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MAXIMAL FACTORIZATION OF OPERATORS ACTING IN

KÖTHE-BOCHNER SPACES

J.M. CALABUIG, M. FERNÁNDEZ-UNZUETA, F. GALAZ-FONTES AND E.A.

SÁNCHEZ-PÉREZ

Abstract. Using some representation results for Köthe-Bochner spaces of

vector valued functions by means of vector measures, we analyze the maximal

extension for some classes of linear operators acting in these spaces. A factor-

ization result is provided, and a specific representation of the biggest vector

valued function space to which the operator can be extended is given. Thus,

we present a generalization of the optimal domain theorem for some types

of operators on Banach function spaces involving domination inequalities and

compactness. In particular, we show that an operator acting in Bochner spaces

of p-integrable functions for any 1 < p < ∞ having a specific compactness

property can always be factored through the corresponding Bochner space of

1-integrable functions. Some applications in the context of the Fourier type of

Banach spaces are also given.

1. Introduction

The effective computation of the maximal domain of operators that are defined

on a certain class of Banach spaces is an important topic in functional analysis.

For instance, some classical problems on almost everywhere convergence of trigono-

metric series in spaces of integrable functions can be understood as an attempt of

finding the bigger function space preserving this property. This problem has some-

times a solution —that is, there is a maximal space satisfying the given property,

see for example Ch.4 and Ch.7 in [22]—, but in other cases such a space does not
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exist. For instance, compactness of the operator has been one of the properties

studied from this point of view, for which there is no such maximal factorization

[21] (see also [5]).

In recent years, some effort has been made for the determination of the maximal

domains —also called optimal domains— of some classical operators in the class of

the order continuous Banach function spaces. The most widespread technique for

giving a representation of such spaces is based on vector measures and integration.

Generalizing this method, in this paper we are interested in the analysis of the

existence of the optimal domain of operators acting in Köthe-Bochner spaces of

vector valued integrable functionsX(µ, Y ), for the class of all such spaces of function

having values in a fixed Banach space Y, where X(µ) is an order continuous Banach

function space over a finite measure space (Ω,Σ, µ).

In this paper we prove the following maximality result: under some additional

requirements, given a Banach space valued operator T : X(µ, Y )→ E, we can find

a maximal space Z(η, Y ) such X(µ, Y ) ⊆ Z(η, Y ) and T can be extended to it

preserving continuity. A complete description of such space is given, as a Köthe-

Bochner space in which the functional part is a space L1 of a vector measure defined

by the operator (Theorem 6). If some additional compactness property is required

for the operator, the optimal factorization space can be characterized as a specific

L1-space, of a scalar measure in this case (Theorem 12).

Actually, our analysis involves factorization of bilinear maps through the point-

wise product of functions in X(µ) and vectors in Y, and a linear map acting in a

Köthe-Bochner function space. Therefore, our method combines factorization of

bilinear operators and integral representation of linear maps. As a consequence,

we prove that under a compactness requirement for the operator —to be right-

uniformly-compact—, a continuous linear map acting in a Bochner space Lp(µ, Y )

can be factored through L1(µ, Y ) (Corollary 14).
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2. Preliminaries and notation

Since the original work of Bochner [3] on integration of vector valued functions

was published in the first part of the 20th century, Köthe-Bochner spaces have

been fixed as a relevant tool in functional analysis. Let us recall now the definition

of Köthe-Bochner space (sometimes also called mixed norm spaces, see Ch.7 in

[16]). Fix a finite measure space (Ω,Σ, µ). If X(µ) is a Banach space consisting of

(equivalence classes of) measurable functions, then we say that X(µ) is a Banach

function space if it is an ideal of measurable functions and has a Riesz norm. That

is, if g is a measurable function, f ∈ X(µ) and |g| ≤ |f |, then we always have

g ∈ X(µ) and ‖g‖ ≤ ‖f‖. Thus, we follow the standard definition given in [19,

p.28] under the name “Köthe function space”. A Banach function space is order

continuous if each decreasing sequence fn ↓ in it converging almost everywhere to

0, converges to 0 also in the norm.

If X(µ) is a Banach function space and Y a Banach space, the Köthe-Bochner

space X(µ, Y ) is defined to be the space of (µ-a.e. classes of) strongly measurable

functions f : Ω→ Y satisfying that w  ‖f(w)‖Y ∈ X(µ), endowed with the norm

‖f‖X(µ,Y ) :=
∥∥‖f‖Y (w)

∥∥
X(µ)

.

The reader can find more information in [6, 7, 18]. A particular relevant case of this

class of spaces are the Bochner spaces of p-integrable functions, in which X(µ) =

Lp(µ) for a finite measure µ. These spaces allow a tensor product representation

that will be relevant for this paper. It is well-known that

L1(µ, Y ) = L1(µ)⊗̂πY,

the completion of the projective tensor product (see for example Proposition 1.8.6

in [18]; see [9] for more information about topological tensor products). For the

case of 1 < p ≤ ∞, a similar representation can be obtained, but the projective

norm π has to be substituted by the so called natural norm ∆p, defined in the

obvious way by using the Lp-norm.
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The study of the relation of vector measure integration and representation of

operators was started by Bartle, Dunford and Schwartz in the foundational paper

[2]. The corresponding theory of integration was fixed by [17] and other authors

(see [22] and the references therein), and has found a lot of applications, mainly by

using the integral representation of operators that if provides.

Our notation is standard. For a Banach space X we write as usual BX for its

closed unit ball and X∗ for its dual space. We will consider finite measure spaces

(Ω,Σ, µ), and Banach space valued measures ν : Σ → X on the measurable space

(Ω,Σ). Once the vector measure ν is fixed, we can define the family of scalar mea-

sures given by the variations |〈ν, x∗〉| of all the scalarizations 〈ν, x∗〉(·) := x∗(ν(·))

of the measure ν, x∗ ∈ BX∗ .

