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Abstract

Capsule endoscopy (CE) is a widely used, minimally invasive alterna-
tive to traditional endoscopy that allows visualisation of the entire small
intestine, whereas more invasive procedures cannot easily do this. However,
those traditional methods are still commonly the first choice of treatment
for gastroenterologists as there are still important challenges surrounding
the field of CE. Among others, these include the time consuming video
diagnosis following the procedure, the fact that the capsule cannot be actively
controlled, lack of consensus on good patient preparation and the high cost.
In this doctoral thesis, we aim to extract more information from capsule
endoscopy procedures to aid in alleviating these issues from a perspective
that appears to be under-represented in current research.

First, and as the main objective in this thesis, we aim to develop an objective,
automatic cleanliness evaluation method in CE procedures to aid medical re-
search in patient preparation methods. Namely, even though adequate patient
preparation can help to obtain a cleaner intestine and thus better visibil-
ity in the resulting videos, studies on the most effective preparation method
are conflicting due to the absence of such a method. Therefore, we aim to
provide such a method, capable of presenting results on an intuitive scale,
with a relatively light-weight novel convolutional neural network architecture
at its core. We trained this model on an extensive data set of over 50,000
image patches, collected from 35 different CE procedures, and compared it
with state-of-the-art classification methods. From the patch classification re-
sults, we developed a method to automatically estimate pixel-level probabilities
and deduce cleanliness evaluation scores through automatically learnt thresh-
olds. We then validated our method in a clinical setting on 30 newly collected
CE videos, comparing the resulting scores to those independently assigned
by human specialists. We obtained the highest classification accuracy for the
proposed method (95.23%), with significantly lower average prediction times
than for the second-best method. In the validation of our method, we found
acceptable agreement with two human specialists compared to interhuman
agreement, showing its validity as an objective evaluation method.

Additionally, we aim to automatically detect and localise the tunnel in each
frame, in order to help determine the capsule orientation at any given time.
For this purpose, we trained an R-CNN based model, namely the light-weight
YOLOv3 detector, on a total of 1385 frames, extracted from CE procedures of
10 different patients, achieving a precision of 86.55% combined with a recall
of 88.79% on our test set. Extending on this, we additionally aim to visualise
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intestinal motility in a manner analogous to a traditional intestinal manometry,
solely based on the minimally invasive technique of CE, through aligning the
frames with similar orientation and using the bounding box parameters to
derive adequate parameters for our tunnel segmentation method. Finally, we
calculate the relative tunnel size to construct an equivalent of an intestinal
manometry from visual information.

Since we concluded our work, our method for automatic cleanliness evaluation
has been used in a still on-going, large-scale study, with in which we actively
participate. While much research focuses on automatic detection of patholo-
gies, such as tumors, polyps and bleedings, we hope our work can make a
significant contribution to extract more information from CE also in other
areas that are often overlooked.
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Resumen

La endoscopia capsular (CE) es una ampliamente utilizada alternativa
mínimamente invasiva a la endoscopia tradicional, que permite la visual-
ización de todo el intestino delgado, mientras no es posible hacerlo fácilmente
con los procedimientos más invasivos. Sin embargo, esos métodos tradicionales
aún suelen ser la primera opción de tratamiento, ya que todavía existen
desafíos importantes en el campo de la CE, incluyendo el tiempo necesario
para el diagnóstico por vídeo después del procedimiento, el hecho de que la
cápsula no se puede controlar activamente, la falta de consenso sobre una
buena preparación del paciente y el coste alto. En esta tesis doctoral, nuestro
objetivo es extraer más información de los procedimientos de endoscopía por
cápsula para ayudar a aliviar estos problemas desde una perspectiva que
parece estar subrepresentada en la investigación actual.

Primero, como el objetivo principal en esta tesis, pretendemos desarrollar un
método de evaluación de la limpieza en procedimientos de CE automático y
objetivo para asistir la investigación médica en métodos de preparación de
los pacientes. Específicamente, a pesar de que una preparación adecuada del
paciente pueda ayudar a obtener una mejor visibilidad, los estudios sobre el
método más efectivo son contradictorios debido a la ausencia de tal método.
Por lo tanto, pretendemos proporcionar un método de ese tipo, capaz de pre-
sentar la limpieza en una escala intuitiva, con una novedosa arquitectura rela-
tivamente ligera de una red neuronal convolucional en su núcleo. Entrenamos
este modelo en un conjunto de datos extensivo de más de 50,000 parches de
imágenes, obtenidos de 35 procedimientos CE diferentes, y lo comparamos
con métodos de clasificación del estado del arte. A partir de la clasificación,
desarrollamos un método para automáticamente estimar las probabilidades a
nivel de píxel y deducir los puntos en la escala de la evaluación de la limpieza
a través de umbrales aprendidos. Después, validamos nuestro método en un
entorno clínico en 30 videos de CE obtenidos nuevamente, comparando las pun-
tuaciones resultantes con las asignadas de forma independiente por especial-
istas humanos. Obtuvimos la mayor precisión de clasificación para el método
propuesto (95,23%), con tiempos de predicción promedios significativamente
más bajos que para el segundo mejor método. En la validación, encontramos
un acuerdo aceptable con dos especialistas humanos en comparación con el
acuerdo interhumano, mostrando su validez como método de evaluación obje-
tivo.

Adicionalmente, otro objetivo de este trabajo es detectar automáticamente el
túnel y ubicar el túnel en cada fotograma. Para este objetivo, entrenamos un
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modelo basado en R-CNN, concretamente el detector ligero YOLOv3, en un
total de 1385 fotogramas, extraídos de procedimientos de CE de 10 pacientes
diferentes. De tal manera, alcanzamos una precisión del 86,55% y una recu-
peración del 88,79% en nuestro conjunto de datos de test. Ampliando este
objetivo, también pretendemos visualizar la motilidad intestinal de una man-
era análoga a una manometría intestinal tradicional, basada únicamente en
la técnica mínimamente invasiva de CE. Para esto, alineamos los fotogramas
con similar orientación y derivamos los parámetros adecuados para nuestro
método de segmentación de las propiedades del rectángulo delimitador del
túnel. Finalmente, calculamos el tamaño relativo del túnel para construir un
equivalente de una manometría intestinal a partir de información visual.

Desde que concluimos nuestro trabajo, nuestro método para la evaluación au-
tomática de la limpieza se ha utilizado en un estudio a gran escala aún en
curso, en el que participamos activamente. Mientras gran parte de la inves-
tigación se centra en la detección automática de patologías, como tumores,
pólipos y hemorragias, esperamos que nuestro trabajo pueda hacer una con-
tribución significativa para extraer más información de la CE también en otras
áreas frecuentemente subestimadas.
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Resum

L’endoscòpia capsular (CE) és una àmpliament utilitzada alternativa
mínimament invasiva a l’endoscòpia tradicional, que permet la visualització
de tot l’intestí prim, mentre no és possible fer-lo fàcilment amb els proced-
iments més invasius. No obstant això, aqueixos mètodes tradicionals encara
solen ser la primera opció de tractament, ja que encara existeixen desafiaments
importants en el camp de la CE, incloent el temps necessari per al diagnòstic
per vídeo després del procediment, el fet que la càpsula no es pot controlar
activament, la falta de consens sobre una bona preparació del pacient i el cost
alt. En aquesta tesi doctoral, el nostre objectiu és extraure més informació
dels procediments de endoscopía per càpsula per a ajudar a alleujar aquests
problemes des d’una perspectiva que sembla estar subrepresentada en la
investigació actual.

Primer, com l’objectiu principal en aquesta tesi, pretenem desenvolupar un
mètode d’avaluació de la neteja en procediments de CE automàtic i objectiu
per a assistir la investigació mèdica en mètodes de preparació dels pacients.
Específicament, a pesar que una preparació adequada del pacient puga aju-
dar a obtindre una millor visibilitat, els estudis sobre el mètode més efectiu
són contradictoris a causa de l’absència de tal mètode. Per tant, pretenem
proporcionar un mètode d’aqueix tipus, capaç de presentar la neteja en una
escala intuïtiva, amb una nova arquitectura relativament lleugera d’una xarxa
neuronal convolucional en el seu nucli. Entrenem aquest model en un conjunt
de dades extensiu de més de 50,000 pegats d’imatges, obtinguts de 35 proced-
iments CE diferents, i el comparem amb mètodes de classificació de l’estat de
l’art. A partir de la classificació, desenvolupem un mètode per a automàtica-
ment estimar les probabilitats a nivell de píxel i deduir els punts en l’escala
de l’avaluació de la neteja a través de llindars apresos. Després, validem el
nostre mètode en un entorn clínic en 30 vídeos de CE obtinguts novament,
comparant les puntuacions resultants amb les assignades de manera indepen-
dent per especialistes humans. Vam obtindre la major precisió de classificació
per al mètode proposat (95,23%), amb temps de predicció mitjanes significa-
tivament més baixos que per al segon millor mètode. En la validació, trobem
un acord acceptable amb dos especialistes humans en comparació amb l’acord
interhumà, mostrant la seua validesa com a mètode d’avaluació objectiu.

Addicionalment, un altre objectiu d’aquest treball és detectar automàticament
el túnel i situar el túnel en cada fotograma. Per a aquest objectiu, entrenem
un model basat en R-CNN, concretament el detector lleuger YOLOv3, en un
total de 1385 fotogrames, extrets de procediments de CE de 10 pacients difer-

vii



ents. De tal manera, aconseguim una precisió del 86,55% i una recuperació
del 88,79% en el nostre conjunt de dades de test. Ampliant aquest objec-
tiu, també pretenem visualitzar la motilitat intestinal d’una manera anàloga
a una manometría intestinal tradicional, basada únicament en la tècnica mín-
imament invasiva de CE. Per a això, alineem els fotogrames amb similar ori-
entació i derivem els paràmetres adequats per al nostre mètode de segmentació
de les propietats del rectangle delimitador del túnel. Finalment, calculem la
grandària relativa del túnel per a construir un equivalent d’una manometría
intestinal a partir d’informació visual.

Des que concloem el nostre treball, el nostre mètode per a l’avaluació au-
tomàtica de la neteja s’ha utilitzat en un estudi a gran escala encara en curs,
en el qual participem activament. Mentre gran part de la investigació se centra
en la detecció automàtica de patologies, com a tumors, pòlips i hemorràgies,
esperem que el nostre treball puga fer una contribució significativa per a ex-
traure més informació de la CE també en altres àrees sovint subestimades.
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Chapter 1

Introduction
In this chapter we discuss the motivations behind the work in this thesis and

identify the objectives, while we also provide the general outline and explain
why this differs somewhat from standard convenience.
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1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



1.1. Motivation

1.1 Motivation

Capsule endoscopy is an endoscopic method of diagnosis that first emerged in
the early years of this century as a minimally invasive method of diagnosis of
the small intestine. Throughout its two decennia of existence, the method was
further developed and advanced into hospitals world-wide. While the term
can be used for methods of visualisation of any part of the gastro-intestinal
system in general through a capsule-shaped device, generally consisting of at
least a printed circuit board (PCB) and a camera, in this work we use it to
refer exclusively to the method aimed at visualisation of the small intestine.
Due to the size of the capsule and other practical reasons, storage of the
recorded video usually happens on an external device to which the recorded
data is transmitted wirelessly. Therefore this method is also referred to as
wireless capsule endoscpoy (WCE), which can be often used interchangeably.
In this work we will the shorter, more generic term capsule endoscopy, simply
abbreviated CE.

One of the greatest advantages of capsule endoscopy compared to earlier en-
doscopy techniques, hereafter called traditional techniques, is that the proce-
dure is minimally invasive for the patient. While the pill needs to be activated
by a doctor and the patient needs to be observed during the initial phase, the
patient does not need sedation and can carry out the rest of his daily activities
as normally while the capsule makes its way through the intestine. As the data
is recorded on an external device, the patience does not need to retrieve the
swallowed device afterwards and can simply return the external device with
the recorded video.

Not only is CE minimally invasive compared to other endoscopy techniques,
but another important advantage was also the first method that allowed vi-
sualisation of the entire small intestine, in contrast to traditional endoscopy
techniques that only allowed for the visualisation of the stomach and the first
part of the small intestine (upper gastro-intestinal endoscopy) or the colon
and the last part of the small intestine (colonoscopy). Just shortly after
capsule endoscopy was introduced, another new method of enteroscopy was
introduced that allowed for visualisation of the entire intestinal tract, with
real-time control and possibility of intervention, just like traditional endoscopy
techniques [99]. While this method may be a better option in the knowledge
that a patient may require surgery, it has the same level of invasiveness as the
traditional endoscopy methods. Capsule endoscopy is therefore still the least
invasive method for the purpose of diagnosis.
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1. Introduction

Despite the obvious advantages, there are also important disadvantages. One
of these, is that the relevant parts of the videos resulting from CE procedures
are on average between 3 and 4 hours long and to analyse this material man-
ually, a trained gastroenterologist needs to spend approximately 1.5 hour per
video diagnosis. Not only is this costly both in time and money, it has also been
shown to lead to fatigue due to which pathologies can be missed. Therefore,
an important area of research on capsule endoscopy focuses on the automatic
detection of pathologies to aid the diagnosis in a direct fashion. Even though
we also started working on this initially, focusing on detection of intestinal
bleedings, we soon realised that this area of research is quite saturated, while
in cooperation with hospital La Fe in Valencia we identified other important
areas of research that could contribute to the advancement of the technol-
ogy in to a similar extent and are in fact under-represented in contemporary
research.

Namely, in contrast to traditional endoscopy techniques, capsules move
through the intestine passively as opposed to being actively controlled or
steered. Due to this, there is no option to focus on a certain area or to
purposely revisit an area seen before. While there is already little sense in dis-
posing of an irrigation system to clear up liquids or objects that compromise
visibility, due to a lack of control over the capsule throughout the procedure,
by design they do not have the capacity for this either. As a consequence,
some of the videos cannot be analysed properly due to the presence of intesti-
nal content, such as bile, bubbles and remainders of food, which thus prevents
a clear vision of the mucosa in those sections of the video. To overcome this
disadvantage and work towards making capsule endoscopy a more widely ap-
plicable diagnostic method, this is the main problem we focus on in this thesis
project.

To optimise the chances for proper analysis of the CE procedure and to prevent
the procedure from being rendered useless, different clinical centres around
the world employ different methods of patient preparation. Current popular
methods of patient preparation are a clear liquid diet and osmotic laxatives,
such as polymer laxatives (polyethylene glycol-electrolyte solutions) and saline
laxatives (aqueous sodium phosphates solutions) [64]. All of these solutions
work through drawing large amounts of liquid to the intestine, thus softening
the stool and causing watery bowel movements, clearing the stool from the
intestine. In the case of the clear liquid diet, this is done through ingesting
large amounts of water (up to 4 liters) orally. The laxatives work by drawing
water into the intestines and retaining it through osmosis, which can cause
dehydration as a side effect. The saline laxatives essentially consists of salts
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in liquids and thus acts very rapidly, within 30 minutes to 3 hours. The type
of polymer laxatives instead consists of large molecules that cause the stool
to hold and retain water [78]. This type usually has a slower effect and is
therefore better tolerated, with results expected in about 6 hours.

