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ABSTRACT Cloud computing is being adopted by commercial and governmental organizations driven by
the need to reduce the operational cost of their information technology resources and search for a scalable
and flexible way to provide and release their software services. In this computing model, the Quality of
Services (QoS) is agreed between service providers and their customers through Service Level Agreements
(SLA). There is thus a need for systematic approaches with which to assess the quality of cloud services
and their compliance with the SLA. In previous work, we introduced a generic method for Monitoring
cloud Services using models at RunTime (MoS@RT), which allows the monitoring requirements or the
metric operationalizations of these requirements to be changed at runtime without the modification of the
underlying infrastructure. In this paper, we present the design of a monitoring infrastructure that supports
the proposed method with its instantiation to a specific platform and reports the results of an experiment
carried out to evaluate the perceived efficacy of 58 undergraduate students when using the infrastructure
to configure the monitoring of cloud services deployed on the Microsoft Azure platform. The results show
that the participants perceived MoS@RT to be easy to use, useful, and they also expressed their intention to
use the method in the future. Although further experiments must be carried out to strengthen these results,
MoS@RT has proved to be a promising monitoring method for cloud services.

INDEX TERMS Cloud computing, models@runtime, quality of service (QoS), services monitoring,
software as a service (SaaS).

I. INTRODUCTION
Cloud Computing is a model that enables ubiquitous, con-
venient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction [1]. Companies currently consider this model
to be an efficient way in which to reduce the operational
costs of their information technology resources. Software as
a Service (SaaS) uses a cloud computing infrastructure to
enable the customer to use the provider’s applications running
on the Cloud [1]. SaaS applications should satisfy quality
characteristics during their provision, which are expressed in
Service Level Agreements (SLAs). SLAs are contracts that
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define the minimal guarantees that a cloud provider should
offer to its customers [2]. Penalties are established when the
service quality violates the SLAs. Both the underestimation
of provisioning and the overestimation of de-provisioning
lead to penalties [3]. Thus, monitoring approaches and tools
are critical in assessing the quality of services and provid-
ing an SLA violation report that helps both customers and
providers. These approaches should support the understand-
ing of services’ actual behavior to improve or adjust the
service operation to attain customer satisfaction and avoid
possible penalties.

Various studies have analyzed the limitations of existing
cloud monitoring approaches [4], [5]. In particular, these
limitations are the fact that supported SLAs lack expres-
siveness with which to model real-world scenarios, the
monitoring configuration is highly coupled with a given
SLA specification, and the SLA violation reports provided
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are difficult to understand [6]. Moreover, most commer-
cial monitoring tools are tightly integrated with the cloud
providers existing tools. For example, CloudWatch, offered
by Amazon, is a monitoring tool that enables consumers
to monitor their applications residing on AWS EC2 (CPU)
service, but this tool does not have the ability to monitor
an application component that may reside on other cloud
provider’s infrastructure such as GoGrid and Azure [4]. Thus,
there is a need for providing open platform-independent mon-
itoring tools, as well as uniform monitoring interfaces for
different cloud providers [7].

Besides, if a given non-functional requirement (NFR)
expressed in the SLA needs to be changed (e.g., owing to
an SLA renegotiation), this can lead to significant changes
in the monitoring infrastructure. Finally, another shortcoming
in current solutions is the difficulty of using low-level metrics
(e.g., latency, uptime) to define high-level indicators such as
performance or availability [8]. This is in line with the results
of a recent industrial study that revealed that cloud services
monitoring is done with crude technology, mostly MySQL
querying or similar (e.g., Nagios) [9].

We have addressed these issues by introducing a method
for Monitoring cloud Services at RunTime (MoS@RT) [10].
We have also proposed a preliminary version of an infrastruc-
ture [11] that uses models at runtime (models@runtime) to
allow the addition or modification of NFRs to be monitored
and the selection of appropriate metric operationalizations
depending on the actual cloud services capabilities without
interruption to the services being executed. This model at
runtime is causally connected to the running system, meaning
that a change in the runtime model triggers a corresponding
change in the running system and/or vice versa [12]. The
infrastructure also provides users with facilities that enable
them to configure the instructions to be applied during mon-
itoring services (e.g., metrics, data sources).

This paper presents an enhancement and extension of the
monitoring infrastructure that supports the proposed moni-
toring method and the empirical evaluation of the proposed
method and infrastructure for monitoring cloud services in a
specific cloud platform. In particular, the main contributions
of this paper can be summarized as follows:
• The extension of the previously proposed infrastructure
with additional data collection mechanisms to improve
the infrastructure’s interoperability by using third-party
monitoring tools and a dashboard that allows users to
visualize the results of QoS monitoring. Note that a
preliminary version of the middleware component of the
monitoring infrastructure was presented in [13].

• The design of a platform-specific architecture for instan-
tiating the proposed infrastructure in Microsoft Azure.

• An evaluation method for predicting the likelihood of
acceptance of MoS@RT.

• The design and execution of an experiment that uses
the proposed evaluation method for assessing MoS@RT
when performing the monitoring configuration of a
cloud service in Azure.

Keeping in mind the high impact of user perceptions in
the acceptance of a new solution, we propose an evaluation
method that uses the Method Evaluation Model (MEM) [14]
to evaluate the likelihood of acceptance of MoS@RT. MEM
is based on the Technology Acceptance Model (TAM) [15],
which analyses the perceived ease of use, perceived useful-
ness, and intention to use of participants by applying amethod
to predict its acceptance. Finally, we reported the results of
an experiment where novice cloud software engineers used
the monitoring configurator prototype of MoS@RT (a com-
ponent of the monitoring infrastructure that requires user
interaction) to configure the monitoring of a set of QoS
requirements.

This paper is organized as follows. Firstly, related work
on cloud services monitoring and empirical studies of mon-
itoring tools and methods are discussed in Section 2. The
monitoring infrastructure and its main components are intro-
duced in Section 3. The instantiation of the monitoring infras-
tructure in Microsoft Azure is introduced in Section 4. The
proposed evaluation method is described in Section 5, while
the experiment, its planning, and execution are described in
Section 6. The results are reported, analyzed, and interpreted
in Section 7. This section also discusses the threats that might
affect the validity of our results. Finally, our conclusions and
final remarks are presented in Section 8.

II. RELATED WORK
Several methods and tools with which to support the activities
of service monitoring have been proposed and reported over
the last years [2], [4], [5], [15]–[18]. However, only a few
studies empirically validate the existing methods or the new
ones being proposed to the best of our knowledge. Empirical
studies focus on establishing taxonomies to classify
methods [4], [17]. This section discusses related works that
report monitoring approaches and empirical studies that
assess the usefulness of methods and tools for cloud service
monitoring and SLA compliance verification.

A. METHODS AND TOOLS FOR MONITORING CLOUD
SERVICES
Researchers have focused their efforts on developing solu-
tions that can help cloud providers to track the SLA viola-
tions of certain service quality requirements. They have also
focused on reporting the current state of monitoring solutions.

These solutions have been summarized in some secondary
studies [4], [18]. In particular, Fatema et al. [4] have sur-
veyed a range of monitoring tools that are currently in use
to gain insight into their technical capabilities. The authors
identify the desired capabilities of monitoring tools used to
serve different cloud operational areas from the perspective
of both providers and customers and present a taxonomy,
including these capabilities. Therefore, these authors discuss
the importance of monitoring techniques oriented to cloud
Computing’s service model given its multi-tenant nature by
showing the important role and the need to develop sys-
tematic ways to monitor by taking into account specific
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cloud characteristics. The study by Syed et al. [18] review
the state-of-the-art related to cloud monitoring solutions for
private and public clouds. The authors conclude that there is a
need to carry out more research on cloud-native monitoring.
It is also necessary to propose flexible, intelligent monitoring
solutions, and user side SLA management.

Furthermore, many cloud providers enable their con-
sumers to monitor cloud services using available moni-
toring tools for CPU, storage, and network [19]. These
tools are often closely integrated with their platforms. For
example, CloudWatch (offered by Amazon) is a monitor-
ing tool that enables consumers to manage and monitor
their applications that reside in AWS EC2 (CPU) services.
However, this monitoring tool does not have the ability
to monitor a service component that may reside in the
infrastructure of other cloud providers such as GoGrid and
Azure. Moreover, certain tools are unable to monitor QoS
attributes and SLA requirements at the application level
(e.g., security, elasticity, performance) because they mostly
focus on monitoring hardware resources (CPU, storage, and
networks). Besides, most commercial tools (e.g., Cloud-
Watch, LogicMonitor) are not sufficiently flexible to allow
a service provider to extend the QoS attributes provided to
be monitored to assess SLAs’ fulfillment. Other solutions are
focused on providing cloud service monitoring [6], [16], [20],
[21]. Keller and Ludwig [20] describe a framework named
WSLA that can be used to specify and monitor SLAs
for web services and have developed a prototype of a
WSLA compliance monitoring tool. However, they do not
consider how to deal with different metric operationaliza-
tions to provide their measurement service with flexibility.
Emeakaroha et al. [16] propose an application monitor-
ing architecture named Cloud Application SLA Violation
Detection architecture (CASViD). This architecture moni-
tors and detects SLA violations at the application layer and
includes resource allocation and deployment tools. However,
this approach does not have a flexible means to change the
requirements and metrics to allow them to be monitored at
runtime.

Shao et al. [21] proposed a runtime model for cloud mon-
itoring (RMCM), which denotes a running cloud represen-
tation by focusing on common monitoring concerns. Still,
they do not mention specific non-functional characteristics
for SaaS cloud environments and their metrics (e.g., scalabil-
ity, availability, elasticity). Furthermore, they do not provide
an SLA violation report and leave addressing NFRs from
SLA as future work. Finally, Muller et al. [6] have designed
and implemented SALMonADA, a service-based system for
monitoring and analyzing SLAs to explain violations. Nev-
ertheless, these authors do not help stakeholders to select
alternative metric operationalizations at runtime depending
on the platform, and the system requires advanced users with
knowledge of metrics and details about specific platforms.

