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Abstract: Discovering nanoscale phenomena to sense biorecognition events
introduces new perspectives to exploit nanoscience and nanotechnology for
bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing
approach that consists of diffractive structures of protein bioreceptors patterned on
the surface of optical waveguides, and tailored to transduce the magnitude of
biorecognition assays into the intensity of single peaks in the reflection spectrum. This
work addresses the design, fabrication, and optimization of this system by both
theoretical and experimental studies to explore the fundamental physicochemical

parameters involved. Functional biomolecular gratings are fabricated by
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microcontact printing on the surface of tapered optical microfibers, and their
structural features were characterized. The transduction principle is experimentally
demonstrated, and its quantitative bioanalytical prospects are assessed in a
representative immunoassay, based on patterned protein probes and selective IgG
targets, in label-free conditions. This biosensing system involves appealing
perspectives to avoid unwanted signal contributions from non-specific binding, herein
investigated in human serum samples. The work also proves how the optical response
of the system can be easily tuned, and it provides insights into the relevance of this
feature to conceive multiplexed BBG systems capable to perform multiple label-free

biorecognition assays in a single device.

Keywords: biosensor, diffraction, optical microfiber, immunoassay, non-specific

binding, label-free

1. INTRODUCTION

The advances in chemistry, biotechnology and nanoscience have introduced exciting
strategies to sense biomacromolecules (Mahmoudpour et al., 2019; Xu et al., 2020;
Zhang et al., 2020) and the interaction events between them (Bhattacharyya et al.,
2019; Escorihuela et al.,, 2015; Schneider and Niemeyer, 2018). Discovering new
nanoscale phenomena to transduce biorecognition processes into measurable signals
open new potential venues to materialize the benefits that nanoscience offers in key
areas of today’s society, such as medicine and pharmacology (Prasad et al., 2019;
Wong et al., 2020; Zhang et al., 2020).

The implementation of some optical phenomena for biosensing such as SPR
(Nootchanat et al., 2019; Zhao et al., 2019), SERS (Langer et al., 2020; Liu et al., 2020),
and light interference (Chen et al., 2019; J. Wang et al., 2020) became the seed of a
high scientific activity in the last decades, which have provided a great knowledge on

innovative, sensitive and label-free bioanalytical systems. Along these lines, light
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diffraction is still a promising and rather unexplored phenomena to transduce
biorecognition events, as introduced by some investigations focused on diffraction-
based sensing (Avella-Oliver et al., 2017, 2018; Goh et al., 2002, 2005) and focal
molography (Frutiger et al., 2020, 2019; Gatterdam et al., 2017).

On the other hand, the integration of transduction principles in optical fibers presents
a great potential to conceive miniaturized, inexpensive, low-loss, and compact
systems for in-field analysis. This approach constitutes nowadays an important
innovation area in the state-of-the-art, for both (bio)chemical and physical sensing
(Wang and Wolfbeis, 2020; Zhao et al., 2020). A paradigmatic strategy in this context
is to inscribe a periodic modulation in the refractive index of the core material of
optical fibers or microfibers, thus fabricating special fiber Bragg gratings (FBGs),
microfiber Bragg gratings, long period gratings, and tilted fiber Bragg gratings whose
optical response is designed to be sensitive to the presence of analytes in the external
medium surrounding the optical device (Bekmurzayeva et al., 2018; Cao et al., 2017,
Delgado-Pinaretal., 2017; Liu et al., 2018; Loyez et al., 2020; Malachovska et al., 2015;
Sridevi et al., 2015; Sypabekova et al., 2019).

