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Microbiome and omics datasets are, by their intrinsic biological nature, of high

dimensionality, characterized by counts of large numbers of components (microbial

genes, operational taxonomic units, RNA transcripts, etc...). These data are generally

regarded as compositional since the total number of counts identified within a

sample is irrelevant. The central concept in compositional data analysis is the logratio

transformation, the simplest being the additive logratios with respect to a fixed reference

component. A full set of additive logratios is not isometric, that is they do not reproduce

the geometry of all pairwise logratios exactly, but their lack of isometry can be measured

by the Procrustes correlation. The reference component can be chosen to maximize

the Procrustes correlation between the additive logratio geometry and the exact

logratio geometry, and for high-dimensional data there are many potential references.

As a secondary criterion, minimizing the variance of the reference component’s

log-transformed relative abundance values makes the subsequent interpretation of the

logratios even easier. On each of three high-dimensional omics datasets the additive

logratio transformation was performed, using references that were identified according

to the abovementioned criteria. For each dataset the compositional data structure was

successfully reproduced, that is the additive logratios were very close to being isometric.

The Procrustes correlations achieved for these datasets were 0.9991, 0.9974, and

0.9902, respectively. We thus demonstrate, for high-dimensional compositional data,

that additive logratios can provide a valid choice as transformed variables, which (a)

are subcompositionally coherent, (b) explain 100% of the total logratio variance and (c)

come measurably very close to being isometric. The interpretation of additive logratios

is much simpler than the complex isometric alternatives and, when the variance of the

log-transformed reference is very low, it is even simpler since each additive logratio can

be identified with a corresponding compositional component.

Keywords: compositional data, dimension reduction, logratio transformation, logratio geometry, logratio variance,

Procrustes correlation, variable selection
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INTRODUCTION

The Frontiers in Microbiology article by Gloor et al. (2017) is
emphatically titled: “Microbiome datasets are compositional: and
this is not optional.” We agree. For example, the number of so-
called reads obtained by high throughput sequencing varies from
sample to sample and is of no relevance to the investigation,
much the same as the size of a rock is irrelevant to the study
of its geochemical composition. It is the relative values of the
read counts that are the data of interest, thus making the data
strictly compositional (Fernandes et al., 2014). The same is true
for other assay methods such as liquid chromatography–mass
spectrometry where identification of metabolites is achieved by
intensity values or integrated areas under peaks.

It is convenient to eliminate the effect of the sample totals
by normalizing, or closing, the data, so that sample values
sum to 1—these vectors of non-negative sample values with
constant sums are called compositions. Once this initial step is
made, the question remains how to analyze, relate and interpret
the components of the compositions, be they microbial genes,
operational taxonomic units, transcripts or metabolites. The
essential decision is whether it makes sense to use these relative
abundances in the statistical analysis or some transformed
version of them. This is the first and most fundamental step in
the pipeline for analyzing compositional data.

It has long been appreciated, since the pioneering work
of John Aitchison (Aitchison, 1982, 1986, 1997), that a valid,
(subcompositionally) coherent way to tackle compositional data
is by considering pairwise ratios of the components and by
analyzing these ratios after logarithmic transformation. Notice
that these ratios are invariant with respect to the normalization
(closure) of the data. Coherence means that, if the set of
components is extended or reduced, the ratios of the common
components remain constant in spite of the changing values of
their relative abundances. In fact, the set of components under
consideration, imposed by the measuring instrument, research
objective and practical considerations, is almost always a subset
of a potentially much larger set.

The basic concept and data transformation in compositional
data analysis is thus the logratio, the logarithm of pairwise ratios,
with the log-transformation serving several purposes:

1. Taking the data into real space,
2. Turning interval differences on the log-scale into percentage

differences when back-transformed to the original ratio scale,
3. Symmetrizing the positively skew distributions of the ratios,

and
4. Making more meaningful the application of interval-based

statistical summaries and analyses, such as variance, Euclidean
distance, regression and dimension reduction.

The challenge is to choose a data transformation that replaces
the compositional dataset with a set of logratios that are
substantively meaningful to the practitioner as well as having
a clear interpretation. Once the transformation to logratios is
performed, analysis, visualization and inference carries on as
before, but always taking into account the interpretation in terms
of ratios.