Modi et al. [22] presented an ontology-based automatic
cloud services monitoring and management approach. In this
study, the monitoring is performed at a cloud broker level

using SLA and ontology. An algorithm is also proposed for
prediction-based service provisioning. The authors developed
an SLA ontology model for the semantic description of the
QoS parameters. When an SLA is violated, an alert is sent to
both service providers and users, and the approach applies its
prediction-based algorithm. This algorithm finds the virtual
machine with less load and allocates the service to that virtual
machine to avoid further SLA violations. The scope of this
approach is limited to this scenario.

Shatnawi et al. [23] proposed an approach called Cloud-
Health to assess the health of cloud services. This solution
supports three main activities (i.e., configuration, deploy-
ment, and operation) and allows assessing high-level moni-
toring goals using a mapping between quality characteristics,
metrics, and probes. However, the approach is not flexible
enough since the configuration and deployment steps need to
be repeated when monitoring goals change.

Alhamazani et al. [24] proposed a framework for QoS
monitoring and benchmarking of cloud applications dis-
tributed across cloud layers (∗-aaS) and spread among mul-
tiple cloud providers. That proposal provides the ability to
monitor and benchmark the QoS of individual application
components such as databases and web servers distributed
across a heterogeneous public or private cloud. Nevertheless,
the framework employs an agent-based approach for mon-
itoring the application components that collects and sends
specificQoS values requested by a global manager. A specific
monitoring agent is defined for each cloud provider, which is
not flexible enough to include, remove, or change monitoring
requirements at runtime.

Lu et al. [25] introduced a cloud monitoring system for
cloud platforms (JTangCMS), which is composed of moni-
toring agents implemented as pluggable monitoring compo-
nents. The proposed system covers collecting, delivering, and
processing monitoring data collected from services deployed
on the cloud. For data collection, pluggable monitoring com-
ponents to collect runtime information from different entities
are provided. For data delivery, a data dissemination frame-
work is implemented to transfer the huge amount of runtime
information. For data processing, a cloud action platform is
implemented to support cloud management decision-making.
However, the collecting data agents are specifically imple-
mented to extract the low-level information available from
each cloud platform. In order to access to different counters
or APIs of external tools, the agents need to be redefined.
The objective of the proposed system is to provide flexibility
by allowing pluggable monitoring components and to reason
about a cloud service’s behavior in terms of sequences of
events to perform decision-making about the overall cloud
application.

In summary, despite the number of approaches proposed
to monitor the QoS of cloud applications, there is still a need
for approaches to monitor high-level non-functional require-
ments and environments that are flexible enough to allow
adding or modifying monitoring requirements at runtime.
These changes in monitoring requirements may be due to the
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renegotiation of SLAs or the need to know the measurement
values of certain quality attributes that were not of interest
when the monitoring requirements were initially established.

To address these problems, we proposed a monitoring pro-
cess that exploitsmodels at runtime tomonitor non-functional
requirements of cloud services [10]. This study presented
the conceptual idea behind the use of models at runtime and
focused on describing the high-level steps of a monitoring
process and the structure of the metamodel at runtime. Then,
we proposed a monitoring infrastructure to support this pro-
cess [11]. The infrastructure integrates twomain components:
a monitoring configurator and a monitoring & analysis mid-
dleware, and this study focused on the monitoring config-
urator component by describing how the Runtime Quality
Model proposed in [10] can be integrated with other models
(i.e., Monitoring Requirements Model, SaaS Quality Model)
to support the monitoring of cloud services. Specifically,
the contribution of [11] was to describe the meta-models
that support these three models and the interaction among
them. Finally, we proposed a platform-independent middle-
ware [13] to support the monitoring & analysis middleware
component of the infrastructure. This middleware provided
practical evidence that non-functional requirements or met-
rics for measuring specific quality attributes can be easily
changed at runtime by using models at runtime. The study
also showed a first instantiation of the middleware in a spe-
cific cloud platform (i.e., Azure).

Although our previous studies proposed a preliminary ver-
sion of the monitoring method, its supporting infrastructure
and middleware (MoS@RT), the infrastructure still needs to
be improved in several direcions: i) to support additional
data collection mechanisms to improve the infrastructure’s
interoperability; ii) to improve the monitoring dashboard
to enable users to easely and effectivelly visualize data
combined from different sources as well as select different
visualization mechanisms to present the monitoring results;
iii) to support the use of historical data to make predic-
tions; iv) to instantiate the platform-independent middleware
in other cloud platforms, and v) to improve the platform-
specific middleware defined for Azure [13] by defining an
architecture that clearly describes how the middeware is
structured and operates in practice, so that researchers or
practitioners can use it in other contexts. Finally, there is a
need of empirical studies that demonstrate the usefulness of
the solution when users interact with the proposedmonitoring
infrastructure.

B. EMPIRICAL STUDIES OF CLOUD MONITORING
METHODS
As a young technology, cloud computing and its monitoring
tools still lack a broad consensus of appropriate evaluation
criteria. It is desirable to have appropriate monitoring tools,
which should have been evaluated to ensure their efficacy and
utility. Various empirical studies are discussed below.

Bodenstaff et al. [26] proposed MoDe4SLA, which allows
the management and monitoring of dependencies between

services in a composition. They empirically validated their
approach through an experiment with 34 participants. The
authors evaluated usefulness by asking experts to man-
age simulated executions of service compositions using
MoDe4SLA. However, they did not focus on monitoring the
service quality but rather on the results, which lead to a good
composition of services.

The SLA@SOI project proposed a framework for the man-
agement of services based on SLAs. They presented evalua-
tions that demonstrated the applicability of SLA@SOI [6].
They also presented a case study concerning the application
of the SLA@SOI framework to eGovernment domains. How-
ever, the case study was instead a proof-of-concept, and the
results were focused on the entire framework without paying
attention to the evaluation of the monitoring approach.

Emeakaroha et al. [16] presented CaSViD and evaluated
their proposal with a proof-of-concept. They evaluated two
aspects: (i) the ability of the architecture to monitor appli-
cations at runtime in order to detect SLA violations, and
(ii) its capacity to determine the effective measurement inter-
val for efficient monitoring automatically. The evaluation
lacked rigor, and the authors did not focus on the users’
perceptions when using their solution.

Finally, several works report experiences regarding the use
of monitoring tools to evaluate efficiency, latency, perfor-
mance, and other low-level NFRs [27], [28], [29].

Montes et al. [28] proposed cloud monitoring, GMonE
(Global Monitoring systEm), a Cloud monitoring tool. They
evaluated the performance, scalability, and overhead of
GMonE using an experimental testbed. They tested their
approach benefits in a large-scale cloud environment, includ-
ing high performance, low overhead, scalability, and elastic-
ity. Meng et al. [27] performed extensive experiments in an
emulated cloud environment with a real-world system and
network traces. The results show that their approach achieves
significantly lower monitoring costs, higher scalability, and
better multi-tenancy performance than others. However, their
evaluation did not include real environments and users to pro-
vide feedback and contribute toward enhancing the approach
with their perceptions.

The analysis of the studies above has allowed us to identify
some limitations in the empirical evaluation of cloudmonitor-
ing solutions, such as (1) the low number of empirical studies
assessing the users’ experience of using the monitoring tool;
(2) the lack of studies that analyze the interaction between
the monitoring solution and its users for the definition of the
quality characteristics to be monitored; and (3) the analysis of
the likelihood of intention to use a given solution when users
need to monitor their cloud services.

III. MONITORING INFRASTRUCTURE
The Monitoring Infrastructure supports the monitoring pro-
cess defined in [10], and it allows: i) the specification and
configuration of NFRs to be monitored; ii) interaction with
cloud services in order to assess their quality at runtime;
and, iii) the service status to be observed at runtime and the
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FIGURE 1. Monitoring infrastructure.

generation of reports containing any eventual SLA violation.
Moreover, a set of components and artifacts that conform
to the monitoring infrastructure has been defined to achieve
these goals, as shown in Figure 1. The infrastructure uses
models@runtime to provide the required degree of flexibility
when defining metrics and different mechanisms to gather
data from cloud services.

The monitoring infrastructure has two main components:
the Monitoring Configurator and the Monitoring & Analysis
Middleware. The Monitoring Configurator uses the Mon-
itoring Requirements Model and the SaaS Quality Model
(i.e., an ISO/IEC 25010-compliant quality model for cloud
services built from a systematic literature review [30]) to
configure the monitoring of services and obtain the Runtime
Quality Model. The Monitoring & Analysis Middleware uses
the Runtime Quality Model and relies on two engines: the
Measurement Engine, which gathers raw data from services
and applies the monitoring instructions, and the Analysis
Engine, which compares the expected values with the moni-
tored values and generates the SLA violations report.

In the following sections, we briefly describe each com-
ponent of the monitoring infrastructure. These components
and their meta-models have been presented in [11]. This
infrastructure allows monitoring any NFR as long as raw data
from the service to bemonitored can be obtained, and ametric
can be calculated from these data. However, the mechanisms
for collecting data [11] allow gathering data from the running
services in an interoperable and easy way. Therefore, it is
possible to gather any kind of data even if the platform does
not offer that information by using specific wrappers or by a
third-party tool.

A. MONITORING CONFIGURATOR
Three models are used in the Monitoring Configuration
(i.e., the Monitoring Requirements Model, the SaaS Qual-
ity Model, and the Runtime Quality Model). The Moni-
toring Requirements Model (see Figure 2(1)) contains all
the NFRs that will be monitored. This model contains the

SLA constraints, together with the corresponding thresh-
olds, which should be evaluated. The SaaS Quality Model
(see Figure 2(2)) represents SaaS quality characteristics’
decomposition into measurable quality attributes and the
different metric operationalization alternatives that can be
used during the service monitoring process. A metric’s oper-
ationalization consists of establishing a mapping between the
metric’s generic specification and the concepts represented
in the software artifacts to be measured. The possibility of
having several operationalizations allows the most appropri-
ate measurement function to be selected (by considering the
availability of raw data on a specific platform).