If ν is a vector measure, the reader can find in [11, Chapter IX]) the definition

of Rybakov measure. Such a positive finite measure can be written as the variation

|〈ν, x∗〉| of a scalar measure as 〈ν, x∗〉 for a certain norm one element x∗ ∈ X∗ such

that ν and |〈ν, x∗〉| are equivalent, that is, they have the same null sets.

A function f : Ω → R is integrable with respect to ν if it is measurable and

integrable with respect to all the scalar measures |〈ν, x∗〉|, x∗ ∈ X∗, and satisfies

that for each A ∈ Σ there exists a vector
∫
A
f dν ∈ X such that∫

A

f d〈ν, x∗〉 = 〈
∫
A

f dν, x∗〉, x∗ ∈ X∗.

The space L1(ν), whose elements are the (classes of) integrable functions with re-

spect to ν, is an order continuous Banach function space over any Rybakov measure

µ. Its norm —that is a lattice norm— is given by the formula

‖f‖L1(ν) = sup{
∫

Ω

|f |d|〈ν, x∗〉| : x∗ ∈ BX∗}.

The expression

|‖f‖|L1(ν) = sup
A

∥∥∫
A

f dν
∥∥
E
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gives an equivalent norm for L1(ν), that is not a lattice norm. Moreover, if E is a

Banach lattice, we can compute the norm by the formula

‖f‖L1(ν) =
∥∥∫

Ω

|f |dν
∥∥
E
.

The space L1(ν) has also a weak unit, the function χΩ. The reader can find this

and a complete explanation of related concepts in [22, Ch.2 and Ch.3].

Let us mix now both classes of function spaces to get a representation that will be

relevant for the paper. It must be said that, by a well-known representation theorem

for Banach function lattices, every order continuous Banach function space with a

weak order unit can be written isometrically and in the order as a space L1(ν)

of a vector measure ν (Proposition 3.9 in [22]). Recall that we are considering

a measurable space (Ω,Σ) and a vector measure ν : Σ → X over it. If Y is

a Banach space and µ is a scalar Rybakov measure for ν, we will consider the

Köthe-Bochner space L1(ν, Y ) := X(µ, Y ), where X(µ) = L1(ν). Note also that

the order continuity of L1(ν) allows to deduce that simple functions are dense in

the corresponding Köthe-Bochner space with the norm defined by the expression

above (see for example [15, Lema 1.51]). Operators acting in Köthe-Bochner spaces

is a classic topic of current interest. The interested reader can find recent papers on

this subject, for example on special classes of operators on these spaces [1, 12, 13],

and on the integral representation of such operators ([14, 20]).

3. Linear operators acting in Köthe-Bochner spaces, bilinear maps

and representation of maximal Köthe-Bochner spaces

We will show two representations of the space of integrable functions that will

become the optimal domain of an operator T acting in a Köthe-Bochner space. In

fact, we will consider maximality for the bilinear map given by any linear operator

like this, following some ideas presented in [4] and [23]. In order to do that, we will

consider vector measures on `∞-spaces as well as operator-valued measures. One of

the spaces is the one composed by integrable functions with respect to an operator
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valued vector measure, that we will denote by L1(νTB
). Since the description is

not giving a direct information about its structure, we describe another space of

integrable functions —L1(mB)—, in this case with respect to a positive vector

measure with values in an `∞-space. The definition of the norm in this space gives

a clear description of how the space is constructed, starting from the operator T.

We begin by proving that both spaces L1(νTB
) and L1(mB) actually coincide.

Let X(µ) be an order continuous Banach function space over a finite measure µ

and let Y and E be Banach spaces. Consider a bilinear map B : X(µ)×Y → E. It

defines a linear operator TB : X(µ) → L(Y,E) in the usual manner—TB(f)(·) :=

B(f, ·)—, that has an associated vector measure νTB
: Σ→ L(Y,E).

On the other hand, let us show that a related `∞-space-valued measure can be

defined in the following simple way. Note first that for each y ∈ Y, the map B(χ·, y)

given by A 7→ B(χA, y) is a countably additive vector measure, by the continuity

of B and the order continuity of X(µ). Moreover, for each y ∈ Y and x′ ∈ BE∗ , we

can also consider the scalar measure

mB,y,x′(A) := 〈B(χA, y), x′〉, A ∈ Σ.

This allows to define the positive finitely additive measure by means of the

semivariations of these measures as

mB(A) :=
(
|mB,y,x′ |(A)

)
y∈BY , x′∈BE∗

∈ `∞(BY ×BE∗).

Let us show first that it is well-defined. Clearly, each measure A 7→ 〈B(χA, y), x′〉

is countably additive by the order continuity of X(µ). On the other hand, if we fix

A ∈ Σ we get

sup
y∈BY , x′∈BE∗

∣∣〈B(χA, y), x′〉
∣∣ ≤ ‖B‖ ‖χA‖X(µ) ‖y‖ ≤ ‖B‖ ‖χΩ‖X(µ) <∞.

Therefore, the set function mB : Σ → `∞(BY × BE∗) is well-defined. Let us show

now that in fact the vector measure mB is countably additive.
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Lemma 1. For a bilinear operator B : X(µ) × Y → E and an order continuous

Banach function space X(µ) over a finite measure µ, the function mB defined as

above is a countably additive vector measure.

Proof. Take a disjoint sequence of measurable sets (Ai)
∞
i=1. Let us show that

lim
n
‖mB(∪∞i=nAi)‖E = 0.

Indeed, for y ∈ BY and x′ ∈ BE∗ we have that there is a measurable set C ⊆ ∪∞i=nAi

such that

|mB,y,x′ |(∪∞i=nAi) = mB,y,x′(C)−mB,y,x′(∪∞i=nAi \ C)

≤ ‖B(χC , y)‖E + ‖B(χ∪∞i=nAi\C , y)‖E ≤ 2 ‖B‖ ‖χ∪∞i=nAi
‖X(µ) ‖y‖Y .

