞(E)→ A−∞(E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−∞(E)→ A−∞(E) is Montel,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞n (D, E)→ H∞m (D, E) is compact,

(iii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞n → H∞m is compact and E has finite
dimension,

(iv) E has finite dimension and for all n ∈ N there is m > n such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)m

(1− |ϕ(z)|)n
= 0.

Corollary 5.2.22. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−α− . Suppose
that Wψ,ϕ : A−α− (E)→ A−α− (E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−α− (E)→ A−α− (E) is Montel,
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(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞αn(D, E)→ H∞αm(D, E) is compact,

(iii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞αn → H∞αm is compact and E has finite
dimension,

(iv) E has finite dimension and for all n ∈ N there is m > n such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)α−
1
m

(1− |ϕ(z)|)α−
1
n

= 0.

Corollaries 5.2.21 and 5.2.22 are consequences of Proposition 5.2.13.

Corollary 5.2.23. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−∞. Suppose
that Wψ,ϕ : A−∞(E)→ A−∞(E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−∞(E)→ A−∞(E) is reflexive,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞n (D, E) → H∞m (D, E) is weakly
compact,

(iii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞n → H∞m is compact and E is reflexive,

(iv) E is reflexive and for all n ∈ N there is m > n such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)m

(1− |ϕ(z)|)n
= 0.

Corollary 5.2.24. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−α− . Suppose
that Wψ,ϕ : A−α− (E)→ A−α− (E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−α− (E)→ A−α− (E) is reflexive,

(ii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞αn(D, E) → H∞αm(D, E) is weakly
compact,

(iii) for all n ∈ N there is m > n such that Wψ,ϕ : H∞αn → H∞αm is compact and E is reflexive,

(iv) E is reflexive and for all n ∈ N there is m > n such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)α−
1
m

(1− |ϕ(z)|)α−
1
n

= 0.

Corollaries 5.2.23 and 5.2.24 are consequences of Proposition 5.2.14.

Corollary 5.2.25. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−∞. Suppose
that Wψ,ϕ : A−∞(E)→ A−∞(E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−∞(E)→ A−∞(E) is compact,

(ii) there is m ∈ N such that Wψ,ϕ : H∞n (D, E)→ H∞m (D, E) is compact for all n ∈ N,

(iii) there is m ∈ N such that Wψ,ϕ : H∞n → H∞m is compact for all n ∈ N and E has finite
dimension,
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(iv) E has finite dimension and there is m ∈ N such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)m

(1− |ϕ(z)|)n
= 0 for all n ∈ N.

Corollary 5.2.26. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−α− . Suppose
that Wψ,ϕ : A−α− (E)→ A−α− (E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−α− (E)→ A−α− (E) is compact,

(ii) there is m ∈ N such that Wψ,ϕ : H∞αn(D, E)→ H∞αm(D, E) is compact for all n ∈ N,

(iii) there is m ∈ N such that Wψ,ϕ : H∞αn → H∞αm is compact for all n ∈ N and E has finite
dimension,

(iv) E has finite dimension and there is m ∈ N such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)α−
1
m

(1− |ϕ(z)|)α−
1
n

= 0 for all n ∈ N.

Corollaries 5.2.25 and 5.2.26 are consequences of Proposition 5.2.15.

Corollary 5.2.27. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−∞. Suppose
that Wψ,ϕ : A−∞(E)→ A−∞(E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−∞(E)→ A−∞(E) is weakly compact,

(ii) there is m ∈ N such that Wψ,ϕ : H∞n (D, E) → H∞m (D, E) is weakly compact for all
n ∈ N,

(iii) there is m ∈ N such that Wψ,ϕ : H∞n → H∞m is compact for all n ∈ N and E is reflexive,

(iv) E is reflexive and there is m ∈ N such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)m

(1− |ϕ(z)|)n
= 0 for all n ∈ N.

Corollary 5.2.28. Let E be a Banach space, ϕ : D → D analytic and ψ ∈ A−α− . Suppose
that Wψ,ϕ : A−α− (E)→ A−α− (E) is continuous. The following are equivalent:

(i) Wψ,ϕ : A−α− (E)→ A−α− (E) is weakly compact,

(ii) there is m ∈ N such that Wψ,ϕ : H∞αn(D, E) → H∞αm(D, E) is weakly compact for all
n ∈ N,

(iii) there is m ∈ N such that Wψ,ϕ : H∞αn → H∞αm is compact for all n ∈ N and E is reflexive,

(iv) E is reflexive and there is m ∈ N such that

lim
r−→1−

sup
|ϕ(z)|>r

|ψ(z)| (1− |z|)α−
1
m

(1− |ϕ(z)|)α−
1
n

= 0 for all n ∈ N.