The Runtime Quality Model (see Figure2(3)), which is a
model@runtime, specifies all the directives that are needed
to access the services to be monitored during their execution.
This model contains the actual parameters and instructions
inherent to the platform, which can be retrieved using dif-
ferent methods (e.g., agents, APIs, platform tools, libraries).
Figure 2(4) shows theMonitoring Configurator, which allows
the definition of the Runtime Quality Model by mapping
the metrics specified in the Monitoring Requirements Model
with the platform-dependent formulas contained in the SaaS
Quality Model. The monitoring configurator was imple-
mented in ASP. NET using C# on the server-side to manage
the three models in XML/XMI.

B. MONITORING AND ANALYSIS MIDDLEWARE
It has implemented the Monitoring & Analysis Middleware,
shown in Figure 2(5), as a service to interact with the cloud
services to be monitored. Moreover, it is possible to use
different means to gather data from services deployed on
any platform through wrappers and third-party solutions that
allow the extension of a service to provide quality informa-
tion. Here, it is shown how the platform-independent moni-
toring middleware can be instantiated.

We specifically show how the middleware design
and implementation have been applied to monitor cloud
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FIGURE 2. Monitoring configurator and monitoring & analysis middleware (MoS@RT).

services deployed on Microsoft Azure. However, similar
actions can be taken to apply this solution to the monitor-
ing of cloud services that are deployed on other platforms
(i.e., Amazon Web Services, Google App Engine). In this
approach, the middleware was deployed as an instance of the
Worker Role on Microsoft Azure. Once executed, a Monitor
object is created to search for the Runtime Quality Model to
initiate the monitoring process. The Measurements Engine
must gather data and calculate metrics regarding cloud ser-
vices’ behavior and performance, while the Analysis Engine
determines whether the SLA and other NFRs for the services
of interest are fulfilled.

Figure 3 shows the Measurement Engine with four pos-
sible data-gathering scenarios. The first two scenarios are
supported by two data-gathering mechanisms (i.e., Platform
Counters and Custom Counters) proposed as part of the pre-
vious version of our monitoring infrastructure [11].

The first scenario (1) shows the case in which raw data
is gathered directly. This direct gathering of raw data can
be achieved using the Microsoft Azure Diagnostics Service
as the platform data retrieval mechanism. The data sources
should be configured and directly retrieved from a set of
Azure Performance Counters [31]. The Microsoft Azure
Diagnostics has to be imported, and the data source in which
the raw data will be stored and later manipulated should be
set. In other platforms like AWS, performance counters can
be obtained from the Performance Monitor Counter [31] in
the same way as Azure Diagnostics.

The second scenario (2) is when there are no Performance
Counters for direct use. Therefore, it is necessary to build
Custom Performance Counters by combining Azure Per-
formance Counters or other Custom Performance Counters.
In this case, the Measurements Engine calculates Custom
Performance Counters, and the Microsoft Azure Diagnostics
Service can manage the result. In the Google app engine,
the Cloud Monitoring API can be used to retrieve monitoring

data and create custom metrics. This scenario represents the
calculation of indirect metrics or Key Performance Indica-
tors by using other direct metrics. It can be applied on any
platform since monitoring data results from measurements
calculated from data gathered using scenarios (1) and (3).

This paper extends the monitoring infrastructure with two
new scenarios and additional data-gathering mechanisms to
improve the infrastructure’s flexibility and interoperability.
The third scenario (3) is when data regarding the service qual-
ity cannot be obtained directly from theAzure platform or any
other platform, and the corresponding cloud service has to be
extended to provide the information needed. It can be done
using wrappers that encapsulate the corresponding cloud ser-
vice. The mechanism used to produce the data needed from
the service is hardcoded in these wrappers, which can also
be considered Custom Performance Counters, and store the
data gathered in any storage solution. (e.g., Azure Storage).
Finally, mechanisms that permit the use of third-party solu-
tion data are currently being developed as a fourth scenario,
shown in Figure 3(3b), to provide interoperability with other
solutions, which can be specialized to monitor certain NFRs
or can provide useful data. When the monitoring directives
have been included in the Runtime Quality Model, they are
used by the Monitoring & Analysis Middleware.

The Monitoring & Analysis Middleware (see Figure 3)
gathers raw data containing the quality information from
the services using one of the scenarios detailed above. The
raw data obtained is stored in an Azure Storage Account.
Two tables are used to store the monitoring information:
(1) the Direct Counter Table in which the raw data is gathered
by the Diagnostics Service directly from the services; and
(2) the Calculated Metrics Table, which contains the calcu-
lated metrics that are generated by the Measurements Engine
and passed to the Analysis Engine (see Figure 3). It is also
necessary to specify the sampling frequency of each Perfor-
mance Counter, which may be different depending on the
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FIGURE 3. Platform-independent data extraction scenarios.

stakeholders’ settings and the period in which the data are
transferred to storage. Since the Runtime Quality Model can
change, it is able to handle its updates at runtime, thus provid-
ing the monitoring infrastructure with flexibility. An Extrac-
tor class has been implemented in the Monitoring & Analysis
Middleware to retrieve data from the tables so as to operate
with it. Finally, the measurement engine provides the analysis
engine with the monitoring data, and the analysis engine
compares the measurements with the thresholds, assessing
the quality of the service.

The main benefits of this Infrastructure are its ability to
monitor application-specific quality requirements and the
flexibility and maintainability of the Monitoring & Analysis
Middleware. It occurs when new NFRs need to be added
or modified or when a different metric operationalization is
needed for a given quality attribute (e.g., using a more precise
calculation formula to determine the probability of failure of
a given cloud service). This advantage exists thanks to the
Runtime Quality Model, which decouples those NFRs that
will be evaluated and states how the calculation formulas
from the Monitoring & Analysis Middleware will be applied.

IV. INSTANTIATING THE INFRASTRUCTURE
It has instantiated the infrastructure design in a specific
cloud platform. Figure 4 shows the monitoring architecture
structure, including its components and their dependencies
with the cloud platforms. Then, each component has been
labeled with an identification number. The SaaS Quality
Model (1) contains the characteristics, sub-characteristics,
attributes, and platform-independent metrics that can be
used during the monitoring configuration. The Monitoring
Requirements Model (2) contains the NFRs to be monitored.

These NFRs have been obtained from the SLA and
additional NFRs. This model is platform-independent.

The third component (3) is the Monitoring Configurator,
which presents a front-end that guides users in configur-
ing the monitoring requirements and obtaining the Runtime
Quality Model. This component is implemented as part of the
infrastructure for gathering the platform-specific parameters
by using the libraries and tools provided by the same platform
in which monitoring is performed. The Monitoring Con-
figurator uses the SaaS Quality Model and the Monitoring
Requirements Model as inputs and parses them. The parser is
probably the most important effort in the platform-dependent
implementation. However, it can be implemented only once
by each platform and offered as libraries for future uses.
The creation of multi-platform libraries can be considered as
future work.

The Monitoring Configurator (3) allows the generation of
the Runtime Quality Model (4), which contains the instruc-
tions to be applied during the monitoring activity. This
model has the prescriptive and descriptive elements of a
model@runtime. For more details about this model, please
refer to [11].

The Monitoring and Analysis Middleware (5) uses the
Runtime QualityModel and calculates the metrics to measure
the requirements specified in the Monitoring Requirements
Model. The Middleware gathers monitoring data by using
several data extraction mechanisms. Since the monitoring
middleware uses specific platform counters and needs to
calculate certain values with platform instructions, it is con-
sidered platform dependent.

The data gathering mechanisms (6) allows retrieving infor-
mation from different sources and feed the monitoring and
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FIGURE 4. Monitoring architecture overview.

analysis middleware. Thesemechanisms access the cloud ser-
vices (7) to gather the information from the services directly
or perform some calculations (e.g., combining direct metrics
for defining indirect metrics, using wrappers to call measure-
ment functions, calling third-party tools). It can be seen as a
virtual layer in which different mechanisms retrieve data. The
database (8) stores the monitoring data gathered from the ser-
vice (7) and the calculated metrics. Finally, the Monitoring &
Analysis Middleware has been extended with a dashboard
that allows users to visualize the monitoring results differ-
ently (9). They can be real-time monitoring charts and/or
reports containing SLA violations.

A. INSTANTIATING THE MONITORING MIDDLEWARE
IN MICROSOFT AZURE
The Monitoring and Analysis Middleware needs to be imple-
mented in the same platform as the cloud services to be
monitored due to instructions that need to be invocated to
gather and manipulate data gathered from the services.

In a previous study [13], we presented a first instantia-
tion of our platform-independent middleware in Azure and
performed a case study on the monitoring of some cloud
services. However, this platform-specific middleware should
be applied to monitor other services, and more importantly,
it should be improved based on the results of these case
studies and the solution should be described in a high-level
of abstraction so that researchers or practitioners can use it in
other contexts. In the following, we describe the caracteristics
of the refined middleware prototype, as well as the definition
of an architecture that clearly describes how the middeware
is structured and operates in practice.

The prototype has been developed to monitor services
deployed in Microsoft Azure [32]. The ecosystem of the
platform has determined the use of tools and language for
building the prototype. Therefore, our prototype uses Visual
Studio. NET [33] and C#. This language offers the advan-
tage to gather and work with XML information and working
with complex object models. Moreover, the middleware uses
Azure Diagnostics [34] as a tool to gather data [13]. This
tool allows gathering information from virtual machines and
instances of these virtual machines, which are executed by a
cloud service, and transfers these monitoring data to a storage
account. In Azure, these data are modeled as class instances
named Performance Counters [31]. A performance counter
contains low-level metrics, and it is classified by using a
name, which represents the source of information.

