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Quantum dynamics of a Bose polaron in a d-dimensional Bose-Einstein condensate
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We study the quantum motion of an impurity atom immersed in a Bose-Einstein condensate in arbitrary
dimensions. It was shown, for all dimensions, that the Bogoliubov excitations of the Bose-Einstein condensate
act as a bosonic bath for the impurity, where linear coupling is possible for a certain regime of validity, which
was assessed only in one dimension. Here we present the detailed derivation of the d-dimensional Langevin
equations that describe the quantum dynamics of the system, and of the associated generalized tensor that
describes the spectral density in the full generality, and assesses the linear assumption in all dimensions. As
results, we obtain, when the impurity is not trapped, the mean square displacement in all dimensions, showing
that the motion is superdiffusive. We obtain also explicit expressions for the superdiffusive coefficient in the
small and large temperature limits. We find that, in the latter case, the maximal value of this coefficient is the
same in all dimensions, but is only reachable in one dimension, within the validity of the assumptions. We study
also the behavior of the average energy and compare the results for various dimensions. In the trapped case, we
study squeezing and find that the stronger position squeezing can be obtained in lower dimensions. We quantify
the non-Markovianity of the particle’s motion and find that it increases with dimensionality.
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I. INTRODUCTION

The concept of a quasiparticle plays a fundamental role in
physics, allowing to greatly simplify the description of numer-
ous complex phenomena. A paradigmatic classical problem,
in which quasiparticles appear, is the study of an electron
interacting with a surrounding dielectric crystal. Its dynam-
ics can be approximated by a much simpler dynamics of
an electron with a different mass, called polaron, traveling
through free space. This classical theory (see historical note
in Ref. [1]) keeps inspiring new developments in physics. In
particular, it plays an important role in the recent studies of the
Bose polaron—the quasiparticle associated with an impurity
immersed in a Bose-Einstein condensate (BEC).

Bose polarons were investigated in diverse experiments
on impurities immersed in bosonic gases. To begin with, the
quantum dynamics of impurities in Bose gases were examined
in Refs. [2,3], while technical aspects of experiments with
Cs impurities were studied in Ref. [4]. The phononic Lamb
shift in the context of ultracold bosons was observed in [5].
In addition, in these first experiments, charged, ionic or fixed
impurities and their dynamics were studied: a quantum spin of
a localized neutral impurity [6], fermions in a Bose gas [7,8],
ions embedded in a BEC [9,10]. Quantum dynamics of spin

impurities and fermions immersed in a Bose gas in an optical
lattice were studied in Refs. [11,12]. More recent experiments
define the state-of-the-art of the field: in [13] existence of
a well-defined quasiparticle state of an impurity interacting
with a BEC was demonstrated, while in [14] the strong in-
teracting regime, which is natural for polaron problems, was
investigated. In [15], a Bose polaron was studied near criti-
cality, which provided important insights into the physics of
quasiparticles in the vicinity of quantum critical points, that
are otherwise much more difficult to study in other physical
systems.

The polaron theory was first developed in the strong cou-
pling limit, and later extended to the intermediate and weakly
interacting regimes. In the context of the Bose polaron prob-
lem, a large part of the theoretical effort deals with the weak
regime, described by the so called Fröhlich Hamiltonian.
This theoretical approach studies effective mass, quantum
dynamics, [16–22], collision dynamics [23], the behavior in
a d-dimensional BEC near the critical temperature [24], par-
ticularly in two dimensions [24,25], and related aspects of
the system. Some studies in the weak regime considered the
impurity as a quantum Brownian particle in a BEC or in a
so called Luttinger liquid [26–30]. In a beautiful series of
papers [31–36], this approach was used to study friction of
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a initially moving heavy particle in a dense noninteracting
BEC, which is decelerated by emission of gapless modes into
the condensate (Cerenkov radiation) and eventually comes
to rest for ideal bosons, or performs a ballistic motion for
weakly interacting ones. Importantly, Monte Carlo studies, in
some instances beyond the regime of validity of the Fröchlich
Hamiltonian, allow to benchmark the aforementioned theoret-
ical results [37–40]. Other works focused on the intermediate
and strong coupling regimes [41–49], and on the nonzero
temperature systems [50–53].

Yet other works studied the quenched dynamics, prether-
malization, critical slow-down, and orthogonality catastrophe
using the multiconfiguration time-dependent Hartree method,
both in weak and strong interaction regimes [54–58]. Also,
several papers investigated ejection and injection spec-
troscopy related to Bose polarons and the orthogonality
catastrophe [59,60], as well as bound states [61–64]. A num-
ber of notable works study two polarons immersed in a BEC
(Bose bipolaron) [65,66] and the problem of an impurity in
a two-component BEC [67,68]. There has recently been a re-
newed interest in the polaron problem in mathematical physics
literature. See, in particular, Refs. [48,69,70]. Finally a series
of papers deal with applications of Bose polarons in quantum
thermometry [71–74] and thermodynamics [75–77].

In the present paper, we offer the detailed derivation of the
open quantum systems approach to the Bose-polaron prob-
lem in arbitrary dimensions. We then take advantage of the
obtained theoretical framework to get new insight into dif-
ferent aspects of the dynamics of an impurity immersed in a
d-dimensional BEC and its relationship with dimensionality.

The study of the Bose polaron from the open quantum
system perspective requires a first step in which the Hamil-
tonian of the system is put in the form of a Caldeira-Legget
Hamiltonian, where the system is the impurity, the Bogoli-
ubov excitations of the BEC play the role of the environment,
and there is a coupling term between impurity and this en-
vironment. Some of us did such derivation in Ref. [26] for
an homogeneous one-dimensional system and in Ref. [27]
for an inhomogeneous (trapped) system. In both cases, the
coupling term in the initial Hamiltonian was nonlinear, which
would lead to quantum stochastic equations with inhomoge-
neous damping and multiplicative noise. This is not always
tractable in the case of non-Ohmic spectral densities [78–80],
presenting a challenge for mathematical physics. The recipe
used in both cases was to linearize this coupling term and
subsequently to establish the regimes of validity in which this
assumption holds. For the trapped case, a second source of
inhomogeneity was the trap itself, which required a further
assumption, i.e. to assume that the impurity was close to the
center of the BEC all over the dynamics. A second step is
to derive the spectral density: this arises directly from the
Bogoliubov energy spectra and the assumption that the envi-
ronment is large, and its state at finite temperature T follows
bose statistics.

The research in Ref. [26] followed a full characterization
of the one-dimensional homogeneous case, but was far from
complete in two and three dimensions. While the derivation
of the Hamiltonian in the form of Caldeira-Legget’s one was
done, the derivation of the equations of motion was only per-
formed in one-dimension. Moreover, while the assumption of

linearity of the interaction term was done in every dimension,
it was only assessed in one-dimension. Also, other assump-
tions, like the limit on the strength on interactions in two and
three dimensions was not discussed. The second step, i.e., to
derive the spectral density was performed in all dimensions in
Ref. [26], but, as we show in the present work, its derivation
requires a more systematic treatment of all parameters in two
and three dimensions. As most experiments take place in two
and three dimensions, a need to treat carefully these aspects
is evident. Particularly, (1) to offer a detailed derivation of
the quantum Langevin equations in all dimensions (which
is absent in previous works), (2) a detailed derivation of the
generalized d-dimensional spectral density, and (3) a numer-
ical assessment of the linear assumption in two and three
dimensions in every numerical example. In the present paper,
we detail these questions, assessing that the limits established
by the assumptions are fulfilled in all dimensions.

Once set the theoretical framework, several aspects of
interest are reachable via solving the quantum Langevin equa-
tions. Some of these questions are, when the impurity is not
trapped: (1) to characterize the out-of-equilibrium long-term
behavior of the impurity. It includes both to characterize the
kind of anomalous diffusion and to derive the diffusion co-
efficient. (2) To study the behavior of the variance of the
momentum, and therefore of the energy. When the impurity
is trapped, the questions are (3) to characterize the stationary
state, by means of its covariance matrix, (4) to quantify the
position squeezing as a function of the parameters, and (5)
to quantify non-Markovianity, as the system shows mem-
ory effects. These aspects were treated for one-dimension
in Ref. [26] for homogeneous and in Ref. [27] for inho-
mogeneous systems. In the present work, we complete the
study in 2D and 3D, but particularly we add results valid
in all dimensions. For the untrapped case, we obtain (1) ex-
plicit expressions of the diffusion coefficients in low- and
high-temperature limits, showing that this coefficient has a
maximum as a function of the impurity-boson coupling, and
that this maximal value is equal in all dimensions; further-
more, that the maximum is reached for values that fulfill
the assumptions only in one dimension; (2) we also offer
expressions of the average energy in all dimensions; for large
temperature limits, we find its expressions. In the large tem-
perature limit, it has a maximum for certain values of the
impurity-boson coupling; at this value, and in all dimen-
sions, equipartition theorem is fulfilled. On the other hand,
in the small temperature limit, the maximum average en-
ergy is shown to be explicitly dependent on the dimension
involved. (3) We discuss in detail the mass renomalization
of the Bose-polaron, and compare with existing results and
among dimensions. For the trapped case, we obtain (1) posi-
tion and momentum stationary variances, and show that the
position variance is connected to the imaginary part of the
susceptibility in the corresponding dimension. (2) We also
evaluate position squeezing in all dimensions. We argue that
position squeezing is larger at smaller dimensions. Finally, we
evaluate non-Markovianity in all dimensions, and justify that
it increases with interactions and dimensionality.

The paper is organized as follows. In Sec. II, we present
the assumptions and derivations that permit to obtain the (lin-
earized) quantum Brownian motion Hamiltonian [cf. Eq. (20)]
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from the initial second quantized one. In Sec. III, we obtain
the generalized d-dimensional spectral density. We study, in
all dimensions, the quantum dynamics in the nontrapped and
trapped case in Sec. IV, and non-Markovianity in Sec. V. We
finally conclude in Sec. VI. In Appendices A and B, we in-
clude the detailed derivation of the generalized d-dimensional
spectral density and vectorial quantum Langevin equations,
as they are per se important results of this paper. In Ap-
pendix C, we present the expressions for the position and
momentum variances of the generalized Langevin equations.
In Appendix D, we discuss the validity of our approximations.
Finally, in Appendix E, we enlighten about the frequency
cutoff used in our analysis.