In Aitchison’s earliest work he proposed the additive logratio
transformation (ALR), where one component is chosen as
the denominator, or reference, with all the other components
as numerators. Thus, if there are J components, with values
X1,X2, . . . ,XJ , there are J−1 logratios in the ALR set with respect
to the selected reference component, denoted by ref, of the form:

ALR( j | ref ) = log(Xj/Xref ), j = 1, . . . , J, j 6= ref (1)

Since then a variety of logratio transformations have been
proposed: for example, centered logratios (used by Sisk-
Hackworth and Kelley, 2020), isometric logratios and pivot
logratios (for example, Pawlowsky-Glahn and Buccianti, 2011;
Filzmoser et al., 2018). All of these involve ratios of geometric
means of components and, as a result, have complicated
interpretations (Greenacre et al., 2020; Hron et al., 2021), lacking
the simplicity of the pairwise logratio between two components.
Isometric and pivot logratios are particularly problematic when
the numbers of components in the geometric means are high.
They do have the property of isometry, however, which means
that they engender exactly the same multivariate geometric
structure of the sample points as that of all the pairwise
logratios, called the logratio geometry (sometimes referred to as
the “Aitchison geometry”). The proponents of these complex
transformations take isometry as a type of “gold standard” for
the analysis of compositional data, and the strict adherence
to this mathematical ideal has been to the detriment of using
simpler transformations such as the ALRs, or a subset of pairwise
logratios. In a series of papers by Greenacre (2019), Graeve and
Greenacre (2020), and Wood and Greenacre (2021) it is shown
in a variety of contexts that a set of simple pairwise logratios
can satisfactorily approximate the logratio geometry, coming
sufficiently close to being isometric for all practical purposes. A
tiny loss of isometry is thus traded off in favor of the benefit of
the simpler and clearer interpretation of the logratio variables. In
these above-mentioned studies any set of pairwise logratios can
be selected, whereas ALRs are restricted to pairwise logratios with
respect to a fixed reference component.

Apart from the fact that ALRs are not strictly isometric,
various other criticisms have been leveled at the ALR
transformation, such as its sacrificing a component to serve
as the reference and the doubt about which component to
choose as reference. We hope to show that none of the above
are disadvantages, but rather that, especially in the case of
high-dimensional compositional data, the ALRs are the logratio
transformations of choice and that their involving a fixed
reference is actually a benefit. In this way we return to the origins
of compositional data analysis and re-establish the additive
logratio in all fields of omics research, thereby vindicating
Aitchison’s original claim as enounced in the following quotation
from his keynote address (Aitchison, 2008) at the biennial
Compositional Data Analysis workshop in 2008 (section 5.1):

“The ALR transformation methodology has, in my view,
withstood all attacks on its validity as a statistical modeling tool.
Indeed, it is an approach to practical compositional data analysis
which I recommend particularly for non-mathematicians. The
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advantage of its logratios involving only two components,
in contrast to CLR and ILR (isometric transformations ...),
which use logratios involving more than two and often many
components, makes for simple interpretation and far outweighs
any criticism, more imagined than real, that the transformation is
not isometric.”

Aitchison’s phrasing above that the criticism of the ALR
transformation not being isometric is “more imagined than
real,” is particularly pertinent to what we will show here. We
will demonstrate quantitatively that a set of ALRs can be so
close to being isometric that, for all practical purposes, they are
isometric. We will also show that there are clearly defined criteria
for choosing a reference and it is advantageous that there are
very many potential choices in high-dimensional data when the
number of components is large.

Three high-dimensional omics datasets will be used to show
that the ALR transformation can validly provide a set of simple
variables to represent the whole compositional dataset, the
essential step being the choice of the reference component. The
next section gives some background theoretical material, and
details the computational steps involved in determining and
validating the chosen ALRs. Then there is a section with results
for each of the datasets, and two closing sections with discussion
and potential implications for practitioners.

METHODS

Logratio-based compositional data analysis, often called CoDA
(Pawlowsky-Glahn and Buccianti, 2011), hasmainly developed in
fields where the number of components J is less, often much less,
than the number of samples I, i.e., J < I, with geochemistry being
the area of most applications. A short, yet comprehensive, review
of CoDA is given by Greenacre (2021), with recent books aimed
at practitioners by Filzmoser et al. (2018) and Greenacre (2018).
The relevant theoretical results for our purpose are summarized
in this section, as well as how they apply to ALRs.

