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We determine the functional behavior near the discrete rotational symmetry axis of discrete vortices of the
nonlinear Schrödinger equation. We show that these solutions present a central phase singularity whose charge
is restricted by symmetry arguments. Consequently, we demonstrate that the existence of high-charged discrete
vortices is related to the presence of other off-axis phase singularities, whose positions and charges are also
restricted by symmetry arguments. To illustrate our theoretical results, we offer two numerical examples of
high-charged discrete vortices in photonic crystal fibers showing hexagonal discrete rotational invariance.
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I. INTRODUCTION

Complex scalar solutions of wave equations can present
dislocations similar to those found in crystals �1�. The essen-
tial mathematical property of these complex scalar functions
in the point or line where a dislocation is localized is that its
phase is increased or decreased in a multiple of 2� along a
closed curve around it �1�. In these points or lines, also
known as phase singularities, the amplitude of the function
vanishes and its phase is undetermined. They play an impor-
tant role in many branches of science, such as solid-state
physics �2�, Bose-Einstein condensates �BECs� �3�, superflu-
idity �4�, superconductivity �5�, cosmology �6�, molecular
dynamics �7�, nonlinear optics �8�, etc. In the latter case, the
study of such singularities is often enclosed in a separated
branch called nonlinear singular optics �9�.

An optical vortex is a complex scalar solution of a wave
equation defined in a two-dimensional �2D� domain charac-
terized by the presence of a phase singularity �8�. If the vor-
tex has a circular symmetry there is only a singularity lo-
cated at the rotational axis. Optical vortices with discrete
symmetry, or discrete vortices �DVs�, have been theoretically
predicted to exist in inhomogeneous periodic media as soli-
tonic solutions of a nonlinear wave equation, such as the
nonlinear Schrödinger equation �NLSE�. These periodic me-
dia include optically induced lattices �10�, photonic crystal
fibers �11�, or Bessel lattices �12�. They have been experi-
mentally observed in the former medium �13,14�. On the
other hand, DVs have also been predicted to exist as solu-
tions of NLSE in self-attracting BEC in the presence of pe-
riodic optical lattices �10,15�. Other solutions with discrete
rotational symmetry and a complicated phase structure have
been introduced in periodically modulated potentials, both in
the framework of BEC and nonlinear optics �16–23�. Some
of these solutions are characterized by the presence of more
than one phase singularity �16–20�. Finally, other quasista-
tionary solutions showing discrete symmetry in a homoge-
neous medium, known as necklace beams or soliton clusters,

have been introduced, and some of them show a nontrivial
phase structure �24–29�. Stationary solutions of this kind
have also been obtained in an inhomogeneous media such as
a photonic lattice �30–32�.

In this paper, our aim is to study DVs with different pos-
sible configurations of singularities. We will analytically ob-
tain the behavior of a DV near the symmetry axis to show
that they always present a singularity in the rotational axis
which can be completely characterized by discrete group
theory arguments. Next, we will show that they can present
more than one single singularity. The positions of these sin-
gularities are related according to the rules arising from dis-
crete group theory arguments. We will also provide two nu-
merical examples of DVs with more than one singularity to
illustrate our results.

II. THEORY

To start with, let us introduce first some common defini-
tions which we will be using in the text. If ��x� is a complex
scalar solution of a wave equation defined in a two-
dimensional domain, x�R2, then the winding number � of �
along a closed curve � is given by the contour integral
�= 1

2����� ·dl, where � is the phase of the complex field
�= ���ei�. Let x0 be the position of a phase singularity of �.
The topological charge of the phase singularity located
at x0 is the winding number of the complex field � for the
smallest closed curve containing x0. That is, if �� is a family
of closed curves containing x0 parametrized by � such that
lim�→0 ��=x0, then v� lim�→0

1
2����

�� ·dl. Additionally,
one can define another quantity, the total angular momentum,

as ���Lz���	 / �� ���	, where Lz= �r���� �z.
Vortices with circular symmetry can be written as

��r ,��=g�r�eil�, where �r ,�� are the polar coordinates. They
present well-defined angular momentum since R	�=eil	�,
where R	=eiLz	 is a continuous rotation of angle 	�R and
Lz= i �

�� is the generator of the O�2� rotation group. There-
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fore, vortices are eigenfunctions of the angular-momentum
operator, satisfying Lz�= l�. Note that the winding number
and the topological charge of a singularity are phase-related
concepts while the angular momentum is a symmetry-related
concept. These circularly symmetric vortices present a single
singularity at the origin and fulfill l=v=�, provided that � is
calculated in a closed curve that surrounds the phase singu-
larity. Also, they satisfy g�r�
ar�l�+O�r�l�+2� when r→0 �8�.

