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2Department of Physics, University of Malta, Msida MSD 2080, Malta
3Department of Applied Physics and Institute of Photonic Integration,

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
4Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

(Dated: December 18, 2020)

Dynamical radiation pressure effects in cavity optomechanical systems give rise to self-sustained oscillations
or ‘phonon lasing’ behavior, producing stable oscillators up to GHz frequencies in nanoscale devices. Like
in photonic lasers, phonon lasing normally occurs in a single mechanical mode. We show here that phase-
locked, multi-mode phonon lasing can be established in a multimode optomechanical system through Floquet
dynamics induced by a temporally modulated laser drive. We demonstrate this concept in a suitably engineered
silicon photonic nanocavity coupled to multiple GHz-frequency mechanical modes. We find that the long-term
frequency stability is significantly improved in the multi-mode lasing state as a result of the phase locking. is it

clear
that
we can
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ing?

These results provide a path towards highly stable ultra-compact oscillators, pulsed phonon lasing, coherent
waveform synthesis, and emergent many-mode phenomena in oscillator arrays.

Introduction.—Recent times have seen an extraordinary
progress in exploiting radiation pressure control over optical
and mechanical degrees of freedom in cavity optomechani-
cal systems [1]. The combined advantages of high mechan-
ical coherence and quantum-noise-limited optical control al-
low the generation of pure quantum states of macroscopic me-
chanical resonators [6, 11] and their use as quantum transduc-
ers [36]. The very same advantages lead to highly coherent
self-oscillations associated with a parametric instability [2].

https://www.nature.com/articles/nature03118

Above threshold, a blue-detuned optical drive induces phonon
lasing that can be used for timekeeping, signal synthesis, nar-
rowband filters, and to study nonlinear dynamics [3].
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Even if multiple mechanical modes are coupled to a cavity,
phonon lasing takes place for a single mode whose thresh-
old condition is satisfied first, whilst the other modes get
cooled [41] — similar to gain suppression in regular lasers.

or
mode
compe-
tition?

https://journals.aps.org/pr/abstract/10.1103/PhysRev.134.A1429

Simultaneous oscillation in multiple modes was observed in
a low-Finesse cavity, but without phase locking. A reliable

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.101.133903

route to phase-locked phonon lasing opens the door to versa-
tile optomechanical signal synthesis, which is especially valu-
able at high (GHz) frequencies in chip-scale devices. More-
over, it has broad significance in view of the emergent phe-
nomena in multimode self-oscillating systems, including syn-
chronization [21, 22, 24, 25, 27, 29, 30], stability enhance-
ment [28], dynamical topological phases [20], and analog sim-
ulators.

https://advances.sciencemag.org/content/2/6/e1600236.full

In this work, we show that the single-mode lasing limita-
tion can be overcome by using a Floquet approach in which
the optical drive field is modulated in time. Recently, time-
modulated radiation pressure has been used to couple me-
chanical modes of different frequencies [40] and enable me-
chanical nonreciprocity [39], synthetic gauge fields [19], and
entanglement [12]. Establishing a Floquet theory [37, 38] for
phonon lasing, we show that a laser drive modulated at the dif-
ference between two mechanical modes’ symmetries can lead

∗ These authors contributed equally to this work
† verhagen@amolf.nl

to phase-locked coherent oscillation of both. We observe the
predicted multi-mode lasing in a silicon optomechanical crys-
tal cavity supporting two GHz-frequency mechanical modes.
We find that the long-term stability of the output microwave
tones is significantly improved, showing that the mechanisms
can be exploited towards highly stable, ultra-compact oscilla-
tors for microwave photonics.

Theoretical model.—We consider the collective dynamics
of a system consisting of N mechanical modes (labeled by j)
coupled to one optical mode, described by the Hamiltonian

ĤS/h̄ = ωop â† â +
N

∑
j=1

[
Ωj b̂†

j b̂j − gj â† â(b̂j + b̂†
j )
]
, (1)

with â (b̂j) the optical (mechanical) annihilation operator, ωop
(Ωj) the resonance frequency, and gj the vacuum optome-
chanical coupling rates. The laser driving the cavity is mod-
elled by adding ih̄[Edrive(t)â† − E∗drive(t)â] to the Hamilto-
nian, where we assume Edrive(t) = E0eiωLtT (t) and T (t)
describes amplitude modulation. Appending bath degrees of implements

inten-
sity
modu-
lation

freedom and tracing them out [1] yields quantum Langevin
equations. These can be separated into mean field and fluc-
tuation components of the mechanical and optical degrees of
freedom (â(t)eiωLt+iφ0 = α(t) + â(t) and b̂j(t) = β j(t) +
b̂j(t)), with mean fields obeying