II. HAMILTONIAN AND BOGOLIUBOV MODES−
We start by considering an impurity atom with mass mI

immersed in a d-dimensional ultracold gas of N bosons. The
interaction between the bosons occurs through the scattering
potential VB(r). We denote by �(r) (�†(r)) the annihila-
tion (creation) field operator of the atoms at the position
r, which fulfills canonical bosonic commutation relations
[�(r), �†(r)] = δ(r − r′). The bosonic density therefore
takes the form nB = �†(r)�(r). The total Hamiltonian is
given by

H = HI + HB + HBB + HIB. (1)

Here, the four terms represent the Hamiltonians of the impu-
rity being kept in an external potential Uext (r), bosons in a
potential Vext (r), the boson-boson atomic interaction and the
impurity-boson atomic interaction, respectively. Within the
second quantization formalism, their explicit forms are [26]

HI = P2

2mI
+ Uext (r), (2)

HB =
∫

dd r �†(r)

(
P2

B

2mB
+ Vext (r)

)
�(r) =

∑
k

εka†
kak,

(3)

HBB = gB

∫
dd r �†(r)�†(r)�(r)�(r)

= 1

2V

∑
k,k′,q

VB(q)a†
k′−qa†

k+qak′ak, (4)

HIB = gIBnB = 1

V

∑
k,q

VIBρI(q)a†
k−qak. (5)

In the above expressions, Vext (r) denotes the external potential
experienced by the Bosons which are contained in a (box
of) volume V of the hyperspace. From now on, we assume
a homogenous BEC, that is, Vext (r) = 0 along the direction of
the impurity motion. For the impurity, the external potential
is Uext (r), and we will study two cases: a free or a paraboli-
cally trapped impurity. The bosonic operators ak(a†

k ) destroy
(create) a boson of mass mB having wave vector k and energy
εk = (h̄k)2/(2mB) − μ, measured from its chemical potential
μ. In addition, the quantities VB and VIB represent the Fourier
transform Fq[.] of the impulsive (contact) boson-boson and

impurity-boson interactions respectively. Their explicit ex-
pressions are

VB(q) = gBFq[δ(r − r′)], (6)

VIB(q) = gIBFq[δ(r − r′)]. (7)

Here, the respective coupling strengths are gB and gIB. They
are mainly determined by the corresponding scattering lengths
and densities [81,82] and their explicit expressions will be
given later. We assume that the impurity density is low
enough, which allows us to neglect the terms describing the
interaction between impurities. The (dimensionless) density
of the impurity in the momentum space is given by

ρI(q) =
∫ ∞

−∞
dr′ e−iq·r′

δ(r′ − r). (8)

Next, for the sake of completeness, we review how to
construct the Fröhlich Hamiltonian, which describes the linear
interaction between the motional position quadrature of the
impurity and the Bogoliubov bosonic modes of BEC. The goal
is to show that such linear regime allows us to model the
impurity as a quantum Brownian particle which experiences
an effective environment formed by the Bogoliubov bosonic
modes of the BEC (as derived in [26]).

Given that the Hamiltonian of the Bosonic interaction is not
in bilinear form, we linearize it and replace the creation and
annihilation operators by their average values

√
N0. Below a

critical temperature, the atoms mainly occupy the ground state
forming a BEC, however, we neglect terms proportional to Nk
(k �= 0), i.e., the number of particles out of the ground state.
In order to diagonalize the bath modes, we further apply the
following Bogoliubov transformation

ak = ukbk − vkb†
−k , a−k = ukb−k − vkb†

k. (9)

The transformation coefficients are

u2
k = 1

2

(εk + n0VB

Ek
+ 1

)
, (10)

v2
k = 1

2

(εk + n0VB

Ek
− 1

)
, (11)

where n0 is the (constant) density of particles in the ground
state of the homogeneous gas and the Bogoliubov energy
spectrum is given by

Ek = h̄ωk = h̄c|k|
√

1 + 1

2
(ξk)2, (12)

with

ξ = h̄√
2gBmBn0

, c =
√

gBn0

mB
= h̄√

2mBξ
, (13)

representing the coherence length and the speed of sound,
respectively. The effective bath Hamiltonian under such trans-
formation reads [81]

HB + HBB =
∑
k �=0

Ekb†
kbk. (14)

Here, we have neglected the nonoperator terms which simply
shift the energy level of the atoms in BEC. We approximate
the bosons-impurity interaction in a similar way. Further, we
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only keep the terms proportional to
√

N0, where the macro-
scopic occupation of the condensate holds as expressed by the
condition Ni �=0 � N0. By discarding the terms which might
cause nonphysical instabilities and those bilinear in

√
N0, we

obtain the Hamiltonian

HIB = n0VIB +
√

n0

V

∑
k �=0

ρ(k)VIB(ak + a†
k ). (15)

The first term represents simply the constant mean field en-
ergy and provides the shift of the energy of polaron. For the
purposes here, it can be neglected. By further invoking the
transformation from Eq. (9) into Eq. (15), one gets

HIB =
√

n0

V

∑
k �=0

ρ(k)VIB(uk − vk )(bk + b†
−k )

=
√

n0

V

∑
k �=0

ρ(k)VIB

√
εk

Ek
(bk + b†

−k ), (16)

where once again we have discarded the nonoperator terms.
Since the density is dependent on the position of the impurity,
we insert its expression into Eq. (16), which results in the
interaction between impurity position and bath variables given
by

HIB =
∑
k �=0

Vkeik·r(bk + b†
−k ). (17)

Importantly, Vk contains the impurity-Boson coupling coeffi-
cient, and takes the form

Vk = gIB

√
n0

V

[
(ξk)2

(ξk)2 + 2

] 1
4

. (18)

The interaction in the Eq. (17) is the interaction part of the
Fröhlich Hamiltonian. Under the assumption that one restricts
the calculation to the limit k · r � 1, the interaction reads

HIB =
∑
k �=0

Vk(1 + ik · r)(bk + b†
−k ). (19)

We further simplify it by redefining the Bogoliubov modes
operator bk → bk − vk/Ek1, to absorb terms proportional to
identity operator. After all these simplifications, the final form
of the Hamiltonian of the impurity in a BEC reads

H = HI +
∑
k �=0

Ekb†
kbk +

∑
k �=0

h̄gk · r πk, (20)

with

gk = kVk/h̄ , πk = i(bk − b†
k ). (21)

The Hamiltonian in Eq. (20) describes a linear interaction
between the impurity center of mass motion and a bath of
the Bogoliubov modes of a BEC. It thus has a form of the
Quantum Brownian Motion (QBM) Hamiltonian, in which the
impurity plays the role of a Brownian particle while the modes
of BEC act as an effective Bosonic environment as represented
by its (dimensionless) momenta πk.

III. d-DIMENSIONAL SPECTRAL DENSITY

The Hamiltonian derived in the previous section allows us
to study the quantum dynamics of an impurity, taking advan-
tage of the analogy with the QBM model. To characterize the
bath, we write its self-correlation function as

C(τ ) =
∑
k �=0

h̄gk〈πk(τ )πk(0)〉. (22)

Here, gk = gk gk
T is the coupling tensor. The environment is

made of bosons whose state at finite temperature T follows
the Bose-Einstein statistics. Therefore the mean number of
bosons in each of the modes reads

〈b†
kbk〉 = 1

exp(h̄ωk/kBT ) − 1
. (23)

In order to calculate the correlation, we invoke the expression
for the dimensionless momenta and make use of Eqs. (23)
and (22) which results in

C(τ ) =
∑
k �=0

h̄gk

[
coth

(
h̄ωk

2kBT

)
cos(ωkτ ) − i sin(ωkτ )

]

≡ ν(τ ) − iλ(τ ), (24)

where the real and imaginary parts of the self-correlation
function are given by

ν(τ ) =
∫ ∞

0
J (ω) coth

(
h̄ω

2kBT

)
cos(ωτ )dω, (25)

λ(τ ) =
∫ ∞

0
J (ω) sin(ωτ )dω = −mI�̇(τ ). (26)

Moreover, the damping kernel �(t ) can be obtained from

�(t ) = (1/mI )
∫ ∞

0
dω(1/ω)J (ω) cos(ωt ). (27)

In the above expressions, we have introduced the spectral
density J (ω), which fully characterizes the effects of the bath
on the system. This information is contained in the coupling
strengths of the various modes of the bath with the system.
The spectral density is defined as

J (ω) =
∑
k �=0

h̄gkδ(ω − ωk ). (28)

In the present case, the couplings of the impurity (system) and
bosons (bath) interaction can be derived from first principles.
It is therefore possible to obtain the exact expression for the
spectral density. This scenario is in contrast to various com-
plicated system-bath interactions, where it is hard to get an
exact form of the spectral densities, such as in bulk mechan-
ical structure akin to optomechanical setup [83–85]. While
the case of spectral density in 1d has been studied in [26],
here we derive it systematically in d = {1, 2, 3} dimensions
of the quasi momentum space. In Appendix A, we derive the
expression for the spectral density tensor, which is given by

Jd(ω) = d−1[Jd(ω)]I d×d, (29)
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where I d×d is the identity matrix and the scalar function
Jd(ω) in d dimensions is given by

Jd(ω) =
(

Sd(
√

2)d (ηd )2(�d )d+2

(2π )d

)

×

⎛
⎜⎜⎜⎜⎜⎝

[(
mB

[gB,d]

[
d

d+2

]
n0,d

)(√
ω2

(�d )2 + 1 − 1

)](
d+2

2

)
(√

ω2

(�d )2 + 1

)
⎞
⎟⎟⎟⎟⎟⎠.