Total Logratio Variance
The total logratio variance is a basic statistic that quantifies how
dispersed the samples are in the multivariate logratio space. A
compositional data vector with J components, X1,X2, . . . ,XJ ,
can be expanded into 1

2 J(J − 1) pairwise ratios, and then log-
transformed. Thus, an I × J compositional data matrix can be
expanded, notionally at least, to an I × 1

2 J(J − 1) matrix of
logratios. In the most general case, there are positive weights
c1, c2, . . . , cJ associated with the components (Lewi, 1976, 1986,
2005; Greenacre and Lewi, 2009), where c1+ c2+· · ·+ cJ = 1, in
which case it can be shown that the (j, k)-th logratio log(Xj/Xk)
has weight equal to the product cjck (Greenacre, 2018, 2021). The
total logratio variance is then defined as the weighted sum of
pairwise logratio variances:

TotVar =
∑∑

j<k

cjckVarjk (2)

where Varjk is the variance of the (j, k)-th logratio (Greenacre,
2018, 2021). The weights have a normalizing function to balance

out the contributions of the different components, since rarer
components often engender excessively large logratio variances
(Fernandes et al., 2014; Greenacre, 2018; Quinn et al., 2019),
or they might be used to downweight components with high
measurement error. However, in many applications, including
the ones in this article, this aspect is ignored and the components
are equally weighted by cj = 1/J, j = 1, . . . , J. Consequently,
Equation (2) simplifies as the sum of the 1

2 J(J − 1) variances of
the unique pairwise logratios multiplied by 1/J2.

For a dataset with thousands of components this would be a
laborious calculation, but fortunately there is a shortcut thanks
to the centered logratio (CLR) transformation:

CLR(j) = log

(

Xj

g(X)

)

, j = 1, . . . , J (3)

where g(X) is the weighted geometric mean Xc1
1 Xc2

2 · · ·XcJ
J

(Greenacre, 2018), that is

CLR(j) = log(Xj)−
J

∑

k=1

ck log(Xk) (weighted case)

= log(Xj)−
1

J

J
∑

k=1

log(Xk) (unweighted case)

(4)

The total variance in (2) is then equivalently computed using
the variances of the CLRs, Varj, weighted, respectively by cj,
j = 1, . . . , J, or by constant 1/J when equally weighted:

TotVar =
J

∑

j=1

cjVarj (weighted case)

=
1

J

J
∑

j=1

Varj (unweighted case)

(5)

Notice that in the weighted or unweighted cases the CLRs have
to be computed according to one of the respective definitions
in Equation (4). Notice too that Equations (2), (5), with either
differential or equal weights, are weighted averages of the part
variances, ensuring that total logratio variances can be compared
between data sets of different sizes.

The computation is completely symmetric with respect to
rows and columns, so when J > I, as will generally be the
case for omics data, the computation can be further simplified.
The data matrix is first transposed and relative abundances are
expressed with respect to component totals, then repeating the
above computation as if the samples were the components gives
identical results (Greenacre, 2018).

Logratio Geometry
A compositional dataset has a certain exact geometry defined
by the logratio distances between every pair of samples. These
are Euclidean distances that can be defined in two equivalent
ways: either on the I × 1

2 J(J − 1) matrix of all pairwise logratios,
again a very wide matrix due to the large number of pairs of
components, or more efficiently on the I × J matrix of CLRs
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(4). As before, there are weighted and unweighted versions—
for the exact definitions see Greenacre (2018, 2021). If J < I
(i.e., the dataset is “narrow”) the sample points are exactly in a
(J − 1)-dimensional Euclidean space, otherwise if J > I (i.e.,
the dataset is “wide”) they are exactly contained in a (I − 1)-
dimensional Euclidean space—hence, the dimensionality is K =
min{I − 1, J − 1}.

In both weighted and unweighted cases the total logratio
variance can be decomposed along principal axes to give a
low-dimensional reduced view of the samples, called logratio
analysis (LRA) (Greenacre and Lewi, 2009; Greenacre, 2010).
LRA is the principal component analysis (PCA) of all the pairwise
logratios, which is equivalent to the PCA of all the CLRs, in
weighted (Greenacre and Lewi, 2009) or unweighted (Aitchison
and Greenacre, 2002) forms.

Notice that for a compositional data set of dimensionality J−1,
say (for the case J ≤ I), then any set of J− 1 linearly independent
logratios, including any set of J − 1 ALRs, explains the total
logratio variance in (2) or (5) completely. This set clearly does not
contain the total variance, but explains it totally in a regression
sense (Greenacre, 2019). If J > I, as in many high-dimensional
datasets, only I− 1 linearly independent logratios are required to
explain fully the total logratio variance.

