T UNIVERSITAT “¥ etsinf
M7 POLITECNICA
DE VALENCIA

Escola Tecnica Superior d’Enginyeria Informatica

Universitat Politecnica de Valencia

PINT, HERRAMIENTA DE

SIMULACION BASADA EN
TRAZAS PIN

FINAL YEAR PROJECT

Computer engineering

Author: Francisco Blas Izquierdo Riera

Director: Julio Sahuquillo Borras - UPV
Per Stenstrom - CTH

December 18, 2012

Abstract

In the course of this project we have developed a set of programs to
improve the correction and execution time of the gem5 simulator.

For this, we moved the functional simulation step out of gem5 into an
independent instrumented process to ensure correction in the functional stage
and to provide a good execution speed (since the code will then be natively
executed). This instrumentation is done by Pin.

Also, in order to allow efficient communication between the processes de-
spite the limitations imposed by Pin to the available tools, an IPC framework
to allow message passing between the processes was developed. This frame-
work uses lockless fifo queues over shared memory so the resulting slowdown

is minimal.

Keywords: hardware, simulator, x86, Pin, Pintool, gem5, ipc, fifo, C++

Contents

(1 Introduction|

(1.1 Project rationale]

(1.2 Project objectives| L.

(1.3 Project strengths| L.

(1.4 Memory structure L

2 State of the artl

221 gprofl

[3 System description|

[3.1 Mead: a message passing framework]|

2

10
11
11
12
12
13
13
14

16

Contents Contents

[3.2 Pint: a Pin based trace generator| 18
[3.3 Schnapps: a simple consumer of the traces 19
[3.4 Ginb: a gemb trace player| 20
4 System design| 21
[4.1 Mead: a message passing framework{ 21
[4.2 Pint: a Pin based trace generator{ 23
[4.3 Schnapps: a simple consumer of the traces| 25
[4.4 Ginb: a gemb trace player| 26
6_Results 28
6 Conclusions| 30
[6.1 Improvements for next release| 31
[A_User manuall 32
[A.1 Building] 32
A2 Pl . . oo 32
[A.3 Schnapps| 33
AAGIA . . 33
IB_Relevant source codel 34
[Bibliography| 67

Chapter 1

Introduction

1.1 Project rationale

Despite the vast amount of hardware simulators that exist nowadays, most of
them either lack flexibility on the simulations or are slow since they simulate
the code execution instead of instrumenting the natively executed executable.
As a related issue, since code is simulated and not executed it is common to
find bugs where the simulator will not set the processor state properly which
cause corner cases where not acting as the processor causes execution issues
with some programs.

Also many simulators lack support for parallel execution and those who
do tend to add big overheads when running the simulation in a single machine
and will not support instruction level simulation granularity.

Finally current simulators tend to add big overheads to the functional
simulation step which makes it unfeasible to run large tests even when sim-
ulating simple systems.

Program instrumentation solves all these shortcomings by running the

code natively (modified so it will also execute the instrumentation code),

4

Chapter 1. Introduction 1.2. Project objectives

allowing it to run in parallel and, since code is executed natively in the
processor, providing a completely native execution.

Given the limitations of the current simulators we consider that the com-
munity needs a flexible and fast instrumentation based tracer able to be used
with a broad range of programming languages who will handle local simula-

tions in parallel, with small overheads and with instruction level granularity.

1.2 Project objectives

Our main objective is providing an instrumentation based tracer that can be
used with other simulators. Given the problems with the size these traces
can have we will feed them in a lively fashion.

In order to see whether these objectives are met or not we will measure
the slowdown compared to the non instrumented program with a simple trace
consumer (to ensure it is not the bottleneck). Our objective is getting at least
similar slowdowns to the ones of Graphite [9], but removing the caveats it
has at least on single core processors.

Also we intend to design an architecture which can later be expanded
to support multiple simultaneous execution threads. This will be done on a

later version of the project though due to timing constraints.

1.3 Project strengths

The biggest problem with instrumentation-based systems is that the instru-
mentation code is limited heavily by the instrumentation API of the instru-
mentation system (for example the POSIX thread API can not be used with

Pin), this also reduces vastly the number of languages that can be used, in

5

1.3. Project strengths Chapter 1. Introduction

order to overcome these limitations, we use FIFO queues placed in shared
memory to extract the data from a process to another, using the operating
system process separation to execute the simulation in a different processor.
As a result, the simulator overcomes the restrictions caused by the instru-
mentation framework since these will only apply to the process where the
program is being instrumented.

As a side effect of this approach, the resulting simulators will be seg-
mented since the functional simulation can be done on a different processing
unit than the one running the simulation itself. As the number of processor
cores increases it is likely that hardware simulators will use the segmen-
tation approach more extensively in order to increase performance. Also,
when shared the cache accesses caused by the shared memory communica-
tion cause slowdowns, hyperthreading processors can be used and proper
processor affinity to the processes can be set so the critical simulation parts
(i.e those responsible of bottlenecks) will be set along with the previous part
on the different threads of a single core so the reads from the FIFO queue
are likely to be on the level 1 cache.

To ensure real parallelism each thread of the instrumented program can
use a different FIFO queue to extract its traced} This also allows the user to
limit instruction granularity by setting an appropriate queue size since the
instrumentation will stop execution once the queue is ful]ﬂ

As an example of how Pint can be used we also created Ginb a slightly
modified version of the gem) simulator which uses Pint’s instrumentation as
the source of the memory access information during the simulation.

Another known problem is that simulators tend to be very good on sim-

'The completely multithreaded implementation will be finished with the next release
of Pint

2For this a simulation started event is added to ensure the first instruction will not be
executed until the simulator wants it.

Chapter 1. Introduction 1.4. Memory structure

ulating a specific part of the system whilst having issues on others. We
consider that in the future this FIFO system may be useful to interconnect

simulators so the best of them can be gotten.

1.4 Memory structure

In this introduction we presented the problem we are trying to fix, our ob-
jectives and our strengths.

On the next section, we will explain the state of the art at the time of
our publication in the topics of Architectural Simulators, Instrumentation
systems and Benchmarks.

Afterwards we will analyze the four modules we developed for the project
and we will continue later with the design decisions.

We will finally present our benchmarking results and our conclusions.

Annexed you will find a brief user manual in case you want to try our
system and the referred bibliography.

On the Annex folder you will find the sources we developed in this project.

Chapter 2

State of the art

Of the many simulators currently available, we have chosen three to explain
which is the current state of the art for being the ones on which most work
is being done nowadays: gem5, Multi2Sim and Graphite.
Also, as instrumentation tools we will cover gprof based profiling and Pin.
Finally, as benchmarks we will cover the SPEC CPU2006 and the SPLASH-

2 benchmarks.

2.1 Architectural simulators

Architectural simulators are tools used to see how a proposed processor de-
sign would work without the need of building the processors themselves.
Despite these share a some similarities with virtual machines in that they
execute programs and that the main focus in both is the correct execution of
the program; virtual machines have their main focus in providing a speedy
execution of the program, whilst architectural simulators focus on providing
good statistics of the program execution and executing the program in the

same way the architecture would use.

Chapter 2. State of the art 2.1. Architectural simulators

Architectural simulators tend to be structured in a set of stages, disas-

sembly, functional simulation and cycle by cycle simulation.

During the disassembly stage the machine code to be executed is trans-
formed into a set of structures that can be understood by the simulator, the
set of structures used is critical for an efficient simulation.

During the functional simulation the resulting set of structures is inter-
preted by the simulator to modify the internal state of the processor struc-
tures and the representation of the simulated program’s memory space.

Finally during the cycle by cycle simulation the represented architecture
and system are simulated in a cycle by cycle basis so the timing results are
precise.

Simulators may have these stages clearly differentiated or not but all of
the do have these stages.

Also some simulators emulating only the memory system (and further
processor structures) are based on memory traces. A memory trace is a
description of the memory accesses made by a particular program when run
which is then replayed on the simulated memory system.

In general trace based simulators tend to be fast since they will not only
remove the execution step but also use a more simplified model for the pro-
cessor. But traces have a few problems: on one side the programs being run
need to be run in a way in which they will be generated, for example with
a dynamically instrumented program, and when big enough they can take a
lot of space, for example a trace of the SPLASH-2 LU with contiguous blocks
trace would take around 1.5GiB if each access could be stored in only 32 bits.

Anyway there are some nice works in trace generation with Pin for simu-
lators like Dinero IV [7], an example of which can be found in the dinerotool

[1] by Kenneth Barr.

2.1. Architectural simulators Chapter 2. State of the art

When using traces it is hard to overcome the requirement of using traces,
but, it is possible to overcome the space limitation restrictions by feeding

them live into our memory simulator. This was the approach chose by us.

2.1.1 Graphite

Graphite [18] [9] is a multicore simulator also written over Pin designed to
provide real multithreading both when run locally and when run over a large
number of computers. In order to do this, graphite hijacks some syscalls of
the syscalls which will then be sent either to the local kernel or to the central
kernel or to both. A similar procedure is used to track memory access es and
an internal "MMU" tracks which machine has which copy of the memory.

In order to synchronize threads Graphite provides a few different syn-
chronization ways of which the fastest is the lax synchronization method.

Given the popularity of this simulator nowadays Graphite was the simu-
lator chosen as the reference against which we will compare the speed of our
System.

Saddly, one of the major caveats with Graphite is that it is very system
specific and, as a result, it was impossible for us to run it on our testing

equipment.

2.1.2 Multi2Sim

Multi2Sim [20] [3] is a simulator supporting a big set of targets to emulate
different architectures, both CPU and GPU.

As a simulator it is split in different components, a disassembler intended
to convert the input programs into something the simulator can understand

and use, a functional simulator which maintains the CPU and memory state

10

Chapter 2. State of the art 2.2. Instrumentation systems

and runs the code and a cycle by cycle simulator which does the execution.

It also provides some visual tools for checking how the simulation is run.

2.1.3 gemd

gemb |16] [2] is the result of the merge of two powerful simulators: M5 and
GEMS. gemb is a simulator able to emulate some architectures both in Full
Mode (this is, running the kernel as part of the simulation) and in Syscall
Emulation mode (as the two aforementioned simulators by emulating the
kernel for the provided binary).

As a full system simulator it is known for the flexibility it has for emulat-
ing different systems, not only by the number of architectures it supports but
also by the number of devices it can emulate and the flexibility it provides
in doing so.

The main problem it has is that although the modules are written in
C++, they are usually run by a python script which complicates the system.

This flexibility gemb was the reason for choosing this simulator as a target

for implementing our system.

2.2 Instrumentation systems

Instrumentation systems provide ways to know how is the code running,
either for later statistic generation and performance checking or for other
uses like memory trace generation.

Instrumentation can be dynamic if the code that will control how the
program is running is added when it is executed or static if this code is in-
terleaved when building the program with the compiler. Normally dynamic

instrumentation is preferable since it will allow us to instrument also propri-

11

2.2. Instrumentation systems Chapter 2. State of the art

etary programs and will not require a modified compiler.

2.2.1 gprof

gprof |17] [6] is a profiling system used along with programs compiled with
special flags by gee [14] [13]. For this gce will embed the profiling code and
mix it with the compiled sources before assembly. This technique is called
static instrumentation since it is done in compilation time.

Programs compiled with profiling flags will generate when run binary
file, called gmon.out, containing the execution statistics. Afterwards a call
to gprof can be used to interpret the generated file.

Although traces could be also generated by using these techniques the
requirement of having to compile the programs with a particular compiler is
an impediment in some cases thus the ideas provided by this system where

discarded.

2.2.2 Pin

Pin [21] |10] [8] on the other side is a dynamic instrumentation framework,
this means that instrumentation code is added dynamically. For this Pin
hijacks with ptrace the program to be run, as a debugger like gdb [15] [12]
would do, and then loads the Pintools’ code and the Pin framework into the
running program and modifies the process so it will run the code produced
by the JIT generator provided by PIN.

For this to work, Pin provides a modified version of the C++ runtime
which has some features stripped down in order to prevent incompatibilities
with the program being run. Anyway most of the C++ features can still be
used by the tools and for those that can not Pin provides alternatives (for

example locks).

12

Chapter 2. State of the art 2.3. Benchmarks

The main problem with Pin is that running it on hardened systems is
complicated since the default method used by Pin to attach to the program
via ptrace is considered dangerous by these kernels (since it is not a par-
ent attaching to its child but the other way around), also the JIT compiler
provided by Pin causes problems because it tries to have mapPings which
are both writable and executable which is another technique restricted by
hardened systems.

Despite these issues Pin was the system chosen for providing the instru-

mentation framework.

2.3 Benchmarks

Benchmarks are programs with standardized inputs that are used to measure
and compare the performance of different systems running them. Depending
of the component being measured different metrics can be used: power con-
sumption, execution time, number of frames per second generated, etc. Of
these in this project we care the most about execution time.

Benchmarks can be synthetic when they emulate the load caused by typ-
ical programs of a particular type, examples of which are Dhrystone [25]
and Whetstone [5]; or application when they run one or more real world
programs like the two we have analyzed. In general real world benchmarks
provide more meaningful results since they allow you to see how will real

applications behave.

2.3.1 SPEC CPU2006

The SPEC CPU2006 |22] |11] benchmark is a set of programs from the real

world which are provided along with some inputs to test the speed of a

13

2.3. Benchmarks Chapter 2. State of the art

system and with a main focus on the CPU execution speed. Despite being
there since the 2006 these benchmarks are widely used and understood in
the academic and real world.

Most of the programs provided with the benchmark are licensed with GPL
style licenses and are well known in the free software world, for example gcc
or perl, whilst others come from different research projects. It is because of
this that the copyright is held over the input files in this benchmarks.

The main problem with these benchmarks is that they focus on single

threaded processes.

2.3.2 SPLASH-2

The SPLASH-2 [23] [26] benchmark was developed by the Flash research
group at the Stanford university to provide a set of benchmarks that could be
used on shared memory multiprocessor systems. Although the benchmarks
are quite old and require modifications to work properly they can still be
used and have the advantadge of running in a short time.

The applications provided are related to the scientific world with examples
of 3 body gravity simulators or some kernels like the LU decomposition of a
matrix.

Since the original tests will not run, we used a modified version of the
SPLASH-2 benchmark [19]. Even more modifications were required for the
null macro to work properly and for the tests to be able to be run with Pin
on hardened systems, these modifications are provided as a patch file in the
source distribution.