In this study, we present a novel transduction principle to sense biorecognition events
based on periodic networks of bioreceptors patterned on the surface of tapered
optical fibers, herein called Bio Bragg Gratings (BBGs). As schematized in Fig. 1, the
concept behind this idea relies on using a microfiber, whose optical modes present a
significant evanescent field in the external medium, and imprinting a periodic
biomolecular network along its surface. The fundamental optical mode will interact
with the BBG, and it will result on a reflection peak centered at the optical wavelength
that fulfills the Bragg condition. The biosensing transduction principle relies on the
fact that binding events between the patterned bioreceptors and their targets in
solution modify the amount of matter constituting the strips of the BBG (compared
to the gaps), thus the presence of the analyte will change the modulation depth of

the BBG. Consequently, this system aims to transduce the magnitude of binding
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events by means of the peak reflectivity. In addition to the novelty, this strategy
projects potential prospects for label-free biosensing, with simple and inexpensive
materials, and neglecting signal contributions generated by non-specific bindings

(Gatterdam et al., 2017).
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Fig. 1. General illustration of the approach. (A) Scheme of a BBG on a microfiber, and its interaction
with the guided light. (B) Scheme of the detection setup. See Fig. S1 for real images and additional
setup details. (C) Optical response in the reflection spectrum before (i, and red dashed line) and
after (ii, and blue continuous line) incubation and binding of target compounds on the patterned

bioreceptors of the BBG.

Herein we present the design, fabrication, and optimization of the BBGs in tapered
microfibers, and report our investigations to explore and prove the concept of this
biosensing transduction system. This work addresses an optical and functional
characterization of the system by both theoretical and experimental studies using a
model immunochemical assay. A custom setup is developed to fabricate the BBGs on
tapered microfibers, and the structural features of the resulting bioreceptor networks
are characterized by electron microscopy. Finally, this study demonstrates the
bioanalytical performance of the system, provide insights into prospective biosensing

properties of BBGs and discusses them.
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2. MATERIALS AND METHODS

2.1 Materials

Sodium phosphate buffer (PBS, 8 mM Na,HPO,4, 2 mM, 137 mM NacCl, 2.7 mM KCI, pH
7.4), PBS-T (PBS with polysorbate 20 0.05% v/v), were prepared with purified water
(Milli-Q, Millipore Iberica, Darmstadt, Germany) and filtered through 0.2 um
polyethersulfone membranes (Merck, Darmstadt, Germany). Polydimethylsiloxane
(PDMS) Sylgard 184 was from Dow Corning (Wiesbaden, Germany). Bovine serum
albumin (BSA), polysorbate 20 (Tween 20), antiBSA rabbit IgG, C-reactive protein
(CRP), casein and human serum (human male, AB plasma) were supplied by Sigma-
Aldrich (Madrid, Spain). Single-mode optical fibers SMF-28 were purchased from
Corning (Madrid, Spain). The silicon grooved nanostructure (555.5 nm period, 140 nm
groove depth, duty cycle 50%) used as a master to prepare the micro-contact printing
stamp, was from LightSmyth (Eugene, OR, USA).

2.2 Simulations

Electromagnetic simulations to calculate the optical response of the system were
carried out by means of finite difference method in the Quasi TE & TM approach,
implemented on Matlab™ (Rumpf et al., 2014; Zhu and Brown, 2002).
Electromagnetic fields distribution results were validated with commercial software
MODE Lumerical (Finite Difference Eigenmode). The overlapping integrals (i.e.
proportion of the total field interacting with the Bragg perturbation) were calculated
from the obtained field distribution over the complete waveguide and compared with
the field localized onto the BBG area. Then, the contradirectional coupling coefficient
and the device reflectivity were calculated with the well-known closed form
expressions for periodically perturbed waveguides (Erdogan, 1997; Yariv and Yeh,
2007).

An incident wavelength of 1550 nm and refractive indexes of 1.43 for biomolecules

(Freeman et al., 2004; Sancho-Fornes et al., 2019) and 1.446 for silica microfibers
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were considered. For the simulations, the BBGs were defined as 2 mm long periodic
(period = 555nm, duty cycle = 50 %) gratings of biomolecules that cover a 90° section
of the total azimuthal coordinate of the fiber surface. The thickness of the printed
strips in the simulations was considered 1 nm for BSA BBGs (i.e., before target
incubation) and 10 nm for BSA-IgG BBGs (i.e., after target incubation) (Avella-Oliver
et al., 2018).