The monitoring middleware prototype was built to support
different characteristics that MoS@RT should offer to its
users: i) flexibility to support themonitoring of different types
of NFRs and high-level QoS characteristics; ii) interoperabil-
ity to allow the retrieving and manipulation of data gathered
from different sources and now including a newmechanism to
gather data from third parties (e.g., monitoring tools, APIs);
iii) flexibility to change or define new monitoring require-
ments at runtime.

The middleware architecture for Microsoft Azure, shown
in Figure 5, includes the following classes: (i) Monitor Class:
this class gathers raw data and applies the metrics using the
gathered data. It is the central and more important class;
(ii) Metric: this class allows the representation of a
measurable metric by using an operationalization;
(iii) IOperationalization: it is an interface that defines the
calculation methods the operationalizations. It is possible
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FIGURE 5. Middleware architecture for microsoft azure.

that certain metrics need a complex measurement function
(e.g., downtime which needs to use conditionals and
stores historical data to make comparisons); (iv) Arithmetic
Operationalization: this class uses the NCalc library to
make calculus defined by the operationalizations and
send to the extractor the appropriate data to make
these calculi; (v) DowntimeOperationalization: this class
makes a custom measurement, it is necessary to define
how data will be generated from particular needs of
measurement.

As these values cannot be gathered directly from the per-
formance counters of the platform, it can be considered as
a second scenario where direct metrics are used to calcu-
late indirect metrics; (vi) Low Level Value: this class rep-
resents raw data obtained from the service to be monitored;
(vii) IExtractor: this is an interface which defines the gather-
ing methods of raw data from different sources; (viii) Wad-
PerformanceCounterExtractor: this class uses the platform
counters of the service to be monitored to extract monitor-
ing raw data; (ix) DataAccessLayer: this class allows the
access to the data layer to store the monitoring and calculated
data in a platform independent way; (x) Istorage: this is an
interface that defines the access methods to the databases
which stores the value of the metrics; (xi) StorageMetric-
sController: this is the implementation of the Istorage inter-
face; (xii) Queue Manager: this class allows the access to an
API in order to control the Runtime Quality Model; (xiii)
ICounterConfigurator: this is an interface which allows the
modeling of the methods for the dynamic configuration of
the performance counters, if they are enabled for program-
ming; (xiv) AzurePerformance CounterConfigurator: Uses
the Performance Counters enabled in the Microsoft Azure
Platform. This class activates and deactivates the data extrac-
tion depending on the needs stated by the Runtime Quality
Model.

B. OPERATION OF THE MONITORING MIDDLEWARE
IN MICROSOFT AZURE
This sub-section presents the operation of the monitor-
ing middleware in Microsoft Azure. Firstly, the monitor
is deployed and executed as a Worker Role instance of
Microsoft Azure. Then, an object Monitor is created, which
searches the Runtime Quality Model with which it is possible
to initialize the service’s monitoring. The Runtime Quality
Model is loaded and managed by the Queue Manager class
of Microsoft Azure.

When the Runtime Quality Model is loaded, this model is
instantiated in a RuntimeModel object that allows accessing
the configuration instructions. The operationalizations of the
metrics (calculation formulas) show the performance coun-
ters that will be used to perform the measurements needed to
evaluate the monitoring requirements. To do this, the moni-
toringmiddleware uses the appropriate ICounterConfigurator
instance (e.g., AzurePerformance Counter Configurator) to
activate the counters needed to monitor a given service. Then,
the monitor begins to calculate the metrics contained in the
Runtime Quality Model. The structure used to specify the
calculation formulas (measurement functions) is compatible
with the NCalc library [35], allowing parse any expression
and evaluating the result, including static or dynamic param-
eters and custom functions. This solution allows the calcula-
tion of the metrics at runtime. Figure 6 shows an example of
a metric operationalization in XML. A calculation formula
may be composed of one or more operators and operands
that need to be mapped to specific cloud platform parameters.
This mapping is performed by an instance of IExtractor that
in Microsoft Azure corresponds to the WADPerformance-
CounterExtractor, which searches for the appropriate value
for the operands. When the values for all the operands are
obtained, NCalc calculates the metric value that will be stored
in the database. The IStorage instance selected during the
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FIGURE 6. Example of a metric operationalization in XML.

configuration indicates which database will be used to store
themetrics. For this particular instantiation, it is used the table
CalculatedMetrics that has been created in theAzure Storage.

This process is done iteratively for each monitoring
requirement. When there is a new requirement or a change
in an existing requirement in the Runtime Quality Model
(RuntimeModel), the Monitor reloads this model and
re-calculate the modified calculation formulas. Therefore,
the changes are applied at the configuration phase avoiding
any change in implementing the monitoring infrastructure.

V. EVALUATION METHOD
The evaluation method proposed in this paper is based on the
adaptation of the Method Evaluation Model (MEM) [36] for
its use with MoS@RT. MEM provides a theoretical model
and an associated measurement instrument for evaluating
information systems (IS) design methods. It is based on the
Technology Acceptance Model (TAM) that combines two
different but related dimensions of method ‘‘success’’: actual
effectiveness and practice adoption. Therefore, it results
appropriate to evaluate the likelihood of acceptance and
the actual impact of a cloud services monitoring methods
in practice. The likelihood of acceptance is indicated for
recently-proposed methods, while the actual impact can only
be measured for well-established methods [37].

A. THE METHOD EVALUATION MODEL (MEM)
MEM’s main contribution incorporates two different
method success aspects: actual efficacy and actual usage
(see Figure 7). It means that the adoption of a method in
practice depends not only on whether it is actually effec-
tive (pragmatic success) [37] but also whether the users of
the method perceive it to be effective (perceived success).

FIGURE 7. The method evaluation model (MEM).

Both aspects must be considered when evaluating cloud
monitoring methods. Figure 7 shows the model’s constructs,
along with the hypothesized causal relationships among the
model’s constructs.

In the MEM, efficacy is defined as a separate construct,
different from efficiency and effectiveness. The efficacy
construct is derived from Rescher’s notion of pragmatic
success [38], which is defined as the efficiency and effec-
tiveness with which a method achieves its objectives. Eval-
uating a method’s efficacy requires measuring both the effort
required (efficiency) and the results’ quality (effectiveness).

The MEM constructs are based on the Technology Accep-
tance Model (TAM) [15], a well-known and thoroughly
empirically validated model for information technologies
evaluation. The constructs of the MEM are: actual efficacy
and perceived efficacy.

Actual Efficacy has two performance-based variables:
i) Actual Efficiency: the effort required to apply a method,
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and ii) Actual Effectiveness: the degree to which a method
achieves its objectives. This construct is related to the quality
of the artifact(s) obtained by applying the method. According
to Rescher [38], all methods are intended to achieve certain
objectives. Rescher defines a method as ‘‘a collection of rules
and procedures designed to assist people in performing a
particular task.’’ Different objectives define different types
of methods. It means that specific dependent variables will
need to be defined for each class of methods to measure
performance regarding its specific objectives.

Perceived Efficacy has two perception-based variables:
• Perceived Ease of Use (PEOU): the degree to which a
person believes that using a particular method would be
free of effort. PEOU represents a perceptual judgment
of the effort required to learn and use a method.

• Perceived Usefulness (PU): the degree to which a
person believes that using a particular method would
enhance his/her job performance. This variable repre-
sents a perceptual judgment of the method’s effective-
ness. There is a causal relationship in the model that
indicates that PU can be determined by PEOU.

• Intention to Use (ITU): the extent to which a person
intends to use a particular method. This variable repre-
sents a perceptual judgment of the method’s efficacy–
its cost-effectiveness. This variable is used to predict the
likelihood of a method being accepted in practice. The
hypothesized causal relationships suggest that perceived
ease of use and perceived usefulness directly affect
intentions to use a method.

• Actual Usage: a behavior-based variable, defined as the
extent to which a method is used in practice. It measures
the actual impact of a method in practice. According to
the hypothesized causal relationship, actual usage will
be determined by the intention to use.

B. ADAPTING MEM TO EVALUATE MoS@RT
The first step involved in adapting MEM is to define the
specific objectives of the method to be evaluated. The general
constructs of MEM can then be instantiated into concrete
dependent variables based on these objectives. We believe
that cloud monitoring methods such as MoS@RT have three
primary objectives:
• To support the configuration of the service monitoring.
This objective involves several activities: the specifica-
tion of NFRs to be monitored, the selection of appropri-
ate quality attributes and metrics, and the specification
of how raw data from the services will be obtained.
Several approaches show that a monitoring configura-
tion phase is necessary to specify how these activities
will be performed (e.g., [8], [16], 39], [40]).

• To support the service monitoring. This objective
involves gathering data, performing the measurements,
and assessing the quality of services based on the mon-
itoring configuration. These activities can be performed
automatically by a monitoring engine (e.g., middleware,
agents) which is used by the majority of the existing

monitoring solutions (e.g., [4], [39], [41]). Data gath-
ering is performed by means of performance coun-
ters, wrappers, third part APIs, and indirect metrics
(see Figure 4 (6)).

• To report the monitoring results. This objective is con-
cerned with the presentation of the monitoring results
through graphic charts or SLA reports [13], [39], [42].

In this study, we focus on the first objective (i.e., monitor-
ing configuration) using a particular monitoringmethod since
it is related to essential tasks for monitoring cloud services.
Also, these are the only tasks that require user intervention.
Furthermore, the purpose of MoS@RT is to raise the level
of abstraction in the definition of the service monitoring
configuration and provide the monitoring infrastructure with
flexibility to allow the monitoring requirements or the metric
operationalizations of these requirements to be changed at
runtime without the modification of the underlying infras-
tructure. We have accomplished these goals by using models
at run-time. Therefore, the most critical activity to be eval-
uated is the monitoring configuration since it is related to
the generation of the models at runtime. Note that once the
configuration is defined indicating what is to be monitored
and how (i.e., which metrics and measurement functions are
to be used), the calculations can be performed automatically
by amonitoring engine (e.g., theMonitoring&AnalysisMid-
dleware in the case of MoS@RT). This means that although
the objectives 2 and 3 are relevant from a practical point
of view, they are less relevant from a scientific point of
view. Nevertheless, we validated that the models at runtime,
generated by the participants, were correctly processed by the
Monitoring & Analysis Middleware.