The main reason for choosing these was that the relative performance
results of these tests (although with more than one processor) were provided

on 9] so we did not need to run the benchmarks again for Graphite and thus

14

Chapter 2. State of the art 2.3. Benchmarks

set up the required Debian environment.

15

Chapter 3

System description

Our application will be divided in 4 modules: Mead, a framework for provid-
ing an efficient message passing interface between different processes; Pint,
a Pin based trace generator; Schnapps, a simple consumer of the traces; and
Ginb, a gemb trace player for the memory system.

The traces will be generated by Pint and then fed through Mead to either

Schnapps or Gind which will process it and provide some simulation statistics.

3.1 Mead: a message passing framework

The pattern of message passing is not new and it conforms the base of some
Object Oriented views. Mead will provide a fast and simple way of passing
around the traces as messages stating that something has happened (for
example the program made an execution memory access of size x at position
y). These messages may contain the thread identifier of the thread that
caused them and also attached data, for example in the case of a memory
write the data available before writing and the data being written.

Although the API provided by mead is quite agnostic of the message

16

Chapter 3. System description 3.1. Mead: a message passing framework

passing system being used we have chosen producer-consumer FIFO queues.

FIFOs are used since they are a known pattern which allows for easy im-
plementation and migration over other interprocedural communication sys-
tems, if interprocess shared memory is not an option, like POSIX message

queues or datagram sockets.

Our FIFO model differs slightly from the standard model since it allows
for two communication types, on one hand you have the event communication
system which can queue many events for further handling by the receiving
side. On the other you will find a command interface able of holding a
single command. The command interface requires acknowledging the sent
command and is used to indicate important events which require specific
handling by the queue system like the death of the FIFO or the beginning

and ending of the simulation procedures.

The main difference between events and commands are that events are
unidirectional (from the producer to the consumer) whilst commands can be
used bidirectionally (as long as the absence of collisions is guaranteed by the
programmer) and are more easily handled with the futex syscall which makes
them very useful for events which will require a really heavy processing on
the other side by allowing the other thread to preempt the CPU while this

is done.

The FIFO architecture is based over a central FIFO (called the main
FIFO) which is used to send global events which are supposed to stall the
simulation until attended (so the simulator can decide whether it should clear
or not the per thread queues before processing the aforementioned event),
this queue handles at least the thread creation and deletion events where a
new FIFO queue is negotiated between both sides, but it can also be used

to process events like the creation and deletion of new mappings amongst

17

3.2. Pint: a Pin based trace generator Chapter 3. System description

others.

Given the importance of the main FIFO in the architecture it is important
that both processes know where to access it beforehand and are able to ne-
gotiate its creation independently of who arrived first (since synchronization
is impossible before the FIFO creation).

The framework also features a per thread FIFO which can be used to send
events which are not of global significance to the listener on the other side.
This lets the programmer communicate information fast since the queues can
be then lockless and, as a result, as long as there are at least two processors
available the current process will not be changed by the kernel preventing
expensive context switches. The creation of these FIFOs should ne negotiated

over the main FIFO when implementing the multithreaded version.

3.2 Pint: a Pin based trace generator

Pint by itself it is not a simulator but a framework providing efficient ways
to extract the data from the instrumented program through Mead. The
version presented with this project is single threaded (although designed to
be multithreaded and with part of the work for that already done) and relies
on Mead for communicating with the simulator itself. As an example the
provided instrumentation will study memory accesses made by the program
(of any type ranging from prefetches to execution fetches) and sends them
out with Mead so the simulator can prevent the issues associated with Pin
tracing tools.

The code here is focused heavily on speed and thus the user must have
the option to choose the features that should to be used.

The granularity of the execution can be easily tunned by setting an ap-

18

Chapter 3. System descriptdoh Schnapps: a simple consumer of the traces

propriate queue size. For example for instruction by instruction execution
the queue must have size one.

Also, a simulation started event must be the first one to be queued so
you can discard old elements when you want the execution to be done.

Since all instructions will start (and contain) with a single fetch event it is
possible to use this event as the differentiator between instructions. Anyway
it is a good idea to integrate at least the number of events the instruction
will cause to make tracing easier. This may be done on future versions.

Pint also provides a way to specify the number of instructions that must
be executed before switching to the next simulation mode and thus you can
provide the number of instructions that must be executed (by the sum of
threads) before switching to another simulation mode.

The mode automaton allows for three simulation modes which are switched
in the following order, the fast forward, the warm up and the simulation
mode, which will then go back to the fast forward.

In the fast forward mode instructions are just accounted and executed
but no data is generated which allows for near native speed execution. In
the warm up mode and simulation mode instructions will generate events
for filling the caches but the entrance and exit of the simulation status are

notified to the consumer so it can handle statistics properly.

3.3 Schnapps: a simple consumer of the traces

Schnapps is intended to be used mainly for analyzing the performance of the
instrumentation code by consuming the events generated whilst trying to
avoid causing any bottlenecks in execution, and also as an example program

of how to extract the generated traces.

19

3.4. Ginb: a gemb trace player Chapter 3. System description

Schnapps reads the traces generated by Pint and outputs the map changes
as they happen (in a diff like format) and some statistics for the current sim-
ulation and for the total run, in particular, amount of data read or written
by the different memory access types, the number of said accesses that has
happened and an execution mark made by xoring the different accesses’ ad-
dresses together the idea being that different marks imply different traces
being generated but the same mark does not necessarily imply the same

trace being generated. .

3.4 Ginb: a gemb trace player

Although previous versions of gem5 came with a trace player supporting
different formats, these modules stopped being maintained long time ago
and those stopped building, as a result and despite being a good base for
starting the work given the big amount of changes the memory system has
suffered since then a different base was necessary.

As a result we have set again a generic CPU for playing traces (missing
the TLB) which will ask for memory access request to the queues via a clear
interface so it can be used also with other types of trace formats including

the old ones if the classes containing them are updated.

20

Chapter 4

System design

4.1 Mead: a message passing framework

Mead has a macro of particular interest: USE_YIELD which will enable
the use of the yield system call to let other process use the processor when
waiting.

On mead, we have chosen to implement a lockless buffer ring over shared
memory for our FIFOs since it is a well known pattern [4] [24].

The other reasons for choosing such an structure was speed and inde-
pendence. By being lockless we avoid expensive spinlocks that would hinder
performance whilst avoiding also having to either use the ones provided by
Pin everywhere or building our own. Also having the data in shared memory
will prevent us from making expensive system calls to have the messages
passed and will allow the usage of cache for that.

It should be taken into account that the lockless queue will only work
properly if a single thread acts as reader and a single thread acts as writer.

In case of having more threads at either side they require a lock to work

properly.

21

4.1. Mead: a message passing framework Chapter 4. System design

Our implementation is based on templates so it can be used with different
classes although it should be taken into mind that the same class (i.e. no

inheritance) should be used on the whole queue.

Also one of the current major caveats is that the shared memory address
is currently hardcoded and, as a result, only a single instance of the program
can be started at the same time. We expect to fix this in future versions
by providing a launcher that will allocate an anonymous shared memory

segment and pass its identifier to both Pint and the trace reader being used.

The command types are defined by the shmstatus enum. Since newly
allocated shared memory is filled with Os we assume the 0 value as the initial
state (NONE). The server will then write a SERVER STARTED command
and wait for a CLIENT ACK then. Finally when dying the server is ex-
pected to send the SERVER DIED command so the client will not wait

forever for data.

Of the many methods provided, those of special relevance for the pro-
grammer are the gethead and gettail methods used to be able to access the
data we want to insert or extract from the queue, the push and pop methods
used for adding or removing an element from the queue and the full and

empty methods used to check for these states.

Also some methods for waiting in case the queue is empty/full are pro-
vided but these must be used carefully since if the consumer is singlethreaded
it could hang waiting forever for the queue to match the condition. In this
case special waits monitoring the main queue status too are recommened in-
stead. Also a wait_ push method is provided that will wait until a push can

be done.

For control handling we provide the send_ control, receive control and

ack control methods. In particular send control will wait until an ACK is

22

Chapter 4. System design 4.2. Pint: a Pin based trace generator

sent back to state the condition was taken care of.

Finally the wait_start and tell Start methods are provided for initial-
ization and instead of yields they use calls to the futex syscall to lock the
thread until they have been attended to reduce the processor load in some

situations.

4.2 Pint: a Pin based trace generator

In order to ensure unwanted features will not hinder performance prepro-
cessor based switches can be used to disable those you are not interested in
using, also some other options can be set in this way.

The macros of interest here are PADSIZE which defines the amount of
bytes of the cache line in order to prevent false sharing, MAXMEMSIZE
which defines the maximum size a single memory access may have (used
for amongst other setting the size of the buffers), USE_DATA which will
enable the infrastructure for fetching and sending the accessed data in the
events, MULTITHREADED which will enable the still incomplete multi-
threaded code, USE__STATES which will enable the fast forward, warm up
and simulation state machine and DTRACE which will make pint output
some debugging information.

Given the impact these features can have we decided to allow the user
disable them at compile time. Also some of these features can be disabled
at run time although they will still have some impact on the execution, in
particular, USE__STATES will still cause the slowdowns of the conditionals
introduced before the instrumentation calls to handle the state machine and
USE__DATA will make the event size, and thus the queues larger.

A final option that can be disabled is mapping tracing after a context

23

4.2. Pint: a Pin based trace generator Chapter 4. System design

change (disabled by default) and after a syscall. The reason for this is the
great slowdown caused by this operation since it requires at least 3 system

calls in order to be executed and parsing a large text file.

In Pint the instrumentation is added by the Instruction function, when
given the choice between adding complexity here or in the instrumentation
functions we should add it here since this function is executed with much less
frequency than the instrumentation code. As can be seen this function just
tells Pin to add calls to the proper instrumentation functions, either with
previous conditionals if the state machine is being used or without them

otherwise.

Here we should consider all the parsemaps functions which are wrappers
around the original parsemaps function that will take care of generating the
events may maps be added or deleted. Also, as it can be seen, this function
will consume quite a lot of resources given the way in which it works. Sadly
the PIN framework on which pint is based does not provide any API in order
to distinguish the mappings made by the instrumentations (including the
JIT caches and the instrumentation code itself) as a result a lot of events
will be generated on the simulation status queue. In order to reduce this
overhead we assume mappings may only change after either coming back
from a context change (as is the case when the application is being ptraced
by a debugger) or coming back from a system call, this reduces the overhead
greatly but still generates a lot of spurious mapping changes that may pollute
the simulator assumptions. We expect this issue to be fixed with the addition
of a proper API on future versions of PIN. Unlike memory access information
given the importance of the mapping information it is sent independently of

the simulation mode as it is generated.

In order to take track of the memory accesses the RecordMemExec,

24

Chapter 4. System design 4.3. Schnapps: a simple consumer of the traces

RecordMemRead, RecordMemPrefetch and RecordMemPreWrite functions
are used. Also when the user is insterested in the data generated by these
functions, RecordMemPreWrite changes its behavior so it can access the
memory information provided before the access and a new function called
RecordMemWrite and executed after the instruction finishes is added, the
reason for this is that the written data can not be known otherwise.

In order to handle the state machine we have an enum called state which
contains the current simulation state, a function called nextState which takes
care of handling the previous variable and the one with the instruction
counter, and is called only when the instruction counter reaches zero, we also
have the StateCounter method that will decrease the instruction counter by
one and say whether we have processed the last instruction or, we also have
CounterDone which sends the events for starting or ending a simulation and
finally we have the Instrument function which check whether instrumentation
code should or not be run in the current state.

We finally have a few callbacks, ThreadStart used to notify the cre-
ation of new threads, ThreadFini used to notify its destruction and Fini

which is called before the instrumented program exits and will generate the

SERVER, DIED event.

4.3 Schnapps: a simple consumer of the traces

The code on Schnapps is all written on the main function given its simplicity.
First, the queues are negotiated with Pint, afterwards, the variables hold-
ing the stats are initialized to 0 and we state we are not simulating anything.

With that done we enter the main loop that will process information

until the trace generator reports that it has died. In this loop, the data from

25

4.4. Ginb: a gemb trace player Chapter 4. System design

the thread queue is extracted and added to the statistics. Afterwards, the
main queue is checked for events like mappings being added/removed and
these changes are printed. And finally control signals are handled properly,
including the beginning of a simulation (by setting the stats to 0) and the
end (by printing the simulation stats).

Finally, once outside of the loop and with the simulation finished, we

print the total stats.

4.4 Ginb: a gemb5 trace player

The biggest amount of coding is likely to have been written in these classes
since we had to revamp the trace readers and the trace CPUs so they would
work with the current memory system used by gemb.

The MemTraceReader class is a very simple class providing a single
method called getNextRequest that will provide either a pointer to the next
Request to be played on the memory system or a NULL pointer along with
the reason why it was provided.

The memory requests are represented by the MemTraceRequest which
returns packets through the getNextPkt method.

The PinReader class is derived from the MemTraceReader class and aside
from handling the Pint queues also adds some callback to delete the queues
when done.

Finally the TraceCPU class provides the MemPort classes and the Tick-
Event classes which are required by the simulator and is the responsible of
requesting the data to the reader when necessary and sending the requests to
the memory system through the proper port. From a CPU point of view it
emulates a system without a TLB (we basically take the LSBs of the address

26

Chapter 4. System design 4.4. Ginb: a gemb trace player

to convert the virtual addresses we get into physical addresses) with ports
for an instruction and a data cache.
An example gemb configuration using this class is also provided in the

pintrace.py file.

27

Chapter 5

Results

The benchmark results can be seen in the following table (extracted from the
annexed .ods file).

It surprises us to get a slowdown as high as 804x in the case of LU and
also the fact that fmm only got a 94x slowdown in the Graphite benchmarks.
Anyway, if we discard the fmm benchmark we can see that our system per-

forms better than graphite in all cases using a single processor.

28

Chapter 5. Results

’ Application H Graphite slowdown ‘ Pint slowdown

barnes N/A 287

cholesky 346 361

fft 3978 284

fmm 94 322

lu_cont 4007 557

lu non_cont 3061 804
ocean_ cont 515 317
ocean_ non__cont 433 360
radiosity N/A 498

radix 1648 199

raytrace N/A 279

volrend N/A 404

water nsquared 2465 509
water__spatial 966 683

Table 5.1: Slowdown comparison between Graphite with 8 cores

with one

29

and Pint

Chapter 6

Conclusions

The project development has taken a long time given the research components
it had yet, its development helped us have a good insight on how to improve
simulators speed.

