
Journal of Systems Architecture 118 (2021) 102223

A
1
(

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Hardware resources contention-aware scheduling of hard real-time
multiprocessor systems✩

José María Aceituno, Ana Guasque ∗, Patricia Balbastre, José Simó, Alfons Crespo
Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Valencia, Spain

A R T I C L E I N F O

Keywords:
Multicore
Real-time
Scheduling
Memory contention
MILP

A B S T R A C T

In hard real-time embedded systems, switching to multicores is a step that most application domains delay as
much as possible. This is mainly due to the number of sources of indeterminism, which mainly involve shared
hardware resources, such as buses, caches, and memories. In this paper, a new task model that considers
the interference that task execution causes in other tasks running on other cores due to memory contention
is proposed. We propose a scheduling algorithm that calculates the exact interference. We also analyse and
compare existing partitioning algorithms and propose three strategies to allocate tasks to cores to schedule as
many tasks as possible and minimise total interference.
1. Introduction

The release of the first dual-core processor in 2001 began a mi-
gration of computing platforms from single-cores to multicore archi-
tectures. In response to the increased use of multicore processors,
the Certification Authorities Software Team (CAST) published Position
Paper CAST-32 A named ‘Multi-core Processors’ [1]. This paper iden-
tifies topics that could impact the safety, performance and integrity
of airborne software systems executing on multicore processors and
provides objectives intended to guide the production of safe multi-
core avionic systems. For example, objective MCP_Software_1 requires
that evidence is produced to demonstrate that all hosted software
components function correctly and have sufficient time to complete
their execution when operating in their multicore environment. In
many domains such as avionics, space, or industrial control systems,
hard real-time constraints, safety and security issues, and certification
assurance levels are commonly required.

Hard real-time multiprocessor systems are commonly implemented
using partitioned scheduling rather than global scheduling. In the
partitioned approach, the tasks are statically partitioned among the pro-
cessors, i.e., each task is assigned to a processor and is always executed
on it. Static assignment is key to meeting the temporal requirements
needed by certification authorities. Nevertheless, multiprocessor sys-
tems add many sources of indeterminism. Processors may contend for
shared resources, such as memory. During the lifetime of a piece of
software several processors may reach a part of the programs that lead

✩ Funding: This work was supported by the Spanish Science and Innovation Ministry (predictable and dependable computer systems for Industry 4.0) under
Grant MICINN: CICYT project PRECON-I4 and Grant TIN2017-86520-C3-1-R.
∗ Corresponding author.
E-mail address: anguaor@ai2.upv.es (A. Guasque).

to heavy bus loads and each access that the processors attempt may
collide with accesses generated by another processor. It is necessary to
analyse software images in the context of a multi-core system and not
just analyse the software when it is running without contenders [2].

The timing behaviour of a task in a multicore system is affected not
only by the software running on it and its inputs, but also by contention
for resources such as buses, caches, and GPUs that are shared with
tasks running on other cores. This contention causes interference in the
timing behaviour of the task [3]. We can define the interference as a
delay on the expected execution time of a set of tasks in a multicore
system due to the contention produced for simultaneous accesses to the
shared hardware.

Different techniques can be implemented to deal with these sources
of indeterminism. The worst-case interference can be estimated and
added to the worst-case execution time (WCET) of the task. This results
in an over-estimated and very pessimistic model. Moreover, this value
depends on the execution of other cores and so it is difficult to find
a worst case. We can apply techniques to reduce or enhance the pre-
dictability of the interference due to memory contention. Our work is in
the middle: we consider worst-case interference, but we do not assume
that it is produced for every task. We propose a scheduling algorithm
that counts the exact interference while assuming that the interference
a task produces for other tasks due to contention is bounded. Based on
the implementation of the scheduling algorithm we deduce a way to
allocate tasks to cores so that we group tasks into cores to produce as
little interference as possible.
vailable online 26 June 2021
383-7621/© 2021 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.sysarc.2021.102223
Received 19 February 2021; Received in revised form 15 June 2021; Accepted 20 J
is an open access article under the CC BY-NC-ND license

une 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:anguaor@ai2.upv.es
https://doi.org/10.1016/j.sysarc.2021.102223
https://doi.org/10.1016/j.sysarc.2021.102223
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102223&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.

f
s

a

p

r
a
a

e
i
t
t
i
T
o

It is important to note that the measurement about the time that
a task spends on accessing shared hardware resources (i.e., reading
and writing memory operations) is outside the scope of this paper.
Considerable research has been done in this area. We assume that this
is a value previously measured for the used hardware, and so we do not
restrict our work to a specific type of hardware resource contention.

We centre our efforts on dealing with the limitations and require-
ments of the software, and it is important to note that, according
to [4], the configuration of the software architecture can reduce the
interference delay, and this means that indeterminism will be reduced
as the number interruptions is reduced. On previous referenced work,
interference is reduced with temporal and spatial isolation. But in our
work, we centre on allocation and scheduling tasks in cores.

In summary, the main contributions of this paper are the defini-
tion of a task model that includes the interference due to contention
for shared hardware resources, allocation strategies to reduce this
interference, and a scheduling algorithm for the proposed model.

The rest of the paper is organised as follows: Section 2 presents
the relevant works in partitioned multicore systems scheduling. In
Section 3, the system model is described and the main contributions are
highlighted. Section 4 describes the contention-aware scheduling algo-
rithm, while in Section 5 three allocation algorithms are proposed. The
evaluation of the proposals is presented in Section 6, while conclusions
and further work are given in Section 7.

2. Related works

Scheduling for multicore platforms was the subject of many research
works, surveyed in [5]. As we know, in multi-core scheduling there
are two main branches, partitioned scheduling, and global scheduling.
In this work we are focusing on partitioned scheduling. To generate a
schedule plan in a multicore partitioned system, the following steps are
defined:

• Allocation of tasks to cores.
• Perform the schedule generation for each core.

Since our work is framed around hard real-time systems, we will
ocus on the state of the art of partitioned allocation (where) and static
cheduling (when).

The task allocation problem is analogous to the bin packing problem
nd is known to be NP-hard in the strong sense [6].

A number of heuristics are available for solving the bin packing
roblem. Some of the most well-known [7,8] are:

• First fit (FF). Each item is allocated into the first bin that it fits
into without exceeding the maximum capacity of the bin. If there
is no bin available, a new bin is opened.

• Best fit (BF). This algorithm allocates each item into the fullest
bin where it fits, and as with FF, possibly opening a new bin if
the item does not fit into any currently open bin.

• Worst fit (WF). WF allocates each item into the bin that leaves
most remaining capacity, that is, the emptiest bin. It will also
open a new bin if no bin is available to allocate the item.

In addition to these heuristics, there are other bin packing algo-
ithms used to solve the allocation problem. Coffman et al. [9] presents
survey and classification of these algorithms. In [10] a state-of-the-art
bout contention delays is presented.

Previous algorithms are sensitive to the order of the items. For
xample, if lightweight items are allocated first, accommodating large
tems in the gaps they leave is a difficult task. There are several methods
o order the items before allocating them into cores. The most used
echnique consists of ordering the items according to their weight,
.e., utilisation and decreasing utilisation is one of the main variants.
he decreasing utilisation method (DU) puts the items in decreasing
2

rder by utilisation. In this way, WF, BF, and FF become WFDU (worst
fit decreasing utilisation), BFDU (best fit decreasing utilisation) and
FFDU (first fit decreasing utilisation).

All the previous results are highly theoretical and do not con-
sider delays due to hardware resource contention. In [11] a deep
study of the sources of unpredictability is analysed under two cate-
gories: primary sources (caches, FSB, memory, and memory controller);
and secondary sources (hardware-prefetching, power saving strategies,
translation look-aside buffer, misses, system management interrupts).
This topic is also analysed in [12] where the sources of timing interfer-
ence in single-core, multicore, and distributed systems are presented.
As stated in this paper, memory interference can jeopardise system
feasibility. It is shown in [13] that there are cases where memory
interference can cause a worst case response time increase as high
as 300%, even for tasks that spend only 10% of their time fetching
memory in an eight-core system.