For a DV, the winding number � and the topological
charge v, i.e., the phase-related concepts, are also well de-
fined. However angular momentum is not. Nevertheless, an-
other symmetry-related concept, the angular pseudomomen-
tum m, has been defined for discrete-symmetry media �33�. It
has been also demonstrated that this quantity is conserved
during propagation �33�. By construction, the angular
pseudomomentum m completely defines the representation
of the Cn group to which � belongs. It has been also shown
that m=v=� for a DV with a single singularity �34�. We
discuss the relationship of these three quantities for all types
of DVs. This relationship will permit us to study the number
of phase singularities associated to a DV.

Let us show next how the behavior of a DV near the
symmetry axis can be analytically determined in terms of the
angular pseudomomentum m. This will permit us to establish
that there is always a phase singularity of charge m located at
the symmetry axis. To do this, let the function ��r ,�� be a
stationary solution of the 2D nonlinear eigenvalue equation,

�L0 + LNL������� = 
� , �1�

with L0=−�t
2+V�x� and LNL����� as the invariant operators

under the Cn point-symmetry group formed by discrete
rotations of order n around the rotation axis. It has
been proven in Refs. �33,35� that if � is a self-consistent
solution of Eq. �1� satisfying the symmetry condition
���r ,�+2� /n��2= ���r ,���2, it can be expressed as
�m,	�r ,��=eim�um,	�r ,��, where um,	�r ,��=um,	�r ,�+ 2�

n �, m
is the angular pseudomomentum, and 	 is a band index. The
function � is said to be a symmetric stationary solution of the
2D nonlinear eigenvalue Eq. �1� if it satisfies the condition
���r ,�+2� /n��2= ���r ,���2.

It has been also demonstrated that the angular pseudomo-
mentum presents a cutoff related with the order n of discrete
rotational symmetry of the medium. Particularly, it has been
shown that �m�� n

2 for even n and �m�� n−1
2 for odd

n �33,34�. Under these conditions it can be proven that the
solutions of Eq. �1� with �m�=1, . . . , n

2 −1 for even n and
�m�=1, . . . , �

n−1
2 for odd n cannot be real. It is easy to see

that the operator L= �L0+LNL������ is Hermitian. Therefore
its eigenvalues are real numbers. Since L satisfies L=L�, so-
lutions with m=0 or m= n

2 for even n are real �up to a global
phase�, since they belong to one-dimensional irreducible rep-
resentations. On the other hand, solutions with angular
pseudomomentum different from m=0 or m= n

2 for even n
correspond to complex solutions belonging to two-
dimensional representations of the Cn group. Therefore, DVs
are characterized by �m�=1, . . . , n

2 −1 for even n and
�m�=1, . . . , n−1

2 for odd n.

We leave the study of the solutions with m=0 or m= n
2 for

future research. For the rest, i.e., for DVs, we will obtain
next the mathematical behavior near the symmetry axis. Par-
ticularly, we will show that if the function � is a symmetric
stationary solution of Eq. �1� and satisfies the following
mathematical conditions:

�1� ���r ,��� �
r→0

��0�+���r ,��, where �0�R and ���0,

�2� LNL����� �
r→0

LNL���0��+�LNL, where LNL���0���R and
�LNLLNL���0��, and

�3� V�r ,�� �
r→0

V0+�V�r ,��, where V0�R and �VV0,
then

��r,�� �
r→0

armeim� + O�rm+1� ,

where a�R.
From a physical point of view, these mathematical condi-

tions establish that the amplitude, the nonlinear operator, and
the potential V have a smooth nonsingular behavior near the
symmetry axis. Therefore, the previous conditions are easily
satisfied by DVs in discrete-symmetry media such as the
systems mentioned above. We will prove next that the math-
ematical behavior of DVs near the symmetry axis depends
only on the angular pseudomomentum.