Also, given the promising results obtained with the benchmarks (worst
case of 804 when simulating, best case of 199 with a mean of 360,5 and an
average of 419) run during the development and testing of this fairly limited
version we think that ideas like simulation segmentation and instrumentation
based simulation on independent process may help to the development of
faster and more powerful simulators and will continue with its development.

We expect to see in the future heavily multithreaded simulators where
each processor has its own group of threads each handling the different stages
independently in order to speed up execution times on multiprocessor ma-
chines.

We also expect to see in the future more simulators used the process based
separation between the data collection routines responsible of the execution of
the program and the simulation itself in order to allow for the usage of higher

level languages with less restrictions whilst still providing high performance

30

Chapter 6. Conclusions 6.1. Improvements for next release

and native execution of the simulated programs.

6.1 Improvements for next release

In the next release we intend to have a fully parallel instrumentation frame-
work, we will also reimplement the trace simulator as a full gem5 CPU so
it can have proper TLB handling and can be extended internally with more
complex models. Finally we will change the queuing system so the simulator
knows how many events will be generated by the instruction being executed
before these events are handled down. We will also interconnect Multi2sim
with gemb in order to prove the powerfulness of Mead.

Once we release the next version we intend to publish a paper on a pub-

lication on this topic.

31

Appendix A

User manual

A.1 Building

In order to build the sources it suffices with running the make command on

the sources directory.

A.2 Pint

Running the Pint pintool is quite easy and for that it is enough to run:
./pin -t source/tools/SimpleExamples/obj-intel64/pinatrace.so - command
arguments
Options can be set by setting the desired switches between pinatrace.so and
the —
Currently the following options are available:
-f number : adds the set number of instruction to be run in the fast forward
state (used many times it will set more instruction counts to be run the next
time we go back to said state)

-w number : adds the set number of instruction to be run in the warm up

32

Appendix A. User manual A.3. Schnapps

state (used many times it will set more instruction counts to be run the next
time we go back to said state)

-s number : adds the set number of instruction to be run in the simulation
state (used many times it will set more instruction counts to be run the next
time we go back to said state)

-syscallmap {0,1} : disables, if 0, or enables, if 1, the checking of process
mappings after returning from a syscall

-ctxchangemap {0,1}: disables, if 0, or enables, if 1, the checking of process
mappings after a context change

-values {0,1}: disables, if 0, or enables, if 1, the copying of data along

with the memory events

A.3 Schnapps

For running Schnapps just run ./consumer

A4 Gind

Ginb requires a python file setting the system to be emulated. An example
of such system can be found in the pintrace.py file. Once you have set
up your system on a python file you just need to run the gem5.fast binary
followed by the file containing the system being defined.

Scripts to set up systems may take arguments from the command line if
introduced after the script file. Our example file does not make use of this

feature but others may.

33

OO UURWN =

Appendix B

Relevant source code

pinatrace.h

#ifndef PINATRACE_H
#define PINATRACE H
#include <linux/futex.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <new>

#define likely (x)
#define unlikely (x)

//Compile time configuration
#define PADSIZE 64 '/
#define MAXMEMSIZE 32
//#define USE_DATA 1
define MULTITHREADED 1
define U STATES 1
e
€

byte line
bits as
Add codepath
Add codepath
Use a state

#define DTRACE 1 Add debuging
Use yield ()

Default FIFO

//#define USE_YIELD 1
#define QSIZE_ 1024

#ifdef USE_YIELD

#ifdef PIN_H

#define YIELD PIN_ Yield
F#else

#include <sched.h>
#define YIELD sched__yield
#endif

#else

#define YIELD ()

#endif

#define cachealigned _ _ attribute__ ((aligned

#ifndef PIN_H

typedef void VOID;
typedef u_int32_t UINT32;
typedef u_int8__t UINTS;
#endif

_ __builtin_expect (!!(x),
___builtin_expect (!!(x),

size

pe

s

machine
output

or

as
r AVX,

to obtain

1)
0)

to allow

the

queue

enum DataType { INVALDATA, STARTTH, ACCMEM };

34

to

pin

size

needs to be

the data

for multithreaded

allow for

equivalent

(PADSIZE)))

per intel specs

increased on

on the

when

memory

waiting

and

the

future

accesses

for

applications

fastforward warm

the

up states

other

thread

116
117
118
119
120
121
122

124
125

127
128
129
130
131
132
133

Appendix B. Relevant source code

enum AccessType {ACCEXEC, ACCREAD, ACCWRITE, ACCPREFETCH };

// #define PAD(n) ((((n) + (PADSIZE — 1)) / PADSIZE) x PADSIZE)
#include <cassert>

#ifdef DTRACE

#define dcprintf(c,...) if(c) fprintf (stderr, _ VA ARGS)
#define dprintf (...) fprintf (stderr, _ VA ARGS)
#define dcputs(c,a) if(c) fputs((a),stderr)
#define dputs(a) fputs((a),stderr)

#else

#define dcprintf (...)

#define dprintf (...)

#define dcputs(c,a)

#define dputs(a)

#endif

//TODO: wuse alignments instead of paddings
//TODO: wuse other padded struct for the data from read to write
class MemAccess {
private:
//We are not going to wuse derivate classes here for efficiency
AccessType type;
VOID x* ea; // Effective address of the access
#ifdef USE_DATA
char data [MAXMEMSIZE]; // Contains either the data ecxecuted/read or
char wdata [MAXMEMSIZE]; // This is walid only when the data access
#endif
UINT32 size; // Size of the access
#ifdef MULTITHREADED
UINT32 tid; // The ID of the thread generating the access
#endif
#ifdef USE_DATA
inline void setData () {
assert (PIN_SafeCopy(data, ea, size) == size);
}

inline void copyData(const MemAccess &ma) {
memcpy (data, ma.data, size);
if (type == ACCWRITE)
memcpy (wdata , ma.wdata, size);

}
#endif
public:
#ifdef USE_DATA
inline void setWdata () {
assert (PIN_SafeCopy(wdata, ea, size) == size);

s

#endif

inline void MemAccessSet (AccessType type, VOID % ea, UINT32 size
#ifdef MULTITHREADED

, UINT32 tid
#endif
) A

this—>type = type;

this—>ea = ea;

this—>size = size;

#ifdef MULTITHREADED

this—>tid = tid;

#endif

#ifdef USE_DATA

if (type != ACCPREFETCH) {

setData ();
s
#endif

inline void MemAccessSet (const MemAccess &ma) {
type = ma.type;
ea = ma.ea;
size = ma.size;
#ifdef MULTITHREADED
tid = ma. tid;

#endif
#ifdef USE DATA
if (type != ACCPREFETCH) {

copyData(ma);
}
#endif
}
void show (FILE xf); //Requires the C LOCK

inline AccessType getType() const { return type;}
inline void* getEA() const { return ea;}

35

the data

is a write

contained
contains

before

the

written

writing

data

134
135
136
137
138

140
141

143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

Appendix B. Relevant source code

#ifdef USE DATA
inline const void* getData() const { return data;}
inline const void* getWData() const { return wdata;}
#endif
inline UINT32 getSize () const { return size;}
#ifdef MULTITHREADED
inline UINT32 getTid () const { return tid;}
#endif

} cachealigned;

union SimDataU {
class MemAccess ma;

b
class SimData {
private:

DataType type;
SimDataU data;
public:
SimData () : type(INVALDATA) {

}
SimData (DataType _type) : type(_type) {

inline DataType getType () const {
return type;

}

inline void setType (DataType _type) {
type = _type;

}

i

nline MemAccess & getMa () {
type = ACCMEM;
return data.ma;
¥
inline const MemAccess & getCMa () const {
assert (type == ACCMEM) ;
return data.ma;

+s

enum InstEventType {
ADDMAPPING, //A mapping was added during the last context change/syscall
REMOVEMAPPING, //A mapping was removed during the last context change/syscall
ADDTHREAD, //A new exzecution thread has been spawned
REMOVETHREAD, //An cxecution thread has ceased existing

+s

struct range {
unsigned long int b; //begin
unsigned long int e; //end
inline bool operator < (const struct range &r) const {
//There shouldn 't be owverlapping ranges (at least in theory);
return b < r.b;

+s

union InstEventData {
range r;
//TODO: handle per thread access queue creation here

}s

class InstEvent {
private:
InstEventType type;
InstEventData data;
public:
inline InstEvent() { }
inline void SetInstEvent (InstEventType _type, range _r) {
type = _type;
data.r = _r;
¥
inline InstEventType getType () const {
return type;
}
inline range getRange () {
assert (type == ADDMAPPING || type == REMOVEMAPPING);
return data.r;

} cachealigned;

// This is a class implementing lockless produc
// They are wery wuseful for fast e IPC through shared memory though you
// meed to ensure the structure being queued has all the mnecessary data inside
// i.e. doesn’'t uses references.

rs single consumer queues

36

217
218
219
220
221

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

290
291
292
293
294
295
296
297
298
299

Appendix B. Relevant source code

// Currently we use them for two purpouses, passing events related to memory
// mappings and threads between the instrumentation and the simulator and
// passing around the memory acceses of each thread.

J//We only wuse QSIZE —1 thus there is always one element free for processing before

#define NEXTQELEM(v) (((v) + 1) % QSIZE)

enum shmstatus {NONE = 0,///nitial state
CLIENT ACK=1, //The client confirms reception of previous state
SERVER_STARTED=2, //The s¢ er has just started
SERVER_DIED=3, //The server has died

//This ones refer to the mext instruction pushed to the queue (so they include up wuntil the ACCEXEC after that)
SERVER_SIM_START=4, //We ar going to jump into simulation reset stats
SERVER_SIM_END=5 //We have ended simulation reset stals
+s
// A lockless single producer single consumer queue, with more than 1 you will need locks
template <class T, int QSIZE=QSIZE_ > class SHMQ {
T queue [QSIZE]| cachealigned;
volatile sig_atomic__t ghead cachealigned;
volatile sig_atomic_t qtail cachealigned;
// Elements are inserted on the head and removed from the tail like a snake.
volatile sig__atomic_t control cachealigned;
public:
inline SHMQ () : qhead(0), qtail (0) {
}
inline T & gethead () { return queue[qhead]; }
inline T & gettail () {
assert (!empty ());
return queue|[qtail];
}
inline bool full () {return NEXTQELEM(ghead) == qtail; }
inline bool empty() {return qtail == ghead; }
//Wait for the queue mnot to be full
inline void wait__full()
while(unlikely (full ())) YIELD();
// Wait for the queue not to be empty (If the server dies it will never be)
inline bool wait_empty_ cond()
return (empty () && control == CLIENT_ACK);
inline void wait_empty () {
while (unlikely (wait_empty_cond ())) YIELD();
inline void wait_not_empty () {
while (unlikely (!empty ())) YIELD();
inline void push() {
assert (! full ());
ghead = NEXTQELEM/(ghead);
//Wait if necessary then push
inline void wait_push () {
wait__full ();
push ();
inline void pop() {
assert (!empty());
qtail = NEXTQELEM(qtail);
inline enum shmstatus receive_control () {
if (control == CLIENT ACK) return NONE;
return (enum shmstatus)control;
}
inline void ack_control () {
while (unlikely (control == CLIENT_ACK)) YIELD();
control = CLIENT_ ACK;
¥
inline void send_control (enum shmstatus st) {
assert (st != CLIENT ACK); //For this we should wuse ack control instead
control = st;
//Wait for the ACK
while (unlikely (control != CLIENT ACK)) YIELD();
}
inline void wait_start () {
sig__atomic__t control__;
while ((control__ = control) != SERVER STARTED) syscall (SYS_futex, &control ,FUTEX WAIT, control__ ,NULL,NULL,0);

control = CLIENT_ACK;
syscall (SYS_futex, &control ,FUTEX WAKE, 1 ,NULL,NULL,0);
}

inline void tell_start () {
sig__atomic_t control_;

37

queueing .

Appendix B. Relevant source code

300 control = SERVER STARTED;

301 syscall (SYS_ futex, &control ,FUTEX WAKE, 1 ,NULL,NULL,0);

302 // Wait for the ACK

303 while ((control_ = control) != CLIENT_ACK) syscall (SYS_futex, &control ,FUTEX WAIT,SERVER_STARTED, NU]
304 1

305 };

306

307 typedef SHMQSimData> SimDataq;

308 typedef SHMQXInstEvent> InstEventq;

309

310 SimDataq * server_init2 ();

311 SimDataq * client__init2 ();

312 void server_fini2 (SimDataq *q);

313 wvoid client_fini2 (SimDataq *q);

314

315 //TODO: Fiz the case where the client is the one doing the finalization
316

317 //TODO: access queues should be created dynamically and passed through the event queue
318 SimDataq * get_q2(int &shmid) {

319 SimDataq * q;

320 if ((shmid = shmget (2684, sizeof(SimDataq), IPC_CREAT | 0666)) < 0) {
321 perror ("shmget");

322 exit (1);

323 1

324 void *shm;

325 if ((shm = shmat(shmid, NULL, 0)) == (void x) —1) {
326 perror ("shmat");

327 exit (1);

328

329 q = static__cast<SimDataq*>(shm);

330 return q;

331}

332

333

334 SimDataq * server__init2 () {

335 int shmid;

336 SimDataq * q = get_q2(shmid);

337 new (q) SimDataq(); //We use a placement new so we have the SimDataq in the shared memory
338 q—>tell__start ();

339 return q;

340 }

341

342 SimDataq * client__init2 () {

343 int shmid;

344 SimDataq * q = get_q2(shmid);

345 q—>wait_start ();

346 //Since we are connected we tell the OS the segement can be deleted
347 if (shmectl(shmid ,IPC_RMID,NULL) < 0)
348 perror ("shmetl");

349 return qg;

350 }

351

352 void server_fini2 (SimDataq xq) {

353 q—>send__control (SERVER._DIED) ;

354

355

356 void client_fini2 (SimDataq =q) {

357 q—>ack__control ();

358 q—>~SimDataq () ;

359

360

361 //TODO: with propper template usage this could get prettier
362 InstEventq x server_init ();

363 InstEventq x client__init ();

364 void server_fini(InstEventq xq);

365 void client_fini(InstEventq xq);

366

367 InstEventq * get_q(int &shmid) {

368 InstEventq * q;

369 if ((shmid = shmget (2687, sizeof(InstEventq), IPC_CREAT | 0666)) < 0) {
370 perror ("shmget");

371 exit (1);

372

373 void *shm;

374 if ((shm = shmat(shmid, NULL, 0)) == (void x) —1) {
375 perror ("shmat");

376 exit (1);

377

378 q = static__cast<InstEventqg*>(shm);

379 return q;

380 }

381

382

38

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

Appendix B. Relevant source code

InstEventq * server__init () {
int shmid;
InstEventq * q = get_q(shmid);
new (q) InstEventq (); //We use a placement new
q—>tell __start ();
return q;

i

InstEventq * client_init () {
int shmid;
InstEventq * q = get_q(shmid);
q—>wait__start ();

s0

we

//Since we are connected we tell the OS the segement

if (shmctl(shmid ,IPC_RMID,NULL) < 0)
perror ("shmctl");
return q;

void server_fini(InstEventq x*q)
q—>send__control (SERVER_DIED) ;

void client_ fini(InstEventq =q) {
q—>ack__control ();
qg—>~InstEventq ();

#endif

39

have

can

the InstEventgq

be

deleted

in

the

shared

memory

CONO A WNR

Appendix B. Relevant source code

pinatrace.cpp

/*BEGIN_LEGAL
* Intel Open Source License

Copyright (c) 2002—2011 Intel Corporation. All rights reserved.