Procrustes Analysis
For any particular set of logratio transformations, the samples
in the transformed space can be “fitted" to the exact logratio
geometry, using Procrustes analysis (Gower and Dijksterhuis,
2004; Lisboa et al., 2014), to see how close they come to the exact
geometry. Suppose the coordinates of the samples in their exact
logratio geometry are in the matrix X (I × K), where K is the
dimensionality of the space, as explained above. The coordinates
are established using LRA and the inter-sample distances in this
geometry are exactly the logratio distances. Similarly, suppose
the coordinates of the samples in a particular ALR geometry are
in the matrix Y (I × K), the same dimensionality as the exact
one—for example, if J > I (as in the present case) then the
dimensionality of the logratio space is K = I − 1 (one less
than the number of samples), and that of the J − 1 ALRs, also
involving I samples, is also I − 1. The sample coordinates in the
ALR geometry are established using PCA and the inter-sample
distances in this ALR geometry will not be the same as the exact
logratio distances, partly due to differences in scale and rotation
between the two matrices, which are irrelevant to summarizing
their distance structure. So Procrustes analysis aims to match
the configurations by least squares as closely as possible by three
simple operations: centering, scaling and rotation.

The first two operations are trivial: the columns of X and
Y are already centered by the LRA and PCA, respectively, and
scaling is achieved by dividing each matrix by the square roots
of their respective sum-of-squares. Suppose X∗ and Y∗ are the
matrices standardized in this way, then compute the singular
value decomposition of their cross-product (X∗)TY∗ = UDVT .
The fitting of Y∗ to X∗ by least-squares fitting is achieved by
applying the rotation matrixQ = VUT to Y∗: Y∗Q. Equivalently,
X∗ could be fitted to Y∗ by applying the inverse rotation QT :
X∗QT .

The final step is to compute the Procrustes correlation, which
measures how close the two configurations are to being exactly
matched. The sum-of-squares E of the differences between X∗

and Y∗Q lies between 0 and 1, where 0 implies perfect matching
and 1 implies total absence of matching. The quantity E can be
considered a residual sum-of-squares if one thinks of Y∗ being
fitted to X∗, and since E has a maximum of 1, then 1 − E
is analogous to a coefficient of determination (R2) in a least-
squares regression. The Procrustes correlation is thus defined
as R =

√
1− E, so that a value near 1 would mean that

the ALR geometry is very close to the exact logratio geometry,
that is it is almost isometric. The Procrustes correlation R can
be equivalently computed as the regular Pearson correlation
between the elements of the matrices X∗ and Y∗Q strung out as
IK × 1 vectors.

In short, the goal is to measure the deviation of the ALR-
transformed data from the ideal of isometry. This way of
measuring the proximity by the Procrustes correlation between
two configurations in multidimensional space has already been
used to select a subset of pairwise logratios that engenders a
Euclidean geometry close to the exact one (Greenacre, 2019;
Graeve and Greenacre, 2020; Wood and Greenacre, 2021). This
idea was inspired by the selection of variables in PCA by
Krzanowski (1987), and the same idea will be used here to select
a reference in order to define a set of ALRs.

Criteria for Selecting the Reference
Component of the Additive Logratios
The ALR transformation converts the original I×J compositional
data matrix to an I × (J − 1) matrix of ALRs, with respect
to a particular reference component. There are J potential
reference components to choose from, which in the usual geo-
and biochemical applications can be a relatively low number.
However, in the case of most omics data, J is very large and
usually very much larger than I, the number of samples. This
gives a large set of possibilities for choosing a set of ALRs that
comes as close as possible to reproducing the exact logratio
geometry by achieving a very high Procrustes correlation.

The matching of the geometries is the most important
criterion for choosing the reference, but there are other
properties that would be beneficial. For example, it would be
very convenient if the reference’s relative abundances across
the samples were as constant as possible. From Equation (1),
ALR(j | ref ) = log(Xj) − log(Xref ), hence we should look for
low variance in log(Xref ). Since dividing each component by an
almost constant reference value just shifts all the logratios by an
almost constant amount, the logratio can then be interpreted in
practice as its numerator on a logarithmic scale. An additional
benefit of choosing a low variance component is that it is unlikely
to be correlated with any continuous or categorical covariate
whose relationship with the compositions is being investigated—
the actual relationship with such covariates can be checked where
applicable.

A further criterion would be to avoid choosing a reference
with low abundances across samples or with many zeros (that is,
low occupancy), where low occupancy is related to low overall
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abundance (Gaston et al., 2000). Zeros would need to be replaced
beforemaking the logratio transformation, using one of themany
zero replacement methods, and using such a component as the
denominator would affect the interpretation of all the ALRs.