(30)

For d = 1, 2, and 3 we have S1 = 2, S2 = 2π, and S3 =
4π, respectively. Moreover, we have defined the d− depen-
dent characteristic frequency �d = (gB,dn0,d )/h̄ because the
boson-boson coupling and the density differ in various di-
mensions. We also write the impurity-boson coupling in the
units of the boson-boson coupling as ηd = (gIB,d/gB,d ). Such
characterization allows us to study the long-time dynamics
of the impurity in the following sense: one can identify two
opposite limits in the above expression, i.e., ω � �d and
ω � �d in which �d appears naturally as the characteristic
cutoff frequency which distinguishes between the low and the
high frequencies of the bath. The low-frequency behavior is
attributed to the linear part of the Bogoliubov spectrum [26].
From the Tauberian theorem [86], one can obtain the long-
time behavior of a function which is determined by the low
frequency response of its Laplace transform. The above low-
frequency choice is therefore a natural way of studying the
dynamics perturbed by the bath that acts beyond the very
short transient regime. Note that, for d = 1, the above expres-
sion reduces to the one dimensional spectral density used in
Ref. [26]. To the lowest order of ω/�d, the expression for the
spectral density with the low frequency response of the bath
is given by

Jd(ω) � Sd(ηd )2

2(2π )d

(
mB

[gB,d][
d

d+2 ]n0,d

)(
d+2

2

)
× ωd+2. (31)

This expression gives the scaling of the frequency for the
spectral density function in all dimensions. We point out that
due to the spherical symmetry of the bath, the spectral density
tensor is a diagonal matrix. As a consequence, the noise and
damping kernels given by Eqs. (25) and (27) are also diagonal.
We now give further details about the other parameters in-
volved. In dimension d , the coupling constant gB,d and boson
density n0,d have the form

gB,d = Sd h̄2a3

mB(
√

h̄/mBωd )3−d
, n0,d = (n0,1)d , (32)

their units being J md and m−d , respectively. Here we have
written these expressions in terms of the three-dimensional
scattering length a3 and one-dimensional density n0,1. We
have further assumed transverse confinement of the boson gas
with a harmonic trap having a Gaussian ground state [87],
which makes the cases d < 3 to be the quasi-one- and two-
dimensional. We emphasize that the parabolic potential is
introduced only in the direction transverse to the direction un-
der investigation. The dynamics we study is thus still confined

to a box potential, making the homogeneity of Boson gas to be
a valid approximation. Moreover, the zero point fluctuations
of the condensate are characterized by the trapped frequen-
cies ωd = {ω1 = ω⊥, ω2 = ωz, ω3 = 0}. For instance, when
we consider one-, two- and three-dimensional condensate to
be confined in the x direction, in the x-y plane or in the volume
x-y-z, respectively, the explicit form of the potential may be
given by

Vext (r) =

⎧⎪⎨
⎪⎩

(1/2)mBω2
⊥(y2 + z2), for d = 1

(1/2)mBω2
z (z2), for d = 2

0 , for d = 3

. (33)

Note that for d = 3, there is no parabolic confinement and
therefore the expressions are independent of the trapping fre-
quency. It is then possible to define a characteristic time τd

which is raised to the power d in the expression for the spectral
function, which is given by

Jd(ω) = mI(τd )dωd+2, where

(τd )d ≡ Sd(ηd )2

2(2π )d mI

(
mB

[gB,d][
d

d+2 ]n0,d

)( d+2
2 )

. (34)

It is evident that the spectral density has a super-Ohmic de-
pendence on the frequency in all dimensions. It is therefore
expected that the bosonic bath would induce a non-Markovian
dynamics of the impurity [85]. Moreover, it can be shown
that the increasing nature of the spectral density makes cer-
tain quantities, such as momentum dispersion, diverge. It is
therefore customary to define the ultraviolet cutoff K(ω,�d )
in order to suppress the contribution of high frequencies [26].
After this, the expression for the spectral density reads

Jd(ω) = mI(τd )dωd+2K(ω,�d ). (35)

In the following, we study the impurity dynamics, varying the
dimension and d-dependent cutoff function in the expression
of the spectral density.

IV. DYNAMICS AND CONTROL

To study the quantum dynamics of the impurity
atom, we write down the equations of motion in the
Heisenberg picture. The impurity, which is immersed in
a bath of dimension d , is further trapped by a harmonic
potential. In dimensions 1, 2, and 3, the potential is
Uext (x) = (1/2)mI�

2(x2), Uext (x, y) = (1/2)mI�
2(x2 + y2),

and Uext (x, y, z) = (1/2)mI�
2(x2 + y2 + z2), respectively.

Here, we have assumed equal trapping frequency in all the
directions available to the impurity dynamics. The free QBM
is therefore characterized by setting � = 0 in all the cases.
We write the equation of motion in vectorial form as

Ẋ (t ) = i

h̄
[H, X (t )] = Ṗ(t )

mI
, (36)

Ṗ(t ) = i

h̄
[H, P(t )] = −mI�

2Ẋ (t ) − h̄
∑

k

gkπk (t ), (37)

ḃk (t ) = i

h̄
[H, bk (t )] = −iωkbk (t ) − gk

T X (t ), (38)

ḃ†
k (t ) = i

h̄

[
H, b†

k (t )
] = −iωkb†

k (t ) − gk
T X (t ). (39)

023303-5



M. MISKEEN KHAN et al. PHYSICAL REVIEW A 103, 023303 (2021)

Here H represents the Hamiltonian of the system given by
Eq. (20). In general, the dimension of the vectors in the above
equations is d , the dimension of the bath. In Appendix B, we
combined these equations to obtain an equation of motion for
the impurity position vector:

Ẍ (t ) + �2X (t ) + ∂t

∫ t

0
�(t − s)X (s)ds

= (1/mI )B(t ). (40)

Here, the quantum Brownian stochastic force B(t ) stands for

B(t ) =
∑

k

ih̄gk (b†
keiωkt − bke−iωkt ). (41)

In any given dimension, the diagonal damping kernel when
equal weighting for all the directions is taken, will suffice
to study the motion along any one of the coordinate axis.
However for different dimensions, the spectral density will
bring different level of super-Ohmicity, as stated by Eq. (35).
Therefore the form of the noise and damping kernels will also
differ according to the dimension involved. As a result, the
impurity motion is different for different dimensions, despite
being studied along one particular coordinate axis. One can
then aim to study such a motion by constructing a unit vector
(1, 0, 0) (i.e., along the x direction) and taking dot product
with Eq. (40). This results in

ẍ(t ) + �2x(t ) + ∂t

∫ t

0
�xx

d (t − s)x(s)ds =
(

1

mI

)
Bx(t ).

(42)

Note that the tensor components satisfy �
xy
d = �xz

d = 0. Inter-
estingly, this kind of linear quantum Langevin-like equations
are quite general, and appear in various physical systems (see,
for instance, Ref. [88], where the variable is the population
imbalance in a double well). Of course, the entire physics is
hidden is the concrete form of the noise and damping kernels
[whose properties are determined by both the spectral function
and the state of the bath, Eqs. (25) and (27)]. Additionally,
from the structure of the integral term in the Eq. (42), it is
obvious that damping kernel is nonlocal in time. This implies
that the dynamics of the impurity depends on its history.
Therefore, in general the impurity motion displays memory
effects. Only in the case of Ohmic spectral density (linear
function of ω) the memory damping kernel reduces to a Dirac
delta function and describes the time-local dynamics of the
standard damped harmonic oscillator. The time local behav-
ior is violated in similar experimental configuration [85] and
surge of non-Markovianity is addressed elsewhere [89–91].
The formal solution to Langevin-like Eq. (42) takes the form

x(t ) = G1,d(t )x(0) + G2,d(t )ẋ(0) + (1/mI )
∫ t

0
ds

× G2,d(t − s)Bx(s), (43)

where the Green’s functions G1,d and G2,d are defined in terms
of their Laplace transforms

LS,d[G1,d(t )] = S
S2 + �2 + SLS,d[�xx

d (t )]
, (44)

LS,d[G2,d(t )] = 1

S2 + �2 + SLS,d[�xx
d (t )]

. (45)

Moreover, they satisfy the following initial conditions

G1,d(0) = 1, Ġ1,d(0) = 0, (46)

G2,d(0) = 0, Ġ2,d(0) = 1. (47)

From now on, the dynamics in the case when high fre-
quencies are suppressed, will be analyzed by introducing a
sharp cutoff. The latter is given by K = �(�d − ω), where
� is the Heaviside step function. The chosen sharp cutoff
function, at one hand, allows to restrict the analysis strictly
within the linear part of the Bogoliubov dispersion relation
and it covers the frequency spectrum for the linear interaction
we have considered (see Appendix E for further details). On
the other hand, it makes the following calculations convenient
to deal with. Note that it has been shown previously that the
dynamics under investigation is independent of the type of
cutoff function [26]. We further use Eq. (27) to compute the
damping kernel in any dimension d

LS,d[�xx
d (t )] = (�d )d+2(τd )d

2F1
(
1, d+2

2 ; d+4
2 ; − (�d )2

S2

)
d (d + 2)S ,

(48)

with 2F
1

[.] denoting the hypergeometric function.