There are some works that try to reduce contention delays by
using specific task models. The predictable execution model (PREM) is
introduced in [14] which splits a task into a read communication phase
and an execute phase. A similar technique is used in [15] that calculates
task scheduling and contentions with the objective of minimising the
schedule makespan by letting the technique decide when it is necessary
to avoid or consider interference. The shared bus is arbitrated using
a round-robin policy and the task model considers a DAG (direct
acyclic graph) to separately read, execute, and write operations so the
WCET of the execute phase can be measured in isolation. We do not
split tasks and so our model is a classical periodic task model. For
DAG task models, [16] proposes a scheduling method that applies the
LET (Logical Execution Time) paradigm and considers communication
timing between nodes to reduce contention.

Other approaches, such as the one presented in [17], try to reduce
interference costs using synchronisation-based interference models and
appropriate memory allocation schemes.

In [18], a feedback control scheme is proposed to ensure the ex-
ecution of critical cores in a mixed-criticality partitioned system. The
controller limits at hypervisor level the use of the memory bus of non-
critical cores when they reach a limit. Performance monitor counters
are used to establish the number of bus accesses. In [19], Casini
et al. propose an analysis of memory contention where an optimisation
problem is formulated to bound the memory interference by leveraging
a three-phase execution model and holistically considering multiple
memory transactions issued during each phase.

One of the first papers that introduced the interference parameter in
the temporal model is presented in [4]. In this paper, for a partitioned
system in the aerospace domain, the WCRA parameter is defined (Worst
Case number of shared Resource Accesses). This value is added to the
WCET and this results in a predictable but pessimistic scheduling plan.
Similarly, the concept of interference-sensitive Worst-Case Execution
Time (isWCET) is proposed in [20]. In [21] a dynamic approach is
presented that safely adapts isWCET schedules during execution by
relaxing or completely removing isWCET schedule dependencies (de-
pending on the progress of each core). The concept of isWCET is similar
to our work but the proposals are centred around minimising the effect
of interference with new scheduling methods while our work focuses
on allocation algorithms.

The work lines of [22] and [23] deserve mention. In these ap-
proaches, interference is analysed in a similar way to our work, as it
is also represented as a parameter. However, their work is based on
the interference produced by the DRAM memory as a shared resource
in a multicore system while our proposal is agnostic with respect
to the hardware resource used. Their work also considers only fixed
priority scheduling while our proposal can be used with fixed and
dynamic priorities. In [23] memory interference is reduced by par-
titioning DRAM banks and by a BestFit-based allocation algorithm.
Clearly, a model that considers a specific hardware resource and a
specific scheduling algorithm will further reduce contention delays, but
our aim is to provide a more general model that can be used for any

shared hardware.

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 1. Example of task interference.

3. Task model and contributions

3.1. Periodic task model

In a multicore system, there is a set of m homogeneous cores M1,
. . . ,M𝑚 that enable different tasks to be executed at the same time. Each
core has allocated 𝑁𝑘 tasks. We assume that migration is not allowed
so we will follow the partitioned approach. In a hard real-time system,
there is a set of 𝑛 independent real-time tasks 𝜏 = [𝜏1,… , 𝜏𝑛], where
each task generates a set of jobs (𝜏𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ≥ 0) that must be
completed before the due time. This work considers that all tasks are
periodic and characterised by 𝜏𝑖 = (𝐶𝑖, 𝐷𝑖, 𝑇𝑖, 𝐼𝑖), where 𝐶𝑖 is the WCET,
𝐷𝑖 is the deadline, 𝑇𝑖 is the period and 𝐼𝑖 is the worst-case interference
time (explained in detail in 3.2). We assume a constrained deadline task
model (𝐷𝑖 ≤ 𝑇𝑖) and periodic or sporadic tasks.

The hyperperiod of the task set, H, is the smallest interval of time
after which the periodic patterns of all the tasks are repeated, and it is
calculated as the least common multiple of the task periods. Any task
𝜏𝑖 has A𝑖 activations throughout H. Therefore, 𝐴𝑖 =

𝐻
𝑇𝑖

.
The utilisation of a task 𝜏𝑖 is calculated as the relation between the

computation time and the period, 𝑈𝑖 = 𝐶𝑖
𝑇𝑖

. The utilisation of a core
M𝑘 is the sum of the utilisation of all tasks that belong to this core:
𝑈𝑀𝑘

=
∑

𝜏𝑖∈𝑀𝑘
𝑈𝑖. The total utilisation of the system is the sum of the

utilisation of all cores: 𝑈𝜏 =
∑

𝑚 𝑈𝑀𝑘
.

3.2. Worst case interference time

In multicore systems, unlike monocore, the resources of the system
are shared by different tasks at the same time and different cores may
simultaneously need a particular resource, such as buses or memory
because of the nature of the process they are executing. At this point,
we can assert that during an execution of a multicore system there will
probably be a contention or interference between different cores that
will delay the expected execution of the processes. As remarked in [10]
from contention to access to shared resources arises the interference ef-
fect between various tasks that are allocated and executed on different
processors.

I𝑖 is the worst-case time that 𝜏𝑖 uses for reading and writing memory
operations. It is illustrated in Fig. 1, where we can see that all the
time that 𝜏0 spends on reading and writing operations is part of the
interference parameter 𝐼0. Task execution times are depicted in solid
rectangles while interference is depicted in dashed rectangles. From
the point of view of other tasks, 𝐼𝑖 is the extra time that 𝜏𝑖 produces
in other tasks executing at the same time on all other cores due to
contention. For example, let us suppose that 𝜏𝑖 = {10, 50, 75, 3}, this
would mean that the computation time of 𝜏𝑖 is 10 time units, of which
3 are dedicated to memory accesses. In the worst case, we can assume
that all the tasks running on other cores at the same time as 𝜏𝑖 will be
delayed 3 units in their execution.
3

Fig. 2. Example of influence of interference on scheduling.

Fig. 1 shows the interference parameter from the point of view of
the task, and this interference implies a delay in the execution of tasks
in other cores. Note that 𝐼0 is represented as a whole piece when it
affects other tasks while in Fig. 1 it is represented as separate pieces.
From now on, the interference will always be represented as a whole
piece since we will investigate the effect it has on other tasks in other
cores. The following example illustrates this effect.

Example. Consider a set of three tasks 𝜏0, 𝜏1, and 𝜏2 allocated on a
platform with three cores as shown in Fig. 2. Suppose that 𝐼0 = 𝐼2 = 1
and 𝐼1 = 0, that is, 𝜏0 and 𝜏2 are the tasks that share the resources, so
they provoke and receive interference. However, 𝜏1 does not use the
resources and so suffers no interference. Every time that 𝜏0 is executed
at the same time as 𝜏2, both tasks increase their computation times: 𝜏0
increases 𝐼2 units due to the interference caused by 𝜏2 while 𝜏2 increases
𝐼0 units due to the interference caused by 𝜏0.

From Fig. 2, it is deduced that if contention is considered, the
total utilisation of a task depends on its computation time and period,
as well as the interference received from other tasks. Moreover, this
interference does not have to be considered in all activations, and only
in those where there is execution on both cores. Therefore, we define
the equivalent real values for 𝑈𝑖, 𝑈𝑀𝑘

and 𝑈𝜏 :

𝑈 ′
𝑖 = 𝑈𝑖 + 𝑈 𝑖𝑛𝑡

𝑖 (1)

being 𝑈 𝑖𝑛𝑡
𝑖 the utilisation due to the interference caused by other tasks

to 𝜏𝑖.
Expressing 𝑈 ′

𝑖 with respect to the hyperperiod, we obtain:

𝑈 ′
𝑖 =

𝐴𝑖𝐶𝑖
𝐻

+
𝐼𝑇𝑖
𝐻

(2)

being 𝐼𝑇𝑖 the total interference that 𝜏𝑖 receives due to the execution of
contenders in other cores.