To demonstrate the above behavior of the function ��r ,��,
we need to express it as �m,	�r ,��=eim�um,	�r ,��. The func-
tions um,	�r ,�� satisfy the following differential equation:

�−
�2

�r2 −
1

r

�

�r
+

m2

r2 − i
2m

r2

�

��
−

1

r2

�2

��2um,	 + �V�r,��

+ LNL������um,	 = 
m,	um,	. �2�

Because of the periodic behavior of the wave function
um,	�r ,�� and the potential V�r ,��, we can expand them in
Fourier series in the angular variable as

um,	�r,�� = �
k

eikn�um,	
k �r�, V�r,�� = �

k�

eik�n�Vk��r� ,

and after performing the angular integrals we get the follow-
ing set of differential equations for the angular Fourier com-

ponents um,	
k̄ �r�:

�−
d2

dr2 −
1

r

d

dr
+

�m + k̄n�2

r2 um,	
k̄ + �

k

Vk̄−k�r�um,	
k

+ �
k

LNL
k−k̄�����um,	

k̄ = 
m,	um,	
k̄ . �3�

Assumptions �1�–�3� for the limit r→0 allow us to write
V�r ,���V0, ���r ,�����0, and LNL������LNL���0��, where
V0, �0, and LNL���0�� are real numbers. Therefore, in this
limit, we obtain

Vk̄−k�r� =
1

2�
�

0

2�

d�ei�k̄−k�n�V�r,�� �
r→0

�k̄,kV0 + �Vk̄−k�r�

and
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LNL
k−k̄����� =

1

2�
�

0

2�

d�e−i�k̄−k�n�LNL�����

�
r→0

�k̄,kLNL���0�� + �LNL
k−k̄.

Then, the set of differential equations �Eq. �3�� for the
angular Fourier components behave for r→0 as

�−
d2

dr2 −
1

r

d

dr
+

�m + k̄n�2

r2 um,	
k̄

�
r→0

�
m,	 − V0 − LNL���0���um,	
k̄

= Km,	um,	
k̄ , �4�

which is the same equation �but in the linear case� obtained
for circularly symmetric vortices of the form

��r ,��=u�r�eil� carrying angular momentum l=m+ k̄n. As
discussed in �8�, the behavior of a solution of this type close

to the origin is given by u�r� �
r→0

Ar�l�+O�r�l�+1�. Therefore, the
solution of the previous equation behaves in the vortex core
region as

um,	
k̄ �r� �

r→0

ar�m+k̄n� + O�r�m+k̄n�+1� . �5�

We now analyzed which are the dominant terms in the
limit r→0 in the Fourier expansion of �m,	�r ,��,

�m,	�r,�� = eim���
k

eikn�um,	
k �r� . �6�

In the limit r→0 the dominant term in the expression
above will be given by that which minimizes the exponent of
the leading term in expansion �5�. The behavior of
��k�= �m+kn� has to be then analyzed for different m and k
values in order to find the dominant contribution, i.e., that
given by the lowest value of ��k�.

Let us first consider that according to the cutoff theorem,
�m�� n

2 for n even and �m�� n−1
2 for n odd. Besides, as

stated above, for DVs, m�0 and m� n
2 , and then

�m�=1, . . . , n
2 −1 for even n or �m�=1, . . . , n−1

2 for odd n.
Therefore, it is easy to see that �kn�� �m� for �k�=1,2 , . . . and,
of course, �kn�� �m� for k=0. With this in mind, let us see
that ��0����k� for all possible values of m and k.

Let us first consider that m�0 and k�0. In this case, we
have ��k�= �m+kn�=m+kn for k=0,1 , . . ., since both quan-
tities are positive. Hence, this gives ��0����k� for
k=1,2 , . . .. Next, let us consider that m�0 and k�0.
For �k�=1,2 , . . ., we have ��k�= �m+kn�= �k�n−m since
�kn�� �m�. Then, this gives ��k����k+1�. On the other
hand, for k=0, we have ��0�=m. Finally, let us show that
m� �k�n−m. For DVs it is always satisfied that �m�� n

2 in all
cases. Then, we obtain 2m� �k�n for k�0 and consequently
m� �k�n−m. Then, this gives ��0����k�.