Since X(µ) is order continuous, this gives a uniform bound that converges to 0.

Thus, we get the result. �

Lemma 2. Let B : X(µ)×Y → E be a Banach space valued bilinear map. Suppose

that X(µ) is an order continuous Banach function space over a finite measure µ.

Consider the vector measures mB and νTB
associated to B and defined as above.

Then the corresponding spaces of integrable functions coincide, that is

L1(νTB
) = L1(mB).

Moreover,

|‖ · ‖|L1(mB) ≤ 2 |‖ · ‖|L1(νTB
) ≤ 2 ‖ · ‖L1(mB) ≤ 4 |‖ · ‖|L1(mB).

Proof. First notice that, by Lemma 1, mB is a countably additive vector measure

and so L1(mB) is well-defined. Consider a simple function f =
∑n
i=1 λiχAi

, where

A1, ..., An are disjoint sets, and note that

|‖f‖|L1(νTB
) = sup

A,y∈BY

‖TB(fχA)(y)‖E = sup
A,y∈BY

‖B(fχA, y)‖E .
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On the other hand, for each couple (y, x′) ∈ Y × E∗ the Hahn decomposition of a

measure gives a set Cy,x′ ∈ Σ such that the following inequalities hold.

|‖f‖|L1(mB) = sup
A∈Σ,y∈BY , x′∈BE∗

(∫
A

f d|mB,y,x′ |
)

= sup
A∈Σ,y∈BY , x′∈BE∗

(〈∫
A∩Cy,x′

f dB(χ{·}, y), x′
〉

+
〈∫

A∩Cc
y,x′

f dB(χ{·}, y), x′
〉)

≤ sup
A∈Σ,y∈BY ,x′∈BE∗

‖B(fχA∩Cy,x′ , y)‖E + sup
A∈Σ,y∈BY ,x′∈BE∗

‖B(fχA∩Cc
y,x′

, y)‖E

≤ 2 sup
A,y∈BY

‖B(fχA, y)‖E = 2|‖f‖|L1(νTB
)

≤ 2 sup
A∈Σ,y∈BY , x′∈BE∗

〈 ∫
A

f dB(χ{·}, y), x′
〉
≤ 2 sup

y∈BY , x′∈BE∗

∫
Ω

|f | d|mB,y,x′ |

= 2 ‖f‖L1(mB) ≤ 4 sup
A∈Σ,y∈BY , x′∈BE∗

∫
A

f d|mB,y,x′ |.

Taking into account that simple functions are dense in both spaces, the result is

obtained. These computations give also the inequalities among the norms. �

The next result is a version of Proposition 3.1 in [4]. We write it for the aim of

completeness. Recall that it is said that B is µ-determined if for every A ∈ Σ, the

set function supC⊂A,y∈BY
‖B(χC , y)‖E equals 0 if and only if µ(A) = 0

Lemma 3. Let B : X(µ)× Y → E be a Banach space valued bilinear map, where

X(µ) is an order continuous Banach function space over a finite measure µ. Con-

sider the vector measure νTB
. Then

(i) there is a Rybakov measure η for νTB
such that η � µ, and

(ii) the inclusion/quotient map [i] : X(µ) → L1(νTB
) given by [i](f) = [f ]νTB

for f ∈ X(µ), is well-defined and continuous, and ‖[i]‖ ≤ ‖B‖.

(iii) If µ is equivalent to the Rybakov measure η —that is, to νTB
—, then [i] is

injective. This happens if and only if B is µ-determined.

Proof. (i) We consider the vector measure νTB
: X(µ) → L(Y,E). By Rybakov’s

Theorem (see Ch.IX in [11]) we have that for every E-valued countably additive

vector measure m we can find a measure η = |〈m,x′〉| for a certain x′ ∈ BE∗ such

that m and η have the same null sets. Applying this to νTB
we get the result.
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(ii) In general, we have that for measurable sets A and C,

‖νTB
‖(A) = sup

C⊆A
‖νTB

(C)‖L(Y,E)

= sup
C⊆A

‖TB(χC)‖L(Y,E) = sup
C⊆A, y∈BY

‖B(χC , y)‖E ≤ sup
C⊆A

‖B‖‖χC‖ ≤ ‖B‖‖χA‖.

Thus, since X(µ) is a Banach function space we have that ‖χA‖ = 0 if and only if

µ(A) = 0, and then ‖νTB
‖(A) = 0. Therefore, for a couple of measurable functions

f, g ∈ L0(µ) such that f = g µ-a.e., we have that f = g also η-a.e., and so

[i](f) = [i](g). The map [i] is then well-defined. Moreover, taking into account the

equivalent norm for the space L1(νTB
), if f ∈ X(µ),

‖[i](f)‖L1(νTB
) = sup

A∈Σ
‖TB(fχA)‖L(Y,E) = sup

A∈Σ, y∈BY

‖B(fχA, y)‖E ≤ ‖B‖‖f‖X(µ).

This proves (ii).

(iii) Just note that, if µ is equivalent to the Rybakov measure η, we have that

for any couple of µ-measurable functions, f = g µ-a.e. if and only in f = g η-a.e.

Then, since η is equivalent to νTB
, we have that f = g µ-a.e. if and only if [f ] = [g],

what gives the injectivity of [i].

�

We will write IY : Y → Y for the identity map.

Proposition 4. Let B : X(µ) × Y → E be a Banach space valued bounded bilin-

ear map, where X(µ) is an order continuous Banach function space over a finite

measure space (Ω,Σ, µ). Consider the vector measure mB . Then B can be factored

through the following scheme,

X(µ)× Y
B //

[i]×IY
��

E.

L1(mB)× Y
B̂

::

Moreover, this factorization is optimal, in the sense that for any order continuous

Banach function space Z(η) over the measure space (Ω,Σ, η) such that
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1) η � µ, and

2) B can be factored through Z(η)× Y by [i]× IY ,

we have that Z(η)→[iZ ] L
1(mB).