Validating the ALR Transformation on
Three Datasets
Three datasets with high numbers of components are considered
here:

• A wide functional microbe dataset of secum samples of I = 89
rabbits, in a study of J = 3, 937 microbial genes, which we will
refer to as the Rabbits data (Martínez-Álvaro et al., 2021b);

• A wide dataset of I = 28 mice in a study of J = 3147 mRNA
transcripts from bone marrow dendritic cells by Jovanovic
et al. (2015), re-analyzed by Quinn et al. (2019), which we will
refer to as the Mice data;

• A narrower dataset, consisting of spectral data produced by
nuclear magnetic resonance (NMR) as part of a study about
methane emissions from cattle (Bica et al., 2020), reanalyzed
by Štefelová et al. (2021); specifically from I = 211 rumen
samples measuring J = 127 NMR intensities in the form
of integrals, which we will refer to as the Cows data. In
addition, methane yield (CH4 in gms/kg of dry matter intake)
was measured for each individual animal using respiration
chambers and diet type was recorded (either concentrate,
mixed, or forage-based diet).

For each dataset the following statistics are computed:

(a) The total logratio variance, which is a statistic that
summarizes how dispersed the sample points are in
multidimensional space (equal weighting of components
will be used throughout). For the first two wide examples,
the total variance can be more efficiently computed
by transposing the matrix of abundances (or relative
abundances) and then computing the total variance on the
CLRs of the samples, as if they were the components. The
exact logratio geometric structure is then determined, that
is the coordinates of all the sample points in the full-
dimensional space.
And then, for each component used as a reference for
defining ALRs:

(b) The Procrustes correlation between the exact logratio
geometry and the approximate geometry of the set of ALRs
using the reference;

(c) The variance of the log-transformed relative abundances of
the reference candidate across the samples.

The components with the highest correlations in (b) and, of
those, the lowest variances in (c) will be candidates for the choice
of reference. In practice, of course, domain knowledge should
also play a role in selecting the reference, especially when there
are several competing candidates.

Finally, having decided on the reference, the reduced-
dimension LRA of the exact sample configuration based on all
pairwise logratios is shown alongside the reduced-dimension
configuration of the chosen set of ALRs to demonstrate that the
configurations are practically identical.

RESULTS

The Rabbits Data
This is a 89× 3, 937 dataset of counts and there are no zeros.

(a) Total logratio variance = 0.1601, computed on the 3,937
CLRs of the components (microbial genes). Equivalently,
a faster way is to transpose the dataset and then treat the
samples as components—the same result is obtained on the
89 CLRs of the samples.

(b) The highest Procrustes correlation is equal to 0.9991,
corresponding to gene number 856. This gene has the 201st
highest relative abundance among the 3,937 genes. Figure 1
shows a histogram of the Procrustes correlations for all 3,937
references.

(c) The lowest variance of the log-transformed relative
abundance of the reference components is equal to 0.00117,
corresponding to the same gene number 856. Its five-point
summary on the log-scale is:

minimum = −6.97 first quartile = −6.89

median = −6.87 third quartile = −6.84

maximum = −6.76

showing a high constancy in the values, with interquartile
range of 0.05.

To visualize how close the ALR variables are to being isometric,
Figure 2 shows all between-sample distances computed on the
ALRs plotted against the corresponding exact logratio distances
based on either all pairwise logratios or, equivalently, on all CLRs.

The LRA of the full dataset, showing just the samples,
is shown in Figure 3A, while the corresponding PCA of the
ALRs with reference gene 856 is shown in Figure 3B. They are

FIGURE 1 | Histogram of the 3,937 Procrustes correlations of the respective

sets of candidate ALRs, each set computed using a different reference

component.
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FIGURE 2 | Between-sample distances for the Rabbits dataset based on the

ALRs with reference microbial gene 856 vs. the exact logratio distances,

corresponding to the Procrustes correlation of 0.9991. The number of

distances plotted = 89× 88/2 = 3, 916.

practically identical, with very slight differences, as expected.
The letters S and F stand for the two laboratories that did the
sequencing, showing a clear separation. This sequencer effect was
subsequently eliminated in the data analysis (Martínez-Álvaro
et al., 2021b).

The low variance of the reference gene means that in the
original table of counts this gene’s counts are closely proportional
to the total counts—Figure 4 shows this conclusively.

It is interesting that the top candidates in this data set
coming up as reference microbial genes are associated with the
genetic machinery of the microbes, which are intrinsic in all
microbial ecosystems. The same pattern has been found for
other functional microbiome datasets (Martínez-Álvaro et al.,
2021a).

The Mice Data
This is a 28 × 3, 147 dataset of counts. There are 34
zeros in this dataset, which have been replaced using the
function cmultRepl in R package zCompositions (Martín-
Fernández et al., 2012).

(a) Total logratio variance = 0.2099, computed on the 3,147
CLRs of the components (transcripts). Equivalently, by
transposing the dataset and then treating the samples as
components, the same result is obtained on the smaller set
of 28 CLRs of the samples.

(b) The highest Procrustes correlation is equal to 0.9977,
corresponding to transcript number 1,318.