As these methods of patient preparation correspond to different levels of toler-
ance for the patient, ideally the methods with lower tolerance should only be
used if they have an obvious advantage to the methods that are better toler-
ated. Although the manufacturer of the most widely used capsule endoscope
only states to put the patient on a liquid diet in its official manual, it is often
argued that best results are obtained in combination with laxatives. Several
studies have attempted to compare these, but there is currently no consensus
due to the absence of an accurate and objective evaluation method. The most
often employed evaluation method in this context is human evaluation. Such
evaluation is performed by having several experts rate the cleanliness of the
CE videos, such as in the work by Lai et al. [44]. These methods suffer from
high subjectivity that is inherent to the human mind, as human judgement
is influenced by other factors such as mood and fatigue. This could result
in a single video being rated differently not only between two different per-
sons (inter-rater), but also by the same person when asked to rate the same
video twice at different moments in time (intra-rater). To solve the issue of
subjectivity, a computerised method was proposed by Klein et al. [41]. Com-
puterised methods that always judge videos the same way by exactly the same
criteria are guaranteed to always obtain the same results for the same video
and therefore have a high intra-rater reliability. The problem with comput-
erised methods is accuracy, as they may not evaluate images the same way as a
human expert would. That method, for example, only considered global frame
information, such as the dominant colour values per frame [41], without con-
sidering textural differences information and locally occurring colours in each
frame, while exactly the combination appears to be of influence in problem.

Other than the above, we identified issues with capsule localisation throughout
the CE procedure. Namely, due to a lack of active control, it often remains
unclear where the capsule is located at a random point in time of the CE
procedure. Although localisation methods using RF-sensors that are attached
to the patient’s body exist, they are often found to perform poorly in practice.
In this context, determining the orientation of the capsule can be a significant
help in methods that attempt to determine this from visual information, which,
in turn, has shown to be of added value to RF-based localisation methods.

One of the other developments that give hope in this matter is research after
actively controlled capsules. This partially inspired our secondary objective,
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as such capsules would require a method of detecting the way forward, which
we later introduce as detection of the tunnel. At the same time, the issues
we encountered with currently investigated active control capsules directed
our attention to research on intestinal motility, as one of the main obstacles
in that field, while it is the driving force for the uncontrolled capsules. Not
only does this have a significant impact on the locomotion of the capsule,
but it is also related to many intestinal diseases. The diagnosis of motility
is rarely performed through capsule endoscopy, however, although we believe
much more information can be extracted from this procedure, which can be
helpful both in diagnosis and for technical purposes related to the capsule.

1.2 Objectives

Based on the prior discussion, we defined two objectives we aim to achieve in
this work. Namely, our main objective is to develop a tool that can evaluate
the amount of intestinal content automatically, objectively and accurately. To
achieve this objective, most importantly, we aim to design a highly accurate
intestinal content detection method through several iterations of experiments
and research. We then aim to designed a method that automatically converts
the detection results to per-frame and per-video cleanliness scores, designed
to be equivalent to the medical scales used in prior medical studies. Finally,
we conclude this objective by performing an extensive validation in a clinical
setting to assure acceptable performance of our method in clinical use.

Additionally, we defined a secondary objective for our work, namely to auto-
matically detect and localise the tunnel, both in state of contraction and in
state of relaxation of the intestinal muscles, in order to help determine the
capsule orientation at any given time. This can prove useful in the localisa-
tion of the capsule, navigation algorithms for future capsules and alignment
of frames. Following up on this, we aim to benefit from the latter purpose of
this method, the alignment of frames, to visualise intestinal motility directly
from the CE recording. Although currently the main benefit of the motility
visualisation method will be to aid in diagnosis of motility disorders using
solely minimally invasive techniques, we believe it can also be useful in future
methods to improve mechanisms in the active locomotion in future capsules,
where intestinal motility is one of the main obstacles encountered.
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1.3 Outline

While our objectives share a related general purpose, they are substantially
different from each other at the same time. Therefore, throughout the research
work carried out in this thesis, for each of the objectives we based our work on
separate research on important state of the art methods and techniques, and
carried out separate which led to separate discussions. Therefore, we decided
to structure this thesis differently from standard convenience.

We first introduce the domain of capsule endoscopy, in which all of our work
aims to make progress, in Chapter 2. We then dedicate the next two chapters
to our main objectives, namely the assessment of the degree of visibility in
Chapter 3 and the determination of capsule orientation for intestinal motility
visualisation in Chapter 4. Within each of these chapters, we discuss the spe-
cific problems, prior research in the field, the theory of our overall methods,
describe the experiments carried out in each context and discuss the results.
Broader background on the theory that is shared among the methods in both
chapters, but which some readers of the target audience may already be fa-
miliar with, is included as an appendix in Appendix A. Finally, we end with a
general conclusion on all of the work carried out in the context of this thesis
in Chapter 5, followed by the publications resulting from our work.
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Chapter 2

Capsule Endoscopy
The work in this thesis project is based on the diagnostic procedure of capsule

endoscopy. Therefore, as a part of the motivation of this thesis, we already
briefly described the procedure and discussed its advantages and disadvantages
compared to more traditional methods in the previous chapter. In this chapter,
we discuss the general procedure, the characteristics of the specific model of
the capsule endoscope that we used in all of our work, the PillCam SB 3, and
describe the manner in which we extracted our data for use in our methods.
We also briefly discuss the future of capsule endoscopy and the relevance of
our work in light of this.
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2.1 The Procedure

The procedure of capsule endoscopy in fact starts before the patient swal-
lows the pill-sized device, namely when the patient’s bowel is prepared. If
the patient were allowed to ingest food as normally, the view of the mucosa
would be obstructed by bile, intestinal liquid and remainders of food, prevent-
ing a proper diagnosis. Therefore, in first instance, the patient will have to
stop eating or ingesting liquids at least 12 hours before ingesting the capsule
endoscope [14].

However, as we will discuss in detail in the next chapter, a further preparation
is recommended. This preparation may consist of clear liquid diets and/or
specific laxatives. Studies have been performed on the effectiveness of these
preparation methods, but have thus far not been conclusive. This one of the
major issues in capsule endoscopy that we address in this work.

For the start of the actual procedure, the patient will be required to come
to the hospital to ingest the pill-shaped device, as shown in Figure 2.1, with
instructions from and under supervision of a gastroenterologist. There, the
patient is instructed about the procedure by gastroenterologists. Although
differences between models and manufacturers may exist, the device generally
transmits video to an external receiver that is worn around the waist with
a belt. Some models include sensors to determine the location of the pill
that corresponds to the recorded video, but this has been shown not to be
satisfactory.

As soon as the device is activated and starts recording, the patient swallows
the device with water, while he preferably remains in the room until the pill
has successfully made its way to the small intestine. From that moment, the
patient can go home or to work and continue his daily life as normally. The
device commonly takes anywhere between 6 and 10 hours for to complete its
trajectory through the small intestine, after which the patient will be required
to return the external storage device for reading of the diagnosis by gastroen-
terologists. Depending on the diagnosis, the patient may be required to return
for surgery of the affected part of the intestine.
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Figure 2.1: The PillCam SB 3, which is the capsule endoscope model used in this
work.

2.2 PillCam SB 3

2.2.1 Hardware Component

According to the manufacturer, the PillCam SB 3 system consists of the spe-
cific SB 3 capsule, the SB 3 sensor belt, the SB 3 recorder and the SB 3 sensor
array. The sensor belt has been designed to store the recorder comfortably
and wear it comfortably over a single layer of clothing around the waist while
the patient continues his daily life. The recorder runs on proprietary firmware
and is mainly required for storing the video for its later interpretation by a
gastroenterologist. However, it is also equipped with small display that can
show the status of the capsule, as well as the live recording for usage by a gas-
troenterologist, mainly to ensure that the device passes through the stomach
successfully. The sensor array can be attached to the belt and features 8 leads
that are placed carefully on the patient’s body in order and receive transmis-
sion data, which is then combined to estimate the location of the capsule in
two dimensions. Each of sensor leads has a diameter of 40 mm.

In this work, we focus on the capsule, and mainly on its camera. The PillCam
SB 3 capsule is the third capsule endoscope model from its manufacturer,
Given Imaging, although this manufacturer was acquired by Covidien in 2014,
while Covidien was acquired by Medtronic in 2015 [16]. Figure 2.1 shows
a photograph of this model. The following information is as provided by the
manufacturer [59]. It is cilinder-shaped with a length of 26.2 mm, a diameter of
11.4 mm and a weight of 3.0 mm. The encapsulation of the device is made out
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of biocompatible plastic, while it also has mercury-free silver-oxide batteries
and the system as a whole can operate at temperatures between 20 and 40
degrees, as necessary in the small intestine.. To provide the necessary light
for recording in the dark small intestine, it has 4 white light emitting diodes
on each side. The reported viewing angle as measured by the ISO-18600-3
standard is 156 degrees. Most important for the work in this thesis is the
frame rate of the device, which is variable between 2 and 6 frames per second,
depending on how fast the capsule is moving at each moment. The operating
time is at least 8 hours.

2.2.2 Video Recordings

Videos from the capsule endoscope are recorded in a proprietary file format.
This file format is read by the accompanying RAPID Reader software, which
provides the necessary tools to playback the videos, skip through them. To
facilitate reading the videos for gastroenterologists, it also provides visual aids
and basic detectors, such as a colour bar, an integrated bleeding detector and
a detector of the different segments of the intestine. Most importantly in our
work, the software allows saving fragments or single frames, annotated or raw,
in MPEG-format or JPEG-format respectively, which allows to process them
further as these are open formats that are easily read through readily available
functions in MATLAB and common software libraries.

In this work, we exclusively used the exported videos from RAPID Reader.
The MPEG-format in which these videos are saved, contain a header which de-
fines general parameters for the video such as frame rate and encoding scheme.
This encoding scheme then encodes the pixel colour values in an efficient man-
ner to save storage space, which can be decoded to obtain a single tuple of
colour values per pixel. These values define a colour according to a specific
colour scheme or colour space, which depends on the encoding scheme. In
the case of the encoding schemes used in MPEG, colour values are encoded
in the RGB colour space, which encodes colours in a 3-dimensional tuple of
red, green and blue intensity values. As colour spaces play an important fea-
ture extraction and were therefore also an important part of our research, we
discuss them in more detail in Section 3.3.1.
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2.3 Data Collection

2.3.1 Extraction Procedure

As briefly discussed, we extracted all data used in this work from videos that
we exported through RAPID Reader. Namely, early in our experiments we
noticed that the frames exported separately as JPEG-files through RAPID
Reader had a higher resolution (or lower compression rate) than the MPEG-
videos. To make our models perform well in the analysis of those videos
and make them more robust in general, we thus decided to exclusively train
our models on the frames extracted from lower-quality videos. These were
extracted by an experienced gastroenterologist. In the cases where we required
the entire small intestine visualisation, the gastroenterologist was instructed
to mark the entrance points to and exit points from the small intestine in
the RAPID Reader software, after which the video fragment in between those
locations could be exported and saved in MPEG-format through a feature of
the software that exports the fragment in between marked frames. These are
the videos we then considered as the entire original videos in our experiments.
In cases where we needed specific data for training, such as frames showing
pathologies, the gastroenterologist was instructed to select those frames and
export the fragment around it through another feature that saves the fragment
to an MPEG-video with equal format and compression settings as the other
feature.

While the capsule endoscopy videos are recorded with a variable frame rate of
2 to 6 frames per second (FPS), the exported videos in fact appear to show
each frame for an equal amount of time. Namely, each frame of the exported
output video seemed to appear 5 times in the output video, while the frame
rate reported in the header is 25 FPS. While it seems this would correspond to
a rate of 5 unique frames per second, during our extraction procedure we also
noticed that not all frames from the original video are stored in the output file.
Although we cannot be sure about the number of frames that do not actually
appear in the output file, we consider it could be a substantial number, as
inputs recorded at 2 to 6 FPS of a 6 hours trajectory were often reduced to
videos of 15 minutes. We do have to note here that also in RAPID Reader
these videos actually played back with an increased frame rate with respect to
the original recording.
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2.3.2 Preprocessing

The MPEG-videos exported through RAPID Reader required further process-
ing for us to use them in our models. To start with, as all of our models
analyse videos frame by frame, we wrote a script that automatically extracts
still video frames from the MPEG-videos at predefined intervals, which are
then saved into JPEG-videos with the minimum compression rate to avoid
further data loss. These frames then served as input to our annotation tools
to extract relevant data to use those in training or testing of our models.

In this work we used three different types of annotations: image-level annota-
tions, annotation of regular regions of predefined size (patches) and bounding
box annotation with dimensions as chosen by the annotator. In all cases, an-
notations were performed by at least one experienced gastroenterologist. Our
annotation tools then saved the annotations in matching file names, in order
to extract use them as labels or further extract image regions where required
for our models.

Only in the case of annotation of patches we would further process the data.
Namely, in this case we would extract all of the annotated regions from the
original images and save them with minimal further compression into separate
files, along with their annotations by saving them into folders that matched
a specific annotation. The regions that were not annotated, which as in-
structed were usually patches that could not be exclusively assigned to one of
the classes, were discarded as uninformative and therefore not further used in
the procedure.

In all cases, we further ensured that data from a single patient was exclusively
contained in the union of the training and validation set or in the test set, and
thus never in both at the same time. We did this to assure in the evaluation
of our models that they would generalise well not only to new data from the
same patients, but also to data from patients whose intestinal tract had not
been observed by our model in the training phase.

2.4 The Future

The future branches of CE mainly focus on two interesting topics: the devel-
opment of active capsules, which can be controlled and steered through the
intestine, and automatic offline or real-time diagnosis. In some ideas, the real-
time diagnosis is integrated in a new capsule endoscope or medical device, such
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as one that detects gastro-intestinal bleeding [76]. Nonetheless, we will discuss
each of these ideas separately.

2.4.1 Active Capsules

The development of active capsules is an idea that has risen from the desire
to have the same possibilities as in manual endoscopy procedures, but with
the same level of minimal invasiveness for the patient as current methods of
capsule endoscopy. While this thesis touches this branch of development as
well in the consideration of the methods to develop, it does not have its main
context in this branch as we do not focus on the hardware development. To
give the reader a general idea of this branch of development, however, and
the plausibility of possibilities of software methods on-board of active capsule
in the future, we reviewed the work that has currently been done on the
implementation of the steering mechanisms.

Essentially, in literature we have found three options of driving forces for ac-
tive navigation: magnetism, biology-inspired approaches and electro-impulses.
Among these options, magnetism appears the most plausible and is therefore
the most widely investigated technique. The idea behind this technique is to
have a small magnet built into the capsule, which is moved by the attracting
forces of a magnet outside the body. While this magnet could be directly
controlled manually, it is often built into a robotic system which is controlled
by a through a remote control system that allows for a more intuitive control
by a doctor, in combination with a provided view from the camera of the cap-
sule. This idea was first investigated in combination with an existing external
robotic system for cardiovascular procedures [9], while another study focused
on developing a navigation method with improved usability when steering a
capsule through a liquid-filled stomach [38]. Another study also compared nav-
igation methods [13], showing that steering the robot arm through a robotic
system was more accurate than manually moving the magnet

Other options have been suggested that implement active locomotion on the
side of the capsule instead, requiring an increased power supply in the al-
ready scarce space. For this, biology-inspired approaches have been suggested
that rely on earthworm-like movements [7] or mechanical legs [66]. Electro-
impulses have also been investigated in earlier work [61], where it was proposed
to stimulate contraction of the intestinal wall through electro-impulses given
by electrodes attached to the capsule, working in symbiosis with the natural
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peristalsis of the bowel. The advantage of all these approaches is that no ex-
ternal equipment is required. A detailed review of all these and other methods
for active capsules has been performed by Keller et al. [39].