Proof. This is a direct consequence of Lemma 3. Indeed, recall that by Lemma 2,

L1(mB) = L1(νTB
), and write BZ for the bilinear map B extended to Z(η) × Y.

Since the measurable space where both vector measures are defined is the same,

we get that νTBZ
= νTB

. By assumption, we have that the inclusion/quotient map

[i] : X(µ)→ Z(η) is well-defined and continuous, and on the other hand, by Lemma

2 we have that the inclusion/quotient map [iZ ] : Z(η) → L1(νTBZ
) = L1(mB) is

also well-defined and continuous.

�

In general, we cannot translate the optimality of L1(mB) for the factorization of

B in the sense of Proposition 4 to a factorization of a linear operator acting in a

Köthe-Bochner space as T : X(µ, Y )→ E. However, there are some cases for which

we have that the factorization of the bilinear operator BT : X(µ)× Y → E defined

as

BT (f, y) = T (f · y), f ∈ X(µ), y ∈ Y,

can be used to construct a factorization for the operator T . We will write TB :

X(µ)→ L(Y,E) for the linear operator induced by the bilinear map BT . The next

result shows that the required property is what we call to be right-dominated, and

is written in terms of inequalities. As the reader will see, this is some sort of Banach

space version of the positive operators for the case of operators between Banach

lattices.

We will say that a bounded linear operator T : X(µ, Y )→ E is right-dominated

if there is a constant K > 0 such that

∥∥T (f)
∥∥
E
≤ K

∥∥∥TB(‖f‖Y )
∥∥∥
L(Y,E)

, f ∈ X(µ, Y ).
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Example 5. Suppose that simple functions are dense in X(µ, Y ). An easy example

of a right-dominated operator is given by the linear operator T0 : X(µ, Y ) → E

defined for simple functions by T0(
∑n
i=1 χAi

· yi) =
∑n
i=1 S(χAi

) · 〈yi, y′0〉, where E

is a Banach lattice, S : X(µ) → E is a positive operator and y′0Y
∗ is a norm one

functional.

Indeed, take a simple function f =
∑n
i=1 χAi

· yi. Then

‖T0(f)‖E = ‖
n∑
i=1

S(χAi
) · 〈yi, y′0〉‖E = ‖S(

n∑
i=1

χAi
· 〈yi, y′0〉)‖E

≤ ‖S(

n∑
i=1

χAi
· ‖yi‖)‖E = sup

y∈BY

‖S(

n∑
i=1

χAi
· ‖yi‖) · 〈y, y′0〉‖E

= sup
y∈BY

‖BT0(

n∑
i=1

χAi · ‖yi‖, y)‖E = ‖(T0)B(‖f(w)‖Y )‖L(Y,E).

Therefore, T0 is right-dominated for K = 1.

Another relevant situation in which we can translate the optimality obtained for

the factorization of bilinear maps to a linear operator acting in a Köthe-Bochner

space is when BT is right-uniformly-compact. This will be explained later. Let us

show first the optimal factorization for right-dominated operators. We will explain

it for the case of µ-determined operators. Another version is available without this

assumption, just changing inclusions by inclusion/quotient maps, in the spirit of

Lemma 3.

Theorem 6. Let X(µ) be an order continuous Banach function space over a finite

measure µ. Let T : X(µ, Y ) → E be a µ-determined right-dominated operator.

Then T can be factored through the Köthe-Bochner space L1(νTB
, Y ) as

X(µ, Y )
T //

i

��

E.

L1(νTB
, Y )

T̂

::
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Moreover, this factorization is optimal, in the sense that for any Köthe-Bochner

space Z(η, Y ) such that Z(η) is order continuous —for η equivalent to µ— and

such that T can be extended to Z(η, Y ), we have that Z(η, Y ) ⊂ L1(νTB
, Y ).

Proof. Note first that T can be used to define a bilinear map B : X(µ) × Y → E

as B(f, y) := T (f · y). The continuity of T gives that

‖B(f, y)‖E = ‖T (f · y)‖E ≤ ‖T‖
∥∥∥ f ‖y‖Y ∥∥∥

X(µ,Y )
= ‖T‖ ‖f‖X(µ) ‖y‖Y ,

and then B is continuous. Thus, we can consider the associated measure νTB
: Σ→

L(Y,E). Take a function f ∈ X(µ, Y ). Then, by Lemma 3( (ii) and (iii) ), we have

that

‖f‖L1(νTB
,Y ) =

∥∥ ‖f(w)‖Y
∥∥
L1(νTB

)
≤ ‖B‖

∥∥ ‖f(w)‖Y
∥∥
X(µ)

= ‖B‖ ‖f‖X(µ,Y ).

On the other hand, note that by the order continuity of both spaces X(µ) and

L1(νTB
), the first mentioned space is dense in the second one, and so we only need to

define the extension T̂ for f ∈ X(µ, Y ). Then we can use the formula T̂ (f) = T (f).

Let us prove that it is continuous when it acts in L1(νTB
, Y ). Identifying the tensor

product of the space X(µ) ⊗ Y with a subspace of X(µ, Y ), we can take a simple

function f =
∑n
i=1 χAi

⊗ yi ∈ X(µ) ⊗ Y ⊆ X(µ, Y ), for disjoint measurable sets

A1, ..., An. The tensor product is dense in the Köthe-Bochner space, and so simple

functions are too. Then since T is right-dominated, we have that

‖T̂ (f)‖E = ‖T (f)‖E ≤ K
∥∥TB(‖f(w)‖Y )

∥∥
L(Y,E)

= K
∥∥ n∑
i=1

TB(χAi
· ‖yi‖Y )

∥∥
L(Y,E)

≤ K sup
A∈Σ

∥∥ n∑
i=1

TB(χAi∩A‖yi‖Y )
∥∥
L(Y,E)

= K sup
A

∥∥ n∑
i=1

νTB
(Ai ∩A)‖yi‖Y

∥∥
L(Y,E)

= K sup
A

∥∥∫
A

( n∑
i=1

χAi
‖yi‖Y

)
dνTB

∥∥
L(Y,E)

≤ K ‖f‖L1(νTB
,Y ).