(c) The lowest variance of the log-transformed relative
abundances of the candidates as reference components is

FIGURE 3 | (A) Logratio analysis of the Rabbits data, aiming to explain the

total logratio variance. (B) Principal component analysis of the additive

logratios with reference component microbial gene number 856, showing a

geometry practically identical to the exact logratio geometry (Procrustes

correlation = 0.9991). The two groups of points are due to two sequencing

laboratories, indicated here by F and S.

equal to 0.00415, corresponding to transcript number 1,557.
Its five-point summary on the log-scale is

minimum = −8.32 first quartile = −8.22

median = −8.18 third quartile = −8.14

maximum = −8.03

showing again a high constancy in the values, with
interquartile range of 0.08.

In this case the reference that maximizes the correlation
is different from the one that minimizes the variance. One
transcript, number 1,179, comes second on both criteria and
is the one that was chosen, with Procrustes correlation =
0.9974 and variance = 0.00626. It has the 1617th highest
relative abundance among the 3,147 transcripts, and its five-point
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FIGURE 4 | Proportionality between counts of reference gene number 856

and sum of counts, for the 89 samples of the Rabbits data. The diagonal line

of exact proportionality goes through the origin (0,0).

summary is:

minimum = −9.69 first quartile = −9.62

median = −9.57 third quartile = −9.50

maximum = −9.37

with interquartile range 0.12.
To visualize how close the ALR transformation is to being
isometric, Figure 5 shows the between-sample distances
computed on the ALRs plotted against the exact logratio
distances. The agreement is again excellent, with slightly less
congruence in the high distances (commented below).

The LRA of the full dataset, showing just the samples, is
shown in Figure 6A, while the PCA of the ALRs with reference
transcript 1,179 is shown in Figure 6B. They are practically
identical, with only very slight differences, again as expected from
the very high Procrustes correlation. The labels stand for two
different treatments (L and M) and 7 different times (0, 1, 2, 4,
6, 9, and 12 h). The slight discrepancies in the higher distances
of Figure 5 correspond to the distances between samples of the
different treatment groups, which are the most separated in
Figure 6.

In order to show the quality of the ALR transformations for
data sets of any sizes, a simulation study was conducted on the
Mice data, taking random samples of different sizes from the
data, imagining each sample as a stand-alone one and finding
the best reference for an ALR transformation for that particular
data set. For subsets of 100, 500, 1,000, 1,500, 2,000, 2,500,
3,000, and 3,500 transcripts, and 100 random samples for each
subset, the optimal Procrustes correlations are shown in the
form of boxplots in Figure 7. As expected, the quality of the
isometry of the ALR transformation improves as the number
of possible reference components increases. In this particular

FIGURE 5 | Between-sample distances for the Mice data based on the ALRs

with reference transcript 1,179 vs. the exact logratio distances, corresponding

to the Procrustes correlation of 0.9974. The number of pairs of distances

plotted = 28× 27/2 = 378.

example, even random samples of size 100 are doing well, with
most references giving ALRs with Procrustes correlations over
0.99. The following example, with only 127 components in total,
shows that the search for a near-isometric transformation using
ALRs is still possible.

The Cows Data
This is a 211 × 127 dataset of NMR intensities, measured as
integrals (Bica et al., 2020). This dataset, which was provided with
no zeros, originally had a few cases of zero integrals, which “were
assumed to correspond to values below the limit of detection and
were imputed based on the information from the other signals
using the log-ratio expectation-maximization (EM) algorithm"
(Štefelová et al., 2021). The samples were divided into three diet
groups: concentrate, mixed or forage-based, and data on the
methane yield was also measured.

(a) Total logratio variance= 0.09128 computed on the 127 CLRs
of the components, which in this example are less than the
number of samples. Notice that this value is lower than the
first two data sets—this is not due to the fewer components,
since our measurement of total logratio variance is an
average, not a sum. It can be interpreted as the samples
having less dispersion in this data set compared to the first
two.

(b) The highest Procrustes correlation is equal to 0.9902,
corresponding to the integral number 101 (labeled in the
original dataset as Integral106). This component is the 26th
highest in terms of relative abundance, out of the 127 integral
components.

(c) The lowest variance of the log-transformed reference
components is equal to 0.01115, corresponding to the
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FIGURE 6 | (A) Logratio analysis of the Mice data, aiming to explain the total

logratio variance. (B) Principal component analysis of the additive logratios

with reference transcript number 1,179, which has a geometry almost identical

to the exact logratio geometry (Procrustes correlation = 0.9974). The label

prefixes M and L refer to two treatments, and the number suffixes refer to

times in hours. At time 0 the M and L trajectories are at the same points.

integral number 109 (labeled in the original dataset as
Integral115). Its five-point summary on the log-scale is:

minimum = −5.65 first quartile = −5.43

median = −5.37 third quartile = −5.30

maximum = −4.94

with interquartile range 0.13, a value comparable to that for
the Mice data.

