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Abstract The problem of automatic text classification is an essential part of
text analysis. The improvement of text classification can be done at different
levels such as a preprocessing step, network implementation, etc. In this
paper, we focus on how the combination of different methods of text
encoding may affect classification accuracy. To do this, we implemented a
multi-input neural network that is able to encode input text using several
text encoding techniques such as BERT, neural embedding layer, GloVe,
skip-thoughts and ParagraphVector. The text can be represented at different
levels of tokenised input text such as the sentence level, word level, byte pair
encoding level and character level. Experiments were conducted on seven
datasets from different language families: English, German, Swedish and
Czech. Some of those languages contain agglutinations and grammatical
cases. Two out of seven datasets originated from real commercial scenarios:
1) classifying ingredients into their corresponding classes by means of a
corpus provided by Northfork ; and 2) classifying texts according to the
English level of their corresponding writers by means of a corpus provided by
ProvenWord. The developed architecture achieves an improvement with
different combinations of text encoding techniques depending on the different
characteristics of the datasets. Once the best combination of embeddings at
different levels was determined, different architectures of multi-input neural
networks were compared. The results obtained with the best embedding
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combination and best neural network architecture were compared with
state-of-the-art approaches. The results obtained with the dataset used in
the experiments were better than the state-of-the-art baselines.

Keywords text classification · multi-input network · agglutinative language ·
inflected language · embedding combination

1 Introduction

Classification is the process of predicting the class of given data.
Preprocessing techniques and classification algorithms that are used for
automated classification depend on the type of input data, which can be
based on images, sound or text. Text data can be a rich source of
information and easy to find due to the quantity of data generated daily in
forums, emails or social networks. Unfortunately, text is an unstructured
type of data, which makes it extremely difficult from which to extract useful
information. When working with text, we have to consider the nature of the
language that is used. Different algorithms could be required depending on
the source language. There are several techniques that work well for some
families of languages and worse for others. Some languages contain inflexions
(e.g. Czech) and agglutinations (e.g. German, Swedish) which can make the
classification even more complicated. To design a good quality text
classification system, it is important to choose an adequate text encoding
technique that is able to take advantage of the lexical and semantic fields in
a given language. Also, the use of context [20] and the relation between
words can be a plus when designing a high-quality classification algorithm.
In addition, the exploration of new architectures of classifiers can improve
the accuracy of the classification.

Text classification has many applications such as sentiment
analysis [27, 40], language identification [19], spam detection [18] and
automatic tagging of products in e-commerce into different categories [13]. If
the type of class is known, the text classification can be done
hierarchically [31]. In many cases, text classification may make a great
difference to businesses due to the automation of classification tasks which
can result in money and time-saving [12, 34]. The need for automatic text
classification can be an opportunity, with many companies applying
automatic text classification to develop their services. As a company
dedicated to machine learning solutions, at Sciling we work closely with
companies that deal with text classification problems. Specifically, in this
work we focus on two of the text classification projects we have recently
dealt with.

The motivation of this work is to show how the combination of different
techniques of text encoding can affect the classification task. In addition,
different types of neural networks were implemented and tested. The
developed network is able to encode the input text using embeddings at
different levels such as the sentence, word, byte pair encoding (BPE)
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segment [29], and character levels. We compare the effectiveness of different
state-of-the-art embedding vectors such as the neural embedding layer,
BERT [10], GloVe [25], skip-thoughts [22] and ParagraphVector [9]. Apart
from implemented embedding types, other text encoding methods can be
easily included. Different architectures of this network were tested, including
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). We
conducted experiments on seven different datasets in four languages: English,
German, Swedish and Czech. The developed model was applied to two
practical use cases: 1) classifying ingredients into their corresponding classes
by means of a corpus provided by Northfork ; and 2) classifying texts
according to the English level of their corresponding writers by means of a
corpus provided by ProvenWord. The rest of the datasets used were standard
classification tasks, each of which is described in detail in Section 5.5.

In many cases, the combination of embeddings increases the classification
score. That means that despite the fact that some encoding techniques work
better than others, they all contain complementary information. The
developed architecture obtains satisfactory results with these corpora and in
comparison with state-of-the-art approaches such as fastText [16], it obtains
very promising results.

This paper is organised as follows: Section 2 reports on related works on
text classification. Section 3 describes the main approach of current work,
motivations and main contributions. Section 4 describes the implementation
of the developed model and introduces different techniques of document
codification into embedding vectors. Section 5 describes the experimental
setup, the datasets used for the experiments, and the results obtained. In
Section 6, we analyse and compare the results obtained in all seven of the
classification tasks. Finally, Section 7 presents the conclusions derived from
the present work.

2 Related work

Text classification is a field which has been receiving a good amount of
attention due to its multiple applications. One of most common techniques
for achieving improvements in the text classification score is the enrichment
of input data through data encoding. In [39], the authors extract high-level
word features to perform text classification using different temporal
convolution filters. These filters vary in size to capture different contextual
features. Then, a transition layer is used to coalesce the contextual features
and form an enriched high-level word representation. Another interesting
approach is the universal representation of sentences described in [8]. The
authors, train a sentence encoder model on a large corpus and subsequently
transfer it to other tasks. In that work, they investigate whether supervised
learning can be leveraged instead, taking inspiration from previous results in
computer vision where many models are pre-trained before being transferred.
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They compare sentence embeddings that are trained on various supervised
tasks and show that sentence embeddings generated from models that are
trained on a natural language inference task achieve the best results in terms
of transfer accuracy. Another method of text representation is described
in [17], where the authors propose a novel representation for text documents
based on aggregating word embedding vectors into document embeddings.
The word embeddings gathered from a collection of documents are clustered
by k-means in order to learn a codebook of semantically related word
embeddings. Each word embedding is then associated to its nearest cluster
centroid (codeword). The Vector of Locally-Aggregated Word Embeddings
(VLAWE) representation of a document is then computed by accumulating
the differences between each codeword vector and each word vector (from the
document) that is associated to the respective codeword. The authors show
that the VLAWE representation is useful for a diverse set of text
classification tasks.

As we have stated, there are multiple novel methods for text
representation. However, the combination of different techniques for text
representation has not been well investigated. In [41], the authors describe a
similar approach to our network applying ConvNets. The authors apply their
model to various large-scale datasets in a way similar to how we train the
network described throughout this article. They show that temporal
ConvNets can achieve astonishing performance without the knowledge of
words, phrases, sentences or any other syntactic or semantic structures
regarding a human language. The authors only use character level
information to classify sentences. Another work about embedding
combination is described in [4], where a new approach based on the skipgram
model is proposed. Each word is represented as a bag of character n-grams
that form sub-words. A vector representation is associated to each character
n-gram, with words being represented as the sum of these representations.
The proposed method is fast, allowing models to be trained quickly on large
corpora and allowing to compute word representations to be computed for
words that did not appear in the training data.

In our work, apart from encoding the documents at the character level as
is done in [41] and at the sub-word level as is done in [4], we test other levels
such as word and sentence levels.

3 Approach

This work focuses on demonstrating that different embedding techniques
contain complementary information and when used jointly can significantly
improve the score in classification tasks. One of the important factors for
achieving better scores in classification tasks by combining text encoding
methods is the type of dataset in which these encodings are applied.
Specifically, the language and mean sentence length of the dataset can be
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crucial. For thus, we conducted experiments on seven datasets with different
characteristics.

In this work, the extension of multi-input CNN for text classification
already presented in [24] is described. The new classification model provides
the possibility of combining several types of embedding vectors implemented
for text that are tokenised at different levels and using different encoding
techniques. In addition, different typologies of classifier are implemented and
compared.

The proposed model was compared against [20] which is an interesting
example of a time-efficient, high-quality classification model that does not
involve neural networks. The authors show that linear models with a rank
constraint and a fast loss approximation can train on a billion words within
ten minutes and achieve state-of-the-art performance. As the fruit of their
labour, the authors created fastText, which is an open-source, free, lightweight
library that allows users to train text representations and text classifiers. In
the present article, fastText is used as a baseline to assess the quality of the
obtained results.

Another contribution of this work is making the multi-input model1

publicly available, which will serve as the system comparison for other
researchers.