Corollaries 5.2.27 and 5.2.28 are consequences of Proposition 5.2.16.
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5.3 Projective limits of weighted Banach spaces of vector-
valued functions

Let W = (wn)n be a sequence of strictly positive, radial, typical, continuous, decreasing
weights on D such that wn(z) ≤ wn+1(z) for each n ∈ N and z ∈ D. We say that W satisfies
condition (W ) if for all n ∈ N there exists m > n such that

lim
r−→1−

wn(r)

wm(r)
= 0. (W)

Let E be a Banach space. The space HW (D, E) is defined as the projective limit of the
Banach spaces H∞wn(D, E). That is,

HW (D, E) =
⋂
n∈N

H∞wn(D, E) = proj
n

H∞wn(D, E).

This space is a Fréchet space endowed with the norms

‖F‖wn := sup
z∈D

wn(z)‖F (z)‖, n ∈ N.

If we assume that (W) holds and m > n is selected as in (W), then H∞wm(D, E) ⊆ H0
wn(D, E)

and HW (D, E) = HW0(D, E) = projnH
0
wn(D, E).

If we denote by Bn the closed unit ball of Hwn(D, E), a basis of absolutely convex
neighbourhoods of HW (D, E) is given by ( 1

nBn ∩HW (D, E)))n.

We associate with W = (wn)n the following family of weights on D:

V (W ) := {v : D→]0,+∞[ ; v is continuous, radial and wnv is bounded in D for each n}.

Definition 5.3.1 ([11], Definitions 1.1). Let P be a set of real valued functions defined on
an index set I. The set P is said to be a Köthe set on I if the following three properties are
satisfied:

- α(i) ≥ 0 for each i ∈ I and each α ∈ P ;

- for every pair (α, β) ∈ P × P there exists γ ∈ P such that max(α(i), β(i)) ≤ γ(i) for
all i ∈ I;

- for each i ∈ I there exists α ∈ P with α(i) > 0.

Corresponding to each index set I and Köthe set P we associate the echelon space

λ∞(I, P ) := {x : I → R such that sup
i∈I

α(i)|x(i)| <∞ for all α ∈ P}.

Lemma 5.3.2. A subset B ⊆ HW (D, E) is bounded if, and only if, there is v ∈ V (W ) such
that

B ⊆ Bv := {F ∈ HW (D, E) : ‖F (z)‖ ≤ v(z) for all z ∈ D}.

Proof. Since for each F ∈ Bv

sup
z∈D

wn(z)‖F (z)‖ ≤ sup
z∈D

wn(z)v(z) < +∞,
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we have that Bv is bounded in HW (D, E).
Given a bounded set B ⊆ HW (D, E), for each n ∈ N there is Mn such that

sup
F∈B

sup
z∈D

wn(z)‖F (z)‖ ≤Mn.

Then, the set B̃ := {‖F (·)‖ : D → R ; F ∈ B} is bounded in the Köthe echelon space
λ∞(D,W ). By the characterization of bounded subsets in the Köthe echelon space of infinite
order, [11, Proposition 2.5], there exists w : D→]0,+∞[ such that wnw is bounded for each
n ∈ N and

sup
z∈D

‖F (z)‖
w(z)

≤ 1 for each F ∈ B.

We can apply [10, Proposition in p. 112] to show that w is dominated by v ∈ V (W ). This
implies that ‖F (z)‖ ≤ v(z) for all z ∈ D, and B ⊆ Bv.

Let X be a locally convex space, and A an absolutely convex subset of X. The space

XA :=
⋃
µ>0

µA

is a normed space with the norm

pA(x) := inf{λ > 0 : x ∈ λA}, x ∈ XA.

The norm pA is called Minkowski functional . For more information about this functional,
we refer the reader to [37, p. 47].

Remark 5.3.3. If (X, ‖ · ‖) is a Banach space and BX its closed unit ball, then

‖x‖ = inf{λ > 0 : x ∈ λBX}.