A. Untrapped case

Let us first study the free QBM, that is the untrapped
case � = 0. The quantities of interest in this case are the
mean squared displacement MSDd(t ) (see definition below,
Eq. (53)) and the average kinetic energy Ed(t ) of the impurity.
The motion is fully characterized by the functions G1(t ) and
G2(t ) which are the inverse Laplace transform of Eqs. (44)
and (45), respectively. Exact analytical expressions for these
functions are hard to obtain. Note however, that the Laplace
transform of both of these functions are expressed in terms of
the Laplace transform of the damping kernel. In the regime
of interest |S| � �d, which characterizes the low frequency
response, we have approximately

LS,d[�xx
d (t )] = d−2(�dτd )dS. (49)

We therefore obtain the asymptotic expressions for the
Laplace transforms of the position and momentum propaga-
tors

LS,d[G1,d(t )] = 1

αdS
and LS [G2,d(t )] = 1

αdS2
, (50)

where αd = 1 + d−2(�dτd )d . Their time domain representa-
tions read

G1,d(t ) = 1/αd , G2,d(t ) = t/(αd ). (51)

We note that such expressions do not satisfy the boundary con-
ditions stated in Eqs. (46) and (47). However, this is justified
since the above solution refers to long-time behavior. Several
algorithms exist for the numerical computation of the inverse
Laplace transform of an arbitrary function. Here we employ
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FIG. 1. Dynamics of the propagator G2(t ) in the untrapped case
for various dimensions. The solution obtained by the Zakian method
is indicated with the hollow geometrical shapes with guiding legend
(only in this case) shown in the inset of the figure. Moreover, the
corresponding (i.e., with the same parameter and the dimension)
asymptotic behaviors given by Eq. (51), which all are purely lin-
ear functions, are shown- with red solid line, black dotted line,
and the orange dashed dotted line representing the d = 1, 2, and
3 cases, respectively. In the long-time limit, both solutions match
for all dimensions. The results refer to an impurity K with mass
mI = 6.4924249 × 10−26 kg, immersed in a gas of Rb with mass
mB = 1.4192261 × 10−25 kg. The one-dimensional boson density
is n0,1 = 7 μm−1. We fix the three-dimensional scattering length
a3 = 100 a0, where a0 is the Bohr radius. Here, the time axis is scaled
with the one-dimensional characteristic frequency ω0 ≡ (h̄n2

0,1/mI ).

the Zakian method [92] to compute the inverse Laplace trans-
form of Eqs. (44) and (45). This method approximates the
inverse Laplace transform f (t ) of a function F (S ) through

f (t ) � 2

t

N∑
j=1

Re[k jF (� j/t )], (52)

with the values of the complex parameters k j and � j given
in Ref. [92]. In order to check the equivalence between the
asymptotic form of G2(t ) and its Zakian approximation, we
plot both in Fig. 1. It turns out that they agree in the long-time
limit. From here on we will be employing them interchange-
ably according to our computational convenience. It is evident
from Eq. (43) that the function G2(t ) is responsible for the
propagation of the initial velocity of the impurity. From the
results shown in Fig. 1, such a function follows a ballistic
profile in any dimension, i.e., it is a linear function of time.

1. Mean square displacement

In this section, we discuss the mean squared displacement
(MSD) of the impurity motion which is a measurable quantity
in cold-atom experiments [2]. The MSD is defined as

MSDx,d(t ) = 〈[x(t ) − x(0)]2〉. (53)

The expression of the MSD for the generalized Heisenberg-
Langevin equations is given in the Appendix C. For the system
at hand, we employ the asymptotic expressions of the Green’s
functions to evaluate the MSD in different dimensions. Its

dynamical part is given by

MSDx,d(t ) =
( t

αd

)2

〈ẋ(0)2〉 + 1

2(αdmI )2

∫ t

0
du

∫ t

0
dv

× (t − u)(t − v)〈{Bx(u), Bx(v)}〉. (54)

Additionally, using the diagonal form of the noise tensor given
in Eq. (25), one can obtain the relation between the correlation
characterized by the positive commutator 〈{Bx(u), Bx(v)}〉
and the component νxx(t ) of the noise kernel (fluctuation-
dissipation relation) [28]. Explicitly,

〈{Bx(u), Bx(v)}〉 = 2h̄νxx(u − v). (55)

Substituting the d-dimensional spectral function with a sharp
cutoff into the noise component we get

MSDx,d(t ) =
( t

αd

)2

〈ẋ(0)2〉 + h̄ d−1(τd )d

mI(αd )2

∫ t

0
du

∫ t

0
dv

×
∫ �d

0
dω(t − u)(t − v) coth

×
(

h̄ω

2kBT

)
cos [ω(u − v)]ωd+2. (56)

By performing the two-dimensional integration over the time
variables u and v, followed by an integration over the variable
ω, we evaluate the expression for the low-temperature regime,
where coth (h̄ω/2kBT ) → 1 holds. In the long-time limit, the
resulting expression for the MSD is dominated by the terms
proportional to t2 and its explicit expression turns out to be

MSDLT
x,d(t ) =

[
〈ẋ(0)2〉 + h̄(τd )d (�d )d+1

mId (d + 1)

]( t

αd

)2

. (57)

In the regime which fulfills the conditions stated above, the
MSD is proportional to the square of the time for all dimen-
sions. In the normal diffusion scenario, the MSD shows a
linear dependence on time. If, on the contrary, the MSD is
nonlinear in time, proportional to tα with an exponent higher
than one, the diffusion is called anomalous and the motion
is called superdiffusive. In the present case, superdiffusion is
a consequence of the super-Ohmic spectral density in every
dimension. The coefficient in the second term is called the
superdiffusion coefficient Dx,d and can be interpreted as the
average of the square of the speed with which the impurity
runs away. We thus have

DLT
x,d = h̄(τd )d (�d )d+1

mId (d + 1)(αd )2 . (58)

One can perform a similar analysis of the high-
temperature regime, which is followed by the approximation
coth (h̄ω/2kBT ) → (2kBT/h̄ω). We remark that the condi-
tion kBT � Max[h̄�d] implies the high-temperature regime
in any dimension. Here Max[.] is the maximum of the cutoff
frequencies of different dimensions. This means that all the
Bogoliubov modes of the bath will be thermally populated in
any of the considered dimensions. However, while the cut-
off frequency in dimension d scales as �d ∼ (n0,1)d , it also
depends on the boson coupling constant in the correspond-
ing dimension and therefore on the transverse confinement
of the boson gas [cf. Eq. (32)]. Inserting the values of the
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FIG. 2. High-temperature superdiffusion coefficient in various
dimensions as a function of the coupling strength. The solid, dashed
and dotted curves represent the d = 1, 2, and d = 3 cases, re-
spectively. We set temperature T = 0.15 μK, which fulfills the
high-temperature condition kBT � Max[h̄�d] (see text). The rest of
the parameters are the same as in Fig. 1. The vertical solid, dashed
and dotted lines fix the critical coupling for the Fröhlich Hamiltonian
to be valid in one, two and three dimensions, respectively.

parameters used in this article, we obtain �2 > �3 > �1. The
high-temperature regime holds as long as kBT � h̄�2. In this
regime, the MSD again scales with the square of the time.
The dimension-dependent superdiffusion coefficient takes the
form

DHT
x,d = 2kBT (τd )d (�d )d

mId2(αd )2 . (59)

It is clear from this expression that the superdiffusion coeffi-
cient is proportional to the temperature of bath and inversely
proportional to the mass of the impurity.

One can further write the high-temperature superdiffusion
coefficient as an explicit function of the coupling parameter:

DHT
x,d =

[
2kBT

mI

][
βdη

2

(βd )2d−2η4 + 2βdη2 + d2

]
. (60)

Here, we have defined the quantities

βd ≡ (�dτd,s )d where (τd,s )d ≡ η−2(τd )d . (61)

In dimension d , the maximum of this function occurs at

ηmax,d = d√
(�dτd,s )d

(62)

and has the same maximal value in all dimensions:

DHT,max
x,d =

(
1

mI

)(
kBT

2

)
. (63)

In Fig. 2, we plot the high-temperature superdiffusion coeffi-
cient for a range of coupling strengths, covering the allowed
critical coupling in every dimension (see Appendix D for the
validity of the Fröhlich Hamiltonian). In all dimensions, for
sufficiently weak coupling strengths, one observes a corre-
sponding increase of the bath-induced momentum diffusions
of the impurity as the coupling strength increases. However,
above ηmax,d, the superdiffusion coefficient is reduced as the

coupling grows. Such a damped regime occurs only in the
one-dimensional case within the Fröhlich regime, where the
impurity may exert both underdamped and overdamped mo-
tion. (In higher dimensions, the over damped regime occurs
past the vertical line that signals the value of the coupling,
critical for the validity of the Fröhlich Hamiltonian.) We fi-
nally remark that the condition for the occurrence of both of
these characteristic motions within the Fröhlich regime turns
out to be ηmax,d < ηc,d. The latter are the critical couplings of
Fröhlich regime given in Appendix D and correspond to the
vertical lines shown in the Fig. 2.

2. Average energy

We now turn to the average kinetic energy E (t ) of the im-
purity, corresponding to the observed coordinate. This can be
computed from the variance of the corresponding momentum
operator reading

Ex,d(t ) =
〈
p2

x,d(t )
〉

2mI
. (64)

The generalized expression for the variance of the momen-
tum is given in Appendix C. Using the dimension-dependent
asymptotic expressions for G1(t ) and G2(t ) we obtain

Ex,d(t ) =
〈
p2

x,d(0)
〉

2mI(αd )2 + h̄

2mI(αd )2

∫ t

0
du

∫ t

0
dv νxx

d (u − v).

(65)

For any arbitrary temperature, it is difficult to obtain from
here an analytic expression. Here we are mainly interested
in the ultracold regime. This means that all the bath modes
are now in a collective vacuum state. Therefore, in the zero-
temperature limit, the above expression further reduces to

ELT
x,d(t ) = 〈p2(0)〉

2mI(αd )2 + h̄(�d )d+1(τd )d

(αd )2d (d + 1)

+ h̄(�d )d+1(τd )d

(αd )2d (d + 1)

×
(

1F2

(
d

2
+ 1

2
;

1

2
,

d

2
+ 3

2
; −1

4
(�d )2t2

))
.