4 Model description

In this section, we describe the implemented model and encoding techniques
used in our experiments.

4.1 Multi-input neural network

This work describes a multi-input neural network model. The network allows
us to combine inputs with text information encoded into embedding vectors
and is designed to be able to receive two-dimensional codification of sentences
(e.g., embedding at the word level) as well one-dimensional codification (for
sentence-level embeddings). The model receives embedding vectors as input
data. The description of model layers depending on the dimensionality of input
data is described below.

For two-dimensional encoding of the input sentence, the embedding vectors
E = (e1, . . . , et, . . . , eT ), where T is the length of the longest input text, have
a fixed length of d (i.e., e = {e1, . . . , ed} for all e ∈ E). The intermediate layers
change depending on the topology applied:

CNN layer: For CNN implementation, a convolution layer is stacked.
A filter Q of size p × d, Q ∈ Rp×d, is applied to the input sequence of

1 https://github.com/zparcheta/multi-input_classifier

https://github.com/zparcheta/multi-input_classifier
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embedding vectors

ft = φ(Q[et−b p−1
2 c

; . . . ; et; . . . , et+d p−1
2 e

]) (1)

where φ is an activation function. This process is done for every time step
of the input sequence, giving the sequence F = (f1, . . . , fT−p+1) as a result.
Then, the sequence F is max-pooled with size m resulting in f ′t

f ′t = max[ft−m
2 +1, . . . , ft, . . . , ft+m

2
] (2)

where the max operation is applied to each element of the vectors, resulting
in a sequence F ′ = (f ′1, . . . , f

′
T−r+1

m

). Different numbers of max-pooled

convolution layers can be applied.

Recurrent layers: The process of application of recurrent layers is
similar in the RNN, LSTM and GRU layers. The layer converts the size
of the input vectors E into a new dimensionality resulting in
E′ = (e′1, . . . , e

′
t, . . . , e

′
T ). For each vector e′t, the output vector is

computed following different equations from Table 1.

Table 1: Recurrent layer equations to generate the output vector ht at
time step t. σ stands for the sigmoid function and tanh stands for the
hyperbolic tangent function.

Simple RNN LSTM GRU

ht = σ([ht−1, e′t])

ft = σ([ht−1, e′t])
c̃t = tanh([ht−1, e′t]) zt = σ([ht−1, e′t])
it = σ([ht−1, e′t]) rt = σ([ht−1, e′t])

ct = ct−1 � ft + c̃t � it h̃t = tanh(rt � [ht−1, xt])

ot = σ([ht−1, e′t]) ht = (1− zt)� ht−1 + zt � h̃t

ht = ot � σct)

For each time step t, the layer generates vector ht, which at the same
time is returned as output generating H = (h1, . . . ,h1, . . . ,ht, . . . ,hT ). In
addition, the layer returns cell memory ct. Both c0 an h0 are initialised
as zero vectors. For clarity, the output of the recurrent layer will be called
F′ for nomenclature unification. Different numbers of recurrent layers can
be applied, so different F′ (H) would be generated for a given embedding
type.

F′ from layers are concatenated into W = [F′1; . . . ; F′K ], where K is the
number of all F′ vectors generated for all two-dimensional embeddings. If n
two-dimensional input layers have been applied and each input contains m
dense layers, then K = n ·m. The concatenated layers were flatted and the
dropout layer was applied returning the W′ vector.

For one-dimensional vectors such as sentence embeddings, the intermediate
layer was a dense layer. The embedding vector X = (x1, . . . , xi, . . . , xI),
where I is the embedding size, is forwarded into a dense layer with u units



Combining embeddings of input data for text classification. 7

Fig. 1: Multi-input model.

(the same number as the dense layer for two-dimensional inputs).The dropout
layer is applied, resulting in the new vector s. All s vectors from different
one-dimensional inputs are concatenated into S = [s1; . . . ; sL], where L is
the number of all s vectors generated from all one-dimensional embeddings. If
n one-dimansional input layers have been applied and each input contains m
dense layers, then L = n ·m. The concatenated layers were flatted and the
dropout layer was applied returning the S′ vector.

Finally, the W′ and S′ vectors are concatenated and a specific activation
function [26] is applied to compute the predictive probabilities for all of the
categories. The diagram in Figure 1 represents the implementation of the
multi-input model; both input types (one-dimensional and two-dimensional)
are represented. It can be observed that there can exist several inputs of each
type. Finally, the concatenation of layers from different input types is
performed.

4.2 Input text encoding

As mentioned above, the implemented classification model can combine text
encoded into embedding vectors through different techniques.

An embedding vector is generated through the mapping of a discrete,
categorical variable to a vector of continuous numbers. These vectors can
reduce the dimensionality of categorical variables and meaningfully represent
categories in the transformed space.
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Embedding vectors are an improvement over more traditional
bag-of-word model encoding schemes where large sparse vectors are used to
represent each token (e.g. word or character) or to score each token within a
vector to represent an entire vocabulary. These representations are sparse
because the vocabularies are vast and a given word or document would be
represented by a large vector comprised mostly of zero values. Instead, in an
embedding, tokens are represented by dense vectors where a vector
represents the projection of the token into a continuous vector space. The
position of a token within the vector space is learned from text and is based
on the token that surrounds the token when it is used. The position of a
token in the learned vector space is referred to as its embedding.

Some text encoding techniques are described below. In addition, embedding
vectors can be learned as part of a deep learning model [6]. This requires that
the input data be integer encoded so that each token is represented by a single
integer. The embedding layer is initialised with random weights and will learn
an embedding for all of the tokens in the training dataset. The embedding
vectors can be generated for any type of tokenisation: at the word, subword
and character levels and even the sentence level.

In this work, several text encoding techniques have been used, such as deep
learning embedding layer, BERT, Skip-thoughts, GloVe, and ParagraphVector.
However, the data can be encoded with any encoding techniques and used as
input data of the model.

4.2.1 BPE segments

The Byte Pair Encoding (BPE) approach was introduced for the first time
in [11] and is nowadays used to compute subword units. BPE, in essence, is a
simple form of data compression in which the most common pair of consecutive
bytes of data is replaced with a byte that does not occur within that data. A
table of the replacements is required to rebuild the original data. However, the
first time that this approach was applied to natural language processing was in
a neural machine translation in [29], where BPE was used to build a subword
dictionary. It is a simple and effective approach that makes it possible for
systems that use text as input data to be capable of open-vocabulary encoding
of rare and unknown words as sequences of subword units. BPE tokens can be
used as input to generate embeddings, and we use them in the present work.

4.2.2 BERT

Bidirectional Encoder Representations Transformers (BERT) [10] is a novel
language representation that is designed to pre-train deep bidirectional
representations from unlabelled text by jointly conditioning both the left and
right context in all layers. The BERT model architecture is a multi-layer
bidirectional transformer encoder based on the original implementation
described in [36] and released in the tensor2tensor library [35]. The
pre-trained BERT model can be fine-tuned with just one additional output
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layer to create state-of-the-art models for a wide range of tasks, such as
question answering and language inference, without substantial task-specific
architecture modifications. There are two steps in BERT: pre-training and
fine-tuning. During pre-training, the model is trained on unlabelled data over
different pre-training tasks. For fine-tuning, the BERT model is first
initialised with the pre-trained parameters, and all of the parameters are
fine-tuned using labelled data.

Since the BERT model used to generate embeddings is very large (it
contains 12 layers of 768 neurons each), in this work we only fine-tune a
subset of the last three layers. The embeddings generated are the weights of
the last layer of the BERT model. More details about the specific setup used
are described in Section 5.

4.2.3 GloVe

GloVe is a text encoding technique that is based on an unsupervised learning
algorithm. These technique can be used for obtaining vector representations
for different tokens. Even through initially designed for word representation,
it is possible to train the encoding model at any tokenisation level (e.g.
characters or sub-words). Training of the GloVe encoding model is performed
on aggregated global token-token, co-occurrence statistics from a corpus, and
the resulting representations showcase interesting linear substructures of a
given token vector space. The GloVe model is trained on the non-zero entries
of a global token-token, co-occurrence matrix, which tabulates how
frequently tokens co-occur with one another in a given corpus. Populating
this matrix requires a single pass through the entire corpus to collect the
statistics.