In fact, for each x ∈ X, x/‖x‖ ∈ BX if, and only if x ∈ ‖x‖BX . Suppose there exists
0 < λ < ‖x‖ with x ∈ λBX , that is, x/λ ∈ BX . This implies that ‖x‖/λ ≤ 1 and ‖x‖ ≤ 1,
which is a contradiction. Thus, the norm coincides with the infimum.

Lemma 5.3.4. If v ∈ V (W ), then the Banach space HW (D, E)Bv is isometrically isomor-
phic to the Banach space H∞1

v

(D, E).

Proof. Observe that F ∈ HW (D, E)Bv if, and only if, there exists µ > 0 with F ∈ µBv, that
is, F/µ ∈ Bv. This occurs if, and only if, ‖F (z)/µ‖ ≤ v(z) for all z ∈ D or, equivalently,
supz∈D ‖F (z)‖/v(z) ≤ µ. That is, F ∈ H∞1

v

(D, E).

Moreover, since Bv is the closed unit ball of H∞1
v

(D, E), by Remark 5.3.3 we have that

the norm ‖ · ‖ 1
v

coincides with pBv .

Given any holomorphic function F ∈ H(D, E) there is (xk)k ⊆ E such that

F (z) =

∞∑
k=0

xkz
k, z ∈ D,

and the series converges uniformly on the compact subsets of D. The k-th Taylor polynomial
of F is denoted by Pk:

Pk(z) :=
k∑
j=0

xjz
j .
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Clearly, if w is a strictly positive radial decreasing weight on D with limr−→1− w(r) = 0,
then every (vector-valued) polynomial P (z) =

∑k
j=0 xjz

j belongs to H∞w (D, E).

Given G ∈ H(D, E), G(z) =
∑∞

k=0 xkz
k, z ∈ D, we denote by Ct(G) the Cesàro sums of

the Taylor polynomial of G. That is,

Ct(G)(z) :=
1

t+ 1

t∑
j=0

(
j∑

k=0

xkz
k

)
.

Clearly, Ct(G) tends to G uniformly on compact sets in D whenever t −→ +∞.

Lemma 5.3.5. Let w be a strictly positive, continuous, radial weight on D with
limr−→1− w(r) = 0. Then, for each G ∈ H∞w (D, E) we have

sup
z∈D

w(z)‖Cn(G)(z)‖ ≤ sup
z∈D

w(z)‖G(z)‖, for all n ∈ N.

Proof. For every u′ ∈ E′ and G ∈ H∞w (D, E), u′ ◦G ∈ H∞w . By [12, Proposition 1.2],

sup
z∈D

w(z)|Cn(u′ ◦G)(z)| ≤ sup
z∈D

w(z)|(u′ ◦G)(z)|, for all n ∈ N.

Moreover, applying this inequality and the Hahn-Banach Theorem, that is, ‖x‖ =
sup{|u′(x)|, u′ ∈ E′, ‖u′‖ ≤ 1}, we obtain that, for each n ∈ N,

sup
z∈D

w(z)‖Cn(G)(z)‖ = sup
z∈D

w(z) sup
‖u′‖≤1

|u′ ◦ (Cn(G))(z)| = sup
z∈D

w(z) sup
‖u′‖≤1

|Cn(u′ ◦G)(z)|

= sup
z∈D

sup
‖u′‖≤1

w(z)|Cn(u′ ◦G)(z)| = sup
‖u′‖≤1

sup
z∈D

w(z)|Cn(u′ ◦G)(z)|

≤ sup
‖u′‖≤1

sup
z∈D

w(z)|(u′ ◦G)(z)| = sup
z∈D

sup
‖u′‖≤1

w(z)|(u′ ◦G)(z)|

= sup
z∈D

w(z) sup
‖u′‖≤1

|(u′ ◦G)(z)| = sup
z∈D

w(z)‖G(z)‖.

Corollary 5.3.6. For each F ∈ H∞wn(D, E) there is a sequence (Gk)k ⊂ HW (D, E) such
that

sup
z∈D

wn(z)‖Gk(z)‖ ≤ sup
z∈D

wn(z)‖F (z)‖

and Gk −→ F uniformly on the compact subsets of D, as k −→∞.

Proof. It is enough to take Gk := Ck(F ) for all k ∈ N.

Proposition 5.3.7. Let w be a strictly positive, continuous, radial weight on D with
limr−→1− w(r) = 0. For each F ∈ H0

w(D, E) the sequence (Ck(F ))k converges to F in
H0
w(D, E).