Evaluating the efficacy of MoS@RT involves measuring
the effort required to apply the method (input) and the quality
of the monitoring results (output). The effort required to
understand and/or apply the method (i.e., actual efficiency)
can be measured using several measures, such as time or
cognitive effort. The quality of the method’s result (actual
effectiveness) can be measured by evaluating the monitoring
results produced using the method (i.e., whether the moni-
toring configuration is correctly performed). The following
performance-based variables are therefore used to measure
the participants’ actual efficiency and actual effectiveness as
regards configuring the NFRs to be monitored:
• Actual effectiveness: the ratio between the number of
NFRs correctly configured and the total number of NFRs
to be configured.

Effectiveness =
# NFRs correctly configured
Total # NFRs to be configured

(1)

• Actual efficiency: the time spent configuring the total
number (n) of NFRs to be monitored.

Efficiency =
∑n

i=1
Time Configuring NFRi (2)

Note that the configuration of the NFRs to be
monitored involves several tasks: selection of quality
requirements, selection of quality attributes, selection of
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platform-independent metrics, mapping the platform-
independent metrics to platform-specific metrics (using spe-
cific measurement counters from the selected cloud platform)
and generation of the runtime quality model that contains all
the configuration directives. These tasks are further explained
in Section VI(B).

In order to measure the perception-based variables,
we relied on an existing measurement instrument for the
MEM, although we adapted this instrument for use with
MoS@RT (basically by rewording statements). Figure 8(a)
shows how the MEM was operationalized to evaluate our
proposed method in terms of its utility to configure the
monitoring of cloud services. To measure each of the three
main constructs (PEOU, PU, and ITU), we defined sets of
questions based on the items shown in Table 1. Figure 8(b)
shows the theoretical model proposed to evaluate the method.
Basically, we use performance-basedmeasures as influencing
factors for perceived-based variables. According to thisMEM
adaptation, the likelihood of MoS@RT being accepted in
practice can be predicted by testing the following hypotheses:
• H10: MoS@RT is perceived to be difficult to use to con-
figure the monitoring of cloud services, H11 = ¬H10

• H20: MoS@RTis not perceived to be useful to config-
ure the monitoring of cloud services, H21 = ¬H20

• H30: There is no intention to use MoS@RT to con-
figure the monitoring of cloud services in the future,
H31 = ¬H30

These hypotheses relate to a direct relationship between
using this monitoring method and the users’ performance,
perceptions, and intentions. The evaluation model also pro-
poses a set of hypotheses that indicate causal links between
dependent variables (such as performance affecting percep-
tions or perceptions influencing intentions). These hypothe-
ses are meant to validate the structural part of the MEM:
• H40: PEOU will not be determined by efficiency.
H41 = ¬H40: The rationale for this hypothesis is
that efficiency represents a performance-based mea-
sure of actual efficiency, while PEOU represents a
perception-based measure of efficiency. According to
MEM, efficiency measures the effort required to apply
the method, which should determine perceptions of the
effort required.

• H50: PU will not be determined by effectiveness. H51=
¬H50: The rationale for this hypothesis is that effective-
ness represents a performance-based measure, while PU
represents a perception-based measure of effectiveness.
According to MEM, perceptions of effectiveness should
be determined by actual effectiveness.

• H60: PU is not determined by PEOU. H61 = ¬H60:
This hypothesis is taken from the TAM, in which PEOU
was found to have a direct influence on PU.

• H70: ITU is not determined by PEOU. H71 = ¬H70:
This hypothesis is taken from the TAM, in which PEOU
was found to influence ITU.

• H80: ITU is not determined by PU. H81 =

¬H80: This hypothesis is taken from the TAM,

FIGURE 8. (a) Survey instrument and (b) Theoretical model.

in which PU was found to have a direct influence
on ITU.

The evaluation model consequently denotes that the accep-
tance of MoS@RT in practice can be predicted on the basis
of particpants’ perceptions of their ease of use and useful-
ness. Moreover, it is important to examine and measure the
correlation between intention to use and actual usage when
employing models based on TAM. However, the actual usage
measures actual impact in practice (as opposed to potential
impact, defined by Intention to Use). It may be evaluated
by employing surveys of practice (it cannot be used to eval-
uate newly-proposed methods but only in assessing estab-
lished ones). Table 1 shows the items defined to measure the
perception-based variables. These items were combined in a
survey with 14 questions.

The survey was used to gather the participants’ perceptions
with regard the utility of MoS@RT to configure the mon-
itoring of cloud services. The items were formulated using
a 5-point Likert scale, with the opposing-statement ques-
tion format. Various items within the same construct group
were randomized to prevent systemic response bias. PEOU is
measured using five items in the survey. PU is measured
using six items in the survey. Finally, ITU is measured using
four items in the survey. Moreover, to ensure the balance of
items, approximately half the questions were negated to avoid
monotonous responses. The measurement instrument can be
accessed at: http://goo.gl/forms/JxMEh4TY5t.

VI. EXPERIMENT DESIGN
As there is currently no standard or widely accepted cloud
monitoring method, it is not possible to evaluate MoS@RT
against a control method. Therefore, it has been decided to
carry out a quasi-experiment to evaluate MoS@RT and test
the evaluation method proposed in Section 5 empirically.

A quasi-experiment is an empirical inquiry, similar to an
experiment, in which the assignment of treatments to subjects
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TABLE 1. Survey for measuring the perception-based variables.

cannot be based on randomization but emerges from the
characteristics of the subjects or objects themselves [43].

The quasi-experiment was designed according to the
experimental process proposed byWohlin et al. [43]. Its main
goal was to empirically evaluate the perceived efficacy of
MoS@RT when used by a group of users to configure the
monitoring of a cloud service in the Azure platform. To this
end, the monitoring method and the underlying infrastructure
were applied to predict the likelihood of acceptance of the
monitoring configuration activity as part of the method in
practice (i.e., the monitoring configuration task described
in Section 3.1.). We believe that a perception-based study
can help us understand users’ needs to refine the monitoring
configuration activity, which is the only part of the method
that involves human intervention.

A. EXPERIMENT GOAL
According to the Goal-QuestionMetric (GQM) paradigm [8],
the goal of the experiment is defined as follows: Analyze
the monitoring configuration specifications obtained with
MoS@RT for the purpose of assessing them with respect to
the effectiveness, efficiency, perceived ease of use, perceived
usefulness and intention to use of participants when applying
the method to configure the monitoring of a cloud service
from the point of view of novice cloud software engineers in
the context of third-year Computer Science undergraduates at
the Universitat Politècnica de València.

The research questions addressed by the experiment are:
• RQ1: Is MoS@RT perceived to be both easy to use and
useful to configure the monitoring of cloud services?

If so, are the users’ perceptions resulting from their
performance when configuring the quality requirements
to be monitored?

• RQ2: Is there an intention to use MoS@RT to config-
ure the monitoring of cloud services in the future? If
so, is the intention to use it a result of the perceptions
experienced by the participants when configuring the
quality requirements to be monitored?

These research questions were evaluated by testing a num-
ber of hypotheses (see Figure 6(b)). The following hypotheses
addressed the first research question:
• H10: MoS@RT is perceived to be difficult to use to con-
figure the monitoring of cloud services. H11 = ¬H10

• H20: MoS@RT is not perceived to be useful to config-
ure the monitoring of cloud services. H21= ¬H20

• H40: Perceived Ease of Use is not determined by
Efficiency. H40 = ¬H41

• H50: Perceived Usefulness is not determined by
Effectiveness. H50 = ¬H51

The second research question was addressed through the
formulation of the following hypotheses:
• H30: There is no intention to use MoS@RT to con-
figure the monitoring of cloud services in the future.
H30 = ¬H31

• H60: Perceived Usefulness is not determined by Per-
ceived Ease of Use. H60 = ¬H61

• H70: Intention to Use is not determined by Perceived
Ease of Use. H70 = ¬H71

• H80: Intention to Use is not determined by Perceive
Usefulness. H80 = ¬H81.

B. EXPERIMENT PLANNING
This section describes all the activities performed when plan-
ning the experiment.

1) CONTEXT SELECTION
The context is determined by the monitoring method to be
evaluated, the cloud service selection to be evaluated, and the
selection of participants.

The monitoring method to be evaluated is the cloud
Monitoring Services at RunTime (MoS@RT) method. Here,
the focus is on the Monitoring Configuration activity, which
is used to generate the Runtime Quality Model. This has
been considered as a primary activity because of the need
for user interaction with the monitoring infrastructure. The
participants, therefore, performed the Monitoring Config-
urator role (see Figure 9), which includes the following
tasks: (i) Quality Attribute Selection, (ii) Measure Selection,
(iii) Metric Mapping, and (iv) Monitoring Model Generation.
These subjects should preferably possess technical expertise
on Cloud Computing platforms and knowledge about soft-
ware metrics. This is necessary in order to understand the
monitoring configuration activity and to be able to properly
select the quality attributes andmetrics from the SaaS Quality
Model and establish the mappings of the metrics operands
with the counters available in a specific cloud platform.
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FIGURE 9. Monitoring configuration task.