4.2.4 ParagraphVector

Paragraph Vector is an unsupervised algorithm that learns fixed-length
feature representations from variable-length pieces of texts, such as
sentences, paragraphs, and documents. This algorithm represents each
document by a dense vector that is trained to predict words in the
document. Its construction gives the designed algorithm the potential to
overcome the weaknesses of bag-of-words models. Empirical results show that
Paragraph Vectors outperform bag-of-words models as well as other
techniques for text representations.

In this framework, every word is mapped to a single vector, which is
represented by a column in a matrix W. The column is indexed by the
position of the word in the vocabulary. The concatenation or sum of the
vectors is then used as a feature vector for prediction of the next word in a
sentence.
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4.2.5 Skip-thoughts

Skip-thoughts [22] is an encoder-decoder model for sentence-level embedding
generation. Using the continuity of text from books, the authors trained a
model where an encoder maps words to a sentence vector and a decoder is
used to generate the surrounding sentences. Similar sentences get similar vector
representations.

The source sentence representation can also dynamically change through
the use of an attention mechanism [2] to take into account only the relevant
words for translation at any given time. Skip-thoughts, uses a RNN encoder
with GRU activation and an RNN decoder with a conditional GRU.

In this work, we used pre-trained uni-directional and bi-directional
Skip-thoughts models that are available in the Tensorflow repository2 to
generate embeddings for English datasets. For other languages, we trained
Skip-thoughts models from scratch using Books3 corpora. However, the
classification results were not conclusive.

5 Experimental setup

In the experiments conducted, we used the following techniques of text
encoding:

– Embedding vectors generated with the default Keras [7] embedding layer
at the word, BPE and character levels.

– Embedding vectors generated with GloVe algorithm at the word, BPE and
character levels.

– BERT vectors at the word level.
– ParagraphVector at the sentence level.

To summarise, there are three types of word embedding, two types for the
BPE and character levels and one type for sentence embeddings.

In addition, we conducted experiments conducted using Skip-thoughts.
However, the results obtained were inconclusive. We suspect that thus could
have been due to having used inadequate datasets for this technique. For this
reason, we prefer to omit the results obtained.

The experiment procedure is the following:

1. Determine which technique of text encoding is the best for each level (word,
BPE, character) for each one of seven proposed datasets using the CNN
architecture.

2. Combine embeddings of each level and determine the best configuration.
3. Determine the best architecture type for the best configuration of encoding

methods.

2 http://download.tensorflow.org/models/skip thoughts uni 2017 02 02.tar.gz,
http://download.tensorflow.org/models/skip thoughts bi 2017 02 16.tar.gz

3 http://opus.nlpl.eu/Books.php
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4. Compare the results with state-of-the-art classification systems.

The parameters, hyper-parameters and other information about the
implemented model are described below.

5.1 Text codification parameters

The embeddings generated with the default Keras embedding layer, GloVe
and ParagraphVector have a length of 128 units.

To generate BERT embeddings, we used the small multilingual model that
is available in the TensorFlow Hub repository4. This model has 12 layers, 768
units of hidden size, 12 self-attention heads and was trained using 104 different
languages. This model returns an embedding vector of 768 units in length for
each word, which is the input for our network.

5.2 Architecture parameters

The multi-input model was developed in Keras with the TensorFlow [1]
backend. All of the experiments were conducted on a Titan Xp 16G GPU
device with A10-7700K 3.4 GHz Quad-Core FM2+ Processor with 15GB of
RAM.

– CNN architecture: The convolution layers with 512 units were applied
and used ReLU as an activation function [38]. The number of convolution
layers varied and are specified in each experiment including the filter size
of each layer. To compare the accuracy of different architectures, more
convolution layers were applied and are specified in each experiment.

– Recurrent architectures: The basic version of each recurrent
architecture (RNN, LSTM, GRU) contains only one layer with 512 units.
The dropout of 0.2 and recurrent dropout of 0.2 is applied at each of
recurrent layers. As described in Section 4.1, each of layers returns
sequences at each time step.

After the intermediate layers a dropout layer of 0.5 probability is added.
The dense layers contain 512 units and use Softmax as the activation
function. The batch of 50 samples and the optimisation technique Adam [21]
were applied with the following parameter values: learning rate of 10−4,
beta1 of 0.9, beta2 of 0.999, epsilon of 10−8. The early stopping with patience
of ten validation evaluations was applied. To obtain the test accuracy and
confidence intervals we conducted 1000 repetitions with bootstrap
resampling [23] and show a 95% confidence level.

4 https://tfhub.dev/google/bert uncased L-12 H-768 A-12/1
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5.3 Evaluation metrics

Standard metrics for binary and multiclass classification were applied to
measure the quality of the developed model. The metrics were the following:

– F-measure: The F-measure can be interpreted as a weighted average of
precision and recall, where an F-measure achieves its best value at 1 and
its worst value at 0.

– Accuracy: The ratio of the number of correct predictions to the total
number of input samples. The accuracy score achieves its best value at 1
and worst value at 0.

The F-measure and accuracy were chosen as the metrics for this work since
nowadays they are the most common metrics used in binary and multiclass
classification tasks.

5.4 State-of-the-art baseline

In all of the experiments conducted in this work, we compared the obtained
results with fastText. As an experiment, we used the standard values of
fastText, as implemented per default in the toolkit, where the embedding
vector size was 100 neurons, Softmax was used as the loss function, which
has a learning rate of 0.1 that updates after 100 updates. We chosen this
toolkit because of its fast and efficient training. The process training of
fastText was similar to the training of multi-input models: Early stopping of
10 evaluations was applied. Also, the bootstrapping of 1000 iterations was
applied to generate the confidence interval.

5.5 Datasets and results

In this section, we describe the classification experiments using the
multi-input model. As stated above, we conducted experiments on seven
different datasets with distinct characteristics. We first elaborate on the
datasets belonging to open shared tasks, and then we elaborate on the
datasets from commercial scenarios.

5.5.1 Yahoo! Answers

Yahoo! Answers is a website where users can post questions and answers,
where all content is publicly visible. We used version 1.0 of the dataset5, which
contains category, subcategory, title of question, question text, best answer

5 https://bit.ly/2DwXyME L6 - Yahoo! Answers Comprehensive Questions and Answers
version 1.0 (multi-part)
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text and the rest of the answers. In total, the corpus contains 4.4 million
English samples.

The experimental setup described in [41] was replicated where state-of-the-
art results are reported. From the data available, we selected 140 thousand
examples from each of the 10 main categories for training purposes, and 6
thousand examples from each category for the test. The main reason for using
this dataset is because we could compare the results with those reported in [41]
where the authors use the ConvNets architecture for the classification task,
which is an architecture that is similar to our CNN network implementation.
They show that temporal ConvNets can achieve astonishing performance using
only character level information to classify sentences. Table 2 shows the main
figures of the Yahoo! Answers dataset. These figures were calculated on the
tokenised and lowercased data. The mean length of documents is 87 words.

Table 2: The main figures of Yahoo! Answers dataset: k denotes thousands
of elements; M denotes millions of elements; and |S| stands for the number
of documents, |Wword| for the number of running words, |Vword| for the
vocabulary size, S for the mean length of documents (in words) computed on
training, development, and test sets jointly, and C for the number of classes.

Language subset |S| |Wword| |Vword| S C

English
train 126.0k 11.1M 273.2k

87 10development 14.0k 1.2M 61.2k
test 60.0k 5.7M 163.3k

The first step in the experimentation pipeline is to find out which of the
previously described text encoding methods yields the best results at different
tokenisation levels. To do this, we conducted experiments of classification for
word, BPE, character and sentence levels using different techniques. Results
are shown in Table 3. The network architecture used for these experiments
was CNN with one layer with a filter size of 3 units. The task performed on
this dataset is a multiclass classification.