Proof. Since F ∈ H0
w(D, E), for each ε > 0 there is 0 < r < 1 with w(z)‖F (z)‖ < ε/2 for all

|z| > r. Take M > 0 such that max|z|≤r w(z) ≤M , and choose k0 ∈ N with

max
|z|≤r
‖F (z)− Ck(F )(z)‖ < ε

2M
for all k ≥ k0.
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Then, applying [12, Lemma 1.1] and the Hahn-Banach Theorem to the vector case, we obtain
that for all k ≥ k0,

sup
z∈D

w(z)‖F (z)− Ck(F )‖ ≤ max

{
max
|z|≤r

w(z)‖F (z)− Ck(F )(z)‖, sup
|z|>r

w(z)‖F (z)− Ck(F )(z)‖

}

< max

{
M

ε

2M
,
ε

2
+ sup
|z|>r

w(z)‖Ck(F )(z)‖

}

≤ max

{
ε

2
,
ε

2
+ sup
|z|>r

w(z) max
|λ|=1

‖F (λz)‖

}

≤ max

{
ε

2
,
ε

2
+ sup
|z|>r

w(z)‖F (z)‖

}
≤ max

{ε
2
, 2
ε

2

}
= ε.

That is, ‖F − Ck(F )‖w tends to 0 as k −→∞.

Corollary 5.3.8. If the sequence W = (wn)n satisfies condition (W), then HW (D, E) is
dense in H0

wn(D, E) for each n ∈ N.

5.3.1 Weighted composition operators on projective limits of vector-
valued spaces

Let H be a Hausdorff locally convex space. For each n ∈ N, En and Fn are Banach spaces
with closed unit balls CEn and CFn with norms ‖ · ‖En and ‖ · ‖Fn respectively. We assume
that En+1 ⊆ En ⊆ E1 ⊆ H with continuous inclusion, CEn+1 ⊆ CEn , Fn+1 ⊆ Fn ⊆ F1 ⊆ H
with continuous inclusion and CFn+1 ⊆ CFn for all n ∈ N.

We define the Fréchet spaces

E :=
⋂
n

En, F :=
⋂
n

Fn,

both endowed with the projective limit topology.
We also assume the following two conditions:

(C1) For all n ∈ N, x ∈ En there is (yk)k ⊆ E such that yk −→ x in H and ‖yk‖En ≤ ‖x‖En
for each k.

(C2) Each CFn is closed in H.

Proposition 5.3.9 ([17], Proposition 4.2). Let H be a Hausdorff locally convex space and
T : H → H continuous. Let E,F ⊆ H be two projective limits of Banach spaces, E =
projnEn, F = projnFn, where En+1 ⊆ En ⊆ E1 ⊆ H and Fn+1 ⊆ Fn ⊆ F1 ⊆ H with
continuous inclusion for all n ∈ N. Also, assume conditions (C1) and (C2) are satisfied.

a) The following conditions are equivalent:

(i) T (E) ⊆ F ,

(ii) T ∈ L(E,F ),

(iii) for all n ∈ N there exists m ∈ N with T (Em) ⊆ Fn,

(iv) for all n ∈ N there exists m ∈ N such that T : Em → Fn is well-defined and contin-
uous.
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b) The following conditions are equivalent:

(i) T : E → F is bounded,

(ii) there exists m ∈ N such that T (Em) ⊆ Fn for all n ∈ N,

(iii) there exists m ∈ N such that T : Em → Fn is well-defined and continuous for all
n ∈ N.

c) The following conditions are equivalent:

(i) T : E → F is Montel (respectively reflexive),

(ii) for all absolutely convex closed bounded subset B ⊆ E, T : EB → Fn is compact
(resp. weakly compact) for all n ∈ N.

d) The following conditions are equivalent:

(i) T : E → F is compact (respectively weakly compact),

(ii) there exists m ∈ N such that T : Em → Fn is compact (resp. weakly compact) for
all n ∈ N.