(66)

Here, the first term represents the initial mean energy of the
impurity determined by its initial momentum variance. Addi-
tionally, there is a rescaling of the mass of the impurity due
to the interaction with the bath. The additional mass term
depends on the dimensionality of the bath through �d and
τd. The second term is the steady state mean energy of the
impurity which is determined by the impurity-bath coupling
and density of the bath, again through the same parameters.
The last term of the expression contains information about
the energy variation in time. We plot the energy function in
Figs. 3(a)–3(c) for different dimensions. In all dimensions,
the energy oscillates in time. This clearly shows the energy
exchange between the system and the bath. Where the energy
increases, it is due to an energy absorbed from the bath. The
back flow of energy is a manifestation of memory effects
in the QBM [93]. Moreover, deep inside the weak coupling
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(a) (c)(b)

FIG. 3. [(a)–(c)] Dynamics of the average energy for 1d , 2d, and 3d , respectively. The coupling strengths are shown in the legend for every
case. The rest of the parameters are kept same as before.

regime, the bath perturbs the system more strongly as the
coupling strength increases. In any dimension, this results in
the higher initial increasing peak for a larger coupling con-
stant. The overall profiles of all the energy functions tend to
approach their asymptotic steady state values.

A similar analysis can be performed for the high-
temperature case, as was done in the previous section for
the MSD. We treat the problem classically, meaning that
the symmetrized noise correlation function [cf. Eq. (55) and
Appendix C] would act as the classical analog in the present
quantum formulation [94]. As for the dynamical part of the
energy expression, the classical regime is further obtained by
requiring the conditions t → ∞, h̄ → 0 and kBT � h̄ω. In
these limits, the energy E cl,ss

x,d becomes

E cl,ss
x,d = 2kBT

[
βdη

2

(βd )2d−2η4 + 2βdη2 + d2

]
. (67)

The above expression is once again maximized at ηmax,d giv-
ing an upper bound to the kinetic energy of the impurity
reading

E cl,ss
x,d,max = kBT/2. (68)

Remarkably, this is the familiar equipartition theorem that
holds in any dimension. It follows from these results that
ηmax,d is the value of the system-bath coupling at which the
impurity reaches thermal equilibrium with the Bogoliubov
bath. It is also possible to calculate the steady state maximum
average kinetic energy in the low-temperature limit. It turns
out that such maximum occurs at the same ηmax,d in the
corresponding dimension, however in contrast to the high-
temperature case, the maximum of kinetic energy is strongly
dependent on the dimension involved. This is given by

ELT,ss
x,d,max = h̄�dd

4(d + 1)
. (69)

These results are explained by the fact that in the high-
temperature case, the bath tends to thermalize the impurity
motion and according to the equipartition theorem, the energy
is equally distributed amongst the various degrees of freedom,
which are offered by the dimension involved. On the other
hand, the ground state quantum properties [i.e., appearance of
the h̄ in Eq. (69)] of the impurity are explicitly dependent on
the dimension and the maximum of the average kinetic energy
of the impurity is followed by a bound which is set by the
cutoff frequency of the Bogoliubov bath.

3. Mass renormalization

In the Bose polaron literature, as for the traditional polaron,
it is central to examine the mass renormalization, i.e. the way
the phonon cloud reduces the impurity mobility can be seen
as an increase in an effective mass. This is also apparent
with the open quantum system approach. Let us define the
renormalized mass as

m∗
I,d = mI ∗ α2

d, (70)

where as usual d stands for dimensions and αd = 1 +
d−2(�dτd )d , was defined below Eq. (50). We identify now that
the mass renormalization appears in many of the expressions
above, e.g., in the diffusion coefficient [see Eqs. (58) and (59)]
or in the first term of the average energy [see Eq. (66)]. Let us
thus analyze the mass renormalization in some detail in the
one and three dimensional cases.

In the 1d case, the present QBM analysis of the Bose-
polaron allows us to get an analytical expression of the inverse
of the renormalized Bose Polaron mass m∗

I,1. We can extract it
from √

mI

m∗
I,1

= 1

α1
, (71)

as it offers the possibility to compare our numerics with
other results from the literature. For example in the work
of Catanti [2], the quantum Langevin equations without the
memory effects have been employed to study the mass renor-
malization theoretically and the results are further linked to
the experiment performed on the Bose-Polaron in the 1d case.
Therein, the theory requires a fitting parameters for the gB,1

in order to satisfy the experimental data. In the present case,
we take into account the memory effects yet only with linear
interaction. In Fig. 4(a), we plot the mass renomalization
against the coupling η in the QBM case along with other’s
results. As shown, the current theoretical results within the
Fröhlich limit satisfy the experimental data of the Catani’s
work comparatively better and without any fitting parameters.
However, excellent agreements with the experimental results
are obtained with a small fitting parameters for the coupling
gB,1. This is shown in the Fig. 4(b). In both the figures, we
also plot the results put forth by other approaches, such as
diffusion Monte Carlo (DMC) (beyond the Fröhlich regime)
and renormalization group (RG) approaches. These are both
demonstrated in Ref. [39].

We now turn towards the 3d case of the mass renational-
ization. This has been extensively discussed in Refs. [18,20].
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FIG. 4. (a): Inverse of the Polaron mass in the 1d case against the
dimensionless coupling η without any fitting parameter. (b): Same as
in (a) but with a fitting parameter given by 0.1gB,1d. We keep the
parameters same as in the work of Catani. The vertical gray dashed
line sets the upper bound for the dimensionless coupling η in the
Fröhlich regime.

In particular, the quantity

m∗
I,3

mI
− 1 (72)

has been accounted for the mass renormalization and it is
analyzed against the coupling constant given by

αc,3 ≡ (aIB,3)2

(aB,3) ξ3
. (73)

Here, the 3d impurity-Boson aIB,3 and Boson-Boson aBB,3 ≡
a3 (i.e., stated before as a3) scattering lengths are respectively
connected to their corresponding couplings via the expres-
sions

gIB,3 = 2π h̄2aIB,3

mR
, gB,3 = 4π h̄2aB,3

mB
, (74)

whereas, mR = mBmI/(mB + mI ) is the reduced mass. We first
evaluate the quantity given by Eq. (72). In terms of the 3d
cutoff frequency �3 and the characteristic time τ3, it reads,

m∗
I,3

mI
− 1 = 2

32
(�3τ3)3 + 1

34
(�3τ3)6. (75)

FIG. 5. (a) Bose polaron mass in the 3d case against the 3d
coupling constant αc,3. The mass ratio mI/mB has the value 0.26,
which is the same as taken in the Ref. [20] (b) The inverse of
the polaron mass for different dimensions against the dimensionless
coupling constant η. These results refer to an impurity K with mass
mI = 6.4924249 × 10−26 kg, immersed in a gas of Rb with mass
mB = 1.4192261 × 10−25 kg. The one-dimensional boson density
is n0,1 = 7 μm−1. We fix the three-dimensional scattering length
a3 = 100 a0.

We now reformulate this expression in terms of the coupling
constant αc,3. By employing the Eq. (74), we get

(αc,3)2 = 2(mB)3n0,3(gIB,3)4

π2h̄6gB,3

( mI

mI + mB

)4
. (76)

Therefore from Eq.(75), the renormalized mass in the 3d case
takes the form

m∗
I,3

mI
− 1 =

∑
j=1,2

(
2

j × 3(2 j)(4
√

2π ) j

)(
1( mI

mB

) + 1

)2 j

×
( mI

mB

)− j
(αc,3) j, (77)

which turns out to be contained by the linear and the quadratic
order polynomials of αc,3. In order to make a comparative
study, we plot this quantity along with the other results,
such as those obtained by the mean field (MF), correlated
Gaussian wave functions (CGWs), and renormalization group
(RG) approaches. All of these results are well demonstrated in
Ref. [20] (see also references therein). As shown in Fig. 5(a),
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the QBM result matches the rest of the approaches suit-
ably well in the small coupling limit αc,3 < 1. Moreover,
the order of the renormalized mass for the QBM case re-
mains the same as obtained by the RG approach and both
of these follow the same trend. Such curved trends are in
contrast to the MF and CGWs approaches which both mimic
linear behaviors. Finally we plot the inverse of the polaron
mass for all the dimensions in Fig. 5(b). Interestingly, it
turns out that the mass renormalization effect is stronger in
the lower dimension when studied against the dimensionless
coupling η.

B. Trapped case

In recent years, there has been an increased interest on
trapped impurities within cold atomic media. For instance,
the bound states of the trapped impurities provide a plat-
form to test the existence of synthetic vacuum of the hosting
medium by witnessing the induced Lamb-shifts [5]. Addition-
ally, trapped impurities in BECs can serve as highly controlled
phononic q-bits [7,95]. Hence, theoretical study of a trapped
impurity as an open quantum system, as in this work, can be
valuable in all of the aforementioned cases. In the trapped
case, we confine the impurity into a harmonic trap with fre-
quency �. We compute the functions G1(t ) and G2(t ) by
employing the Zakian method. Their time dynamics is shown
in Figs. 6(a) and 6(b). In all dimensions, both of these func-
tions oscillate out of phase by π/2. This reflects the fact
that position and momentum are the two quadratures of the
impurity motion. Note that the information of the initial posi-
tion and the momentum variances is carried by the functions
G1(t ) and G2(t ) respectively (see Appendix C). The decay of
these functions provides insights into the system dynamics.
First of all, such decay shows that the impurity dynamics is
stable. In general, the stability analysis of the dynamics can be
performed more rigorously, e.g., through the Routh-Hurwitz
stability criterion [96]. However, given the absence of the an-
alytical form of G1(t ) and G2(t ) (or their Laplace transforms),
we rely on a numerical evaluation of their profiles. In fact,
both of these functions approach to zero as t → ∞. In effect,
the system dynamics becomes independent of its initial con-
ditions and its behavior is completely determined by the bath
state. It can be seen that in the long-time limit, each one of
them collapses to a single curve for all the cases displayed in
Fig. 4. On the contrary at initial short times, their amplitudes
and phases are mismatched for different initial conditions. The
differences coming from different coupling parameters and
dimensions also vanish in the long-time limit. This leads to the
insight that the steady state regime is completely determined
by the bath state and the system tends to equilibrate with the
local state of the bath.

