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Abstract:We study foliations F on Hirzebruch surfaces Sδ and prove that, similarly to those on the projective

plane, anyF can be represented by a bi-homogeneous polynomial affine 1-form. In caseF has isolated singu-

larities, we show that, for δ = 1, the singular scheme of F does determine the foliation, with some exceptions

that we describe, as is the case of foliations in the projective plane. For δ ̸= 1, we prove that the singular
scheme of F does not determine the foliation. However, we prove that, in most cases, two foliations F and F󸀠
given by sections s and s󸀠 have the same singular scheme if and only if s󸀠 = Φ(s), for some global endomor-

phism Φ of the tangent bundle of Sδ.
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1 Introduction
The study of complex planar polynomial differential systems goes back to the 19th century. Articles by

Autonne [2, 3], Darboux [14], Painlevé [31] and Poincaré [33–37] can be considered as seminal references

for this topic. Problems proposed more than a century ago, as to obtain conditions for the existence of first

integrals for the above-mentioned systems, are still pending for resolution. Considering holomorphic folia-

tions by curves with singularities (foliations in the sequel) on the complex projective plane have produced

important advances in the knowledge of those systems [5, 9, 11, 15–20, 29, 32]. Foliations can be defined on

another varieties extending the problems from the projective plane to those varieties [10, 12, 21, 26, 38, 39].

Focusing on foliations on surfaces, Hirzebruch surfaces Sδ with δ ̸= 1 (see Section 2 for our notation) consti-
tute jointly with the projective plane the classical minimal rational surfaces, and the study of foliations on

them is the first single step after that on the projective plane. Our aim is to deepen the study of foliations on

Hirzebruch surfaces which have been treated within more general situations: as foliations on ruled surfaces

(in the profound monograph [23]) or as foliations on toric varieties [12].

*Corresponding author: Jorge Olivares, Centro de Investigación en Matemáticas, A.C. A.P. 402, Guanajuato 36000, Mexico,
e-mail: olivares@cimat.mx. https://orcid.org/0000-0001-7650-1301
Carlos Galindo, Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC); and Departament de Matemàtiques,
Universitat Jaume I, Edifici TI (ESTCE), Av. de Vicent Sos Baynat, s/n, Campus del Riu Sec, 12071 Castelló de la Plana, Spain,
e-mail: galindo@uji.es. https://orcid.org/0000-0002-3908-4462
Francisco Monserrat, Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Edificio 8E,
acceso F, 4a Planta, Camino de Vera, s/n, 46022 Valencia, Spain, e-mail: framonde@mat.upv.es.
https://orcid.org/0000-0003-2221-0140



2 | C. Galindo, F. Monserrat and J. Olivares, Foliations on Hirzebruch surfaces

Let M be a compact connected complex manifold. Recall that a foliation F on M may be defined by non-

identically zero holomorphic vector fields Xi defined on a covering {Vi} of M such that in each overlapping

set Vi ∩ Vj we have
Xi = ξijXj , (1.1)

where ξij is a never vanishing holomorphic function. If L∗ denotes the holomorphic line bundle constructed

with the cocycle (ξij), and L∗ its corresponding invertible sheaf, then the Xi’s give rise to a global section

s ∈ H0(M, ΘM ⊗ L∗) or to a global section in H0(M, HomOM (L, ΘM)), where ΘM is the tangent sheaf of M
and L is the dual of L∗. Two global sections (in the corresponding spaces) define the same foliation if and

only if one is a non-zero scalar multiple of the other.

By following a somehow standard use (see [4], for instance), L∗ will be called the cotangent bundle
of F, and its dual L will be called its tangent bundle. Hence, the space Fol(L,M) of foliations F with tan-

gent bundle L (or tangent sheaf L) is ℙH0(M, HomOM (L, ΘM)). Such an F corresponds to a foliation with

cotangent bundle L∗ (or cotangent sheaf L∗) by regarding it as the class [s] ∈ ℙH0(M, ΘM ⊗ L∗) of a global
section s ∈ H0(M, ΘM ⊗ L∗).

Given a global section s ∈ H0(M, HomOM (L, ΘM)), the scheme Z = Zs of those points p ∈ M where the

inducedmorphismLp → ΘM,p becomes zero will be referred to as the singular scheme of s: its sheaf of ideals
IZ ⊂ OM is the sheaf obtained by gluing the ideals (ai , bi) ⊂ O(Vi), where ai and bi are the coefficients of the

vector field Xi that defines s on the open set Vi, as described before (1.1). The singular scheme of F = [s] is
the singular scheme of any section in [s].

We say that F = [s] has isolated singularities if dim Zs = 0.
In a series of papers [6–8], with the precedent of [24], Campillo and the third author have proved that,

given a foliation

[s] ∈ ℙH0(ℙn , Hom(Oℙn (−d), Θℙn )) = Fol(Oℙn (−d),ℙn)
with isolated singularities and d > 1, [s] is the unique foliation in Fol(Oℙn (−d),ℙn) with singular scheme

Z = Zs. We summarize this statement saying that a foliation with isolated singularities of degree d > 1 in

a projective space of dimension n ≥ 2 is uniquely determined by its singular scheme.

In this paper, we study the extension of this result to foliations with isolated singularities on Hirzebruch

surfaces Sδ, with δ ≥ 0.
Other results of this type, dealing with foliations (or distributions) of rank different from 1 in projective

spaces, are given in [1, 13, 22].

To state our results, we recall from Section 2 below that every invertible sheaf L on Sδ has the form
OSδ (−d1, −d2) for some d

1
, d

2
∈ ℤ. Hence, foliations on Sδ come from sections

s ∈ H0(Sδ , Hom(OSδ (−d1, −d2), ΘSδ )).

We work within the toric structure of Sδ. This point of view gives us a way to represent every section

s by a bi-homogeneous polynomial affine 1-form Ω on (ℂ2 \ {0}) × (ℂ2 \ {0}) (an affine 1-form, for short) in

essentially the same way as a projective 1-form (say) in ℙ2 is representable by a polynomial homogeneous

1-form in (ℂ3 \ {0}) (see Proposition 3.2). This representation is one of our main tools. On the one hand,

because it allows us to prove that if s has isolated singularities, then d
1
≥ 0 and d

2
≥ 0 if δ = 0, and d

1
≥ −1

and d
2
≥ 0 if δ ≥ 1 (see Proposition 3.6, which is a refinement of [23, Proposition 2.2]). On the other hand,

because the coefficients of Ω generate the ideal of the singular scheme Z of s (see Remark 3.8).

Global endomorphisms Φ of TSδ play a central role. To start, Corollary 4.2 shows that, for δ ̸= 1 and Φ

invertible, all foliations [Φ(s)] have the same singular scheme as [s] does and most of them are different

from [s]; therefore in this case, the singular scheme does not determine the foliation on the contrary to what

happens in the projective case. However, we prove in Theorem 5.2 that for d
2
≥ 1 and d

1
≥ 1 (in case δ = 0),

and d
1
≥ 2 (in case δ ≥ 2), these foliations [Φ(s)] are the unique ones that share their singular scheme with

[s]. We prove moreover that, in case δ = 1, the foliation [s] is uniquely determined by its singular scheme if

d
2
≥ 1 and d

1
≥ 0.

Some preliminaries on Hirzebruch surfaces that will be used throughout the paper are given in Section 2.

In Section 3, we give the aforementioned representation of the sections s ∈ H0(Sδ , ΘSδ ⊗ L∗) in terms of poly-
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nomial bi-homogeneous affine 1-forms, as well as one in terms of vector fields. Theorem 4.1 on the structure

of the global endomorphisms of the tangent bundle of Hirzebruch surfaces is the main content of Section 4

and we see it as one of our leading results. Theorem 5.2, the main result of the paper, is proved in Section 5.

Notation. Throughout the paper, the structure sheafOSδ of Sδ will be denoted byO. The sheaves of sections of
the tangent TSδ and cotangent T∗Sδ bundleswill be denoted respectively by ΘSδ and Ω1

Sδ . For a line bundle L,
its associated invertible sheaf will be denoted by O(L). If it has the form L = O(d

1
, d

2
), then the sheaves of

sections of the bundles TSδ ⊗ L and T∗Sδ ⊗ L will be denoted respectively by ΘSδ (d1, d2) and Ω1

Sδ (d1, d2).