α̇ =

{
−i
[

∆−
N

∑
j=1

gjR(β j)

]
− κ

2

}
α + E0T e−iφ0 ,

β̇ j = −
(

iΩj +
Γj

2

)
β j + igj|α|2, (2)

and linearized dynamics for the fluctuations

˙̂a = −
(

i∆ +
κ

2

)
â+ i

N

∑
j=1

gj[αR(b̂j) + âR(β j)] +
√

κâin,

˙̂bj = −
(

iΩj +
Γj

2

)
b̂j + igj(α

∗â+ αâ†) +
√

Γjb̂j,in. (3)
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FIG. 1. (Color online) Multi-mode phonon lasing in a optomechan-
ical cavity. (a) Schematics of the system under consideration: two
mechanical modes at distinct frequencies are coupled to an optical
mode via photon radiation pressure and driven by an intensity mod-
ulated pump tone. (b) For a modulation frequency which is much
smaller than the difference frequency both mechanical modes result
in a thermal state. (c) With the modulation frequency approaching
the difference frequency one mode starts self-sustained oscillations
(SSO) and the other mode is driven as in the usual mode competi-
tion setting. (d) For a modulation frequency which is approximately
the difference frequency both mechanical modes start to coherently
oscillate at distinct frequencies, i.e. multi-mode oscillations (MMO)
occur. The insets show the power spectral densities of the mechanical
(left) and optical (right) modes in the respective configurations. The
numerical method and parameters for the simulations are discussed
in the main text.

Here, the optical field is considered in a rotating frame with
respect to the central laser frequency ωL such that ∆ =
ωop −ωL denotes the detuning of the central laser frequency
from the optical resonance, R(ô) = ô + ô†, and R(z) =
z + z∗. For a periodic modulation T (t) = ∑k Tke−ikΩmodt,
the equation for the mean optical field α inherits the peri-
odicity. Hence, we choose a Floquet ansatz and express α

as a truncated Fourier series α(t) = ∑n αne−inΩmodt with
n ∈ {−D, ..., D} and find that Eq. (2) reduces to the dynam-
ical system

α̇m =E0Tm − χ̃−1
cav,mαm + ∑

(p,q)
χ−1

cub,qαpα∗p−qαm−q, (4)

where p ∈ {−D, ..., D}, q ∈ {−D + p, ..., D + p}, and
the solutions of the mechanical mean fields β j(t) follow from
their solutions in Fourier space. Here, we defined χ̃−1

cav,m =

i(∆ − mΩmod) +
κ
2 , χ̃−1

me,mj = i(Ωj − mΩmod) +
Γj
2 , and

χ−1
cub,q = ∑j χ−1

OM,j(qΩmod), with χ−1
OM,j(ω)/g2

j = [i(ω −

Ωj)−
Γj
2 ]
−1 − [i(ω + Ωj)−

Γj
2 ]
−1. Finding the steady state

(α̇m = 0) requires the solution of 2D + 2 coupled real cubic
equations which has to be done numerically beyond D = 0.
Employing the resulting steady state ᾱm turns the dynamics of
fluctuation components â and b̂ into a periodic system which
can be treated with Floquet techniques [37]:

˙̂a(m) =− χ̃−1
cav,mâ

(m) − ∑
(p,q)

N

∑
j=1

χ−1
OM,jqᾱpᾱ∗p−qâ

(m−q)

+
D

∑
n=−D

N

∑
j=1

igjᾱ−nR(b̂
(m−n)
j ) +

√
κâ

(m)
in ,

˙̂b(m)
j =− χ̃−1

me,mjb̂
(m)
j + igj

D

∑
n=−D

[
ᾱ∗−nâ

(m−n) + ᾱnâ
†(m−n)]

+
√

Γjb̂
(m)
j,in . (5)

Using the input–output relations for the relevant contribu-
tions of the optical field âout(ω) = â

