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Abstract 17 

Rapid urbanization contributes to the development of phenomena such as climate variability, 18 

especially in tropical countries, which negatively impact ecosystems and humans, factors that 19 

influence urban sustainability. Additionally, the increase of building construction prevents the flow 20 

of wind streams contributing to the retention of pollutants and hot air masses, causing events such 21 

as urban heat islands (UHI). This study aimed to analyze from the micro-territorial level, the 22 

influence of urban growth on the UHI phenomenon over the last two decades (2000-2020) in the 23 

locality of Kennedy, in Bogotá, Colombia. For this purpose, environmental and socio-economic 24 
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factors were evaluated. For the former, Landsat satellite images and spectral indices were used to 25 

evaluate the spatial-temporal variation in the quantity and quality of vegetation, bodies of water, 26 

urbanized areas, impervious surfaces, as well as to calculate the land surface temperature and its 27 

distribution in the study area. With regard to the socio-economic factors, the variables considered 28 

for analysis were population density and energy consumption. Lastly, a principal component 29 

analysis was carried out to identify possible associations between the variables and to identify the 30 

contribution of each micro-territory to the UHI phenomenon in the study area. The spatio-temporal 31 

variations reveal a growing trend over time, especially in impermeable areas where several 32 

economic activities, vehicular traffic, and population density converge, which require certain 33 

actions to be prioritized in territorial planning and the addition of public green spaces in urban 34 

zones. 35 

 36 

Keywords: Urban heat island; land surface temperature; spectral indices; remote sensors; principal 37 

component analysis; micro-territories. 38 

 39 

1 Introduction  40 

The world’s population has increased exponentially, and this trend will continue, especially 41 

in areas such as Asia, Africa, and Latin America. It was estimated that in 2018, 55% of people lived 42 

in cities and this figure is projected to increase by 13% by 2050 (United Nations, 2019). Therefore, 43 

there will be increased population density, the expansion of settlements, land cover changes, 44 

increased energy consumption, pollution, and the modifications of cities’ microclimates, which 45 

include the urban heat island phenomenon (UHI) (Singh, Kikon, & Verma, 2017).  46 

A UHI is an effect that hinders urban sustainability. The latter can be evaluated from factors 47 

that describe the environmental, social, and economic behavior of territories (Shen, Kyllo, & Guo, 48 

2013). The environmental dimension includes factors related to air quality, biodiversity, water, and 49 

soil resources. The social dimension encompasses population growth, health-related effects on the 50 
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inhabitants, in addition to social conditions regarding access to services related to urban expansion 51 

and densification. Lastly, the economic dimension entails infrastructure as support for territorial 52 

development and consumption patterns (United Nations, 2007), including energy consumption. In 53 

the context of this study, these are major interrelated components and are part of the Sustainable 54 

Development Goal (SDG) known as sustainable cities and communities (UNDP, 2020). 55 

UHI refer to the temperature difference between urban and rural areas (Amanollahi, Tzanis, 56 

Ramli, & Abdullah, 2016; Estoque & Murayama, 2017; Oke, 1982), which is inevitable in cities 57 

due to urbanization processes that include surfaces originally covered by vegetation being replaced 58 

by infrastructures such as roads, houses, and buildings,  where the thermal mass built causes an 59 

increase of land surface temperature (LST) and the resulting UHI phenomenon (Carpio, González, 60 

González, & Verichev, 2020; Estoque & Murayama, 2017; Papparelli, Kurbán, & Cúnsulo, 2011; 61 

Singh et al., 2017). Moreover, UHI intensity rises with increasing urban occupancy (Papparelli et 62 

al., 2011). 63 

As stated by Papparelli et al., (2011) and Rizwan, Dennis, & Liu, (2008), the increase in 64 

surface temperature is associated with anthropogenic activities which are the result of heat 65 

generated by vehicles, power plants, air conditioning, among other causes (Rizwan et al., 2008). 66 

Urban infrastructure absorbs this heat, as do atmospheric pollutants such as aerosols found in urban 67 

areas with high pollution levels (Rizwan et al., 2008). The increase in LST entails greater energy 68 

demand, which exacerbates air pollution, cardiovascular and respiratory diseases, and impacts 69 

humans’ quality of life (Bokaie, Zarkesh, Arasteh, & Hosseini, 2016; Liu et al., 2020; Senanayake, 70 

Welivitiya, & Nadeeka, 2013; Zhou et al., 2019).  71 

This phenomenon has been studied primarily in countries such as the United States, 72 

Germany, Greece, France, as well as in Asian countries such as China, India, and Japan, which have 73 

provided significant research on heat factors (Ulpiani, 2021; Zhou et al., 2019). Nevertheless, there 74 

is a lack of research on UHI in Latin America (Dobbs, Hernández-Moreno, Reyes-Paecke, & 75 

Miranda, 2018; Litardo et al., 2020; Peres, Lucena, Rotunno Filho, & França, 2018; Portela, Massi, 76 
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Rodrigues, & Alcântara, 2020; Wu et al., 2019), which is necessary due to continuous urbanization 77 

processes and increasingly intensifying climate sensitivity. Although urbanization processes 78 

generate effects in all territories, it is important to note that the urban growth rate in developing 79 

countries such as those in Latin America is 2.29% per year, compared to 0.47% in developed 80 

countries (United Nations, 2019). 81 

Studies on UHI have been carried out primarily for areas larger than 100 km2. However, it 82 

is noteworthy that in smaller areas, there may be alterations in the factors that influence UHI related 83 

to environmental, social, and economic dimensions, similar to those in capital cities such as in the 84 

city of Baguio, Philippines, which covers an area of 57.5 km2 (Estoque & Murayama, 2017). 85 

Therefore, there is a need to promote studies on UHI in smaller areas, as they are more likely to 86 

experience drastic changes from the effect of urban warming (Zhou et al., 2019), and thus in their 87 

sustainability dimensions. A local resolution analysis could facilitate the precise identification of 88 

areas affected by this phenomenon, to establish a scheme to prioritize actions for its mitigation and 89 

contribute to the planning of sustainable cities from the micro-territory level.  90 

In this research study, zonal planning units (ZPU) function as a spatial unit category (micro-91 

territories) to understand both environmental and socio-economic factors, which may influence the 92 

formation of UHIs within the study area. The ZPUs were created through a decree in 2000 with the 93 

adoption of the Bogota Land Use Plan. In this manner, the micro-territories were conceived as an 94 

urban planning instrument that would enable development at the neighborhood level (Yunda & Sletto, 95 

2020). ZPUs also facilitate the regulation of urban land in sectors with common elements in terms of 96 

land use and productive activities, building height, public space, and road conditions (Guzman, 97 

