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Abstract

Functional principal component analysis (FPCA) based on Karhunen-Loève (K-L) expansion allows
to describe the stochastic evolution of the main characteristics associated to multiple systems and
devices. Identifying the probability distribution of the principal component scores is fundamental to
characterize the whole process. The aim of this work is to consider a family of statistical distributions
that could be accurately adjusted to a previous transformation. Then, a new class of distributions,
the linear-phase-type, is introduced to model the principal components. This class is studied in
detail in order to prove, through the K-L expansion, that certain linear transformations of the
process at each time point are phase-type distributed. This way, the one-dimensional distributions
of the process are in the same linear-phase-type class. Finally, an application to model the reset
process associated with resistive memories is developed and explained.

1 Introduction

Among the electron devices with greater potential in the current microelec-
tronic industry landscape are Resistive Random Access Memories (RRAMs).
The number of indexed publications in this field has skyrocketed and therefore,
the attention of the academic community as well as the electronics companies’
development teams is fixed on them. The applications of these new devices
range from non-volatile memory circuits, security modules for cryptography and
neuromorphic computation [10].

The stochastic nature of the physical mechanisms behind RRAM resistive
switching (RS) operation makes the statistical modelling of the inherent de-
vice stochasticity essential. The key issue here rests upon the need to correctly
explain variability in the current/voltage curves associated with long series of
successive RS cycles [3, 11, 13, 1], i.e., cycles of continuous reset and set pro-
cesses. If the device charge conduction is filamentary, the most common case,
RS cycles get translated into rupture and rejuvenation of conductive filaments
that dramatically changes the device resistance [7]. The modelling of the current
versus voltage curves in these devices is of most importance for circuit design.
Therefore, in this context, and taking into consideration that the experimental
data we have are curves, an approach based on functional data analysis (FDA)
can be applied in order to accurately model resistive memory characteristics.

A deep description of the main FDA methods with applications in different
fields was developed in [12]. Functional principal component analysis (FPCA)
based on Karhunen-Loève (K-L) expansion provides an orthogonal representa-
tion of an stochastic process in terms of uncorrelated random variables, called
principal components (p.c.’s). The K-L expansion can be truncated so that the
process is approximated in terms of the most explicative p.c.’s [2]. A three step
algorithm for estimating FPCA from the reset curves (current versus voltage
curves) of a sample of RRAM cycles was proposed in [3]. This new type of
modelling can be very attractive from the circuit simulation viewpoint because
it allows to describe the main characteristics of these devices, such as variabil-
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ity. Making use of this technique, the implementation of variability in compact
models for RRAMs can be greatly simplified.

Nevertheless, identifying the probability distribution of the principal compo-
nents is fundamental to characterize the whole process through the K-L expan-
sion. In previous studies, several authors have considered different transforma-
tions and used them as a starting point, they have fitted different distributions
successfully. However, to find the appropriate transformation and its probability
distribution is not an easy task. The aim of this work is to consider a family
of statistical distributions that could be accurately adjusted for any transforma-
tion. In this respect, a new methodology is developed by considering phase-type
distributions (PH) that were applied in [1, 11] for modelling the reliability func-
tions associated to RRAM reset points, among others parameters. This class of
distributions have been also considered in other multiple science fields such as
queueing theory and reliability ([16], [14], [15]). The properties of this distribu-
tion class are very interesting and allow to achieve results in a well structured
form. The developments and results can be expressed in an matrix-algorithmic
and computational way. One of the main advantages of this class is that any
non-negative distribution can be approximated as needed through a PH distribu-
tion [9]. In order to fit this distribution, the p.c.’s scores should be transformed
previously to positive values. In fact, in this research, it is proved that for several
transformations, the fit obtained is more accurate by considering PH distribu-
tions than any other distribution. A new class of distributions are introduced,
the linear-phase-type distributions (LPH) defined as variables for which there is
a linear transformation that is PH distributed. This class is studied in detail in
order to prove, through K-L expansion, that certain linear transformations of
the process at each time point is PH distributed too.