2.3 Microfibers

Microfibers were fabricated by tapering standard single mode fibers (Corning SMF-
28, 125 um of diameter) by means of the pull-and-fuse technique. This process
consists on the controlled pulling of a conventional fiber, while it is heated up to the
plastic deformation temperature of the silica (Fig. S2). As described elsewhere (Birks
and Li, 1992), this system allows to obtain uniform microfibers of several centimeters
long, with diameters of the waist down to 1 um. After fabrication, microfibers were
fixed in a custom holder that keep them taut (Fig. S3).

2.4 BBG patterning

Nanostructured networks of bioreceptors (BBGs), constituted by periodic parallel
strips of biomacromolecules and empty gaps between them (Fig. 1A), were patterned
onto the surface of microfibers by microcontact printing and immobilized. For that,
PDMS (elastomer:curing agent, 10:1 w/w) was poured onto the nanogrooved side of
the silicon master, degassed in a vacuum chamber for 5 min, and polymerized
overnight at 60 °C. Then, the cured polymer was peeled off from the master and cut
in 10 x 5 mm pieces, and these stamps were washed three times by sonication in
ethanol (30% in water, 5 min) and dried under a stream of air. Probe solutions in PBS
(80 pL, 250 pg mL™) were incubated on the structured side of the stamps and after
160 min they were rinsed with deionized water and dried by air stream, thus obtaining
BBGs of physisorbed probes on the fiber (Juste-Dolz et al., 2018).

A custom setup was created to pattern the BBGs onto tapered fibers, based on a
mechanical elevator that uplifts the inked stamps until their grooved side becomes in

6
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contact with the microfiber. A detailed description on the configuration and use of
this setup is reported in Fig. S4. The optical response of the system was measured
with the detection setup described below and used to monitor the stamping
processes (Fig. S5).

The topography of the resulting BBGs was analysed by Field Emission Scanning
Electron Microscopy (FESEM), using a ZEISS ULTRA-55 scanning electron microscope
(ZEISS, Oxford Instruments).

2.5 Biorecognition assays

First, to perform and quantify the immunoassays, once fabricated the probe BBGs their
optical responses were measured in air (as described in sections 2.6 and 2.7 below).
Then, the microfibers containing the BBGs were immersed in 600 uL of liquid samples
and incubated for 30 min. A custom incubation chamber made of PDMS was used to
keep the fiber immersed within the liquid samples during the incubations.
Subsequently, the fibers were rinsed with PBS-T and deionized water, and dried in air.
Finally, the optical response of the BBGs after the biorecognition were measured in
air. All the measurements and incubations were performed at room temperature.
2.6 Optical setup

The scheme of the optical setup is shown in Fig. 1B. The optical light was provided by
an infrared LED source (1.3 mW continuous wave, central wavelength: 1550nm,
bandwidth > 100 nm), and it was launched to the microfiber through an optical
circulator (Thorlabs, operation wavelength: 1550nm, bandwidth: 90nm). Thus, both
transmission and reflection spectra were measured. An optical spectrum analyser
AQ6370D, Yokogawa, 600 -1700 nm, minimum resolution 20 pm, was used to acquire
the spectra. An additional FBG, written using UV radiation in the core of commercial
photosensitive fiber (Fibercore PS1250) by means of the phase-mask technique, was
included in the setup (Fig. S6). The peak intensity of this grating serves as a reference

to monitor and correct potential power level changes introduced in the fabrication
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process and the immunoassays, as well as power level fluctuations (Supplementary
Information 7).

2.7 Data acquisition and processing

Transmission and reflection spectra were acquired in each step of the BBGs
fabrication and the subsequent biosensing assays. The data was analyzed in both
logarithmic and linear scale, and a detailed description of this processing is provided
in the Supplementary Information 10. All optical traces were registered within the
range 1500-1580 nm with a spectral resolution of 50 pm, and the variation in the peak
reflectivity was used as the analytical signal. This net reflectivity was calculated as the
difference between the peak reflectivity registered after patterning the probes, and
after incubating the targets, as detailed in the Supplementary Information 7 and Fig.
S8.

Noise was estimated as the standard deviation from 10 blank measurements (0 pg
mL? of target IgG incubated on BBGs fabricated on 10 different fibers) that we
employed to infer signal-to-noise ratios (SNR). Limits of detection and quantification
were calculated from experimental dose-response curves as the concentrations

associated to SNR = 3 and SNR = 10, respectively.