Gomez, & Rivera, 2017). 98 

According to (Molina Jaramillo, 2018), the micro-territory category entails more than a 99 

spatial delimitation through administrative and/or socio-cultural boundaries. It also refers to the space 100 

where daily life takes place, which facilitates an analysis of the population’s health and well-being 101 
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conditions at the neighborhood and community levels.   102 

This study examines micro-territories as units of analysis within large cities, given that they 103 

facilitate the evaluation of different phenomena’s behavior on a smaller scale, as well as the 104 

selection of measures with a synergic effect that can be applied in larger areas. 105 

Therefore, this research study seeks to answer the following question: How does urban 106 

growth influence the manifestation of the urban heat island phenomenon at the micro-territorial 107 

level? 108 

Studying UHI requires a technical analysis from the perspective of temporal and spatial 109 

changes, in addition to knowledge of LST distribution in areas that have gone through urbanization 110 

processes. Moreover, areas with unusual temperatures must be identified. Given its capacity to map 111 

thermal distribution, satellite image processing was used, as it enables the analysis of distributed 112 

LST at the spatio-temporal level (Senanayake et al., 2013).   113 

The main objective of this work was to analyze from the micro-territorial level, the 114 

influence of urban growth on the UHI phenomenon over the last two decades (2000-2020). This 115 

study includes an association analysis of land use and land cover changes, mainly due to 116 

anthropogenic variables. To this end, this study developed a temporal analysis of the behavior of 117 

environmental and socio-economic factors, based on digital processing of satellite images and 118 

information provided principally by government entities.  119 

Examining environmental factors includes analyzing spatio-temporal changes in vegetation 120 

along with the addition of build-up and impervious surfaces, by using spectral indexes to extract 121 

and calculate the built areas in terms of their shape, size and spatial context, namely:  normalized 122 

difference vegetation index (NDVI), normalized difference built-up index (NDBI), and normalized 123 

difference impervious surface index (NDISI). It also includes the identification of water bodies and 124 

wetlands as represented in the normalized difference water index (MNDWI) and lastly, the 125 

calculation of the spatial distribution of land surface temperature (LST). Meanwhile, socio-126 
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economic factors include population density and energy consumption in the analysis period as 127 

factors that could influence the UHI phenomenon. 128 

This study is innovative in that it recognizes the importance of a bottom-up approach, 129 

developing a multiscale analysis in a territory with little vegetation, located near the equatorial zone 130 

at an altitude of 2625 meters. The combination of the analysis of satellite images and census 131 

information with statistical procedures performed, in order to identify the relationships of urban 132 

growth, UHI, and sustainability in the micro-territory further highlights the contributions and 133 

innovation of this research. 134 

The procedure and results from this work will serve as an input for the analysis of the 135 

influence of urban growth and meteorological variables on urban sustainability. Additionally, it will 136 

make it possible to identify the specific contribution of micro-territories on the main components of 137 

UHI using PCA. Lastly, it will serve as technical support for decision-makers in the field of 138 

territorial planning. In the design and development of urban spaces, territorial planners should 139 

recognize areas where environmental deterioration factors converge (changes in vegetation cover, 140 

reduction of water bodies, increased LST) and their causes, which are the variables analyzed in this 141 

study. In this manner, guidance can be provided regarding the best options to mitigate 142 

environmental problems, in this case, the UHI phenomenon.  143 

 144 

2 Methods 145 

2.1 Study area 146 

The locality of Kennedy was the territory selected for the case study; it is located in the 147 

southwest of Bogotá, the capital of Colombia (see Fig.1) at an altitude of 2625 meters on a high 148 

plateau on the eastern slopes of the Colombian Andes. According to the work done by Wu et al. 149 

(2019), in which the authors made use of a medium resolution image radiometer spectrum, Bogotá 150 

is one of the cities in Latin America with the highest daytime and nighttime UHI. Furthermore, 151 
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according to Ramírez-Aguilar and Lucas (2019), Kennedy has the most intense UHI in the city. The 152 

study area is characterized as a space lacking in vegetation tied to an urban transformation process 153 

accentuated in the west of the locality. 154 

 155 

Fig. 1. Location of the study area 156 
 157 

Kennedy is one of twenty localities in the capital city and is situated on a flat area where 158 

important water sources are found, such as the Bogota, Fucha, and Tunjuelo Rivers, along with the 159 

La Vaca, El Burro, and El Techo Wetlands.  160 

In 2018, Kennedy had 1,230,539 inhabitants, approximately 15% of the city's total 161 

population, with an average population growth rate of 2.5% per year. The locality has a total area of 162 

38.58 km2, of which, 93.4% is urban, with 6.5% corresponding to urban expansion (Veeduría 163 

Distrital, 2018). 164 
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The locality is distributed into twelve zonal planning units (ZPU) (see Fig.1), which were 165 

implemented to better manage urban development planning. There are several economic activities 166 

in the locality including the city's main supply center. Kennedy has a system of public 167 

transportation portals and road infrastructure for access and transit in the city.  168 

In 2012, according to government entities, most of the locality had an average buildability 169 

of 2 – 4 floors per block, and by 2020, the height increased to 4 – 5 floors in the ZPUs of 170 

Corabastos, Castilla, and Calandaima. The ZPUs of Bavaria and Castilla have specific points with 171 

buildings higher than 15 floors.  172 

Meteorological data for the study area is monitored by the Carvajal Sevillana station 173 

located to the south of the locality (in the Carvajal ZPU) and the Kennedy station in the Kennedy 174 

Central ZPU. During the period from 2008–2019, annual average surface temperatures of 15.4°C 175 

and 14.9°C were recorded by the Carvajal Sevillana and Kennedy stations, respectively (SDA, 176 

2020). 177 

Concerning the average accumulated precipitation, during 2008–2019, the Carvajal station 178 

recorded 725.7 mm with the Kennedy station logging 828 mm. On average, the months with the 179 

most rainfall in 2019 were May, October, and November. The first and third quarters of the year 180 

registered the lowest rainfall (SDA, 2020). 181 

Kennedy is a city sector with environmental and socio-economic characteristics that make it 182 

relevant for an analysis of urban sustainability. It is the second most populated locality in the city 183 

and has the most significant problems in terms of air quality (Ramírez-Aguilar and Souza, 2019). 184 

During 2016–2019, the WHO recommendation (2006) for PM10 (50µg/m3) was exceeded by an 185 

annual average of 220 days at the Carvajal-Sevillana station, and 165 days at Kennedy station. The 186 

largest exceedances are historically during the first quarter of the year (SDA, 2020). 187 

 188 
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2.2 Research design 189 