2.4.2 Computer-Aided Diagnosis

The second branch of future CE development focuses mainly on machine learn-
ing methods to perform automatic detection of pathologies and other events
of interest, they are not intended to replace human diagnosis as is sometimes
suggested, but instead as a method of improving efficiency and medical yield
of diagnosis. These methods have come a long way and are slowly being in-
tegrated in medical practice as computer-aided diagnosis (CAD) tools. This
branch of development the one in which this thesis has its main context.

While the oldest methods focus on simpler manually determined rules that are
applied programmatically, current methods are define more abstract mathe-
matical expressions and rules that are applied to input in a generic manner in
order to extract desired features from the input. These features are then fed to
a method of regression that, when correctly trained, can learn the parameters
to assign scores for the input belonging to a certain class and thus effectively
learns how to classify samples. Through methods of sampling, the combina-
tion of these can be used for object detection in images. These methods are
machine learning methods, as the algorithm learns the parameters from the
input as opposed to a human defining the parameters based on his or her own
observations. In this work we refer to these methods as traditional machine
learning methods, as opposed to the later branch of methods that we discuss in
the next paragraph. We used these methods in our work and therefore discuss
them in further detail in Section 3.3.

The later branch of machine learning methods abstracts this idea even fur-
ther by not only learning the parameters for classification, but also learning
the method of feature extraction altogether by defining a generic family of
functions for which it learns the parameters. These are also called end-to-end
learning approaches. In image processing, within these methods the convolu-
tional neural networks (CNNs) have gained significant ground. We also used
and therefore discuss them in detail in Appendix A. Within this branch, the
latest methods also incorporate the sampling method in order to turn them
into complete detectors themselves. Although this seems more convenient, we
only used these in parts of our work as we will explain in Chapter 3, and will
therefore discuss them later on in Chapter 4.
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In all of the relevant chapters referred to above, we will also discuss the meth-
ods that have been used for automatic detection of the relevant intestinal
events in prior work.
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Chapter 3

Assessment of Visibility in
Capsule Endoscopy Videos

In this chapter, we describe the methods we use for the main objective of our
thesis to develop a tool that can evaluate the amount of intestinal content au-
tomatically, objectively and accurately. We describe the different approaches
we investigated and compared for the intestinal content detection in the first
step, building up to the approach we eventually developed and integrated in
our overall method, and describe our approach to validation in a clinical set-
ting. Finally, we describe the individual experiments in detail and discuss the
results.

This chapter contains excerpts from the following works that were previously
published in the context of this thesis:

• Noorda, R.; Nevárez, A.; Colomer, A.; Pons Beltrán, V.; Naranjo
Ornedo, V. Automatic evaluation of degree of cleanliness in capsule en-
doscopy based on a novel CNN architecture. Scientific Reports 10, 17706
(2020).

• Noorda, R.; Nevárez, A.; Colomer, A.; Naranjo, V.; Pons Beltrán, V.
(2020). Automatic Detection of Intestinal Content to Evaluate Visibil-
ity in Capsule Endoscopy. In IEEE 13th International Symposium on
Medical Information Communication Technology.
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3.1 Background and Motivation

Since the introduction of capsule endoscopy, prevention of a clear vision of
the mucosa due to intestinal content has interested researchers for different
purposes. Depending on the purpose and on the available knowledge, data
and computing power at the time, some of them aimed to detect specific types
of intestinal content, e.g. bubbles, while others focused on detection of any
type. Additionally, there are also methods that aimed to not only detect all
forms of intestinal content, but to also classify each of them separately. While
most methods are based on classifying entire images, some work also aimed to
locate the intestinal content or determine how much of the image is covered
by intestinal content. Often, such methods apply segmentation methods after-
wards in an attempt to segment the area corresponding to intestinal content,
despite the absence of ground truth annotations for comparison.

The earliest work on intestinal content to our knowledge, only aiming for de-
tection of bubbles, is the work by Vilariño et al. in 2006 [91]. Their method
was based on placing a threshold on the response to a bank of Gabor filters de-
tecting the specific shape of bubbles, using an unsupervised learning method to
distinguish the frames containing bubbles from the others. Wang et al [92]. re-
cently published their work that similarly aims to detect only non-informative
bubble frames based on a threshold on a filter response, but using ring shape
selective filters instead. They report an improved sensitivity over Gabor fil-
ters, while achieving the same specificity on their data set. Other work that
was limited to the detection of bubbles is the work by Mewes et al. [60]. They
compared different descriptors based on key points detectors, testing different
combinations of key points detectors and descriptors. Additionally, they ex-
tracted statistical information from selected channels of the RGB and HSV
colour histograms. Their best results were obtained with the steerable filter
descriptor in combination with a Hessian-affine key point detector.

Methods detecting multiple types of intestinal content did so either in multiple
stages, where each stage detects a specific type of content, or detecting all types
in a single stage. A method with multiple stages was proposed by Bashar et
al. [4], detecting bubbles in the first stage and bile in the second stage. For
the detection of bubbles Laguerre Gauss circular harmonic function filters
were used, while bile was detected using colour histograms. In both stages
it used support vector machines (SVM) for classification. This method was
later modified by Sun et al. [84], who instead made use of local quantised
histograms of classic colour local binary patterns (CLBP) for the detection
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of bubbles, while it also replaced the SVM classifiers by a linear k-nearest
neighbour (KNN) classifier.

Other methods proposed the detection of intestinal content in a single stage.
Khun et al. [40] aimed to do so by extracting texture features in the form of
colour wavelet decomposition and classifying those using an SVM classifier.
Seguí et al. [77] extracted only colour information in the form of colour his-
tograms with 64 bins, which they combined with the number of keypoints de-
tected through speeded up robust features (SURF) keypoint detection. Apart
from an SVM classifier they also separately tested a neural network (NN)
classifier, generally obtaining higher accuracy for SVM.

Only a few methods have attempted to directly classify annotated regions of
intestinal content instead of whole images. One of these methods is the one
by Haji-Maghsoudi et al. [55] They proposed a multi-stage approach, where
the first stage is aimed at classifying entire images, while the second classifies
extracted non-overlapping regions of 32 x 32 pixels. In the first stage they use
morphological feature extraction in combination with fuzzy k-means, which is
fed to an NN classifier. The second stage segments the image with parameters
based on its classification results and then extracts the regions. After extract-
ing statistical features from those regions, they classify them through a second
NN, thus obtaining classified regions.

In our case, we aim to detect intestinal content for the purpose of quantifying
its presence with the ultimate purpose of comparing the patient preparation
methods that were used to prepare the corresponding patients. As we dis-
cussed in the introduction of this thesis, this interests us as this problem is still
unresolved in medical research, where human evaluation methods appeared
to be too subjective to give conclusive results, while computerised methods
employed in that context so far only considered global image features. We
thus integrated intestinal content detection into an overall method for intesti-
nal content evaluation, which combines regional results and quantifies them,
converting the results non-linearly to a medical scale to provide them in an
intuitive manner for medical doctors. We first present this overall method in
Section 3.2, as it is independent from the chosen specific intestinal content
detection, while it is necessary to understand the elements that we refer to in
the chapters of each specific approach. Namely, for the detection part we in-
vestigated different approaches for the classification of regions with intestinal
content, one based on traditional machine learning techniques, described in
Section 3.3, and the other based on Convolutional Neural Networks (CNNs),
described in Section 3.4. While one approach clearly outperforms the other in
the majority of recent cases, it is interesting to compare these in the light of
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the actual discussion about hand-crafted features as opposed to learnt features
in relation to the theoretical basis for both.

3.2 Overall Intestinal Content Assessment
Method

In this section, we detail out the different components that together compose
our intestinal content evaluation method. We first explain the general frame-
work of the regional intestinal content detection parting from CE frames as
input, thus describing the elements of our intestinal content detection method
that were common to both of our different regional feature extraction and clas-
sification methods. This manner is based on the classification of sub-regions of
the image as we will describe in Section 3.2.1. Even though techniques based on
CNNs exist that introduce for a framework that seems more efficient, namely
by directly detecting and localising objects through specific CNN architectures
that take entire images as input, we explain how the intestinal content we at-
tempt to detect differs from traditional aspects and why we thus chose for a
different approach. Subsequently, in Section 3.2.2 we explain how we generally
partitioned the data we used to train our models into different sets taking into
account the data distribution of the different training, validation and test sets
to train robust models that are evaluated in an adequate manner. We then
continue by describing the measures we used for model evaluation of all the
models that we trained through either of the two approaches in Section 3.2.3.
Afterwards, in Section 3.2.4 we explain the algorithm we used to combine the
classification results in a pixel-level intestinal content detection result and how
we visualised this. Finally, in Section 3.2.5 we explain how we quantified the
detection results in terms of a score on a bowel cleanliness assessment scale,
through a non-linear conversion, to provide results in an intuitive manner for
medical doctors.

3.2.1 Intestinal Content Detection

At the core of our method of evaluating the visibility of the mucosa is the
detection of the presence of substances that obstructs the view of the mucosa.
This includes bile, gastrointestinal liquid, bubbles and remainders of food,
which we group under the term intestinal content. An example of different
types of intestinal content we aim to detect is given in Figure 3.1. Note that
the presence of intestinal content is perfectly normal for a healthy intestine,
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Figure 3.1: Different types of intestinal content that we aim to detect in our data
set.

but to have a good visibility of the the intestinal wall, the mucosa, and pos-
sible pathological areas within, it is desired to limit its presence as much as
possible for endoscopy procedures. This goes even more for capsule endoscopy
compared to to traditional endoscopy, as we neither have active control over
the capsule nor does the capsule dispose of water to clear up the view as the
capsule traverses the intestine.

In essence, intestinal content detection is a form of object detection in images.
However, we should take into account that the shape and characteristics of
intestinal content are significantly different from those of common objects in
other scenes, as intestinal content often consists of fluids that do not have a
clear border and are therefore not clearly definable or detectable as a common
object. This played a significant role in our considerations in the design of our
detection method. While there are novel approaches that allow for accurate
object detection with high computational efficiency, those are especially effec-
tive for objects with a clear outline and inadequate for the intestinal content
we aim to detect. In our case of intestinal content detection, it is not straight-
forward to define the region we are looking to detect as a single object. Not
only does intestinal content come in many different shapes and varieties, it also
has vague borders that may make it hard for such algorithms to find the edges
of the “object”. Therefore, we instead opted for a sliding window detection ap-
proach, which has the additional advantage that we can fairly compare our two
different approaches. We did, however, use the approach of CNNs as detectors
in the detection of certain pathologies and capsule orientation estimation, in
which case our detection targets did meet the requirements for those methods
to be effective, and will therefore discuss them in detail in Chapter 4.

As our detection targets did not meet the requirements of traditional objects,
they are both difficult for a detection algorithm and for human beings to encap-
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sulate exactly within hard borders. Therefore, we considered regular sampling
to be required not only for correct classification and detection performance of
our method, but also for correct annotation of those samples. For this reg-
ular sampling we opted for the sliding window approach. This is a widely
used term in object detection in images, referring to the way the image is pro-
cessed. It generally consists in having sliding a window of a fixed size across
our input image and independently process each of the sub-images we then
obtain through this window. Although the idea can be used for a multitude
of purposes, in object detection it is common to proceed to extract features
from those sub-images and then classify those, to test whether within it we
can locate the object we are looking for. There are several parameters we can
vary in this procedure, such as the width and the height of the window, and
the step size as we slide the window, which can be different in the horizontal
than in the vertical direction. In fact, applying a convolution is also a sliding
window method as we will see in Section A.3.

Other options exist for regular sampling, such selective search and region grow-
ing. However, those techniques generally use colour- or texture-based features
to find regions that tightly contain an object, while in our classification proce-
dure we designed or automatically learnt other features that do not necessarily
match. Therefore, in this work, both in our traditional machine learning ap-
proach and in our CNN approach, we used the sliding window method to
extract square sub-images of a regular, predefined size from the image. In
the remainder of this work, we will refer to these as patches. In our case, we
aimed for square patches as the intestinal content does not have a predeter-
mined spread in either direction. Moreover, the images we use always contain
a black frame, with a semi-hexagonal central part that shows the image ac-
tually taken by the camera, as is usually the case with capsule endoscopes of
different brands. To ensure we extracted only relevant patches, i.e. patches
that do not include any mask pixels, we sampled patches only from the white
area in the mask image shown in Figure 3.2b. Concerning the patch size, in
our experiment discussed in Section 3.5.2 we verified the optimal patch size for
our models to accurately detect intestinal content to be 64× 64 pixels. Using
this patch size, we visualised all the patches we can thus extract from a single
sample CE image in Figure 3.2. In both of our concrete detection approaches
we then classified those patches at the core of our methods. Finally, from the
region classification results, we extrapolated the results to the entire image by
bilinearly interpolating between patches to perform the detection. In this way,
we obtained final detection results as visualised in Figure 3.3.
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(a) (b) (c)

Figure 3.2: (a) An example of an image from our data set. (b) The mask we apply
to this image. (c) All patches we could extract from the area of interest using our
method, scaled to fit into this figure.

Figure 3.3: An example result of the visualisation of our intestinal content detection
results.
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3.2.2 Data Partitioning

To train our models in such a way that they will correctly generalise towards
new images, we aimed to ensure that the data is properly partitioned into
training, validation and test sets. All subsets of the partitioned data should
be selected in such a way that the performance metrics are representative for
entire domain of data on which our model will eventually be used. Among
other things, it is important to consider variety in the input data and fre-
quency of occurrence of the situations we attempt to classify, which can, on
their turn, differ based on numerous variables. In the context of medical im-
ages, for example, age of a patient and patient history are just two examples
of the numerous variables that could introduce such variety. Frequency of
occurrence plays an important role when we are detecting an anomaly for ex-
ample. While an anomaly on itself could be quite rare, it may be less rare
in a certain setting, e.g. in a facility where only patients are redirected with
very specific symptoms, or patients for who other conditions have already been
ruled out by other means. There is no standard procedure to follow here, as
each domain is different and comes with its own peculiarities. In our case,
we are distinguishing between two classes: intestinal content (dirty) and the
absence of intestinal content (clean), while we are dealing with images from
many different patients. As we only have two classes, neither of which rare
in the target domain and both being approximately equally frequent, we can
ensure balanced sampling of both classes in our partitions without the need of
excessive over- or under-sampling or data augmentation.