(0)
in (ω) −

√
κâ(0)(ω)

with input noise obeying 〈û(m)
in (ω)ŵ

†(n)
in (ω′)〉 = δ(ω −

ω′)δuwδmn(nuth + 1) leads to the stationary power spectral
density of the output field consisting of a noise floor S̃ and

multiple Lorentzian peaks proportional to n
bj
th ≡ n̄j

S(ω) = S̃ + ∑
p,j

κg2
j |ᾱp|2Γjn̄j[

(ω− ∆̃)2 + κ̃2

4

][
(ω−Ωjp)2 +

Γ2
j

4

] (6)

located at Ωjp = Ωj + pΩmod and filtered by the cavity den-
sity of states. This is of Lorentzian form, with frequency-

independent effective detuning ∆̄ = ∆ − ∑j,p
2gj |ᾱp |2

Ωj
, due

to the static radiation pressure, modified to ∆̃(ω) = ∆̄ +

∑j,p |ᾱp|2Im(χ−1
OM,j(ω + pΩmod)) and the effective linewidth

κ̃
2 (ω) = κ

2 + ∑j,p |ᾱp|2Re(χ−1
OM,j(ω + pΩmod)).

Stability analysis.—In order to evaluate the stability of the
mechanical motion, we can eliminate the optical field fluctua-
tion operator â(0) and analyze its effect on the Floquet modes
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of the mechanical oscillators

b̂
(m)
j [χ̃−1

me,mj − iω] =
√

Γjb̂
(m)
j,in −∑

l,p
σ
(m)
jlp (ω)R(b̂

(p)
l )

+ i
√

κgj

[
ᾱ∗−mâ

(0)
in

i(∆̄−ω) + κ
2
+

ᾱmâ
(0)†
in

−i(∆̄ + ω) + κ
2

]
, (7)

coupling the mechanical Floquet modes via the contributions

σ
(m)
jlp (ω) =

gjgl ᾱ
∗
−mᾱp

i(∆̄−ω) + κ
2
−

gjgl ᾱmᾱ∗p
−i(∆̄ + ω) + κ

2
. (8)

Without periodic drive (m ≡ p ≡ 0), the stationary mechani-
cal spectra are Sb̂j

(ω) = S̃b̂j
+ Γjn̄j[(Ω′j − ω)2 + Γ′2j /4]−1

with modified mechanical frequencies and decay rates [48, 49]

Ω′j(ω) = Ωj

√√√√1−
∆̄g2

j |ᾱ0|2[ κ2

4 −ω2 + ∆̄2]

Ωj[
κ2

4 + (ω− ∆̄)2][ κ2

4 + (ω + ∆̄)2]
,

Γ′j(ω) = Γj +
4κg2

j |ᾱ0|2∆̄ω

[ κ2

4 + (ω− ∆̄)2][ κ2

4 + (ω + ∆̄)2]
. (9)

These expressions can be used to assess the stability of the
mechanical oscillators: The mechanical decay rate Γ′j is com-
posed of decay of phonons into the bath Γj which can be coun-
teracted by the stimulated emission process for blue-detuned
driving (∆̄ < 0). In the stimulated emission process for the
respective oscillator ω = Ωj, a cavity photon with excess en-
ergy and a phonon are converted into a resonant photon and
two coherent phonons of this mode and its rate overcoming
the decay rate Γj indicates the onset of self-sustained oscilla-
tion at frequency Ωj. In the presence of the periodic drive,
there are additional contributions that modify the mechanical
decay rates

Γ′′j (Ωj) = Γ′j −∑
l,p

Re
[ (1− δjlδp0)σ

(0)
jlp σ

(p)
jl0

i(Ωl −Ωjp) +
Γl
2 + σ

(p)
jlp

]
, (10)

which can become prominent if the modulation frequency
is tuned to the difference of distinct mechanical frequencies
Ωmod = ±(Ωj − Ωl) with and j 6= l for low modulation
depths (|ᾱ±1|2 � |ᾱ0|2). These additional contributions can
be interpreted as the stimulated emission of a cavity photon
and a phonon creating a coherent phonon in a different mode.
This process can act as a seed of phase-locking between the
two mechanical modes. Additionally, Eq. (9) include the op-
tical spring effect suggesting that the central frequencies of
each oscillator Ω′j vary jointly based on uncertainties in the