In the same way, the real utilisation of a core 𝑀𝑘 is:

𝑈 ′
𝑀𝑘

=
∑

𝜏𝑖∈𝑀𝑘

𝑈 ′
𝑖 (3)

And for the total real utilisation of task set 𝜏:

𝑈 ′
𝜏 =

∑

𝑚
𝑈 ′
𝑀𝑘

(4)

3.3. Contributions

As far as the authors are aware there is no scheduling algorithm that
schedules a system like the algorithm presented in this paper where the
interference is calculated at its exact value.

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 3. Execution chronogram of the example.
With this model, the interference plays a key role in determining
the schedulability of multicore systems. In addition, we will use the
knowledge of interference to propose new allocation algorithms and
compare them with existing ones. Therefore, the main contributions of
this work are:

• Definition of a task model that considers interference delays due
to contention of shared hardware resources.

• Proposal of a new scheduling algorithm that copes with the new
task model. This scheduling algorithm is formulated to be in-
cluded in any priority-based scheduling algorithm for monocores.

• Proposal of three allocation algorithms and comparison with
existing ones in terms of schedulability and real utilisation of the
system.

4. Contention aware scheduling algorithm

This section describes the rules that a scheduling algorithm must
follow to consider the exact interference that a task suffers in each
activation. It is important to note that this scheduler does not try to
reduce interference. We will do this in the allocation of tasks to cores
in Section 5.

We initially need some definitions:

Definition 1. A task is defined as a receiving task when it accesses
shared hardware resources and suffers an increase in its computation
time due to the interference produced by other tasks allocated in other
cores.

Definition 2. A task is defined as a broadcasting task when it accesses
shared hardware resources and provokes an increase in computation
time in other tasks allocated in other cores due to contention.

If I𝑖 = 0, 𝜏𝑖 is neither a broadcasting nor a receiving task. If I𝑖>0, 𝜏𝑖
will be a broadcasting and receiving task if there is at least one task 𝜏𝑗
in other cores whose 𝐼𝑗 > 0.

Interference is produced whenever two broadcasting tasks run at the
same time in different cores. The instant in which an interference may
occur is when one of the two following situations occurs:

• A receiving task 𝜏𝑖 is released. In this moment, active broadcasting
tasks in other cores cause interference for 𝜏𝑖.

• A broadcasting task 𝜏𝑗 is released. In this moment, 𝜏𝑗 causes
interference for active receiving tasks in other cores.

Moreover, as a task can receive interference from more than one
task (if there are more than two cores), and in different instants of time,
it will be necessary to record the interference produced by each task in
a matrix.

Definition 3. Let W be a binary matrix of 𝑛 × 𝑛 ×𝐻 . At each instant
𝑡 the value of 𝑊𝑖𝑗𝑡 indicates whether 𝜏𝑖 provokes interference for 𝜏𝑗 or
not, in the following way:

• 𝑊 = 1: there is interference.
4

𝑖𝑗𝑡
• 𝑊𝑖𝑗𝑡 = 0: there is not interference.

This matrix will be used to establish when a task 𝜏𝑖 must increase
its computation time because of the interference caused by other tasks
running in different cores.

Property 1. If two tasks 𝜏𝑖 and 𝜏𝑗 are allocated to the same core 𝑀𝑘 then
𝑊𝑖𝑗𝑡= 0 and 𝑊𝑗𝑖𝑡= 0 for all 𝑡 = 0,… ,𝐻 .

Property 2. If a task 𝜏𝑖 has 𝐼𝑖 = 0 then 𝑊𝑖𝑗𝑡= 0 and 𝑊𝑗𝑖𝑡= 0 for all
𝑡 = 0,… ,𝐻 and for all j= 1,… , 𝑛.

We are going to illustrate the behaviour of 𝑊 with an example. Let
us consider the following task set, 𝜏 = [𝜏0, 𝜏1] with 𝜏0 = (1, 3, 3, 1) and
𝜏1 = (2, 5, 5, 1), allocated in a dual-core system, 𝜏0 is allocated in 𝑀0
and 𝜏1, in 𝑀1.

Fig. 3 shows the resulting rate monotonic [24] scheduling plan of
the system that also considers interference due to memory contention.
Rate monotonic is a static fixed-priority scheduling algorithm in which
the priority of a task is inversely proportional to its period. As can be
seen in the figure, there is an increase in the execution times of 𝜏0 and
𝜏1 by 𝐼1 and 𝐼0 whenever other tasks are released. If 𝜏0 or 𝜏1 releases
when the other task is not active, interference is not added.

The values of 𝑊 for each time instant 𝑡 are depicted in Fig. 4.
As is pointed in the comments, whenever there is a release of one of
the tasks while the other is still active, the corresponding value of the
matrix changes from 0 to 1. When a task 𝜏𝑖 finishes its activation, all
the elements of 𝑊 in the 𝑖th file are 0. At each instant 𝑡, if 𝑊𝑖𝑗𝑡 is 1,
this means that 𝜏𝑖 is active at instant 𝑡 and has caused an interference
for 𝜏𝑗 .

Looking at Fig. 3, we see that the total interference suffered by
𝜏0 is 2, while the interference suffered by 𝜏1 throughout H, is also 2.
Therefore, the real utilisation of each core is:

𝑈 ′
𝑀0

=
𝐶0
𝑇0

+
𝐼𝑇0
𝐻

= 1
3
+ 2

15
= 0.46

𝑈 ′
𝑀1

=
𝐶1
𝑇1

+
𝐼𝑇1
𝐻

= 2
5
+ 2

15
= 0.53

As a rule, from the study of 𝑊 we can see that an interference is
caused at time t when 𝑊𝑖𝑗𝑡 changes from 0 to 1, that is, when 𝑊𝑖𝑗𝑡 −
𝑊𝑖𝑗(𝑡−1) = 1 for all tasks 𝜏𝑗 not allocated in the same core as 𝜏𝑖.

In this way, besides accounting for the total interference received
𝐼𝑇𝑖 we can define and calculate this value for each activation, that is,
the contention-aware execution time:

Theorem 1. The contention-aware execution time 𝐶 ′
𝑖𝑠 of 𝜏𝑖 in activation

𝑠 is the sum of 𝐶𝑖 plus the interferences caused by running tasks in other
cores and can be calculated as:

𝐶 ′
𝑖𝑠 = 𝐶𝑖 +

∑

𝜏𝑗∉𝑀𝑘

(

𝑊𝑗𝑖𝑠𝑇𝑖 +
𝑡=(𝑠+1)𝑇𝑖−1

∑

𝑡=𝑠𝑇𝑖+1
max

(

𝑊𝑗𝑖𝑡+1 −𝑊𝑗𝑖𝑡, 0
)

)

⋅ 𝐼𝑗 (5)

Proof. In the interval of the s-th activation, (𝑠𝑇𝑖, (𝑠 + 1)𝑇𝑖 − 1) the
number of interferences caused by a broadcasting task 𝜏 is equal to the
𝑗

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 4. W values for the example.

number of times that 𝑊𝑗𝑖 changes from 0 to 1 from instant 𝑡 to 𝑡 + 1,
multiplied by 𝐼𝑗 . If the change is the other way round, that is, from 1
to 0, then there is no interference. In this way, we must only consider
low-to-high transitions of the 𝑊 matrix. This is expressed in the term
max

(

𝑊𝑗𝑖𝑡+1 −𝑊𝑗𝑖𝑡, 0
)

. The term 𝑊𝑗𝑖𝑠𝑇𝑖 accounts for the interference at
the initial instant in which 𝜏𝑖 releases. □

The relation between 𝐼𝑇𝑖 and 𝐶 ′
𝑖𝑠 is then:

𝐼𝑇𝑖 =
∑

𝑠
(𝐶 ′

𝑖𝑠 − 𝐶𝑖) ∀𝑠 = 0,… , 𝐴𝑖 − 1 (6)

The interference matrix 𝑊 is used to establish the exact computa-
tion time that a task should execute at each activation to consider its
worst-case execution time 𝐶𝑖 and the time added by the contention 𝐶 ′

𝑖𝑠.
This matrix must be calculated at each instant 𝑡 as part of the online
scheduling algorithm.