To achieve the research objective, a methodology consisting of the following five 190 

sequentially developed stages was used (see Fig.2): 1) information gathering and image processing; 191 

2) calculation of spectral indices; 3) calculation of LST; 4) analysis of the UHI phenomenon; and 5) 192 

analysis of the relationship between the variables and UHI. The development of these stages sought 193 

to determine the degree of association between the selected environmental and socio-economic 194 

variables and in turn, explain the correlation between urban growth and the UHI phenomenon.  The 195 

stages are described below. 196 

 197 

 198 

Fig. 2. Procedure to analyze the influence of urban growth on the UHI phenomenon. 199 
 200 

2.2.1 Information gathering and image processing. 201 

This stage entails gathering information on environmental and socio-economic factors. 202 

Regarding environmental factors, information was gathered from satellite images; meanwhile, for 203 
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socio-economic factors, information was compiled from data recorded by governmental entities, 204 

including census information. 205 

Environmental factors 206 

Several available satellite missions currently have accessible information to develop multi-207 

temporal studies of urban phenomena, with the US Geological Survey (USGS) Landsat Mission 208 

being one of the few which provide its services at no cost. Landsat is equipped with specific 209 

instruments for multispectral remote sensing and has sensors that are useful for UHI 210 

characterization and analysis (Ezimand, Chahardoli, Azadbakht, & Matkan, 2021). 211 

This stage consisted of searching for and processing satellite images offered by free USGS 212 

platforms. The images were characterized by the variety of bands that they are made up of and have 213 

a resolution between 15 and 30 m per pixel.  214 

As the study period covered 2000 to 2020, Landsat 7 Enhanced Thematic Mapper (ETM+) 215 

(2000-2013) and Landsat 8 Operational Land Imager (OLI) (2013-2020) images were used. 216 

Through a year-by-year search, satellite images were selected from December to March, 217 

corresponding to the dry season. Furthermore, images with high cloudiness in the study area were 218 

discarded.  219 

Based on the above criteria, the images that met the required conditions were selected (see 220 

Table 1). The climatic phenomena present each year were considered since they could have 221 

influenced UHI intensity. The El Niño phenomenon can generate temperature increases in contrast 222 

to the La Niña phenomenon. The "Neutral" condition in Table 1 indicates that neither of the two 223 

climatic phenomena occurred. 224 

 225 

Table 1. Satellites, image date used and atmospheric phenomenon for each year studied. 226 
Year Month Day Atmospheric phenomenon Satellite Source 

2000 Feb 20 Niña 

Landsat 7 ETM + 
https://eos.com/landviewer/?lat

=4.64930&lng=-

74.06170&z=11&datasets=2 

2002 Feb 25 Neutral 

2003 Jan 27 Niño 

2004 Feb 15 Neutral 

2007 Feb 7 Neutral 

2009 Dec 29 Niño 
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Year Month Day Atmospheric phenomenon Satellite Source 

2012 Feb 21 Niña 

2014 Feb 2 Neutral 

Landsat 8 OLI 
https://search.remotepixel.ca/#

3/16.69/-48.33 

2015 Feb 21 Niño 

2018 March 17 Niña 

2020 March 22 Niño 

 227 

 228 
Given the local atmospheric conditions, lighting, and cloudiness present during data 229 

acquisition, the images were subjected to radiometric and atmospheric correction. As such, a 230 

radiometric correction was applied to the images via the FLAASH method, using the ENVI 231 

Program Version 5.3, in order to manipulate the pixel values and obtain the most homogeneous 232 

intensity values, and even correct errors in the pixels. In a complementary manner, an atmospheric 233 

correction was performed to reduce the effect of aerosols, as well as the radiance introduced to the 234 

sensor reflected in the image (Aguilar, Mora, & Vargas, 2014). Due to sensor failure causing 235 

information losses in certain sections of the images, a gap fill correction was carried out on different 236 

Landsat 7 EMT+ images (2009 and 2012) through a simple triangulation method. 237 

Socio-economic factors 238 

Several studies have found that UHIs are caused by the convergence of multiple factors, 239 

including: population density, economic growth, changing morphology of cities, increased amounts 240 

of buildings and impervious surfaces, type of construction materials used, greater vehicular traffic, 241 

excessive energy consumption, air pollution, and poor air circulation (Carpio et al., 2020; Grover & 242 

Singh, 2015; Litardo et al., 2020; Rizwan et al., 2008). Socio-economic factors were addressed 243 

given the degradation of natural resources.  244 

 Population increase is a variable that leads to substantial changes in the Spatio-temporal 245 

variation of land use and contributes to the loss of water bodies and green areas (Barreto-Martin, 246 

Ronal, Calderon-Rivera, Angela, & Mesa-Fernández, 2021). Additionally, anthropogenic heat 247 

release can be related to the population and its per capita energy use; the pattern of energy use 248 

impacts the heat generated by anthropogenic sources. Previous studies have shown the association 249 

between population growth, energy consumption, and UHIs (Grover & Singh, 2015; Oke, 1988; 250 
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Rizwan et al., 2008).  251 

Analyzing population density provides an understanding of the environmental impact 252 

existing in a city or territory. This variable can be used to measure the magnitude of anthropogenic 253 

heat. According to (Ramírez-Aguilar & Lucas Souza, 2019), densities higher than 14,500 254 

inhabitants/km2 can generate temperatures greater than 1°C, which can lead to higher energy 255 

demand, increased thermal energy storage in urban systems, and can aggravate the UHI 256 

phenomenon to the point of producing positive feedback loops (Gunawardena, Kershaw, & 257 

Steemers, 2019; Yao et al., 2021). Moreover, this situation leads to an increase in the energy 258 

consumption requirements of industrial and commercial equipment to maintain their thermal 259 

balance to operate (Gaudencio, Ramos Niembro Fiscal Escalante, Maqueda Zamora, Sada Gámiz, 260 

& Horacio, 1999; Kao, J Y; Kelley, 1996).  Given that Kennedy is the second most populated 261 

locality, population and energy consumption patterns were considered variables of interest for the 262 

analysis. 263 

Due to limitations regarding access to information for micro-territories such as the study 264 

area, it was not possible to establish socio-economic information at the spatial level with the 265 

characteristics of the environmental factors. To overcome these limitations, census data and 266 

information published by government entities were reviewed. In this manner, it was possible to 267 

demonstrate changes by ZPU over the years with respect to population density and energy 268 

consumption. These two factors influence urban growth processes, which put pressure on 269 

environmental components and urbanization.  270 

2.2.2 Calculation of spectral indices 271 

Once the satellite images were processed, the spectral indices were calculated through 272 

operations with the images’ bands using the ArcGIS software 10.8.1. The NDVI, NDBI, MNDWI, 273 

and NDISI have been used in UHI studies (Chen X. L., Zhao H.M., Li P.X, & Yin Z, 2006; 274 