We now turn to the study of the steady state dynamics of
the impurity. Since the input Bogoliubov bath modes are in
a Gaussian thermal state, and the linear dynamical map (42)
preserves Gaussianity, the time evolution of the covariance
matrix fully characterizes the impurity dynamics. Here we
are interested in the position and momentum variances.
Their expressions for the case of generalized Langevin equa-
tions are given in Appendix C. In particular, we are interested
in the position variance of the impurity in the steady state

−

)(

−

)(

FIG. 6. [(a) and (b)] Dynamics of G1(t ) and G2(t ) in the trapped
case for 1d , 2d , and 3d with the corresponding dimensions and
couplings shown in the legend. In all the cases, we have set � =
4π × 500 Hz. Rest of the parameters are same as in Fig. 1.

regime as a function of the dimension and other parameters
such as temperature of the bath. This is because in larger
dimensions, the impurity will have more degrees of freedom
(dof) and one wants to see how the energy is distributed
among them in the steady state. This is particularly interesting
in the finite temperate case, where the system is more prone to
achieve a thermal equilibrium with the bath. We first calculate
the position variances for the trapped case in the steady state
regime. We start from its expression given in Appendix C. By
invoking the component of noise tensor which is responsible
for the x-directed motion and in the long-time limit, for the
d-dimensional system, we have

〈x2〉d = lim
t→∞

h̄

m2
I

∫ t

0
du

∫ t

0
dv G2,d(t − u)G2,d(t − v)

× νxx
d (u − v). (78)

This can be further written as

〈x2〉d = lim
t→∞

h̄

m2
I

∫ ∞

0
dωJxx

d (ω) coth (h̄ω/2kBT )

×
∫ t

0
du

∫ t

0
dvG2,d(t − u)G2,d(t − v) cos[ω(u − v)].

(79)
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We now define the collective function Qd(ω)

Qd(ω) ≡ lim
t→∞ (1/2)

(
1

m2
I

) ∫ t

0
du

∫ t

0
dvG2,d(t − u)G2,d(t − v)[eiωue−iωv + c.c.]

=
(

1

m2
I

)
(1/2) lim

t→∞

∫ t

0
dũe−iωũG2,d(ũ)

∫ t

0
d ṽeiωṽG2,d(ṽ) + c.c. (80)

so that〈
x2

〉
d = h̄

∫ ∞

0
dωJxx

d (ω) coth (h̄ω/2kBT )Qd(ω). (81)

In the second equality of Eq. (80), we have defined new vari-
ables ũ = t − u and ṽ = t − v. It turns out that each term is
the product of two copies of the Laplace transform of G2,d(ũ),
evaluated at S = −iω and S = iω. We therefore obtain

Qd(ω) =
(

1

m2
I

)
LS=−iω,d[G2,d(t )]LS=iω,d[G2,d(t )]. (82)

We now introduce the frequency dependent functions
ξ xx

d (ω) ≡ �{LS̄,d[�xx
d (t )]} and θ xx

d (ω) ≡ �{LS̄,d[�(t )]}
which are respectively the real and imaginary parts of the
Fourier domain tensor component of the damping kernel.
They are obtained by the analytic continuation of Eq. (48)
with S̄ = −iω + 0+. This allows us to write the function in
Eq. (82) as

Qd(ω) =
(

1

m2
I

)(
1[

�2 − ω2 − ωθ xx
d (ω)

]2 + [
ωξ xx

d (ω)
]2

)
.

(83)

Additionally, from the relation between the damping ker-
nel and the spectral density tensor components given in the
Eq. (27), one can derive the equation [97]

Jxx
d (ω) = mIωξ xx

d (ω)

π
. (84)

By inserting Eqs. (83) and (84) back into the Eq. (81), we
finally obtain

〈
x2

〉
d = h̄

π

∫ ∞

0
dω coth

(
h̄ω

2kBT

)
χ̃ ′′

d (ω), (85)

where the function χ̃ ′′
d (ω) equals

χ̃ ′′
d (ω) = 1

mI

ξ xx
d (ω)ω[

ωξ xx
d (ω)

]2 + [
�2 − ω2 + ωθ xx

d (ω)
]2 . (86)

From the direct inspection of Eq. (43), it turns out that this
function is the imaginary part of the susceptibility χ̃d = χ̃ ′

d +
iχ̃ ′′

d . The susceptibility function can be obtained by extracting
the linear response function from Eq. (43) in the Laplace
domain. We can continue analytically to pass to the frequency
representation (i.e., Fourier domain). Note that the function
defined above is nothing but the absolute square of the sus-
ceptibility i.e. |χ̃d(ω)|2 = Qd(ω).

It follows from these results that the steady state posi-
tion variance is fully determined by the functions ξ xx

d (ω) and
θ xx

d (ω). In addition, note that the upper limit of the Eq. (85) is
reduced to the cutoff frequency in every dimension due to the
unit step function involved in spectral function. We perform

an analytic continuation of Eq. (48) to get these functions in
the low-frequency limit ω � �d (up to first few orders of ω)
for each of the dimensions. Such a process is straightforward
for d = 1 and 3, since both can be expanded as polynomials
of ω. This is not the case for d = 2, since in this case the ex-
pression contains a logarithmic transcendental function of the
frequency. In order to study this function for low frequencies,
we evaluate it numerically below the cutoff, and use this for
a numerical evaluation of the position variance. We pass to
the dimensionless (scaled) position quadrature by introducing
x́ ≡ x/xzp f , where xzp f ≡

√
h̄/2mI� is the zero-point fluctua-

tion (ground-state width) of the harmonically bound impurity.
The Heisenberg uncertainty relation, for the standard devia-
tions of the conjugate position and momentum operators, in
the scaled variables becomes

�x́d�ṕx́,d � 1. (87)

On the other hand, if one of these standard deviations falls
below unity, it is said to have achieved a squeezed state. The
squeezing is a pure quantum effect where quantum noise is
driven below its ground-state uncertainty for one of the conju-
gate observables. The mechanical squeezed states are of great
significance in high-precision displacement sensing [98]. One
may also express such standard deviations in the scaled coor-
dinates. For the position and momentum, we get

�x́d =
√

2mI�〈x2〉d

h̄
, �ṕx́,d =

√
2〈p2

x〉d

h̄mI�
. (88)

From here on, we focus on the position quadrature. Before
proceeding to study position squeezing, we comment on the
equipartition theorem in our system. In the present case, we
have a thermostat with the large number of modes of the
Bogoliubov bosonic bath. Additionally, one can tune the tem-
perature of the bath sufficiently high for all the modes to be
thermally populated. In the long-time limit, the bath achieves
a thermal equilibrium steady state. An immersed impurity
would therefore tend to equilibrate too, once the temperature
of the bath is kept above (or close to) its trap frequency.
In thermal equilibrium, equipartition theorem states that the
amount of energy (1/2)kBT is distributed per degree of free-
dom. We thus have

(1/2)kBT = (1/2)mI�
2〈x2〉

d (89)

and thus the standard deviation in the dimensionless coordi-
nate reads

�x́d =
√

2T́ , where T́ ≡ (kBT )/(h̄�). (90)

By checking that the position squeezing parameter asymp-
totically approaches the equipartition profile as stated in the
last equation, one can verify that impurity motion follows the
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FIG. 7. [(a)–(c)] Steady state position squeezing of the impurity as a function of temperature for the case of 1d , 2d , and 3d , respectively.

equipartition theorem. This is indeed the case, as shown in
Figs. 7(a)–7(c). As the thermal energy kBT becomes equal to
the quantum energy h̄�, all the cases approach the equipar-
tition profiles. Note that this holds in all dimensions d =
1, 2, and 3, despite the fact that the tensor component of
the bath spectral density Jxx, which is responsible for the
x-directed motion, scales as d−1 [cf. Eq. (29)].

On the other hand, the differences between the profiles
corresponding to different dimensions are apparent when one
examines the magnitude of the position squeezing achieved.
Although a direct comparison is not possible due to differ-
ent ranges of coupling compatible with the Fröhlich regime,
it is apparent that squeezing is more pronounced in lower
dimensions. The amount of squeezing is proportional to the
coupling strength and it is achieved at quite low temperature.
The squeezing effect is purely due the interaction with the
bath and it occurs without an external control of the impunity
motion. It is referred to as genuine position squeezing [26].

V. MEMORY EFFECTS

In this section, we briefly analyze the memory effects. In
general, one expects to see Makovian dynamics when the
spectral density of the bath is Ohmic, and for sufficiently
high temperature and weak coupling, such as that obtained
with a Dirac delta like damping kernel in Eq. (42). On the
contrary, the super-Ohmic nature of the bath is generally
assumed to lead to non-Markovian dynamics of the system,
i.e., to memory effects. We will use the super-Ohmic spectral
densities of the bath we obtained for different dimensions
to study the relation between the expected non-Markovian
effects and dimensionality. In order to quantify the amount of
non-Markovianity, a number of measures have been proposed
so far [99]. Here, we apply the criteria related to the back
flow of information. It has been shown that such back flow
of information can be expressed in terms of the trace dis-
tance [100] and the fidelity [101] of two states. For Gaussian
states, the latter has an analytical form. More specifically, the
non-Markovianity Nd based on the back flow of information
through the fidelity criterion is explicitly related to the noise
kernel and is given by

Nd =
∫

�d<0
�d(t )dt with (91)

�d(t ) =
∫ t

0
νxx

d (s) cos(�s). (92)

In our case, the noise kernel is given by Eq. (25) which de-
pends on the dimension of the system. The above measure can
be obtained by first calculating the definite integrals over the
variables ω and s, and then integrating the resulting function
�d(t ) over the time region where it is negative. In the study of
non-Markovianity through this measure, we focus on the com-
parison between the cases of d = 1 and d = 2 dimensions.
In Fig. 8(a), we plot the measure Nd for the zero temperature
case [i.e., when the cotangent in Eq. (25) equals 1]

(b)

(a)

FIG. 8. (a) Non-Markovianity in units of (gB,1 n0,1 mI )/h̄ as a
function of the system-bath coupling strength. The blue-Solid and
red-dashed profiles represent 1d and 2d , respectively. The vertical
lines correspond to the Fröhlich bound. (b) The J distance as a
measure of the relative position variance. We have set the coupling
parameter η = 3.5 and γ = 10 � for every dimension. Here, the
solid, dashed, and dotted profiles correspond to 1d , 2d, and 3d ,
respectively.
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for a range of values of the system-bath coupling. Clearly
the non-Markovianity measure is showing a monotonically
increasing behavior on the logarithmic scale, as we enhance
the system-bath coupling. In addition, as we move from low
to higher dimension with the corresponding higher level of
super-Ohmicity, larger non-Markovian effects are witnessed:
the non-Markovianity is at least an order of magnitude larger
in d = 2 than in d = 1.