Listing 1 shows the pseudo-code (Python-like) of a priority (fixed or
dynamic) scheduling algorithm, while Listing 2 shows the pseudo-code
with the modifications needed to calculate 𝐶 ′

𝑖𝑠 added to the previous
algorithm.

Listing 1: Priority based scheduling algorithm for 𝑚 processors
1 #v a r i a b l e s d e f i n i t i o n and i n i t i a l i s a t i o n
2 for t in range (H) :
3 for k in range (m) :
5

4 runningTask [k] = HigherPr io r i t y (𝑀𝑘)
5 for k in range (m) :
6 currentTask [k] = runningTask [k]
7 #account f o r e x e cu t i o n
8 f i n i shed = Execute (currentTask [k] , k)
9 i f f i n i shed :

10 𝐶 ′
𝑖 = 𝐶𝑖

Listing 2: Contention-aware scheduling algorithm
1 #v a r i a b l e s d e f i n i t i o n and i n i t i a l i s a t i o n
2 for t in range (H) :
3 for k in range (m) :
4 runningTask [k] = HigherPr io r i t y (𝑀𝑘)
5 for k in range (m) :
6 𝜏𝑖 = runningTask [k]
7 i f 𝜏𝑖 != currentTask [k] && t % 𝑇𝑖 = = 0:
8 for s in range (m) :
9 i f s != k and 𝐼𝑖 > 0 :

10 𝜏𝑗 = runningTask [s]
11 W[j][i] = 1
12 𝐶 ′

𝑖 += 𝐼𝑗
13 else :
14 for s in range (m) :
15 i f s != k and 𝐼𝑖 > 0 :
16 𝜏𝑗 = runningTask [s]
17 i f W[j][i] = = 0:
18 W[j][i] = 1
19 𝐶 ′

𝑖 += 𝐼𝑗
20 for k in range (m) :
21 currentTask [k] = runningTask [k]
22 #account f o r e x e cu t i o n
23 f i n i shed = Execute (currentTask [k] , k)
24 i f f i n i shed :
25 𝐶 ′

𝑖 = 𝐶𝑖
26 for j in range (n) :
27 W[j][i] = 0
28 W[i][j] = 0

The algorithm first selects the task to run on each core according to
the selected algorithm. In this case, the task with the highest priority
is chosen for each core (line 4). For each core, the condition to add the
interference is then evaluated (line 7). If the task selected to run (𝜏𝑖) is
different from the previous task (context switch) and 𝜏𝑖 has released in
time 𝑡, then all the running tasks in the rest of the cores change from 0
to 1 the value in 𝑖 column to indicate that these tasks cause interference
for 𝜏𝑖 (line 11). 𝐶 ′

𝑖 then increases its value by the interference of the
other cores running tasks (line 12). If there is not a context switch
or the running task 𝜏𝑖 has resumed from preemption (line 13), it is
possible that in the meantime (from preemption to resume) some tasks
in other cores have been released, and so their interference must be
considered. This can be seen if 𝑊𝑖𝑗 is 0, which means that some task
𝜏𝑗 has been released in another core while 𝜏𝑖 was preempted. In this
case, the interference is added (lines 18 and 19) and recorded in 𝑊𝑖𝑗 .
All the tasks are executed once all the cores have been checked for
interference. Those that finish the execution of their activation, set their
corresponding row (as a broadcasting task) and column (as a receiving
task) in 𝑊 to 0 (lines 27 and 28). Note that it is not necessary to
define 𝑊 as a three-dimensional matrix (𝑡 dimension is removed) as
the calculation of 𝐶 ′

𝑖 𝑠 is done on the fly. The same happens with 𝐶 ′
𝑖𝑠.

This reduces notably the overhead of the algorithm.
After the completion of the scheduling on 𝐻 , 𝐼𝑇𝑖 is calculated for

each task and, so can compute the real utilisation of the system 𝑈 ′
𝜏 .

In terms of computational complexity, this algorithm consists of
three main loops. The first one is inherited from Listing 1 and it
corresponds with the complexity of RM or EDF algorithm by 𝑚 cores.

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 5. Task set and available cores in a system before allocation.
The second loop has computational complexity of 𝑂(𝑚2). The third loop
has computational complexity of 𝑂(𝑚 ⋅𝑛). Assuming that there are more
tasks than cores, 𝑛 > 𝑚 and then, the computational complexity of
algorithm of Listing 2 is 𝑂(𝑚 ⋅ 𝑛).

5. Task allocation algorithms

Prior to scheduling, it is necessary to allocate tasks to cores. As
commented in Section 2, different allocation heuristics for partitioned
multiprocessor systems exist. These have the goal of maximising the
number of tasks to allocate while assuring feasibility. However, with
our model, the real utilisation of the core is no longer 𝑈𝑀𝑘

but 𝑈 ′
𝑀𝑘

because the real utilisation of tasks 𝑈 ′
𝑖 is increased by the interferences.

The total interference received for each task 𝐼𝑇𝑖 (and, equivalently,
𝐶 ′
𝑖𝑠 in each activation) is difficult to estimate since it depends on the

scheduling of the tasks allocated to each core. For this reason, it is not
obvious to estimate in advance 𝐼𝑇𝑖 or 𝐶 ′

𝑖𝑠 to calculate the real utilisation
per core, so we can know before scheduling whether a task allocation
is going to be schedulable or not.

The goal of this section is to study 𝑊𝑖𝑗𝑡 to derive allocation algo-
rithms that try to take into account the possible interference generated
and received so that real utilisation (𝑈 ′

𝑀𝑘
) is decreased while ensuring

feasibility.
At any instant 𝑡, the interference that a task 𝜏𝑖 allocated in core 𝑀𝑘

causes all other tasks on other cores to look at their corresponding
𝑖 row of 𝑊 in which values are 1 and multiply it by 𝐼𝑖. To reduce
the interference caused, we are interested in having as many zeros as
possible in the 𝑊 matrix. The elements of row 𝑖 that are always zero
are:

• when 𝑗 = 𝑖
• when for 𝑗 column, 𝜏𝑗 is allocated to the same core than 𝜏𝑖
• when 𝐼𝑖 = 0.

Therefore, a bound for the maximum interference that a core 𝑀𝑘
can receive is:

𝑚𝑎𝑥𝑊𝑘 =
∑

𝜏𝑖∈𝑀𝑘
𝐼𝑖≠0

∑

𝜏𝑗∉𝑀𝑘

𝐼𝑗 (7)

This value cannot be reached at an instant because two tasks on the
same core cannot be active at the same time. But this bound can be
reached in an interval [𝑠 ⋅ 𝑇𝑖, (𝑠 + 1) ⋅ 𝑇𝑖].

Finally, assuming that all values of 𝑊 that can be 1 are indeed 1,
we have that the maximum value of the sum of all elements of 𝑊 is:

𝑚𝑎𝑥𝑊 =
∑

∀𝑘
𝑚𝑎𝑥𝑊𝑘 =

𝑚
∑

𝑘=1

∑

𝜏𝑖∈𝑀𝑘
𝐼𝑖≠0

∑

𝜏𝑗∉𝑀𝑘

𝐼𝑗 (8)

This is not a bound of ∑𝑗 𝐼
𝑇
𝑗 since this matrix changes as 𝑡 changes.

The total value of the interference can be greater if, for example, two
activations of 𝜏𝑗 interfere with one activation of 𝜏𝑖.