Grigoraș & Urițescu, 2019; Kikon, Singh, Singh, & Vyas, 2016; Min, Lin, Duan, Jin, & Zhang, 275 
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2019). Furthermore, they have shown significant correlations between LST, built-up areas and 276 

vegetation (Kaur & Pandey, 2022). The LST functions as a parameter to control the water and 277 

energy balance between the atmosphere and the land surface. Table 2 describes the equations used 278 

to calculate the spectral indices. 279 

Table 2. Spectral indices for environmental factors 280 
Index Equation References 

Normalized difference vegetation 

index enables an estimation of the 

quantity and quality of vegetation 

based on the portion of red light 

absorbed and the near infrared 

reflected. The index ranges from -1 

to 1, in which negative values 

correspond to water surfaces, rocks, 

or artificial structures and positive 

values represent vegetation.  

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 
(1) 

(Grigoraș & Urițescu, 2019; 

Madanian, Soffianian, 

Soltani Koupai, 

Pourmanafi, & Momeni, 

2018; Yuan & Bauer, 2007) 

Normalized difference built-up 

index enables the identification and 

estimate of built or under 

construction areas. It also facilitates 

the analysis of urban growth and 

built-up areas. The index values 

range from -1 to 1; negative results 

indicate the presence of vegetation, 

and positive values correspond to 

built-up areas or anthropogenic 

infrastructures.  

 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅  
(2) 

(Musse, Barona, & Santana 

Rodriguez, 2018; Zha, Gao, 

& Ni, 2003) 

Modified normalized difference 

water index enables the recognition 

of water covers, isolating them from 

other coverings. Its range is -1 to 1; 

the positive values are interpreted as 

water; and values close to zero or 

negative indicate vegetation or soil. 

 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅
(4) 

(X. Chen & Zhang, 2017; 

Xu, 2006) 

Normalized difference 

impervious surface index 

(NDISI): this index has been used 

to extract impervious surfaces. 

NDISI removes noise such as soil 

and water. The surface radiation is 

maximized by using the thermal 

wavelength (TIR), minimizing the 

reflectance of NIR, SWIR, and 

GREEN per impermeable surface. 

Positive values represent 

impermeable surfaces, as opposed 

to negative values.  

NDISI= 
𝑇𝐼𝑅−

(𝐺𝑅𝐸𝐸𝑁+𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)

3

𝑇𝐼𝑅+
(𝐺𝑅𝐸𝐸𝑁+𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)

3

 (5) 

(Estoque and Murayama, 

2015; Musse et al., 2018; 

Xu, 2010) 

 281 
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 282 
In which, NIR is near infrared, RED is the red band, SWIR is short-wave infrared 1, which 283 

differentiates soil and vegetation moisture; this wave penetrates through thin clouds. GREEN 284 

corresponds to the green band. For Landsat 7, these bands are 4, 3, 5, and 2; and for Landsat 8, they 285 

are 5, 4, 6, and 3.  286 

2.2.3 Calculating Land Surface Temperature (LST) 287 

Reflectance, brightness, and surface emissivity were calculated by processing the bands that 288 

store digital thermal information in each of the selected scenes (see Table 1). The results of this 289 

calculation enable the identification of the LST spatial distribution pattern. 290 

The images’ thermal bands, band 6 for Landsat 7 and band 10 for Landsat 8, were used to 291 

calculate LST. Using the method proposed by USGS (Ihlen & USGS, 2019b, 2019a) and through 292 

equations (6) and (7), a conversion of the digital number to a radiometric scale was performed. 293 

For Landsat 7,  294 

𝐿𝜆 = (
𝐿𝑀𝐴𝑋𝜆−𝐿𝑀𝐼𝑁𝜆

𝑄𝐶𝐴𝐿𝑀𝐴𝑋−𝑄𝐶𝐴𝐿𝑀𝐼𝑁
) ∗ (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁𝜆   (6) 295 

In which 𝐿𝜆 is the reflectance of the top of the atmosphere (TOA) in 
𝑊

𝑚2 ∗𝑠𝑟∗µ𝑚
 ; 𝐿𝑀𝐴𝑋𝜆 296 

and 𝐿𝑀𝐼𝑁𝜆 are radiance values obtained from image metadata; QCAL is the quantified pixel value 297 

calibrated in a digital number; QCALMAX and QCALMIN are the maximum and minimum pixel 298 

of band 6. The images’ digital numbers were transformed into radiation units.  299 

For Landsat 8,  300 

𝐿𝜆 = 𝑀L *QCAL +AL (7) 301 

In which 𝐿𝜆 is TOA in 
𝑊

𝑚2 ∗𝑠𝑟∗µ𝑚
 ; ML is the multiplicative brightness scale factor for band 302 

10; AL is the additive radiance scale factor for the same band; and QCAL is the quantified value of 303 

the digitally calibrated pixel. 304 

The brightness temperature (TB) was then calculated using equation (8), which enables the 305 

irradiation to be transformed into surface temperature in degrees Kelvin (Ihlen & USGS, 2019a, 306 
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2019b). 307 

𝑇𝐵 =
𝐾2

𝑙𝑛(
𝐾1
𝐿𝜆

+1)
 (8) 308 

In which K1 and K2 are calibration constants taken from the image metadata. Lastly, the 309 

LST is calculated via equation (9); the results are presented in degrees Kelvin.   310 

𝐿𝑆𝑇 =
𝑇𝐵

1+[𝜆∗
𝑇𝐵

𝑎
𝜀 ]

 (9) 311 

In which 𝜆 is the wavelength of the radiance emitted; a is 1.438x10-2 mK (Estoque & 312 

Murayama, 2017; Senanayake et al., 2013) and 𝜀 is the surface emissivity, which is calculated by 313 

equation (10) (Grigoraș & Urițescu, 2019; Wang, Ma, Ding, & Liang, 2018). 314 

𝜀 = 0.004 ∗ 𝑃𝑣 + 0.986 (10) 315 

In which Pv is the vegetation proportion calculated as shown in equation below (11):  316 

𝑃𝑣 = [
(𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
]2 (11) 317 

 318 

A raster file showing the spatial distribution of the LST for each pixel was obtained from 319 

equation 9. These values ranged from the lowest to the highest temperatures and were classified via 320 

equivalent intervals. This univariate classification method divides the data into n categories or 321 

classes with the same range or amplitude value (de Smith, Goodchild, Longley, & Associates, 322 