Thus, the inequality holds for every f ∈ L1(νTB
, Y ).

For the optimality of the factorization it is enough to take into account Lemma

3. If X(µ) ⊂ Z(η), then the vector measure νTBZ
generated by the bilinear map B
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when defined from Z(η) × Y coincides with νTB
. Therefore, by Lemma 3 we have

that Z(η, Y ) ⊆ L1(νTBZ
) = L1(νTB

), which finishes the proof. �

4. Maximal extensions of right-uniformly-compact operators acting

in Köthe-Bochner spaces

We will show in what follows that better results —without the restriction for

the operator to be right-dominated— can be obtained under some compactness

assumptions. The next results show that in this case, we can extend operators

acting in the class of Köthe-Bochner spaces to the spaces that are in a sense maximal

in this class: Bochner spaces of integrable functions. Using our general result, we

will prove some maximality theorems that concern the general theory of operators

on spaces of vector valued functions, providing concrete results for relevant classical

spaces.

Let B : X(µ)× Y → E a continuous bilinear map. Let us define a new topology

for X(µ) given by the (semi)norm

‖f‖B := sup
A∈Σ,y∈BY

∥∥B(fχA, y)‖E , f ∈ X(µ).

Let us assume in this section that ‖ · ‖B is a norm, what happens if B is µ-

determined. The resulting space is then a normed space. Note that such a bilinear

map B can always be used to define a continuous bilinear map B̂ : (X(µ), ‖·‖B)×E,

B̂ = B. Indeed, the continuity of B and the fact that X(µ) is a Banach function

space give that for every f ∈ X(µ) and y ∈ Y,

‖B̂(f, y)‖E = ‖B(f, y)‖E ≤ sup
A∈Σ,z∈BY

‖B(fχA, z)‖ ‖y‖ ≤ ‖f‖B ‖y‖.

Recall that an operator from a normed space to a Banach space is compact if it

carries the unit ball inside a compact set.

Let us start by proving a result on the relation between the compactness proper-

ties of a bilinear map B : X(µ)×Y → E and the associated operator TB : X(µ)→
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L(Y,E). We will consider the following compactness-type property for a bilinear

map B, that characterizes when the associated map TB is compact.

Definition 7. We will say that the bilinear operator B : X × Y → E is right-

uniformly-compact if for every sequence (xi) ⊂ BX there is a subsequence (xij )j

such that for every ε > 0 we find a natural number j such that for every sequence

as
(
(xij − xik , yik)

)
j≤k ⊂ X ×BY we have that ‖B(xij − xik , yik)‖E < ε.

In the same way, we will say that the bilinear operator B is left-uniformly-

compact if the symmetric property holds, that is, if the bilinear map Bt : Y ×X → E

defined as Bt(y, x) = B(x, y), is right-uniformly-compact.

The next result shows that this property gives a characterization of the com-

pactness of TB . We write the standard proof for the aim of completeness.

Lemma 8. Let X,Y and E be Banach spaces. Then the following statements hold

for a bilinear operator B : X × Y → E.

(i) B is right-uniformly-compact if and only if its associated linear operator

TB : X → L(Y,E) is compact.

(ii) B is left-uniformly-compact if and only if its associated linear operator TBt :

Y → L(X,E) is compact.

(iii) If B is right-uniformly-compact and left-uniformly compact, then it is com-

pact.

Proof. (i) Suppose first that B is right-compact. Take a sequence of elements

(xi) ⊂ BX and consider the subsequence (xij ) with the given properties. Fix ε > 0.

Then there is j1 associated to ε/2 such that there is a sequence (yk)j≤k ⊂ BY

satisfying that for every k ≥ j1,

‖TB(xij1 )− TB(xik)‖L(Y,E) < ‖B(xij1 − xik , yik)‖E + ε/2 < ε/2 + ε/2 = ε.

Therefore,
(
TB(xij )

)
is a Cauchy sequence, what means that TB is compact.

Conversely, take a sequence (xi) ⊂ X. If TB(BX) is relatively compact there

is a subsequence (xij ) such that
(
TB(xij )

)
is a Cauchy sequence in E. Therefore
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for every ε there is j such that ‖TB(xij ) − TB(xik)‖L(Y,E) < ε for each k ≥ j,

that is, for every sequence (yk) ⊂ BY , ‖B(xij − xik , yk)‖E < ε. That is, B is

right-uniformly-compact.

The proof of (ii) is similar.

(iii) Take a sequence (xi, yi) in BX × BY . Then, since B is right-uniformly-

compact, we have that there is a subsequence (xij ) with the explained properties.

In particular, the subsequence
(
(xik , yik)

)
k

satisfies that for every ε > 0 there is j0

such that for k ≥ j0,

‖B(xij0 − xik , yik)‖E < ε.

Note also that in fact ‖B(xij0 − xik , y)‖E < ε for all y ∈ BY . Now we use the

fact that B is also left-uniformly-compact. Then there is a subsequence of (yij )

—we use the same notation for it—, such that for every ε > 0 there is j1 such that

‖B(xik , yij1 − yik)‖E < ε for each k ≥ j1.