Redistribution and wuse in source and binary forms, with or without
modification , are permitted provided that the following conditions are
met :

Redistributions of source code must retain the above copyright notice ,
this list of conditions and the following d laimer. Redistributions
in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution . Neither the name of
the Intel Corporation mnor the mames of its contributors may be wused to
endorse or promote products derived from this software without
specific prior written permission .

THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘YAS IS’’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
END_LEGAL =/

¥R K K K X K K X K K ¥ K K X K ¥ K ¥ K ¥ X ¥ X ¥ ¥ ¥ ¥

/x */
*

* @ORIGINAL _AUTHOR: Robert Cohn

*/
s «/
/! @file

* This file contains an ISA—portable PIN tool for tracing memory accesses.
*

/

#include "pin . H"
#include "pinatrace .H"
#include <iostream>

#include <set>
#include <algorithm>

// Use when calling C and C++ library functions
PIN_LOCK c_lock;

// FILE % TraceFile;
FILE *xStatsFile;

// KNOB<string> KnobOutputFile (KNOB 1\[()DE WRITEONCE, "pintool ",

// "o", "pinatrace.out", "specify trace file name
KNOB_COMMENT fcomment("pintool:trace", "Options for the tracing, behaviour");
#ifdef USE_STATES

KNOB<UINT64> Knobf(KNOB_MODE APPEND, "pintool:trace",

R S "NumberuofJ1n§truct10n§Ltoufast forward . Must_ be_used as . many times as, —w_anc

KNOB<UINT64> Knobw (KNOB_] MODE APPEND, "pintool:trace",

w' 'E

KNOB<UINT64> Knobs (KNOB MODE_APPEND, "pintool:trace",

" '

"s", , "Number of jinstructions to_ use for simulation. Must be_used as_ many times_as, —f ar

#Hendif
KNOB_COMMENT mcomment("pintool:trace", "Options for map tracing");
KNOB<BOOL> KnobSyscallMap (KNOB_MODE WRITEONCE, 'pintool:trace"
"syscallmap", "1", "Check mappings after returning from a syscall");
KNOB<BOOL> KnobCtxChangeMap (KNOB_MODE WRITEONCE, '"pintool:trace",
"ctxchangemap", "0", "Check mappings after a context change");
#ifdef USE DATA
KNOB<BOOL> KnobValues (KNOB_MODE WRITEONCE, "pintool:trace",
"values", "1", "Output.memory values_ reads_and_ written");
#endif

#ifdef MULTITHREADED

PIN_LOCK h_lock;

static TLS_KEY wMemAccess;

#define GetQLock(tid) GetLock(&(h_lock), tid+1)
#define ReleaseQLock () ReleaseLock (& (h_lock))
F#Helse

#define GetQLock(tid)

#define ReleaseQLock ()

40

"NumberJofu1nstructlonsutoJuseJfosztructureuwarmmg uMust be used as many times:

Appendix B. Relevant source code

83 #endif

84

85 static SimDataq *q;
86 static InstEventq =x*iq;

87

88 static FILE xmout;

89

90 void parsemaps(void) {

91 FILE *f;

92 static set<range> prev;

93 set<range> s, rem, add;

94 range r;

95 //TODO: we Il need to have a lock here to ensure threads don’'t collide
96 f = fopen('"/proc/self/maps","r");

97 while (fscanf(f,"%lx—%Ilx",&(r.b),&(r.e)) == 2) {

98 s.insert (r);

99 // Use this when wanting to copy the contents for wverification
100 // printf("%lz—%lz ",r.b,r.e);

io01r // int c;

102 // while ((c = fgetc(f)) != ’\n’) putchar(c);

103 // putchar (’\n ’);

104 while (fgetc(f) != ’\n’);

105 1

106 //We don’'t need the file any more so release the FD

107 fclose (f);

108

109 //Notify remowvals first to prevent intersections

110 set__difference (prev.begin (), prev.end(), s.begin(), s.end(),
111 inserter (rem, rem.begin()));

112 for (set<range >::iterator it = rem.begin(); it != rem.end(); it++) {
113 ig—>gethead (). SetInstEvent (REMOVEMAPPING, * it);

114 iq—>wait__push ();

115 // printf('— Z%lz—%lz\n",it—>b,it—>e);

116 }

117

118 //Now notify additions

119 set__difference(s.begin(), s.end(), prev.begin(), prev.end(),
120 inserter (add, add.begin ()));

121 for (set<range >::iterator it = add.begin(); it != add.end(); it++) {
122 ig—>gethead (). SetInstEvent (ADDMAPPING, = it);

123 ig—>wait__push ();

124 // printf("+ %le—%lz\n",it—>b,it—>e);

125 }

126

127 //Ok finally we’ll make the old set this one

128 prev = s;

129}

130

131 void parsemapsl (THREADID _1, CONTEXT x_2, SYSCALL STANDARD _3, VOID x_4) {
132 fputs("Syscall!\n" ,mout);

133 parsemaps ();

134}

135

136 void parsemaps2 (THREADID _1, CONTEXT CHANGE REASON _2, const CONTEXT %_3, CONTEXT #_4, INT32 _5, VOID *_6) {
137 fputs ("Context . change!\n" ,mout);

138 parsemaps ();

139}

140

141 void parsemaps3(void) {

142 fputs("Initial!\n" ,mout);

143 parsemaps ();

144}

145

146

147 static char AccessType2Char (AccessType at) {

148 switch (at) {

149 case ACCEXEC: return ’'X’;

150 case ACCREAD: return ’'R’;

151 case ACCWRITE: return "W’;

152 case ACCPREFETCH: return 'P’;

153 default: return ’'7°;

154 }

155 }

156

157 #ifdef USE_DATA
158 static VOID EmitMem (FILE xf, VOID * data, UINT32 size)

159

160 switch(size)

161 {

162 case O0:

163 break;

164

165 /* TODO: Here we do some assuptions about sizes , a propper program should fill them properlyx*/

41

166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

204
205

207
208
209
210
211

213
214
215
216
217
218
219
220
221

223
224
225
226
227
228
229
230
231
232
233
234

248

Appendix B. Relevant source code

case 1:
fprintf (f,"0x%02hhx" ,(*static__cast<UINT8x>(data)));
break;

case 2:
fprintf (f,"0x%04hx" ,(*xstatic__cast<UINT16x>(data)));
break;

case 4:
fprintf (f,"0x%08x" ,(xstatic__cast<UINT32x>(data)));
break;

case 8:
fprintf (f,"0x%0161x" ,(xstatic__cast<UINT64x>(data)));
break;

default:
if (size > 0) {
fprintf (f,"0x%02hhx" ,(*static__cast<UINT8x>(data)));
for (UINT32 i = 1; i < size; i++)

{
fprintf (f,"%02hhx" ,(static__cast<UINT8x>(data)[i]));
}
break;
}
¥
#endif
void MemAccess::show (FILE =f) {
fprintf (f,
#ifdef MULTITHREADED
"%10u"
#endif

}

" Y% %#0161x%,,3d,, ",

#ifdef MULTITHREADED

(UINT32) tid ,

#endif

AccessType2Char(type), (unsigned long int) ea, size);
#ifdef USE_DATA
if (KnobValues) {

if (type != ACCPREFETCH) {
EmitMem (f, data, size);
if (type == ACCWRITE) {

fputs (" —>.",f);
EmitMem (f, wdata, size);

}

}
#endif
fputs ("\n",f);

static INT32 Usage ()

}

fputs (

"This_ tool produces_a memory address_ trace.\n"

"For_each_ memory _ access.(execute/read/write/prefetch)_the_ ea_is_recorded\n"
"\n", stderr);

fputs (KNOB_BASE: : StringKnobSummary ().c_str(),stderr);

fputs("\n",stderr);

return —1;

static VOID PIN_FAST ANALYSIS CALL RecordMemExec(VOID * ip, UINT32 size

#ifdef MULTITHREADED
, THREADID tid
#endif

)

//TODO: wuse a per thread lockless queue
GetQLock (tid +1);

q—>gethead ().getMa (). MemAccessSet (ACCEXEC, ip , size
#ifdef MULTITHREADED

,tid

#endif

3
iq—>wait_not__empty ();

q—>wait__push ();
ReleaseQLock ();

42

249
250
251
252
253

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

290
291
292
293
294
295
296
297
298
299
300
301

303
304

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

322
323
324
325
326
327
328
329
330
331

Appendix B. Relevant source code

}

static VOID PIN_FAST ANALYSIS CALL RecordMemRead (VOID % ea, UINT32 size

}

#ifdef MULTITHREADED
, THREADID tid
#endif

)

//TODO: wuse a per thread lockless queue

GetQLock (tid +1);

gq—>gethead ().getMa (). MemAccessSet (ACCREAD, ea , size
#ifdef MULTITHREADED

,tid

#endif

)

ig—>wait_not__empty ();

g—>wait__push ();

ReleaseQLock ();

static VOID PIN_FAST ANALYSIS CALL RecordMemPrefetch(VOID * ea, UINT32 size

#ifdef MULTITHREADED
, THREADID tid
#endif

)

//TODO: wuse a per thread lockless queue

GetQLock (tid +1);

gq—>gethead ().getMa (). MemAccessSet (ACCPREFETCH, ea , size
#ifdef MULTITHREADED

,tid

#endif

ig—>wait_not__empty ();
q—>wait__push ();
ReleaseQLock ();

static VOID PIN_FAST ANALYSIS CALL RecordMemPreWrite (VOID % ea, UINT32 size

#ifdef MULTITHREADED
, THREADID tid
#endif

)

#ifdef USE_DATA

#ifdef MULTITHREADED

MemAccess *xma = static__cast<MemAccess *>(PIN_GetThreadData(wMemAccess, tid));
ma—>MemAccessSet (ACCWRITE, ea , size , tid);

#else

q—>gethead ().getMa (). MemAccessSet (ACCWRITE, ea , size);
#endif

#else

GetQLock (tid +1);

q—>gethead ().getMa (). MemAccessSet (ACCWRITE, ea , size
#ifdef MULTITHREADED

L tid

#endif

)

iq—>wait_not_empty ();

q—>wait__push ();

ReleaseQLock ();

#endif

#ifdef USE DATA

static VOID PIN_FAST ANALYSIS_CALL RecordMemWrite (

#ifdef MULTITHREADED
THREADID tid

#endif
)

#ifdef MULTITHREADED

MemAccess *ma = static__cast<MemAccess *>(PIN__GetThreadData(wMemAccess, tid));
#ifdef USE_DATA

ma—>setWdata ();

#endif

#else

#ifdef USE_DATA

q—>gethead ().getMa ().setWdata ();

#endif

43

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

351
352

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

386
387

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Appendix B. Relevant source code

#endif

//TODO:

use a per thread lockless queue

GetQLock (tid 4+1);

#ifdef MULTITHREADED

q—>gethead ().getMa (). MemAccessSet (*ma);
#endif

ig—>wait_not__empty ();

q—>wait__push ();

ReleaseQLock ();

s
#Hendif

#ifdef
static
static
static
static
static

inline
do

} while (inscount

}

static ADDRINT PIN_FAST ANALYSIS CALL StateCounter (VOID x*

USE_STATES
UINT64 inscount

—1;

enum state { FASTFORWARD = 0, WARMING = 1, SIMULATION = 2}

UINT32 fIndex =
UINT32 wlndex
UINT32 sIndex

03
0;
0;
VOID nextState () {

switch (state) {
case FASTFORWARD:
inscount =
wlndex++;
state = WARMING;
break;
case WARMING:
inscount =
sIndex++;
state = SIMULATION;
break;
case SIMULATION:
//If we are done simulating
if (Knobf.NumberOfValues ()
PIN__ExitApplication (0);

Knobs. Value (sInd

inscount = Knobf.Value(fInd
fIndex++;
state = FASTFORWARD;
break;
default :

state = SIMULATION;

Knobw. Value (wlndex) ;

ex);

stop
== flndex)

ex);

fputs ("Unknown_ state\n",stderr);

PIN__ExitApplication (1);
break;

0);

ip

#ifdef MULTITHREADED

THREADID tid

#endif
)
{
inscount ——;
dprintf("ins %p!\n",ip);
if (inscount == 0
dputs("switch!\n");
return inscount == 0;
}
static ADDRINT PIN_FAST ANALYSIS_CALL Instrument (
#ifdef MULTITHREADED
THREADID tid
#Hendif
{
return state != FASTFORWARD;

static VOID PIN_FAST ANALYSIS CALL CounterDone (
#ifdef MULTITHREADED

THREADID tid

#endif
)
{
enum state orig = state;
if (orig == SIMULATION)

gq—>send__control (SERVER_SIM_END) ;

}
nextState ();

44

415
416
417
418
419

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

443
et
445
446
447
448
449
450
451
452
453
454

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
aT7
478
479
480
481
482
483
484
485
486
487
488
489

491
492
493
494
495
496
497

Appendix B. Relevant source code

if (state == SIMULATION) {
g—>send__control (SERVER_SIM_START);

dprintf("state:%d—>%d\n" ,orig ,state);
//We only want to change the instrumentation when switching from any state to the fast forward state or wviceversa

// if ((orig == FASTFORWARD state != FASTFORWARD)|[[(orig != FASTFORWARD €6 state == FASTFORWARD))
//TODO: this isn 't working as expected :((yet)