2021). This makes it possible to see relative temperature values with respect to other values 323 

obtained for the study area. In this research study, ten classes with amplitude intervals of 3 degrees 324 

were established. As such, this classification facilitated the comparison of the temperatures’ 325 

variability in the years studied, as well as the identification of relevant UHI points in each of the 326 

micro-territories. 327 

 328 

2.2.4 Analysis of the UHI phenomenon 329 

The information generated in the previous stage made it possible to perform an LST 330 
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distribution analysis. To better understand UHI behavior, distance vs. temperature profiles were 331 

made in four different directions: 1) north-south, 2) northwest-southeast, 3) west-east, and 4) 332 

northeast-southwest; with the pixel value determined every 500 meters. The year-by-year results 333 

were categorized by the dominant climate phenomenon (El Niño or La Niña in each case) and based 334 

on these profiles, the micro-territories with the highest or lowest temperatures in the locality were 335 

identified.  336 

 337 

2.2.5 Analysis of the relationship between variables and UHI 338 

Urban sustainability is primarily related to the behavior of the environmental, social, and 339 

economic dimensions; in which urban growth generates a series of pressure points that can be seen 340 

in these dimensions’ behavior. 341 

A principal component analysis (PCA) was performed to identify the degree of relationship 342 

between variables. In addition to reducing the set of variables to their linear combination in principal 343 

components, this method extracts important information from the analyzed variables. The PCA also 344 

makes it possible to identify the contribution of variables (environmental and socio-economic factors) 345 

and individuals (each point in the micro-territory) to the main components. In other words, it was 346 

possible to identify not only the contribution of the variables analyzed to the manifestation of the UHI 347 

phenomenon, the PCA also facilitated the identification of the specific contribution of each micro-348 

territory (ZPU) to the UHI phenomenon at the spatial level. 349 

The input information consisted of a band composition from the raster images of the 350 

spectral indices presented in Table 2, along with the population density and energy consumption 351 

variables. The band composition was performed with the ArcGIS software 10.8.1, followed by the 352 

PCA analysis carried out with the free access software R. 353 

 354 
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3 Results  355 

3.1 Environmental factors 356 

Rapid urbanization has affected the natural environment of urban areas. Consequently, the 357 

UHI phenomenon occurs, which are created and intensified by the increase of impermeable surfaces 358 

or heat produced by human activities, as well as by the reduction of green spaces in a territory. In 359 

this vein, vegetation dynamics, the expansion of built-upon soil, and water bodies are environmental 360 

factors that can influence the formation and behavior of UHI. Therefore, using spectral indexes 361 

facilitated the calculation and analysis of these variables and their correlation with LST, as affirmed 362 

by (Ezimand, Kakroodi, & Kiavarz, 2018; Kaur & Pandey, 2022). 363 

 364 

3.1.1 Vegetation dynamics 365 

Vegetation dynamics were analyzed based on the NDVI from 2000 to 2020 (see Fig.3). 366 

Most of the green area was located to the north of the locality. In 2000, about 36% of the study area 367 

(13.98 km2) corresponded to a zone with vegetation. A notable reduction in vegetation has occurred 368 

since 2003, primarily attributed to the increase in building construction in the area. 369 

 370 
Fig. 3. Dynamics of the Normalized Difference Vegetation Index 371 
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By 2009, vegetation had been reduced by 9.62 km2, and the first consolidation of buildings 372 

in the northern zone can be detected. In 2020, there are approximately 7.14 km2 of vegetation areas, 373 

which fall in the NDVI range of 0.2 to values > 0.6 (see Fig.3). The range between 0.2 and 0.4 374 

corresponds to areas with scarce or dispersed vegetation; between 0.4 and 0.6 corresponds to areas 375 

with moderate vegetation; and NDVI values greater than 0.6 represent locations where the density 376 

of vegetation is most likely green and healthy.  377 

3.1.2 Built-up areas and impervious surfaces  378 

Kennedy is mostly covered by buildings and impermeable surfaces such as roads and 379 

sidewalks with scarce vegetation. The behavior of bare soils or built-up covers is inverse to that of 380 

the vegetation (see Fig.4). In 2000, the area with buildings was approximately 22.1 km2, which 381 

were consolidated in the southern part of the locality. Seven years later, the area with buildings 382 

increased to 26.9 km2, reaching 28.3 km2 in 2020. In the first years of the study, land occupancy for 383 

housing in illegal urbanizations continued in areas such as the La Vaca Wetland (in the Corabastos 384 

ZPU), in the northern part of the locality in areas of El Tintal, particularly on the banks of the 385 

Bogotá River, northwest of Kennedy (Escobar Franco, 2012). The greatest variations occurred in 386 

the northern part of the locality. 387 

 388 
Fig. 4. Dynamics of the Normalized Differential Build-up Index 389 
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 390 
3.1.3 Bodies of water  391 

The bodies of water were evaluated by measuring the MNDWI. Figure 5 shows the years in 392 

which changes occurred. In 2000, Lake Timiza, which previously could not be seen, stood out in the 393 

southern area. In the following years, there were no variations in the MNDWI. However, based on 394 

the spatial operations with geographic information of the city, a reduction of the water mirrors was 395 

identified, from 0.032km2 in 2000 to 0.0154 km2 in 2014. This reduction occurred in the wetlands 396 

located in the center and north of the locality.  397 

398 
Fig. 5 Bodies of water 399 

 400 
It is possible that the reduction in vegetation recorded over the years may have revealed the 401 

bodies of water. Grasslands also reduced from 0.895 km2 in 2000 to 0.263 km2 in 2014. For this 402 

reason, as of 2014, the Pondaje Lagoon, created to regulate the flow of water and prevent flooding 403 

in the area, is seen in the northern part of the locality. By 2020, the El Burro and La Vaca wetlands 404 

in the center of the locality can be seen to a lesser extent.   405 

 406 
3.2 Socio-economic factors 407 

The socio-economic factors analyzed correspond to changes in population density and 408 

energy consumption flows, which are integral components of the development of urban spaces. The 409 

larger the population, the greater the pressure on resources, and the greater the energy requirements. 410 

Sustainable cities and communities entail balancing pressure generated to guarantee the residents’ 411 

well-being and quality of life, as they are committed to providing adequate housing, access to 412 

transport systems, increased inclusive and sustainable urbanization. The above is in addition to 413 
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safeguarding the area’s natural heritage, reducing environmental impacts, and universal access to 414 

green areas (UNDP, 2020). These challenges are intensifying for urban areas such as Kennedy. The 415 

dynamics of local population density and energy consumption are analyzed below. 416 