One problem that is important to keep in mind when training and testing
a model, is that a model may overfit to the training samples. This means
that the learning algorithm finds unnecessarily complex relations between the
training samples to maximise performance on those specific samples, while
they never never represent the entire output domain, along with the problem
that there is often a degree of measurement error already present in the data.
As these complex relations do not hold for the entire target domain, the gen-
eralisation performance becomes increasingly worse as we further overfit to
the training set. Therefore, there is usually a less complex solution that, even
though it may achieve perform slightly worse on the specific training samples,
generalises better to new samples. While overfitting is not merely a problem
of the data partitioning and it is also important to consider in the configu-
ration of the hyperparameters of our training algorithm as we explain below,
the data partitioning plays an important role. A popular method to reduce
the probability that a method adjusts itself only to a specific combination of
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Figure 3.4: An example of 5-fold cross validation, which we used in our intestinal
content classification algorithms, both in the case of traditional ML methods as in
the case of CNNs. The images are thus partitioned into five different sets, each time
using one different set (marked in blue) for testing and the rest (marked in yellow)
for training.

training, validation and test data, is cross-validation. The technique of k-fold
cross-validation involves repeating the training and testing procedures k times,
using all of the available data both for training and testing, while ensuring that
each image belongs to the test set exactly 1 out of k times. In our case we
ensured this by first partitioning all of the available images into k subsets of
equal size. Then for each time we repeated the procedure, we took one of
those subsets as the test set, while we used the images from the remaining
subsets for training. In Figure 3.4 we visualise this division of frame images
over the different models, using k = 5. In this way, we thus end up with k

different models, which we test individually using the corresponding test sets.
Finally, to measure the overall performance of our method, it is common to
take the mean performance values over all models and report those values as
the performance metrics of the entire method, which is what we chose to do
in our case. We applied this technique in all cases, both for our hand-crafted
features models and for our CNN models.

While the above procedure essentially prevents overfitting and increases ro-
bustness with respect to the parameters that are optimised in the same pro-
cedure, in the case of our hand-crafted features models, we additionally have
to deal with hyperparameters, i.e. parameters that are not derived through
training and have to be set beforehand, of a separated feature extraction algo-
rithm, as we shall explain in Section 3.3. To optimise these independently, it is
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often desirable to apply the same principle as before and thus use an additional
cross-validation loop to prevent overfitting of the parameter optimisation of
the feature extraction algorithm, commonly looping over all possible param-
eter combinations. This technique of combining an external cross-validation
loop for accurate classification evaluation with an internal loop for parameter
adjustment is called nested cross-validation. Even though CNNs also have hy-
perparameters, in this case it has to be considered that training a CNN takes
a significantly greater amount of time. At the same time, different hyperpa-
rameters affect the architecture of the network and the way it deals with the
data and its optimisation with countably infinite possibilities, due to which
looping over all the different possibilities is practically impossible. Instead, in
CNNs researchers often tend to optimise hyperparameters empirically, namely
through thoughtful experimentation and through consulting previous research
on similar data sets.

This procedure is intended for testing purposes of our model in the broad sense
of the word, i.e. the entire method of describing how our input data relates to
the eventual prediction, while each of the model instances we trained through-
out the procedure is referred to as a surrogate model. This technique is often
confused with model selection. Model selection is the procedure of training
substantially different models (e.g. one based on a neural network and another
based on linear regression) and choosing for one or a subset of the models in
the broad sense of the word, such as a single best model or a voting ensemble
of different models that complement one another. This technique is mainly
interesting when we have models that are trained in substantially different
ways to detect different sorts of events or the same event based on different
information. In the case of cross-validation, however, this is not the case, as
models are optimised using the same base method, and training sets overlap
significantly. The intention behind cross-validation here is thus not model se-
lection, but model evaluation. After we have evaluated the performance of our
model on the test sets that are meant to represent new data, the test sets have
served their purpose and we discard them all, as selection of one of our models
would likely result in overfitting of the model selection to a particular subset
of our data [10]. Therefore, once we have obtained the desired statistics from
our test sets and our model has been evaluated in this way, we finally train
our model on all available data to obtain the model instance that we deploy
into our final overall method.
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3.2.3 Model Evaluation

In our case, our models are trained to classify patches into containing intestinal
content (dirty) or not containing intestinal content (clean), as explained earlier.
Since we have the true labels of each patch provided by our specialist(s), we can
determine whether the model predicted the class correctly (true positives and
true negatives) or whether it was incorrectly classified as belonging to either
the positive class (false positives) or negative class (false negatives). From
this information, we calculate three different metrics, the accuracy (ACC),
specificity or true negative rate (SPC) and sensitivity or true positive rate
(TPR):

ACC = TP + TN
TP + FP + TN + FN ,

SPC = TN
TN + FP ,

TPR = TP
TP + FN ,

where TP, TN, FP and FN represent the numbers of true positives, true neg-
atives, false positives and false negatives respectively. Here, the specificity
would thus correspond to how many of the clean regions are correctly clas-
sified as clean, while the sensitivity would correspond to how many regions
with intestinal content are correctly classified as dirty. Although these values
when considered together give a good impression of the overall model perfor-
mance, a desire to express the model performance in a single value has led to
popularisation of the Matthews correlation coefficient (MCC). Particularly for
unbalanced data sets, this value gives a better impression of the performance
than the accuracy value. Namely, it is a measure that takes into account all
four values of the confusion matrix, and is in essence a correlation coefficient
between the observed class and the ground truth label in binary classifica-
tion:

MCC = TP× TN− FP× FN√︁
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

This causes it to have low values both in the case of high sensitivity combined
with low specificity and in the case of low sensitivity combined with high
specificity.

In our case of intestinal content classification, we were able to ensure balanced
sampling of both classes due to the similar frequency of occurrence of the
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Algorithm 1 CalculatePixelProbabilities
Input: Set of all patches P from a single image I, classified with certain

probability
Input: Overlap o between patches, defined as proportion of patch size
Output: Probability image Ip where the value of each pixel corresponds

to the probability

for p ∈ P do
xmin ← minimum x-coordinate of p
ymin ← minimum y-coordinate of p
xmax ← maximum x-coordinate of p
ymax ← maximum y-coordinate of p
Ip ← image of same size as I, initialised with zeros
x← xmin

while x ≤ xmax do
xu ← x−xpl

width(p)

wx ← max(0, (1−|0.5−xu|−o)
1−o )

y ← ymin

while y ≤ ymax do
yu ← y−ypl

height(p)

wy ← max(0, (1−|0.5−yu|−o)
1−o )

Ip[x, y]← Ip[x, y] + probability(p)× wx × wy

y ← y + 1
x← x + 1

return Ip

different classes, due to which the accuracy value by itself is already valuable.
For full transparency and completeness, however, we included sensitivity and
specificity in each case, as well as single value performance metric MCC.

3.2.4 Visualisation of Results

In all of the experiments presented below, in order to determine intestinal
content contamination at a pixel level from the patch detection results, we
first used the overlap between patches to interpolate the detection scores at a
pixel level. We did this by bilinearly interpolating the patch probabilities given
by the models, assuming the given values to correspond to one of the central
pixels of each patch. Concretely, we implemented Algorithm 1 to obtain the
probabilities per pixel of our input image.
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3.2.5 Quantifying Detection Results

The most straight-forward way to quantify the detection results, is to combine
the detection results of the patches of a single image and convert them to
a percentage of intestinal content over the entire image area. However, this
may not be the most meaningful representation for gastroenterologists and
medical researchers. Instead, it is common to categorise videos on a scale
of measure. Apart from providing a more meaningful result, converting our
intestinal content evaluation to such a scale could be helpful in future medical
research work that may use our evaluation method as a tool or may want to
compare its results side by side with human evaluation. While our method
detects intestinal content at a pixel level through interpolation and can easily
evaluate its presence in relation to the clean area, such as in percentages, for
humans annotating or evaluating its presence at such precision is a close to
impossible job.

In medical research on endoscopy and capsule endoscopy, several scales have
been developed and used in the past to measure this to judge the overall clean-
liness of the gastro-intestinal system of a patient during traditional endoscopy
and capsule endoscopy procedures. In our work, we are not only interested
in an overall cleanliness of the entire video of a patient, but we also aim to
evaluate and compare results on a per-frame basis. We therefore adjusted the
scale presented in the work by Beltrán et al. [5] for CE videos to apply it to
frames as shown in Table 3.1, which we here denote the cleanliness evaluation
score. In our work, we also use this scale for alternative human evaluation
performed in parallel, so that the results can be meaningfully compared to
those of our method.

In our method we determined the cleanliness evaluation score by categorising
the video frames into one out of the four different categories of the cleanliness
evaluation score based on the average probability of a pixel corresponding to
intestinal content. This categorisation is not straight-forward, as we cannot
assume the described cleanliness evaluation score to be linearly correlated with
the amount of intestinal content present in the image. Therefore, we needed to
adjust categorisation thresholds over the probabilities of pixels being dirty ac-
cording to human evaluation, instead of simply placing the thresholds on equal
distance from each other in linear space. Both for this purpose and for the
purpose of validation discussed in the next section, we collected a set of images
annotated with a cleanliness evaluation score annotations provided by two hu-
man specialists independently. They performed this evaluation independently
and with a different random ordering of the images through a self-developed
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Name Perceived Level of Cleanliness
Poor Dense intestinal content impeding evaluation of the image.
Fair Substantial amount of intestinal content, allowing only partial

evaluation.
Good Some intestinal content, not impeding evaluation.

Excellent No intestinal content.

Table 3.1: Description of the different categories used to evaluate the cleanliness of
CE images.

tool, in which for each image they had to select the category of cleanliness they
perceived out of the four different options on the scale. We then maximised
the single rater reliability of the consistency-based intraclass correlation coef-
ficient (ICC), denoted ICC(C, 1). The ICC is a statistic that allows two-way
interrater reliability comparison involving multiple raters at once, while the
single rater reliability indicates the reliability of the measurement if we are
planning to use a single rater as the basis of the measurement [42]. The latter
is exactly what we do with our method, hence the choice for ICC(C, 1). The
idea of using the consistency-based variant, was to reward consistency rather
than absolute values in absolute agreement, to ensure that whenever the in-
terpretation of the amount of intestinal content differ significantly between
the specialists and our method for a specific set of frames, rating consistency
is still rewarded. At the same time, we aimed to reduce overfitting the rat-
ings of our method to ratings of a single human expert that contrast with the
amount of intestinal content detected by our method, and thus achieve better
generalisation towards other raters and new videos.

We performed the above mentioned optimisation procedure simultaneously
with the validation of our method in a clinical setting. This procedure is
therefore described together with the entire validation procedure in the fol-
lowing subsection.

3.2.6 Validation in Clinical Setting

Finally, we aimed to validate our method in its clinical purpose, i.e. as an al-
ternative to human evaluation in the context of cleanliness. For this purpose,
we used the data we collected as described in the previous subsection, i.e. the
data consisting of images annotated by experts with their perceived category
of cleanliness. Similarly, we processed these images with our method, parti-
tioning the data into two subsets and simultaneously quantifying the amount
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of intestinal cleanliness on the same scale as the experts for one of the subsets
of the partition and performing our validation on the other subset. As we
wanted to assure that we could find thresholds that would generalise towards
new videos not having participated in the optimisation procedure, we could
logically no longer let those images to which the thresholds were optimised
participate in the validation scores. Additionally, we needed to optimise our
thresholds on a sufficient number of images to prevent overfitting towards spe-
cific cases, and at the same time guarantee certain independence from a single
partition. Therefore, considering the limited total number of images available,
we decided to perform this learning procedure through a randomised 5-fold
cross-validation procedure on the entire set of available data. Within this pro-
cedure, we additionally ensured that the frames a single video, i.e. all images
from a single patient, all ended up in the same fold, to prevent any unfair
data similarity between the optimisation and validation images. For each fold,
we then calculated agreement statistics between our method and the medi-
cal specialists, using the thresholds we adjusted to the images from all of the
remaining folds.

The problem in determining appropriate agreement statistics, however, is that
human evaluation has shown to be highly subjective, which has exactly been
the main motivation to develop our method as an objective alternative. As
a consequence, we do not necessarily aim for our method to adjust to any
particular human cleanliness evaluation as we expect this to vary between
human experts (interrater reliability) and between different ratings performed
by the same expert at different times (intrarater reliability). Instead, our aim
in this phase is to test whether interrater agreement between our method and
human specialists is within reasonable limits of interrater agreement between
human specialists only, which we discuss later in this section.

To evaluate the comparative ratings thus obtained, we calculated Cohen’s
weighted kappa coefficient κw, which is a statistic measuring interrater agree-
ment taking into account the possibility of agreement occurring by chance [15].
Apart from correction for an estimation of agreement occurring by chance as
the standard kappa coefficient, this weighted version of Cohen’s kappa also
allows us to merge both full and partial agreement into a single value between
each two raters, along with an estimation of its 95% confidence interval. We
chose to use kappa with linear weights, denoted κ1, instead of quadratic ones,
since the choice for quadratic weights tends to systematically give higher val-
ues than linear weights [93], thus having the undesirable effect of decreasing
differences between raters in our situation. The magnitude of agreement for
different values of κw has been reason for discussion. While different inter-
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pretations of values in different ranges have been suggested in literature, the
truth is that its value also depends on other factors than agreement, such as
prevalence and bias [79], while the tendency of weighted kappa to yield con-
sistently higher values further complicates correct interpretation of its mag-
nitude. Therefore, here we mainly use the values for interrater comparison
between the different pairs of raters without using such tables in an attempt
to interpret their magnitude. In the absence of ratings from more specialists,
it is also difficult to deduce any conclusions with statistical significance about
the interrater agreement of our method with humans in general. Therefore, to
assess whether our interrater agreement with each of the specialists individu-
ally that is within reasonable limits of interhuman agreement, we calculated
κ1 both separately over each of the different folds and over the concatenated
results from all folds, in order to obtain a series of interrater agreement values
that can give a more detailed picture of the agreement ranges or variances of
κ1 along with its confidence intervals over different sets of videos and overall.
Finally, we calculated the single rater reliability of the two-way mixed, abso-
lute agreement-based ICC, denoted ICC(A, 1), over the concatenated results
from all folds, as κ1 does not allow for assessment of more than two raters at
the same time. This could correct for the influence of bias and prevalence κ1
in our two-way comparisons. We calculated this statistic twice, namely once
for all of our three raters and once leaving our method out, to assess the im-
pact of our method on the resulting values and the corresponding confidence
intervals.

3.3 Approach Based on Hand-crafted Features
and Classification

When we started our work, traditional machine learning techniques were still
widely used, although CNNs had already started to outdo traditional methods
at the time in the field of biomedical computer vision. However, at that mo-
ment we did not have the facilities at our disposal for training such networks,
while the theory behind CNNs was still not as widely accepted and understood
at the time as it is today. Additionally, we believe that insights and techniques
from the traditional fields of image processing and machine learning are also
useful in both the understanding and the application of modern end-to-end
learning.

Hand-crafted features are intuitive and therefore inviting to work with. With
this term of hand-crafted features, we refer to features that are extracted
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through hand-crafted algorithms, i.e. algorithms developed to always extract
the information somehow representing the same information, be it texture,
colour, shape or other. Even though the amount of available data plays a role
both for hand-crafted and learnt features, as we shall see, in the case of learnt
features we need significantly less data as hand-crafted features are already
specific and even in the case we want to optimise certain parameters of the
feature descriptor, this number does not compare to the number of parameters
to be learnt in the case of learnt features discussed later, having a significantly
reduced solution space.

In the case of hand-crafted features in the medical field, one generally discusses
with medical specialists about the features they observe in images from the
problem at hand when they distinguish between one case and another, to
try to find feature descriptors that aim to extract exactly this information.
In our case, we closely cooperated with medical specialists from Hospital La
Fe in Valencia to understand the different types of intestinal content, the
characteristic features of each and finally, what feature descriptors we could
use to distinguish between these. We noticed that there was an important
difference in both colour and texture features of normal mucosa compared to
intestinal content and therefore based the design of our feature extractor on
this. Separately extracting colour features and texture features and merging
those into a single feature vector, we finally extracted a feature descriptor of
32 values, with 2 values corresponding to colour features and 30 to texture.