It is assumed that the Monitoring Configurator would use
the Monitoring Requirements Model, provided by the Moni-
toring Planner (see Figure 9), which includes the NFRs con-
tained in the SLA and the additional NFRs to be monitored.
The participants were also provided with the characteristics,
sub-characteristics, quality attributes, and metrics included
in the SaaS Quality Model so they could select the quality
attributes and metrics needed to evaluate the NFRs specified
in the SLA. The participants specifically applied theMonitor-
ing Configuration tasks shown in Figure 9 to monitor one of
the services related to a specific domain. When the monitor-
ing configuration was completed, the participants generated
the Runtime Quality Model used by theMonitoring &Analy-
sis Middleware (see Figure 1) to monitor the service’s quality
automatically.

The cloud service to be evaluated belongs to an online
auction site. An online auction is a process of buying and
selling goods or services by offering them up for bid and
then selling the item to the most appropriate bidder through
the Internet. These sites allow thousands of users to make
bids and should ensure high levels of reliability, availability,
elasticity, and accuracy. Auction sites allow bids, which come
in many different formats, but the most popular are ascending
and descending bids. The service to be evaluated in this exper-
iment is related to a site for ascending bids. These sites have
proliferated on the Internet and represent a clear example
of what we wish to show concerning the necessary quality
requirements that can be monitored using our approach. The
process is the following: (1) Online site users should sign-up
and buy credits; (2) A user interested in a particular product
uses credits to place a bid; (3) A user waits for the timer
to reach 0 (there is a clock, which counts down to zero);
(4) If there is another user who is also interested in the
product andwishes to buy it, bids and the time restarts; finally,
(5) If no one else bids at the auction, it ends, and the

product is awarded to the last user to bid, who is the
winner.

Many sites (e.g., MadBid, QuiBids, DealDah) specialize
mainly in bids for electronic products, jewelry, home prod-
ucts, cars, among others. Here, a set of cloud services prod-
ucts is offered to provide these site owners with the NFRs
needed for this domain.

Of the services that these sites offer (e.g., Inventory Ser-
vice, Auction Service, Order Bids Service, User Service,
Incident Handling Service, and Payment Service), we have
chosen the Auction Service, which is the most important and
critical service. The high level of quality that it demands
makes this experiment an interesting problem to be solved.

Specifically, the monitoring configuration consists of three
NFRs to be monitored: Reliability, Availability and Latency.
The Monitoring Requirements Model is provided to the par-
ticipants who plays the Monitoring Planner role. This model
specifies the NFRs and the metrics that should be used as well
as the thresholds to be considered. For example, the reliability
of the service will be measured by the number of defective
operations per million using (3) and the service should have a
maximumof 10 defective operations permillion, representing
a reliability of 99.999%.

DPM =
Operations Attempted − Operations Successful

Operations Attempted
(3)

Finally, 58 participants were selected. All of them
were Computer Science undergraduates at the Universitat
Politècnica de València. We took a convenience sample con-
sisting of two groups of students attending a course on Soft-
ware Quality in the Autumn of 2018 (the morning group
consisted of 37 participants and the afternoon group of
21 participants). These students have been selected because
of their strong knowledge of quality models and metrics
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(they defined quality models as part of the course). They
received training in cloud computing platforms and cloud
monitoring, and the experiment was organized as a compul-
sory part of the course.

2) EXPERIMENTAL TASKS
The quasi-experiment consisted of three tasks.

• Task 1: The categorization of three NFRs to be mon-
itored (i.e., reliability, availability and latency) and the
selection of metrics and operationalizations. For each
NFR, the participants had to use the SaaS Quality Model
to select the appropriate quality characteristic, attribute,
and platform-independent operationalization of a met-
ric, which would allow them to evaluate that particu-
lar NFR. The metric selected had to be equivalent to
the metric expressed in the Monitoring Requirements
Model, which describes the NFRs to be monitored. The
metrics and operationalizations involved in this task
were platform-independent, and a prototype of the mon-
itoring configurator supported the task.

• Task 2: The selection of the most appropriate
platform-dependent formula for each metric selected in
Task 1. It allowed the mapping to be made between
the generic definition of the metric (i.e., measurement
function) and the platform’s low-level parameter coun-
ters, allowing raw data to be gathered from the service
and their monitoring at runtime. Here, a list of platform
counters from the Azure platform was displayed on the
configurator, consequently allowing the participants to
build the calculation formula (measurement function)
with which to evaluate each NFR to be monitored. For
example, when building the platform-specific metric for
the formula in (3), OperationsAttempted is substituted
by \ASP.NET Applications(∗)\Requests Total which is
the specific counter from the Azure platform that allows
measuring this concept.

• Task 3: The modification of an NFR owing to an
SLA renegotiation. The participants had to analyze the
modified NFR to determine the changes in categoriz-
ing the attributes and metrics (Task 1) and the needed
platform-dependent metrics and low-level parameter
counters from the platform (Task 2).

3) VARIABLES
Table 2 shows the perception-based dependent variables of
interest in the study, which were used to evaluate MoS@RT
in practice.

These variables were measured using a Likert scale ques-
tionnaire with a set of 14 closed questions (i.e., 5 for PEOU,
6 for PU, and 3 for the ITU), as shown in Table 1. The
closed questions were formulated by using a 5-point Likert
scale. The aggregated value of each subjective variable was
calculated as the arithmetical mean of the answers to the ques-
tions associated with each subjective, dependent variable.
Table 3 shows the performance-based variables of interest

TABLE 2. Perception-based dependent variables.

TABLE 3. Performance-based dependent variables.

(see Section 5.2) and the formula used to determine their
values.

Asmentioned previously, the experiment consisted of three
tasks. In the first and second tasks, the participants configured
the monitoring of three NFRs. Each NFR was regarded as
one-third of the total value of each task. Therefore, the first
and second task’s effectiveness is the sum of the corrected
performed actions with each NFR. The effectiveness of the
third task can range from 0-1, signifying that the total effec-
tiveness is the sum of the corrected tasks performed divided
by the total number of tasks (i.e., three). Finally, as the
MEM [36] specifies, efficiencywasmeasured as the total time
spent configuring each NFR in each task performed by the
participants.

4) INSTRUMENTATION
Multiple documents were defined as instrumentation for the
quasi-experiment.1 The documentation included: (i) a book-
let that contained the Auction Site’s description with the
service to be monitored, the NFRs to be monitored, and the
three tasks to be performed by the participants. The subjects
were asked to write down the time before starting to solve
the tasks; (ii) a detailed annex as support, which described
each NFR to be monitored; (iii) the SaaS Quality Model;
(iv) a list of parameter counters provided by the Azure plat-
form; (v) a guide to MoS@RT to be used during the experi-
ment as reference material; (vi) the monitoring configurator;
and (vii) the survey, which contained both the closed ques-
tions in order to analyze the subjective variables and the open
questions to enable the subjects to express their opinion about
the method and the supporting infrastructure.

Configuration data were collected by using the moni-
toring configurator. The time spent on each task, and the
data obtained from Task 3 were collected using the booklet
described above. Finally, the questionnaire data were col-
lected online.

1The experiment material is available at: http://goo.gl/tiFIU2
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FIGURE 10. Box-plots for PEOU, PU, and ITU variables.

C. OPERATION AND EXECUTION
Three training sessions of 120 minutes each were performed
before the experimental session to present cloud comput-
ing and monitoring concepts and train the participants in
the use of MoS@RT. The training included the use of the
Monitoring Configurator from the Monitoring & Analysis
Middleware and the tasks involved in the configuration
process. As a training example, we used the Open Refer-
ence Case (ORC) proposed in [41], which was used as an
open-source demonstrator to highlight the achievements of
the EU project SLA@SOI. The ORC is an extension of the
CoCoMe implementation [44], which provides a service-
oriented retail solution that can be used in a supermarket
trading system to handle the sales and stocking process.
The set of services was deployed as SaaS on the Microsoft
Azure platform. During the training, the participants used the
Monitoring Configurator to configure the monitoring of two
NFRs (i.e., efficiency and service accuracy) for the Inventory
service.

After the training sessions, the execution of the quasi-
experiment took place. The experiment execution was con-
trolled, meaning that no interactions took place between the
participants. The experiment was conducted in two sessions
(i.e., one session with the morning group and another with
the afternoon group). Each session had an expected duration
of 90 minutes. However, the participants were allowed to
finish the experiment even when this time was up to mitigate
a possible ceiling effect. The experimenters clarified any
questions that arose during the experimental sessions. After
the experimental tasks, the participants were asked to fill in
the post-experiment survey questionnaire shown in Table 1.

Finally, the experimenters analyzed the definition of the
models at runtime generated by the participants and per-
formed some tests to ensure the validity of the configurations
generated by the participants. The tests consisted in using the
generated models at runtime as input to the Monitoring &
Analysis middleware. Since all the generatedmodels could be
read and processed correctly by themonitoring infrastructure,
they were all considered as valid.

VII. ANALYSIS AND INTERPRETATION
We used statistical tests, descriptive statistics, and boxplots to
analyze the data collected. Since the two groups’ participants
had the same profile (see Section 6.2.1), we combined the
data into one group. The data were analyzed according to
the hypotheses stated. The results were obtained by using
SPSS v20 with an α = 0.05.

A. ANALYSIS OF USER PERCEPTIONS
Figure 10 shows the boxplots for each the PEOU, PU, and
ITU variables in which we can see that the mean for each
variable is higher than the Likert neutral value (since our
variables are calculated as the mean of 5 points Likert-scale
questions, the neutral value is 3).

The boxplots show some abnormal data-points (i.e., partic-
ipant_id= 27, 42, 53 y 56), which correspond to participants
that did not attend the training sessions. There, participants
were removed from the subsequent analysis since they had
not followed the experimental protocol. Once the aforemen-
tioned data-points had been removed, the Shapiro-Wilk test
was applied to check whether the data were normally dis-
tributed to select which test would be used to check hypothe-
ses H1, H2, and H3.