In case of Yahoo! Answers, BERT achieved the best classification score
over all tested methods and the difference in scores is statistically significant.
The scores obtained by BERT was 74.5±0.2 for F-measure and 74.7±0.2 for
accuracy. Differences between both metrics are very small due to
well-balanced data. At the BPE level, the Keras embedding layer obtained
the best classification scores of 66.8±0.2 for F-measure and 66.7±0.2 for
accuracy. Also, at the character tokenisation level, Keras embeddings
attained better scores over GloVe embeddings and it obtained 52.1±0.2 for
F-measure and 52.5±0.2 for accuracy. The best text encoding methods for
each token, including ParagraphVector (since it is the only technique that
was used at the sentence level) were combined and the results of
classifications are shown in Table 4.
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Table 3: The results of the experiments performed for the Yahoo! Answers test
set. The shaded rows represent the best model for each type of tokenisation.
The architecture applied was a CNN with one layer with a filter size of 3 units.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 6 68.7±0.2 68.8±0.2
BERT 2 74.5±0.2 74.7±0.2
GloVe 87 61.2±0.2 61.3±0.2

BPE
Keras 75 66.8±0.2 66.7±0.2
GloVe 47 63.0±0.2 63.1±0.2

character
Keras 95 52.1±0.2 52.5±0.2
GloVe 56 49.7±0.2 49.8±0.2

sentence ParagraphVector 18 66.4±0.2 66.8±0.2

Table 4: The results of the combination of different text encoding methods
performed for the Yahoo! Answers test set. The shaded rows represent the
best combination of text encoding techniques. The architecture applied was
a CNN with one layer with a filter size of 3 units. PV is an abbreviation for
ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

BERT,Keras(BPE) 3 75.2±0.2 75.4±0.2
BERT,Keras(char) 9 71.6±0.2 71.8±0.2
BERT,PV 4 74.5±0.2 74.8±0.2
Keras(BPE),Keras(char) 5 72.2±0.2 72.6±0.2
Keras(BPE),PV 28 67.9±0.2 68.1±0.2
Keras(char),PV 43 67.4±0.2 67.7±0.2

BERT,Keras(BPE),Keras(char) 6 74.6±0.2 74.8±0.3
BERT,Keras(BPE),PV 10 74.5±0.2 74.7±0.3
BERT,Keras(char),PV 8 73.3±0.2 73.4±0.3
Keras(BPE),Keras(char),PV 12 71.0±0.2 71.2±0.3

BERT,Keras(BPE),Keras(char),PV 10 72.1±0.2 72.2±0.2

The combination of the BERT encoding and Keras embeddings at the
BPE level attained an improvement by about 0.7 in F-measure and 0.7 in
accuracy metrics over the BERT encoding, which achieved the best score as
shown in Table 3. It should be noted that leveraging the BERT embeddings
in this dataset always provides improvements over the results achieved with
the corresponding combination, but without BERT, for example, the
combination of BERT, Keras(BPE) and Keras(char) over Keras(BPE) and
Keras(char) without BERT. The next step in the experimentation pipeline
was to determine how the usage of different intermediate layers affect the
classification score. We performed experiments using CNN, RNN, LSTM and
GRU implementations with different numbers of layers. Table 5 shows the
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obtained results. In addition, the classification score obtained by fastText
toolkit was included.

Table 5: The results of the classification using different neural network
architectures for the Yahoo! Answers test set using BERT and Keras(BPE)
text encoding methods jointly. The shaded row represents the best architecture
of the classifier according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 6 74.6±0.3 74.9±0.3
CNN, 3 layers, filter sizes [3,4,5] 8 75.7±0.3 75.8±0.3

RNN, 1 layer 3 9 72.4±0.3 72.9±0.3
RNN, 3 layers 4 73.2±0.3 73.5±0.3

LSTM, 1 layer 8 73.5±0.3 73.8±0.3
LSTM, 3 layers 5 73.0±0.3 73.2±0.3

GRU, 1 layer 7 73.2±0.3 73.5±0.3
GRU, 3 layers 4 72.5±0.3 72.9±0.3

fastText 7 71.7±0.2 72.0±0.2

From all tested architectures, the CNN with 3 layers obtained the best
classification score with a statistically significant improvement over a single-
layered CNN. After finishing all the experiments, we can conclude that the best
score obtained with Yahoo! Answers was 75.7±0.3 for F-measure and 75.8±0.2
for accuracy. The score obtained by fastText was 71.7±0.2 for F-measure and
72.0± for accuracy. In [41] where experiments with the same dataset were done,
authors report results of 71.4 for F-measure using the Yahoo! Answers dataset.
The improvement in the classification scores which the model described in
current work attained over other state-of-the-art systems was significant, and
outperformed fastText by about 4.0 for F-measure and 3.8 for accuracy. In
addition, our model outperformed the score reported in [41] by about 3.8 for
F-measure. Unfortunately, only F-measure without confidence intervals was
reported in the cited work.

5.5.2 The Internet Movie Database

The Internet Movie Database (IMDb) is a huge repository for image and text
data, which is an excellent source for data analytics, deep learning practice and
research. In this work, the dataset with 50 thousands samples of positive and
negative movie reviews was used. The main figures of this dataset, computed
on the tokenised and lowercased data, are shown in Table 6.

The language of the IMDb dataset is English. The average length of the
documents is 232 words which is why we used this dataset in the
classification experiments. This dataset contains the largest documents from
all of the datasets used in this work. The classification task for this dataset is
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Table 6: The main figures of IMDb dataset: k denotes thousands of elements;
M denotes millions of elements; and |S| stands for the number of documents,
|Wword| for the number of running words, |Vword| for the vocabulary size, S for
the mean length of documents (in words) computed on training, development,
and test sets jointly, and C for the number of classes.

Language subset |S| |Wword| |Vword| S C

English
train 22.5k 5.3M 238.2k

232 2development 2.5k 578.5k 58.3k
test 24.5k 5.7M 251.1k

a binary classification. Table 7 shows results for IMDb dataset using only one
text encoding method. BERT and ParagraphVector are the techniques with

Table 7: The results of the experiments performed for the IMDb test set.
The shaded rows represent the best model for each type of tokenisation. The
architecture applied was a CNN with one layer with a filter size of 3 units.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 9 85.6±0.2 85.5±0.2
BERT 3 88.8±0.2 88.8±0.2
GloVe 50 83.0±0.3 83.1±0.2

BPE
Keras 38 81.1±0.3 80.7±0.3
GloVe 39 74.0±0.3 74.7±0.3

character
Keras 49 75.6±0.3 75.4±0.3
GloVe 54 64.1±0.4 62.6±0.3

sentence ParagraphVector 16 87.9±0.2 88.0±0.2

the best performance in this task. The best text encoding methods for each
token were combined, and the results of the classifications are shown in
Table 8.

The best performance was obtained by the combination of BERT,
Keras(BPE) and ParagraphVector text encoding techniques. However, the
results are comparable with results obtained with the combination of the two
best encoding techniques from Table 7, BERT and ParagraphVector. The
combination of these three techniques outperformed the best result from
Table 7 by about 0.9 for F-measure and 1.0 for accuracy. The improvement is
statistically significant according to the confidence intervals computed. The
next step of the experimentation pipeline was the repetition of the training
process using the best combination of text encoding methods (in this case
BERT, Keras(BPE) and ParagraphVector) varying the topology of the
network. Table 9 shows the results obtained for different network
architectures.
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Table 8: The results of the combination of different text encoding methods
performed for the IMDb test set. The shaded rows represent the best
combination of text encoding techniques. The architecture applied was a
CNN with one layer with a filter size of 3 units. PV is an abbreviation for
ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

BERT,Keras(BPE) 3 88.3±0.2 88.6±0.2
BERT,Keras(char) 2 88.8±0.2 88.8±0.2
BERT,PV 3 89.4±0.2 89.6±0.2
Keras(BPE),Keras(char) 61 80.8±0.3 81.1±0.2
Keras(BPE),PV 23 89.1±0.2 89.0±0.2
Keras(char),PV 7 88.5±0.2 88.5±0.2

BERT,Keras(BPE),Keras(char) 2 89.3±0.2 89.2±0.2
BERT,Keras(BPE),PV 3 89.7±0.2 89.8±0.2
BERT,Keras(char),PV 7 88.9±0.2 89.0±0.2
Keras(BPE),Keras(char),PV 25 89.1±0.2 89.0±0.2