3.2.1 Population density 417 

Population density maps were created based on census data (SDP, 2020) (see Fig.6). In 418 

2005, the average population density of the locality was 24,625 inhabitants/km2, ranging from 3,800 419 

to 50,500 inhabitants/km2. Patio Bonito was the most densely populated ZPU in the city, exceeding 420 

the gross density of Bogotá. In recent years, population density figures have exceeded those in other 421 

cities in Latin America such as Quito, Ecuador (5401 inhabitants/km2) and Mexico City, Mexico 422 

(5966 inhabitants/km2). 423 
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 424 
Fig. 6. Population density by ZPU in Kennedy 425 

 426 
An increase in population density over the years can be seen in the central zone and south 427 

of the locality in the ZPUs of Corabastos, Kennedy Central, Timiza, Carvajal, and Américas. 428 

 429 

3.2.2 Energy consumption 430 

Kennedy is one of the localities of Bogota with the highest concentrations of electric energy 431 

consumption (Alcaldía Mayor de Bogotá, 2017). Over the years, there has been a progressive 432 

increase in the consumption of energy for residential, commercial, and industrial use (see Fig.7). 433 

However, in the eastern part of the locality, industrial consumption has decreased, while residential 434 

and commercial consumption have increased. The ZPUs of Patio Bonito, Timiza, and Castilla are 435 
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the areas with the highest residential energy consumption; Carvajal has the highest consumption for 436 

commercial and industrial use.  437 

438 
Fig. 7. Dynamic of the energy consumption in Kennedy 439 

 440 
3.3 LST spatial-temporal pattern 441 

The LST distribution was classified in ranges of 3ºC (see Fig.8). The lowest temperatures 442 

occurred in 2000 in the north of the locality due to the presence of healthy consolidated vegetation. 443 

Two years later, temperatures increased in the eastern and southern parts of the locality, ranging 444 

from 28° to 33ºC. The LST distribution was more uniform throughout the area with values between 445 

12° and 33°C during the following year. However, small areas in the center of the locality stand out, 446 

such as the ZPUs of Corabastos and Kennedy Central, where temperatures are higher than 28ºC. 447 

This pattern is seen in every year, and from 2012 its increase exceeds 5° Celsius. 448 
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 449 
Fig. 8 Land surface temperature dynamic 450 

 451 
Over the 20 years analyzed, impervious built-up areas (principally buildings, roads, and 452 

public space infrastructure) grew by approximately 6.2 km2. This led to increased temperatures that 453 

exceeded 5°C in the northern zone of the locality, particularly in the Patio Bonito, Calandaima, and 454 

Tintal Norte ZPUs. Moreover, the amount of green areas decreased; whose temperatures are 455 

characterized by being the lowest and most conformable in the territory (8-14°C). In the areas 456 

where urban expansion began, temperatures started to rise due to changes in impermeable surfaces 457 

that favor the absorption of radiation and the emission of heat into the environment. 458 

These results were contrasted with the locality’s economic and urban conditions. The area 459 

with the highest temperatures coincides with the location of the country's main supply center; 460 

Corabastos (image 1 in Figure 8). Approximately 1,200 vehicles carrying supplies enter the area 461 
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every day, most of which are older models, which emit atmospheric pollutants. Temperature 462 

increases cause an accelerated production of smog, concentration of pollutants, and impacts on local 463 

meteorology (Ngarambe, Joen, Han, & Yun, 2021), which cause PM10 to exceed WHO 464 

recommendations (WHO, 2006). The increase in residential and commercial energy consumption in 465 

the south and east of the locality also contributes to this process (see Fig.7). 466 

Since 2012, there has been a homogeneity of temperature distribution changes, with 467 

approximately half of the locality having temperatures between 26º and 33º Celsius in the same 468 

south-east area. In 2015, temperatures intensified in most of the territory due to the presence of the 469 

El Niño phenomenon, while in 2018, temperatures decreased, which can be attributed to the 470 

precipitation generated by the La Niña phenomenon. In 2020, the LST was greater than 26ºC 471 

throughout most of the locality, with a maximum of 38ºC, which also coincides with the ZPUs with 472 

high energy consumption for the different analyzed uses (see Fig.7).  473 

As Kennedy is a locality with low levels of vegetation (3584 trees/km2 in 2020) compared 474 

to built-up areas, it is vulnerable to continue experiencing the intensity of UHIs. In certain micro-475 

territories, there has been uncontrolled urbanization, mainly in peri-urban areas, which has affected 476 

land use and increased urban expansion in natural areas (Dobbs et al., 2018). This contrasts the fact 477 

that 25% of urban areas are unplanned or informally planned at the global level (UN-Habitat, 2019). 478 

The LST behavior was analyzed by profiles (see Fig.9), in which the locations with the 479 

highest temperatures in the micro-territories were highlighted. The blue lines represent the years in 480 

which the La Niña phenomenon occurred, the red lines represent the El Niño phenomenon, and the 481 

green lines indicate the neutral years. Figure 9 with a north-south heading, shows the extreme low 482 

temperature values, and a peak in the center of the locality, where a mass public transport station is 483 

located (Banderas Station, Image 2 in Figure 8). At this site, the highest temperatures were reached, 484 

surpassing 33ºC in 2018.  485 
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486 
Fig. 9. Land surface temperature profiles 487 

 488 
Despite most of the curves showing a uniform behavior in years in which the El Niño 489 

phenomenon was present (see the red curves in Fig.9), the behavior is above the others. The graphs 490 

show a similar behavior between 2015 and 2020, but in 2020 the temperature increased by 491 

approximately 2ºC when compared to 2015.   492 

In the west-east direction, there is a temperature increase in the first 1500 meters, 493 

coinciding with the central supply center which consists of a consolidated built area of 420,000 m2. 494 

This area is known for its economic activity and daily vehicle movement. Moreover, the average 495 

building height is 5 – 6 floors per block in this location, which can hinder proper air circulation.  496 

It is important to mention that there is a noteworthy pattern of temperature decreases linked 497 

to bodies of water. Nevertheless, in the 20 years analyzed, the temperature rose by approximately 498 

3.6ºC, an annually progressive increase. This rise means that minimum temperatures are mostly 499 

above 14ºC and maximum temperatures average 34.7º, with the highest temperature in 2020 being 500 

37.84º Celsius. There was an increase in the years when El Niño occurred; however, it did not 501 

change the trends in LST behavior. 502 

Studies in the global context mostly analyze areas larger than 100 km2 and none have 503 

focused on local areas, or micro-territories. When analyzing UHI behavior by profile, as was the 504 
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case in the study developed by Estoque and Murayama (2017), the UHI pattern in Kennedy largely 505 

held steady during the final years of the study from 2015 to 2020. The first years of the study had 506 

low temperature values, as there was a greater presence of vegetation (average temperature of 507 