2 Preliminaries on Hirzebruch surfaces
For an integer δ ≥ 0, the Hirzebruch surface Sδ is the ruled surface

ψ : Sδ → ℙ1 (2.1)

associated to ℙ(Oℙ1 ⊕ Oℙ1 (−δ)), where ℙ1 is the complex projective line [25, Chapter V, Corollary 2.13].

The surjective map ψ gives Sδ the structure of a ℙ1-bundle over ℙ1, and its fibres constitute the ruling
of Sδ.

Let F andM be two generators of the divisor class group Cl(Sδ) such that F2 = 0,M2 = δ and F ⋅M = 1. If
δ > 0, letM

0
denote the class of the (−δ)-curve of Sδ, that is, the unique irreducible curve of Sδ with negative

self-intersection (if δ = 0, takeM forM
0
). For simplicity, for each E ∈ Cl(Sδ), Ewill also denote the image of E

in Cl(Sδ) ⊗ ℚ. For every d1, d2 ∈ ℤ, the invertible sheaf O(d1, d2) corresponds to the class d1F + d2M.

The cone of curves NE(Sδ) of Sδ is the convex cone of Cl(Sδ) ⊗ ℚ generated by the images of the effective

classes. Its dual cone NE(Sδ)∨ (with respect to the intersection form) is called the nef cone and is denoted

by P(Sδ). Specifically,

P(Sδ) := NE(Sδ)∨ = {E ∈ Cl(Sδ) ⊗ ℚ | E ⋅ C ≥ 0 for any effective divisor C on Sδ}.
The ample cone Amp(Sδ) of Sδ is the convex cone of Cl(Sδ) ⊗ ℚwhose elements are the ample classes. These

classes are described in the following proposition (whose proof can be deduced from [25, Chapter V, Corol-

lary 2.18]).

Proposition 2.1. A class d
1
F + d

2
M of Cl(Sδ) is ample if and only if d1, d2 > 0.

Since Amp(Sδ) is the topological interior of P(Sδ) (see [27]), it follows from Proposition 2.1 that P(Sδ) is
the convex cone spanned by F and M. Moreover, the topological closure of NE(Sδ) is equal to P(Sδ)∨ and,
therefore, it is the convex cone spanned by F andM

0
; since both generators are effective, one has that NE(Sδ)

is closed and it is spanned by the classes F and M
0
. From these facts, the following result is clear.

Proposition 2.2. A class d
1
F + d

2
M in Cl(Sδ) is effective if and only if d1 + δd2 ≥ 0 and d2 ≥ 0.

The Hirzebruch surface Sδ also has the structure of a toric variety, that is, it can be regarded as the quo-

tient of (ℂ2 \ {0}) × (ℂ2 \ {0}) by an action of the algebraic torus (ℂ \ {0}) × (ℂ \ {0}). Indeed, by considering
coordinates (X

0
, X

1
, Y

0
, Y

1
) in (ℂ2 \ {0}) × (ℂ2 \ {0}), the action is given by

(λ, μ) ⋅ (X
0
, X

1
, Y

0
, Y

1
) := (λX

0
, λX

1
, μY

0
, λ−δμY

1
)

for all (λ, μ) ∈ (ℂ \ {0}) × (ℂ \ {0}) (see [12], where Sδ appears as 𝔽(0, δ)). Thus, we have a natural quotient
map

π : (ℂ2 \ {0}) × (ℂ2 \ {0}) → Sδ . (2.2)

For integers d
1
and d

2
, a polynomial H(X

0
, X

1
, Y

0
, Y

1
) ∈ ℂ[X

0
, X

1
, Y

0
, Y

1
] is said to be bi-homogeneous

of bi-degree (d
1
, d

2
) if every monomial Xα

0

Xβ
1

Yγ
0

Yμ
1

appearing in H with non-zero coefficient satisfies that

α + β − δμ = d
1
and γ + μ = d

2
. For any effective divisor d

1
F + d

2
M in Sδ, the non-zero global sections of

O(d
1
, d

2
) correspond to bi-homogeneous polynomials of bi-degree (d

1
, d

2
).
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Given a line bundle L on Sδ, the Chern class c(L) = af + bh ∈ H2(Sδ ,ℤ) (considered below [23, Defini-

tion 1.1]) is expressed in bi-degree form by setting e = δ, f = F and f 󸀠 = M (so that [B
0
]∗ = M

0
). Then it holds

that

(
d
1

d
2

) = (
1 − δ

2

0 1

)(
a
b
) . (2.3)

For instance, the Chern class

c(KSδ ) = (2g − 2)f − 2h = −2f − 2h

of the canonical bundle KSδ (see [23, Lemma 1.3]) corresponds to the canonical sheaf KSδ = O(δ − 2, −2).
The surface Sδ is covered by the four affine open sets Uij, i, j ∈ {0, 1}, given by

Uij := {π(X0, X1, Y0, Y1) ∈ Sδ | Xi ̸= 0 and Yj ̸= 0}, (2.4)

where π is the quotientmap (2.2). Since π(X
0
, X

1
, Y

0
, Y

1
) = π(1, X

1
/X

0
, 1, Xδ

0

Y
1
/Y

0
) in U

00
, the open set U

00

is identified with ℂ2 by means of the isomorphism

π(X
0
, X

1
, Y

0
, Y

1
) 󳨃→ (x

00
, y

00
),

where x
00

:= X
1
/X

0
and y

00
:= Xδ

0

Y
1
/Y

0
. Similarly, U

10
is identified with ℂ2 by means of the isomorphism

π(X
0
, X

1
, Y

0
, Y

1
) 󳨃→ (x

10
, y

10
), where x

10
:= X

0
/X

1
and y

10
:= Xδ

1

Y
1
/Y

0
. The change of coordinates map in

the overlap of U
00

and U
10

is given by

φ10

00

: U
00
∩ U

10
⊆ U

00
→ U

00
∩ U

10
⊆ U

10
, (x

00
, y

00
) 󳨃→ (1/x

00
, xδ

00

y
00
) = (x

10
, y

10
).

If C is the curve on Sδ defined by the zero locus of a bi-homogeneous polynomial H(X
0
, X

1
, Y

0
, Y

1
), then the

intersection C ∩ U
00

is the zero locus of the polynomial in the affine coordinates x
00

and y
00

given by

H̃00(x
00
, y

00
) := H(1, x

00
, 1, y

00
). (2.5)

Analogously, for each i, j ∈ {0, 1}, we can obtain affine coordinates (xij , yij) for every affine open set Uij,
change of coordinates maps

φi
󸀠 j󸀠
ij : Uij ∩ Ui󸀠 j󸀠 ⊆ Uij → Uij ∩ Ui󸀠 j󸀠 ⊆ Ui󸀠 j󸀠 , (2.6)

and an equation H̃ ij = 0 for the intersection of C with Uij.