3.3.1 Green-Red Colour Features

Colour features are those features extracted directly from the colour values that
represent an image, without considering relative ordering of pixels. Here we
can think of descriptors such as mean colour values, max and min colour values
or colour histograms. In the case of our images collected from the capsule
endoscope, images are represented in the RGB colour space as described in
Section 2.3, in such way that for every pixel in the image, we have a 3-tuple
(R, G, B), in which the values are given for the red, green and blue channel
respectively. However, many other colour spaces exist, such as HSV, HSB,
CYMK and CIE-Lab. Another representation of colours may make colours
that are relevant to a specific problem at hand better distinguishable, due to
which it may be helpful to first convert our pixel values to that colour space.

For the features we extracted for intestinal content detection in our work,
we focused on the differences in green and red colour tones between the two
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Figure 3.5: The sphere that results from plotting the different combinations of the
L, a and b values from the CIE-Lab colour space.

areas. Namely, clearly visible mucosa and its pathologies often have a pink
to reddish colour tone, while intestinal content is often dark yellow to green.
White is also a colour we often see for intestinal content in the reflection and
refraction of the capsule’s light on bubbles that are closely grouped together,
while white may also show in the reflection of light from the mucosa when it is
lightly humid. In either case, we found that closely grouped bubbles are more
clearly distinguishable for their characteristic texture rather than colour, as
we describe later.

We therefore searched for a colour space that emphasises differences between
red colour tones characterising well-visible mucosa along with potential patho-
logical areas, and the greenish colour tones that characterise intestinal content.
Through research and experiments, we found the CIE-Lab colour space to be
the most suitable, as not only is colour information separated from lightness
and saturation in this colour space, but it is also conceptually related to the
opponent colour theory in the a and b channels [94] and should thus be more
discriminative between green and red colour tones. To visualise the proper-
ties of this representation, Figure 3.5 shows different views of the sphere that
shows the resulting colours from different combinations of values of the L, a
and b components. As can be seen in the figure, the L-component controls
the amount of white, the a-component controls the amount of green and the
b-component controls the amount of blue. Since a and b represent the differ-
ent colour tones, whereas the L-component mainly controls the intensity, we
discarded the L-component in our work and calculated the average values of
the a- and b-components for inclusion in our final feature vector.
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3.3.2 Local Binary Patterns

For the extraction of textural information to distinguish between intestinal
content and clean mucosa, we used local binary patterns (LBP). The classic
method of LBP [63] works as follows for grey (intensity) images. Since we used
colour images, where each pixel is defined as a combination of three colour
channels (red (R), green (G) and blue (B)), we first created three different
intensity images per original image: one with all the R values, one with all the
G values and one with all the B values. We then applied local binary patterns
to each of these images separately, which can then be considered intensity
images for a certain colour, while we later concatenated the results. In general,
in LBP we construct an LBP image where each pixel is a representation of the
local texture. These values are obtained by comparing the intensity value of
the corresponding pixel with those in its neighbourhood and assign a unique
numeric value for each situation of interest. From this binary image, we can
then construct histograms to represent the general texture of the whole input
image or image regions.

To explain how we calculate the LBP values, we will part from an example of
an intensity image given in Figure 3.6. We then independently compare the
value of each pixel of our input image to the value of each of the pixels in
the neighbourhood, as defined by the LBP parameters, individually. In our
example we show the case of comparing a single pixel, which is the central
picture in Figure 3.6. While the radius r and the number of neighbours to
take into account P are two important parameters in LBP, in our example we
will explain the case where r = 1 and P = 8, which corresponds to exactly all
the pixels that directly surround the pixel of interest. From this comparison,
we construct a binary number, in which each bit corresponds to exactly one of
the adjacent pixels and represents how it compares to the central pixel: it is
on if its value is equal to or greater than the value of the central pixel, while
it is off if it is smaller, as shown in the upper part of Figure 3.7.

The resulting binary number thus represents the texture information of the
neighbourhood of the central pixel. For convenience, we then convert it to a
decimal number as shown in the bottom part of Figure 3.7. The resulting dec-
imal number for the pixel is then assigned to the pixel at the same position in
our resulting LBP image, as visualised in Figure 3.8, thus obtaining a resulting
image where the value at each pixel essentially indicates the texture we have
found at that location. Afterwards, we take the histogram of the LBP image
in order to obtain the feature vector.

36



3. Assessment of Visibility in Capsule Endoscopy Videos

Figure 3.6: The intensity values of a pixel of an image and its neighbours.

Figure 3.7: The construction of the binary number for the central pixel, with the
multiplication values for the conversion to a decimal number and the resulting cal-
culation of the conversion.

Figure 3.8: The calculated LBP value for the central pixel, which takes the position
of the central pixel in the LBP image.

37



3.3. Approach Based on Hand-crafted Features and Classification

While this general form of LBP is a useful feature extractor, it has been shown
that is not always descriptive enough. Particularly, it was noticed that some
patterns are more discriminative in images than others, the so-called uniform
patterns. These are the patterns that, when considering the binary string to
be circular, have at most two changes from 0 to 1 or the other way round.
In other words, these are all the patterns where all bits corresponding to the
same value are connected in a circular manner, thus essentially consisting of
a series of 0 values and 1 values. The method of uniform local binary pattern
then assigns a single, identical value to all patterns that have more than two
changes between 0 and 1. All the uniform patterns are instead assigned a
unique value. Since there are

(︁
P
2
)︁

patterns with a first change from 0 to 1
and a second change from 1 to 0 in a circular fashion, and an equal number
of patterns with a first change from 1 to 0 and a second one the other way
round, while there are two patterns that have no change, consisting of either
only values of 1 or only values of 0, and finally a single value for all of the
remaining patterns, uniform LBP has a total of

(︁
P
2
)︁
× 2 + 2 + 1 = 59 values.

Separately, a rotation invariant version of LBP, LBPri
P,R was developed. This

variant considered that the same pattern in the image, when rotated, was
assigned a different value by the definition of LBP. Therefore, this variant
aimed to align the values that detect the same pattern in a rotated form and
assign to them an identical value. Concretely, the binary LBP number is
circularly right shifted bit-wise until the maximal number of most significant
bits are 0. In case P = 8, for example, it has been shown that we can obtain
36 different values in this way.

From the combination of these two variants, finally the variant was derived
that we use in this work, denoted LBPriu2

P,R [62]. This variant is invariant under
rotation and robust against resolution changes. As in uniform LBP, we only
assign unique values to the uniform patterns, and assign the same value to
all other ones. But as in LBPri

P,R, we first perform a circular right bit-wise
shift until we obtain the number with the maximal number of 0-valued most
significant bits. Concretely, if the number of changes (from one to zero or
zero to one) in our binary number is at most 2, we rotate the number until
it has the greatest number of adjacent zeroes in the first positions. To each
of these situations we then assign a unique value, while all other patterns are
represented by a single default value. As all of the 0-valued bits are always
connected, we thus end up with P + 1 distinct values from 0 to P for the
uniform patterns, as shown in Figure 3.9, plus 1 additional default value P +1
that is assigned to all of the remaining patterns. This finally results in P + 2
distinct possible values for the LBPriu2

P,R method.
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Figure 3.9: The 9 distinct uniform LBP patterns in the rotation-invariant LBPriu2
8,R ,

with their corresponding LBP value from 0 to 8 in the middle. The final LBP value
in this method is the value P + 1, 9 in this case, assigned to all of the remaining
(non-uniform) patterns, yielding P + 2 different values in total.

In our case, we use the LBPriu2
P,R variant for our intestinal content feature ex-

traction. However, instead of applying them to a greyscale image, we apply
them to each of the R, G and B colour channels of the image individually, af-
ter which we calculate the histograms for each channel separately and finally
concatenate them to obtain our final feature vector. This way of using LBP
over RGB images is indicated by the prefix RGB, i.e. RGB-LBPriu2

P,R. In this
way, we thus obtain a feature vector of 3(P + 2) values for our texture feature
descriptor. Combined with the colour features, this yields a final feature vector
of 3(P + 2) + 2 values.

3.3.3 Support Vector Machine Classification

After thus extracting features from our CE image patches, we need to generate
a model that is capable of classifying new images, i.e. to determine whether it
contains intestinal content or not. For this purpose, we need to train a clas-
sification algorithm capable of constructing such a model, using the features
extracted from the training data as explained before, along with the training
data labels. Classification algorithms work by applying mathematical tech-
niques to find an distinguishing border between the samples of the two classes
according to certain conditions. Many such algorithms have been developed
over the years. In our work, we choose to use one of the currently most popular
ones in the state of the art which has shown to be effective for our type of
problem, namely Support Vector Machines (SVM).

SVM classifies data by finding the hyperplane that best separates the data
points of one class from the data points of the other. Our feature vector is
in a significantly higher dimensionality, namely in R3(P +2)+2 with P ≥ 8, due
to which it is impossible to simply visualise the data. For the purpose of
explaining the method, however, here we will imagine our data as being two-
dimensional and plot their locations in R2 in Figure 3.10. In this figure, as is
the general case in R2, the hyperplane SVM searches for is a straight line. We
can imagine how this process scales to higher dimensions: for three dimensions
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we would end up with a plane instead of a line, while for higher dimensions
we would end up with a hyperplane.

Often, different possibilities exist for choosing the straight line that distin-
guishes the training samples of both classes, as shown in Figure 3.11. In this
case, we choose the line which has the greatest margin between the two classes.
The margin is the maximum width of the area between two parallel lines at
equal distance from the the border for which this area does not contain any
data points. This distance is visualised by the blue line in Figure 3.12, while
the parallel lines are visualised as dashed lines. The area corresponding to the
margin is marked in yellow. The vectors on the boundary of this area (thus
on the parallel lines in the image) are called the support vectors, which the
name of the method is derived from and which have an important role in the
calculation of the border. They are marked by a red border in Figure 3.12.

In reality, samples can often not simply be separated by a linear hyperplane as
in the example above. For those cases, the kernel trick has been invented. [6]
The kernel trick involves a mapping of the original data points to a new space,
with the goal of rearranging the points to make them better separable by a
linear hyperplane. The function that is used for this mapping is called the
kernel function. The kernel function often has parameters for which we need
to find the optimal values. In our method, we use a Gaussian kernel function
which has a parameter γ that correlates to the size of the Gaussian kernel.

Formally, in SVM classification, we attempt to find an optimal solution to the

Figure 3.10: An example of a hypothetical plot of our CE intestinal content patches
represented by 2-dimensional feature data.
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Figure 3.11: Possibilities for different lines that would separate patches with in-
testinal content from those without.

Figure 3.12: The optimal border found by the SVM algorithm, with the support
vectors marked by a red border, the margin represented by a blue arrow and the
area corresponding to the margin marked in yellow.
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problem

min
w,b,ξ

1
2wT w + C

l∑︂
i=1

ξi

subject to yi(wT ϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

(3.1)

where w is a normal vector to the plane that defines the margin, b is the offset
of the plane, C defines a cost parameter defined by the user, ξi defines a slack
variable to soften the constraint on xi, i.e. that determines to what extent it
is allowed to deviate, and ϕ is a transformation function that transforms its
input vector to a new space [17]. The function K(xi, xj) = ϕ(xi)T ϕ(xj) is
then defined as the kernel function, which in our case is the is the radial basis
function (RBF), given by K(xi, xj) = exp

(︁
−γ∥xi − xj∥2)︁

with γ > 0. The
parameters C are often optimised through a grid search, as we describe for our
case in Section 3.5.2.

3.4 Approach Based on Convolutional Neural
Networks (CNNs)

Our next experiments were based on the end-to-end learning domain using
CNNs. In this domain, not only is a classifier trained to automatically dis-
tinguish between features of different classes, but the very extraction of the
features themselves is learnt simultaneously in an artificial neural network. In
contrast to the approach of the previous chapter, the selection of features is
thus no longer the responsibility of the researcher. Here instead, the art of
the researcher boils down to investigating the best network architecture or
new architectural elements or a suitable combination of elements from differ-
ent architecture, which are capable of efficiently extracting and combining the
valuable information for the problem at hand from the input data. Addition-
ally, the data selection and partitioning, along with input and output scaling,
become ever more important. The approach of CNNs has become so widely
popular, that we did not want to include the general theory behind CNNs in
the main text. Therefore, we refer the reader who is not (sufficiently) familiar
with the concept to Appendix A, where we describe the fundamentals of the
theory of CNNs in detail.

Both as a proof of concept and as to leverage the advantageous availability
of existing pretrained standard CNN models, our first experiments were per-
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formed using fine-tuning of pretrained CNN architectures. This is part of
the domain of transfer learning with CNNs, where information of previously
trained models on more generic image domains or other specific domains is
used in the specific problem to be solved by the researcher. As the result of
this experiment deemed the CNN approach successful for our problem, we de-
cided to further investigate this approach to find a solution that could further
improve performance. Therefore, in this section we first discuss transfer learn-
ing in Section 3.4.1, and discuss our final approach of designing and training
our own CNN architecture in Section 3.4.2.

3.4.1 Transfer Learning

Training a CNN from scratch may require a significant amount of labelled
input data and computational resources, depending on the problem domain.
Still, CNNs have been successfully applied in different areas of computer vi-
sion in recent years. This is not only due to the availability of more advanced
computer resources in recent years, which is not available to everyone, but
mainly due to the concept of transfer learning. Transfer learning refers to any
usage of existing neural network architectures, of which have been pretrained
on vast amounts of general labelled image data, e.g. the popular ImageNet
database [19]. As the lower layers are more relevant to the specific problem as
explained above, only those layers and their corresponding weights are highly
specific to the problem at hand. One way to benefit from this is to remove
the last classifying layer from the pretrained network and use the remaining
network as feature extractor. Another way is to keep the weights of the highest
layers fixed and only refine the weights of the lowest layer(s) using our specific
training data as input. This process is referred to as fine-tuning. The first
available pretrained CNN structure was AlexNet from 2012, in which convo-
lution operations were repeated several times before applying a pooling layer,
with the idea of obtaining more complex features at every spatial scale [43].
In the following years researchers extended this work, largely inspired by the
yearly ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [74],
mainly focusing on increasing the depth of the network.

For the purpose of transfer learning, the popularity of CNN architectures for
classification is often directly related to their performance in the ILSVRC
challenge. The purpose of this challenge is to evaluate algorithms for object
detection and image classification at large scale [74]. While this challenge was
at the origin of transfer learning, the original motivations behind the challenge
were to compare progress in detection across a wider variety of objects, where
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ImageNet took responsibility for the expensive part of labelling images, and
to measure the progress of computer vision for large scale image indexing for
retrieval and annotation. With the first edition of this challenge being organ-
ised in 2010, only by the 2012 ILSVRC edition deep learning (learning through
deep ANNs) gained significant popularity in Computer Vision research, when
that edition was won by the CNN architecture that is now commonly known
as AlexNet.

Out of all the architectures available, we experimented with VGG, Inception
and ResNet in our work on intestinal content detection. These are the clas-
sification architectures that at the time were among the highest-ranked on
the aforementioned challenge at the time, while they each have substantially
distinctive elements that could make a difference on certain data sets. We dis-
cuss each of these and their distinctive elements in detail below. In our initial
experiments, however, we saw that we obtained significantly better results for
VGG than for the other ones, which is why we devote most attention to this
architecture.