22.5ºC during 2000-2003). 508 

 509 

3.4 Relations between UHI and impact factors 510 

The loss of vegetation coverage has resulted in an increase of UHI in the locality, as the 511 

amount of vegetation influences the LST via the heat flow from the surface through 512 

evapotranspiration. Furthermore, trees provide shade and cooling that can prevent direct exposure 513 

of land surfaces to solar radiation (Singh et al., 2017; Soltani & Sharifi, 2017).  514 

The PCA analysis made it possible to establish three components (see Fig. 10 and Table 3) 515 

that account for 73% of the variance in the data. The first component: Dim 1 (37.7% of the 516 

variance), highlights central elements of urban expansion. The variables with the greatest 517 

contribution (67%) in this component were NDVI, NDBI, MNDWI, and commercial energy 518 

consumption with correlations greater than 70% with Dim 1 (see Fig. 10a and Table 3). Although 519 

weak, there is also a positive correlation between population density (PD) (55%), residential energy 520 

consumption (REC) (53%), industrial energy consumption (IEC) (50%), and LST (49%), which are 521 

elements that characterize the effects of urban growth (see Table 3). As in the study developed by 522 

Chen and Zhang (2017), the relationship between LST and NDBI had one of the strongest linear 523 

positive correlations, which can be attributed to the heterogeneity of the land surface, particularly in 524 

areas with little vegetation. The relationship between LST, and NDBI is linearly positive, given that 525 

when built-up areas or soils without vegetation increase, temperature is not absorbed or regulated, 526 

which generates an increase of temperatures in urban centers. 527 

The second component, Dim 2, correlates energy consumption in the different analyzed 528 

uses (19.9% of the variance) with a 56.6% contribution to this component. The relationship between 529 
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the first and second components is shown in Fig. 10a. Dim 1-Dim 2, which shows both the quality 530 

of the variables and their correlation with the components (see Table 3).  531 

In the clusters, it is also noted that LST and NDVI have a moderate negative correlation (-532 

0.67), given that lower temperatures occur in areas with dense vegetation. NDVI also has an inverse 533 

correlation with NDBI (-0.95). Greater urban growth and less vegetation are correlated with UHI 534 

intensity (see Figure 10b and Table 3). 535 

The third component, Dim 3, called LST, accounts for 15.3% of the variance in the data and 536 

includes population density variables, energy consumption by residential and industrial users, the 537 

NDISI, and LST, which are the variables that contribute the most to this component (94.2%). 538 

Figures 10b Dim 2 – Dim 3 and 10c Dim 1 – Dim 3 show the relationship of this component with 539 

Dim 1 and 2. In each case, the correlation of the variables with each component is evident by the 540 

fact that they are close to the edge of the circumference (see Figure 10c and Table 3). 541 

542 
Fig. 10. Principal component analysis 543 

In its development, the PCA included the following elements: vegetation variation represented in the NDVI index, variation 544 
of built-up areas represented in the NDBI index, variation of water bodies and wetlands represented in the MNDWI index, 545 
impervious surfaces variation represented in the NDSI index, population density (PD), commercial energy consumption 546 
(CEC), industrial energy consumption (IEC), residential energy consumption (REC), as well as land surface temperature 547 
(LST). 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 

 556 
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Table 3. Principal components and variable correlation  557 

 558 

These analyses can also be used to compare dimensions and identify the micro-territories 559 

that contribute the most to the components (see Fig.11). As such, the largest contributions were 560 

found in the ZPUs of Patio Bonito, Carvajal, and Tintal Norte, which coincide with the areas with 561 

the highest population densities, elevated energy consumption, growth in built-up areas, and 562 

reduction in green areas.  563 

564 
Fig. 11 Contribution from micro-territories to the components 565 

 566 
Figure 11 highlights the contributions from the north and east of the locality to urban 567 

expansion. North and south Kennedy contribute more to energy consumption (Dim 2). The 568 

territories that contribute to component 3 (see Fig.11 Dim 3: LST) are mainly located in the south 569 

and west of Kennedy. A mix of commercial, residential, and industrial activities is characteristic in 570 

those areas (Patio Bonito, Timiza, and Carvajal ZPUs). The above once again demonstrates the 571 
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implications of urban growth on urban sustainability conditions. 572 

 573 

4 Discussion 574 

4.1 Influence of urban growth on the UHI phenomenon 575 

This study identified the behavior of urban growth based on the environmental and socio-576 

economic factors analyzed, thus determining their influence on the generation of UHIs.  577 

Regarding environmental factors, changes in land cover play an important role in the 578 

development of UHIs. Vegetation decreased by 48.6% over the last 20 years, which was replaced 579 

by impermeable surfaces and consequently led to greater deterioration of environmental quality. 580 

These finding are consistent with the results from studies carried out by (Ezimand et al., 2018; 581 

Portela et al., 2020; Yue, Liu, & Fan, 2012; Zhang, Estoque, & Murayama, 2017), thus reaffirming 582 

the importance of environmental factors such as vegetation and the presence of water surfaces in 583 

mitigating the UHI phenomenon. This is further supported by the results of the PCA, which found 584 

that three components (urban expansion, energy consumption, and LST), had an overall 585 

contribution of 73% to the variance of the data. The greatest contribution was found among the 586 

environmental variables, NDVI, NDBI, and MNDWI.  587 

According to the energy balance theory, as affirmed by Yue et al., (2012), UHIs are created 588 

by an increase of impervious surfaces, reduced vegetation, and the discharge of anthropogenic heat 589 

from energy consumption. This study found that in addition to the strong influence of the above 590 

variables, energy consumption is prominent in commercial areas coinciding with areas with higher 591 

LSTs, where the anthropogenic heat release primarily from vehicle emission sources corresponds 592 

with the elements defined by Yue et al., (2012). 593 

 This study also reaffirmed the findings of Yue et al., (2012), regarding the value of using 594 

PCA to identify the primary components that contribute to the formation of UHIs. In this case, three 595 

components had values greater than 70% in contributing to the data's variability. 596 

 Additionally, developing a PCA made it possible to determine the micro-territories that 597 
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most contribute to this phenomenon in the study area, namely the ZPUs of Patio Bonito, Carvajal, 598 

and Tintal Norte.  599 

It is important to consider population growth trends; as population increases result in a 600 

greater demand for resources such as water, energy, and soil. As Kennedy does not have new zones 601 

for construction, lower buildings will inevitably be replaced by higher ones to house a larger 602 

population. This process changes the morphology of the land and causes air quality and temperature 603 

changes. The above is comparable with the results found by (Bokaie et al., 2016; Parvez M.I., 604 