Write j2 := max{j0, j1}. Then we have that for k1, k2 ≥ j2,

‖B(xik1
, yik1

)−B(xik2
, yik2

)‖E

≤
∥∥B(xik1

, yjk1
)−B(xij2 , yik1

) +B(xij2 , yik1
)

−B(xij2 , yik2
) +B(xij2 , yik2

)−B(xik2
, yik2

)
∥∥
E

≤ ‖B(xij2 − xik1
, yjk1

)‖+ ‖B(xij2 − xik2
, yik2

)‖+ ‖B(xij2 , yik1
− yik2

)‖

≤ ‖B(xij2 − xij0 , yik1
)‖+ ‖B(xij0 − xik1

, yik1
)‖+ ‖B(xij2 − xij0 , yik2

)‖

+‖B(xij0 − xik2
, yik2

)‖+ ‖B(xij2 , yij1 − yik2
)‖+ ‖B(xij2 , yik1

− yij1 )‖ < 6ε.

Therefore,
(
B(xij , yij )

)
is a Cauchy sequence in E, what implies that B is a

compact bilinear operator.

�
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Example 9. Recall that if f is a Bochner integrable function in L1(µ,X), we can

define its k-th Fourier coefficient by means of the vector valued integral

f̂(k) :=

∫
Ω

f(t)eikt dµ(t), k ∈ Z.

Let Π be the torus, and consider Lebesgue measure µ on it. Note that for f = h ·x,

h ∈ Lp(Π) and x ∈ X, we have that f̂(k) = x · ĥk. Following the natural continuous

Fourier operators from Lp(Π) to `p
′

provided by the Hausdorff-Young inequality,

a Banach space X is said to have Fourier type p for 1 < p ≤ 2 if the map Ip :

Lp(Π, X)→ `p
′
(X) given by

Ip(f) :=
(
f̂(k)

)
k∈Z, f ∈ Lp(Π, X),

is well defined and continuous (see for example [8] and the references therein). Let

1 ≤ s < p′ and take the real number r that satisfies 1/r + 1/p′ = 1/s. Take a

positive sequence 0 < α = (αk) ∈ `r, and consider the map Mα : `p
′ → `s given by

Mα((rk)k) = (αkrk)k. It is clearly well-defined and continuous. Recall that Pitt’s

Theorem states that every operator from `p
′ → `s, for s < p′, is compact (see [10]

for example for this result and some generalizations). Consequently, Mα is compact.

Let us write also Mα for the same operator but defined from `p
′
(X) → `s(X) in

the natural way. We consider now the operator Mα ◦ Ip : Lp(Π, X) → `s(X).

The associated bilinear map Bp,s : Lp(Π) × X → `s(X) is given by Bp,s(h, x) =

(αkĥk · x)k = (αkĥk)k · x. Notice that for Bp,s we can consider the operator

TBp,s
: Lp(Π)→ L(X, `s(X)),

that is given by the formula

TBp,s
(h)(x) := Bp,s(h, x) = (xαkĥk)k = x (αkĥk)k ∈ `s(X), h ∈ Lp(Π), x ∈ X.

Let us remark that the functions h above are scalar, and so the map h 7→ (αkĥk)k is

the standard Fourier operator Fp : Lp(Π) → `p
′

composed with the multiplication

map α : `p
′ → `s. But this composition is compact. Indeed, note that for every
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h ∈ Lp(Π),

‖TBp,s(h)‖L(X,`s(X)) = sup
x∈BX

‖x · (αkĥk)k‖`s(X) = sup
x∈BX

‖x‖ · ‖(αkĥk)k‖`s .

In other words, TBp,s factors through the map Mα ◦ Fp : Lp(Π) → `s. Since this

map is compact, we get that TBp,s
is compact. Lemma 8 gives then that Bp,s is

right-uniformly-compact.

Let us explain now an easy example whose generalization will become the moti-

vation of the rest of the paper. We are interested in determining when the optimal

domain of a given operator acting in a Köthe-Bochner space is a Bochner space.

The next case will show that this happens when the original bilinear map can be

factored through a scalar functional in a certain way; we will show that this situa-

tion can be generalized to the case when this kind of factorization is done through

a compact operator.

Example 10. Fix a finite measure space (Ω,Σ, µ). Let R : Y → E be a norm one

operator. Let X(µ) be an order continuous Banach function space—the particular

case X(µ) = Lp(µ) will be studied later on. Consider the bilinear map B : X(µ)×

Y → E given by B(f, y) :=
( ∫

Ω
f dµ

)
·R(y), that is obviously continuous. Then the

operator TB : X(µ)→ L(Y,E) is given by TB(f)(·) :=
( ∫

Ω
f dµ

)
·R(·), f ∈ X(µ).

Note now that

‖f‖B := sup
A∈Σ, y∈BY

‖B(fχA, y)‖ = sup
A∈Σ

∣∣∣ ∫
A

f dµ
∣∣∣ · sup
y∈BY

‖R(y)‖

= sup
A∈Σ

∣∣ ∫
A

f dµ
∣∣, f ∈ X(µ),

and this expression is equivalent to the standard norm in L1(µ).

Note also that ϕ(·) :=
∫

Ω
(·) dµ defines a linear functional on L1(µ), and so

TB : (X(µ), ‖ · ‖B)→ L(Y,E) can be factored as

(X(µ), ‖ · ‖B) ↪→ L1(µ)→ϕ R→S L(Y,E),
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where S(r)(·) = r · R(·) for all r ∈ R. Therefore, TB acting in (X(µ), ‖ · ‖B) is

a compact map, what by Lemma 8 means that the extension of B, B̂, is right-

uniformly-compact.

On the other hand, it can be easily seen that |νTB
| = µ, and the original bilinear

map B can be factored as

X(µ)× Y →i L
1(µ)× Y →B̂ E,

where B̂ : L1(|νTB
|)× Y → E is defined by continuity from B.

Let us give a general version of this result under the assumption of right-uniform-

compactness of the bilinear map B for the norm ‖ · ‖B in the left space of the

Cartesian product.