mean intensity δ|ᾱ0|2 and the effective detuning δ∆̄.
To verify the existence of the multi-mode phonon lasing

state, we conduct a numerical simulation of the Itô stochastic
differential equation corresponding to Eq. (2) as depicted in
Fig. 1. The periodic drive is included by using the transfer
function of a Mach-Zehnder intensity modulator (see SI). We
employ the Euler–Maruyama scheme [50] by adding Gaussian

noise terms ξl(t) with zero mean 〈ξk(t)〉 = 0 and time corre-
lation 〈ξk(t)ξl(t′)〉 = δklλlδ(t− t′) for all 2(N + 1) compo-
nents. We choose an instructive set of parameters for two me-
chanical modes (N = 2), namely Ω1 = 5.3, Γ1/Ω1 = 0.16,
g1 = 0.80, Ω2 = 7.1, Γ2/Ω2 = 0.10, g1 = 1.1 as well
as the optical cavity ∆ = 6.1, and κ = 3 which places the
example in the resolved sideband regime. We keep all param-
eters within two orders of magnitude because stiff stochas-
tic differential equations, having parameters varying over sev-
eral orders of magnitude, cannot easily be simulated numer-
ically. To initialize the system, we evolve it without drive
(E0 = 0) and let it thermalize under cavity shot noise [51],
i.e. 〈ξk(t)ξl(t′)〉 = δαlδlkδ(t − t′). To probe the stability
of the attractor, we then drive this system with E0 = 8.9 and
phonon noise 〈ξk(t)ξl(t′)〉 = 0.01δβlδlkδ(t− t′). Using the
modulation depth of d = 0.08 while varying modulation fre-
quencies Ωmod reveals the effect of the intensity modulation.
Figure 1(b) shows that for off-resonant intensity modulation
the mechanical modes evolve in a thermal state. At interme-
diate modulation frequency, one of the two oscillators transi-
tions into self-sustained oscillations while the other is driven
at this same frequency, as depicted in Fig. 1(c). Tuning the
modulation frequency to approximately the difference of the
mechanical frequencies shows that both mechanical degrees
now undergo coherent oscillation at distinct frequencies as can
be seen in Fig. 1(d). We coin this operation multi-mode os-
cillation (MMO) since the respective peaks in the mechan-
ical spectra are described by Lorentzians with a decreased
linewidth and not by the sum of the thermal Lorentzian and
a sideband.

Experimental multimode phonon lasing.—In our experi-
ments, we used the 1D silicon optomechanical crystal cavity
depicted in Fig. 2(a). This cavity gives rise phonon lasing
at frequencies around 4 GHz under blue-detuned laser driv-
ing [53]. Interestingly, this kind of cavity supports a set of me-
chanical modes with frequencies within a phononic bandgap
that can physically be identified with oscillations of the lat-
eral corrugations [52]. Therefore, it is a highly interesting
platform to observe physics related to multimode phononics.
The fabricated cavity supports a high-quality optical mode, as
shown in Fig. 2(b) and, at least, two mechanical modes, P1
and P2, as depicted in Fig. 2(c). Notice that the cavity dimen-
sions were retrieved from the real profile obtained from the
SEM image and then simulated numerically to get the opti-
cal and mechanical field profiles. In Fig. 2(d) the thermally-
transduced power spectral density of both mechanical modes
is shown. All these measurements were performed at room
temperature and atmospheric pressure by coupling the light
into and out of the cavity with a dimple fiber taper. Notably,
the coupling rate and mechanical leakage of both mechanical
modes are quite similar, which also leads to a similar cooper-
ativity, defined as C0 = (4g2

0)/(Γmκ)), C0,1 = (5.6± 0.4)×
10−5 for mode P1 and C0,2 = (3.7± 0.3)× 10−5 for mode
P2. This means that both modes could be individually driven
to a phonon lasing state, since their features are similar to the
mechanical mode employed in [53].