3. RESULTS AND DISCUSSION

3.1 Microfibers design

The diameter of the microfiber is a key parameter in this BBG concept, since it
determines the fraction of light in the evanescent field of the optical mode. It will
ultimately affect the magnitude of the diffractive interaction with the bioreceptors
and define the performance of resulting the biosensing transduction. Hence,
theoretical calculations were performed beforehand experimental assessments to set
the starting working conditions.

Firstly, the overlap integral between the fundamental optical mode (LPo1) and the

diffractive nanostructure of bioreceptors (BBG) on the microfiber was calculated as a
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function of the diameter of the microfiber. As shown in Fig. 2A, as the diameter
increases, the stronger confinement of the mode within the microfiber leads to a
negligible overlap integral. However, when the microfiber diameter becomes
comparable to the light wavelength, the evanescent field enlarges and the fraction of
light overlapping the BBG displays an exponential growth. These preliminary insights
are also supported by the calculations of the corresponding peak reflectivity of such
BBGs (Fig. 2B), where the reflectivity increases (together with the overlap integral)
when the fiber diameter decreases.

The BBG is located at one side of the fiber, which leads to an anisotropic system whose
optical response must be dependent on the orientation of the linear polarization of
the optical mode, partly due to the different position of the evanescent tail of the
mode for each polarization (see Fig. 2C). Therefore, to perform a rigorous analysis,
the optical response in both linear polarizations (X and Y) were also calculated
together with the overlap integral and the peak reflectivity. As observed in Fig. 2A and
2B, for a 3 um diameter there is difference of around 3dB in the peak intensity
between the two polarizations, which corresponds to a reduction in the fields
overlapping of about a 50% and highlights the role of the polarization in this system.
However, the anisotropic behavior of the BBG was not observed in the subsequent
experimental immunoassays (section 3.3).

From these results and considering the manipulation feasibility of microfibers below
1 um, fiber diameters from 2 to 5 microns were selected to experimentally investigate

the BBG concept.
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line for Y polarization). The inset in Figure 2A zooms in the overlap integral at larger diameters for a
better visualization. (C) Electric field intensity distribution for both polarizations in a 1 um
microfiber. The blue line at the right side of both plots, represents the microfiber section covered

by the BBG.

3.2 Structural and functional characterization of the BBGs.
A critical step in this approach is the BBG patterning, and herein we address it by
microcontact printing. This is an important and versatile technique in the state-of-art

(Lamping et al., 2019; X. Wang et al., 2020), widely used to create functional and
10
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homogeneous patterns of biomolecules onto flat substrates of different compositions
(Juste-Dolz et al.,, 2018). However, it remains challenging to pattern
biomacromolecules onto curved, fragile, and micrometric structures as microfibers.
In this work we successfully addressed this issue with a half-assisted setup that allows
a practical manipulation of the microfibers and monitors the transmission spectrum
of the optical device as a feedback system to control the nanoscopic patterning
process taking place on the fiber surface. For this assessment, we patterned BBGs of
physisorbed bovine serum albumin (BSA) probes on 5 um microfibers.

As can be seen in Fig. 3, homogeneous periodic grooved structures are generated
onto the surface of the microfiber, where darker vertical lines are the protein strips
of the BBG, and the greyish ones are the gaps between them. A grating period (Agsg)
of 556 + 1 nm was calculated from FESEM images (Fig. 3B), which agrees with the
period of the original master structure (555 nm). However, as protein strips are
thinner than the gaps the duty cycle becomes slightly lower (35%), and this structural
difference can be attributed to the weak contact between the stamp and the
microfiber. Moreover, due to the curvature of the microfiber, a maximum angular
surface coverage of 90° may be reached with this patterning method. Therefore, our
results bear witness to the ability of microcontact printing for generating patterned

networks of biomolecules even on fragile and non-flat micrometric surfaces.
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Fig. 3. (A) Scheme of a BBG fabricated on a microfiber and (B) FESEM image of a BSA BBG patterned

onto a 5 um microfiber.