3 Representation of foliations on Sδ by affine vector fields and
1-forms

Recall fromSection 1 that a foliationF on theHirzebruch surface Sδ is given by the class [s] of a global section
s ∈ H0(Sδ , ΘSδ ⊗ L∗). LetL = O(−d1, −d2) be the tangent sheaf of F. We follow [12, Section 3.1] to obtain the

vector field representation of s. To that end, define

H := O(1, 0)⊕2 ⊕ O(0, 1) ⊕ O(−δ, 1),
and consider the Euler exact sequence given by

0→ O⊕2 j
󳨀→ H

dπ
󳨀󳨀→ ΘSδ → 0. (3.1)

Taking the tensor product with L∗ = O(d
1
, d

2
) in the sequence (3.1), we obtain the exact sequence

0 󳨀󳨀→ O(d
1
, d

2
)⊕2 j⊗1
󳨀󳨀→ H(d

1
, d

2
)
dπ⊗1
󳨀󳨀󳨀󳨀→ ΘSδ (d1, d2) 󳨀󳨀→ 0. (3.2)

The long exact sequence associated to (3.2) reads

0 󳨀󳨀→ H0(Sδ ,O(d1, d2))⊕2 j⊗10
󳨀󳨀󳨀→ H0(Sδ ,H(d1, d2))

dπ⊗10
󳨀󳨀󳨀󳨀󳨀→ H0(Sδ , ΘSδ (d1, d1))

δ0
󳨀󳨀→

δ0
󳨀󳨀→ H1(Sδ ,O(d1, d2))⊕2 j⊗11

󳨀󳨀󳨀→ H1(Sδ ,H(d1, d2))
dπ⊗11
󳨀󳨀󳨀󳨀󳨀→ H1(Sδ , ΘSδ (d1, d2))

δ1
󳨀󳨀→ ⋅ ⋅ ⋅ , (3.3)
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where

Hq(Sδ ,H(d1, d2)) = Hq(Sδ ,O(d1 + 1, d2))⊕2 ⊕ Hq(Sδ ,O(d1, d2 + 1)) ⊕ Hq(Sδ ,O(d1 − δ, d2 + 1)) (3.4)

for

q = 0, 1, 2 and (j ⊗ 10)(H
1
, H

2
) = (X

0
H
1
, X

1
H
1
, Y

0
H
2
, −δY

1
H
1
+ Y

1
H
2
).

The sequence (3.3) has the following interpretation: Any section s in the image of dπ ⊗ 10 is uniquely deter-
mined by a vector field

X = V
0

∂
∂X

0

+ V
1

∂
∂X

1

+W
0

∂
∂Y

0

+W
1

∂
∂Y

1

, (3.5)

where

V
0
, V

1
∈ H0(Sδ ,O(d1 + 1, d2)),

W
0
∈ H0(Sδ ,O(d1, d2 + 1)),

W
1
∈ H0(Sδ ,O(d1 − δ, d2 + 1)),

up to the addition of multiples of the radial vector fields

R
1
:= X

0

∂
∂X

0

+ X
1

∂
∂X

1

− δY
1

∂
∂Y

1

and R
2
:= Y

0

∂
∂Y

0

+ Y
1

∂
∂Y

1

.

Remark 3.1. We say for brevity that a section s ∈ H0(Sδ , ΘSδ ⊗ L∗) is representable by an affine vector field X
if s lies in the image of the map dπ ⊗ 10 from (3.3). If this is the case, vector fields Xij that define s in the

covering (2.4) may be computed by writing the product dπ ⋅ X in the coordinates (xij , yij) described above.
Of course, every section s is representable by an affine vector field if and only if the map dπ ⊗ 10 is

surjective, and this is the case if (but not only if ) h1(Sδ ,L∗) = 0 (see Remark 3.3 below).

Foliations on Sδ may be also defined in terms of 1-forms. Indeed, considering the covering {Vi} of Sδ and
vector fields Xi associated to a global section s ∈ H0(Sδ , ΘSδ ⊗ L∗) as in (1.1), the 1-form associated to s is
givenby a collection of 1-formsΩi onVi such that Ωi(Xi) = 0. These1-formsglue together into a global section

(the annihilator of s) in H0(Sδ , Ω1

Sδ (d1 + 2 − δ, d2 + 2)).
Now we proceed with this construction. Let L = O(−d

1
, −d

2
), with d

1
, d

2
∈ ℤ.

First, we see from [25, Section II, Exercise 5.16 (b)] applied to F = ΘSδ that the evaluation map

b : ΘSδ × ∧2Ω1

Sδ → Ω

1

Sδ , b(X, ω) = ω(X),

induces an isomorphism

ΘSδ ⊗KSδ = ΘSδ ⊗ ∧
2

Ω

1

Sδ
b̃
󳨀→ Ω

1

Sδ ,

which gives in turn an isomorphism ΘSδ ≅ Ω
1

Sδ ⊗K
∗
Sδ = Ω

1

Sδ (2 − δ, 2). Hence,

ΘSδ ⊗ L
∗ = ΘSδ (d1, d2) ≅ Ω1

Sδ (d1 + 2 − δ, d2 + 2),

and we obtain that

Hq(Sδ , ΘSδ (d1, d2)) ≅ Hq(Sδ , Ω1

Sδ (d1 + 2 − δ, d2 + 2)) for q = 0, 1, 2. (3.6)

Now we seek for bi-homogeneous polynomial affine 1-forms that represent the sections of

H0(Sδ , Ω1

Sδ (d1 + 2 − δ, d2 + 2)).

To that end, first we dualize (3.1):

0→ Ω

1

Sδ
dπ∗
󳨀󳨀󳨀→ H∗ j∗

󳨀→ O⊕2 → 0. (3.7)

Then we twist (3.7) by O(d
1
− δ + 2, d

2
+ 2):

0 󳨀󳨀󳨀→ Ω

1

Sδ (d1 − δ + 2, d2 + 2)
dπ∗⊗1
󳨀󳨀󳨀󳨀󳨀→ H∗(d

1
− δ + 2, d

2
+ 2)

j∗⊗1
󳨀󳨀󳨀→ O(d

1
− δ + 2, d

2
+ 2)⊕2 󳨀󳨀󳨀→ 0.
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And then we consider the long exact sequence associated to the exact sequence above, part of which reads

as follows:

0 󳨀󳨀󳨀󳨀→ H0(Sδ , Ω1

Sδ (d1 − δ + 2, d2 + 2))
dπ∗⊗10
󳨀󳨀󳨀󳨀󳨀󳨀→ H0(Sδ ,H∗(d1 − δ + 2, d2 + 2)) j∗⊗10󳨀󳨀󳨀󳨀→

j∗⊗10
󳨀󳨀󳨀󳨀→ H0(Sδ ,O(d1 − δ + 2, d2 + 2))⊕2 δ0

󳨀󳨀→ H1(Sδ , Ω1

Sδ (d1 − δ + 2, d2 + 2))
dπ∗⊗11
󳨀󳨀󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ ,

where

Hq(Sδ ,H∗(d1 − δ + 2, d2 + 2))
= Hq(Sδ ,O(d1 − δ + 1, d2 + 2))⊕2 ⊕ Hq(Sδ ,O(d1 − δ + 2, d2 + 1)) ⊕ Hq(Sδ ,O(d1 + 2, d2 + 1))

for q = 0, 1, 2, and

(j∗ ⊗ 10)(A
0
, A

1
, B

0
, B

1
) = (X

0
A
0
+ X

1
A
1
− δY

1
B
1
, Y

0
B
0
+ Y

1
B
1
).

As a consequence, we deduce that, given an invertible sheaf L = O(−d
1
, −d

2
) on Sδ, a foliation

F = [s] ∈ ℙH0(Sδ , ΘSδ ⊗ L∗)
may not be representable by a polynomial affine vector field, but it is always representable by some bi-homo-

geneous differential 1-form.

Proposition 3.2. Let L = O(−d
1
, −d

2
), with d

1
, d

2
∈ ℤ. Then any foliation F in Fol(L, Sδ) is uniquely deter-

mined (up to multiplication by a non-zero scalar) by a differential 1-form

Ω = A
0
dX

0
+ A

1
dX

1
+ B

0
dY

0
+ B

1
dY

1
, (3.8)

where

A
0
, A

1
∈ H0(Sδ ,O(d1 − δ + 1, d2 + 2)),

B
0
∈ H0(Sδ ,O(d1 − δ + 2, d2 + 1)),

B
1
∈ H0(Sδ ,O(d1 + 2, d2 + 1))

are bi-homogeneous polynomials (not all of them equal to 0) that satisfy the following two conditions:

{
Ω(R

1
) = X

0
A
0
+ X

1
A
1
− δY

1
B
1
= 0,

Ω(R
2
) = Y

0
B
0
+ Y

1
B
1
= 0.

(3.9)

Moreover, if i, j ∈ {0, 1}, a differential 1-form defining F in the affine open set Uij is given by

Ωij = Ã
ij
i󸀠dxij + B̃

ij
j󸀠dyij ,

where {i󸀠} := {0, 1} \ {i}, {j󸀠} := {0, 1} \ {j} and the correspondence H 󳨃→ H̃ is given by equation (2.5) and its ilk
just below it.