Now, let us consider that m�0 and k�0. Then, we have
��0�= �m� and ��k�= �m+kn�=kn− �m�, for k=1,2 , . . . since
kn� �m� and then kn− �m� is always a positive value. Then,
this gives ��k����k+1� for k=1,2 , . . .. On the other hand,
since for DV we have 2�m��kn for k=1,2 , . . ., we obtain

�m��kn− �m�. Therefore, this gives ��0����k� for
k=1,2 , . . .. Finally, if m�0 and k�0 then we have
��0�= �m� and ��k�= �m+kn�= �kn�+ �m�, for k=1,2 , . . . since
both quantities are negative. Then, obviously ��0����k� is
satisfied for �k�=1,2 , . . ..

In conclusion, for all the possible values of m that a DV
can present, the dominant contribution to the wave function
arises from the term given by k=0 and, consequently, ac-
cording to Eqs. �5� and �6� the wave function behaves like

�m,	�r,�� � eim�r�m�

in the limit r→0.
Therefore, it can be easily proven that there always exists

a phase singularity of charge m located at point xr where the
rotation axis intersects the 2D plane, i.e., the topological
charge of this singularity is v=m.

Once this has been established, let us go into the relation-
ship among m, the winding number, and the topological
charge of a singularity in depth. The winding number of the
symmetric stationary solution � can be calculated using any
closed curve. Let us consider a closed curve � that surrounds
point xr and let us assume that the winding number of the
symmetric stationary solution � is such that ��m. Then �1�
there always exists a phase singularity of charge m located
on axis and �2� there must exist a number of off-axis singu-
larities inside the closed curve � fulfilling the condition

� = m + �
j=1

V

v j , �7�

where v j is the topological charge of the jth phase singularity
and V is the total number of singularities. �3� Additionally,
there could exist a number of off-axis phase singularity pairs
with opposite charges �vortex-antivortex pairs� inside the
closed curve �.

This result is obtained after splitting the path integral in
the definition of �, in V+1 path integrals, all of them related
with the topological charge of each singularity. The integral
around the rotational axis will offer a topological charge
equal to m. The rest must be related with the existence of V
off-axis singularities or vortex-antivortex pairs that contrib-
ute with a null net charge to the integral.

Alternatively, let us consider a closed curve � that sur-
rounds point xr for which the winding number of the sym-
metric stationary solution � is such that �=m. Then, using
similar arguments, either �1� there exists only one phase sin-
gularity of charge m located on axis or �2� there exist one
phase singularity of charge m located on axis and a number
of off-axis phase singularity pairs with opposite charges
�vortex-antivortex pairs� inside the closed curve �. Hence,
we have proven that it can be stated that a DV presents a
phase singularity of topological charge m located at the ro-
tational axis and a number of off-axis phase singularities
verifying Eq. �7�.

Let us show now that the position of these off-axis phase
singularities of � is always symmetric with respect to the
rotation axis. Let us assume that a phase singularity is lo-
cated at point x0 different from point xr, where the symmetry
axis intersects the transverse plane. Then, the modulus of the
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function at this point vanishes, ���x0��=0 and the argument is
not defined. Besides, as stated above, the function � of a DV
must belong to one of the representations of the group
�11,33�. Then, if one transforms � according to the rotational
elements of the group, i.e., the transformations Cn

t =eit�2�/n�,
with t=1, . . . ,n−1, then the transformed function must be

�t = eitm�2�/n�� . �8�

Then the transformed function and the function itself differ
only in a fixed phase, i.e., ��t�= ��� and ��t= ��+	t, where
	t= tm 2�

n .
Let us apply the rotational elements of the group Cn

t , with
t=1, . . . ,n−1, to the function at point x0. The transformed
function is the function � evaluated at a set of rotated points
xt given by �rt ,�t�= �r0 ,�0+ t 2�

n �, with t=1, . . . ,n−1, where
we have used polar coordinates and where �r0 ,�0� are the
polar coordinates of point x0. According to Eq. �8�, if
���x0��=0 then ��t�=0 for t=1, . . . ,n−1. Consequently, the
modulus of the function vanishes in this set of points. Let us
show that there is a phase singularity located in each of these
points.