// PIN_Removelnstrumentation (); //reinstrument the program

#Hendif

J//Instrumentation

static VOID Instruction (INS ins, VOID xv)
{

//Also wusing the IF — then callback system make PIN more likely to inline the counter code
#ifdef USE_STATES
INS_ InsertIfCall(ins, IPOINT_BEFORE, (AFUNPTR)StateCounter , IARG_FAST ANALYSIS CALL,
IARG_INST_PTR,
#ifdef MULTITHREADED
IARG_THREAD_ID,
#endif
IARG_END) ;
INS_InsertThenCall(ins, IPOINT BEFORE, (AFUNPTR)CounterDone, IARG_FAST ANALYSIS CALL,
#ifdef MULTITHREADED
IARG_THREAD_ 1ID,

#endif
IARG_END) ;
#Hendif
//if (state !|= FASTFORWARD) {

#ifdef USE_STATES
INS_InsertIfCall(ins, IPOINT_BEFORE, (AFUNPTR)Instrument , IARG_FAST ANALYSIS CALL,
#ifdef MULTITHREADED
IARG_THREAD_1ID,

#endif
IARG_END);
INS_InsertThenCall
#Helse
INS_InsertCall
#Hendif

(ins , IPOINT BEFORE, (AFUNPTR)RecordMemExec, IARG FAST ANALYSIS CALL,
IARG_INST PTR,

IARG_UINT32,INS_ Size(ins),

#ifdef MULTITHREADED

IARG_THREAD_ ID,

#endif

IARG_END) ;

if (INS_IsMemoryRead(ins))

{
#ifdef USE_STATES
INS_InsertIfPredicatedCall (ins, IPOINT BEFORE, (AFUNPTR)Instrument, IARG_FAST ANALYSIS_CALL,
#ifdef MULTITHREADED
IARG_THREAD_ID,

#endif
IARG_END);
INS_InsertThenPredicatedCall
#Helse
INS_InsertPredicatedCall
#endif

(ins , IPOINT_BEFORE,
(AFUNPTR) (INS__IsPrefetch (ins)? RecordMemPrefetch: RecordMemRead), IARG_FAST ANALYS
JARG_MEMORYREAD_EA,
IARG_MEMORYREAD_SIZE,
#ifdef MULTITHREADED
IARG_THREAD_ID,
#endif
IARG_END);
}

if (INS_HasMemoryRead2(ins))

{
#ifdef USE_STATES
INS_ InsertlIfPredicatedCall(ins, IPOINT BEFORE, (AFUNPTR)Instrument, IARG_FAST ANALYSIS CALL,
#ifdef MULTITHREADED
IARG_THREAD_ID,

#endif
IARG_END);
INS_InsertThenPredicatedCall
#else
INS_InsertPredicatedCall
#endif

(ins , IPOINT_BEFORE, (AFUNPTR)(INS_IsPrefetch(ins)?RecordMemPrefetch:RecordMemRe
IARG_MEMORYREAD2 _EA,

45

Appendix B. Relevant source code

498 IARG_MEMORYREAD_SIZE,

499 #ifdef MULTITHREADED

500 IARG_THREAD_ ID,

501 #endif

502 IARG_END);

503 1

504

505 // instruments stores wusing a predicated call , i.e.

506 // the call happens iff the store will be actually exzecuted
507 if (INS_IsMemoryWrite(ins))

508 {

509 #ifdef USE_STATES

510 INS_InsertIfPredicatedCall(ins , IPOINT_BEFORE, (AFUNPTR)Instrument , IARG_FAST_ ANALYSIS_CALL,
511 #ifdef MULTITHREADED

512 IARG_THREAD_ID,

513 #endif

514 IARG_END);

515 INS_InsertThenPredicatedCall

516 #else

517 INS_ InsertPredicatedCall

518 #endif

519 (ins , IPOINT BEFORE, (AFUNPTR)RecordMemPreWrite, IARG_FAST ANALYSIS CAI
520 IARG_ MEMORYWRITE_EA,

521 IARG_MEMORYWRITE_SIZE,

522 #ifdef MULTITHREADED

523 IARG_THREAD_1ID,

524 #endif

525 IARG_END) ;

526 #ifdef USE_DATA
527 #ifdef USE_STATES

528 INS_InsertIfPredicatedCall(ins , IPOINT_BEFORE, (AFUNPTR)Instrument , IARG_FAST ANALYSIS_ CALL,
529 #ifdef MULTITHREADED

530 IARG_THREAD_ID,

531 #endif

532 IARG_END);

533 INS_InsertThenPredicatedCall

534 #else

535 INS_InsertPredicatedCall

536 #endif

537 (ins ,

538 ('INS_HasFallThrough (ins) ?IPOINT _TAKEN BRANCH:IPOINT AFTER) ,
539 (AFUNPTR) RecordMemWrite, IARG_FAST ANALYSIS CALL,
540 #ifdef MULTITHREADED

541 IARG_THREAD_ ID,

542 #endif

543 IARG_END) ;

544 #endif

545

546 //}

547 }

548

549 // Multithread stuff:

550

551

552 #ifdef MULTITHREADED
553 static VOID ThreadStart (THREADID tid , CONTEXT *ctxt , INT32 flags, VOID x*v)

554

555 MemAccess *ma = new MemAccess ();

556 PIN_SetThreadData(wMemAccess, ma, tid);

557 }

558

559

560 static VOID ThreadFini (THREADID tid, const CONTEXT sxctxt , INT32 code, VOID xv)
561

562 MemAccess x*xma = static__cast<MemAccess *>(PIN__GetThreadData(wMemAccess, tid));
563 delete ma;

564 }

565 #endif

566

567 //TODO: maybe integrate this into the queue class and the socket per thread protocol

568 // static bool ending = false;
569 // static THREADID processor ;

570 // static PIN_THREAD UID processoruid ;
571 //

572 //static VOID ProcessQueue (VOID xnothing) {
573 // THREADID tid = PIN__Threadld ();
574 // while (!lending || !q—>empty()) {
575 // GetLock(8c_lock, tid);

576 // while (!lq—>empty()) {

577 // qg—>gettail ();

578 // q—>pop ();

579 // }

580 // ReleaseLock(8c_lock);

46

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

640
641
642
643
644
645
646
647
648
649
650
651

653
654
655
656
657
658
659
660
661
662

Appendix B. Relevant source code

// //Let others fill the queue
7/ YIELD ();

//
/) }
static VOID Fini(INT32 code, VOID xv)

// ending = true;
// PIN_WaitForThreadTermination (processoruid ,PIN_INFINITE TIMEOUT,NULL) ;
if (KnobSyscallMap || KnobCtxChangeMap)

fclose (mout);
server_ fini2 (q);
server_ fini(iq);

}
int main(int argc, char xargv|[])
if (PIN_Init(argc,argv))

return Usage ();

}
#ifdef USE_STATES

if (!(Knobf.NumberOfValues() == Knobw.NumberOfValues () && Knobf.NumberOfValues()==Knobs. NumberOfValues()))

fputs ("The number_ of occurrences_of —f_ —h_ and ,—s_ must_ be_ the_ same." , f stderr);

return Usage ();
}
#endif

ig=server_init ();
g=server_init2 ();

g—>gethead ().setType (STARTTH); //TODO move to the thread start

q—>wait__push ();

#ifdef USE_STATES
if (Knobf. NumberOfValues () >= 1)
nextState ();

//This one is done due to the way instrumentation work

inscount-4+;
//Send the simu start command if mnecessary
if (state == SIMULATION)

#endif

q—>send__control (SERVER_SIM_START) ;
INS_AddInstrumentFunction(Instruction, 0);
PIN__AddFiniUnlockedFunction (Fini, 0);

//Open the output file
if (KnobSyscallMap || KnobCtxChangeMap)
mout = fopen ('maptrace.txt","w");

//Monitor syscalls and so for mapping changes
if (KnobSyscallMap)
PIN__AddSyscallExitFunction (parsemapsl, NULL);

s

//Monitor also after context changes since if we are ptraced

if (KnobCtxChangeMap)
PIN_AddContextChangeFunction (parsemaps2, NULL);

//Although pin wuses codecaches it hides this details from the

break .

callbacks

mappings may have changed

instrumentation code so our

// This means the instruction addresses we gel are mapped to the

//code so we don’'t have to worry about changes to the
//mappings we still have to re ve space for them in

//in the map space almost always wuntil PIN provides an

//Thread Callbacks
InitLock(&c_lock);

#ifdef MULTITHREADED

InitLock(&h_lock);

wMemAccess = PIN_ CreateThreadDataKey (0);
PIN_AddThreadStartFunction(ThreadStart, 0);
PIN__AddThreadFiniFunction(ThreadFini, 0);
#endif

J//Start queue thread

// processor = PIN__SpawnlInternalThread (ProcessQueue ,
// if (processor INVALID THREADID) return 1;
J//Initial map loading
if (KnobSyscallMap || KnobCtxChangeMap)

parsemaps3 ();
PIN_StartProgram ();

47

api to

NULL,

mappings ,
the simulator spac

mappings corresponding

but, since

discern pin/tool mappings

0,

Bprocessoruid);

to the

Il can’t

from

di

This also means we

instructions c

1

braries

rn them

application

aches don

and not

t

from apr
Il be having some

ones .

n

Appendix B. Relevant source code

663 return O0;
664 }

48

CONO A WNKF

Appendix B. Relevant source code

#include <pinatrace.h>
#include <cstdint>
#include <cinttypes>

int

main () {
InstEventq *iq;
ig = client__init ();

SimDataq x*q;
q= client__init2 ();
5

uint64__t nins = 0;
uint64_t nins2 = 0;
uint64_t nrea = 0;
uint64__t nrea2 = 0;
uint64_t nwri = 0;
uint64_t nwri2 = 0;
uint64__t npre = 0;
uint64__t npre2 = 0;
uint64_t sins = O0;
uint64_t sins2 = 0;
uint64_t srea = O0;
uint64_t srea2 = 0;
uint64_t swri = 0;
uint64_t swri2 = 0;
uint64_t spre = 0;
uint64_t spre2 = 0;
uint64__t mark = 0;
uint64__t mark2 = 0;
bool simulating = false;

while (g—>receive_control ()
while (! q—>empty ()) {

assert (q—>gettail ().getType()
if (qg—>gettail ().getType() == ACCMEM)

|= SERVER_DIED) {

consumer.cpp

!= INVALDATA);

const MemAccess &ma = gq—>gettail ().getCMa();

mark ~= (uint64_t) ma.getEA ();

mark2 "= (uint64_t) ma.getEA ();

switch (ma.getType()) {
EXEC

case ACC
nins +-+;
nins2+4+;
sins +=
sins2 +=
break;

case ACCREAD:

nrea —++4;
nrea2-+4-+;
srea 4=
srea2 4=
break;

ma .
ma .

ma .
ma .

case ACCWRITE:

nwri +-4;
nwri2—++4;
swri 4=
swri2 4=
break;

ma

getSize ();
getSize ();

getSize ();
getSize ();

.getSize ();
ma. getSize ();

case ACCPREFETCH:

npre ++;
npre2++;
spre +=
spre2 +=
break;
default:

ma. getSize ();
ma. getSize ();

puts (" Unexpected

}

q—>pop ();

//I/u ve we just emptied the

while (!ig—>empty ()) {

if (igq—>gettail ().getType() == REMOVEMAPPING) {
range r=ig—>gettail ().getRange ();
printf ("— %lx—%lx\n" ,r.b,r.

buffer

or has

e);

an

access_ type!");

event

happened?

} else if (ig—>gettail ().getType() == ADDMAPPING){

range r=ig—>gettail ().getRange ();
printf ("4+ %lx—%lx\n",r.b,r.

ig—>pop ();

switch (g—>receive__control ()) {

case SERVER_DIED:
if (!simulating)
break;
case SERVER,_SIM_END:

e);

49

Appendix B. Relevant source code

83 simulating = false;

84 puts ("Simulation statistics:");

85 puts ("Number of jaccesses:");

86 printf (" _instructions: %"PRIu64"\n" ,nins);

87 printf (" . reads. o %"PRIu64"\n" ,nrea);

88 printf (" writes o ooy %"PRIu64"\n" ,nwri);

89 printf("_ . prefetches_ . : %"PRIu64"\n" ,npre);

90 printf("_ototal oo %"PRIu64"\n" ,nins4+nreat+nwritnpre);
91 puts ("Total jaccessed memory by type.(bytes):");
92 printf (" . instructions: %"PRIu64"\n",6sins);

93 printf (" reads. 000 %"PRIu64"\n" ,srea);

94 printf (" writes oo %"PRIu64"\n" ,swri);

95 printf (" . prefetches ,: %"PRIu64"\n" 6 spre);

96 printf (" total i %"PRIu64"\n" ,sins+srea+swritspre);
97 printf("Execution mark: %"PRIx64"\n" ,mark);

98 q—>ack__control ();

99 break;

100 case SERVER_SIM_START:

101 nins = 0;

102 nrea = 0;

103 nwri = 0;

104 npre = 0;

105 sins = 0;

106 srea = 0;

107 swri = 0;

108 spre = 0;

109 mark = 0;

110 simulating = true;

111 gq—>ack__control ();

112 break;

113 }

114 // Wait for buffer to refill

115 while (qg—>wait__empty_cond () && iq—>wait_empty_cond()) YIELD();
116

117 puts ("Total statistics:");

118 puts ("Number of jaccesses:");

119 printf (" instructions: %"PRIu64"\n",nins2);

120 printf (" . reads. oo %"PRIu64"\n" ,nrea2);

121 printf (" writes o ooy %"PRIu64"\n" ,nwri2);

122 printf (" . prefetches_ : %"PRIu64"\n" ,npre2);

123 printf (" total oo %"PRIu64"\n" ,nins2+nrea2+nwri2+npre2);
124 puts ("Total accessed _ memory by type.(bytes):");

125 printf("__instructions: %"PRIu64"\n" ,sins2);

126 printf (" oreads oonon: %" PRIu64"\n" ,srea2);

127 printf (" o writes o ouon: %"PRIu64"\n" ,swri2);

128 printf (" . prefetches ., : %"PRIu64"\n" , 6 spre2);

129 printf (" total oo %"PRIu64"\n" ,sins2+4srea2+4swri24spre2);
130 printf (" Execution mark: %"PRIx64"\n" ,mark2);

131 client_fini2(q);

132 client_ fini(iq);

133 return O0;

134}

20

CONOUhAWNKF

Appendix B. Relevant source code

mem trace reader.hh

N
*

Copyright (c) 2004—2005 The Regents of The University of Michigan
All rights reserved.