In addition to this introduction, the paper has three other sections. The new
LPH distributions and their main properties are studied in detail in Section 2.
Then, the one-dimensional LPH distributions of the process are obtained from
the LPH distributions of the p.c.’s through the K-L expansion. Finally, the
proposed methodology is applied on different samples of current/voltage curves
associated to RRAM devices in Section 4.

2 LPH modelling

In reliability, computer and electronic engineering, physics, queues theory and
other fields, multiple probability distributions are frequently used, including the
exponential, Erlang and Weibull distributions. Most of them involve calculations
that may become unmanageable, due to the analytic expressions required. PH
play an important role in this respect. This type of distributions enables us to
express the main results in an algorithmic and computational way. This class of
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distribution was described in detail in [9].

2.1 PH distributions

Definition 1 A nonnegative random variable X is a PH distribution if its reli-
ability function is given by

R (x) = P {X > x} = αeTxe ; x ≥ 0,

where α is a substochastic vector of order m, T a subgenerator of order m (ma-
trix m ×m where all diagonal elements are negative, all off-diagonal elements
are non-negative, invertible and all row sums are non-positive) and, throughout
the paper, e is a column vector of ones with appropriate order.

A PH distribution can be defined as the time up to the absorption in an
absorbent Markov chain with initial distribution and generator for the transient
states α and T, respectively. In this case, (α,T) is called the representation of
the PH distribution.

Multiple good properties of these distributions are described in [9]. One
of the main properties is that of PH distributions can approximate arbitrarily
closely any probability distribution defined on the nonnegative real line.

2.2 LPH distributions

A new probability distribution class is defined in this subsection. This class
is called the linear-phase-type distribution class (LPH). A LPH distribution is
defined as follows.

Definition 2 A random variable X follows a LPH distribution if Y = a+ bX is
PH distributed for a and b (b 6= 0) in R.

If the representation of Y is (α,T) then the reliability function of X (LPH)
is

RX (x) = P (X > x) =

{
βeSxe ; for x > −a

b ; b > 0
1− βeSxe ; for x < −a

b ; b < 0
,

where β = αeTa, S = bT and e is a column vector with appropriate order.
In this case, will we denote the 4-tuple (a, b,β,S) as the representation of the
corresponding LPH.

The density function of this class of distributions is given by

fX (x) =

{
−βeSxS0 ; for x > −a

b ; b > 0
βeSxS0 ; for x < −a

b ; b < 0
,
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1 where S0 is the column vector -Se=-bTe=bT0.

The moment-generating function is given by MX (t) =

−β(S + It)
−1
e−(S+It)a/bS0, and then E [Xn] = ∂nMX(t)

∂tn

∣∣∣
t=0

.

From this expression the first and second moments are

E [X] = −βe−Sa/bS−1e− a
b

E
[
X2
]

= 1
b2

[
2βe−Sa/bS−1

(
1
b2 S−1 + a

b I
)
e + a2

]
.

Consequently,

V ar (X) =
1

b4

[
2βe−Sa/bS−2e−

(
βe−Sa/bS−1e

)2
]
.

Let’s see that the finite addition of independent PH distributions or
homothecy of PH distributions is PH distributed.

Result 1 (Summation of independent PH distributions)
Let {Yi; i = 1, . . . , n} be a finite sequence of independent PH distributions with
representation (αi,Ti) for i=1,...,n. Then, the variable Wn =

∑n
i=1 Yi is PH

distributed with representation (ρn,Ln) given by ρn = (α1,0) and

Ln =



T1 T0
1 ⊗α2

T2 T0
2 ⊗α3

T3 T0
3 ⊗α4

. . .
. . .

Tn−1 T0
n−1 ⊗αn

Tn


,

where ⊗ is the Kronecker product defined as follows. Let A and B be two
matrices with order m×n and k× l respectively. Then, A⊗B is a matrix with
order mk × nl defined as (aijB).