In our cavity, the two mechanical modes can separately
reach the self-sustained oscillation regime under blue-detuned
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FIG. 2. (a) Scanning electron microscope (SEM) image of the
fabricated optomechanical cavity used in this work; (b) Simulated
electric field pattern of the localized optical mode in the fabri-
cated cavity. The optical mode was measured to have a reso-
nant wavelength λr=(1527.4±0.2) nm with a loaded optical qual-
ity factor of Qo=(1.32±0.1)×104 and an overall decay rate of
κ/2π=(14.88±0.08) GHz. (c) Calculated mechanical displacement
profiles of the two involved mechanical modes P1 and P2. (d)
Measured power spectral density of the thermally-transduced me-
chanical modes P1 and P2. The measurements allows us to de-
scribe the two mechanical modes as follows: resonant frequen-
cies Ω1/2π=3.899 GHz and Ω2/2π=3.845 GHz with mechanical
linewidths Γ1/2π=(2.26±0.12) MHz and Γ2/2π=(2.7±0.2) MHz
and measured optomechanical coupling rates g0,1/2π=(687±16)
kHz and g0,1/2π=(606±14) kHz.

driving, in accordance with [41], as shown in Fig. 3(a,b). The
choice of the lasing state cannot be determined a priori, and
depends strongly on the experimental conditions as the cou-
pling efficienty between the cavity and the dimple taper cavity
coupled at the close vicinity of the cavity. An example of the
driving scheme of a single self oscillating mechanical mode
is presented in Fig. 3(c), where a sweep in the laser wave-
length is performed at an laser input power of Pin = 3.16
mW at a modulation driving tone Ωmod 6= Ω1 −Ω2. Here,
we can see that once one of the mechanical modes has reach
the lasing state, the other mechanical mode P2 is damped
??. Following the theoretical results, we introduce a modu-
lation of the driving tone by a periodic signal of frequency
Ωmod = Ω1 − Ω2. However, if a sweep in the modulation
frequency is performed once one the mechanical modes is al-
ready in the SSO regime, the MMO will not be activated, as
can be appreciated in Fig. 3(c). Here, we show the amplitude
of the modes depicted in Fig. 3(b) once P1 was in the SSO
regime and Ωmod is change across the difference frequency
P1-P2. To reach the MMO regime the experiment was per-
formed as follows: First, the difference frequency between
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FIG. 3. From single mode to multimode phonon lasing. (a) Self
oscillation spectra of P2 (left) and P1 (right), without external mod-
ulation. (b) P1 SSO exitation through a wavelength scan with a blue
detuned laser respecto to the optical resonance Ωmod 6= Ω1 −Ω2.
(c) Modulation frequency scan around the difference frequency when
P1 is self oscillating. (d) MMO excitation through a wavelength scan
when Ωmod = Ω1 −Ω2. (e) Multimode lasing under an input mod-
ulation of Ωmod = Ω1 −Ω2. (First panel) Difference tone resulting
from the interaction between the two lasing mechanical modes. (Sec-
ond panel) View of the two simultaneously lasing mechanical modes.

the two involved mechanical modes was characterized at dif-
ferent laser wavelengths. Next, this difference frequency was
set as the modulation frequency of the laser driving the cavity,
and it was kept constant in the rest of the experiment. Fi-
nally, a sweep of the laser wavelength on the blue-detuned
side of the resonance was performed, reaching in this way
the multimode laser regime as depicted in the second panel
of Fig. 3(d). We were also able to see both the difference
Ω1 −Ω2, shown in the first panel of Fig. 3(d), if we send the
detected signal through a microwave mixer, which confirms
the mode-locking between P1 and P2. Here, it has to be noted
that this is not the modulation frequency tone given by the in-
tensity modulator used in our experiment, as it is filtered in
our experimental scheme for the detection configuration. This
signal corresponds to the difference P1-P2 generated by the
interference betweem P1 and P2 in the mixer set between the
photodetector and the cavity. Further details regarding the ex-
perimental setup can be found in the Supplementary Material.
This measurements was performed at a frequency span of 20
MHz and a resolution bandwidth of 1 Hz but it was limited by
the Gaussian filter of the real spectrum analyzer used in our
experiments.