Redistribution and wuse in source and binary forms, with or without
modification , are permitted provided that the following conditions are
redistributions of source code must retain the above copyright

, this list of conditions and the following disclaimer ;
redistributions in binary form must reproduce the above copyright

notice , this list of conditions and the following di
documentation and/or other vided with the distribution ;
neither the name of the copyright holders nor the names of its
contributors may be wused to endoi or promote products derived from
this software without specific prior written permission .

claimer in the

materials pro

THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Authors: Erik Hallnor

F ok K X K X K X K X K K X K X K K K X K K X K X ¥ X ¥ X

J® %
* Definitions for a pure wvirtual interface to a memory trace reader.

*/

#ifndef __ MEM TRACE READER HH
#define __ MEM TRACE READER HH

#include "mem/packet.hh"

#include "mem/request.hh"

#include "params/MemTraceReader.hh"
#include "sim/sim_object.hh"

VaE
* This class contains the info of the trace request and some useful methods
* split it
*/
class MemTraceRequest : public FastAlloc {
Addr __paddr;
unsigned _ size;
Request :: Flags _ flags;
Tick _ timej;
int _ asid;
Addr _ vaddr;

int __contextId;

int _threadld;

Addr __pc;

MemCmd __cmd;
public:

MemTraceRequest () {}
MemTraceRequest (Addr paddr, int size, Request:: Flags flags ,
MemCmd : : Command cmd)
_paddr(paddr), _size(size), _flags(flags), _time(curTick()), _cmd(cmd)

{13

MemTraceRequest (Addr paddr, int size , Request:: Flags flags , Tick time,
MemCmd : : Command cmd)
_paddr(paddr), _size(size), _flags(flags), _time(time), _cmd(cmd)

~MemTraceRequest () {} // for FastAlloc

VAR
* Are we scheduled to run already
*/
inline bool mustRun
return _time <= curTick ();
}

inline Tick time() {
return _ time;

o1

to

Appendix B. Relevant source code

83 inline bool isInstFetch () {

84 return _ flags.isSet (Request::INST FETCH);

85

86

87 inline bool lastPacketSent () {

88 return _ size == 0;

89

90

91 VAES

92 * Get the next packet with proper bounds for this block size
93 * Will return NULL when done

94 */

95 PacketPtr getNextPkt (int bsize, Packet::NodeIlD dest, MasterID mid) {
96 if (lastPacketSent ()) {

97 return NULL;

98

99 //Base address of the block

100 Addr base = (_paddr & ~(bsize — 1));

101 //Current block mazsize

102 int msize = bsize — (_paddr — base);

103 // Minimum

104 if (msize > _size) msize = _size;

105 //Generate tthe request and the packet

106 RequestPtr req = new Request(__paddr, msize, _ flags, mid);
107 PacketPtr pkt = new Packet(req, cmd,dest);

108 pkt—>dataDynamicArray (new char[msize]);

109 // Calculate the new base address and size

110 __paddr += msize;

111 __size —= msize;

112 return pkt;

113 }

114 }s

115

116 typedef MemTraceRequest * MemTraceRequestPtr;

117

118

119 /*x*

120 * Pure virtual base class for memory trace readers.

121 */

122 class MemTraceReader : public SimObject

123

124 public:

125 enum reason {EOT,STAT_RESET,STAT DUMP};

126 /% Construct this MemoryTrace reader. %/

127 MemTraceReader (const MemTraceReaderParams *p) : SimObject(p) {}
128

129 //TODO: redo doc pkt should contain time, request, command and data.
130 Jx %

131 * Read the mne request from the trace. Returns the requ in the
132 * provided RequestPtr and the cycle of the request in the return wvalue.
133 * @param req Return the next request from the trace.

134 % @return The cycle of the request, 0 if mone in trace.

135 */

136 virtual MemTraceRequestPtr getNextRequest (enum reason &reason) = 0;
137

138 };

139

140 #endif // MEM TRACE READER HH

52

Appendix B. Relevant source code

pin_ reader.hh

1 Ve

2 * Copyright (c¢) 2004—2005 The Regents of The University of Michigan

3 * All rights reserved.

4 *

5 * Redistribution and wuse in source and binary forms, with or without

6 * modification , are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

9 * redistributions in binary form must reproduce the above copyright

10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution ;
12 * mneither the name of the copyright holders mnor the mnames of its

13 * contributors may be wused to endorse or promote products derived from
14 * this software without specific prior written permission.

15 *

16 * THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

18 « LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *

28 * Awuthors: Erik Hallnor

29 */

30

31 VaE

32 * @file

33 * Definition of a memory trace reader for a M5 memory trace.

34 */

35

36 F#ifndef _ Pin READER HH

37 #define __ Pin READER HH

38

39 #include "cpu/trace/reader/mem_ trace_reader.hh"

40 #include "cpu/trace/reader/pin_atrace.hh"

41 #include "params/PinReader.hh"

42

43 =

44 * A memory trace reader for a pin memory trace.

45 */

46 class PinReader : public MemTraceReader

47

48 friend class DeleteQueuesCallback;

49 /*% The trace. %/

50 SimDataq *q;

51 /*% Information on mapping changes */

52 InstEventq *iq;

53 bool simulating; //Wether we are in simulation state or not

54 bool drop; //Should we drop the next element (has it been processed)
55

56 protected:

57 void removeQueues ();

58 public:

59 /% %

60 * Construct an M5 memory trace reader.

61 */

62 PinReader (const PinReaderParams =p);

63

64 ~PinReader ();

65

66

67 //TODO: redo doc pkt should contain time, request, command and data.
68 Ver:

69 * Read the next request from the trace. Returns the request in the
70 * provided RequestPtr and the cycle of the request in the return wvalue.
71 % @param req Return the next request from the trace.

72 % @return The cycle of the request, 0 if none in trace.

73 */

74 virtual MemTraceRequestPtr getNextRequest (MemTraceReader:: reason &reason);
75}

76

77 #endif // PIN READER HH _

23

CONO A WNR

Appendix B. Relevant source code

pin_ reader.cc

NS
*

Copyright (c) 2004—2005 The Regents of The University of Michigan
All rights reserved.

Redistribution and wuse in source and binary forms, with or without
modification , are permitted provided that the following conditions are
g redistributions of source code must retain the above copyright

>, this list of conditions and the following disclaimer;
tributions in binary form must reproduce the above copyright
] this list of conditions and the following disclaimer in the

notice
documentation and/or other materials provided with the distribution ;
neither the mame of the copyright holders mnor the names of its

contributors may be wused to endorse or promote products derived from
this software without specific prior written permission .

THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICE, LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Awuthors: Erik Hallnor

/

/%
* Q@file
* Declaration of a memory trace reader for a pin memory trace.

*/

#include "base/callback.hh"

#include "cpu/trace/reader/pin_reader.hh"
#include "sim/sim exit.hh"

#include <set>

¥R K X K K K K K K K ¥ K K X K ¥ K ¥ K K X ¥ X ¥ ¥ ¥ ¥

//TODO: look why the wuser interrupt received event doesn’t calls the Callback

/x% Callback to clean the queuesx/
class DeleteQueuesCallback : public Callback {
public:
DeleteQueuesCallback ();
void process ();
};
static DeleteQueuesCallback dqc;

/*% List of PinReader elements for the queue deleting callback xx/

static std::set<PinReader %> readers;

DeleteQueuesCallback :: DeleteQueuesCallback () {
registerExitCallback (this);

}

void DeleteQueuesCallback:: process () {

for (std::set<PinReader %>::iterator it = readers.begin(); it != readers.end(); it++) {

(*it)—>removeQueues ();

}
//TODO: Send client finalization events if necessary

void PinReader::removeQueues () {

if (a) {
client__fini2(q);
q = NULL;

¥

if (iq) {
client_ fini(iq);
iq = NULL;

warn ("Done");

}

PinReader :: PinReader (const PinReaderParams xp) : MemTraceReader(p),simulating (false) {
iq = client__init ();
q = client_init2 ();
//Wait for the initial event

o4

83
84

86
87

89
90
91
92
93
94
95
96
97
98
99
100

102
103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

121
122

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141

143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159
160
161
162
163
164
165

Appendix B. Relevant source code

while (q—>empty ()) { YIELD();}
drop = true;
readers.insert (this);

}

PinReader ::~PinReader () {
removeQueues ();
readers.erase (this);

MemTraceRequestPtr PinReader:: getNextRequest (MemTraceReader :: reason &reason)

MemCmd : : Command cmd;
MemTraceRequestPtr req;
Request :: Flags flags;
if (drop) {

assert (!q—>empty ());

q—>pop (); // Drop previous data
while (true) {
// Wait for new traces if the server died just send NULL
while (q—>wait__empty_cond () && iq—>wait_empty_cond()) YIELD();
//TODO: this still mneeds some cleaning , the CPU must end any accesses

switch (q—>receive_control ()) {

case SERVER,_DIED:
//The last dump should be made by m5 itself
reason = MemTraceReader ::EOT;
drop = false;
return NULL;

case SERVER_SIM_END:
simulating = false;
gq—>ack__control ();
reason = MemTraceReader ::STAT DUMP;
drop = false;
return NULL;

case SERVER_SIM_START:
simulating = true;
q—>ack__control ();
reason = MemTraceReader::STAT RESET;
drop = false;
return NULL;

case NONE:
break;

default:
warn (" State not supported!");

}
if (lg—>empty()) {
switch (q—>gettail ().getType()) {
case ACCMEM: {
const MemAccess &ma = g—>gettail ().getCMa();
switch (ma.getType()) {

case ACCEXEC:
flags .set (Request : : INST _FETCH);
cmd = MemCmd: : ReadReq;
break;

case ACCREAD:
cmd = MemCmd: : ReadReq
break;

case ACCWRITE:
cmd = MemCmd:: WriteReq;
break;

case ACCPREFETCH:
flags .set (Request : : PREFETCH) ;
cmd = MemCmd: : ReadReq;
break;

default:
panic (" Access type unknown");

}

Addr ea = (Addr)ma.getEA ();

ea &= (Addr)134217727; // 128Mb —1 :P
//By default time is set to 0

req = new MemTraceRequest ((Addr)ea,(int)ma.getSize (), flags ,cmd);

drop = true;
return req;

}
case STARTTH:
case INVALDATA:
default :
panic (" Unexpected data_ type");

}

E;vhile (tig—>empty ()) {

95

the

reset ,

same

before

the

dump

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

Appendix B. Relevant source code

//Process mapping changes

if (iq—>gettail ().getType() == REMOVEMAPPING) {
//range r=iq—>gettail (). getRange ();
//TODO: remove mapping from TLB

} else if (iq—>gettail ().getType() == ADDMAPPING) {

J//range r=iq—>gettail (). getRange ();

//TODO: add mapping from

iq—>pop ();

}

PinReader x
PinReaderParams:: create ()

return new PinReader(this);

TLB

26

CONOUhAWNKF

Appendix B. Relevant source code

N
*

F ok K X K X K X K X K K X K X K K K X K K X K X ¥ X ¥ X

trace__cpu.hh

Copyright (c) 2004—2005 The Regents of The University of Michigan
All rights reserved.

Redistribution and wuse in source and binary forms, with or without
modification , are permitted provided that the following conditi
redistributions of source code must retain the above copyright
, this list of conditions and the following disclaimer ;
redistributions in binary form must reproduce the above copyright
notice this list of conditions and the following di

documentation and/or other materials provided with the distribution ;
neither the name of the copyright holders nor the names of its
contributors may be wused to endoi or promote products derived from
this software without specific prior written permission .

ns are

claimer in the

THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Authors: Erik Hallnor
/

J® %

* @file

* Declaration of a memory trace CPU object. Uses a memory trace to drive
* provided memory hierarchy.

*

#ifndef __ CPU_TRACE TRACE CPU _HH_ __
#define __ CPU_TRACE TRACE CPU HH __

#include <string>

#include "mem/mem_ object.hh"

#include "mem/packet.hh" // for RequestPtr
#include "mem/port.hh"

#include "params/TraceCPU.hh"

#include "sim/eventq.hh" // for FEwvent
#include "sim/sim_object.hh"

// Forward declaration .
class MemTraceReader;

enum CMD { Invalid, Read, Write, Writeback};

/*
*
*

*
A cpu object for running memory traces through a memory hierarchy.

/

class TraceCPU : public MemObject

private:

class MemPort : public Port
TraceCPU =xtcpu;
PacketPtr retryPkt;
bool accessRetry;

public:
MemPort (const std::string & name, TraceCPU x*_ tcpu)

Port (_name, _tcpu), tcpu(_tcpu)

{ accessRetry = false;

bool locked () {
return accessRetry;
¥

void sendPkt (PacketPtr pkt);
protected:

virtual bool recvTiming(PacketPtr pkt);
virtual Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional (PacketPtr pkt);

virtual void recvRangeChange ();

o7

the

Appendix B. Relevant source code

83

84 virtual void recvRetry ();

85 }s

86 /*% Port for instruction trace requests, if any. */
87 MasterID __instMasterId;

88 MemPort icache;

89 /*% Port for data trace requests, if any. */

90 MasterID __dataMasterld;

91 MemPort dcache;

92

93 /*% Data reference trace. x/

94 MemTraceReader xdataTrace;

95

96 /*% Number of outstanding reques */

97 int outstandingRequests;

98

99 /*% Next packet conatining data, time, request, command, etc */
100 MemTraceRequestPtr nextRequest;

101

102 /*% Reason for the packet to be NULL %/

103 MemTraceReader:: reason reason;

104

105 /** Next request. =/

106 MemCmd : : Command nextCmd ;

107

108 VEES

109 * FEvent to call the TraceCPU:: tick

110 «/

111 class TickEvent : public Event

112

113 private:

114 TraceCPU *cpu;

115

116 public:

117 TickEvent (TraceCPU x*c) : Event(CPU_Tick Pri), cpu(c) {}
118 void process () { cpu—>tick ();

119 virtual const char xdescription () const { return "TraceCPU_ tick"; }
120 I

121

122 TickEvent tickEvent;

123 inline Tick ticks(int numCycles) const { return numCycles; }
124

125 public:

126 ok

127 * Construct a TraceCPU object.

128 */

129 TraceCPU (const TraceCPUParams xp);

130

131 inline Tick ticks (int numCycles) { return numCycles; }
132

133 VARS

134 « Perform all the accesses for one cycle.

135 */

136 void tick ();

137

138 e

139 * Handle a completed memory request.