Proposition 11. Let X(µ) be an order continuous Banach function space over a

finite measure µ. Let B : X(µ) × Y → E be a Banach space valued bilinear map

such that B : (X(µ), ‖ · ‖B) × Y → E is right-uniformly-compact. Then B can be

factored through the bilinear map B̂ : L1(|νTB
|)×Y → E defined by continuity from

B, and this factorization is maximal.

Moreover, if B : (X(µ), ‖ · ‖B) × Y → E is also left-uniformly-compact, or

compact, its linearization

LB̂ : L1(|νTB
|)⊗̂πY → E,

is compact too.

Proof. Since B is right-uniformly-compact, we have by Lemma 8 that the oper-

ator TB : (X(µ), ‖ · ‖B) → L(Y,E) is compact, and it is indeed the integration

map for the vector measure νTB
. Therefore, using Proposition 3.48 in [22], we get

that L1(νTB
) = L1(|νTB

|) (see [22, §3.3] for more explanations about this result).

Proposition 4 gives the result.

We can get a proof of the last statement within the circle of ideas of the Krein-

Milman Theorem. Indeed, first recall that L1(|νTB
|, Y ) = L1(|νTB

|)⊗̂πY. Note that
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the unit ball of the projective tensor product is the closed convex hull of its extreme

points, which are the single tensors as f⊗y for ‖f‖ ≤ 1 and ‖y‖ ≤ 1. Using Lemma

8, we have that the range of B̂ is a relatively compact set, and its closed convex

hull is then also compact. This set contains LB̂(BL1(|νTB
|,Y ). Thus, we get that

TB̂(L1(|νTB
|, Y )) is relatively compact, and so the operator TB̂ is compact.

�

Using some known results on vector measure integration and the previous de-

velopments, we are ready to prove the main result of this section. Recall that, if

T : X(µ, Y )→ E is an operator, the formula B̂T (f, y) := T (f ·y), f ∈ X(µ), y ∈ Y,

provides a continuous bilinear map from (X(µ), ‖ · ‖BT
)× Y to E.

Theorem 12. Let X(µ) be an order continuous Banach function space over a finite

measure µ. Let T : X(µ, Y ) → E be a µ-determined Banach space valued linear

operator such that the associated bilinear map B̂T : (X(µ), ‖ · ‖B) × Y → E is

right-uniformly-compact. Then the operator T can be factored through the Bochner

space L1(|νTB
|, Y ) as

X(µ, Y )
T //

i

��

E.

L1(|νTB
|, Y )

T̂

::

Moreover, if B̂T is also left-uniformly-compact, or BT is compact, this extension is

compact and maximal.

In addition, there is an integral representation for T̂ , that is, there exists a |νTB
|-

Bochner integrable function φ : Ω→ L(Y,E) such that

T̂ (f · y) =
(∫

Ω

f φ d|νTB
|
)

(y), f ∈ L1(|νTB
|), y ∈ Y.

Proof. The proof is direct just using the previously obtained results. Given an

operator T : X(µ, Y ) → E, we can define a bilinear map BT : X(µ) × Y → E by

BT (f, y) = f · y, f ∈ X(µ), y ∈ Y. By Proposition 11, we get the optimal factoriza-

tion for BT through B̂ : L1(|νTB
|) × Y → E. This map can be linearized through
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the projective tensor product, that coincides with the Bochner space L1(|νTB
|, Y )

as

L1(|νTB
|)× Y

B̂ //

�
��

E.

L1(|νTB
|, Y )

T̂

99

This gives a factorization for the original operator T, that is clearly maximal: if

there is any other Köthe-Bochner space Z(η, Y ) to which T can be extended as

T1, the associated bilinear map factors through the scheme above. This, together

with the fact that Z(η, Y ) ⊆ L1(νTB
, Y ) = L1(|νTB

|, Y ) by Lemma 3, gives that T1

factors through L1(|νTB
|, Y ). Proposition 3.48 in [22] gives the integral representa-

tion of the operator written in the last part of the statement of the theorem. This

finishes the proof.

�

Example 13. Following with the setting explained in Example 10, fix X(µ) = Lp(µ),

1 < p < ∞, and take as R a norm one operator R : Y → E. Consider the linear

map T : (S, ‖ · ‖Lp(µ,Y )) → E, where S are the simple functions over Y, that is

defined as T (f) = T (
∑n
i=1 χAi

yi) = R(
∑n
i=1 µ(Ai) yi) for f =

∑n
i=1 χAi

yi. Note

that

‖R(

n∑
i=1

µ(Ai) yi)‖E ≤ ‖
n∑
i=1

µ(Ai) yi‖Y ≤
n∑
i=1

µ(Ai) ‖yi‖Y

=

∫
Ω

‖
n∑
i=1

χAi
yi‖Y dµ ≤ µ(Ω)1/p′ ‖f‖Lp(µ,Y ),

and so the map is continuous, what implies that it can be extended by continuity to

all the space Lp(µ, Y ). Note also that the bilinear operator BT coincides with the

map B that was given in Example 10 and was shown to be right-uniformly-compact

from (Lp(µ), ‖·‖BT
)×Y to E. It was also shown that |νTB

| = µ, and so Theorem 12

gives the factorization through L1(µ, Y ) and the maximality of such factorization.



MAXIMAL FACTORIZATION OF OPERATORS IN KÖTHE-BOCHNER SPACES 21

The representation as a Bochner integral is given by the Radon-Nikodym deriv-

ative φ(w)(y) := 1(w)R(y) = R(y), w ∈ Ω, y ∈ Y, that is

T̂ (f · y) =
(∫

Ω

f φ dµ
)
(y) =

( ∫
Ω

fdµ
)
·R(y), f ∈ L1(µ), y ∈ Y.

This example provides a motivation for the following concrete result, that is

up to our knowledge new, and is one of the main outcomes of the present paper:

every linear operator from a Bochner Lp-space Lp(µ, Y ) with an associated right-

uniformly-compact bilinear map can be extended optimally to a Bochner L1-space.