Let τ be the kernel of the Jacobian of ψ in (2.1). It is a sub-line bundle of TSδ and induces an exact sequence

0→ τ → TSδ
dψ
󳨀󳨀→ N → 0,

where N is the normal bundle to the ruling (see [23, (1.2)]). We see from [23, Lemma 1.4] and (2.3) that

O(τ) = O(−δ, 2) and O(N) = O(2, 0), so that the sequence above corresponds to

0→ O(−δ, 2) → ΘSδ
dψ
󳨀󳨀→ O(2, 0) → 0. (3.10)

The spaces of foliations with tangent bundles τ and N will play a role in the results that follow (especially in

Proposition 3.6 below). For this reason, our next three remarks gather information about them.
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Remark 3.3. We study the representation by affine vector fields of sections in H0(Sδ , ΘSδ (δ, −2)) and in

H0(Sδ , ΘSδ (−2, 0)), in the context of (3.3).
Claim: h1(Sδ ,O(τ∗)) = h1(Sδ ,O(δ, −2)) and h1(Sδ ,O(N∗)) = h1(Sδ ,O(−2, 0)) are equal to 1 ̸= 0. Indeed,

let D = δF − 2M and recall that KSδ − D = −2F, so that hq(Sδ ,O(δ, −2)) = h2−q(Sδ ,O(−2, 0)) for q = 0, 1, 2,
by Serre duality. Moreover,

h0(Sδ ,O(δ, −2)) = 0 because − 2 < 0,

and h0(Sδ ,O(−2, 0)) = h0(ℙ1,Oℙ1 (−2)) = 0. Hence, the Euler characteristic χ(O(δ, −2)) is equal, on the

one hand, to −h1(Sδ ,O(δ, −2)) and on the other hand, to

1

2

D ⋅ (D − KSδ ) + χ(O) = 1

2

(−4) + 1 = −1, by the

Riemann–Roch theorem.

Having proved the claim, it follows from (3.3) that no section s ∈ H0(Sδ , ΘSδ (δ, −2)) is representable by
an affine vector field. Indeed, we see from (3.4) that

h0(Sδ ,H(δ, −2)) = h0(Sδ ,O(1 + δ, −2)) + h0(Sδ ,O(δ, −1)) + h0(Sδ ,O(0, −1)) = 0,

because each summand is equal to 0 (by the argument in the displayed equation above). The best we can say

from this computations on the value of h0(Sδ , ΘSδ (δ, −2)) is that it is greater than or equal to 1 (from (3.10))

and that it is less than or equal to 2 (from (3.3)); see Remark 3.4 below for the actual value.

For the case of sections s ∈ H0(Sδ , ΘSδ (−2, 0)), we have already seen (a couple of lines above) that

h0(Sδ ,O(−2, 0)) = 0. Similar computations to the ones above show that

h0(Sδ ,H(−2, 0)) = h0(Sδ ,O(−1, 0)) + h0(Sδ ,O(−2, 1)) + h0(Sδ ,O(−(δ + 2), 1)) = h0(Sδ ,O(−2, 1)),

which is equal to 0 for δ = 0, 1, and it is equal to δ − 1 for δ ≥ 2. The conclusion is that no such section s is
representable by an affine vector field for δ = 0, 1, and that h0(Sδ , ΘSδ (−2, 0)) ≥ δ − 1, for δ ≥ 2.

We conclude this remark by saying that in Remark 3.5 below we will show however that

h0(Sδ , ΘSδ (−2, 0)) =
{{{
{{{
{

1 if δ = 0,
0 if δ = 1,
δ − 1 if δ ≥ 2.

Together with Remark 3.1, this computation shows that for δ ≥ 2, in the corresponding exact sequence (3.3),
the map dπ ⊗ 10 is not only injective but also surjective, and hence the map δ0 is the zero map.

Remark 3.4. The unique foliation in Fol(O(−δ, 2), Sδ) is the one given by the ruling Sδ → ℙ1. Indeed, by
Proposition 3.2, any foliation F in Fol(O(−δ, 2), Sδ) is representable by an affine differential 1-form Ω as

in (3.8), where

A
0
, A

1
∈ H0(Sδ ,O(1, 0)),

B
0
∈ H0(Sδ ,O(2, −1)),

B
1
∈ H0(Sδ ,O(δ + 2, −1))

are bi-homogeneous polynomials that satisfy the conditions in (3.9). Since the last two sheaves have no

non-zero global section, it follows that B
0
= B

1
= 0. Hence, F is defined by any non-zero scalar multiple of

the differential form Ωτ = X1 dX0 − X0 dX1, which corresponds to the ruling. Finally, we see from the local

expressions at the end of Lemma 3.4 that F has no singularities.

Remark 3.5. Now consider the case of foliations with tangent sheaf O(N) = O(2, 0). On the one hand, recall
from [23, Proposition 2.4] that any F in Fol(O(2, 0), Sδ) with isolated singularities is actually smooth (that

is, it has no singularities at all). On the other hand, Brunella in [4] (as quoted in [30]) states that a rational

surface Z carries a smooth holomorphic foliation G if and only if Z is a Hirzebruch surface and G a rational

fibration. With these facts in mind, it should be clear that F is a rational fibration only if δ = 0. Nowwe prove

it: It follows from Proposition 3.2 that F in Fol(O(2, 0), Sδ) is representable by an affine differential 1-form Ω
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as in (3.8), where

A
0
, A

1
∈ H0(Sδ ,O(−(δ + 1), 2)),

B
0
∈ H0(Sδ ,O(−δ, 1)),

B
1
∈ H0(Sδ ,O(0, 1))

are bi-homogeneous polynomials that satisfy (3.9). We distinguish three cases.

Case 1: δ = 0. As in Remark 3.4, one can prove that the unique foliation F in Fol(O(2, 0), S
0
) is the one

defined by Ω = Y
1
dY

0
− Y

0
dY

1
: the ruling of S

0
= ℙ1 × ℙ1 with respect to the projection onto the second

factor. Hence, F is smooth.

Case 2: δ = 1. The complex vector spaces H0(S
1
,O(−2, 2)) and H0(S

1
,O(−1, 1)) consist of the scalar multi-

ples of Y2
1

and Y
1
, respectively, and H0(S

1
,O(0, 1)) contains only linear forms in Y

0
and Y

1
. Hence, the affine

1-forms (3.8) have the following shape:

Ω = aY2
1

dX
0
+ bY2

1

dX
1
+ a

1
Y
1
dY

0
+ Y

1
(c

0
X
0
+ c

1
X
1
)dY

1
,

where a, b, a
1
, c

0
, c

1
∈ ℂ. Thus it follows easily that the unique Ω that satisfies conditions (3.9) is Ω = 0.

Case 3: δ ≥ 2. We claim that no foliation F in Fol(O(2, 0), Sδ) has isolated singularities. Indeed, consider
a 1-form Ω as in (3.8) that represents such a foliation. Let D denote the divisor −(δ + 1)F + 2M. Then

D ⋅M
0
< 0 and (D −M

0
) ⋅ M

0
< 0, which means that M

0
is a double fixed component of the complete lin-

ear system |D| and, therefore, Y2
1

divides both A
0
and A

1
. Now, from the first equation in (3.9) one gets

that Y
1
divides B

1
and, by the second equation therein, that Y2

1

divides B
0
. This is a contradiction unless

B
0
= B

1
= 0, because B

0
∈ H0(Sδ ,O(−δ, 1)) and the latter consists of the scalar multiples of Y

1
. Thus, we

conclude that Ω = Y2
1

(A󸀠
0

dX
0
+ A󸀠

1

dX
1
) for some A󸀠j ∈ H0(Sδ ,O(δ − 1, 0)) = H0(ℙ

1
,Oℙ

1

(δ − 1)), and, from
the first equation in (3.9), that

Ω = ΩN = Y2
1

Aδ−2(X0, X1)(X1dX0 − X0dX1) = Y2
1

Aδ−2(X0, X1)Ωτ (3.11)

for some Aδ−2 ∈ H0(ℙ
1
,Oℙ

1

(δ − 2)) (see Remark 3.4 above for Ωτ). We conclude from (3.11) that F has no

isolated singularities and, moreover, from (3.6), that

h0(Sδ , ΘSδ (−2, 0)) = h0(Sδ , Ω1

Sδ (−δ, 2)) = h
0(ℙ

1
,Oℙ

1

(δ − 2)) = δ − 1.