However, the Procrustes correlation of integral number 109 was
only 0.944, so it was decided to use integral number 101 as
the reference part, which has a variance of its log-transformed
relative abundances equal to 0.0563 and five-number summary

FIGURE 7 | Boxplots of Procrustes correlations based on 100 random

samples of the components (columns) of the Mice data set, for each of 100 up

to 3,000 components.

on the log-scale of:

minimum = −6.00 first quartile = −5.52

median = −5.36 third quartile = −5.18

maximum = −4.88

The interquartile range of 0.34 is now much higher than before,
and so the ALRs should always be interpreted as pairwise
logratios with respect to the reference, not as approximating
the logarithms of the numerator components as in the first two
examples. The Procrustes correlation almost equal to 1 again
means that the ALRs are, for all practical purposes, isometric.

To demonstrate again the almost exact isometry, Figure 8
shows the LRA using all the pairwise logratios (i.e., the PCA of
the centered logratios), and the corresponding solution using the
chosen set of ALRs. There are, once more, very small differences
between the two solutions if one compares the configuration
of the points in each case and the 95% confidence ellipses
for the group means. The fact that these ellipses are well
separated bears testimony to the highly significant differences
between them (Greenacre, 2016). In addition, the directions of
the supplementary methane variable in the two solutions are
practically the same. As in the previous examples (Figures 3,
6), the percentages of variance displayed in the two-dimensional
reduced spaces are similar: 45.8% for the LRA and 46.6% for the
PCA of the ALRs.

DISCUSSION

Our objective has been to show that the ALR transformation, the
simplest one in the CoDA toolbox, can provide a valid solution
for the analysis of high-dimensional compositional datasets. The
challenge is to find a good reference part.
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FIGURE 8 | (A) Logratio analysis of the Cows data; (B) Principal component

analysis of the additive logratios with reference integral number 101.

Ninety-five percent confidence ellipses are shown for the three group means

that are situated at the diet labels C (concentrate), M (mixed) and F (forage), as

well as the supplementary variable methane. The geometry of the ALRs has a

Procrustes correlation of 0.9902 with the exact geometry of all pairwise

logratios.

In the Rabbits and Mice datasets with more than 3,000
components, there was more chance to find a reference
component with the two desirable properties for constructing
a set of ALRs. First and foremost, the reference has to result
in a high Procrustes correlation between the exact logratio
geometry and the ALR geometry, both of which have the
same dimensionality. In all three examples, even the third

one with much fewer components, we have found that the
ALR transformation is suitable for representing the logratio
variability, and has provided almost exact isometry with the
logratio geometry. A secondary criterion, which is not a
prerequisite but rather a fringe benefit, is low variance in the
log of the relative abundance, which considerably simplifies
the interpretation of the ALRs—this was satisfied for the two
datasets with thousands of components, but not with the smaller
Cows dataset.

There has been a rejection in the compositional data analysis
literature of variables that are not exactly isometric in the
mathematical sense, and variables that are “oblique”—see, for
example, Hron et al. (2021). This criticism is difficult to
understand when it is possible to come up with a set of variables
that reproduces almost perfectly the logratio geometry, which
means that the criticism is aimed at what is a near-zero lack
of isometry. Notice that we are not claiming that this strategy
will always work, but it has been successful in all the data sets
that were easily available to us and which have been reported
here, including 30 simulated datasets published in a recent article
(see Supplementary Material). Since the benefit is great if this
approach is indeed successful, it is recommended to try it as a first
step in the compositional data analysis of such high-dimensional
data. The method has been implemented by Martínez-Álvaro
et al. (2021b) in an analysis of the Rabbits data and the near-
isometric ALRs have been used to explain body fat characteristics
of the sampled individuals. Coenders and Pawlowsky-Glahn
(2020) show how to interpret logratios when used as explanatory
variables in a linear regression model.

With respect to the ALRs, which are of concern here, these
are simple pairwise logratios with respect to a chosen reference.
If one is fortunate to find a reference that is almost constant in
its relative abundance, this means that the pairwise logratio in
each ALR is, for all practical purposes of interpretation, the same
as the logarithm of the numerator. This makes the interpretation
of the ALRs much easier when it comes to judging which ALRs
are important for explaining variance, relating to covariates or
distinguishing between groups.