Moreover, this space can be chosen to be exactly L1(µ, Y ) if the inclusion is sub-

stituted by a multiplication operator in the factorization diagram. For the aim of

simplicity we write it for µ-determined operators.

Corollary 14. Let 1 ≤ p < ∞, and consider a linear operator T : Lp(µ, Y ) → E

such that it is µ-determined and the associated bilinear map

B̂T : (X(µ), ‖ · ‖B)× Y → E

is right-uniformly-compact. Then T has an optimal factorization as

Lp(µ, Y )
T //

Mg

��

E.

L1(µ, Y )

T0

;;

Proof. By Theorem 12, we have a factorization as

Lp(µ, Y )
T //

i

��

E.

L1(|νTB
|, Y )

T̂

::

On the other hand, since |νTB
| � µ, there is a µ-integrable scalar function g > 0

—since the operator is µ-determined—, such that d|νTB
| = g dµ. Therefore, we can

factor the operator through the multiplication operator Mg : Lp(µ, Y )→ L1(µ, Y ),
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Mg(f) := gf, since∫
Ω

‖Mg(f)‖dµ =

∫
Ω

‖f‖gdµ =

∫
Ω

‖f‖d|νTB
|, f ∈ Lp(µ, Y ),

closing the diagram with T0 = T̂ /g. This gives the result. �

It can be easily seen that the function g in the previous corollary has to belong

to Lp
′
(µ). The same result can be adapted for other classical families of Banach

function spaces, as Lorentz and Orlicz spaces.

Corollary 15. Let 1 ≤ p, q <∞ and consider the Lorentz (Banach) space Lp,q(µ).

Consider a linear operator T : Lp,q(µ, Y )→ E such that it is µ-determined and the

associated bilinear map B̂T : (X(µ), ‖ · ‖B) × Y → E is right-uniformly-compact.

Then T has an optimal factorization through the Bochner space L1(µ, Y ) as the one

given in Corollary 14.

Remark 16. Since the factorization given in Theorem 12 depends only on the as-

sociated bilinear map BT , the result can also be applied for spaces other than the

Köthe-Bochner spaces, —for example spaces of vector valued integrable functions of

Pettis type—, whenever we can prove that these spaces are included in L1(|νTB
|, Y )

and define the same bilinear map BT .

5. Applications: Fourier type of Banach spaces and boundedness

results for the vector valued Fourier coefficients of Bochner

integrable functions

Recall from Example 9 that a Banach space X is said to have Fourier type p

for 1 < p ≤ 2 if the map Ip : Lp(Π, X) → `p
′
(X) given by f 7→ Ip(f) =

(
f̂(k)

)
k∈Z

is well defined and continuous. Let us use our results to provide two applications

that give more information for the vector valued Fourier transform.

1) The bilinear map associated to Ip is Bp : Lp(µ) × X → `p
′
(X), given by

Bp(h, x) = (ĥk)k · x, h ∈ Lp(Π), x ∈ X. Note that it is always well-defined and
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continuous as a consequence of the Hausdorff-Young inequality, without assuming

the Fourier type p for X. The linear operator TBp : Lp(Π) → L(X, `p
′
) can also

be defined; it can be easily checked, as in Example 9, that ‖TBp
(h)‖L(X,`p′ ) =

‖(ĥk)k‖`p′ , h ∈ Lp(Π). Therefore, the associated vector measure νTBp
coincides

with the vector measure νFp defined by the Fourier operator Fp : Lp(Π) → `p
′
.

The optimal domain for this operator is presented in [22], where it is shown that

coincides with the space

Fp(Π) :=
{
f ∈ L1(Π) : (f̂χAk)k ∈ `p

′
for each Borel set A

}
,

and the norm is given by

‖f‖Fp
:= sup

A
‖(f̂χAk)k‖`p′ , f ∈ Fp(Π),

see [22, Proposition 7.13]. Therefore, we have the continuous inclusion Lp(Π) ⊆

Fp(Π), and Bp can be extended to Fp(Π) × X → `p
′
(X). Consequently, indepen-

dently of the Fourier type of X, for every strongly measurable function X-valued

function f that can be written as a pointwise limit f =
∑∞
i=1 hi ·xi with hi ∈ Fp(Π),

xi ∈ X and
∑∞
i=1 ‖hi‖Lp(Π) ‖xi‖X <∞, the vector valued Fourier coefficients define

a sequence (f̂k)k that is in `p
′
(X).

2) Fix now a natural number n and consider the projection Pn : `p
′
(X) →

`p
′

n (X), Pn((xk)∞k=1) := (xk)nk=1 for (xk)∞k=1 ∈ `p
′
(X). This operator is not compact.

However, if we define the bilinear map Bp,n : Lp(Π)×X → `p
′

n (X) as Bp,n = Pn◦Bp,

we obtain that the associated operator

TBp,n
: Lp(Π)→ L(X, `p

′

n (X)),

given by the formula TBp,n
(h)(x) := Bp,n(h, x) = (ĥk)nk=1 · x ∈ `p

′

n (X), h ∈ Lp(Π),

x ∈ X, has finite range, so it is compact, that is, Bp,n is right-uniformly-compact

(Lemma 8). The operator is not µ-determined, but in this case a look to the proof
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of Lemma 14 shows that Corollary 14 holds also for a positive function gn that is

not in general gn > 0. Therefore, we obtain the next uniform domination result.

Corollary 17. Suppose that X has Fourier type p for 1 < p ≤ 2. Let n ∈ N

and assume that the Banach space X has Fourier type equal to p. Then there is a

function 0 ≤ gn ∈ Lp
′
(Π) such that the multiplication operator Mgn : Lp(Π, X) →

L1(Π, X) is well-defined and continuous, and there is a constant Kn such that for

every f ∈ L1(Π, gdµ,X),

∥∥(f̂k)nk=1

∥∥
`p
′

n (X)
≤ Kn

∫
Π

‖f‖X g dµ.
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