Another measure of memory effect is the J-distance JD,
which has been introduced in Ref. [27]. This is a quanti-
tative measure of the relative position variance between the
case where the spectral density is super-Ohmic and the case
where it is Ohmic. The Ohmic case corresponds to the time-
local form of the damping kernel and has spectral density
JOhm = mIγω, where we have introduced the phenomeno-
logical damping constant γ . We may explicitly write the J
distance as

JDd =
∣∣∣∣ 〈x2〉d − 〈x2〉Ohm,d

〈x2〉d + 〈x2〉Ohm,d

∣∣∣∣. (93)

Here 〈x2〉Ohm,d is the position variance that would be ob-
tained, had we assumed an Ohmic Spectral density with the
same cutoff function. In Fig. 8(b), we plot this quantity for
different dimensions as a function of temperature. It turns
out that for a similar system-bath coupling strength JDd as-
sumes largest values for d = 3. This is supported by the
argument that in a higher dimension super-Ohmicity affects
the dynamics stronger, leading to a larger deviation from
the Ohmic case. In addition, the non-Markovian effects are
more pronounced near zero temperature, i.e., a vacuum bath.
As the temperature grows, dynamics tends to achieve the
thermal steady state both for Markovian and non-Markovian
scenarios. The relative difference in Eqn. (93) then approaches
zero.

VI. CONCLUSIONS

In this work, we studied from the quantum open sys-
tems perspective the dynamics of an impurity immersed
in a d-dimensional BEC. In particular, we offered a de-
tailed derivation of the Langevin equations and the associated
generalized d-dimensional spectral density. We derived an
expression for the tensor that describes this spectral den-
sity in full generality. Particular attention was given to
the case of a spherically symmetric bath, which implied
a diagonal form for this tensor. In addition, the tensors
for the noise and damping kernels were calculated; these
tensors enter the vectorial Langevin-like equations of mo-
tion. All these technical aspects, allowed to study in detail
the dependence of the dynamics of the impurity on the
dimensionality.

We considered both untrapped and trapped scenarios for
the impurity. In the untrapped case, we performed in all di-
mensions the calculation of the mean square displacement,
showing that the motion is superdiffusive. We derived explicit
expressions for the superdiffusivity coefficient in the low- and
high-temperature limits. In the latter limit we found that this
coefficient has a maximum as a function of the impurity-boson
coupling. The maximal value of the coefficient is equal in all
dimensions, but the value of the coupling at which it occurs

is dimension-dependent. It lies within the limits of validity of
the Fröhlich model in one dimension only. We calculated also
the average energy, for which we obtained the generalized ex-
pression for the variance of the momentum; the expression of
average energy in the ultracold regime was calculated explic-
itly. These results confirm the expected rescaling of the mass
of the impurity as a consequence of its interaction with the
bath, whose specific value depends on the dimensionality. The
behavior of the energy in all dimensions is oscillatory, with a
backflow of the energy between the bath and the impurity—a
memory effect. We performed a similar analysis for the large
temperature limit, finding the expressions for very large times
and in the classical limit. These expressions exhibit maximum
at certain value of the impurity-boson coupling and, amaz-
ingly, at this value of the coupling, the equipartition theorem
is fulfilled in all dimensions, so the impurity is in a thermal
equilibrium with the Bogoliubov bath. We also discussed
the Bose-polaron renormalized mass, comparing with results
from the literature.

In the trapped case, we obtained the steady state and
characterized it with its covariance matrix. To this end, we
obtained the expressions of the position and momentum vari-
ances. We identified the position variance is connected to the
imaginary part of the susceptibility. To calculate the position
variance explicitly is possible in one and three dimensions, but
in two dimensions, it involves a logarithmic transcendental
function of the frequency, so we proceeded numerically. We
saw that one can find squeezing in all dimensions, which is an
important result as it can be used for applications in quan-
tum technologies, such as quantum sensing and metrology.
Here we evaluated it in any dimensions, which is relevant
for many experimental setups. In the high-temperature limit
we calculated the equipartition profile and showed that in all
dimensions the variances tend to this limit as temperature
is increased. We found that, although a direct comparison
among dimensions is not possible within our framework, due
to different ranges of admissible coupling strengths within
the Fröhlich regime, the magnitude of the position squeezing
achieved is different, and at low dimensions one can obtain
stronger position squeezing.

Finally, we also computed the amount of non-Markovianity
in all dimensions via two quantifiers: the backflow of energy
and the, so called, J distance. Again, the direct comparison
among dimensions is not possible, due to different parame-
ter regimes. For the back flow of energy, we only perform
the calculation in one and two dimensions, as for increased
dimensions more and more cumbersome functions appear in
the expressions, which complicate the analysis. Nevertheless
this suffices to show that non-Markovianity grows with inter-
actions and increases with dimensionality. The latter effect is
also apparent in the calculation of the J distance, which shows
that the non-Markovian effects are sizable in higher dimen-
sions. As an outlook, we foresee that this work will permit
to continue the explorations of the Bose polaron problem in
different quantum technologies, where the role of squeezed
states and of non-Markovian effects may be important. Fi-
nally, we also hope that in the future, this work will provide
the starting point for investigations of more complex trap-
ping settings, both for the impurity as well as for the bath
itself.
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APPENDIX A: SPECTRAL DENSITY TENSOR

In this Appendix, we derive the spectral density tensor
by employing the Bogoliubov dispersion relation. We start
from the form of the coupling gk given by Eq. (21) and the
definition of the spectral density tensor in Eq. (28). In general,
the large number of the oscillators within the Bogolibouv
bath allows us a continuous variable to label modes in the
k space. In the following, we use matrix representation of
all the vectors (or, more generally, tensors). We perform the
mathematical construction for each dimension in the k space
separately.

3d bath. A three dimensional k-space representing the Bo-
golibouv bath is spanned by kx, ky and kz. We introduce the
polar angle φ (angle with kz direction) and azimuthal angle
θ (angle with kx direction) in the k-space. By employing
Eq. (21), the vectorial coupling is written in these angles as

gk = (1/h̄)[Vkk cos(θ ) sin(φ),Vkk sin(θ )

× sin(φ),Vkk cos(φ)]T .

(A1)

The coupling tensor is given by gk ≡ gk gk
T . Here, [.]T de-

notes the transpose conjugation. The spectral density tensor
is

J (ω) =
∑

k

h̄gkδ(ω − ωk ). (A2)

In the continuum limit, we perform the transformation

∑
k

→
∫

V

(2π )3
d3k. (A3)

Integrating over dk × kdφ × k sin φdθ with appropriate lim-
its, we obtain the explicit expression of the spectral density
tensor J3(ω) in the 3d case:

J3(ω) = V

(2π )3

∫ ∞

0
dk

∫ π

0
kdφ

∫ 2π

0
k sin φdθ

×
(

h̄ gk

∑
kω

1

∂kωk|k=kω

δ(k − kω )

)
. (A4)

Here we have replaced the delta function with the ω ar-
gument by one with the k argument, inverting the relation
between these variables, as given by the dispersion relation
Eq. (12). Moreover, the kω are the roots of the argument of
the former delta function i.e., of the equation ω − ωk = 0.
A calculation shows that the contributing real root is kω =
ξ−1(

√
1 + 2(ξω/c)2 − 1)1/2.

2d bath. We parametrize the two dimensional k space by
the azimuthal angle θ and the radial vector amplitude k. We
define in this case the two dimensional vector

gk = (1/h̄)[Vkk cos(θ ), Vkk sin(θ )]T . (A5)

The calculation of the spectral density tensor is similar as in
the previous case; the difference is that here we calculate the
integrals

J2(ω) = V

(2π )2

∫ ∞

0
dk

∫ 2π

0
kdθ

×
(

h̄ gk

∑
kω

1

∂kωk|k=kω

δ(k − kω )

)
. (A6)

1d bath. For one dimensional k space, one can perform the
integral along the radial direction (i.e., along the particular
coordinate of the k space) by employing the zeroth-order
tensor (scalar)

gk = (1/h̄2)
[
V 2

k k2
]
. (A7)

To cover the entire k space in this case, one has to count each
mode twice. We therefore get

J1(ω) = 2V

(2π )

∫ ∞

0
dk

(
h̄ gk

∑
kω

1

∂kωk|k=kω

δ(k − kω )

)
.

(A8)

By inserting the expression for Vk from Eq. (18), we
perform integrations in all the cases for each of the tensor
components. Due to the symmetry of the k space, the integrals
of the off-diagonal elements are zero. The final formula for the
spectral density tensor in d dimensions is

Jd(ω) = Jd(ω)

d
I d×d, (A9)
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where I d×d is the identity matrix and the scalar function
Jd(ω) in dimension d is

Jd(ω) =
(

Sd(
√

2)d (ηd )2(�d )d+2

(2π )d

)

×

⎛
⎜⎜⎜⎜⎝

[(
mB

[gB,d][
d

d+2 ]n0,d

)(√
ω2

(�d )2 + 1 − 1
)](

d+2
2

)
(√

ω2

(�d )2 + 1
)

⎞
⎟⎟⎟⎟⎠.