Proof. Part a). The equivalences (i)⇔(ii) and (iii)⇔(iv) follow from the Closed Graph
Theorem. The definition of projective topology yields (iv)⇒(ii). We show (ii)⇒(iii). Fix
m ∈ N. Since T ∈ L(E,F ), we find n ∈ N, λ > 0 such that T (E ∩ CEn) ⊆ λCFm . We show
that T (En) ⊆ Fm. Given x ∈ En, there exists µ > 0 such that x/µ ∈ CEn . By condition
(C1), there is a sequence (yk)k ⊆ E ∩ CEn such that yk tends to x/µ in H. This implies
that T (yk) −→ T (x)/µ in H. Since T (yk) ∈ λCFm for all k ∈ N and CFm is closed in H by
condition (C2), then T (x)/µ ∈ λCFm and so, T (x) ∈ µλCFm ⊂ Fm. The other parts of the
proof are exactly like in [17, Proposition 4.2].

In the applications we have in mind, H is H(D, E) with the compact-open topology,
En = Fn = H∞wn(D, E) for each n ∈ N, and

CEn = CFn = {f ∈ H(D, E) : sup
z∈D

wn(z)‖F (z)‖ ≤ 1}.

We denote this closed unit balls by Cn in the rest of this chapter.

Remark 5.3.10. Observe that condition (C1) for HW (D, E) follows from Corollary 5.3.6.
We show that condition (C2) is also satisfied. We need to see that Cn is closed in

H(D, E) for the τco topology. Fix n ∈ N. Let (Fk)k ⊆ Cn be a sequence that converges to
some F ∈ H(D, E) with the τco topology. Since for every z ∈ D the set {z} is a compact
set, we have that for a fixed z ∈ D, Fk(z) −→ F (z). Then, for every ε > 0 there is k0 such
that wn(z)‖Fk(z) − F (z)‖ < ε for all k ≥ k0. Since Fk ∈ Cn for all k ∈ N, we have that
wn(z)‖Fk(z)‖ < 1 for each k ∈ N. Therefore,

wn(z)‖F (z)‖ ≤ wn(z)‖Fk(z)− F (z)‖+ wn(z)‖Fk(z)‖ < 1 + ε, for all k ≥ k0.

Now, since z is arbitrary, we have that supz∈Dwn(z)‖F (z)‖ ≤ 1. That is, F ∈ Cn.

In the next proposition we give some characterizations that should be compared with
[17, Theorem 4.3] and the comments below it.
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Proposition 5.3.11. Let W = (wn)n be an increasing sequence of strictly positive, radial,
continuous weights on D with limr−→1− wn(r) = 0 for each n ∈ N. Let ϕ,ψ ∈ H(D) with
ϕ(D) ⊆ D. Let E be a Banach space.

a) The following conditions are equivalent:

(i) Wψ,ϕ : HW (D, E)→ HW (D, E) is continuous,

(ii) for all n ∈ N there exists m ∈ N such that Wψ,ϕ : H∞wm(D, E) → H∞wn(D, E) is
continuous,

(iii) for all n ∈ N there exists m ∈ N such that Wψ,ϕ : H∞wm → H∞wn is continuous,

(iv) for all n ∈ N there exists m ∈ N such that

sup
z∈D

wn(z)

w̃m(ϕ(z))
|ψ(z)| <∞.

b) The following conditions are equivalent:

(i) Wψ,ϕ : HW (D, E)→ HW (D, E) is bounded,

(ii) there exists m ∈ N such that Wψ,ϕ : H∞wm → H∞wn is continuous for all n ∈ N,

(iii) there exists m ∈ N such that

sup
z∈D

wn(z)

w̃m(ϕ(z))
|ψ(z)| <∞ for all n ∈ N.

c) The following conditions are equivalent:

(i) Wψ,ϕ : HW (D, E)→ HW (D, E) is Montel (reflexive),

(ii) for all v ∈ V (W ) there is n ∈ N such that ψ ∈ H0
wn and Wψ,ϕ : H∞1

v

(D, E) →
H∞wn(D, E) is compact (resp. weakly compact),

(iii) for all v ∈ V (W ) there is n ∈ N such that ψ ∈ H0
wn, Wψ,ϕ : H∞1

v

→ H∞wn is compact

and E has finite dimension (resp. E is reflexive),

(iv) E has finite dimension (resp. E is reflexive) and for all v ∈ V (W ) there is n ∈ N
such that ψ ∈ H0

wn and

lim sup
|z|−→1−

wn(z)

(̃1/v)(ϕ(z))
|ψ(z)| = 0.

d) The following conditions are equivalent:

(i) Wψ,ϕ : HW (D, E)→ HW (D, E) is (weakly) compact,

(ii) there exists m ∈ N such that Wψ,ϕ : H∞wm(D, E) → H∞wn(D, E) is compact (resp.
weakly compact) and ψ ∈ H0

wn for all n ∈ N,

(iii) E has finite dimension (resp. E is reflexive) and there exists m ∈ N such that
ψ ∈ H0

wn and

lim sup
|z|−→1−

wn(z)

w̃m(ϕ(z))
|ψ(z)| = 0 for all n ∈ N.