140 */

141 void completeRequest (PacketPtr req);

142

143 virtual Port xgetPort(const std::string &if name, int idx = —1);
144}

145

146 #endif // CPU TRACE TRACE CPU HH

o8

CONOUhAWNKF

Appendix B. Relevant source code

N
*

/

F ok K X K X K X K X K K X K X K K K X K K X K X ¥ X ¥ X

/

*
*
*
*
*

trace_ cpu.cc

Copyright (c) 2004—2005 The Regents
All rights reserved.

Redistribution and wuse in source and
modification , are permitted provided
redistributions of source code

this list of conditions and
ons in binary form must
list of conditions and
vtion and/or other materials

neithe
contributors may be wused to endorse
this software without specific prior

the mame of the copyright holde

of The University of Michigan

binary forms, with or without
that the following conditions are
must retain the above copyright
the following disclaimer;
reproduce the above copyright

the following disclaimer in the
provided with the distribution ;
nor the mnames of its

or promote products derived from
written permission .

THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERR

UPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Authors: Erik Hallnor

afile

Declaration of a memory trace CPU object. Uses a memory trace to drive the

provided memory hierarchy.

#include <algorithm> // For min

#include

#include "cpu/trace/trace cpu.hh"
// #include "mem/base_mem.hh" // For PARAM constructor
// #include "mem/mem__interface.hh"
//#include "params/TraceCPU.hh"
#include "base/statistics.hh"
#include "mem/packet.hh"

#include "sim/eventq.hh"

#include "sim/sim__events.hh"
#include "sim/sim__exit.hh"
#include "sim/system .hh"

using namespace std;

"cpu/trace/reader/mem_trace_reader.hh"

TraceCPU :: TraceCPU (const TraceCPUParams *p)
MemObject (p) ,
_instMasterId (p—>sys—>getMasterId (name() + ".inst")), icache("instructions',6 this),
_dataMasterld (p—>sys—>getMasterId (name() + ".data")), dcache("data', 6 this),
dataTrace(p—>trace), outstandingRequest

}

//TODO: fixz wunaligned acc

s(0), tickEvent (this)

nextRequest = dataTrace—>getNextRequest(reason);
schedule(&tickEvent ,curTick () + ticks (1));

sses out of b

void
TraceCPU :: tick ()

assert (outstandingRequests >= 0);
assert (outstandingRequests < 1000);
int instReqs = 0; //TODO convert to
int dataRegqs = 0; //TODO convert to
while (!nextRequest) {

lock boundaries

stats
stats

if (outstandingRequests) return;

switch (reason) {
case MemTraceReader ::
/ No more req
//TODO: fis
//

ts to

send. Finish trailing events and exit.

s
if (queue()—>empty()) {

exitSimLoop ("end, of memory trace reached");

// } oelse {
//

//
// }

if (!tickEvent.scheduled ())
schedule (8tickEvent , queue()—>nextTick () + ticks (1));

29

Appendix B. Relevant source code

83 return;

84 case MemTraceReader::STAT RESET:

85 nextRequest = dataTrace—>getNextRequest(reason);

86 Stats::reset ();

87 break;

88 case MemTraceReader::STAT DUMP:

89 nextRequest = dataTrace—>getNextRequest(reason);

90 Stats ::dump ();

91 break;

92 }

93

94 if (nextRequest—>mustRun()) {

95 int bsize = 0;

96 if (nextRequest—>isInstFetch ()) {

97 bsize=icache.peerBlockSize ();

98 } else {

99 bsize=dcache.peerBlockSize ();

100 1

101

102 //Rest of the request: get the new address and the new size

103 if (nextRequest—>isInstFetch ()) {

104 PacketPtr nextPkt = nextRequest—>getNextPkt(bsize ,0, instMasterId);
105 // assert (nextPkt—>req—>thread__num < 4 &6 "Not enough threads");
106 nextPkt—>setSrc (0);

107 qs;

08 // F("id %d in iating %sread at addr %z (blk %) expecting %z\n'",
109 // id, do__functional ? "functional " : "", req—>getPaddr(),

110 // blockAddr (req—>getPaddr()), xresult);

111 icache.sendPkt (nextPkt);

112 } else {

113 PacketPtr nextPkt = nextRequest—>getNextPkt(bsize ,0,_ dataMasterld);

114 // assert (nextPkt—>req—>thread_num < 4 &6 "Not enough threads");
115 nextPkt—>setSrc (0);

116 ++dataReqgs;

117 if (nextPkt—>cmd.isRead ()) {

118 // DPRINTF("id %d initiating %sread at addr %z (blk) ezpecting %z\n'"
119 // id, do__functional ¢ "functional " : "", req—>getPaddr (),

120 // blockAddr (req—>getPaddr()), =result);

121 } else if(nextPkt—>cmd.isWrite ()) {

122 // DPRINTF (MemTest, "initiating %swrite at addr %z (blk %z) wvalue %z\n'",
123 // do__functional ? "functional " : "', req—>getPaddr(),

124 // blockAddr (req—>getPaddr ()), data & 0zff);

125 } else panic("CMD not implemented");

126 dcache.sendPkt (nextPkt);

127 1

128 //1f we are done with the current packet we go for the next.

129 if (nextRequest—>lastPacketSent ()){

130 delete nextRequest;

131 nextRequest = dataTrace—>getNextRequest(reason);

132 h

133 } else if(!tickEvent.scheduled())

134 schedule(&tickEvent ,max(curTick () + ticks (1), (nextRequest?nextRequest—>time ():0)));
135}

136

137 Port x*
138 TraceCPU::getPort(const std::string &if name, int idx)

139

140 if (if_name == "data"

141 return &dcache;

142 else if (if_name == "instructions")

143 return &icache;

144 else

145 panic ("NoSuch Port\n");

146 }

147

148

149 bool

150 TraceCPU::MemPort:: recvTiming (PacketPtr pkt)
151

152 if (pkt—>isResponse())

153 tcpu—>completeRequest (pkt);

154 } else {

155 // must be snoop upcall

156 assert (pkt—>isRequest ());

157 assert (pkt—>getDest () == Packet :: Broadcast);
158

159 return true;

160 }

161

162 Tick

163 TraceCPU:: MemPort:: recvAtomic (PacketPtr pkt)
164 {

165 panic (" Atomic accesses not supported");

60

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248

Appendix B. Relevant source code

// must be snoop wupcall
assert (pkt—>isRequest ());

assert (pkt—>getDest () == Packet :: Broadcast);

return curTick ();

}

void

TraceCPU :: MemPort :: recvFunctional (PacketPtr pkt)
//Do mnothing if we see one come through
return;

}

void
TraceCPU :: MemPort : :

}

void
TraceCPU :: MemPort : :

recvRangeChange ()

recvRetry ()

if (sendTiming(retryPkt)) {

DPRINTF(MemTest ,

accessRetry false;
retryPkt = NULL;

//

void
TraceCPU :: MemPort : :
// if (atomic) {
// cachePort.sendAtomic(pkt);
// completeRequest (pkt);
// }
// else
tcpu—>outstandingRequests++;
if (!sendTiming(pkt)) {

// DPRINTF (MemTest

accessRetry
retryPkt

true;
pkt;

// TODO: handle stats

// woid

// TraceCPU::regStats ()

/) A

// using mnamespace Stats;

numReadsStat
.name (name ()
.desc ("number

+ ".num
of read

reads ")
accesses

num WritesStat
.name (name () +

.num__writes ")

// .desc ("number of write accesses
//

//

// numE: sStat

// .name (name () + ".num__exec")

.desc ("number of exzecution

"accessRetry

"accessRetry

acce

setting t

sendPkt (PacketPtr pkt) {

setting

completed ")

completed ")

sses

void
TraceCPU :: completeRequest (PacketPtr pkt)
Request *xreq = pkt—>req;
outstandingRequests ——;
// DPRINTF (MemTest "completing %s at address
// pkt—>isWrite () ? "write" "read
// req—>getPaddr (), block

pkt—>isError () ? "error

the address the list

//Remove

if (pkt—>isError()) {

from

" "success

of

warn (" Access failed for %s at %x\n",

pkt—>isWrite () ?

"write"

"read",

61

o

to

%x

false\n");

true\n");

completed ")

(blk %z) %s\n",

(111]‘(T(*(I*,>(](/Z/,P{l,(1d‘l‘()/ s

")

outstanding

req—>getPaddr ());

Appendix B. Relevant source code

249 } else {

250 //TODO: handle stats

251 // if (pkt—>isRead()) {

252 // numReads++;

253 // numReadsStat++;

254 // } oelse o

255 // assert (pkt—>isWrite ());
256 // numWrites++;

257 // num WritesStat++;

258 // }

259 s

260

261 pkt—>deleteData ();

262 delete pkt—>req;

263 delete pkt;

264 if (!tickEvent.scheduled ())

265 schedule(&tickEvent ,max(curTick () 4+ ticks (1), (nextRequest?nextRequest—>time ():0)));
266 }

267

268 TraceCPU =

269 TraceCPUParams:: create ()

270

271 return new TraceCPU(this);
272}

273

274 /x To convertx/

275

276

277 // woid

278 // MemTest:: completeRequest (PacketPtr pkt)

279 /) ¢
280 // Request xreq = pkt—>req;

281 //

282 // if (issueDmas) {

283 // dmaOutstanding = false ;

281 /)

285 //

286 // DPRINTF (MemTest, "completing %s at address %z (blk %x) %s\n",
287 // pkt—>isWrite () ¢ "write" : "read",

288 // req—>getPaddr (), blockAddr (req—>getPaddr()),

289 // pkt—>isError () ? "error' : "success");

290 //

291 // MemTestSenderState *state =

292 // dynamic_c <MemTestSenderState *>(pkt—>senderState);

203 //

294 // uint8__t xdata = state—>data;

295 // wint8__t xpkt_data = pkt—>getPtr<uint8_t >();

206 //

297 // //Remove the address from the list of outstanding

208 // std ::set<unsigned >::iterator removeAddr =

299 // outstandingAddrs. find (req—>getPaddr ());

300 // assert (removeAddr != outstandingAddrs.end());

301 // outstandingAddrs. erase (removeAddr) ;

302 //

303 // if (pkt—>isError()) {

304 // if (!suppress_ func_warnings) {

305 // warn (" Functional Access failed for %z at %z\n",

306 // pkt—>is Write () ¢ "write" : "read", req—>getPaddr ());
307 // }

308 // }oelse {

309 // if (pkt—>isRead()) {

310 // if (mememp(pkt_data, data, pkt—>getSize()) != 0) {
311 // panic("%s: read of %z (blk %z) @ cycle %d "

312 // "returns %z, expected %z\n', name(),

313 // req—>getPaddr (), blockAddr(req—>getPaddr()), curTick(),
314 // *pkt__data , *data);

315 /) }

316 //

317 // numReads++;

318 // numReadsStat++;

319 //

320 // if (numReads == (wint64__t)nextProgressMessage) {

321 // ceprintf(cerr, "%s: completed %d read, %d write accesses @%d\n",
322 // name (), numReads, numWrites, curTick ());
323 // nextProgressMessage += progresslinterval;

324 /) }

325 //

326 // if (mazLoads != 0 && numReads >= maxzLoads)

327 // exitSimLoop ("mazimum number of loads reached");
328 // }oelse {

329 // assert (pkt—>is Write ());

330 // funcPort. writeBlob (req—>getPaddr (), pkt_data, req—>getSize ());
331 // num Writes++;

62

Appendix B. Relevant source code

332 // num WritesStat++;
333 /) }

334 /))

335 //

336 // noResponseCycles = 0;

337 // delete state ;

338 // delete [] data;

339 // delete pkt—>req;

340 // delete pkt;

341 // if (!tickEvent.scheduled ())
342 // schedule (tickEvent , curTick () + ticks (1));
343 /))

344

345 // woid
346 // MemTest:: tick ()

347 //

348 //

349 // //make new request

350 // /* unsigned cmd = random () % 100;

351 // * unsigned offset = random () % size;

352 // * unsigned base = random () % 2;

353 // * wint64_t data = random ();

354 // * unsigned access__size = random () % 4;

355 // * bool wuncacheable = (random () % 100) < percentUncacheable;
356 // *

357 // * unsigned dma__access__size = random () % 4; */

358 // unsigned cmd = 0;

359 // offset++;

360 // unsigned base = 0;

361 // wint64_t data = random ();

362 // unsigned access__size = 0;

363 // bool uncacheable = false;

364 //

365 // unsigned dma__access__size = random () % 4;

366 //

367 // //If we aren’t doing copies, use id as offset, and do a false sharing
368 // //mem tester

369 // //We can eliminate the lower bits of the offset, and then wuse the id
370 // //to offset within the blks

371 // // offset = blockAddr (offset);

372 // // offset += id;

373 // // access__si 0;

374 // // dma__access__size = 0;

375 //

376 // Request xreq = new Request ();

3r7r // Request :: Flags flags ;

378 // Addr paddr;

379 //

380 // if (uncacheable) {

381 // flags.set (Request : : UNCACHEABLE) ;

382 // paddr = uncacheAddr + offset;

383 // } oelse {

384 // paddr = ((base) ? baseAddrl : baseAddr2) + offset;

385 //

386 // bool do__functional = false ;

387 //

388 // if (issueDmas) {

389 // paddr &= ~((1 << dma__access__size) — 1);

390 // req—>setPhys (paddr, 1 << dma__access_size, flags);

391 // req—>setThreadContext (id ,0);

392 // } oelse

393 // paddr &= ~((1 << access__size) — 1);

394 // req—>setPhys (paddr, 1 << access__size, flags);

395 // req—>setThreadContext (id ,0);

396 /)

397 // assert (req—>getSize () == 1);

398 //

399 // wint8__t xresult = new wint8_t[8];

400 //

401 // if (emd < percentReads) {

402 // // read

403 /)

404 // // For now we only allow one outstanding request per address
405 // // per tester This means we assume CPU does write forwarding
406 // // to reads that alias something in the cpu store buffer.
407 // if (outstandingAddrs. find (paddr) != outstandingAddrs.end()) {
408 // delete [] result;

409 // delete req;

410 // return ;

a1/ }

a12 /)

413 // outstandingAddrs. insert (paddr);

414 /)

63

Appendix B. Relevant source code

415 // // *%xxx NOTE FOR RON: I’'m mnot sure how to access checkMem. — Kevin
416 // funcPort.readBlob (req—>getPaddr (), result, req—>getSize ());
a7y

418 // ceprintf(cerr,

419 // "id %d initiating %sread at addr %z (blk %z) exzpecting %z\n",
420 // id, do__functional ? "functional " : "", req—>getPaddr(),
421 // blockAddr (req—>getPaddr ()), *result);

422 //

423 // PacketPtr pkt = new Packet(req, MemCmd:: ReadReq, Packet:: Broadcast);
424 // pkt—>setSrc (0);

425 // pkt—>dataDynamicArray (new wint8_t[req—>getSize ()]);

426 // MemTestSenderState *state = new MemTestSenderState (result);

427 // pkt—>senderState = state ;

428 /)

429 // if (do_ functional) {

430 // assert (pkt—>needsResponse ());

431 // pkt—>setSuppressFuncError ();

432 // cachePort.sendFunctional (pkt);

433 // completeRequest (pkt);

434 // } oelse {

435 // sendPkt (pkt);

436 // }

437 // }oelse |

438 // // write

439 //

440 // // For now we only allow one outstanding request per addreess

441 // // per tester. This means we assume CPU does write forwarding

442 // // to reads that alias something in the cpu store buffer.