Proof.
The proof of this result is developed through induction. It is well known that
the distribution of W2 is given by the convolution of Y1 and Y2. If we denote
to the distribution function of Yi as Fi then the distribution function of W2,
convolution of F1 and F2, denoted by ∗, is

1Throughout the paper, if A is a matrix then A0= -Ae being e a column vector of ones
with appropriate order
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W2 (t) = F1 ∗ F2 (t) =

∫ ∞
0

F1 (du)F2 (t− u) du.

It is well-known that the Laplace-Stieltjes transform of the convolution is
the product of the Laplace-Stieltjes transforms and that there is a biunivocal
relationship between the original distribution and its Laplace-Transform.

Given the distribution function of a PH distribution with representation
(αi,Ti), then its Laplace-Stieltjes transform is given by

F ∗i (s) = αi(sI−Ti)
−1

T0
i .

Then,

W ∗2 (s) = ρ2(sI− L2)
−1

L0
2 = (α1,0)

(
sI−T1 T0

1 ⊗α2

0 sI−T2

)−1(
0

T0
2

)
= (α1,0)

(
(sI−T1)

−1
(sI−T1)

−1
T0

1α2(sI−T2)
−1

0 (sI−T2)
−1

)(
0

T0
2

)
= α1(sI−T1)

−1
T0

1 ·α2(sI−T2)
−1

T0
2 = F ∗1 (s) · F ∗2 (s) .

We assume that Wn−1 =
n−1∑
i=1

Yi is PH-distributed with representation(
ρn−1,Ln−1

)
. Given that Wn = Wn−1 + Yn and ρn =

(
ρn−1,0

)
and Ln =(

Ln−1 L0
n−1

0 T0
n

)
, then

W ∗n (s) = ρn(sI− Ln)
−1

L0
n =

ρn−1(sI− Ln−1)
−1

L0
n−1 ·αn(sI−Tn)

−1
T0
n = W ∗n−1 (s) · F ∗n (s) .

Corollary 1
Let {Xi; i = 1, . . . , n} be a finite sequence of independent LPH distributions
with PH-distributions associated given by {Yi = ai + bXi; i = 1, . . . , n} with
representation (αi,Ti) for i=1,...,n. Then, the variable Λn =

∑n
i=1Xi is LPH

distributed with representation

(
n∑
i=1

ai, b,ρne
Ln

n∑
i=1

ai
, bLn

)
.

Proof.

From result 1,
n∑
i=1

Yi = bΛn +
n∑
i=1

ai is PH with representation (ρn,Ln). Then,

Λn = 1
b

n∑
i=1

Yi− 1
b

n∑
i=1

ai is LPH with representation

(
n∑
i=1

ai, b,ρne
Ln

n∑
i=1

ai
, bLn

)
.
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Next, we show that a positive homothecy of a PH distribution is also PH
distributed.

Result 2
Let Y be a PH distribution with representation (α,T) then the variable γY
is PH distributed with representation (α, 1

γT) , being γ a non-negative real
number.
The proof of this result is immediate. Thus,

P (γY > t) = P (Y > t/γ) = αe
1
γTte ; t > 0.

Corollary 2
Let X be a LPH distribution with representation (a, b,β,S), then the variable

γX is LPH with representation
(
|γ| a, b · sgn(γ),β, 1

γS
)

, being γ a non-zero

real number, | · | the absolute value function and sgn(·) the sign function.

Proof.
If X is a LPH distribution with representation (a, b,β,S), then there exist a and
b such that Y = a+ bX is PH(α,T) where β = αeTa and S = bT.

Then, from Result 2 we have that any homothecy of a LPH distribution is
also LPH distributed.

� If γ > 0, γY = γa+ bγX is PH
(
α, 1

γT
)

.

Then,

γX is LPH with representation
(
γa, b,αeTa, bγT

)
≡
(
γa, b,β, 1

γS
)

.

� If γ < 0, −γY = −γa− b (γX) is PH
(
α, −1

γ T
)

.