BERT,Keras(BPE),Keras(char),PV 5 89.5±0.2 89.5±0.2

Table 9: The results of the classification using different neural network
architectures for the Imdb test set using BERT, Keras(BPE) and
ParagraphVector text encoding methods jointly. The shaded row represents
the best architecture of the classifier according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 3 89.4±0.2 89.6±0.2
CNN, 3 layers, filter sizes [3,4,5] 2 89.8±0.2 89.7±0.2

RNN, 1 layer 13 88.7±0.2 88.7±0.2
RNN, 3 layers 14 87.4±0.2 87.9±0.2

LSTM, 1 layer 4 89.0±0.2 89.0±0.2
LSTM, 3 layers 4 88.5±0.2 88.6±0.2

GRU, 1 layer 5 89.0±0.2 88.8±0.2
GRU, 3 layers 5 88.4±0.2 88.4±0.2

fastText 7 84.9±0.2 85.2±0.2

In the case of the IMDb dataset, the network architecture with the best
results was the CNN with three layers for each input. However, the
improvement over other topologies such as a single-layered CNN or LSTM,
was not significant. A comparison with fastText was also done. The
developed model, outperforms fastText model by about 3.9 for F-measure
and 4.5 for accuracy.
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5.5.3 Stanford Sentiment Treebank

The Stanford Sentiment Treebank (SST) dataset [30] contains sentences that
are extracted from movie reviews. Every sentence in this dataset was parsed
into multiple phrases using the Stanford parser [5]. Originally, the dataset
contained five classes, but, in the second version of this dataset, all of the
neutral sentences were removed and the remaining “Somewhat Positive”
sentences and the “Somewhat Negative” sentences were merged into
“Positive” and “Negative”. The type of experiment performed on this
dataset is the binary classification. Table 10 shows the main figures of the
new version of SST. These figures were calculated on the tokenised and
lowercased data.

Table 10: The main figures of SST dataset: k denotes thousands of elements;
and |S| stands for the number of documents, |Wword| for the number of running
words, |Vword| for the vocabulary size, S for the mean length of documents
(in words) computed on training, development, and test sets jointly, and C for
the number of classes.

Language Subset |S| |Wword| |Vword| S C

English
Train 6.9k 135.2k 13.8k

20 2Development 872 17.2k 4.3k
Test 1.8k 35.5k 6.9k

The difference between the SST dataset and the IMDb is that sentences
from the SST dataset are much shorter and the dataset size is much smaller.
The reason for using this dataset was to determine how good the
performance of the classifier is using different methods of text encoding on
very small amounts of the data. Table 11 shows the results of the
experiments conducted on the SST dataset using only one encoding method.
In the case of the SST dataset, the BERT encoding achieved significantly
better results over the other techniques. In the case of GloVe vectors, the
results are very poor and the score obtained in each tokenisation level are
much worst comparing to other encoding techniques. Since the SST dataset
is quite small, it is not enough to train the GloVe model. However, the size of
dataset is not a problem to fit well ParagraphVector model.

The best text encoding methods for each token were combined and the
results of the classifications are shown in Table 12. We demonstrated that
combining text encoding methods can outperform classification results that
use only one simple encoding method. Table 12 shows that the best
classification score for the SST dataset was obtained using BERT encoding
and Keras embeddings at the BPE level and it improved the best score from
Table 11 by about 0.8 for F-measure and 1.1 for accuracy. The improvement
is statistically significant. Each combination of embeddings which included
BERT embeddings attained much better classification scores than a
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Table 11: The results of the experiments performed for the SST test set.
The shaded rows represent the best model for each type of tokenisation. The
architecture applied was a CNN with one layer with a filter size of 3 units.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 10 82.1±1.0 81.6±0.9
BERT 24 90.6±0.7 90.4±0.7
GloVe 5 64.1±1.3 62.5±1.1

BPE
Keras 34 77.5±1.1 76.7±1.0
GloVe 26 62.4±1.3 60.1±1.1

character
Keras 35 73.2±1.2 72.7±1.0
GloVe 61 65.5±1.2 63.3±1.1

sentence ParagraphVector 32 72.1±1.2 71.9±1.1

combination of techniques which did not involve BERT encoding. Once the
best combination of text encoding methods was determined, experiments
using different typologies of a neural network were tested for the given
combination. Experiments using four different types and number of
intermediate layers were conducted and the results are shown in Table 13.

Table 12: The results of the combination of different text encoding methods
performed for the SST test set. The shaded rows represent the best
combination of text encoding techniques. The architecture applied was a
CNN with one layer with a filter size of 3 units. PV is an abbreviation for
ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

BERT,Keras(BPE) 12 91.4±0.7 91.5±0.7
BERT,Keras(char) 6 89.9±0.7 89.9±0.7
BERT,PV 4 90.9±0.7 91.1±0.7
Keras(BPE),Keras(char) 56 79.7±1.0 81.7±0.9
Keras(BPE),PV 28 77.7±1.1 77.9±1.0
Keras(char),PV 23 74.1±1.2 75.7±1.0

BERT,Keras(BPE),Keras(char) 11 90.1±0.7 90.4±0.7
BERT,Keras(BPE),PV 8 90.6±0.7 90.5±0.7
BERT,Keras(char),PV 12 90.7±0.7 90.4±0.7
Keras(BPE),Keras(char),PV 26 78.1±1.1 78.7±1.0

BERT,Keras(BPE),Keras(char),PV 11 90.0±0.7 90.5±0.7

In the case of the SST dataset, different network types yielded similar
results, with the best option being the CNN network with only one layer. In
addition, a comparison with fastText was done. The developed model,
outperformed the fastText model by about 5.0 for F-measure and 4.7 for
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Table 13: The results of the classification using different neural network
architectures for the SST test set using BERT and Keras(BPE) text encoding
methods jointly. The shaded row represents the best architecture of the
classifier according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 12 91.4±0.7 91.5±0.7
CNN, 3 layers, filter sizes [3,4,5] 11 89.5±0.7 89.6±0.7

RNN, 1 layer 14 89.8±0.7 90.1±0.7
RNN, 3 layers 6 89.5±0.7 89.8±0.7

LSTM, 1 layer 1 89.7±0.8 89.9±0.7
LSTM, 3 layers 1 88.9±0.8 89.1±0.7

GRU, 1 layer 4 89.5±0.7 89.8±0.7
GRU, 3 layers 14 89.7±0.8 90.3±0.7

fastText 44 86.4±1.0 86.8±1.1

accuracy, and it was a statistically significant improvement over the
state-of-the-art system.

5.5.4 Czech Movie Database

The Czech Movie Database [14] is a set of movie reviews in Czech. The
documents from the dataset contain three different labels corresponding to
the polarity of the review: negative, neutral and positive. The corpus
contains 90 thousand documents of balanced data. The dataset is available
on the website of the NLP research group of the University of West
Bohemia6. Table 14 shows the main figures of the Czech Movie Database
calculated on the tokenised and lowercased data.

Table 14: The main figures of Czech Movie Database: k denotes thousands
of elements; M denotes millions of elements; and |S| stands for the number
of documents, |Wword| for the number of running words, |Vword| for the
vocabulary size, S for the mean length of documents (in words) computed on
training, development, and test sets jointly, and C for the number of classes.

Language Subset |S| |Wword| |Vword| S C

Czech
Train 90.0k 4.6M 470.1k

52 3Development 681 36.2k 13.7k
Test 700 36.5k 14.4k

The reason for conducting experiments with this dataset is that since Czech
is a Slavic language, it is an inflected language and we wanted to know how the

6 http://liks.fav.zcu.cz/sentiment/
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model deals with this type of language. Table 15 shows the results obtained
for the Czech Movie Database using the developed model.

Table 15: The results of the experiments performed for the Czech Movie
Database test set. The shaded rows represent the best model for each type
of tokenisation. The architecture applied was a CNN with one layer with a
filter size of 3 units.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 3 75.7±1.6 75.7±1.7
BERT 5 73.3±1.6 73.2±1.7
GloVe 19 72.7±1.6 72.6±1.6

BPE
Keras 24 75.8±1.7 76.1±1.7
GloVe 22 75.0±1.6 75.0±1.6

character
Keras 36 73.3±1.7 73.3±1.7
GloVe 44 61.4±1.8 61.7±1.8

sentence ParagraphVector 18 86.6±1.2 81.5±1.5

Results obtained from Table 15, indicate that the best model was
implemented using ParagraphVector and the difference in scores over other
techniques is statistically significant. In the case of Czech Movie Database
BERT encoding did not obtain a better score than the other techniques. The
best text encoding methods for each token were combined and the results of
classifications are shown in Table 16.