We have shown that the ALR transformation can validly be
used for high-dimensional datasets, and considerably simplifies
the life of practitioners. The ALRs have a clear meaning, as
opposed to the various complex logratio transformations that
have generally been promoted, involving ratios of geometric
means of components. The contrast between the simplicity
of the ALR transformation, giving almost exact isometry, and
other more complicated and less interpretable transformations,
aimed at satisfying mathematically exact isometry, is evident—
for example, in the recent re-analysis of the Cows data using a
set of “weighted pivot logratios" (Štefelová et al., 2021), which
is an isometric transformation involving geometric means along
with a complicated weighting system. As far as weighting is
concerned, this concept has existed for compositional data
analysis since the mid-1970s in the work of Lewi (1976, 1986,
2005), who proposed default weights equal to the average relative
abundances of the compositional components. Weighting the
components is a trivial addition to compositional data analysis,
as shown by definitions (Equations 2, 5), but can have substantial
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consequences when low abundance parts have high logratio
variances due to measurement error (Greenacre and Lewi, 2009).

Hron et al. (2021) state that “alr coordinates cannot be simply
identified with the individual original components, as they are
in fact logratios, but the link with these is more clearly stated.”
We have shown that this sweeping statement is in fact not true
in some cases. When the reference is almost constant, then the
components in the numerators of the ALRs are very close to being
directly interpretable as the log-transformed relative abundances
of the respective components. Then, for all practical purposes,
the ALRs can be referred to as the components themselves. In
addition, variances and correlations of the ALRs can be identified
approximately with those of the numerators, apart from an
overall scale factor, which makes the interpretation much easier.
This simplification in the interpretation has been possible for our
first two datasets, which have thousands of components, with
the caveat that for the third set of NMR integrals, which has
fewer components, the reference part does not have sufficiently
low variance for this simplified interpretation, and thus the ALRs
should be interpreted in that case as true ratios.

POTENTIAL IMPLICATIONS

Our approach can make compositional data analysis simpler for
the practitioner dealing with high-dimensional data, whereas
much of the development in this area is, in our opinion,
complicating its practice. The issues of spurious correlations,
subcompositional incoherence and lack of isometry surely exist,
but are usually raised in the context of modest data sets with few
components. In the omics area these issues become diluted in
compositions based on hundreds or thousands of components.
We have hoped to show that for such high-dimensional data,
the practitioner who wishes to follow the logratio approach can
probably fall back on the simplest of logratio transformations, the
additive logratios, with the benefit of their easy interpretation.
This depends, of course, on finding a suitable reference
component, which needs to be investigated for each new
application. Following the strategy that we have laid out, the
chances of finding a suitable additive logratio transformation
appear to be high when there are very many potential reference
components to choose from.

DATA AVAILABILITY STATEMENT

The Rabbits dataset will be available soon at https://www.ebi.
ac.uk/ena/browser/view/PRJEB46755, with accession number
PRJEB46755.

The Mice dataset is available at the repository http://doi.org/
10.5281/zenodo.3270954 see Quinn (2018).

The Cows dataset was provided on request from the co-
authors of (Bica et al., 2020) — see Acknowledgments.

The 30 sets of simulated data, analysed in the
Supplementary Material, can be obtained from the
supplementary material of Lloréns-Rico et al. (2021).

Other datasets and scripts can be downloaded from the github
site of (Greenacre, 2018): https://github.com/michaelgreenacre/

CODAinPractice, including the following:

• An R function FINDALR in the file FINDALR.R for
computing the Procrustes correlation for all sets of ALRs using
every possible component as reference, and identifying the
largest one. This function will eventually be incorporated in
the easyCODA package.

• An R script Frontiers_ALR.R for analysing the Mice
dataset, including replacing the few data zeros. The other data
sets are analysed in exactly the same way, even more simply
since they have no data zeros.

• An R script Frontiers_ALR_supplementary for
analysing the two supplementary applications to real data,
using both the unweighted and weighted logratio options, as
well as focusing on the subspace of the sample groups in the
case of the first example.

• The two data sets for the Supplementary Material.

The programming language was R (R Core Team, 2021),
with packages easyCODA (Greenacre, 2018), vegan (Oksanen
et al., 2019), installed automatically with easyCODA) and
zCompositions (Martín-Fernández et al., 2012).

Using a Toshiba Satellite S70 laptop, the time taken
to compute the optimal reference part was 2090 secs
(34.8 minutes) for the Rabbits data (3937 components),
77 secs for the Mice data (3137 components, but a lower
sample size, which impacts significantly on the time) and
7 secs for the Cows data (127 components). Timings for
the Supplementary Material examples are reported in the
corresponding script.
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