Our next result is a refinement of [23, Proposition 2.2]: It computes those tangent sheavesL for which a foli-

ation F ∈ Fol(L, Sδ)may have isolated singularities.

Proposition 3.6. Let d
1
, d

2
∈ ℤ and let L = O(−d

1
, −d

2
) be an invertible sheaf on Sδ such that there exists

a foliation F ∈ Fol(L, Sδ) with isolated singularities. If δ = 0 (resp. δ ≥ 1), then eitherL ≅ O(τ) orL ≅ O(N), or
d
1
≥ 0 and d

2
≥ 0 (resp. either L ≅ O(τ), or d

1
≥ −1 and d

2
≥ 0).

Proof. Under the correspondence (2.3) between the expressions d
1
F + d

2
M and af + bh of a class in Cl(Sδ),

[23, Proposition 2.2] states that if there exists a foliation

F ∈ Fol(L, Sδ)

with isolated singularities, then either L ≅ O(τ), or L ≅ O(N), or (2 + d
1
)F + d

2
M belongs to the closure of

Amp(Sδ) (which coincides with the nef cone P(Sδ)). By Proposition 2.1, the latter condition is equivalent to

the systemof inequalities d
1
≥ −2, d

2
≥ 0. In the case δ = 0, the double ruling of S

0
shows that thementioned

system is equivalent to d
1
≥ 0 and d

2
≥ 0, and the statement for δ = 0 has been proved.

Now assume that δ ≥ 1. First, L cannot be isomorphic to O(N) by Remark 3.5. Finally, assume that

d
1
= −2 and d

2
≥ 0. We will show that every F ∈ Fol(O(−2, −d

2
), Sδ) has no isolated singularities. Indeed,

by Proposition 3.2, F is representable by an affine differential 1-form

Ω = A
0
dX

0
+ A

1
dX

1
+ B

0
dY

0
+ B

1
dY

1
,
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where

A
0
, A

1
∈ H0(Sδ ,O(−(1 + δ), d2 + 2)),

B
0
∈ H0(Sδ ,O(−δ, d2 + 1)),

B
1
∈ H0(Sδ ,O(0, d2 + 1))

satisfy the conditions in (3.9). If D denotes the divisor −(1 + δ)F + (d
2
+ 2)M, it holds that

D ⋅M
0
= −(1 + δ) < 0 and (D −M

0
) ⋅ M

0
= −1 < 0.

Therefore, the complete linear system |D| has M
0
as double fixed component. This shows that Y2

1

divides A
0

and A
1
. It follows from (3.9) that Y

1
divides B

1
and B

0
as well, and hence that Y

1
is a factor of all the

coefficients of Ω, which shows that F has no isolated singularities. This finishes the proof.

Proposition 3.7. Let L = O(−d
1
, −d

2
) be an invertible sheaf on Sδ such that d

2
≥ 0 and, either δ = 0 and

d
1
≥ 0, or δ ≥ 1 and d

1
≥ −1. Then h1(Sδ ,L∗) = 0.

Proof. If d
1
, d

2
≥ 0, the result follows from [28, Proposition 2.3]. So let us assume δ ≥ 1, d

1
= −1 and d

2
≥ 0.

Since (−F + d
2
M) ⋅ M

0
= −1, it holds thatM

0
is a fixed component of the complete linear system |−F + d

2
M|,

and therefore

h0(Sδ ,O(−1, d2)) = h0(Sδ ,O(δ − 1, d2 − 1)) =
δ
2

d
2
(d

2
+ 1) = χ(O(−1, d

2
)),

where the second equality comes again from [28, Proposition 2.3] and the third from the Riemann–Roch

theorem. The result follows (by Serre duality) from

h2(Sδ ,O(−1, d2)) = h0(Sδ ,O(δ − 1, −(d2 + 2))) = 0.

Remark 3.8. Under the conditions of Proposition3.7, every foliation inFol(L, Sδ)has twoequivalent descrip-
tions: through affine vector fields (3.5) – in view of Remark 3.1 – and through some affine differential

1-form (3.8). Moreover, Proposition 3.6 shows that this double description includes all foliations on Sδ with
isolated singularities, except the one with tangent bundle τ and, in the case δ = 0, also the one with tangent
bundle N (see Remark 3.3 above). However, the foliations associated to these exceptional cases are actually

smooth (by Remarks 3.4 and 3.3, respectively).

Assume now that a section s ∈ H0(Sδ , ΘSδ ⊗ L∗) is representable by an affine vector field X as in (3.5).

Then the affine 1-form Ω in (3.8) that corresponds to s is given by

Ω =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

dX
0

dX
1

dY
0

dY
1

X
0

X
1

0 −δY
1

0 0 Y
0

Y
1

V
0

V
1

W
0

W
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

X
1

0 −δY
1

0 Y
0

Y
1

V
1

W
0

W
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

dX
0
−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

X
0

0 −δY
1

0 Y
0

Y
1

V
0

W
0

W
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

dX
1
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

X
0

X
1

V
0

V
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(−Y

1
dY

0
+ Y

0
dY

1
)

= A
0
dX

0
+ A

1
dX

1
+ B

0
dY

0
+ B

1
dY

1
. (3.12)

This follows because Ω(R
1
) = Ω(R

2
) = Ω(X) = 0. A further conclusion is that the sheaf of ideals IZ of the sin-

gular scheme Z = Zs of the section s is the ideal IZ = (A0, A1, B0, B1) ⊂ O generated by the coefficients of Ω:

this can be deduced from the local expressions for Ω at the end of Proposition 3.2 together with the just

proven fact that Ω(X) = 0.

4 Global endomorphisms of TSδ

In this section,we compute the space of global endomorphisms of the tangent bundle of aHirzebruch surface.

This computation will be essential to establish the main result of this paper.
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Theorem 4.1. Consider theHirzebruch Surface Sδ, with δ ≥ 0. The space of global endomorphisms of its tangent
bundle TSδ has dimension

h0(Sδ , HomO(ΘSδ , ΘSδ )) = {
2 if δ = 0,
δ if δ ≥ 1.

Moreover, every such global endomorphism Φ is uniquely determined by a matrix A which is equal to

A(a, d) = a ⋅ 1
2×2 ⊕ d ⋅ 12×2 if δ = 0,

A(a) = a ⋅ 1
4×4 if δ = 1,

A(a, C) = (

a 0 0 0

0 a 0 0

X
1
Y
1
C(X) −X

0
Y
1
C(X) a 0

0 0 0 a

) if δ ≥ 2,

where a, d ∈ ℂ, 1n×n denotes the n × n identity matrix (n ∈ ℕ) and C(X) = C(X0, X1) is a homogeneous polyno-
mial of degree δ − 2.

Moreover, the following properties are satisfied:
(i) Φ is invertible if and only if ad ̸= 0 when δ = 0, and a ̸= 0 when δ ≥ 1.
(ii) For any invertible sheaf L on Sδ, if Φ ∈ H0(Sδ , HomO(ΘSδ , ΘSδ )) and s ∈ H0(Sδ , HomO(L, ΘSδ )), then

Φ ∘ s = Φ(s) ∈ H0(Sδ , HomO(L, ΘSδ )).

In particular, if s is representable by the affine vector field

X = V
0

∂
∂X

0

+ V
1

∂
∂X

1

+W
0

∂
∂Y

0

+W
1

∂
∂Y

1

,

then Φ(s) is representable by the affine vector field

X󸀠 := V󸀠
0

∂
∂X

0

+ V󸀠
1

∂
∂X

1

+W󸀠
0

∂
∂Y

0

+W󸀠
1

∂
∂Y

1

,

where¹ (V󸀠
0

, V󸀠
1

,W󸀠
0

,W󸀠
1

)t = A ⋅ (V
0
, V

1
,W

0
,W

1
)t and the matrix A represents Φ.