From the previous analysis of the 𝑊 matrix we can intuitively sense
that a task allocation algorithm that unbalances the load between cores,
or that minimises Eq. (8), will tend to have less real utilisation than an
allocation algorithm that balances the load between cores. However,
6

Fig. 6. Allocation of 4 tasks in 2 cores.

a task allocation algorithm that balances the load between cores will
tend to schedule more task sets that an unbalanced algorithm.

An unbalanced load is defined as a load that tries to allocate the
maximum number of tasks on the minimum number of cores is low.
One approach to exactly measure how balanced a system is with respect
to utilisation is by using the so-called utilisation discrepancy, that we
define as follows [25]:

Definition 4. The utilisation discrepancy 𝑈𝐷𝜏 can be defined as
the difference between the maximum and minimum utilisation of a
multicore system.

𝑈𝐷𝜏 =
𝑚−1
max
𝑘=0

(𝑈𝑀𝑘
) −

𝑚−1
min
𝑘=0

(𝑈𝑀𝑘
) (9)

To understand this concept, let us suppose the following task set:
𝜏0, 𝜏1, 𝜏2 and 𝜏3 with their corresponding utilisations: 𝑈0, 𝑈1, 𝑈2,
𝑈3, and two cores, 𝑀0 and 𝑀1. We do not provide all the temporal
parameters because they are not relevant for this example. Fig. 5
represents tasks and cores. Grey boxes are dimensioned depending on
the task utilisation while cores are dimensioned with white boxes with
a total length of one (maximum utilisation that can be reached by the
core).

We then make the allocation process and assign every task a core.
We have different options to make the allocation, for example, we could
assign 𝜏0 and 𝜏2 to 𝑀0 and 𝜏1 and 𝜏3 to 𝑀1. In this case, 𝑈𝑀0

= 0.6 and
𝑈𝑀1

= 0.9. Therefore, according to the definition of discrepancy, in this
allocation case, the discrepancy would be 0.3. Fig. 6 shows the resulting
allocation.

When tasks are allocated to different cores, the discrepancy would
be maximised if there is no other combination that produces a greater
discrepancy than this one. And in the opposite way, the discrepancy
would be minimised if the task allocation produces the minimum
possible discrepancy value. In this case, we can say that the cores have a
balanced utilisation task load, and an unbalanced load on the contrary.

For the reasons explained above, we can derive new allocation algo-
rithms for our model. We will propose three new allocation algorithms:

• Maximise utilisation discrepancy, 𝑈𝐷𝜏 . From now on, this algo-
rithm is called UDmax.

• Minimise utilisation discrepancy, 𝑈𝐷𝜏 . From now on, this algo-
rithm is called UDmin.

• Minimise Eq. (8). From now on, this algorithm is called Wmin.

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.

c
b

5

t
i

m

M

𝑂

Table 1
Model notation.
SETS AND INDICES
𝑖 Tasks 𝜏𝑖 ∈ {0, 1, 2,… , 𝑛 − 1}
𝑘 Cores 𝑀𝑘 ∈ {0, 1, 2,… , 𝑚 − 1}

PARAMETERS
𝐶𝑖 Worst case execution time of 𝜏𝑖
𝑇𝑖 Period of 𝜏𝑖
𝑈𝑖 Theoretical utilisation of 𝜏𝑖
𝐼𝑖 Interference factor of 𝜏𝑖 over other tasks

DECISION VARIABLES
UDmin and UDmax models
𝑂𝑖𝑘 Allocation matrix. 1 if 𝜏𝑖 allocated in 𝑀𝑘, 0 otherwise
𝑈𝑀𝑘

Theoretical utilisation of core 𝑘
𝑈𝐷𝜏 Utilisation discrepancy of the task set 𝜏

Wmin model
𝑂𝑖𝑘 Allocation matrix. 1 if 𝜏𝑖 is allocated in core k and 0 otherwise
𝑈𝑀𝑘

Theoretical utilisation of core 𝑘
𝑚𝑎𝑥𝑊 𝑘 Maximum value of the sum of all elements of 𝑊 for core 𝑘
𝑚𝑎𝑥𝑊 Maximum value of the sum of all elements of 𝑊 for all cores

Below, we will describe the three allocation algorithms. We will
heck if the previous observations hold in Section 6. The allocators will
e implemented as an integer programming formulation.

.1. UDmin And UDmax allocators

Because of their similarities, we will describe UDmin and UDmax
ogether. For that, we define a set of parameters and variables shown
n Table 1, that also defines the parameters and variables for Wmin.

Both allocators have the same constraints, but the objective is to
inimise or maximise the discrepancy.

We have that for UDmin the objective is:

inimise 𝑈𝐷𝜏 (10)

and for UDmax the objective is:

Maximise 𝑈𝐷𝜏 (11)

s.t:
∑

∀𝑘
𝑂𝑖𝑘 = 1 ∀𝑖 (12)

∑

𝑖∈𝑘
𝑈𝑖 ⋅ 𝑂𝑖𝑘 = 𝑈𝑀𝑘

∀𝑘 (13)

𝑈𝑀𝑘
≤ 1 ∀𝑘 (14)

𝑈𝐷𝜏 =
𝑚−1
max
𝑘=0

(𝑈𝑀𝑘
) −

𝑚−1
min
𝑘=0

(𝑈𝑀𝑘
) (15)

𝑂𝑖𝑘 ∈ {0, 1} (16)

𝑈𝑀𝑘
≥ 0 (17)

The model constraints are defined in Eqs. (12), (13), (14) and (15).
In constraint (12), we ensure that a task is allocated in one and only
one core. The total utilisation per core is calculated as the sum of
the task utilisations that belong to that core (Eq. (13)) and is less
than or equal to 1 (Eq. (14)). In constraint (15) we calculate the
utilisation discrepancy as the difference between the biggest and lowest
task utilisation from all cores. Consequently, the objective function is
to minimise the discrepancy in the case of UDmin and maximise the
discrepancy in the case of UDmax. Finally, Eqs. (16) and (17) represent
the decision variable domains.

Constraint (15) is not linear but is easily expressed with this for-
mulation that avoids a large set of linear and special-ordered set
constraints, plus a number of auxiliary decision variables. It is directly
supported by the solver API by performing the transformation to a
corresponding Mixed Integer Programming formulation automatically
7

and transparently during the solution process. As this constraint is not
linear and the model has binary and integer variables, it is a Mixed
Integer Non-Linear Programming (MINLP) problem.

5.2. Wmin allocator

To formulate the Wmin allocator through integer programming, let
us also use the notation in Table 1. The objective function of this
allocator is to minimise Eq. (8).

Minimise 𝑚𝑎𝑥𝑊 =
∑

∀𝑘
𝑚𝑎𝑥𝑊𝑘 (18)

s.t:
∑

∀𝑘
𝑂𝑖𝑘 = 1 ∀𝑖 (19)

∑

𝑖∈𝑘
𝑈𝑖 ⋅ 𝑂𝑖𝑘 = 𝑈𝑀𝑘

∀𝑘 (20)

𝑈𝑀𝑘
≤ 1 ∀𝑘 (21)

∑

𝜏𝑖∈𝑀𝑘
𝐼𝑖≠0

∑

𝜏𝑗∉𝑀𝑘

𝐼𝑗 = 𝑚𝑎𝑥𝑊𝑘 ∀𝑘 (22)

𝑖𝑘 ∈ {0, 1} (23)

𝑈𝑀𝑘
, 𝑚𝑎𝑥𝑊𝑘 ≥ 0 (24)

Constraints defined in Eqs. (19), (20), and (21) were explained in
Section 5.1 and define the capacity of each core.

Eq. (22) calculates the maximum interference provoked by all cores,
following Eq. (8) previously defined. Eqs. (23) and (24) represent the
decision variable domains.

As the model has binary and integer variables, it is a Mixed Integer
Linear Programming (MILP) problem.