Table 4 shows the Shapiro-Wilk test results for the vari-
ables being studied. Statistical tests were applied to ver-
ify the hypotheses by comparing whether the mean of the
responses to the questions related to a given variable was
significantly higher than the Likert neutral value. For the
variables PU and ITU, which have a normal distribution
(p > 0.05), the hypotheses were tested by applying the one-
tailed parametric t-test. In contrast, the variable PEOU, which
does not have a normal distribution (p < 0.05), was tested
by applying the one-tailed one-sample Wilcoxon test with
a test value equal to three the Likert neutral score in the
questionnaire. The test results allowed us to reject the null
hypotheses H10, H20, and H30, signifying that the partici-
pants perceived MoS@RT to be easy to use and useful, and
they also expressed their intention to use this method if they
have to monitor cloud services in the future. These results are
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TABLE 4. Shapiro-wilk test for the perception-based variables.

supported by several positive comments that the participants
gave in the open questions of the questionnaire: (e.g., ‘‘I
never monitored cloud services before but this method pro-
vided me useful guidelines on how to perform the monitoring
configuration of cloud services,’’ ‘‘I found the method easy
to use − although more information about the meaning of
the performance counters from the Azure platform could be
provided,’’ ‘‘I found the method really useful. I especially
liked the SaaS Quality Model and the information about
quality attributes and metrics that it provides’’.

B. ANALYSIS OF USER PERFORMANCE
The participants’ effectiveness and efficiency were measured
when applying MoS@RT in practice. Table 5 presents the
descriptive statistics for the performance-based variables.
Note that the outliers identified previously have been elimi-
nated from this analysis. The total effectiveness was, on aver-
age, 91.26%, indicating that almost all the participants were
able to perform the monitoring configuration for a set of
quality requirements correctly.

TABLE 5. Descriptive statistics for the performance-based variables.

The efficiency was calculated as the effort required (in
minutes) to apply a method [36]. The results show that the
participants’ efficiency ranged from 14 to 56 minutes. We are
aware that people’s efficiency may vary considerably when
configuring a service monitorization. It depends on many
factors such as experience, the quality of the specifications,
and tools. Notwithstanding these limitations, the purpose here
was to collect this data to test whether the participants’ per-
ceptions were driven by their performance. These results also
provided us with some bases to understand the performance
of people using the method.

C. CAUSAL RELATIONSHIPS ANALYSIS
This section aims to validate the adapted evaluation method.
This has been done by testing the structural part of the pro-
posed theoretical model (derived from the MEM) in terms
of the causal relationships between its constructs, with the
exception of Actual Usage. In particular, this validation
tests the predictive and explanatory power of the adapted

evaluation method in predicting the likelihood of acceptance
of MoS@RT.

To do this, we have chosen regression analysis to evaluate
the adapted evaluation model since the hypotheses to be
tested are causal relationships between continuous variables.
The following levels of significance were used [32]: Not
significant: p > 0.1; Low: p < 0.1; Medium: p < 0.05;
High: p < 0.01; Very high: p < 0.001.

1) EFFICIENCY VS. PERCEIVED EASE OF USE
Hypothesis H4 was tested to verify whether the perceptions
of Perceived Ease of Use (PEOU) are actually determined by
Efficiency when applying the method. A simple regression
model was built to perform this analysis in which efficiency
was used as the independent (predictor) variable and PEOU as
the dependent (predicted) variable. The regression equation
resulting from the analysis is as follows:

PEOU = 4.044+ (−0.17) ∗ Efficiency (4)

The regression model was found not to be significant,
with p > 0.1 (see Table 6). The R2 statistic shows that
the Efficiency variable is able to explain only 3.2% of the
variance in PEOU, indicating that the participants’ actual
efficiency does not influence their perceptions of ease of use.
These results do not allow rejecting H40 and accepting its
alternative hypothesis, meaning that it has been empirically
corroborated that PEOU is not determined by Efficiency.

TABLE 6. Simple regression between actual efficiency and perceived ease
of use.

2) EFFECTIVENESS VS. PERCEIVED USEFULNESS
H5 was tested to verify whether Perceived Usefulness (PU)
perceptions are actually determined by the participants’
Effectiveness. Similarly, a simple regression model was built
in which effectiveness was used as the independent variable,
whereas PUwas used as the dependent variable. The equation
obtained from the model is as follows:

PU = 2.808+ 1.123 ∗ Effectiveness (5)

The regression model has a medium significance, with
p < 0.05 (see Table 7). The R2 statistic shows that Effec-
tiveness is able to explain 10.6% of the variance of PU,
indicating that certain perceptions regarding PU are deter-
mined by the participants’ effectiveness when applying the
method. As expected, the regression coefficient for effective-
ness was positive, meaning that the higher the effectiveness
values, the higher the PU values. These results allow us to
reject H50 and accept its alternative hypothesis, meaning that
we have empirically corroborated that PU is determined by
effectiveness.
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TABLE 7. Simple regression between actual effectiveness and perceived
usefulness.

3) PEOU VS. PERCEIVED USEFULNESS
H6 was tested to verify whether Perceived Usefulness (PU)
perceptions are actually determined by Perceived Ease of
Use (PEOU). Similarly, we built a simple regression model
in which the PEOU variable was used as the independent
variable, whereas PUwas used as the dependent variable. The
equation obtained from the regression model is as follows:

PU = 2.739+ 0.294 ∗ PEOU (6)

The regression model was found to be highly significant,
with p < 0.01 (see Table 8). The R2 statistic shows that
the Perceived Ease of Use variable is able to explain 16.9%
of the variance in PU, indicating that certain perceptions
regarding PU are determined by the PEOU. These results
allow rejecting H60 and accepting its alternative hypothesis,
meaning that we have empirically corroborated that PU is
determined by PEOU.

TABLE 8. Simple regression between perceived ease of use and
perceived usefulness.

4) INTENTION TO USE VS. PERCEIVED USEFULNESS
H7 was tested to verify whether Intention to Use (ITU)
perceptions are actually determined by Perceived
Usefulness (PU) when applying the method. To perform this
analysis, we built a simple regression model in which the
PU variable was used as the independent variable, whereas
ITU was used as the dependent variable. The equation
obtained from the model is as follows:

ITU = 0.553+ 0.849 ∗ PU (7)

According to Table 9, the regression model was found to
be highly significant, with p < 0.01. The R2 statistic shows
that the PU variable is able to explain 44.6% of the variance
in ITU, which presents a high value given that there could be
other factors that influence the intention of the participants
of using a method. These results allow rejecting H70 and
accepting its alternative hypothesis, meaning that we have
corroborated that ITU is determined by PU.

5) INTENTION TO USE VS. PERCEIVED EASE OF USE
H8 was tested to verify whether Intention to Use (ITU)
is actually determined by Perceived Ease of Use (PEOU).

TABLE 9. Simple regression between perceived usefulness and intention
to use.

Similarly, we built a simple regression model in which the
PEOUvariable was used as the independent variable, whereas
ITU was used as the dependent variable. The equation
obtained from the model is as follows:

ITU = 2.304+ 0.405 ∗ PEOU (8)

According to Table 10, the regression model was found
to be highly significant, with p < 0.01. The R2 statistic
shows that the PEOU variable can explain 19.7% of the
variance in ITU, indicating that the participants’ intentions
to use the method in the future were determined by their
perceptions of the method’s ease of use. These results allow
rejecting H80 and accepting its alternative hypothesis, mean-
ing that we have empirically corroborated that ITU is deter-
mined by PEOU.

TABLE 10. Simple regression between perceived ease of use and
intention to use.

D. DISCUSSION
The following global conclusions were obtained for each
research question:

RQ1: ‘‘Is MoS@RT perceived to be both easy to use and
useful to configure the monitoring of cloud services? If so,
are the users’ perceptions a result of their performance when
configuring the quality requirements to be monitored?’’ The
majority of the participants found MoS@RT quite useful and
easy to use when performing the configuration tasks, which
are directly related to user interaction. This is supported by
their effectiveness when performing the configuration-related
tasks, which was very high (91.26%). Therefore, it was found
support for hypotheses H1 and H2 related to the participants’
perceptions about the method’s ease of use and usefulness
regarding the configuration of the service monitoring. This
result encourages us to continue improving MoS@RT to be
applied in industrial contexts for supporting the monitoring
configuration of high-level QoS attributes for SaaS, comple-
menting the existing commercial monitoring tools provided
by cloud platforms which are more focused on supporting the
monitoring of low-level QoS attributes.

Concerning the influence of the users’ performance on
their perceptions, it has been found that the perceptions
on ease of use were not determined by the participants’
efficiency (H4 was not confirmed). A possible reason for
this could be that the participants perceived some usability

VOLUME 9, 2021 55915



P. Cedillo et al.: Empirical Evaluation of a Method for Monitoring Cloud Services

problems with the monitoring configurator. Several partic-
ipants mentioned this fact in their answers to the open
questions of the questionnaire. However, at the time the
experiment was performed, the configurator was an early
prototype that has been substantially improved since then.
In general, the participants provided helpful suggestions,
which are being taken into account for improving the tool.
Nevertheless, this causal relationship should be analyzed in
further replications with other participants. It has also been
planned to investigate the influence of other variables that
could influence the participants’ perceived ease of use.

On the other hand, the results indicated that the perceptions
of usefulness were greatly determined by the participant’s
effectiveness (H5). A possible reason for this could be the
fact that the monitoring method and configurator guided the
participants in properly specifying how a clause of the SLA
(expressed as NFRs) can be mapped into specific quality
attributes, metrics and how these metrics could be measured
at runtime by using performance counters provided by the
selected cloud platform. The participants indicated in the
questionnaire that they found the SaaS Quality Model quite
useful for monitoring application-specific quality require-
ments as it guides the definition of metrics and indicators by
combining different low-level metrics (e.g., downtime).