3.4.1.1 AlexNet

The AlexNet architecture consists of five convolutional layers and three fully-
connected layers. The first and second convolutional layers are followed by
a normalisation layer and a max-pooling layer, while the fifth convolutional
layer is also followed by a max-pooling layer without normalisation. All of
the pooling layers in the AlexNet architecture use overlapping pooling, with
a stride of 2 and a receptive field of 3. Peculiar about their original training
procedure was that, to paralellise the training procedure, it was trained on 2
GPU’s, where the kernels of each layer were equally divided over the GPU’s,
but the third convolutional layer as well as all the fully-connected layers per-
formed their computations over all the results of the previous layers by having
the GPU read the memory of both itself and the other GPU.

3.4.1.2 GoogLeNet or Inception

While in most previous architectures the focus was on making networks deeper,
Inception (initially named GoogLeNet [85]) introduced a concept to make the
network wider and deeper at the same time, while avoiding to make it compu-
tationally more expensive by implementing dimensionality reduction. It made
the network wider in the sense that it implemented the multi-scale idea, using
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Figure 3.13: The Inception Module as originally implemented in
GoogLeNet/Inception. This module combines different filter sizes and max
pooling in parallel, using a 1 × 1 convolution beforehand to reduce the dimensions
and thus the number of parameters of the network.

convolutions with different filter sizes in the same layer. By doing so, it also
attempted to approximate sparsity in CNN layers, even though, by conven-
tion, the components it is made up from, are in fact dense, while clustering
neurons that fire together, after [3] and intuitions of the Hebbian principle, i.e.
“neurons that fire together, wire together”. This architecture won the image
classification challenge of ILSVRC 2014 [74].

All of these principles are essentially implemented in a module that was named
the Inception module. This module groups 1× 1, 3× 3 and 5× 5 convolutions,
all applied to the same input at the same level in parallel, as well as a max-
pooling unit, after which the results are concatenated. The authors indicate
that these filter sizes were chosen mainly for convenience, as they together
guarantee no issues with pixel alignment. This module is visualised in Fig-
ure 3.13. In this figure, we can see another interesting concept of this network:
the implementation of 1× 1 convolutions between the input from the previous
layer and the convolution units, where the number of filters in this layer is
reduced. Not only does this significantly reduce the number of parameters
by effectively compressing the input combining the information cross-channel,
but it also introduces an additional non-linearity, as they gave it a ReLU acti-
vation function. While many other architectures require an important effort in
experimenting with different filter sizes in different layers, with the Inception
module, researchers commonly need to invest their time in this experimenta-
tion, as the most common convolutional filter sizes are thus implemented in
parallel within the architecture.
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After the first version, newer versions of Inception have been developed that
each time improved the classification performance of the initial architecture.
Even though the latest version of Inception is already version 4, the aforemen-
tioned concept, that all versions consist in, are that they are largely based on
the Inception module. The architectures mainly differ in the number of layers
and the number of Inception modules used within.

3.4.1.3 ResNet

The final architecture we discuss here is, ResNet [33], developed by Microsoft.
ResNet implements the concept of residual connections, which it derives its
name from. With this, it attempts to deal with one of the most common prob-
lems in deep learning, which is that of vanishing gradients. As researchers
attempt to make architectures ever deeper in an attempt to learn more com-
plex features, they become more prone to vanishing gradients as we have to
deal with further repeated multiplications in back-propagation that can make
the gradients infinitesimally small. This led to deeper architectures often per-
forming worse and set a introduced a limit on the number of layers up to which
architectures would improve. Although researchers proposed different ideas to
deal with this problem, none of them seemed to offer a generic solution, until
the proposal of residual connections. The idea of residual connections seems
simple: it introduces a parameterless identity shortcut connection from one
layer to a deeper layer, which is then summed to that layer’s output, skipping
one more or layers in between. The residual block that ResNet introduced
is visualised in Figure 3.14. However, this concept ensures that as we stack
more layers, we will never perform worse than for fewer layers, as the identity
mappings would essentially reduce the effective layer size. At the same time,
the authors argue that it is easier to learn a residual mapping with respect
to an earlier feature map instead of a complete mapping, which is essentially
the type of mapping the shortcut connection forces the layers in between to
fit. It has to be noted that the concept of residual connection was not new
as it was already introduced before in Highway Network, of which ResNet is
essentially a specific case. Nonetheless, Highway Net generally achieves worse
performance and does not generally tend to converge to the specific case of
ResNet, which may be due to its significantly increased solution space as a
more generic architecture.
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Figure 3.14: The residual block introduced in the ResNet architecture.

3.4.1.4 VGG

VGGNet, or simply VGG, was the first architecture to consistently use 3x3
kernel sizes in the convolutional layers, replacing larger kernels employed in
AlexNet. By concatenating multiple convolutional layers with this kernel size,
the network becomes deeper and more complex features can be represented at
a lower cost. Until today, these architectures are the most widely used purely
sequential architectures for classification. Being fully sequential as well as
having consistent filter sizes in the convolutional layers, makes them intuitive
architectures to comprehend and to fine-tune. VGG-16 and VGG-19 are the
two different architectures its authors proposed, differing in the number of
convolutional layers they contain [80]. Although we experimented with the
other architectures listed in this chapter, these two VGG variants were the
architectures we found to be most effective in our case and the ones we therefore
eventually used in our work. Both architectures are visualised and compared
in Figure 3.15. They both consist of 5 sequential blocks, which, in turn,
consist of sequential convolutional layers followed by a max pooling layer.
Although we replaced the classification layers of the architecture with our own
tailored to our problem, both originally have three fully connected layers and
a soft-max layer for classification, leading to a total of 16 and 19 weight layers
respectively.

47



3.4. Approach Based on Convolutional Neural Networks (CNNs)

Figure 3.15: An overview of the VGG-architectures we implemented, with our
modified VGG-16 at the top and our modified VGG-19 at the bottom, where each
rectangle represents a layer of the network. The layers surrounded by the red rect-
angles are the layers we defined by which we replaced the fully connected layers of
the original VGG-16 and VGG-19 architectures. The text corresponds to the output
sizes. The far left layers are the input layers, yellow are convolutional layers, blue
are max pooling layers, light gray are flattening layers, red are fully connected layers
and green are the softmax classification layers.

3.4.2 Novel CNN Architecture for Intestinal Content
Detection

In our final approach, we designed, implemented and trained a novel CNN
architecture, with the objective of achieving a light-weight model with a lower
number of parameters than our previous classification methods, resulting in
lower prediction times and a limited usage of resources, without sacrificing the
high accuracy obtained in the previous experiment. In terms of initial network
depth and stride, this architecture was inspired by the architecture presented
for CE images by Jia et al. [37], for which the authors obtained a high accuracy
in bleeding detection in CE images.

The proposed architecture is shown in Figure 3.16. The base model of this
architecture consists of 4 blocks, of which the first starts with two convolu-
tional layers with a Leaky ReLU activation function and batch normalisation,
while the other blocks each have only one such layer. Each of these block
ends with another convolutional layer with Leaky ReLU activation and batch
normalisation, but with a stride of 2, which we verified to result in higher
test classification accuracy in our case than a max pooling layer in its place,
as also shown in [82]. The top model consists of flatten layers to reshape the
three-dimensional output from base model of the network to a one-dimensional
vector, after which two fully connected layers perform the classification. The
first of these layers consists of 128 neurons with a LeakyReLU activation func-
tion and batch normalisation. The last classifying layer consists of 2 neurons
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Figure 3.16: Visualisation of the CNN architecture proposed for intestinal content
classification in this work.

with the softmax activation function, resulting in outputs that correspond to
the probability of the input belonging to either one of our two classes. We
also experimented with the use of drop-out, but we found that it did not have
any impact on the results for our data when using batch normalisation, while
using drop-out instead of batch normalisation led to worse results.

3.5 Experiments and Results

3.5.1 Data Preparation

3.5.1.1 Collection

The data we used for all the experiments in this section was collected at
Hospital Universitari i Politècnic La Fe from Valencia, with previous approval
of the study from its Ethics Committee of Clinical Research and with written
informed consent from all subjects involved. The study was carried out in
accordance with Spanish law for the protection of human subjects. For the
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training procedure of our models we collected relevant segments of 35 different
videos of capsule endoscopy procedures, performed with the PillCam SB 3
model. An expert gastroenterologist extracted the parts corresponding to
the small intestine through their official RAPID Reader software, capable of
reading the proprietary file format of the video recordings, from which we
subsequently systematically extracted all frames at regular intervals of one
minute. This led to a total of 563 individual frames of 576 × 576 pixels. For
the validation in a clinical setting, we collected 30 additional videos from new
capsule endoscopy procedures. From these videos we extracted frames exactly
the same way, leading to a total of 854 additional frames of also 576 × 576
pixels for the validation procedure.

3.5.1.2 Conditioning

Since we attempt not only to detect but also to locate and quantify the intesti-
nal content, at the core of our method we use a model based on classification
of regions as opposed to entire images. For this purpose, we developed an an-
notation tool that lets the annotator select a video from a list, after which it
loads the corresponding frames that can be processed sequentially or accessed
directly through another list. The tool predivides the area of the image that
corresponds to the recording, ignoring the black frame, into patches of 64×64
pixels, with a step size of 32 pixels both in the horizontal and vertical direc-
tion, thus allowing an overlap of half in both dimensions, which we first verified
to be adequate for our case through experiments. When the annotator clicks
anywhere in the image, the tool finds the centre of the closest predefined patch
and marks this as dirty or clean, visualised with a red or green border around
the patch respectively, depending on the mouse button used for the click. The
patch can then be cleared by clicking it another time. In this way, two spe-
cialists selected those patches that either consisted completely of intestinal
content (dirty) or were completely void of intestinal content (clean). This tool
is shown in Figure 3.17 with an example annotation of both dirty and clean
patches performed with the same criteria we used throughout our annotation
procedure. We decided for such patch-based annotation because intestinal
content can have unclear borders and an irregular spread, while patch-based
annotation allows us to obtain annotations as detailed as required and still
allows us to capture sufficient information about its spread and transition to
normal mucosa, without having to quantify the areas. It also prevents the
annotator from having to make doubtful decisions about where exactly the
border is, as areas along the border do not necessarily need to be annotated in
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Figure 3.17: The annotation tool we developed for our specialists to annotate the
collected data. The visualised annotation is performed by the same criteria our
experts were instructed to use throughout the annotation procedure.

this way. Importantly, we instructed the specialists to select any encountered
pathological areas naturally present in the included frames, and classify them
as clean. In this way, we ended up with 26746 clean patches and 28547 dirty
ones. Hereafter we refer to this data set as the training set.

For the validation of our method in a clinical setting, we aimed to compare the
cleanliness evaluation of our method with the independent per-image evalua-
tion by two medical specialists. For this purpose, each of the 854 images from
the 30 additional videos were annotated by two specialists with their perceived
cleanliness evaluation score, as we explain in detail in Section 3.5.4. In the
remainder of this section we refer to this set with its corresponding cleanliness
score annotations from both specialists as the validation set.
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Fold Training Validation Test
Dirty Clean Dirty Clean Dirty Clean

1 13579 13902 3395 3476 4541 4823
2 13086 14343 3272 3586 4971 4555
3 13063 14310 3266 3578 5283 4809
4 13206 14255 3302 3564 5077 4888
5 14018 13667 3504 3417 3911 4162

Table 3.2: Number of patches per fold in which we partitioned our training set
for the 5-fold cross-validation in the training procedures. All final and surrogate
CNN models were trained and evaluated using these same partitions for training,
validation and testing.

3.5.1.3 Partitioning

To avoid overfitting to our training data and to improve the robustness of
our method, we performed 5-fold cross-validation on the training set in the
procedure of training of our models. Additionally, to perform fair evaluation
of the performance of each model, we ensured that the patches from the test
sets in these cross-validation train/test splits always originated from different
images than the patches in the corresponding training sets. To achieve this,
we first shuffled the entire set of images in the training set and divided them
into five subsets or folds of images of equal size. For each fold, we then let
the patches annotated in the corresponding images be our test patches, while
the patches extracted from the images in all of the remaining folds served as
our training patches in that case, thus creating five pairs of training sets and
test sets of patches. This is visualised in Figure 3.18, where the green images
represent the test images and thus correspond to a different fold each time,
while the blue images represent the images from the remaining folds. While
the data was originally sufficiently balanced, we still ended up with imbalanced
data in some of our created subsets due to varying number of annotated patches
over the different images. Therefore, in the experiment with our novel CNN
architecture described in Section 3.5.3, we chose to apply undersampling where
necessary. Concretely, we randomly removed patches of the majority class in
each of our training and test sets if the corresponding number of images was
more than 10% greater than the number of of the minority class, to reduce this
difference to exactly 10%. We then split each of the training sets into training
and validation sets using an 80%-20% split. In this way, we ended up with the
final sets of patch images of the sizes given in Table 3.2, which is the data we
used for training and evaluation of all methods implemented and compared in
the first two experiments.
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Figure 3.18: The process of our data collection and partitioning. From videos we
extracted frame images in which patches were annotated by specialists. We then
partitioned the images into five folds (green), while we let the remaining images be
the training images in those folds. From these, we extracted the annotated patches
into equivalent folds, so that we ended up with the corresponding five sets of training
(blue) and test (green) patches.

3.5.1.4 Public Availability

Public data is scarce in the field of capsule endoscopy. This is even more
the case for images with annotations provided by clinical experts. Therefore,
we decided to publish our data online exactly as we used them for train-
ing our final algorithms as described in this section. Namely, the patched
labelled CE images used for training and evaluating the models can be
found at https://cvblab.synology.me/PublicDatabases/CECleanliness/
CECleanlinessTraining.zip, while the CE images used for the valida-
tion in a clinical setting can be found at https://cvblab.synology.me/
PublicDatabases/CECleanliness/CECleanlinessValidation.zip.

3.5.2 Hand-crafted Features Compared to Fine-tuning
VGG architectures

In this experiment, we compared the fine-tuning of the popular VGG archi-
tectures with hand-crafted features. For the hand-crafted features, we defined
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a descriptor consisting of both colour and texture information, and trained a
classifier on those features. Specifically, our feature vector was the concatena-
tion of uniform rotation-invariant local binary patterns (LBPriu2) [62] on the
R, G and B colour channels and the mean of the a and b colour channels of
the patch image in the L*a*b* (CIELAB) colour space [58]. We then trained
an SVM classifier on the extracted feature data to construct a model capable
of distinguishing between both classes. This method is hereafter referred to as
Feature Extraction-SVM (FE-SVM).

For the optimisation of the SVM parameters C in Eq. (3.1) and γ in the
kernel function, we performed an extensive grid search using internal 4-fold
cross validation to prevent overfitting, thus training 4 times for each possible
combination of parameters, each time leaving out a different partition of the
data for validation. First, we performed a coarse grid search attempting all
combinations of γ and C with γ ranging from 2−15 to 23 and C ranging from
2−5 to 215, with the exponent increasing in steps of 2 for each parameter. We
then performed a fine grid search in which each of the two parameters takes
values between 2k−1 and 2k+1, with k being the exponent with highest average
validation accuracy for that parameter among the 4 folds in the coarse grid
search. Here we increased k in steps of 0.25 instead and we chose the value for
which we obtain highest average validation accuracy among the 4 folds.