Phase noise and stability analysis.— In order to character-
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ize the linewidth and stability of the oscillators, we analyzed
first the phase noise of the mechanical oscillators in both the
single and multimode phonon lasing states. Fig. 4(a,b) shows
the phase noise L( f ) when P2 is lasing and P1 is thermally
activated (as in Fig. 3(a)) because there is no external modu-
lation. In both cases (SSO and MMO), we observe the differ-
ent noise contributions that can be expected in optomechan-
ical oscillators, in particular, the white phase (1/ f 0), white
frequency, also called random phase walk, (1/ f 2) and flicker
frequency (1/ f 3) noise types [53], being in good agreement
with the Leeson’s model [56]. Phase noise values around -100
dBc/Hz at 100 kHz were observed, in agreement with [53],
which means that our device could be used as an optomechan-
ical microwave oscillator even when operated at room tem-
perature. This value is highly competitive with other optome-
chanical microwave oscilators as MEMS oscillators [61], Si
2D photonic crystal cavities [57] or SiN ring resonators [60].
From the fit of the random phase walk (1/ f 2) at Fig. 4(a,b) a
Lorenztian linewidth of Γe f f ,P2/2π '31 Hz is extracted fot
P2 in the SSO and Γe f f ,P1/2π '37 Hz and Γe f f ,P1/2π '36
Hz for P1 and P2 in the MMO, respectively. It has to be noted
that these values are slighly lower than in the case of other
reported optomechanical GHz oscillators [59].

The time evolution of the recorded spectra for both sin-
gle mode and multimode lasing are presented in Fig. 4(c,d),
where the top panel corresponds to P1 and the bottom to P2.
A small jitter of the lasing frequency can be appreciated even
with the naked eye. We attribute the time jitter to the coex-
istence of multiple competing physical phenomena (thermo-
optic nonlinearity, free-carrier refraction and absorption, op-
tomechanical interaction) as well as slow variations of the ta-
pered fiber. However, when the external modulation is active,
the two mechanical modes are phase-locked, which results in
an improvement of the long-term stability of the oscillation
frequencies in time (4(d)), remarkably improving the perfor-
mance of a single oscillator.

In order to further characterize the frequency stability of the
mechanical oscillators, we use the Allan deviation σ(τ) [54].
The resulting calculated Allan deviation for the lasing modes
is presented in Fig. 4(f) for both the single and multimode las-
ing states. Here, two different calculations of the Allan devia-
tion have been considered. For small averaging times, the Al-
lan deviation was considered to be the one obtained from the
phase noise measurements in Fig. 4(a,b), taking into account
the contributions of the random walk phase and the flicker fre-
quency noise. For large τ, the parameter was estimated from
the measurement of the evolution of the oscillation frequency
as a function of time as measured by a real-time electrical
spectrum analyzer. Further details regarding these calcula-
tions are exposed in the Supplementary Material. Here, we
can see that for low τ, the SSO and the MMO performs in
the same way. Differences at even lower τ values may be ap-
preciated if we consider the white phase noise, but may be
attributed to the lasing peak amplitude. However, the MMO
performs better in the long-term as a result of the locking be-
tween the mechanical modes. This improvement in the fre-
quency drift contribution of the Allan deviation may be related
with the driving force amplitude because the MMO regime oc-
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FIG. 4. Phase noise and stability behaviour. Phase noise of P1 (blue)
and P2 (red) in the single phonon lasing regime (SSO) when P2 is
lasing (a) and in the multimode lasing regime (b). Frequency evolu-
tion in the SSO for P1 (top panel) and P2 (bottom panel) under SSO
(c) and MMO lasing (d). (f) Allan deviation for P2 (SSO) and P1 and
P2 (MMO).

curs at less power in the cavity compared to the SSO, as it was
observed in 3. This reduction of the intensity should yield,
through a propagation uncertainty analysis (See Supplemen-
tary Material for more details (TBC- Karl’s already distributed
estimation)), a reduction of the frequency deviation and thus
providing a stabilization in the frequency [62].

Conclusion.—Our investigation shows that non-linear dy-
namics of Floquet modes can be used to enable multi-mode
phonon lasing in optomecanical systems. The analytical ar-
gument based on higher order corrections of the self-energy
being resonant for intensity modulation at the difference of
the mechanical frequencies is underpinned by numerical sim-
ulations as well as an experimental demonstration. We show
that multimode phonon lasing becomes feasible when using
an external signal that modulates the driving laser. Moreover,
we also show the improvement in the long-term stability in the
multimode lasing case. The multimode cavity used in our ex-
periments can pave the way towards to integration of multiple
coexisting GHz mechanical modes whose frequencies can be
slightly tuned by engineering the height and width of the lat-
eral corrugations. Moreover, this family of mechanical modes
can be located within a complete phononic bandgap [53],
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which should lead to very large mechanical quality factors
when working in cryogenic environments.
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