443 // if (outstandingAddrs. find (paddr) != outstandingAddrs.end()) {

444 // delete [] result;

445 // delete regq;

446 // return ;

aar) }

448 /)

449 // outstandingAddrs. insert (paddr);

450 //

451 // DPRINTF (MemTest, "initiating %swrite at addr %z (blk %z) value %xz\n",
452 // do__functional ? "functional " : "', req—>getPaddr(),

453 // blockAddr (req—>getPaddr()), data & 0xzff);

a54 /)

455 // PacketPtr pkt = new Packet(req, MemCmd:: WriteReq, Packet:: Broadcast);
456 // pkt—>setSrc (0);

457 // wint8__t xpkt_data = new wint8_t[req—>getSize ()];
458 // pkt—>dataDynamicArray (pkt__data);

459 // memcpy (pkt_data , &data, req—>getSize ());

460 // MemTestSenderState xstate = new MemTestSenderState (result);
461 // pkt—>senderState = state;

462 //

463 // if (do_ functional) {

464 // pkt—>setSuppressFuncError ();

465 // cachePort.sendFunctional (pkt);

466 // completeRequest (pkt);

467 // } oelse {

468 // sendPkt (pkt);

169 /) }

470 //

ar1 /)

64

CONO A WNKF

Appendix B. Relevant source code

pintrace.py

Copyright (c) 2006—2007 The Regents of The University of Michigan
All rights reserved.

Redistribution and wuse in source and binary forms, with or without
modification , are permitted provided that the following conditions are
met: redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer;
redistributions in binary form must reproduce the above copyright

noti , this list of conditions and the following disclaimer in the
ntation and/or other erials provided with th
name of the copyright holders mnor the mnam
contributors may be wused to endorse or promote products
this software without specific prior written permission .

listribution ;
of 1

derived from

s

THIS SOFTWARE 1S PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

FI IR IR IR IR IR IR IR IR R R R R R R R R IR I I I N

Awuthors: Ron Dreslinski

import optparse
import sys

import mb5
from m5.objects import =

parser = optparse.OptionParser ()
#parser.add__option("—m", "——maztick", type="int", default=m5. MazTick,
#metavar="T",
#help="Stop after T ticks")
(options, args) = parser.parse_args()
if args:
print "Error:_ script.doesn’t. take_ any positional arguments"

sys.exit (1)

define prototype L1 cache
proto_11 = BaseCache(size = '32kB’, assoc = 4, block_size = 128,

B

latency = ’lns’, tgts_per_mshr = 1)
proto_11.mshrs = 1
pr = PinReader ()
tcpu = TraceCPU(trace = pr)

mnext comes L1 cache, if any
#prototypes.insert (0, proto_11)

system simulated

system = System (physmem = PhysicalMemory (latency = "100ns"))

new_bus = Bus(clock="500MHz" , width=16)

system .physmem.cpu_side__bus = new__bus

system .physmem. port = new__bus.master

data_11 = BaseCache(size = ’'32kB’, assoc = 4, block_size = 64,
latency = ’lns’, tgts_per_mshr = 8)

data_11.mshrs = 1

ins_11 = BaseCache(size = ’32kB’, assoc = 4, block_size = 64,
latency = ’'lns’, tgts_per_mshr = 8)

ins_11.mshrs = 1

new_bus.cache = [data_11, ins_11]
new__bus.slave = data_1l.mem_ side
new__bus.slave = ins_11.mem_ side

data__ll.cpu = tcpu

tcpu.data = data_11l.cpu__side

65

83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Appendix B. Relevant source code

tcpu.instructions = ins_11.cpu_side
#def make_level(spec, prototypes, attach__obj, attach_port):
#fanout = spec[0]

#parent = attach__obj # wuse attach obj as config parent

#if len(spec) > 1 and (fanout > 1 or options.force__bus
#new__bus = Bus(clock="500MHz", width=16)
#new__bus.port = getattr (attach__obj, attach_port)
#parent.cpu__side__bu
#attach__obj = new_b
#atta __port = "port

#objs = [prototypes [0]() for i in zrange(fanout)]

#if len(spec) > 1:

we just built caches, more levels to go
#parent.cache = objs
#for cache in objs:

= new__bus

"

too

):

#cache.mem__side = getattr (attach__obj, attach__port)

#make__level (spec[1:], prototypes[1:], cache,

#else :
we just built the MemTest objects
#parent.cpu = objs
#for t in objs:
#t.test = getattr (attach_obj, attach_port)
#t. functional = system.funcmem.port
#make__level (treespec, prototypes , system.physmem, "port")
#
run simulation
#
root = Root(full_system = False, system = system)
root.system .mem_mode = ’timing’
root.system.system__port = root.system.physmem. port

Not much point in this being higher than the L1 latency
m5. ticks .setGlobalFrequency ('1ns’)

instantiate configuration
m5. instantiate ()

simulate until program terminates
exit__event = mb5.simulate (m5. MaxTick)

print 'Exiting @ tick’, mb5.curTick (), ’because’, exit_event

66

"cpu__side ")

.getCause ()

Bibliography

Kenneth Barr. Dinerotool. Oct. 2005. URL: http://kbarr.net.

Nathan Binkert et al. “The gem) simulator”. In: SIGARCH Comput.
Archit. News 39.2 (Aug. 2011), pp. 1-7. 1SSN: 0163-5964. DO1: 10.1145/
2024716 .2024718. URL: http://doi.acm.org/10.1145/2024716.
2024718.

Zhongliang Chen et al. The Multi2Sim Simulation Framework. URL:
http://www.multi2sim.org/files/multi2sim-r277.pdf.

Circular buffer. Nov. 2012. URL: http://en . wikipedia . org/w/
index . php?title=Circular_buffer&oldid=522370238#Always _

Keep_Une_Slot_Open.

H. J. Curnow and B. A. Wichmann. “A synthetic benchmark”. In: The
Computer Journal 19.1 (1976), pp. 43-49. DOI: [10.1093/comjnl/19.
1.43. eprint: http://comjnl. oxfordjournals.org/content/19/
1/43.full.pdf+html. URL: http://comjnl.oxfordjournals.org/

content/19/1/43.abstract.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. “Gprof:
A call graph execution profiler”. In: SIGPLAN Not. 17.6 (June 1982),
pp- 120-126. 18sN: 0362-1340. poI: 10 .1145/872726 . 806987. URL:
http://doi.acm.org/10.1145/872726.806987.

67

http://kbarr.net
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://www.multi2sim.org/files/multi2sim-r277.pdf
http://en.wikipedia.org/w/index.php?title=Circular_buffer&oldid=522370238#Always_Keep_One_Slot_Open
http://en.wikipedia.org/w/index.php?title=Circular_buffer&oldid=522370238#Always_Keep_One_Slot_Open
http://en.wikipedia.org/w/index.php?title=Circular_buffer&oldid=522370238#Always_Keep_One_Slot_Open
http://dx.doi.org/10.1093/comjnl/19.1.43
http://dx.doi.org/10.1093/comjnl/19.1.43
http://comjnl.oxfordjournals.org/content/19/1/43.full.pdf+html
http://comjnl.oxfordjournals.org/content/19/1/43.full.pdf+html
http://comjnl.oxfordjournals.org/content/19/1/43.abstract
http://comjnl.oxfordjournals.org/content/19/1/43.abstract
http://dx.doi.org/10.1145/872726.806987
http://doi.acm.org/10.1145/872726.806987

Bibliography Bibliography

[7]

[10]

[11]

[12]

Mark Hill and Jan Edler. Dinero IV Trace-Driven Uniprocessor Cache
Simulator. Feb. 1998. URL: http://www.cs.wisc.edu/~markhill/

DineroIV/

Chi-Keung Luk et al. “Pin: building customized program analysis tools
with dynamic instrumentation”. In: Proceedings of the 2005 ACM SIG-
PLAN conference on Programming language design and implementa-
tion. PLDI ’05. Chicago, IL, USA: ACM, 2005, pp. 190-200. 1SBN:
1-59593-056-6. Dor1: 110.1145/1065010.1065034. URL: http://doi.
acm.org/10.1145/1065010.1065034.

J.E. Miller et al. “Graphite: A distributed parallel simulator for mul-
ticores”. In: High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on. Jan. 2010, pp. 1 —12. DOL:
10.1109/HPCA . 2010 .5416635. URL: http://groups.csail .mit.

edu/carbon/docs/graphite_hpca2010_preprint.pdf.

Vijay Janapa Reddi et al. “PIN: a binary instrumentation tool for com-
puter architecture research and education”. In: Proceedings of the 2004
workshop on Computer architecture education: held in conjunction with
the 31st International Symposium on Computer Architecture. WCAE
'04. Munich, Germany: ACM, 2004. poI: 10.1145/1275571.1275600.
URL: http://doi.acm.org/10.1145/1275571.1275600.

Cloyce D. Spradling. “SPEC CPU2006 Benchmark Tools”. In: SIGARCH
Computer Architecture News 35 (1 Mar. 2007).

Richard M. Stallman. GDB manual: the GNU source-level debugger.
2nd, GDB version 2.5. Free Software Foundation, Inc. 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA, Tel: (617) 876-3296,
Feb. 1988, pp. ii + 63.

68

http://www.cs.wisc.edu/~markhill/DineroIV/
http://www.cs.wisc.edu/~markhill/DineroIV/
http://dx.doi.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://dx.doi.org/10.1109/HPCA.2010.5416635
http://groups.csail.mit.edu/carbon/docs/graphite_hpca2010_preprint.pdf
http://groups.csail.mit.edu/carbon/docs/graphite_hpca2010_preprint.pdf
http://dx.doi.org/10.1145/1275571.1275600
http://doi.acm.org/10.1145/1275571.1275600

Bibliography Bibliography

[13]

[14]
[15]
[16]

[17]

[18]

22]

[23]

[24]

[25]

Richard M. Stallman. Using and Porting GNU CC. Tech. rep. 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA, Tel: (617) 876-3296:

Free Software Foundation, Inc., 1988.

The gcc website. URL: http://gcc.gnu.org/.

The gdb website. URL: http://www.gnu.org/software/gdb/.
The Gemdb website. URL: http://www.gemb.org/.

The gprof website. URL: http://sourceware.org/binutils/docs/
gprof/.

The Graphite website. URL: http://groups.csail.mit.edu/carbon/
7page_id=111|

The modified SPLASH-2 website. URL: www.capsl.udel.edu/splash/.

The Multi2Sim website. URL: http://www.multi2sim.org/.

The Pin website. URL: http://software.intel.com/en-us/articles/

pintool/.
The SPEC CPU2006 website. URL: http://www.spec.org/cpu2006/.

The SPLASH-2 website. URL: http://web.archive.org/web/http:
//www-flash.stanford.edu/apps/SPLASH/.

vanDooren. Creating a thread safe producer consumer queue in C++
without using locks. Jan. 2007. URL: http://msmvps . com/blogs/
vandooren / archive /2007 /01 / 05/ creating - a - thread - safe -

producer—-consumer—queue-in-c-without-using-locks.aspx.

Reinhold P. Weicker. “Dhrystone: a synthetic systems programming
benchmark”. In: Commun. ACM 27.10 (Oct. 1984), pp. 1013-1030.
1SSN: 0001-0782. DOI: [10.1145/358274 . 358283. URL: http://doi.
acm.org/10.1145/358274.358283.

69

http://gcc.gnu.org/
http://www.gnu.org/software/gdb/
http://www.gem5.org/
http://sourceware.org/binutils/docs/gprof/
http://sourceware.org/binutils/docs/gprof/
http://groups.csail.mit.edu/carbon/?page_id=111
http://groups.csail.mit.edu/carbon/?page_id=111
www.capsl.udel.edu/splash/
http://www.multi2sim.org/
http://software.intel.com/en-us/articles/pintool/
http://software.intel.com/en-us/articles/pintool/
http://www.spec.org/cpu2006/
http://web.archive.org/web/http://www-flash.stanford.edu/apps/SPLASH/
http://web.archive.org/web/http://www-flash.stanford.edu/apps/SPLASH/
http://msmvps.com/blogs/vandooren/archive/2007/01/05/creating-a-thread-safe-producer-consumer-queue-in-c-without-using-locks.aspx
http://msmvps.com/blogs/vandooren/archive/2007/01/05/creating-a-thread-safe-producer-consumer-queue-in-c-without-using-locks.aspx
http://msmvps.com/blogs/vandooren/archive/2007/01/05/creating-a-thread-safe-producer-consumer-queue-in-c-without-using-locks.aspx
http://dx.doi.org/10.1145/358274.358283
http://doi.acm.org/10.1145/358274.358283
http://doi.acm.org/10.1145/358274.358283

Bibliography Bibliography

26] S.C. Woo et al. “The SPLASH-2 Programs: Characterization and Method-
ological Considerations”. In: Proc. of the 22nd International Sympo-

sium on Computer Architecture. June 1995.

70

	Introduction
	Project rationale
	Project objectives
	Project strengths
	Memory structure

	State of the art
	Architectural simulators
	Graphite
	Multi2Sim
	gem5

	Instrumentation systems
	gprof
	Pin

	Benchmarks
	SPEC CPU2006
	SPLASH-2

	System description
	Mead: a message passing framework
	Pint: a Pin based trace generator
	Schnapps: a simple consumer of the traces
	Gin5: a gem5 trace player

	System design
	Mead: a message passing framework
	Pint: a Pin based trace generator
	Schnapps: a simple consumer of the traces
	Gin5: a gem5 trace player

	Results
	Conclusions
	Improvements for next release

	User manual
	Building
	Pint
	Schnapps
	Gin5

	Relevant source code
	Bibliography