(A10)

Here for d = 1, 2, and 3, we have S1 = 2, S2 = 2π, and
S3 = 4π , respectively. Moreover, we have introduced the
characteristic frequency �d = (gB,dn0,d )/h̄. We also write the
impurity-boson coupling in the units of the boson-boson cou-
pling as ηd = (gIB,d/gB,d ) (see main text for d dependence
of these quantities). This justifies the formula for the spectral
density tensor for d-dimensional bath, used in Sec. III.

APPENDIX B: VECTORIAL EQUATION OF MOTION

In this Appendix, we derive the equations of motion for the
coordinates of impurity. We restrict the discussion to the three-
dimensional case. We start by combining Eqs. (36) and (37)
of the main text to get the vectorial equation

Ẍ (t ) + �2X (t ) = − ih̄

mI

∑
k

gk (bk (t ) − b†
k (t )). (B1)

The time-dependent bosonic annihilation and creation oper-
ators of the Bogoliubov modes can be extracted from the
first-order linear inhomogeneous equations (38) and (39).

bk (t ) = bke−iωkt + h−
k (t ), b†

k (t ) = b†
ke+iωkt + h+

k (t ).

(B2)

Here, h−
k (t ) and h+

k (t ) represent particular solutions of the
following two inhomogeneous differential equations:

ḃk (t ) + iωkbk (t ) = −gk
T X (t ), (B3)

ḃ†
k (t ) − iωkb†

k (t ) = −gk
T X (t ). (B4)

It is obvious that an excitation in the Bogoliubov mode of
momentum k depends on all coordinates of the impurity. Em-
ploying the technique of Green’s function we construct the
solutions corresponding to each direction (cf. Ref. [26]) and
using the superposition principle, we get

h±
k (t ) =

∫ t

0
(1/2)e∓iωt gk

T X (s)ds. (B5)

We insert these expressions into Eq. (B2) and substitute the re-
sult into the right-hand side of Eq. (B1), to obtain the equation
of motion of the impurity coordinates

Ẍ (t ) + �2X (t ) − h̄

mI

∑
k

gk

∫ t

0
X (s) sin[ωk (t − s)]ds

= (1/mI )B(t ), (B6)

where the vectorial Brownian stochastic force represents

B(t ) =
∑

k

ih̄gk (b†
ke+iωkt − bke−iωkt ). (B7)

By using Eqs. (25) and (28), we further write the above ex-
pression in terms of the noise tensor:

Ẍ (t ) + �2X (t ) − 1

mI

∫ t

0
λ(t − s)X (s)ds

= (1/mI )B(t ). (B8)

Since noise and damping kernel are related by

− 1

mI

∫ t

0
λ(t − s)X (s)ds =

∫ t

0
�̇(t − s)X (s)ds

= ∂t

∫ t

0
�(t − s)X (s)ds − �(0)X (s), (B9)

we finally arrive at

Ẍ (t ) + �̃2I X (t ) − ∂t

∫ t

0
�(t − s)X (s)ds = (1/mI )B(t ),

(B10)

where we have introduced a renormalized frequency of the
impurity:

�̃2I = �2I − �(0). (B11)

From here on, we will neglect such frequency renormalization
contributed by the term �(0). This term grows as the interac-
tion strength between the impurity and the bath increases, and
could potentially lead to a negative renormalized frequency
for the harmonically trapped impurity. This, in practice, would
correspond to effectively having an impurity trapped in an
inverse parabolic potential, for which no stable solution in
the long-time limit exists. In view of this, as in Ref. [26], we
make sure that we always consider values of the parameters
for which this renormalized frequency is positive. This issue
could have equivalently been solved by artificially introduc-
ing a counter-term in the Hamiltonian that would guarantee
positivity of the Hamiltonian and translational invariance, but
we prefer to use the physical Hamiltonian that we obtained
directly from the Hamiltonian describing the original Bose
polaron.

APPENDIX C: EXPRESSIONS OF THE POSITION AND
MOMENTUM VARIANCES FOR THE GENERALIZED

LANGEVIN EQUATIONS

The quantum covariance matrix is defined as [102]

σkl = 1
2 〈{Rk, Rl}〉 − 〈Rk〉〈Rl〉. (C1)

Here the Rk represent the quadratures of the motion. For zero
mean value, the matrix contains in particular the variances
of the impurity position 〈x2(t )〉 and momentum 〈p2(t )〉 as
its diagonal terms. Note that we have omitted the operator
notation for convenience. Assuming that the bath and system
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variables are initially uncorrelated, we obtain the expressions

〈x2(t )〉 = G2
1(t )〈x2(0)〉 + G2

2(t )〈ẋ2(0)〉

+ 1

2m2
I

∫ t

0
du

∫ t

0
dvG2(t − u)G2(t − v)

× 〈{B(u), B(v)}〉, (C2)

〈p2(t )〉 = m2
I Ġ2

1(t )〈x2(0)〉 + Ġ2
2(t )〈p2(0)〉

+ 1

2

∫ t

0
du

∫ t

0
dvĠ2(t − u)Ġ2(t − v)〈{B(u), B(v)}〉.

(C3)

The expression for the mean square displacement MSD
takes the form

MSD(t ) = (G1(t ) − 1)2〈x2(0)〉 + G2
2(t )

〈
ẋ2(0)

〉
+ 1

2m2
I

∫ t

0
du

∫ t

0
dvG2(t − u)G2(t − v)

× 〈{B(u), B(v)}〉. (C4)

APPENDIX D: VALIDITY OF FRÖHLICH HAMILTONIAN

In the main text, we use the linear Fröhlich Hamiltonian
while discarding the two-phonon scattering processes. This is
based on the assumption that the condensate density in the
d dimensions, n0,d, is much larger than the density of the
phonons excited due to the interaction with the impurity [103].
As stated in Ref. [104], an approximated criterion on the
coupling parameter ηd for the Fröhlich Hamiltonian to be
valid in the d dimensions is given by

ηd < ηc,d

=
(√

4(2π )d

Sd

)
n0,d (ξd )d =

(
h̄

√
2(2π )d

Sd

)
cd (ξd )d−1

gB,d

=
(√

22−d (2π )d

Sd

)
[n0,d]

2−d
2

[
(
√

h̄/mBωd )
3−d

Sda3

] d
2

. (D1)

In the above expression we have written the final equality in
terms of the three-dimensional scattering length a3 based on
the harmonic confinement of the condensate in the transverse
direction (see main text). From the second-to-last inequality,
one can get the expression for d = 3

gIB,3 � 2πc3(ξ3)2 (D2)

(where we put h̄ = 1). The same bound was reported in [103].
On the other hand, for d = 1, the last equality leads to the
following scaling for the bound on the critical coupling:

ηc,d ∼ √
n0,1a1 ; where a1 = (h̄/mBω⊥)/a3, (D3)

stated also in Refs. [26,39]. Typically for a boson gas made of
Rb87 atoms, the scattering length a3 = 100a0 with a0 denoting
the Bohr radius [103]. Moreover, let the transverse frequen-
cies be {ω⊥, ωz} = 2π × 34 kHz as in the optical lattice [2].
This implies the following numerical bounds on the coupling,

depending on the dimension:

ηc,d ∼
⎧⎨
⎩

3.7, for d = 1,

4.4, for d = 2,

9.8, for d = 3,

(D4)

which are the values represented as vertical lines in the figures
in Figs. 2 and 8.

APPENDIX E: A NOTE ON THE CUTOFF

The system we consider is similar to a system of non-
relativistic harmonic oscillator interacting with photons in a
full framework of quantum electrodynamics (QED) in the
dipole approximation. The only difference is in the couplings
gk, which actually diverge faster than in QED case. In the
QED case, one can try to introduce a regularizing cutoff,
and then apply renormalization techniques, but that procedure
leads to unphysical “run-away” self-accelerating solutions (cf.
Refs. [105–107] and references therein). Therefore the only
reasonable solution is to introduce a cutoff. In the case of
harmonic oscillator, the natural cutoff is �cut = 2πc/ł, where
ł is the characteristic size of the harmonic oscillator, which
defines the validity region of the dipole approximation. In the
present case, the cutoff is thus determined by the velocity of
sound and the characteristic order of magnitude of the region
of validity of the linearization approximations, Eq. (19), that
is �cut � 2πc1/rchar.

We calculate the cutoff frequency within the linear regime
in the 1d case. The characteristic size of the impurity mechan-
ical oscillator is given by the zero point fluctuation of the
position operator and formulated as xzp f =

√
h̄/2mI�. This

leads to

�cut,1 � 2πc1√
h̄/2mI�

, (E1)

where c1 is the Bogoliubov speed of sound [cf. Eq. (13)] and
it depends on the boson-boson coupling gB,1 and the density
of the boson n0,1. Typical values of these parameters, as ex-
pressed in the main text, are 2.385 × 10−37 J m and 7 μm−1,
respectively. This leads to the calculated value of the cutoff
frequency �cut,1 = 59.42 kHz. On the other hand, the chosen
cutoff, which covers the entire linear Bogoliubov dispersion
relation, is given by �1 = (2πgB,1n0,1)/h̄ � 99.4 kHz. We
thus have both the cutoff at the same order of magnitude
and our chosen cutoff covers the frequency spectrum for the
linear regime of the Fröhlich interaction Hamiltonian [cf.
Eq. (19)], i.e., �cut,1 � �1. Such a statement is fulfilled for all
the dimensions. In particular, the characteristic length scale
in a given dimension reads rchar,d =

√
dh̄/2mI�, with d the

dimension, and the condition �cut,d = (2πcd )/rchar,d < �d is
fulfilled in our numerics.

These estimates can easily be generalized to 2d and 3d , as
well as to finite temperatures. For example, the characteristic
size of the impurity grows at nonzero T as ∝ (nth + 1)1/2,
while the speed of sound, due to its dependence in density, as
∝ (nth + 1)−d/4, where nth is the average number of thermal
excitations. In effect, the characteristic value for �cut,d scales
then as ∝ (nth + 1)−d/4−1/2; all these estimates are consistent
with the values used in this paper.
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