RQ2: ‘‘Is there an intention to use MoS@RT to config-
ure the monitoring of cloud services in the future? If so, is the
intention to use it a result of the perceptions experienced
by subjects when configuring the quality requirements to be
monitored?’’ The majority of the respondents were very posi-
tive about the use of MoS@RT for configuring cloud services
monitoring in the future, with a mean = 3.8, which was
also supported by the open questions enclosed in the ques-
tionnaire. Hypothesis H3 was confirmed, signifying that the
participants have the intention to use MoS@RT in the future
to support configuration tasks. It has been shown that there
may be other factors that could affect people’s decision when
using a cloud monitoring method or tool (e.g., integrated
platform tools, organization standards, licenses). However,
these are uncontrollable factors. The objective here was to
select variables that can be tested and controlled, such as the
behavior of participants using a cloud monitoring method.
It has been considered perceived ease of use and perceived
usefulness, because they are the most important factors as
regards explaining system acceptance/usage [15], [36]. The
objective of the adapted evaluation method was to provide
a basis that can be used to trace the impact of external
variables on internal beliefs, attitudes and intentions. The
results provide further evidence of the perceived efficacy of
MoS@RT to support the configuration of cloud services and
the easy change of NFRs and/or metrics due to renegotiations
of SLAs.

With regard to the influence of the users’ perceptions on
their intentions, there was found support to H6, H7 and H8,
meaning that the participants’ perception of ease of use and
usefulness determined their intentions to useMoS@RT in the
future to configure the monitoring of cloud services.

The global results of the regression analysis performed
to validate the adapted evaluation method are summarized
in Figure 11. All the causal relationships between the model
construts were confirmed with good levels of confidence,
with the exception of the relationship between Efficiency and
PEOU that could not be confirmed with our experimental
data. We need to perform replications of this experiment in
other contexts to further verify if PEOU can determined by
Efficiency.

FIGURE 11. Results of the application of MEM to MoS@RT.

In general, our findings are consistent with the results
obtained by Moody [36]. However, while the regression
results were found to be significant, the variance value is
not too high for high data dispersion in the causal models.
The portion of the variance explained by the model was
lower than 34%, and the extreme values cannot be predicted
with high accuracy. Nevertheless, these results constitute
the first empirical test of the evaluation model proposed in
Section 5. As future work, we plan to investigate the influence
of other performance-based and perception-based variables
on predicting the acceptance of MoS@RT in practice for
supporting the configuration of cloud services by replicating
the experiment in other contexts, with other services and
more experienced participants. Finally, as a next step, it is
planned to evaluate the monitoring data and their correctness
and effectiveness, taking into account methods to calculate
the sampling frequency to avoid possible system overload.
The causal-connection characteristic of the models@runtime
will be used in order to self-adapt the sampling frequency
depending on the current state of services.

E. THREATS TO VALIDITY
This section discusses the possible threats that can affect the
validity of the results obtained.

1) CONCLUSION VALIDITY
To control the risk of variation owing to individual differences
being larger than those owing to the treatment, a homoge-
neous group of subjects was selected. Another risk in the
experiment implementation was that the participants were
trained on one day, and the experiment was run the follow-
ing week, signifying that they might have forgotten some
details about the execution of the method. This threat was
reduced by performing a short training before the experiment.
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Another issue is the time spent on the training session. It is
established that in a practical setting, more time may be
required. However, owing to time constraints (the experi-
ment was conducted as part of a course), it was decided to
use a guide that summarizes the method’s application with
examples. The participants used this guide in the experiment.
Nevertheless, it has been planned to replicate this experiment
to verify whether this issue might impact the interpretation of
the results.

2) CONSTRUCT VALIDITY
The main threat to construct validity is that of reflecting
the efficacy in how the NFRs have been configured to be
monitored and whether the monitoring results reflected the
real state of the services running on the Cloud, providing the
expected cloud service assessment. The subjective variables
are based on the Method Evaluation Model (MEM) [36],
a well-known and empirically validated model for evaluat-
ing information technologies. The main threat is, therefore,
the reliability of the questionnaire. An analysis of Cronbach’s
alpha reliability test was carried out for each set of ques-
tions related to each subjective variable to evaluate the ques-
tionnaire’s reliability. These were greater than the minimum
acceptance threshold α = 0.70, where the Crombach’s α
of PEOU is 0.834, PU is 0.776, and ITU is 0.820.

3) INTERNAL VALIDITY
The threats to internal validity are relevant in those studies
that attempt to establish causal relationships. Themain threats
to the internal validity were: the participants’ experience,
author bias, and the understandability of the cloudmonitoring
method and supporting tool.

To reduce the threat related to the participant’s experi-
ence, a representative training example was prepared, which
showed every step of the process and provided the users with
an in-depth understanding of cloud services monitoring and
how to monitor services using this approach. Both author
bias and the bias produced by the material’s understandability
were reduced during a pilot experiment’s execution. A group
or researchers, experts in the field evaluated the experimen-
tal material to reduce possible errors or misunderstandings
related to the experiment. Monitoring tool bias was reduced
by its validation in the pilot experiment and successive tests
to improve the tool’s usability.

4) EXTERNAL VALIDITY
External validity refers to the approximate truth of conclu-
sions involving generalizations within different contexts. The
main threat to external validity is the representativeness of
the results that might be affected by the evaluation’s design,
the participant context selected, and the size and complexity
of the tasks. The evaluation design might have had an impact
on the generalization of the results owing to the complexity
of the cloud platform, its particular characteristics, the tools
used to retrieve raw data, and the NFRs to be monitored.
It was attempted to reduce this issue by selecting a popular
and commonly used platform, which shares concepts with

other platforms, and considers a very common scenario from
which to gather raw data. Furthermore, the selected NFRs,
were representative requirements of cloud services. Con-
cerning the participants’ experience, the quasi-experiment
was conducted with Computer Science undergraduates, who
attended a Software Quality course and had a good knowl-
edge of quality models and metrics.

Moreover, they were trained in the use of the monitoring
approach and tool for a reasonable amount of time. It will,
however, be necessary to perform further experiments with
professional industrial participants. The size and complexity
of the tasks might also have affected the external validity.
It was attempted to propose a set of experimental tasks with
a sufficient level of complexity, given the sessions’ time
constraints.

The experiment performed covered only the activity related
to the monitoring configuration. Further experiments must
be perfomed in order to evaluate our monitoring method as
a whole. In such experiments, the participants should not
only perform the configuration of the services monitoring
to generate the runtime quality model, but they should also
use and evaluate the Monitoring & Analysis Middleware to
check i) if it produces accurate and efficient measures for
the stated NFRs; and ii) allow the visualization of monitoring
results in real time in an flexible and customizable way.

Finally, we are aware that the proposed evaluation method
cannot be generalized for its use with any cloud service mon-
itoring method. It may be useful to evaluate other approaches
that pursue the same objectives of MoS@RT, but this should
be tested empirically in further experiments.

VIII. CONCLUSION AND FUTURE WORK
In this paper, a monitoring infrastructure supporting the
MoS@RT method instantiated to Microsoft Azure was intro-
duced. The method provides as a flexible solution for mon-
itoring SLAs for cloud services using models at runtime,
which allows the monitoring requirements to be changed
at runtime without the modification of the underlying
infrastructure. Moreover, we presented a quasi-experiment to
evaluate the perceived efficacy of the infrastructure for sup-
porting the monitoring configuration of SaaS applications.
The method used to validate this approach was tailored using
the Method Evaluation Model as a basis, which uses both
aspects of method success: actual performance and likelihood
of acceptance in practice. It has been defined performance-
based variables (i.e., efficiency and effectiveness) as influenc-
ing factors for the perception-based variables (i.e., Perceived
Ease of Use, Perceived Usefulness, and Intention to Use).

The main results obtained from the analysis of the data
gathered revealed that: (i) the majority of the participants
found that the MoS@RT method is quite useful and easy to
use to configure the monitoring of cloud services; (ii) the
majority of the participants were also very optimistic about
the use of MoS@RT method in the future; (iii) the perfor-
mance of the participants in the quasi-experiment determined
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their positive perceptions; (iv) the perceptions determine the
intention to use MoS@RT.

In summary, the proposed method based on models at
runtime was found to be a suitable and flexible approach to
configure the monitoring of SaaS applications and to easily
change the monitoring requirements, in the context of the
experiment. It is necessary to be aware that this study provides
only preliminary results. There is a need for more empirical
studies with which to test the monitoring method as a whole,
as well as in other settings. Nevertheless, this study has value
as a pilot study to test our approach concerning user interac-
tions and expectations related to the configuration of cloud
services monitoring. Most importantly, we believe that our
study provides new insights into the problem of decoupling
the monitoring configuration from the actual monitoring of
the service. It is mainly achieved through the use of models
at runtime, which allows: (i) the level of abstraction for raw
data obtained from the service execution to be raised, and (ii)
the monitoring directives needed to manage the services data
obtained from the underlying cloud platform to be dynami-
cally changed.

We are currently improving our monitoring infrastructure
to integrate other third-party solutions using APIs and plu-
gins (e.g., RackSpace, Amazon CloudWatch) as part of the
monitoring configurator andmiddleware to allowmulti-cloud
monitoring. This will permit other commercial or academic
initiatives to deal with more complex cloud applications man-
teining the flexibility of our approach to monitor high-level
quality requirements. We also plan to deploy our middleware
on other cloud platforms such as Amazon Web Services
and Google Cloud Platform and compare the entire monitor-
ing method with other commercial solutions to contrast its
flexibility, portability, and efficiency. We are also exploring
self-adaptation mechanisms that can be used in the monitor-
ing infrastructure. The calculation formulas in the model at
runtime may have the knowledge to choose the best possible
alternative formula according to the data or utility services
available at a particular moment.

Since more and more organizations are gradually moving
their workloads to public or hybrid clouds, cloud adoption
continues to grow. Changes in requirements, business pri-
orities, underlying technologies, or consumer demands may
require changes in the SLAs and customers’ expectations.
In this context, there is a growing need for more flexible and
possible self-adapting monitoring methods and tools.
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