In order to monitor and optimize the fabrication process, we measured the optical
response of the BBGs by means of the collection of reflection and transmission
spectra at each step of their fabrication and the subsequent biorecognition assay on
a 3 um microfiber. At first, only the reflection peak corresponding to the reference
FBG (1564 nm, Fig. 4 i) is observed. An additional intense reflection peak appears at
1537 nm during the BBG stamping step (Fig. S9), which meets the Bragg condition and
confirms an effective contact of the grooved stamp on the surface of the microfiber.
After the stamping, this peak remains in the reflection spectrum (Fig. 4 ii), which
corroborates the transfer of the stamped bioreceptor and the proper structuration of
the resulting BBG. This initial BBG peak reaches a-27 dB level respect to the reference,
and this reflectivity drop agrees with the lower thickness and refractive index contrast

of patterned proteins, compared to the grooved PDMS stamp in the previous stage.

-40 m -40 (i) -40
o i (iii)
reference U \
-50 FBG | -50 | -50 ‘(\‘
60 I 60 8¢ f 60 | I
0 I l f 0 “ I
T -70 .,,/ \’\ =10 ’ w"“ H‘\ ©-70 L w \"\
/ M, PR J .
I K W, i f‘ \‘ | ﬂ k\'\,4 ] H . u'”’f \"“4
N ol gl iy W ud i °0 TN ‘Ww " W Wiy 80 “W“/\»“" W Phdeen! Wi
-90L- W i 9
1520 1540 1560 1580 1520 1540 1560 1580 1520 1540 1560 1580
wavelength (nm) wavelength (nm) wavelength (nm)
probe t‘e}rget

#”

Fig. 4. Experimental reflection spectra obtained at (i) Initial step, (ii) after the patterning a BBG of
BSA, and (iii) after incubating specific antiBSA 1gGs (10 pg mL?). Schematic illustrations of the fiber

and the BBG at each step is represented below each corresponding spectrum.
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Finally, the incubation of selective IgGs on the patterned protein displays an
important enhancement of the BBG reflection peak that reaches a -13 dB level respect
to the reference (14 dB increase), as shown in Fig. 4 iii. According to the starting
hypothesis, this enhancement must come from the greater amount of biological
matter in the BBG strips generated by the biorecognition between the patterned
probes and their targets in solution. Furthermore, this reflectivity enhancement is not
observed after incubating only PBS-T buffer (Fig. S10). It is important to highlight here
that this result constitutes the first experimental proof of bioanalytical transduction
principle investigated in this study. Besides, the reflectivity of the reference FBG peak
was used as a reference signal along the whole process, as well as to monitor any

significant optical loss in the system.

3.3 Experimental performance

As a preliminary experimental prove towards real biosensing, we explored how the
thickness of the biological layer that constitutes the BBG strips affects the optical
response. For that, BBGs of proteins with a range of molecular weights (from 24 to
118 kDa) were patterned on different microfibers, and the intensity of the resulting
reflection peak was compared. The results of this experiment (Fig. S11) show that the
resulting peak reflectivity increases together with the molecular weight of the
proteins (i.e., the amount of matter on the BBG strips), as expected and necessary for
the success of this transduction system.

As discussed above, the intensity of the BBG peak in the reflection spectrum is
predicted to decay as the diameter of the microfiber increases (Fig. 2B), and only BBG
reflectivities produced in microfibers with diameters below 5 microns may be
detected with standard equipment. This is a crucial issue since greater analytical
signals in the biorecognition transduction will potentially enhance the sensitivity of
the resulting bioanalytical systems. As observed in Fig. 5A, the simulated trend is also

observed in experimental conditions. The divergencies between both trends were
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attributable to the fact that simulations are unable to consider the experimental
uncertainty. Although maximum reflectivities for fiber diameters of 2 um (and below)
are displayed by the theoretical calculations, we have experimentally observed that
these microfibres are much more fragile and lead to higher optical losses in the BBGs
patterning and the subsequent sample incubations. Hence, 3 um microfiber diameter
was considered the best option.