Proof. Equivalences of (a) and (b) can be directly deduced from Propositions 5.3.9, 5.1.6
and 2.0.1. Applying Propositions 5.3.9, 5.1.11, 5.1.14, 2.0.4 and Lemma 5.3.4 we obtain (c).
For part (d) we use Propositions 5.3.9, 5.1.11, 5.1.14 and 2.0.4.
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5.3.2 Weighted composition operators on projective limits of Korenblum
type of vector-valued functions

Following the notation of Korenblum type spaces in section 1.5, for a fixed α ≥ 0, we denote
by A−α+ (E) the space

A−α+ (E) :=
⋂
n∈N

H∞αn(D, E) .

Here, H∞αn(D, E) denotes the weighted Banach space of vector-valued functions where the

weights are vαn(z) = (1 − |z|)α+
1
n . It is endowed with the projective limit topology:

A−α+ (E) = proj
n

H∞αn(D, E). Observe that A−α+ (E) = HW (D, E) when W = (vαn)n is the

increasing sequence of weights, which are essential (see Section 1.4.1).

Corollary 5.3.12. Let E be a Banach space, α ≥ 0 and ϕ,ψ ∈ H(D) with ϕ(D) ⊆ D.

a) The following conditions are equivalent:

(i) Wψ,ϕ : A−α+ (E)→ A−α+ (E) is continuous,

(ii) for all n ∈ N there exists m ∈ N such that Wψ,ϕ : H∞αm(D, E) → H∞αn(D, E) is
continuous,

(iii) for all n ∈ N there exists m ∈ N such that Wψ,ϕ : H∞αm → H∞αn is continuous,

(iv) for all n ∈ N there exists m ∈ N such that

sup
z∈D

(1− |z|)α+
1
n

(1− |ϕ(z)|)α+
1
m

|ψ(z)| <∞.

b) The following conditions are equivalent:

(i) Wψ,ϕ : A−α+ (E)→ A−α+ (E) is bounded,

(ii) there exists m ∈ N such that Wψ,ϕ : H∞αm → H∞αn is continuous for all n ∈ N,

(iii) there exists m ∈ N such that

sup
z∈D

(1− |z|)α+
1
n

(1− |ϕ(z)|)α+
1
m

|ψ(z)| <∞ for all n ∈ N.

c) The following conditions are equivalent:

(i) Wψ,ϕ : A−α+ (E)→ A−α+ (E) is Montel (reflexive),

(ii) for all v ∈ V ((vαn)n) there is n ∈ N such that ψ ∈ H0
αn and Wψ,ϕ : H∞1

v

(D, E) →
H∞αn(D, E) is compact (resp. weakly compact),

(iii) for all v ∈ V ((vαn)n) there is n ∈ N such that ψ ∈ H0
αn, Wψ,ϕ : H∞1

v

→ H∞αn is

compact and E has finite dimension (resp. E is reflexive),

(iv) E has finite dimension (resp. E is reflexive) and for all v ∈ V ((vαn)n) there is
n ∈ N such that ψ ∈ H0

αn and

lim sup
|z|−→1−

(1− |z|)α+
1
n

(̃1/v)(ϕ(z))
|ψ(z)| = 0.
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d) The following conditions are equivalent:

(i) Wψ,ϕ : A−α+ (E)→ A−α+ (E) is (weakly) compact,

(ii) there exists m ∈ N such that Wψ,ϕ : H∞αm(D, E) → H∞αn(D, E) is compact (resp.
weakly compact) and ψ ∈ H0

αn for all n ∈ N,

(iii) E has finite dimension (resp. E is reflexive) and there exists m ∈ N such that
ψ ∈ H0

αn and

lim sup
|z|−→1−

(1− |z|)α+
1
n

(1− |ϕ(z)|)α+
1
m

|ψ(z)| = 0 for all n ∈ N.
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