(iii) Under the hypothesis of representability in (ii), let

Ω = A
0
dX

0
+ A

1
dX

1
+ B

0
dY

0
+ B

1
dY

1
and Ω

󸀠 = A󸀠
0

dX
0
+ A󸀠

1

dX
1
+ B󸀠

0

dY
0
+ B󸀠

1

dY
1

be the affine 1-forms that represent the sections s and Φ(s), respectively, through (3.12) and let A repre-
sent Φ. Then

(A󸀠
0

, A󸀠
1

, B󸀠
0

, B󸀠
1

) = (A
0
, A

1
, B

0
, B

1
) ⋅ A.

The hypothesis of representability in (ii) and (iii) holds, in particular, for any section s where the corresponding
invertible sheaf L = O(−d

1
, −d

2
) satisfies the conditions of Proposition 3.7.

Proof. We start with the computation of the matrix A associated to a global endomorphism Φ. Consider the

open covering {Uij}0≤i,j≤1 of Sδ from (2.4), where TSδ|Uij≃ Uij × ℂ2 for all i, j ∈ {0, 1}. A global endomor-

phism Φ of TSδ is given by a collection of 2 × 2 matrices {Mij ≃ Φ|Uij }0≤i,j≤1 such that the entries of each

matrix Mij are regular functions on Uij and, for every point p belonging to an overlap Uij ∩ Ui󸀠 j󸀠 , we have

Mi󸀠 j󸀠 |p= J
i󸀠 j󸀠
ij |p ⋅Mij|p ⋅(J

i󸀠 j󸀠
ij |p)
−1
, (4.1)

where J i
󸀠 j󸀠
ij denotes the Jacobian matrix of the change of coordinates map φi

󸀠 j󸀠
ij from (2.6) and B|p denotes the

matrix obtained by evaluating the entries of B at p. Write

M
00
= (

a b
c d
) , (4.2)

1 The superscript t denotes the transpose of the vector and the dot ⋅ denotes matrix multiplication.



C. Galindo, F. Monserrat and J. Olivares, Foliations on Hirzebruch surfaces | 11

where a, b, c and d are regular functions onU
00
(that is, they are givenbypolynomials inℂ[x

00
, y

00
]). By con-

sidering anarbitrary point p = (x
00
, y

00
) = (x

01
, y

01
) ∈ U

00
∩ U

01
(given in coordinates in both open subsets),

equation (4.1) becomes

M
01
|p = (

1 0

0 −y2
01

)(
a(x

01
, y−1

01

) b(x
01
, y−1

01

)
c(x

01
, y−1

01

) d(x
01
, y−1

01

)
)(

1 0

0 −y−2
01

) (4.3)

= (
a(x

01
, y−1

01

) −b(x
01
, y−1

01

) ⋅ y−2
01

−c(x
01
, y−1

01

) ⋅ y2
01

d(x
01
, y−1

01

)
) . (4.4)

Since the entries of M
01

must be regular functions on U
01

(polynomials in ℂ[x
01
, y

01
]) and p ∈ U

00
∩ U

01
is

arbitrary, we have that, necessarily, b = 0, a(x
00
, y

00
) = a(x

00
), d(x

00
, y

00
) = d(x

00
) (that is, a and d depend

only on x
00
) and the degree of c in y

00
is less than or equal to 2.

Now we plug these conditions into (4.2) and compute (4.1) with (i, j) = (0, 0), (i󸀠, j󸀠) = (1, 1) and
p = (x

00
, y

00
) = (x

11
, y

11
) being an arbitrary point in U

00
∩ U

11
. We obtain that

M
11
|p= (

a(x−1
11

) 0

δy
11
x−1
11

[a(x−1
11

) − d(x−1
11

)] + y2
11

x(δ−2)
11

c(x−1
11

, y−1
11

xδ
11

) d(x−1
11

)
) . (4.5)

Hence, by reasoning as above, since M
11

is defined by regular entries, this is the case only if the functions a
and d are constant and these constants must be equal if δ ≥ 1 (this follows from the lower-left entry of the

matrix above). Moreover, since the polynomial c expressed in coordinates u and v must have the shape

c(u, v) = c
0
(u) + c

1
(u)v + c

2
(u)v2

for some univariate polynomials ci(u), we see that the term y2
11

x−(δ+2)
11

c(x−1
11

, y−1
11

xδ
11

) comes from a regular

function in U
11

if and only if c = 0 (resp. c
0
= c

1
= 0 and c

2
(u) has degree less than or equal to δ − 2) if

δ ∈ {0, 1} (resp. if δ ≥ 2).
We have shown, so far, that the restriction of a global endomorphism Φ to the affine subset U

00
must be

given by a matrix of the type

M
00
=

{{{{{{{{{{
{{{{{{{{{{
{

(
a 0

0 d
) if δ = 0,

(
a 0

0 a
) if δ = 1,

(
a 0

c(x
00
)y2

00

a
) if δ ≥ 2,

(4.6)

where a, d ∈ ℂand c is a polynomial in one variable of degree less thanor equal to δ − 2.Using (4.4) and (4.5),
we deduce that, for δ ∈ {0, 1}, the matrices M

01
and M

11
coincide with M

00
and that, for δ ≥ 2, we have

M
01
= (

a 0

−c(x
01
)y2

01

a
) and M

11
= (

a 0

c(x−1
11

)xδ−2
11

y2
11

a
) .

We deduce similarly that M
10

also coincides with M
00

for δ ∈ {0, 1} and that, for δ ≥ 2, we have

M
10
= (

a 0

−c(x−1
10

)xδ−2
10

y2
10

a
) .

Noticing that every collection of four matrices as before (that is, with a, d and c satisfying the given condi-

tions) also satisfies the remaining conditions from (4.1), we conclude the part of the statement concerning

the dimension of the space of global endomorphisms of TSδ and (i).
Thematrix representation A of Φ also follows from these computations: according to the different values

of δ, we obtain the entries of the matrix A (say) from equation (4.6): C(X) is the homogeneous form associ-

ated to the polynomial c(x
00
). Then one verifies that, according to the different values of δ, the restrictions

of A to the open sets U
00
, U

01
, U

11
and U

10
coincide, respectively, with the matricesM

00
,M

01
,M

11
andM

10

described above.
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Now we prove (ii). Let Φ be as before and consider a foliation F = [s] in Fol(L, Sδ) such that s is repre-
sentable by an affine vector field X (as in the statement). The restriction s|U

00

of the section s to this open set
is the vector field (dπ ⋅ X) |U

00

, where π comes from (2.2), and it is given by

s|U
00

= (−x
00
Ṽ00

0

+ Ṽ00

1

)
∂

∂x
00

+ (δy
00
Ṽ00

0

− y
00
W̃00

0

+ W̃00

1

)
∂

∂y
00

.

Then the restriction of Φ(s) to U
00

can be computed by using the matrix M
00

as follows:

Φ(s)|U
00

=

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

a(−x
00
Ṽ00

0

+ Ṽ00

1

)
∂

∂x
00

+ d(δy
00
Ṽ00

0

− y
00
W̃00

0

+ W̃00

1

)
∂

∂y
00

if δ = 0,

a(−x
00
Ṽ00

0

+ Ṽ00

1

)
∂

∂x
00

+ a(δy
00
Ṽ00

0

− y
00
W̃00

0

+ W̃00

1

)
∂

∂y
00

if δ = 1,

a(−x
00
Ṽ00

0

+ Ṽ00

1

)
∂

∂x
00

+[c(x
00
)y2

00

(−x
00
Ṽ00

0

+ Ṽ00

1

) + a(δy
00
Ṽ00

0

− y
00
W̃00

0

+ W̃00

1

)]
∂

∂y
00

if δ ≥ 2.

This concludes the proof of (ii) because the vector field (dπ ⋅ X󸀠)|U
00

coincides, in each case, with the above

ones, and the same happens when considering the remaining open sets U
10
, U

01
and U

11
.