In the same way, we simultaneously optimized the parameters of LBPriu2,
concretely the number of neighbours (8 or 16) and the radius (ranging from 1
to 10), along with the patch size of s x s pixels (s = 64, s = 32 and s = 16),
attempting each different combination of both these parameters and the SVM
parameters. As for the patch size, the patches were annotated in the greatest
size s = 64 in order to programmatically extract a smaller region around the
centre of each patch as our data for the smaller patch sizes, as all patches
were either entirely clean or entirely dirty. Figure 3.2c shows an example of
all patches we can extract from an image this way when s = 64.

We compare our traditional machine learning method with a method based
on deep learning through convolutional neural networks (CNNs) using trans-
fer learning as explained in Section 3.4.1, more specifically, fine-tuning. In our
case, we separately fine-tuned two VGGNet architectures, namely VGG-16 and
VGG-19 architectures. VGGNet was the first architecture to consistently use
3x3 kernel sizes in the convolutional layers, replacing larger kernels employed
in AlexNet. By concatenating multiple convolutional layers with this kernel
size, the network becomes deeper and more complex features can be repre-
sented at a lower cost. We chose for these architectures since the VGGNet
architectures achieved highest accuracy in previous work on CE images [49].
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Additionally, they are the most widely used purely sequential architectures
and have consistent filter sizes in the convolutional layers. For these reasons
they are intuitive architectures to comprehend and to fine-tune.

For training our models, we made use of the Keras framework in Python with
TensorFlow as its backend. We retrained the weights of our modified VGG-16
and VGG-19 architectures from the lowest layer of the highest convolutional
block in both cases. We partitioned each of our training data sets into a train-
ing set and a validation set, ensuring a 20% of the data in the validation set.
As per the image size used to pretrain the networks, we had to rescale our
patch images from 64x64 to 224x224. We set all the other parameters for the
training procedure empirically. We used the accuracy as our performance met-
ric and trained the networks for a maximum of 100 epochs or until validation
accuracy no longer improved during 15 epochs or more. We set the batch size
to 4 due to memory limitations and the optimization algorithm to SGD. For
SGD we used the binary cross-entropy loss function and set the momentum
to 0.98, the learning rate to 0.0001 and the decay to 0.0. To increase the
robustness of our models, we also used data augmentation with a variation of
up to 2% in zoom level, rotations and flipping operations.

For FE-SVM, we first optimized the parameters of our feature extraction in
a cross-validation procedure as explained in Section 3.2.2. The optimal pa-
rameters we found in this way were: 16 neighbours p and a radius r of 1 for
LBP, and 64 for s in the patch size s× s. For the CNNs we used the optimal
value of 64 for s in the patch size s × s found in FE-SVM. We did not need
to optimize any feature extraction parameters for this method, as the CNN
learns the features by itself. We used 5-fold cross-validation in both methods.
The results obtained in this procedure per fold are given in Table 3.3, both
for FE-SVM using the optimal parameters and for the different CNN architec-
tures. Visualising the probabilities as a heat map as explained in Section 3.2.4,
using the VGG-19 model for which we obtained highest accuracy, we obtained
images as shown in Figure 3.19.

3.5.3 Novel CNN architecture

In this experiment, we compared the performance of our architecture with the
separately implemented base models of the architecture by Jia et al. [37] and of
the popular VGG-16 architecture [80], both trained under equal conditions as
our proposed method, i.e. exactly the same data and partitioning of those as
described above, same hyperparameters and without post- or preprocessing, to
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Figure 3.19: Visual results of our detection method using the VGG-19 model in-
terpolating the probabilities per pixel from the patch probabilities and displaying as
a heat map (continued on the following page).
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Figure 3.19 (cont.): Visual results of our detection method using the VGG-19
model interpolating the probabilities per pixel from the patch probabilities and dis-
playing as a heat map (continued). Red areas indicate intestinal content detections,
while blue areas were classified as clean mucosa.

ensure a fair comparison of the classification performance of each method. In
assessing the performance of our method, we specifically compared our method
with VGG-16 because it performed comparably well to VGG-19 in our previous
experiment, while having significantly fewer parameters. Additionally, we used
the same top-model for all architectures, which is described below.

We set the values of the hyperparameters for the CNN training procedure
empirically. We eventually used a batch size of 16 and a learning rate of
0.0005. For VGG we used SGD as an optimiser, as it outperformed nadam,
with a momentum of 0.9. For the other models we used nadam. We did not
use any data augmentation and did not rescale the input images or preprocess
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Table 3.3: Results obtained in terms of accuracy, sensitivity and specificity.
Method Fold Accuracy Sensitivity Specificity

Fold 1 85.32% 89.43% 80.42%
Fold 2 87.62% 86.94% 88.21%

FE + SVM Fold 3 86.84% 89.83% 84.12%
Fold 4 87.83% 93.64% 82.23%
Fold 5 88.75% 89.60% 87.50%

Average 87.32% 90.73% 83.71%
Fold 1 93.49% 92.59% 94.64%
Fold 2 95.04% 93.50% 96.45%

VGG-16 Fold 3 94.10% 90.83% 97.53%
Fold 4 93.71% 89.46% 98.73%
Fold 5 95.32% 94.98% 95.86%

Average 94.33% 92.27% 96.61%
Fold 1 95.15% 94.59% 95.84%
Fold 2 95.92% 95.43% 96.35%

VGG-19 Fold 3 94.33% 91.00% 97.83%
Fold 4 94.62% 91.75% 97.77%
Fold 5 95.74% 96.60% 94.48%

Average 95.15% 93.87% 96.45%

them in any other way; we directly used the normalised RGB colour channels
of the patch images as extracted from the CE images, resulting in input vectors
of size 64× 64× 3 for all of our models.

Additionally, for VGG-16 we leveraged the advantage of the availability of
existing weights pretrained on the ImageNet data set to instantiate the weights.
Namely, it has significantly more parameters than the other two methods due
to which we cannot provide a fair comparison training it from scratch on our
limited data set, which would also not be the common use case considering
the average size of CE data sets. Subsequently we trained the model in two
stages, adjusting the randomly initialised model head in the first stage, while
we unfroze all layers and trained the entire network in the second stage.

In the classification of dirty and clean patches, the results we obtained for
each of the models trained over the different folds are given in Table 3.4 for all
of the aforementioned methods. The proposed architecture obtained highest
accuracy, followed by VGG-16 and finally by the architecture proposed by
Jia et al.. We also evaluated the size of each model in terms of number of
parameters and storage space, along with the average time required for a
prediction of a batch of 2000 patch images, measured over the processing of
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Method Fold Accuracy Sensitivity Specificity MCC

VGG-16

1 94.27% 96.81% 91.57% 0.8861
2 94.68% 92.29% 96.86% 0.8939
3 94.35% 98.65% 90.44% 0.8906
4 95.02% 98.10% 92.06% 0.9023
5 95.66% 96.03% 95.27% 0.9132

Average 94.80% 96.38% 93.24% 0.8972

Jia et al.

1 93.40% 97.26% 89.30% 0.8701
2 93.46% 92.54% 94.31% 0.8689
3 93.84% 97.40% 90.59% 0.8793
4 93.96% 96.87% 91.16% 0.8808
5 94.96% 96.06% 93.79% 0.8992

Average 93.92% 96.03% 91.83% 0.8797

Proposed

1 94.96% 95.92% 93.94% 0.8992
2 95.67% 94.84% 96.44% 0.9134
3 95.05% 98.09% 92.28% 0.9028
4 94.77% 96.64% 92.97% 0.8961
5 95.71% 95.41% 96.04% 0.9143

Average 95.23% 96.18% 94.33% 0.9051

Table 3.4: Results for the different methods over each of the different folds, with
the average for each method in the bottom row.

100 of such batches on an NVIDIA GeForce GTX 950 GPU using a MATLAB
2018a implementation. Here we obtained lowest values for the model by Jia
et al., with a prediction time of 0.33 seconds, 520,800 parameters and 4 MB
of storage space on disk. This was followed by our method, with 0.50 seconds
prediction time, 1,708,610 parameters and 20 MB storage space. Finally, VGG-
16 obtained the highest values with prediction time of 0.81 seconds, 14,977,730
parameters and 117 MB of storage space. Eventually, integrating the model
of the proposed architecture into our method of calculating the probabilities
per pixel, we obtained images as shown in Figure 3.20.

We separately analysed the detection results on the images that contained
pathologies in our test set, which were thus not used for training the corre-
sponding model as described in Section 3.5.1.3. With the help of one of our
experts, we identified 10 images in this set showing clear pathologies. Within
these, our expert diagnosed 2 cases of active bleedings, 3 of ulcers, 5 of an-
gioectasia and 1 of a polyp. Through manual analysis of the intestinal content
detection results with the proposed method over these images, we found that
one of the ulcers was partly detected as intestinal content, while all of the re-
maining pathologies were correctly classified as clean intestine by our method.
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(a)

(b)

(c)

Figure 3.20: Visual results of our intestinal content detection method based on a
novel CNN architecture, with interpolated pixel probabilities overlayed as a heatmap
as before (continued on the following page).
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(d)

(e)

(f)

Figure 3.20 (cont.): Visual results of our intestinal content detection method based
on a novel CNN architecture, with interpolated pixel probabilities overlayed as a
heatmap as before (continued on the following page).
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(g)

(h)

(i)

Figure 3.20 (cont.): Visual results of our intestinal content detection method based
on a novel CNN architecture, with interpolated pixel probabilities overlayed as a
heatmap as before (continued on the following page).
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(j)

(k)

(l)

Figure 3.20 (cont.): Visual results of our intestinal content detection method based
on a novel CNN architecture, with interpolated pixel probabilities overlayed as a
heatmap as before (continued). Figures g, h and i are a part of the test set of
our model. The remaining images all come from the validation set, which was not
used for the training procedure of our method. Figures j, k and l show characteristic
examples for which there was a significant difference between the assigned evaluation
score and the evaluation scores assigned by both human specialists.
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The case of the polyp is shown in Figure 3.20g, a case of angioectasia in Fig-
ure 3.20h and the case of ulcer that was partly detected as intestinal content in
Figure 3.20i, with the bleeding classified as clean intestine in the same image.

3.5.4 Validation

After testing the intestinal content detection performance of our method in
the previous phase, in this experiment our objective was to test the clinical
validity of our method as described in Section 3.2.6. As explained there, we
performed this procedure simultaneously with the optimisation of the categori-
sation thresholds, through a 5-fold randomised cross-validation procedure in
which we ensured that all images from a single patient always ended up in the
same, single fold to prevent any leakage of input data from the optimisation set
to the validation. In this way, each image is used for validation exactly once,
and per image we thus obtained a single non-optimised cleanliness evaluation
score for validation purposes, having adjusted the corresponding thresholds for
that fold only to the remaining images. We then measured and compared the
selected agreement statistics both in a per-fold and overall fashion, the latter
of which obtained by aggregating all of the per-fold evaluation scores.

In order to convert the classification of patches to an evaluation score for a
frame of a CE video, we needed to determine the thresholds for the categori-
sation in the way we explained in Section 3.2.6. The threshold values over
the averaged detected pixel probabilities of intestinal content that we found
to be optimal for assessing the videos in a way similar to human assessment,
reported by their means and standard deviations over the five different folds of
our validation set, were 0.42±0.022 between Excellent and Good, 0.66±0.017
between Good and Fair and 0.94± 0.022 between Fair and Poor. Using these
thresholds for the images in each corresponding fold, we obtained per-fold
cleanliness evaluation scores.

For the validation of our method, we calculated the interrater statistics that
allow us to validate our method as described in Section 3.2.6. On a per-fold
basis, we calculated κ1 for each pair of different raters, allowing us to validate
our method through comparison with the evaluation by human specialists.
We used a MATLAB implementation of weighted kappa [8] to perform this
calculation. The resulting κ1-values and their corresponding 95%-confidence
intervals are given in Figure 3.21. Except for the case of fold 2, the values
found for our method were always within the 95% confidence interval of the
κ1 between the human specialists. Overall, concatenating the ratings over all
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Figure 3.21: The agreement values of κ1 measured over the different folds and
over the concatenated results of all folds, each plotted with its corresponding 95%
confidence interval.

folds, we measured a κ1 of 0.643 and 0.608 for our method (Proposed) with
specialist 1 (SP1) and specialist 2 (SP2) respectively, while we measured a
κ1 of 0.704 for the agreement of both specialists with each other, with confi-
dence intervals of (0.583, 0.704), (0.543, 0.672) and (0.648, 0.761) respectively.
Finally, using SPSS v25.0 we calculated ICC(A, 1) both over only the ratings
of the human specialists and over all raters at once, to measure its change with
the exclusion or inclusion of our method respectively. Over the two human
raters we thus calculated an ICC(A, 1) of 0.817 with a confidence interval of
(0.745, 0.864), while including our method among the raters ICC(A, 1) was
0.770 with a confidence interval of (0.739, 0.798).

3.6 Discussion

For our main objective, we performed several sequential experiments to achieve
a fully automated procedure for the assessment of the visibility of the mucosa
in CE videos, iteratively attempting to get closer to our objective of developing
a method that could be used in clinical practice.
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Our first experiment was focused on the comparison two different methods to
automatically detect regions of intestinal content in CE videos: one based on
hand-crafted feature extraction and SVM classification and the other based
on CNNs. While previous work has applied complex, multi-stage approaches,
often involving hand-crafted features, in this work we showed that similarly
high accuracy can be achieved with the decision of a single model, without
any preprocessing or postprocessing of the images, obtaining an accuracy of
95.15%. The results of this experiment helped us to determine to go with
CNNs to develop the classifier we finally wanted to implement in our evaluation
method. The VGG architectures, however, are still relatively expensive, as the
processing of a batch of 2000 image patches still took 0.81 seconds with VGG-
16.

Therefore, in the next experiment we decided to focus on a light-weight, self-
designed architecture and test whether with such an architecture, trained from
scratch instead of fine-tuned, we could achieve higher efficiency without sac-
rificing classification accuracy. While in this next experiment we aimed to
design a CNN architecture that would approach the performance of VGG-16
with significantly fewer parameters and a significantly reduced prediction time
for faster processing of videos, our results show that with the proposed archi-
tecture we can even improve classification performance over VGG-16, despite
having fewer than 2 million parameters as opposed to nearly 15 million for
VGG-16 and requiring only 62% of the prediction time of VGG-16. Compared
with the architecture proposed by Jia et al., we obtained significantly higher
accuracy for the proposed architecture, at the cost of more parameters and
a 52% increased average prediction time. Additionally, through the inclusion
of images that showed pathologies, our method correctly recognised bleeding,
angioectasia, a polyp and most of the ulcers as a part of the clean intestine.
Although this looks promising, it will be necessary to test this on a greater
set of pathological images in the future before we can draw any conclusions.
Of our test cases, only one ulcer appeared to be partly detected as intesti-
nal content. For ulcers, the situation is more complicated than for the other
pathologies, as they are often accompanied by intestinal content in the case of
perforated ulcers, while in other cases they can still be difficult to distinguish
from intestinal content in still image frames even for human experts. In the
case of Figure 3.20i, for example, the part of the ulcer detected as intestinal
content has very similar characteristics to some of the intestinal content in
Figure 3.20a, while it also has bubbles in its vicinity.