However, although thoroughly checked, negligible changes in the optical response
(both in amplitude and wavelength position) were observed for different linear
polarizations when experimentally measuring bioreceptor BBGs, even after
interacting with high concentrations of their target IgGs. In particular, it was
confirmed by experimental results that the Bragg wavelength splitting is only
observed in high-contrast gratings, as the ones resulting from the contact between
the grooved PDMS and the fiber in the first step of the BBG patterning (Figure S4). It
is possible that a random polarization conversion in the grating region is behind the
lack of significant polarization effects. Therefore, the polarizing elements were
omitted in the optical setup for measuring BBG biorecognition assays in experimental

conditions.
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Fig. 5. (A) BBG peak reflectivities of patterned BSA probes before (green triangles) and after (red
circles) incubating a solution of specific IgG (10 pg mL?), for a range of fiber diameters. Blue and
black continuous lines represent the corresponding simulated data considering BBG thicknesses of
1 and 10 nm, respectively. (B) Experimental dose-response immunoassay curve, fitted to a sigmoidal
(logistic 4 parameters) regression. (C) Net reflectivity achieved after incubating different dilutions
of human serum in PBS-T buffer onto BBGs without (black circles) and with specific IgG (10 pg mL?,

blue empty triangles).

3.4 Immunosensing

The biosensing capabilities were studied by means of an experimental dose-response
curve using a representative model immunoassay based on BBGs of patterned BSA
probes and specific antiBSA 1gGs as targets. A set of 3 um microfibers were
individually fabricated, patterned with the BSA probes, and incubated with different
concentrations of target. As shown in Fig. 5B, the increase of the peak reflectivity is
proportional to the target concentration, achieves a maximal reflectivity of 15%, and
correlates well with the expected trend for a biorecognition dose-response curve (R?

= 0,997). This indicates that the reproducibility in the fabrication and testing
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processes is high. From these results, experimental detection and quantification limits
of 0.1 pg mL™? and 0.4 pg mL?, respectively, of IgG in label-free conditions are
inferred. This is a promising sensitivity which is in the range of other recent label-free
optical approaches (Chen et al., 2018; Gatterdam et al., 2017; Juste-Dolz et al., 2018;
Makhneva et al., 2019).

An important issue in biosensing are the problems associated to non-specific binding
(NSB) (Hirst et al., 2008; Mittal et al., 2013). This is especially critical in label-free
systems and biological samples, which commonly comprise a high content of
biomacromolecules that adsorb on the sensor surface and generate signals that
cannot be discriminated from the ones originated by the biorecognition of interest. A
unique feature of diffractive bioanalytical systems is their potential to minimize signal
contributions generated by NSB (Gatterdam et al.,, 2017). Unlike specific
biorecognition of targets in the probe strips, NSB is a random process prone to take
place evenly in the BBG strips and gaps. Therefore, in a first approximation, the
reduction in the refractive index contrast generated by the unspecific adsorption on
the gaps becomes compensated by the increase in the refractive index contrast
caused by the NSB in the strips. To evaluate the effect of NSB, we studied the response
of the system with the model immunoassay under a range of dilutions of human
serum (7% of non-specific proteins, potentially interfering lipids, etc.) in PBS-T. Fig. 5C
shows that reflectivity drops by half when pure human serum containing specific
targets is incubated and it increases until it reaches the level of maximum reflectivity
(R =15 %) for pure PBS-T (blue squares). Besides, the same serum dilutions without
targets do not involve significant changes in the reflectivity achieved by the BSA
pattern itself (Fig. 5C, black squares). These results demonstrate very promising
perspectives for label-free detection in complex matrixes, whereas these NSB
features could be improved by designing BBGs with a minimal compositional

difference between the strips and the gaps.
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Another interesting feature of this biosensing system is the easy wavelength
tunability of its optical response. The Bragg’s wavelength of the BBG reflection peak
can be controlled by modifying the fiber diameter, in a first approach. As represented
in Fig. 6A, a change in the diameter of the fiber induces a variation of the effective
refractive index of the optical mode. Thus, a change in the microfiber diameter results
in a Bragg’s wavelength shift according to the Bragg condition. Our experimental
results using fibers with diameters ranging from 2 to 5 um match well with the
simulations (Fig. 6B), being possible to tune the response within a range of 60 nm
(from 1500 to 1560 nm). However, this approach would result in poorer sensitivities

for the largest diameters.
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Fig. 6. Tunability of the bioanalytical response. (A) Calculated wavelength dispersion of LPo1 nest for
two microfiber diameters. (B) Experimental Bragg’s wavelength of the BBG peaks (after incubating
target 1gGs at 10 pg mL?) in a range of fiber diameters and the corresponding simulated results