The proof of (iii) is a straightforward computation (whose details we omit). Notice that Ω

󸀠
is obtained

from (3.12) by replacing the last row (V
0
, V

1
,W

0
,W

1
) in thedeterminant therein by the row (V󸀠

0

, V󸀠
1

,W󸀠
0

,W󸀠
1

)
where (V󸀠

0

, V󸀠
1

,W󸀠
0

,W󸀠
1

)t = A ⋅ (V
0
, V

1
,W

0
,W

1
)t.

Corollary 4.2. LetL = O(−d
1
, −d

2
) be an invertible sheaf on Sδ such that every section s ∈ H0(Sδ , ΘSδ ⊗ L∗) is

representable by an affine vector field X as in (3.5). Fix a section s and let Z be its singular scheme with sheaf
of ideals IZ . Let 0 ̸= Φ ∈ H0(Sδ , HomO(ΘSδ , ΘSδ ) be a global endomorphism and let s󸀠 = Φ(s) have singular
scheme Z󸀠. Then the following assertions hold:
(i) Z ⊆ Z󸀠 and Z = Z󸀠 if Φ is invertible.
(ii) Let A be thematrix associated toΦ by Theorem 4.1. If δ = 1, thenΦ is invertible andF = [s] = [s󸀠]. If δ ̸= 1

and Φ is invertible, then the condition F = [s] = [s󸀠] is equivalent to the condition a = d, for δ = 0, and it is
equivalent to the conditions C = 0 or C ̸= 0 and X

0
V
1
− X

1
V
0
= 0, for δ ≥ 2.

(iii) If Φ is not invertible and s󸀠 ̸= 0, then Z󸀠 is one-dimensional.
Proof. Let

Ω = A
0
dX

0
+ A

1
dX

1
+ B

0
dY

0
+ B

1
dY

1
and Ω

󸀠 = A󸀠
0

dX
0
+ A󸀠

1

dX
1
+ B󸀠

0

dY
0
+ B󸀠

1

dY
1

be the affine 1-forms that represent the sections s and s󸀠, respectively (see (3.12)).
For every δ ≥ 0, Theorem 4.1 (iii) states, in matrix notation, that

(A󸀠
0

, A󸀠
1

, B󸀠
0

, B󸀠
1

) = (A
0
, A

1
, B

0
, B

1
) ⋅ A.

By Remark 3.8, this equality implies that IZ󸀠 ⊆ IZ, which shows that Z ⊆ Z󸀠, and the first part in (i) is proved.
Now we divide the proof of the second part in (i) and of the remaining statements into three cases:

Case 1: δ = 0. By (3.12),

Ω = (Y
0
W

1
− Y

1
W

0
)(X

1
dX

0
− X

0
dX

1
) + (X

0
V
1
− X

1
V
0
)(−Y

1
dY

0
+ Y

0
dY

1
),

and A = A(a, d) by Theorem 4.1. Then it follows from (iii) therein that

Ω

󸀠 = a ⋅ (Y
0
W

1
− Y

1
W

0
)(X

1
dX

0
− X

0
dX

1
) + d ⋅ (X

0
V
1
− X

1
V
0
)(−Y

1
dY

0
+ Y

0
dY

1
).

Since ad ̸= 0, it follows from Remark 3.8 that IZ = IZ󸀠 (and hence that Z = Z󸀠). This finishes the proof of (i)
in this case 1. With respect to (ii), it is obvious that [s] = [s󸀠] if and only if a = d. Finally, if (say) a = 0, then
Ω

󸀠 = d ⋅ (X
0
V
1
− X

1
V
0
)(−Y

1
dY

0
+ Y

0
dY

1
) ̸= 0, andwe see from the final statement of Proposition 3.2 that the

restriction of Ω

󸀠
to the open set U

00
is given by

Ω

󸀠
00

= d ⋅ B̃00
1

(x
00
, y

00
) dy

00
= d ⋅ y

00
(Ṽ00

1

− x
00
Ṽ00

0

) dy
00
,

so that {(x
00
, 0)} ⊂ Z󸀠 ∩ U

00
and (iii) follows.
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Case 2: δ = 1. This case follows at once from the fact (see Theorem 4.1) that A = A(a) = a ⋅ 1
4×4.

Case 3: δ ≥ 2. By recalling the expression for Ω from (3.12) and the fact that A = A(a, C), it follows from (iii)

in Theorem 4.1 that

Ω

󸀠 = a ⋅ Ω − Y
1
CB

0
⋅ (X

1
dX

0
− X

0
dX

1
)

= a ⋅ Ω + (X
0
V
1
− X

1
V
0
)Y2

1

C ⋅ (X
1
dX

0
− X

0
dX

1
), (4.7)

so that A󸀠
0

= a ⋅ A
0
− X

1
Y
1
CB

0
, A󸀠

1

= a ⋅ A
1
+ X

0
Y
1
CB

0
and B󸀠j = a ⋅ Bj for j = 0, 1.

If a ̸= 0, then A
0
− 1

aA
󸀠
0

∈ (B
0
) = (B󸀠

0

) ⊂ IZ󸀠 , so that A0 ∈ IZ󸀠 . Similar arguments show that A
1
∈ IZ󸀠 and

then IZ ⊂ IZ󸀠 , which, together with the above, shows that Z = Z󸀠 and the proof of (i) is complete.

The second equality in (4.7) proves (ii).

Finally, (iii) follows from the observation that the 1-form in the second equality in (4.7) coincides with

a ⋅ Ω + (X
0
V
1
− X

1
V
0
) ⋅ ΩN , where ΩN comes from (3.11)within Remark 3.5. There it was shown that ΩN does

not have isolated singularities and hence Ω

󸀠
either does not, whenever a = 0.

5 Foliations with isolated singularities on Sδ that share singular
scheme

IfF = [s] ∈ ℙH0(Sδ , ΘSδ (d1, d2)) is a foliationwith isolated singularities on Sδ, then for every invertible endo-
morphism Φ of TSδ all foliations [Φ(s)] share their singular scheme with [s], by Corollary 4.2. Our main

result, Theorem 5.2, states that these are the only ones whenever d
2
≥ 1 and d

1
≥ 1 for δ = 0, d

1
≥ 2 for

δ ≥ 2, and d
1
≥ 0 for δ = 1. In this latter case, we see that [s] is uniquely determined by its singular scheme.

Notice that this result holds for all foliations with ample cotangent bundle, with the exception of the cases

δ ≥ 2 and d
1
= 1. We devote this final section to the proof of Theorem 5.2.

Lemma 5.1. Consider the families of invertible sheaves on Sδ given by

L = O(−d
1
, −d

2
) and E = L ⊗KSδ = O(δ − (d1 + 2), −(d2 + 2)),

whereKSδ = O(δ − 2, −2) is the canonical sheaf of Sδ, d2 ≥ 1 and d1 ≥ 1 for δ = 0, d1 ≥ 0 for δ = 1, and d1 ≥ 2
for δ ≥ 2.

Then
h0(Sδ , ΘSδ ⊗ E) = 0 = h1(Sδ , ΘSδ ⊗ E).

Proof. From the exact sequence (3.10), we obtain the exact sequence

0→ O(−(d
1
+ 2), −d

2
) → ΘSδ ⊗ E

dψ⊗1
󳨀󳨀󳨀󳨀→ O(δ − d

1
, −(d

2
+ 2)) → 0.

Considering its associated long exact sequence, we deduce that it suffices to prove

h0(Sδ ,O(−(d1 + 2), −d2)) = 0 = h0(Sδ ,O(δ − d1, −(d2 + 2))), (5.1)

h1(Sδ ,O(−(d1 + 2), −d2)) = 0 = h1(Sδ ,O(δ − d1, −(d2 + 2))), (5.2)

to get the desired equalities in the statement. For a start, both equations in (5.1) hold for every δ ≥ 0 and for
every d

1
∈ ℤ because −(d

2
+ 2) < −d

2
< 0.