6. Evaluation

6.1. Experimental conditions

The simulation scenario developed for this work is depicted in
Fig. 7. It is divided into five steps:

• Generation of the load (see Section 6.1.1).
• Allocation (see Section 5).
• Validation of the allocation phase (see Section 6.1.2).
• Scheduling (see Section 6.1.3).
• Validation of the scheduling phase (see Section 6.1.4).

The automatic load generator generates a task set with the process
described in Section 6.1.1. This task set is the input for the six alloca-
tors: existing FFDU, BFDU, and WFDU (which correspond with the FF,
BF and WF heuristics described in Section 2 and in which the items are
ordered according to decreasing utilisation DU) and UDmin, UDmax,
and Wmin proposed in this work. The result of the allocations is then
evaluated to check their feasibility. The feasible allocations and the task
set are the input for the scheduler, that generates the six scheduling
plans. If they are schedulable, their performance parameters will be
stored. This sequence is repeated to complete enough simulations.

We use the Gurobi optimiser 9.0 [26], from Gurobi Optimisa-
tion, Inc., which is a powerful optimiser designed from scratch to
run in multi-core and with the capability to run in parallel mode. It
achieved performance improvements with each version and provides
a Python interface. Since version 9.0, Gurobi can solve non-convex
quadratic optimisation problems and also general constraints such as
those described in Section 5.1.

All allocators described in previous sections are executed on an Intel
Core i7 CPU with 16 GB of RAM.

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 7. Experimental evaluation overview.
Table 2
Experimental parameters.

Experimental parameters

Number of cores 2 4 8 10
Theoretical utilisation 1 2 4 5
Number of tasks 4 12 20 28
Number of broadcasting tasks 2 3 5 7

6.1.1. Load generator
The load is generated using a synthetic task generator. The number

of tasks in each set and the total system utilisation depends on the
number of cores in which they are allocated. As these experiments are
conducted in 2, 4, 8, and 10 cores, we set a reasonable number of tasks
and a feasible load for each number of cores.

Given the system utilisation value and the number of tasks for each
set, the utilisation is shared among the tasks using the UUniFast discard
algorithm [5]. Periods are generated randomly in [20,1000] and com-
putation times are deduced from the system utilisation. Without loss of
generality, deadlines are set to be equal to periods, although they could
be constrained to be less than or equal to periods.

Table 2 defines the experimental parameters selected for the eval-
uation process. The total utilisation for each task set depends on the
number of cores in which the set is allocated to and is equal to 50
percent of the maximum load of all cores. For example, the maximum
load in a system with four cores is four (𝑈𝜏 ≤ 𝑚), i.e., 400%. Therefore,
the load of a task set allocated to four cores is set to two. The number of
broadcasting tasks is set to 25% of the number of tasks in each set and
𝐼𝑖 = 1 ∀𝑖, being 𝜏𝑖 a broadcasting task. In other words, the extra time
that 𝜏𝑖 produces for other tasks executing at the same time on all other
cores due to contention is equal to one unit of time. As a reminder, if
a task is broadcasting, it will interfere with the tasks allocated in other
cores (𝜏𝑗) if their coefficient 𝐼𝑗 ≠ 0. The more broadcasting tasks, the
greater the interference that may be produced. Note that in the case of
2 cores, the percentage of broadcasting tasks is set to 50%. This is due
to the fact that, if only 25% is considered, only one task is broadcasting
and then 𝑈 ′

𝜏 = 𝑈𝜏 .

6.1.2. Validation of the allocation phase
The first validation phase consists of checking if all tasks have been

allocated to cores and ensuring that the maximum capacity per core is
not exceeded i.e. 𝑈 ≤ 1 ∀𝑘 = 0,… , 𝑚 − 1. If any of the allocators
8

𝑀𝑘
cannot allocate the task set, this task set is discarded and a new one
is generated. As we assume implicit deadlines for this evaluation, the
previous condition is sufficient. In any event, we do not use it as a
condition since 𝑈𝜏 is not the real utilisation of the system and will
be increased by the interference in the scheduling phase. Therefore,
in our evaluation, constrained deadlines can be used without loss of
generality.

6.1.3. Scheduling phase
In this phase, the contention aware scheduling algorithm proposed

in Section 6.1.3 is executed independently for all cores for the six
allocations obtained in the allocation phase. In this work, the EDF
scheduling algorithm [24] is used and, therefore, the task with the
highest priority will be the task with the shortest relative deadline. Note
that any other priority based algorithm is applicable (by implementing
it in line 4 of Listing 2). As an output of this phase, 𝑈 ′

𝜏 is obtained since
the algorithm in Listing 2 obtains the exact interference.

6.1.4. Validation of the results
The validation of the scheduling plans involves two steps. Firstly,

we must check feasibility to ensure that all deadlines are met in the
hyperperiod. Secondly, some performance parameters are obtained to
compare different methods. Specifically, we obtain the relation be-
tween the theoretical utilisation of the system and the real utilisation of
the system for each set, measured after the scheduling phase. Moreover,
once the evaluation of all sets has finished, the parameters that must
be evaluated are:

• Schedulability ratio. The percentage of task sets with feasible
scheduling plans over total task sets with feasible allocations.

• Increased utilisation. The increase in utilisation with respect to
the theoretical utilisation. This is measured as 1−∑𝑘

𝑈𝑀𝑘
𝑈 ′
𝑀𝑘

= 1− 𝑈𝜏
𝑈 ′
𝜏
.

Previous parameters are evaluated for a certain number of cores and
also for a certain percentage of broadcasting tasks.

6.2. Experimental results

The selection of the initial utilisation of the system and the number
of broadcasting tasks does affect the final outcomes. For example, in
a set with four tasks allocated to a dual-core system in which the
initial utilisation is under but near to two and three of the tasks are
broadcasting, it is highly probable that the increase in utilisation due

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 8. Experimental values of schedulability and increases in utilisation as a function of the number of cores and allocators.
to interference makes the system infeasible. In this section, the results
obtained in the evaluation are commented.

Fig. 8 depicts the results of the experimental evaluation following
the parameters in Table 2 for different numbers of cores. Fig. 8(a)
shows the percentage of schedulable sets as a function of the number
of cores in the system. As seen in the figure, as the number of cores
increases, the schedulability ratio decreases. Allocators such as FFDU,
BFDU, or UDmax minimise the number of used cores and, therefore,
the load per core is high. The increase in load due to interference
means that the cores with high utilisation cannot feasibly schedule
the tasks and so the system becomes infeasible. Moreover, the greater
the number of cores in the system, the more interference is produced.
Therefore, unbalanced cores (FFDU, BFDU, or UDmax allocators) be-
come infeasible when the number of cores increases. Likewise, balanced
cores with similar loads (UDmin and WFDU allocators) can afford
the increase of utilisation due to interference and the percentage of
schedulability is almost 100% for all experiments. The Wmin allocator
presents very good schedulability ratios, even in those systems with a
lot of cores.

Fig. 8(b) represents the increased utilisation of the system. As previ-
ously, the more cores in the system, the more interference is produced
and, therefore, the more overloaded the cores are in comparison with
the initial utilisation. WFDU, UDmin, and Wmin represent this be-
haviour. However, allocators as FFDU, UDmax, or BFDU differ from the
previous allocators, especially in the case of ten cores. This is because
they possess very low schedulability ratios (if any) and the increase in
utilisation is calculated from a small feasible sample. We observe that,
in the case of two cores, the overload is greater than in the case of four
cores. This is because in two cores, the percentage of broadcasting tasks
is 50% and in other cases it is 25% (see Section 6.1.1). Again, the more
broadcasting tasks, the greater the utilisation.