(strip height of 10 nm). (C) Scheme of the variation of the period by rotating the stamp in the BBG
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patterning. (D) Experimental Bragg’s wavelength shift measured for different devices. All of them
were patterned using a 555 nm period stamp in a 3-micron fiber, by changing the angle between

the stamp strips and the axis of the fiber. The simulation shows a sinus trend.

Alternatively, the position of the BBG peak can also be tuned by modifying the BBG
period. We found that this parameter can be easily controlled experimentally by just
rotating the inked stamp in the stamping step (Fig. 6C), with respect to the
longitudinal axis of the microfiber. This approach allows tuning the Bragg's
wavelength accurately, since the reflectivity peak shifts towards longer wavelengths
when the rotation angle increases. Also, it involves minimal nanofabrication
requirements, when compared to creating a specific master substrate for each period.
As shown in Fig. 6D, this tunning strategy permits to shift the position of the BBG peak
up to 120 nm in 20 degrees.

In addition to provide versatility in terms of the optical instrumentation compatible
with this bioanalytical approach, this tunability introduces interesting capabilities for
performing multiplexed assays. For example, the reflection peaks of multiple assays
could be acquired in a single measurement, and effectively discriminated by
combining BBGs with different periods in the same microfiber (Fig. 7A). To explore it,
two BBGs were created on a single microfiber with two different stamp rotation
angles (5° and 15° degrees), which resulted in different Agss (558 nm and 575 nm,
respectively), in experimental immunoassay conditions. As shown in Fig. 7B, two main
peaks were obtained, each one of them transducing the biorecognition event of a
different assay. The peak at 1615 nm corresponds to the immunoassay with a shorter
BBG period (558 nm) and the 1650 nm peak to the longer period one (575 nm). Both
peaks can be discriminated and quantified in the reflection spectrum of a single
measurement, and this prove aims to open the door for prospective BBG systems
integrating multiple BBGs tuned to spread across the reflection spectrum in order to

perform and quantify multiple label-free assays for different targets in a single step.
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illustration of the approach. (B) Experimental reflection spectra obtained with the model
immunoassay after incubating the target 1gG (10 ug mL?) in two different BBGs patterned on a single

fiber.

5. CONCLUSIONS

This work introduces and demonstrates Bio Bragg Gratings for biosensing, a new
physicochemical principle to transduce biorecognition events, based on diffractive
networks of bioreceptors patterned on optical waveguides. The results of this
theoretical and experimental study support the design, optimization, characterization
and fabrication of functional biosensing systems capable of transducing unlabeled
immunoassays as a peak in the reflection spectra. The approach is herein
implemented in microfibers (1-5 um in diameter) fabricated from standard optical
fibers, which is an extremely inexpensive material that ensures a low optical loss and
projects interesting perspectives for integration in telecommunication systems. This
work also demonstrates the capability of micro-contact printing to pattern
biomacromolecules onto fragile and non-flat microstructures. Different devices were
fabricated and tested individually in a model immunoassay based on protein probes
and IgG targets, and the results display well-correlated quantitative dose-response
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curves in label-free conditions. This biosensing approach presents appealing
perspectives to avoid signal contributions from non-specific binding in the analysis of
complex biological samples, as shown in this study with human blood serum. Besides,
the wavelength response of the sensor can be easily tuned by modifying the
microfiber diameter or the period of the biomolecular grating, and the results
demonstrate that this tunability provides an interesting solution to perform
multiplexed assays on a single fiber. In addition to introduce new biosensing
possibilities for fiber-based developments, this investigation provides the basis for a
prospective implementation of this transduction system in other waveguide materials

and devices to conceive new integrated biosensors.
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