To do so, let us consider points x0
� such that

x0
�=x0+x��,��, where �x��,���=� with � as an infinitesimally

small quantity and �x��,��=�� �0,2��. Taking into account
the properties of a phase singularity, the phase of the func-
tion is increased or decreased in an integer multiple of 2�
along the circle �0 obtained after fixing � and varying � from
0 to 2�. Now, let us apply the rotational elements of the
group Cn

t =eit�2�/n�, with t=1, . . . ,n−1, to the function in all
the points in a circle such as �0. The transformed functions
are the function � evaluated at points xt

�=xt+x��,�t�
where

�t=�+ t 2�
n of circles �t. Taking into account Eq. �8�, the

phase of the transformed function at each point of the circle

�t and of the function itself at each point of the circle �0
differs only in a fixed number 	t, which is the same for all
the points at �t. Consequently, the phase of the function still
increases or decreases in an integer multiple of 2� along the
circles �t for any �.

Then, on one hand, the function vanishes at points xt and,
on the other hand, the phase of the function is increased or
decreased an integer multiple of 2� along any circle sur-
rounding these points. This proves that if there exist an off-
axis phase singularity, there are other n−1 off-axis phase
singularities distributed symmetrically with respect to the ro-
tation axis.

Then, one can rewrite Eq. �7� as

� = m + �
k=1

K

nvk, �9�

where vk is the topological charge of each of the n phase
singularities related by the symmetry conditions and K is the
total number of these rings of singularities.

III. NUMERICAL RESULTS

Let us illustrate the previous results with numerical ex-
amples of optical DV with more than one singularity in pho-
tonic crystal fibers showing C6v discrete symmetry. In Refs.
�11,33�, DVs with just one singularity in this kind of systems
have been introduced. Additionally, the cutoff theorem for
discrete-symmetry media introduced in Ref. �34� states that
the only allowed values for the angular pseudomomentum m
for a system with discrete symmetry of order n=6 are
m= �1 or m= �2. In Figs. 1 and 2 we present two station-
ary solutions of Eq. �1� with self-focusing nonlinearity
LNL�����= ���2 and 
=−0.08. These solutions have been cal-

FIG. 1. �Color online� �a� Am-
plitude and �b� phase of a DV with
angular pseudomomentum m=−1,

=−0.08, and more than one sin-
gularity. White circles in �a� rep-
resent the air holes in the photonic
crystal fiber. White circles in �b�
represent the positions of the
singularities.

FIG. 2. �Color online� �a� Am-
plitude and �b� phase of a DV with
angular pseudomomentum m=−2,

=−0.08, and more than one sin-
gularity. White circles in �a� rep-
resent the air holes in the photonic
crystal fiber. White circles in �b�
represent the positions of the
singularities.
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culated with the conventional finite-difference Newton-
Raphson method using a phase-engineered seed function that
presents the corresponding angular pseudomomentum and a
distribution of off-axis singularities that fulfills the symmetry
conditions. According with the transformations of the C6v
discrete-symmetry group, these solutions show angular
pseudomomenta m=−1 and m=−2, respectively. The nu-
merical calculations of the winding number along a closed
curve near the boundary of the numerical solutions are
�=5 and �=4, respectively. Then, in accordance with Eq. �7�
there are V=6 off-axis singularities in each case and an un-
determined number of vortex-antivortex pairs. According to
Eq. �9�, there is at least one ring of off-axis singularities. A
thorough analysis of the phase of both stationary solutions
shows, first, that there is a singularity in the symmetry axis.
The calculation of the topological charge of this singularity
is v=−1 and v=−2, for each case, and therefore equal to the
corresponding angular pseudomomentum. On the other hand,
there are a limited number of points where the off-axis sin-
gularities can be located, i.e., those where the phase seem to
be undetermined. The calculation of the topological charge
around these points shows that the singularities are located in
the points marked with white circles in Figs. 1�b� and 2�b�
and presents topological charge v= +1. Therefore, Eq. �7� is
fulfilled, since �=5=−1+6 for DV with m=−1 and
�=4=−2+6 for DV with m=−2. Finally, it is easy to check

for both solutions that the positions of these off-axis singu-
larities are related according to the transformations of the
discrete group.

IV. CONCLUSIONS

In conclusion, we have obtained analytically the behavior
of a DV near the symmetry axis. With this result, we have
been able to establish a general relationship among angular
pseudomomentum, winding number, and topological charge
for DV. This rule permits one to study DV with more than
one singularity in any discrete-symmetry media. Addition-
ally, we have shown that the positions of the off-axis singu-
larities are related according to symmetry arguments. Finally,
the results have been illustrated with two numerical ex-
amples of high-charged discrete vortices in a system with C6v
discrete symmetry.
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