2019), and is reflected in this study in the analysis of environmental and socio-economic indices, as 605 

well as the PCA. This situation will require measures to be adopted to balance temperatures. For 606 

example, these could include green belts in different areas, particularly those that contribute the 607 

most to components 1 (urban expansion) and 3 (LST), according to PCA those micro-territories 608 

were the ZPUs Tintal Norte, Patio Bonito, Timiza, and Carvajal. 609 

The formation of UHI occurs mainly in the center of the locality (Corabastos and Kennedy 610 

Central ZPUs), as it is the area with the highest vehicle mobility and consolidated residential and 611 

commercial areas. These findings are similar to other studies, such as the one developed by 612 

Amanollahi et al. (2016), which presented the critical points of UHI in parts of the city with 613 

commercial and residential areas, main roads, and even in areas for agricultural use. In Kennedy, 614 

LST progressively increased, with a notable homogenization of the temperature over the entire 615 

locality for the last years of the study. This situation shows the relevance in extending the resolution 616 

of spatial analysis, since the behavior of UHI reflected by the ZPU in Kennedy as a territory within 617 

a large city behaves similarly in capital cities. 618 

In this study, activities related to population density were added, which include greater 619 

vehicle traffic entering urbanized areas and the operation of commercial areas with their 620 

corresponding energy consumption such as ZPUs Carvajal, Corabastos, Kennedy Central, and Patio 621 

Bonito. These results are comparable with the study developed for Bogotá by Ramírez-Aguilar and 622 

Lucas (2019) demonstrating the relationship between population density and heat intensity. 623 
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Moreover, according to (Zhang, Estoque, & Murayama, 2017), there is an indirect relationship 624 

between those factors, since population density is a driver of different land uses and economic 625 

activities.  626 

The procedure developed in this research study can be applied to several urban areas to 627 

identify the territories that contribute the most to the UHI phenomenon, in addition to the most 628 

appropriate urban and landscape planning measures. It is also applicable to cities such as Ghaziabad 629 

(India); one of the most polluted cities in the world with a population density comparable to some 630 

of the ZPUs in Kennedy, as well as Orangi Town in Karachi (Pakistan) and Neza (Mexico). 631 

 632 

4.2 Implications of UHI on urban sustainability 633 

Urban areas face major challenges in terms of sustainability, as they must balance the 634 

demand for resources inherent to urban growth with existing ecosystems. Consequently, it is 635 

necessary to not only establish measures to mitigate local pollutants from mobile and stationary 636 

sources, but to also create sustainable micro-territories including buffer zones for environmental 637 

aspects. Future research should correspond to establishing measures and analyzing correlation with 638 

reducing the causes of UHI in each micro-territory analyzed in this study. 639 

The approach outlined in this research study contributes to establishing specific measures 640 

regarding urban landscape design and its potential to mitigate UHIs and local pollutants, as was 641 

examined by Rizwan et al., (2008). Given the difficulty of creating green areas in densely populated 642 

areas, one way to mitigate the effects of UHIs in Kennedy is to improve its vegetation cover, either 643 

on roofs and green walls or by restructuring buildings to increase the number of trees in the area, as 644 

was identified by Litardo et al., (2020). Other measures include adopting energy efficiency policies 645 

to reduce unintentional heat-generating emissions in urban areas, which can contribute at the micro-646 

territorial level, in addition to implementing measures at a larger scale. For their part, urban and 647 

landscape planning processes require using new elements, such as different materials in buildings 648 

and infrastructures that reflect radiation and enable an LST balance to be maintained.  649 
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 650 

5 Conclusions  651 

This study used a combination of tools (spectral indexes, census information, principal 652 

component analysis) to analyze from the micro-territorial level, the influence of urban growth on 653 

the UHI phenomenon over the last two decades (2000-2020) in the locality of Kennedy, in Bogotá, 654 

Colombia. Using this combination of tools made it possible to determine the environmental and 655 

economic factors that most contribute to the formation of UHIs. 656 

The most representative variables for the formation of UHIs were the reduction of 657 

vegetation, more built-up areas, and fewer bodies of water. The micro-territories that contributed 658 

the most to this phenomenon are located where anthropogenic activities are developed, coupled 659 

with changes in the vegetation cover, namely: Patio Bonito, Carvajal, and Tintal Norte. The PCA 660 

revealed an inverse relationship between NDVI and LST, as did the MNDW and NDBI indices. 661 

These results indicate that the lower the quality, quantity, and development of vegetation, the higher 662 

the LST. Vegetation was reduced by 48.6% in the study area over the last 20 years, which was 663 

linked to changes in vegetation cover due to urban growth. For this reason, environmental 664 

determinants at the micro-territorial level should promote more urban trees and green areas to 665 

mitigate the effects of UHIs in areas with higher concentrations of LST. 666 

Urban areas and the anthropogenic activities that take place in them impact LST variations. 667 

This occurs mainly in small territories with high population densities and high energy consumption,  668 

such as those analyzed in this study. It is possible that the increase in population density, coupled 669 

with the anthropogenic heat generated in the locality, may result in higher energy demand linked to 670 

the operation of industrial and commercial equipment required to maintain a temperature 671 

equilibrium. Moreover, in the last twenty years, Kennedy, with an urban area of 38.58 km2, 672 

experienced LST increases up to 5°C due to more built-up areas; 28% in the period of analysis.  673 

 In this study, the highest temperatures were reflected in places where vehicle traffic entails 674 

a combination of public passenger transportation and cargo vehicles. Regarding the population 675 
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density, Patio Bonito stood out as the most densely populated ZPU, while the Corabastos, Timiza, 676 

Kennedy Central, and Américas ZPUs had relevant changes when compared to 2005. It should be 677 

noted that this increase is also reflected in greater residential energy consumption in areas where 678 

there was no substantial increase in population density, in addition to the commercial activities and 679 

traffic flow that contributed towards greater energy consumption. 680 

A limitation of this study was the specific quantification of anthropogenic heat of the spatial 681 

level analyzed. In response, future studies could monitor anthropogenic sources with higher levels 682 

of spatial resolution to address this limitation.  683 

This study reflects the importance of implementing mitigation strategies to reduce LTS, due 684 

to its rising trend as shown herein. This research study established the procedural approach 685 

applicable to tropical micro-territories, the results and analysis of which are comparable with other 686 

areas where progress is being made in organizing urban areas. Using this established procedure is a 687 

tool to monitor challenges related to sustainable development goals, primarily concerning 688 

sustainable cities and communities. 689 
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