Then,

γX is LPH with representation
(
−γa,−b,αeTa, bγT

)
≡(

−γa,−b,β, 1
γS
)
.

Therefore γX is LPH distributed with representation
(
|γ| a, b · sgn(γ),β, 1

γS
)
.

Result 3 (Density of the LPH class)
The set of LPH distributions is dense in the set of probability distributions de-
fined on any half-line of real numbers.
Proof.
This theorem is proved from the classical result for PH distributions: the set
of PH distributions is dense in the set of probability distributions on the non-
negative half-line. Let W be a random variable defined on w > c for any real
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number c. It is immediate that W − c is defined on the nonnegative half-line.
Then, there exists a variable Y , PH distributed, so closed as desirable to W − c.
Therefore, the variable X = Y + c, which is LPH, approximates to the initial
variable W .
A similar reasoning can be done for the case when W is defined on w < c for
any real number c. In this case −W + c is defined on R+. Then, there exists a
variable Y , PH distributed, so closed as desirable to −W + c. For this case, the
variable X = −Y + c, which is LPH, approximates the initial variable W .

3 LPH modelling of functional PCA

Let X be a functional variable whose observed values are curves, and let us
assume that X = {X (t) : t ∈ T} is a second order stochastic process, contin-
uous in quadratic mean, whose sample functions belong to the Hilbert space
L2 (T ) of square integrable functions with the usual inner product 〈f, g〉 =∫
T
f (t) g (t) dt, ∀f, g ∈ L2 (T ) .
In order to reduce the infinite dimension of a functional variable and to ex-

plain its dependence structure by a reduced set of uncorrelated variables, mul-
tivariate PCA was extended to the functional case [6]. The functional principal
components (p.c.’s) are obtained as uncorrelated generalized linear combinations
of the process variables with maximum variance (Var). Then, the j−th p.c. score
is given by ξj =

∫
T

(X (t)− µ(t)) fj (t) dt, where the weight function or loading
fj is the value of the argument f(t) that maximizes de objective function with
the corresponding constraints{

V ar
[∫
T

(X (t)− µ(t)) f (t) dt
]

subject to ‖f‖2 = 1 and
∫
f` (t) f (t) dt = 0, ` = 1, . . . , j − 1.

It can be shown that the weight functions are the eigenfunctions of the co-
variance operator C. That is, the solutions to the eigenequation C(fj)(t) =∫
C (t, s) fj (s) ds = λjfj(t), where C (t, s) is the covariance function and

λj = V ar[ξj ]. Then, the process admits the following orthogonal representa-
tion (K-L expansion):

X (t) = µ(t) +

∞∑
j=1

ξjfj (t) ,

with µ(t) being the mean function. This principal component decomposition can
be truncated providing the best linear approximation of the sample curves in the
least squares sense Xq (t) = µ(t) +

∑q
j=1 ξjfj (t) , whose explained variance is

given by
∑q
j=1 λj .

There are three main groups of rules for choosing the number of principal
components.
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The first one consists of ad hoc rules-of-thumb that work very well in prac-
tice. The most used chooses a cut-off of total variability, somewhere between
90 − 95%, and selects the smallest value of components for which this chosen
percentage is exceeded. A graphical procedure, named scree-graph, consists of
ploting the number of components against the eigenvalues and retaining the
number of components defining an ‘elbow’ in the graph.

The second type of rules is based on formal tests of hypothesis and makes
distributional assumptions, as multivariate normality, that are often unrealistic.
The Bartlett’s test to decide if the last eigenvalues are equal can be sequentially
used to find the number of components that are not noise.

The third group consists of statistically based rules, most of which do not
require distributional assumptions, based on computationally intensive methods
such as cross-validation and bootstrapping.

A detailed study on principal components selection rules can be seen in Chap-
ter 6 in [8].

The main objective of this work is to model the whole process from the
random principal components. Given that PH distributions are dense in the
non-negative probability distributions, we show that if the principal components
are LPH distributed with the same scale parameter, then the one-dimensional
distributions of the process are also LPH.