From Fig. 8 we can conclude that there is not an allocator that
dominates the others in both schedulability and increased utilisation.
The allocators that balance the load, such as UDmin and WFDU, almost
always ensure the schedulability of the sets at the expense of the
increase in load (about 3.5% in the case of ten cores). Allocators with
unbalanced loads, such as FFDU, BFDU, and UDmax, cannot ensure
schedulability, especially for a large number of cores, but the increase
in utilisation is less than UDmin and WFDU. However, Wmin presents
a good ratio of schedulability and a small increase in utilisation in
comparison with other allocators.

In all the cases, the percentage of schedulability decreases with
the number of cores (and consequently, with the number of produced
interferences) and the utilisation increases with the number of cores.

Fig. 9 depicts the schedulability ratio and the increase in utilisation
as a function of the allocators. It is calculated as the average of the
9

values represented in Fig. 8. From these figures we can conclude that
FFDU, BFDU, or UDmax allocators achieved up to 43% of schedula-
bility with a small increase in system utilisation due to interference.
However, WFDU or UDmin achieve almost 100% of schedulability at
the expense of a 2.3% increase in utilisation. Previous allocators work
in an opposite way: the former achieve an unbalanced load, which
reduces the feasibility when interference appears, and the latter ensures
feasibility but system utilisation increases. Finally, the Wmin allocator
provides a high schedulability ratio (up to 89%) with an increase in
utilisation of only 0.266%.

Fig. 10 shows the influence of the number of broadcasting tasks in
the schedulability ratio and the increase of utilisation, for each allocator
evaluated in this work and following the evaluation parameters in
Table 2. From Fig. 10(a) we can conclude that the schedulability
ratio generally decreases with the number of broadcasting tasks. Only
WFDU and UDmin achieve 100% schedulability for the whole range of
broadcasting tasks. FFDU, BFDU, and UDmax are the allocators with
the lowest schedulability ratio.

In contrast, from Fig. 10(b) we can deduce that the more broadcast-
ing tasks, the greater is system utilisation. This is a common behaviour
for all allocators. WFDU and UDmin are the allocators with the high-
est increase in utilisation, while FFDU and BFDU reveal the lowest
increases. Wmin always presents an intermediate behaviour, i.e., its
schedulability decreases depending on the number of broadcasting
tasks and utilisation increases up to 0.6% (which are considerable
values in comparison with other allocators).

Therefore, it can be deduced that increasing the number of broad-
casting tasks produces an increase in system utilisation and a reduction
in the schedulability ratio for all allocators except for WFDU, and
this ensures schedulability in the studied range of broadcasting tasks.
With a major number of broadcasting tasks, WFDU will also reduce
its schedulability but we can-not observe this behaviour in the studied
range of broadcasting tasks.

Finally, the solution times for the proposed MILP approaches are
measured and depicted in Fig. 11 (note that the 𝑦-axis is represented
on a logarithmic scale and the solution time values are included in
the graph for ease of analysis and neatness). For this evaluation, we
have conducted experiments with the experimental values described in
Table 2.

Fig. 11 shows that, as the number of cores increases, the solution
time increases. This is because the more cores in the system, the more
tasks and broadcasting tasks are considered. UDmin is the approach
that takes longest to calculate the solution. This is because the algo-
rithm tries to share the load as much as possible. On the contrary,
UDmax unbalances the load, that is, at least one of the cores will remain

empty (if possible) and at least one will be full, and so the discrepancy

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Fig. 9. Experimental values of schedulability and increase in utilisation as a function of the allocators.
Fig. 10. Experimental values of schedulability and increment of utilisation as a function of the number of broadcasting tasks.
Fig. 11. Solution time for MILP approaches.

is maximised. Obtaining this solution is faster than obtaining a balanced
solution. The Wmin allocator is again an intermediate proposal.

We can conclude that if a precise adjustment in terms of discrepancy
is required, the UDmax and UDmin approaches are the most suitable so-
lutions. In the remaining cases, their analogue heuristics FFDU, BFDU,
and WFDU provide similar and faster solutions. As before, the Wmin
approach provides intermediate solution times.
10
7. Conclusions

This paper has proposed a new task model that considers the delay
produced by the contention of hardware shared resources in hard real-
time multiprocessor systems. Along with the new model, a scheduling
algorithm that considers the exact interference produced for each task
is proposed. Until now, the problem was solved by significantly in-
creasing the WCET to cope with the worst case. Our proposal is not so
pessimistic without jeopardising feasibility. Moreover, three allocators
have been proposed and compared with well-known existing allocators.

According to the experimental evaluation, we can conclude that
FFDU, BFDU and UDmax allocator algorithms behave similarly, and
UDmin and WFDU allocator algorithms also show similar behaviour. In
the case of FFDU, BFDU and UDmax allocators, we can conclude that
they reach a low rate of increase in utilisation (which is an advantage),
but on the other hand, their rates of schedulability are very low. They
may be the best choice for two core architectures.

The opposite case occurs with UDmin and WFDU allocators. They
present an excellent rate of schedulability, but they are greatly affected
by interference and so if a system needs to prioritise a low utilisation
rate then UDmin and WFDU are not the best options. Wmin is clearly
an intermediate option because it shows non-extreme rates in increases
of utilisation and schedulability. Hence, according to the needs and
requirements of a system, Wmin may be a suitable option.

We plan to further investigate the schedulability of task sets with
worst-case interference time parameters by deriving an utilisation
bound and proposing new scheduling algorithms to decrease interfer-
ence.

Journal of Systems Architecture 118 (2021) 102223J.M. Aceituno et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Multi-core Processors—Position Paper CAST-32A, Technical Report, 2016.
[2] Cobham, Multi-core software considerations, 2015, Available at https://www.

gaisler.com/doc/antn/GRLIB-AN-0005.pdf (2015/10/28).
[3] Multicore Timing Analysis for DO-178C, https://www.rapitasystems.com/

downloads/multicore-timing-analysis-do-178c, Rapita Systems.
[4] J. Galizzi, F. Vigeant, L. Perraud, A. Crespo, M. Masmano, E. Carrascosa, V.

Brocal, P. Balbastre, F. Quartier, F. Milhorat, WCET and Multicores with TSP,
in: DASIA 2014 DAta Systems in Aerospace, 2014.

[5] R. Davis, A. Burns, Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems, in: 2009 30th IEEE Real-Time
Systems Symposium, 2009, pp. 398–409, http://dx.doi.org/10.1109/RTSS.2009.
31.

[6] D. Johnson, Near-Optimal Bin Packing Algorithms (Ph.D. thesis), Massachusetts
Institute of Technology, Dept. of Math., 1973.

[7] Y. Oh, S.H. Son, Allocating fixed-priority periodic tasks on multiprocessor
systems, Real-Time Syst. 9 (3) (1995) 207–239, http://dx.doi.org/10.1007/
BF01088806.

[8] E.G. Coffman, M.R. Garey, D.S. Johnson, Approximation algorithms for bin
packing: A survey, in: Approximation Algorithms for NP-Hard Problems, PWS
Publishing Co., USA, 1996, pp. 46–93.

[9] E.G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin packing
approximation algorithms: Survey and classification, in: P.M. Pardalos, D.-Z.
Du, R.L. Graham (Eds.), Handbook of Combinatorial Optimization, Springer
New York, New York, NY, 2013, pp. 455–531, http://dx.doi.org/10.1007/978-
1-4419-7997-1-35.

[10] G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, F. Cazorla,
Contention in multicore hardware shared resources: Understanding of the state
of the art, in: WCET, 2014.

[11] D. Dasari, B. Akesson, V. Nélis, M.A. Awan, S.M. Petters, Identifying the
sources of unpredictability in COTS-based multicore systems, in: 2013 8th
IEEE International Symposium on Industrial Embedded Systems, SIES, 2013, pp.
39–48, http://dx.doi.org/10.1109/SIES.2013.6601469.

[12] T. Mitra, J. Teich, L. Thiele, Time-critical systems design: A survey, IEEE Des.
Test 35 (2) (2018) 8–26, http://dx.doi.org/10.1109/MDAT.2018.2794204.