Table 16: The results of the combination of different text encoding methods
performed for the Czech Movie Database test set. The shaded rows represent
the best combination of text encoding techniques. The architecture applied
was a CNN with one layer with a filter size of 3 units. PV is an abbreviation
for ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

keras(word),Keras(BPE) 4 86.4±1.2 81.2±1.5
keras(word),Keras(char) 2 86.9±1.1 81.7±1.5
keras(word),PV 2 88.5±1.1 83.9±1.4
keras(BPE),Keras(char) 28 88.5±1.1 84.2±1.4
keras(BPE),PV 10 89.8±1.0 86.0±1.3
Keras(char),PV 13 89.2±1.0 85.3±1.3

keras(word),keras(BPE),Keras(char) 3 87.9±1.1 83.3±1.4
keras(word),keras(BPE),PV 13 89.4±1.0 85.7±1.3
keras(word),Keras(char),PV 6 87.6±1.1 83.1±1.4
keras(BPE),Keras(char),PV 5 88.1±1.1 83.6±1.4

keras(word),keras(BPE),Keras(char),PV 3 87.9±1.1 83.4±1.4
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We were able to determine that the best combination of text encoding
methods was using Keras embeddings at the BPE level with ParagraphVector
embeddings jointly and it introduces an improvement over the best result from
Table 15 by about 3.2 for F-measure and 4.5 for accuracy. However, there is
not a significant difference between other combinations such as Keras(word)
combined with Keras(BPE) and PV. The last experiment was conducted using
the best combination of text encoding methods using different architectures of
the implemented model. The results are shown in Table 17. All of the tested
architectures obtained similar results with the best choice being CNN with
one layer.

Table 17: The results of the classification using different neural network
architectures for the Czech Movie Database test set using Keras(BPE) and
ParagraphVector text encoding methods jointly. The shaded row represents
the best architecture of the classifier according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 10 89.8±1.0 86.0±1.3
CNN, 3 layers, filter sizes [3,4,5] 15 89.0±1.0 84.9±1.3

RNN, 1 layer 6 87.1±1.2 81.5±1.5
RNN, 3 layers 9 87.4±1.2 83.4±1.4

LSTM, 1 layer 6 89.3±1.1 85.3±1.4
LSTM, 3 layers 3 89.1±1.1 85.0±1.4

GRU, 1 layer 4 88.6±1.0 84.0±1.4
GRU, 3 layers 4 89.0±1.1 84.6±1.4

fastText 30 84.1±1.3 82.1±1.4

5.5.5 GermEval2017

GermEval2017 [37] is a set of tasks on aspect-based sentiment in social media
customer feedback in the German language. Specifically, we focused on task
A, where the goal was to determine whether a review is relevant for a specific
topic. In this case, the reviews that were relevant to the German train service
(Deutsche Bahn) had to be filtered and processed further. Note that German is
an agglutinative language, where the term “Bahn” can refer to many different
things in German: the rails, the train, the track or anything that can be laid
in straight lines. Therefore, it is important to remove documents such as the
“Autobahn” (highway), which are not relevant to the Deutsche Bahn service.
This is similar for other query terms that are used to monitor web sites and
microblogging services. In task A, the documents are labelled as relevant (true)
or irrelevant (false). Table 18 shows the main figures of the GermEval2017 task
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A dataset calculated on tokenised and lowercased data. This dataset contains
two different test sets.

Table 18: The main figures of GermEval2017 dataset: k denotes thousands
of elements; M denotes millions of elements; and |S| stands for the number
of documents, |Wword| for the number of running words, |Vword| for the
vocabulary size, S for the mean length of documents (in words) computed on
training, development, and test sets jointly, and C for the number of classes.

Language subset |S| |Wword| |Vword| S C

German

train 20.9k 1.5M 180.1k

72 2
development 2.6k 196.4k 43.2k
test1 2.6k 184.6k 40.4k
test2 1.8k 3.8M 16.k

We performed experiments using the model described in Section 4, applying
different text encoding techniques. The results are shown in Table 19. Before
determining the best embedding combination and the network architecture,
the trained models were evaluated only on test1. Once the best codification
and architecture were chosen, we performed the evaluation on both test sets.

Table 19: The results of the experiments performed for the GermEval2017
test1 set. The shaded rows represent the best model for each type of
tokenisation. The architecture applied was a CNN with one layer with a filter
size of 3 units. set.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 6 93.4±0.4 88.6±0.6
BERT 5 94.5±0.3 91.2±0.5
GloVe 6 93.4±0.4 88.6±0.6

BPE
Keras 34 94.2±0.4 90.3±0.6
GloVe 47 93.8±0.4 89.5±0.6

character
Keras 52 92.9±0.4 87.8±0.6
GloVe 29 92.2±0.5 86.5±0.8

sentence ParagraphVector 19 92.3±0.4 87.0±0.6

Of all of the results obtained, the BERT encoding attained the best score
compared to the other text encoding methods. However, the differences
between BERT and Keras(BPE) are not statistically significant. The next
experiment was about joint usage of text encoding methods and the results
were shown in Table 20.

The best combination of text encoding techniques were when we used
BERT and Keras at BPE level. Those techniques obtained the best
classification results from Table 19. The combination of BERT and
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Table 20: The results of the combination of different text encoding methods
performed for the GermEval2017 test set. The shaded rows represent the
best combination of text encoding techniques. The architecture applied was
a CNN with one layer with a filter size of 3 units. PV is an abbreviation for
ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

BERT,Keras(BPE) 7 95.0±0.4 91.7±0.7
BERT,Keras(char) 43 93.4±0.4 88.9±0.6
BERT,PV 17 94.8±0.4 91.5±0.6
Keras(BPE),Keras(char) 22 94.3±0.4 90.4±0.6
Keras(BPE),PV 33 94.5±0.3 90.9±0.6
Keras(char),PV 43 93.4±0.4 88.9±0.6

BERT,Keras(BPE),Keras(char) 23 93.4±0.5 88.8±0.7
BERT,Keras(BPE),PV 20 94.5±0.5 91.3±0.7
BERT,Keras(char),PV 34 93.0±0.5 88.4±0.7
Keras(BPE),Keras(char),PV 17 94.0±0.4 90.1±0.6

BERT,Keras(BPE),Keras(char),PV 33 93.8±0.4 89.2±0.6

ParagraphVector also attained high classification scores and the differences
between both combinations are not statistically significant according to
computed confidence intervals. ParagraphVector was the technique which
obtained the worst score from all the results shown in Table 19. This fact
makes us suspect that in the case of GermEval2017, BERT and
ParagraphVector extract different information from the text and the
combination of both achieve a better score than the usage of only one of
these techniques.

The last experiment was conducted using the best combination of text
encoding methods, using different architectures of the implemented model.
The results are shown in Table 21. All of the tested architectures obtained
similar results, with the best choice being CNN with one layer.

Once the best combination of embeddings and the type of network were
chosen, we compared results obtained for both test sets. The state-of-the-art
systems for this dataset were fastText and the winners of the competition
described in [37]. The winning system used an SVM and a random forest
classifier with XGBoost7 [28]. Table 22 shows the comparison of results
obtained by different systems.

As shown, the multi-input network is able to improve the results obtained
by the winning system from GermEval2017 task A by about 4.7 for F-measure
in test1, and 3.7 for F-measure in test2, by using BERT and Keras at BPE level
and using a single-layered CNN implementation. The accuracy and confidence
intervals were not included in the competition results described in [37]. fastText
obtained the worst score for both test sets.