Corollary 3
Let us assume that each principal component ξj is LPH distributed with repre-
sentation (aj , b · sgn (fj(t)) ,βj ,Sj) for a real number t and j = 1, . . . , q. Then,
the centered process X(t)− µ(t) is also LPH distributed with representation q∑

j=1

|fj (t)| aj , b,ρje
Lq

q∑
j=1
|fj(t)|aj

, bLq

 ,

with ρq = (α1,0) and

Lq =


1

|f1(t)|T1
1

|f1(t)|T
0
1 ⊗ α2

1
|f2(t)|T2

1
|f2(t)|T

0
2 ⊗ α3

. . .
. . .

1

|fq−1(t)|Tq−1
1

|fq−1(t)|T
0
q−1 ⊗ αq

1

|fq(t)|Tq

 ,

where |fj(t)| is the absolute value of fj(t).

Proof.
From Corollary 2, it is deduced that for a real number t,
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if fj (t) > 0 then fj (t) ξj is LPH with representation
(
fj (t) aj , b,βj ,

1
fj(t)

Sj

)
,

if fj (t) < 0 then fj (t) ξj is LPH with representation
(
−fj (t) aj , b,βj ,

−1
fj(t)

Sj

)
.

Then, from Corollary 1,
q∑
j=1

ξjfj (t) is also LPH.

4 Application

The devices employed in this paper are composed of a metal-oxide-semiconductor
stack whose metal electrode used was copper (200 nm thick), a dielectric 10 nm
thick (HfO2) and a bottom electrode made of /Si-n+. The resistive memories
were fabricated and measured at the Institute of Microelectronics of Barcelona
(CNM-CSIC). The variability of these devices is generated by an inherent
stochastic process that changes extremely the inner resistance of the device by
means of resistive switching physical mechanisms. The experimental data consist
of a sample of current-voltage curves corresponding to the reset-set cycles asso-
ciated with the formation and rupture of a conductive filament that shorts the
electrodes and changes drastically the device resistance. From the mathemat-
ical viewpoint, the main objective here is to determine the current probability
distribution at each voltage in the reset process by means of the K-L expansion
and the LPH distributions previously introduced .

In this study, we have 232 reset curves denoted by {Ii(v) : v ∈
[0, Vi−reset], i = 1, . . . , 232} with Vi−reset being the reset voltage. Before ap-
plying FPCA to characterize the whole process through the K-L expansion, we
must carry out some important previous steps proposed in [3]. Briefly, this ap-
proach consists in synchronising all curves in the same interval due to the reset
voltage is different for each curve, and using P-spline smoothing to reconstruct
all reset curves since we only have discrete observations at a finite set of current
values until the voltage reset for each curve. In this paper, the initial domain
was transformed in the interval [0,1] and a cubic B-Spline basis of dimension 20
with 17 equally spaced knots and penalty parameter λ = 0.5 was considered.
Figure 1 shows all the smoothed registered curves in the interval [0,1], denoted
by {I∗i (u) : u ∈ [0, 1], i = 1, ..., n}, and the estimation of the mean function
(red line).

Then, FPCA is estimated and the percentages of variance explained by the
first four p.c.’s are 99.42, 0.44, 0.08 and 0.04, respectively. Let us observe that
only the first p.c. explains more than 99% of the total variability of the process.
Hence, by considering the K-L expansion, principal component decomposition of
the registered reset curves can be truncated in the first term as follows: I∗1(u) =

I
∗
(u) + ξ∗1f

∗
1 (u), u ∈ [0, 1]. This approach can be used for circuit simulation in
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Figure 1: Sample group mean function (dashed red line) and all the P-spline
smoothed registered curves.