[13] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, L. Thiele, Worst case
delay analysis for memory interference in multicore systems, in: 2010 Design,
Automation Test in Europe Conference Exhibition, DATE 2010, 2010, pp.
741–746, http://dx.doi.org/10.1109/DATE.2010.5456952.

[14] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, A
predictable execution model for COTS-based embedded systems, in: 2011 17th
IEEE Real-Time and Embedded Technology and Applications Symposium, 2011,
pp. 269–279, http://dx.doi.org/10.1109/RTAS.2011.33.

[15] B. Rouxel, S. Derrien, I. Puaut, Tightening contention delays while scheduling
parallel applications on multi-core architectures, ACM Trans. Embed. Comput.
Syst. 16 (5s) (2017) http://dx.doi.org/10.1145/3126496.

[16] S. Igarashi, T. Ishigooka, T. Horiguchi, R. Koike, T. Azumi, Heuristic contention-
free scheduling algorithm for multi-core processor using LET model, in:
2020 IEEE/ACM 24th International Symposium on Distributed Simulation and
Real Time Applications, DS-RT, 2020, pp. 1–10, http://dx.doi.org/10.1109/DS-
RT50469.2020.9213582.

[17] S. Reder, J. Becker, interference-aware memory allocation for real-time multi-
core systems, in: 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, 2020, pp.148–159.

[18] A. Crespo, P. Balbastre, J. Simó, J. Coronel, D. Gracia Pérez, P. Bon-
not, Hypervisor-based multicore feedback control of mixed-criticality systems,
IEEE Access 6 (2018) 50627–50640, http://dx.doi.org/10.1109/ACCESS.2018.
2869094.

[19] D. Casini, A. Biondi, G. Nelissen, G. Buttazzo, A holistic memory contention
analysis for parallel real-time tasks under partitioned scheduling, in: 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS, 2020,
pp. 239–252, http://dx.doi.org/10.1109/RTAS48715.2020.000-3.

[20] J. Nowotsch, Interference-sensitive Worst-case Execution Time Analysis for
Multi-core Processors (Ph.D. thesis), 2014.

[21] S. Skalistis, A. Kritikakou, Dynamic interference-sensitive run-time adaptation of
time-triggered schedules, in: ECRTS 2020 - 32nd Euromicro Conference on Real-
Time Systems, 2020, pp. 1–22, http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.
4.

[22] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, Bounding
memory interference delay in COTS-based multi-core systems, in: 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium, RTAS, 2014,
pp. 145–154, http://dx.doi.org/10.1109/RTAS.2014.6925998.
11
[23] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, Bounding
and reducing memory interference in COTS-based multi-core systems, Real-Time
Syst. 52 (3) (2016) 356–395, http://dx.doi.org/10.1007/s11241-016-9248-1.

[24] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, J. ACM 20 (1) (1973) 46–61, http://dx.doi.org/10.1145/
321738.321743.

[25] A. Crespo, P. Balbastre, J. Simo, P. Albertos, Static scheduling generation
for multicore partitioned systems, in: K.J. Kim, N. Joukov (Eds.), Information
Science and Applications (ICISA) 2016, Springer Singapore, Singapore, 2016,
pp. 511–522.

[26] Gurobi optimizer reference manual, Inc. Gurobi Optimization, 2019.

José María Aceituno was born in Valencia, Spain in 1982.
He received the B.S in computers management from the
University of Castellon in 2012 and M.S. degrees in Artificial
Intelligence in Universitat Politècnica de València, in 2016.

From 2016 to 2019, he was teacher of superior grade
formative in development web application and multiplat-
form in Ilerna Online, Spain. He is currently a Ph.D.
candidate in distributed systems at Universitat Politècnica
de València.

Ana Guasque was born in Valencia, Spain, in 1987. She
received the B.S. degree in industrial engineering from the
Universitat Politècnica de València, Spain, in 2013 and the
M.S. degree in automation and industrial computing in the
same university in 2015. She received the Ph.D. degree in
industrial engineering from the same university in 2019.

She is currently working as a researcher in Universitat
Politècnica de València. Her main research interests include
real-time operating systems, scheduling and optimisation
algorithms and real-time control.

Patricia Balbastre is Associate Professor of Computer En-
gineering at the Universitat Politècnica de València. She
graduated in Electronic Engineering in the same university
in 1998 and obtained the Ph.D. degree in Computer Science
in 2002. Her main research interests include real-time oper-
ating systems, dynamic scheduling algorithms and real-time
control.

José Simó received the M.S. degree in industrial engineer-
ing and the Ph.D. degree in computer science from the
Universitat Politècnica de València (UPV), Spain, in 1990
and 1997, respectively. Since 1990, he has been involved
in several Spanish and European research projects mainly
related to Real-Time Systems and Industrial and Embedded
Collaborations.

He is currently a Professor with the Department of
Computer Engineering, UPV. His current research is fo-
cused on the development of real-time embedded systems,
autonomous systems, and robotics.

Alfons Crespo is Professor of the Department of Computer
Engineering of the Technical University of Valencia. He
received the Ph.D. in Computer Science from the Technical
University of Valencia, Spain, in 1984. He held the position
of Associate professor in 1986 and full Professor in 1991.
He leads the group of Industrial Informatics and has been
the responsible of several European and Spanish research
projects. His main research interest include different aspects
of the real-time systems (scheduling, hardware support,
scheduling and control integration,...). He has published
more than 60 papers in specialised journals and conferences
in the area of real-time systems.

http://refhub.elsevier.com/S1383-7621(21)00156-9/sb1
https://www.gaisler.com/doc/antn/GRLIB-AN-0005.pdf
https://www.gaisler.com/doc/antn/GRLIB-AN-0005.pdf
https://www.gaisler.com/doc/antn/GRLIB-AN-0005.pdf
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
http://dx.doi.org/10.1109/RTSS.2009.31
http://dx.doi.org/10.1109/RTSS.2009.31
http://dx.doi.org/10.1109/RTSS.2009.31
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb6
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb6
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb6
http://dx.doi.org/10.1007/BF01088806
http://dx.doi.org/10.1007/BF01088806
http://dx.doi.org/10.1007/BF01088806
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb8
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb8
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb8
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb8
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb8
http://dx.doi.org/10.1007/978-1-4419-7997-1-35
http://dx.doi.org/10.1007/978-1-4419-7997-1-35
http://dx.doi.org/10.1007/978-1-4419-7997-1-35
http://dx.doi.org/10.1109/SIES.2013.6601469
http://dx.doi.org/10.1109/MDAT.2018.2794204
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1145/3126496
http://dx.doi.org/10.1109/DS-RT50469.2020.9213582
http://dx.doi.org/10.1109/DS-RT50469.2020.9213582
http://dx.doi.org/10.1109/DS-RT50469.2020.9213582
http://dx.doi.org/10.1109/ACCESS.2018.2869094
http://dx.doi.org/10.1109/ACCESS.2018.2869094
http://dx.doi.org/10.1109/ACCESS.2018.2869094
http://dx.doi.org/10.1109/RTAS48715.2020.000-3
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb20
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb20
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb20
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.4
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.4
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.4
http://dx.doi.org/10.1109/RTAS.2014.6925998
http://dx.doi.org/10.1007/s11241-016-9248-1
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb25
http://refhub.elsevier.com/S1383-7621(21)00156-9/sb26

	Hardware resources contention-aware scheduling of hard real-time multiprocessor systems
	Introduction
	Related works
	Task model and contributions
	Periodic task model
	Worst case interference time
	Contributions

	Contention aware scheduling algorithm
	Task allocation algorithms
	UDmin And UDmax allocators
	Wmin allocator

	Evaluation
	Experimental conditions
	Load generator
	Validation of the allocation phase
	Scheduling phase
	Validation of the results

	Experimental results

	Conclusions
	Declaration of competing interest
	References