7 https://github.com/dmlc/xgboost
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Table 21: The results of the classification using different neural network
architectures for the GermEval2017 test1 set using BERT and Keras(BPE)
text encoding methods jointly. The shaded row represents the best architecture
of the classifier according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 7 95.0±0.4 91.7±0.7
CNN, 3 layer, filter sizes [3,4,5] 9 94.7±0.4 91.3±0.6

RNN 1 layer 3 94.2±0.4 90.3±0.6
RNN 3 layer 27 94.4±0.4 90.8±0.6

LSTM 1 layer 6 94.5±0.4 90.9±0.6
LSTM 3 layer 9 94.6±0.3 90.9±0.5

GRU 1 layer 13 94.6±0.4 91.1±0.6
GRU 3 layer 2 94.0±0.4 89.8±0.6

Table 22: Comparison of state-of-the-art systems for GermEval2017 for test1
and test2. Greyed rows stands for the best system.

System
Test1 Test2

F-measure Accuracy F-measure Accuracy

Current work 95.0±0.4 91.7±0.7 94.3±0.4 90.4±0.7
fastText 89.2±0.5 86.2±0.5 89.0±0.5 85.8±0.5
Sayyed et al. (2017) [28] 90.3 N/A 90.6 N/A

5.5.6 Gastrofy

The next dataset used for the classification experiments, was the Gastrofy use-
case. Gastrofy turns meal planning, grocery shopping, and recipe creation into
a simple, healthy, and personalised 1-minute process. Their goal is to simplify
the process from inspiration to food on the table - whether it is following a
diet, trying out new dishes or throwing a great dinner party. Northfork is the
company that created the technical platform for gastrofy.se. By having the
user answer a few questions before entering the site, the type of dinner ideas
presented to the user are tailored for them from a selection of thousands of
recipes in the Gastrofy database. This means that the user does not have to
scroll through all of these recipes to find something that they like. They are
immediately presented to the user.

The Gastrofy data is an interesting application of text classification. The
task consists of classifying ingredients into different classes. The particularity
of this dataset is that the input sentences are very short; in fact, the average
length of the input sentences is four words. Another interesting aspect is that
the language of this corpus is Swedish, which implies that words are
compounds. Table 23 shows the main figures of the Gastrofy dataset. The
main figures were calculated on tokenised and lowercased data.

gastrofy.se
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Table 23: The main figures of Gastrofy dataset: k denotes thousands of
elements; and |S| stands for the number of documents, |Wword| for the number
of running words, |Vword| for the vocabulary size, S for the mean length of
documents (in words) computed on training, development, and test sets jointly,
and C for the number of classes.

Language Subset |S| |Wword| |Vword| S C

Swedish
Train 33.1k 177.1k 12.4k

4 >1kDevelopment 3.7k 19.8k 3.7k
Test 4.4k 22.2k 3.9k

The classification results using only one encoding technique are shown in
Table 24. The best score was obtained by using Keras encoding at the BPE
level.

Table 24: The results of the experiments performed for the Gastrofy test set.
The shaded rows represent the best model for each type of tokenisation. The
architecture applied was a CNN with one layer with a filter size of 3 units. set.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 43 66.2±1.0 81.6±0.6
BERT 21 70.8±1.0 83.3±0.6
GloVe 83 63.6±0.9 78.2±0.6

BPE
Keras 89 70.3±1.0 84.1±0.6
GloVe 90 67.9±0.9 81.3±0.6

character
Keras 47 66.8±1.0 81.5±0.6
GloVe 74 68.3±0.9 82.1±0.6

sentence ParagraphVector 82 34.3±0.8 57.2±0.8

The combination of the best technique at each tokenisation level is shown in
Table 25. In experiments conducted on Gastrofy dataset, the use of combined
encoding techniques did not improve the classification results using only Keras
embeddings at the BPE level. For that reason, in the next experiment where
we determined the best network architecture for this dataset, only Keras(BPE)
encoding was used. Results are shown in Table 26.

The CNN network obtained a significantly better score over other
implementations, and the usage of three layers improved the scores from
Table 25 by about 1.4 for F-measure and 0.6 for accuracy. Nonetheless, this
improvement is not statistically significant according to confidence intervals.
The developed model was able to improve the fastText score using Keras at
the BPE level by about 4.3 for F-measure and 8.9 for accuracy. The
difference between the F-measure and the accuracy scores is due to the fact
that Gastrofy is not a balanced dataset and the number of samples for each
class varies between 1 and 800.
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Table 25: The results of the combination of different text encoding methods
performed for the Gastrofy test set. The shaded rows represent the best
combination of text encoding techniques. The architecture applied was a
CNN with one layer with a filter size of 3 units. PV is an abbreviation for
ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

BERT,Keras(BPE) 41 68.5±0.9 83.7±0.6
BERT,Keras(char) 28 68.2±0.9 82.8±0.6
BERT,PV 39 67.3±1.0 81.6±0.6
Keras(BPE),Keras(char) 55 69.5±0.9 83.1±0.6
Keras(BPE),PV 52 68.3±1.0 82.6±0.6
Keras(char),PV 45 68.1±0.9 81.5±0.6

BERT,Keras(BPE),Keras(char) 29 69.1±1.0 83.2±0.6
BERT,Keras(BPE),PV 34 70.4±1.0 83.8±0.6
BERT,Keras(char),PV 32 70.1±1.0 83.6±0.6
Keras(BPE),Keras(char),PV 36 69.8±0.9 83.0±0.6

BERT,Keras(BPE),Keras(char),PV 32 69.3±1.0 83.3±0.6

Table 26: The results of the classification using different neural network
architectures for the Gastrofy test1 set using Keras(BPE) text encoding
method. The shaded row represents the best architecture of the classifier
according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 89 70.3±1.0 84.1±0.6
CNN, 3 layers, filter sizes [3,4,5] 63 71.7±1.0 84.7±0.6

RNN, 1 layer 62 45.1±0.9 65.3±0.7
RNN, 3 layers 49 46.5±0.9 66.5±0.7

LSTM, 1 layer 39 55.9±1.0 75.4±0.7
LSTM, 3 layers 37 54.5±1.0 74.2±0.7

GRU, 1 layer 30 53.6±1.0 73.4±0.7
GRU, 3 layers 28 52.6±1.0 72.2±0.7

fastText 80 76.0±0.8 76.0±0.5

At this point, it is important to highlight that the results obtained were
satisfactory not only according to classification metrics, but also in terms of
being able to be used for their business purpose, as analysed by Northfork.

5.5.7 ProvenWord

ProvenWord was the second commercial scenario of the classification task. It
was founded by a group of educators who are enthusiastically committed to
helping English learners develop their writing skills. The members of the
ProvenWord team are firmly dedicated to language improvement and the
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refinement of academic writing through the application of cutting-edge
technology and innovation. The task proposed by ProvenWord consists of
classifying English sentences into three language levels, according to the
English level of the corresponding writer. Table 27 shows the main figures of
the ProvenWord dataset calculated on tokenised and lowercased data.

Table 27: The main figures of ProvenWord dataset: k denotes thousands of
elements; M denotes millions of elements; and |S| stands for the number
of documents, |Wword| for the number of running words, |Vword| for the
vocabulary size, S for the mean length of documents (in words) computed on
training, development, and test sets jointly, and C for the number of classes.

Language Subset |S| |Wword| |Vword| S C

English
Train 3.8k 580.1k 54.2k

151 3Development 383 57.4k 13.3k
Test 425 66.5k 14.3k

Note that, in this case, the dataset provided is quite small and contains
only 3.8 thousand training samples. As in the previous cases, we conducted
experiments combining different types of input, and the results obtained are
shown in Table 28.

Table 28: The results of the experiments performed for the ProwenWord test
set. The shaded rows represent the best model for each type of tokenisation.
The architecture applied was a CNN with one layer with a filter size of 3 units.
set.

Tokenisation level Encoding method Best epoch F-measure Accuracy

word
Keras 35 57.8±2.4 58.0±2.4
BERT 26 58.4±2.4 58.7±2.4
GloVe 81 44.8±2.5 44.7±2.5

BPE
Keras 144 50.8±2.4 51.2±2.4
GloVe 99 48.6±2.5 48.5±2.5

character
Keras 208 47.3±2.5 47.3±2.4
GloVe 16 44.7±2.4 44.7±2.4

sentence ParagraphVector 104 56.7±2.5 56.2±2.6

Of all of the results obtained, the BERT encoding obtained the best
classification score than other text encoding methods. However, differences
between BERT and Keras(word) are not significant. The confidence intervals
are quite wide in the case of this dataset. The next experiment is about the
joint usage of text encoding methods and the results are shown in Table 29.