Distribution p-value K-S p-value Anderson-Darling LogL
PHD 0.11 0.054 18.11

Weibull 0.004 0.004 0.78
Normal 0.02 0.006 7.79
Cauchy < 0.001 < 0.001 -42.30

Table 1: Comparison among all distributions is considered. P-values of the
Kolmogorov-Smirnov and Anderson-Darling tests, and the value of the maximum
log-likelihood are showed for each distribution.
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this type of devices. Nevertheless, the probability distribution of the first p.c. is
unknown.

In order to fit a probability model to the scores of the first p.c. different
distributions were employed but none of them could be accepted (p-value asso-
ciated with Kolmogorov-Smirnov test was < 0.01 in all of them). Then, some
transformation is necessary. In this study, the LPH distributions associated
with the linear transformation 1 + 1000 × ξ∗1 is considered. The p.c. is multi-
plied by 1000 because the standard variation of the principal component is very
small, with minimum and maximum values of the component equal to 3.2e−04

and 7e−04, respectively. These facts produce a great number of phases in the
corresponding PH distribution estimated (more than 1000 produced exploding
effects). After that, all values were in [−1, 1] and then 1 is added (to consider
a PH distribution). Although the constant and slope values could be calculated
by maximum likelihood (we are working on it), in this paper they were found
ad hoc, taking into account that PHD are non-negative variables (the values of
the first p.c. are positives and negatives).

The EM algorithm was used for estimating the parameters of a PHD with m
transient stages and any internal structure for matrix T ([4][5]). This method-
ology has also been applied to estimate the parameters of the PH distributions
embedded in the study of the variability in resistive memories. The algorithm
is described in [1]. The optimum value was reached for 21 stages. Besides, in
order to prove that PHD is better than any other distribution, Weibull, Nor-
mal and Cauchy distributions were fitted as well. Their estimation by maxi-
mum likelihood are W (β = 4.4344, λ = 1.0897), N(µ = 0.9958, σ = 0.234) and
C(γ = 0.9252, δ = 0.1505), respectively. The results provided by all of them are
given and compared in Table 1. Thus, taking into account the logL value and
the p-values of the K-S and the Anderson-Darling tests, the best distribution
to get an accurate fit of the first p.c. score is the PH distribution. In fact, at
5% significance level, only the PH distribution can be accepted to model the
first p.c. score according to the p-values provided by the Kolmogorov-Smirnov
and Anderson-Darling tests. This conclusion can be achieved graphically. The
cumulative hazard rate (topleft), the density function (topright), the cumulative
distribution function (bottomleft) and the reliability function (bottomright) of
data with the fitting by means of PH, Weibull, Normal and Cauchy distribu-
tions are displayed in Figure 2. In order to sum up, we have proved that the
considered linear transformation of the first p.c. is PH distributed with repre-
sentation (α,T). Therefore, the first p.c. score can be modelled through a LPH
distribution with representation (1, 1000,β,S). Finally, the reset process I∗1(u)
is LPH distributed as well with representation(
|f∗1 (u)| − 1000I

∗
(u)sgn (f∗1 (u)) , 1000sgn (f∗1 (u)) ,αe

T

(
1− 1000

f∗1 (u)
I
∗
(u)

)
,

1000

f∗1 (u)
T

)
.
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Figure 2: The cumulative hazard rate (topleft), the density function (topright),
the cumulative distribution function (bottomleft) and the reliability function
(bottomright) of experimental data with the fitting by means of PH, Weibull,
Normal and Cauchy distributions.
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5 Conclusions

A new probability distribution class with good properties, the LPH class, has
been introduced to model the principal components in a matrix and algorithmic
form. Multiple properties of this distribution class are developed, including
that the LPH class is dense in the probability distribution class defined on any
half-line of real numbers. Functional principal components analysis provides a
representation of a stochastic process through uncorrelated random variables
called principal components. It is of great interest identifying the probability
distribution of these components to analyse the random behaviour of the process.
In this work, it has also been proved that the process, characterized through the
K-L expansion, follows a LPH distribution at each point. The results have been
applied to model the stochastic behaviour of resistive memories. In this case, one
principal component is considered and the explicit representation of the LPH is
given for the stochastic process at each point.
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