In order to prove the equalities in (5.2), we recall from [28, Proposition 2.3] that h1(Sδ ,O(a, b)) = 0 for
integer numbers a ≥ 0, b ≥ −1 and δ ≥ 0. Therefore, by Serre duality, we have

h1(Sδ ,O(δ − (a + 2), −(b + 2))) = 0 for a ≥ 0, b ≥ −1 and δ ≥ 0. (5.3)

Substitute the value b = d
2
− 2 ≥ −1 in (5.3) to get

h1(Sδ ,O(δ − (a + 2), −d2)) = 0 for a ≥ 0, d
2
≥ 1 and δ ≥ 0. (5.4)
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Then (5.4) proves the first equality in (5.2). In fact, it holds, for δ = 0 for any value of a = d
1
≥ 0 for δ = 1

for any value of a = d
1
+ 1 ≥ 0 (that is, for any value of d

1
≥ −1), and finally for δ ≥ 2 for any value of

a = d
1
+ δ ≥ 0 (that is, for any value of d

1
≥ −δ).

For the proof of the second equality in (5.2), we replace the value b = d
2
≥ 1 in (5.3) to get

h1(Sδ ,O(δ − (a + 2), −(d2 + 2))) = 0 for a ≥ 0, d
2
≥ 1 and δ ≥ 0. (5.5)

According to the restrictions on the values of d
1
, we see that the substitution a = d

1
− 2 ≥ 0 in (5.5) proves

the second equality in (5.2), except for the following cases:

h1(S
0
,O(−1, −(d

2
+ 2))) = 0, d

2
≥ 1, (5.6)

h1(S
1
,O(d

1
, −(d

2
+ 2))) = 0, d

2
≥ 1, d

1
= 0, 1. (5.7)

The proof of these equalities follows from [23, Proposition 5.3]. Indeed, the invertible sheaves in (5.6)

and (5.7) lie in the regions given by Proposition 3.6 (d
1
≥ 0 and d

2
≥ 0 for δ = 0, and d

1
≥ −1 and d

2
≥ 0

for δ ≥ 1) where foliations with tangent sheaf L = O(−d
1
, −d

2
)may have isolated singularities. They neither

correspond to the ruling O(τ) = O(−δ, 2) nor to the sheaf O(d, 0) associated to a Riccati foliation. Moreover,
none of the invertible sheaves from (5.6) belong to the exceptional cases described in [23, Proposition 5.3 (1)]

which correspond to δ = 0 and O(−a, −b) = O(0, −b). This finishes the proof of (5.6).
Finally, using (2.3), we see that the exceptional cases in [23, Proposition 5.3 (2)] correspond to δ = 1 and

O(−d
1
, −d

2
) = O(n n − 1

2

+ 1, −n) with n ≥ 2. (5.8)

Then it is clear that none of the invertible sheaves in (5.7) has the form (5.8). This proves (5.7) and, in

conclusion, the lemma.

Let [s] ∈ ℙH0(Sδ , ΘSδ ⊗ L∗) be a foliation with isolated singularities and singular scheme Z with sheaf of ide-
als IZ . In viewof Corollary 4.2, there exist other foliations [s󸀠] ∈ Fol(L, Sδ) ≃ ℙH0(Sδ , ΘSδ ⊗ L∗)with the same

singular scheme. We seek for them through the following construction. Consider the bundle E = TSδ ⊗ L∗.
Then for its dual hold

E∗ = (TSδ ⊗ L∗)∗ ≃ T∗Sδ ⊗ L and

2

⋀ E∗ = 2

⋀(T∗Sδ ⊗ L) ≃ 2

⋀(T∗Sδ) ⊗ L⊗2 ≃ KSδ ⊗ L⊗2.
Hence, the Koszul resolution of Z (see [7]) may be written as

0→
2

⋀Ω

1

Sδ ⊗ L
⊗2 ιs󳨀→ Ω

1

Sδ ⊗ L
ιs󳨀→ IZ → 0, (5.9)

where the maps ιs are contraction-by (or evaluation-at) s. The tensor product of (5.9) with ΘSδ ⊗ L∗ gives the
exact sequence

0→ (
2

⋀Ω

1

Sδ) ⊗ ΘSδ ⊗ L
∗ ιs⊗1󳨀󳨀󳨀→ Ω

1

Sδ ⊗ ΘSδ
ιs⊗1󳨀󳨀󳨀→ ΘSδ ⊗ L

∗ ⊗ IZ → 0,

where Ω

1

Sδ ⊗ ΘSδ ≃ HomO(ΘSδ , ΘSδ ). Letting E = L ⊗KSδ , the sequence above may be rewritten as

0→ ΘSδ ⊗ E
ιs⊗1󳨀󳨀󳨀→ HomO(ΘSδ , ΘSδ )

ιs⊗1󳨀󳨀󳨀→ ΘSδ ⊗ L
∗ ⊗ IZ → 0,

with associated long exact sequence given by

0 󳨀󳨀→ H0(Sδ , ΘSδ ⊗ E)
ιs⊗10󳨀󳨀󳨀󳨀→ H0(Sδ , HomO(ΘSδ , ΘSδ ))

ιs⊗10󳨀󳨀󳨀󳨀→ H0(Sδ , ΘSδ ⊗ L∗ ⊗ IZ) δ0󳨀󳨀→
δ0
󳨀󳨀→ H1(Sδ , ΘSδ ⊗ E)

ιs⊗11󳨀󳨀󳨀󳨀→ H1(Sδ , HomO(ΘSδ , ΘSδ ))
ιs⊗11󳨀󳨀󳨀󳨀→ H1(Sδ , ΘSδ ⊗ L∗ ⊗ IZ) δ1󳨀󳨀→ ⋅ ⋅ ⋅ . (5.10)

Finally, notice that H0(Sδ , ΘSδ ⊗ L∗ ⊗ IZ) consists of those global sections in H0(Sδ , ΘSδ ⊗ L∗) that vanish at
Z and notice that the effect of the map ιs ⊗ 10 in (5.10) on a global endomorphism Φ is ιs ⊗ 10(Φ) = Φ(s).
Then (5.10) shows that every section s󸀠 that vanishes on Z is of the form s󸀠 = Φ(s) for some endomorphism Φ

if and only if the map ιs ⊗ 10 is surjective, and this is the case if h1(Sδ , ΘSδ ⊗ E) = 0. This conclusion, together
with Lemma 5.1, gives our main result.
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Theorem 5.2. Let F = [s] ∈ Fol(L, Sδ) ≃ ℙH0(Sδ , ΘSδ ⊗ L∗) be a foliation on Sδ, whereL = O(−d1, −d2) satis-
fies that d

2
≥ 1, and d

1
≥ 1 if δ = 0, d

1
≥ 0 if δ = 1, and d

1
≥ 2 if δ ≥ 2.

Assume that [s] has isolated singularities, let Z be its singular scheme and consider any other section
s󸀠 ∈ H0(Sδ , ΘSδ ⊗ L∗) with the same singular scheme Z as [s]. Then there exists a global invertible endomor-
phism Φ of TSδ such that s󸀠 = Φ(s). Moreover, if the affine 1-form

Ω = A
0
dX

0
+ A

1
dX

1
+ B

0
dY

0
+ B

1
dY

1

represents the section s, then any section s󸀠 = Φ(s) is represented by an affine 1-form Ω

󸀠 where
Ω

󸀠 = {{{{{{
{

a ⋅ (A
0
dX

0
+ A

1
dX

1
) + d ⋅ (B

0
dY

0
+ B

1
dY

1
), a, d ∈ ℂ∗, if δ = 0,

a ⋅ Ω, a ∈ ℂ∗, if δ = 1,
a ⋅ Ω − Y

1
C(X

1
, X

2
)B

0
⋅ (X

1
dX

0
− X

0
dX

1
), a ∈ ℂ∗, C ∈ H0(ℙ1,Oℙ1 (δ − 2)), if δ ≥ 2. (5.11)

It follows in particular that if δ = 1, then F = [s] is uniquely determined by Z, in the sense that F is the unique
foliation with singular scheme Z.

Proof. The first statement follows from Lemma 5.1 and the construction described after its proof. The sec-

ond statement (the one containing (5.11)) follows from Corollary 4.2, and the last one from the second line

in (5.11).
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