We determined that the best combination of text encoding methods is using
BERT and Keras embeddings at the BPE level jointly. The last experiment
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Table 29: The results of the combination of different text encoding methods
performed for the ProvenWord test set. The shaded rows represent the best
combination of text encoding techniques. The architecture applied was a
CNN with one layer with a filter size of 3 units. PV is an abbreviation for
ParagraphVector.

Encoding combination Best epoch F-measure Accuracy

BERT,Keras(BPE) 29 62.6±2.4 62.6±2.4
BERT,Keras(char) 21 58.3±2.5 58.8±2.5
BERT,PV 29 61.2±2.3 61.5±2.3
Keras(BPE),Keras(char) 158 51.0±2.5 51.2±2.5
Keras(BPE),PV 125 55.8±2.4 55.9±2.4
Keras(char),PV 144 55.6±2.4 55.9±2.4

BERT,Keras(BPE),Keras(char) 15 60.0±2.4 60.2±2.4
BERT,Keras(BPE),PV 54 61.2±2.4 61.5±2.4
BERT,Keras(char),PV 37 60.4±2.4 60.6±2.4
Keras(BPE),Keras(char),PV 116 55.1±2.5 55.1±2.5

BERT,Keras(BPE),Keras(char),PV 15 59.7±2.4 61.0±2.5

was conducted using the best combination of text encoding methods using
different architectures of the implemented model. The results are shown in
Table 30.

Table 30: The results of the classification using different neural network
architectures for the ProwenWord test set using BERT and Keras(BPE) text
encoding methods jointly. The shaded row represents the best architecture of
the classifier according to the classification metrics.

Network architecture Best epoch F-measure Accuracy

CNN, 1 layer, filter size 3 29 62.7±2.4 62.6±2.4
CNN, 3 layers, filter sizes [3,4,5] 33 63.5±2.4 63.5±2.4

RNN, 1 layer 18 63.0±2.4 63.2±2.4
RNN, 3 layers 14 62.7±2.4 62.9±2.4

LSTM, 1 layer 16 63.6±2.4 63.7±2.4
LSTM, 3 layers 15 64.1±2.4 64.3±2.4

GRU, 1 layer 17 62.4±2.4 62.5±2.5
GRU, 3 layers 12 62.3±2.4 62.3±2.4

fastText 25 58.3±2.5 58.2±2.6

Different implementations of the classification model attained similar
results. The architecture that obtained the best classification results for
ProwenWord dataset is the LSTM implementation with three layers
although the improvement over other architectures is not significant. In
addition, the results were compared with fastText and the implemented
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classifier achieved an improvement over fastText by about 5.8 for F-measure
and 6.1 for accuracy. The classification results were quite low, and we
suspect that the size of the dataset was not large enough to attain
satisfactory results in this task.

6 Results analysis

After obtaining the results with each dataset in Section 5, we proceed to
analyse them.

In 78% of the experiments, the combination of different text encoding
techniques improved the classification score over the usage of only one text
encoding technique. The exceptions were mainly using the Yahoo! Answers
and GermEval2017 datasets when the combination of embeddings that
included Keras embeddings at the character level obtained a lower score than
the other techniques used jointly. For example, in the case of the Yahoo!
Answers dataset, the accuracy of BERT was 74.7±0.2 and Keras(char) was
52.5±0.2 but the concatenation of both was 71.8±0.2, which did not improve
the score of the classification using only BERT embeddings. However, the
usage of text encoding at character level did not stand out over other
techniques in any dataset. The character level encodings were only taken into
account in the case of the IMDb dataset, where the best option of text
encoding techniques was the combination of four different levels. In any case,
the difference in scores over the combination of BERT and ParagraphVector
was not statistically significant in this dataset.

In the case of the Gastrofy dataset the combination of different
techniques did not improve the score of the Keras embeddings at the BPE
level. This dataset has very short sentences, contains a large number of
classes and the data is not balanced. Due to its characteristics, it is difficult
to draw any conclusions about the combination of text encoding techniques.
What was already confirmed in [24] is that BPE tokenisation has a very
positive effect, especially on agglutinative and inflected languages such as
Swedish, where the difference in scores over other techniques was significant.
However, in this work, the techniques applied at the BPE level always
appear in the final combination of embeddings. In addition, there is no
combination of the same techniques in different tokenisation levels such as
Keras(word) and Keras(BPE). In seven out of seven datasets, the
combination was done using different techniques such as BERT + Keras, or
Keras + ParagraphVector. This supports the hypothesis that using
techniques that are implemented with different algorithms generates
embedding vectors that contain different linguistic information, and so, the
combination of a few of them contains complementary information that
improves the classification score.

The next observation is that the usage of BERT in English datasets
significantly improves the results over other types of text encoding
techniques. It must be noted that the BERT model was trained with
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multilingual data. However, English is a very well-resourced language, which
may explain that BERT improves the results mainly with English datasets.
We only fine-tuned the three last layers of the BERT model to adjust it to a
specific language for computational reasons. We suspect that fine-tuning all
of the BERT layers could improve results for the non-English languages used
in our experiments. In addition, the improvement using BERT is reflected in
the case of the dataset in German. English is a language that was originally
derived from West Germanic, so both the German and English languages are
considered to be members of the Germanic branch of the Indo-European
language family, meaning they are still closely related today. Several German
words are used in the English language and vice-versa, and other words are
very similar, e.g., man/Mann, light/Licht [3]. In addition, there are several
studies that show the acoustic and contextual similarities of both
languages [32,33].

The improvement in classification accuracy using BERT is not appreciated
in agglutinative and inflected languages, such as Swedish and Czech, which
are languages that have far fewer resources available than English. For that
reason, the BERT model was probably trained with a very small amount of
data in these languages.

In any dataset, GloVe was never selected as best technique at any
tokenisation level. At the BPE and character levels it was always
outperformed by the Keras embedding layer, and outperformed by BERT or
Keras at the word level.

ParagraphVector attained good performance when the dataset was large
enough. We show that in datasets such as SST, Gastrofy or ProvenWord,
it did not provide remarkable results. Those datasets contain less than 600k
running words and less than 33k documents in the training set. However, in
larger datasets, which contain more than 1 million running words, it provided
satisfactory results when combined with other text encoding techniques.

Finally, different neural network architectures were compared. In six out
of seven datasets, the CNN network provided the best classification results.
The scores were not significant using different numbers of layers. Only in the
case of ProvenWord was the best classification score obtained by an LSTM
architecture with 3 layers. However, the differences between the scores obtained
using other architectures were not statistically significant. Another criteria for
choosing the network architecture was the training time. Table 31 shows time
per epoch using different architectures on the GermEval2017 dataset.

As shown in Table 31, the CNN architecture was the most time-efficient
option and is the architecture that obtained the best classification scores (in 6
out of 7 datasets). In conclusion, CNN is the more recommendable architecture
for the text classification task.



32 ? Zuzanna Parcheta et al.

Table 31: Time per epoch using different architectures on the GermEval2017
dataset.

Network
architecture

Number
of layers

Time

CNN 1 4:17min
CNN 3 4:47min

RNN 1 4:51min
RNN 3 5:30min

LSTM 1 7:15min
LSTM 3 16:31min

GRU 1 6:16min
GRU 3 13:36min

7 Conclusions and future work

In this work, the multi-input Convolutional Neural Network from [24] was
expanded to make it possible to train the network with any text encoding
technique as input. We included experiments using four different text
encoding techniques such as the Keras embedding layer, GloVe, BERT
embeddings, and ParagraphVector. We have shown that in 78% of the cases
the combination of different text encoding techniques improves the score
obtained over using only one text encoding technique. We have also
demostrated the positive impact of the BERT embeddings on English and
German datasets as well as the importance of encoding at the BPE level.
Finally, by comparing different architectures, we show that the CNN
architecture is the most recommendable option due to its fast training and
high classification score. In our experiments, there was no significant
difference in the use of different numbers of layers using the CNN
implementation.

As future work, we plan to implement more methods of the text
encodings compared in [15]. In this work, different text encoding techniques
are compared. However, the study about their combination would be
interesting. In addition, the technique from [17], already described in
Section 2, will be included.
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