Finally, in our third experiment, the validation of our method in a clinical
setting, we found that the agreement between our method and each of the
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specialists individually over all images approached the interhuman agreement,
yet the values fell just outside of the interhuman 95% confidence interval. Es-
pecially in the case of fold 2 our method performed significantly worse than
in other folds, scoring a lower agreement with either one of the human spe-
cialists than the lower limit of the 95% confidence interval of the κ1 of the
two specialists with each other, while in all of the other folds it was always
within that interval, achieving higher agreement with SP1 for fold 3 and fold
4. Observing the case of fold 2 in greater detail, we noticed that one of the
videos in this fold contained a significant number of frames on which bleeding
could be observed, where our method assigned evaluation scores of excellent
cleanliness, while both specialists agreed on poor cleanliness. Measuring the
ICC(A, 1) both with our method included and with our method excluded, we
found that the resulting value of the single rater reliability remained within
the 95% confidence interval of the single rater reliability of ICC(A, 1) with our
method excluded. Although we cannot prove significance as discussed earlier,
we believe that this information in combination with the comparative values
found for κ1 does give a good indication that our method’s agreement with
the human specialists is within reasonable limits of inter-human agreement.

It is important note that even though the specialists performed the validation
procedure independently, they work together in the analysis of CE procedures
on a regular basis, which may make them more prone to agreeing with each
other in their perception of cleanliness than what would be the case between
specialists from different institutions. We also highlight that, when we re-
viewed the frames with highest disagreement between our method and both
human specialists, in many cases both of them no longer agreed with the
evaluation score they assigned in first instance. This demonstrates the lower
intrarater reliability of human evaluation due to the earlier discussed subjec-
tivity, while intrarater reliability is always 1 in the case of our method, as it will
consistently assign the exact same evaluation scores to each image regardless
of the number of repetitions.

Through reviewing the mentioned frames, we identified three specific cases for
which the evaluation by our method significantly differed from human evalu-
ation. j, k and l Examples of these are shown in Figure 3.20j, Figure 3.20k
and Figure 3.20l. In the first case, shown in Figure 3.20j, the capsule around
the camera appears to be caught in a bubble itself. As our method has been
trained to detect bubbles, it may detect the smooth surface of the mucosa
without its characteristic texture, while it may also detect that the light emit-
ted by the capsule is reflected by the surface of the bubble. We argue that
it is a difficult for our method to distinguish between the case of the capsule
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being inside a greater bubble, allowing us to observe the mucosa nearly per-
fectly, and the case of smaller bubbles on the surface of the mucosa that reflect
the light much more rigorously and thus do not allow for correct observation
of the mucosa behind it. However, although the general occurrence of such
frames is relatively limited, we believe that in future work we could address
this issue by actively collecting more such images to include in our training
set. The second type of images with a significant difference images that show
bleeding, as shown in Figure 3.20k, which were numerous in one of the videos
in Fold 2. In these images, the blood is not detected as intestinal content
by our method, which is in fact desired behaviour as the scale addresses the
remainders of food, bile and intestinal liquid. However, our specialists did
assign a low evaluation score in the presence of bleeding. We argue that this
may be an effect of human psychology, assigning a bad score to an image in
the presence of diseases despite evaluating other factors, which could show an
important advantage of our method in its objectiveness. Finally, our method
sometimes detects sparse intestinal content in the lumen hole where human
observers do not, as shown in Figure 3.20l. Even though it is not a false detec-
tion, it can be argued that, as the mucosa in the darkness cannot be observed
either way, it does not impede visibility. In future work, it would be interesting
to investigate how the relative location of intestinal content, e.g. against the
background of the lumen hole or against the background of the near intesti-
nal wall, influences the cleanliness in a frame as perceived by humans. The
presence of intestinal content against the background of the lumen hole does,
however, provide information about the preparation of the intestine that we
can expect to normalise over the course of an entire video.

Considering the limited number of specialists available for the cleanliness eval-
uation of the images in our validation set, we were forced to use part of these
images, annotated with both assigned evaluation scores, for adjusting the cat-
egorisation thresholds. This is a limitation of our method, as it could cause
our method to over-adjust to the specific annotators. Ideally, we would like
the scores used to adjust the thresholds of our method and the scores used
to validate the method to be completely independent from each other, e.g.
originating from different observers, as this would show that our thresholds
generalise well to other observers. We would like to revisit this in our future
work when we could obtain more data from different clinical centres around
the world. We do, however, emphasise that we did guarantee independence
between validation and adjustment of the thresholds in terms of our data, as
we not only used different videos for each of those, but additionally obtained
entirely new videos for the validation procedure, ensuring that none of the
videos used for validation was also used in the training procedure.
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Chapter 4

Determination of Capsule
Orientation for Motility Analysis
In this chapter, we describe the methods we use for determination of the

capsule orientation, which is built upon R-CNN-based techniques, and how
we use this to create an approach to to visualise intestinal motility, through
approximating a traditional intestinal manometry. At the end of the chapter,
we describe the individual experiments in detail and discuss the results.
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4.1 Background and Motivation

Important current issues with capsule endoscopy compared to traditional en-
doscopy surround the fact that the capsule cannot be actively controlled.
Namely, in traditional endoscopy a gastroenterologist actively controls the en-
doscope, which allows him or her to keep track of the location and orientation
of the camera in real-time. In capsule endoscopy, however, it is difficult to
determine the location and orientation of the capsule at a specific moment of
the procedure. Work has been done in an attempt to solve this shortcoming,
for example by investigating motion between subsequent frames. However,
in our own experiments with motion analysis on real videos of entire cap-
sule endoscopy procedures, we have observed this to be difficult, due to the
complexity of aligning frames with the combination of a relatively low frame
rate and the significant forces that act upon the capsule due to the intestinal
motility.

The latter mentioned intestinal motility has been subject of research only to a
small extent in the field of capsule endoscopy, even though it is an important
factor both both in capsule motion and in bowel disease. Namely, according to
certain epidemiologic reports, only in the United States as many as 30 million
people have intestinal motility disorders. Additionally, available data from the
medical literature indicate that worldwide over a quarter of all gastrointestinal
conditions can be contributed to intestinal motility disorders [56]. Symptoms
differ depending on the affected part of the GI system and the underlying
cause, but include gastroesophageal reflux disease, gas, severe constipation,
diarrhoea, abdominal pain, vomiting, and bloating [25]. These disorders often
occur by themselves, but can also be secondary to a malignant condition.
While they can occur in any part of the gastrointestinal tract, here we focus
on the motility of the small intestine, as this is the trajectory covered by CE.

Although different methods have been used in the past, the method that is
widely accepted as most reliable for diagnosis of motility disorders of the small
intestine nowadays is intestinal manometry. This is a procedure which is gen-
erally performed through placing a thin, pressure-sensitive tube into the up-
per gastrointestinal tract to measure muscle contractions and identify spasms.
Placement is done through traditional endoscopy, for which the patient needs
to be sedated, as discussed in chapter 2. An overview of intestinal manometry,
visualisations of the recordings that inspired our approximations introduced
in this chapter, along with a discussion of alternative methods was published
by Hansen [31]. Although it is well-tolerated by patients, it is an invasive
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procedure which requires thorough interaction from and analysis by a gas-
troenterologists.

While some studies attempt to use CE for intestinal motility analysis to avoid
an invasive manometry, mainly through measuring overall transit times, an
interesting new method that attempts to alleviate the invasiveness is a one
based on a new endoscopic pill, namely the wireless motility capsule (WMC).
This capsule concurrently measures pH, temperature, and pressure [23]. How-
ever, this capsule is does not have a camera on board, due to which it has to
be specifically used for intestinal motility analysis. Often, it would instead be
useful to derive information alongside a visual examination, to avoid having
to choose between different procedures, or even having to do both.

Although work focused on deducing intestinal motility information from CE
video is scarce, one interesting study we came across attempted to automat-
ically detect and annotate contractions in CE videos through detection of
tunnel frames and classifying series of 9 consecutive frames into contractions
and non-contractions, using extraction of hand-crafted features, such as the
co-occurrence matrix, LBP and statistical features, in combination with an
SVM classifier [90]. Their work also integrated a simple method for tunnel
classification, a topic we will introduce in the next section, which derived the
response of each of the images in the series to a Laplacian of Gaussian filter
(LoG), and determined whether the sum of the resulting lumen or tunnel areas
from the obtained images was greater than a predefined threshold in order to
be classified as a tunnel frame. As the final output of their method in the
detection of contractions, over CE videos obtained from ten different patients,
their method achieves an average sensitivity of 70.08% with an average preci-
sion of 60.26%, indicating a significant proportion of false negatives and false
positives respectively.

In this work, instead of explicitly detecting contraction events, we propose
a method to automatically create an alternative for a manometric record-
ing directly from the video resulting from a non-invasive CE procedure for
computer-aided intestinal motility analysis. As the base of our method, we
instead employ deep learning techniques to develop an accurate method for
both tunnel detection and localisation based on simultaneous bounding box
regression and classification using R-CNN-based methods. This will allow us
to use the results not only use for the same purpose of aligning frames cor-
responding to the desired orientation of the capsule, namely those where the
capsule faces the tunnel, but also to use the location and size of the bounding
box for the extraction of features for the manometry approximation. We argue
that it can be directly used to analyse a patient’s intestinal motility much in
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the same way as a manometric recording, while it can also serve as a helpful
preprocessing procedure for any method to make use of intestinal motility.

Additionally, we argue that an accurate method of tunnel detection is useful
on itself, providing an understanding of the pattern of changes in capsule ori-
entation and movement throughout the CE procedure. In this way, it can also
be useful for localisation purposes, as this information can be valuable for the
deduction of the relative location of the capsule throughout the procedure.
As a specific other use case that would benefit both from the tunnel detection
method on itself and from the final result, we would like to highlight automatic
capsule navigation. While there are still important mechanical difficulties to
overcome for actively controlled capsules, automatic detection of the tunnel
could help to correct the orientation of the capsule for stand-alone or assisting
navigation algorithms. Direct analysis of intestinal motion, on the other hand,
could prove to be helpful to develop mechanisms that could counteract intesti-
nal motility for the capsule to stay on track. Although this is a side track of
our method that interests us, we leave it out of scope for the remainder of this
work to focus our efforts on intestinal motility visualisation.

4.2 Tunnel Detection

As our method is built upon tunnel detection, we first provide a formal defi-
nition thereof and discuss the surrounding issues we encountered. We define
tunnel detection as detecting and localising the area in each frame that shows
the anterograde pathway through the intestinal tract, hereafter generally re-
ferred to as the tunnel in either closed or open state. In earlier work on
tunnel detection, we found this is often simplified to lumen detection in non-
contracted state [101, 24]. The lumen is the inner space of the intestine, which
theoretically always surrounds the capsule, but is only visible as a dark hole
when the intestinal muscles are in a relaxed state. In contrast, in a contracted
state the lumen is not directly visible. This can be observed in Figure 4.1,
where the left-most image shows the small intestine in a fully contracted state
in which we cannot actually observe the hole of the tunnel, while the right-
most image is taken in the relaxed state and the tunnel is clearly visible as a
dark hole. Namely, smooth circular muscles that are responsible for intestinal
motility are located along the entire wall of the small intestine and frequently
contract throughout the process of digestion, which occurs in the case of the
endoscopic capsule just as it does with food. One important type of such
motility is peristalsis, used in the small intestine to gradually transport the
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(a) (b) (c)

Figure 4.1: Selected images from our data set, where we can observe that the
“tunnel” in different states of intestinal muscle has notably different visual properties.
Here (a) and (b) show the contracted and non-contracted states respectively, while
(c) shows a semi-contracted state.

chyme to the colon, by repeatedly relaxing the circular muscles just in front
of swallowed food, called chyme after the processing in the stomach, while
contracting the muscles behind it. In fact, the current capsule endoscopes rely
on this process to make their way through the intestine.

However, the predominant type of motility in the small intestine is segmenta-
tion contractions [30]. These contractions of the same intestinal muscles are
not meant to transport the chyme further, but to mix the chyme with the se-
cretions of the intestine, due to which they also often also push the food back,
allowing greater mixing. Therefore, especially in the small intestine, naturally
we frequently observe the state of contraction. In traditional endoscopy, tech-
niques exist to infuse air into the stomach or intestine to open up the pathway
and in fact may even be required to determine the direction of scope advance-
ment [47], while no currently approved capsule endoscope disposes of an air
infusion method. Therefore, in contrast to the previous work we explored, it is
not only important to consider the visible intestinal lumen in the state of re-
laxation, but also the centre of the contracted muscles in state of contraction.
We thus aimed to detect the direction of interest in all states of contraction as
shown in Figure 4.1. For simplicity, we will refer to the point of advancement
as the tunnel in all cases.

The recently emerged CNN object detectors are highly suitable for our tunnel
detection purpose, as it has been shown that they can be complete, accurate
object detectors, which are by design significantly faster than the original slid-
ing window approach used in combination with complete CNNs to evaluate
each sliding window. As we aim for our tunnel detection to be used as a pre-
processing method, we limited ourselves to the sub-family of object detectors
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that do not work with region proposals and have yet been shown to be highly
capable of processing frames at a high frame rate on PCs. Even though we
must account for this frame rate to drop significantly in the limited environ-
ment of the capsule endoscope, we only require it to run with a frame rate
of 2 to 6 frames per second, as the cameras in popular current capsule endo-
scopes record at such a rate. Specifically, we chose for the You Only Look
Once (YOLO) v3 method, as this is fully convolutional approach operates at a
frame rate significantly higher than other approaches, while detecting objects
of different sizes with acceptable accuracy on the COCO benchmarks. We hy-
pothesize that in our limited case of having only one detection class, namely
the tunnel in different states of contraction, as opposed to the common bench-
marks, e.g. on the COCO data set with 80 different classes, we should be able
to achieve an even more satisfactory result.

Note that the methods discussed above are a more resource-efficient and ulti-
mately more powerful class of deep learning detection methods than the sliding
window method integrated into our method in chapter 3, as we already briefly
discussed there as well, since both the classification and localisation can be
optimised simultaneously. In contrast with the problem faced there, the con-
ditions of tunnel detection are favourable for their use, as here we are dealing
with an object that does have better defined borders and shape. Additionally,
for this objective we made a different choice in the trade-off between accuracy
and resource efficiency due to the intention of the method to be used as a
preprocessing method, as discussed above.

4.3 R-CNN Fundamentals

4.3.1 Introduction

Even though CNNs have proven their usefulness in object classification in
combination with automatic feature learning on images, until recently it had
its limitations when used for object detection. Object detection, in contrast to
object classification, is not only recognising that an image contains an object
of a certain class, but also where in the image this object is located. One way
to do this using CNNs, which we have also done in our work here, is to divide
an image into subregions and feed those subregions to the CNN instead of the
entire image, i.e. the sliding window approach we introduced in Section 3.2.1.
For this to work, the CNN needs to have been trained on comparable image
regions instead of entire images. One downside is thus that they are difficult
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to reuse when one wants to change region properties, such as the size for
example, for which the network would usually have to be retrained on regions
with the changed properties. Another downside of this method is that we need
to process each region of the image through the entire CNN individually to
finally obtain a class prediction for each of them, thus missing information
that may depend on other regions in the image, such as the relative position.
At the same time, processing a CNN once for the entire image instead of once
for each region allows us to significantly improve the computational efficiency
of the network.

Ideally, we would want to process the network only once for each image, thus
increasing the efficiency through single matrix multiplications in the prediction
phase while allowing us to take further advantage of this in backpropagation in
the training phase. One way to achieve this in the prediction phase, is to adapt
the CNN architecture from the sliding window approach from before. Namely,
by converting the fully connected layers of the CNN to convolutional layers,
we can obtain an output feature map instead of single class confidence values.
If we then provide the whole image as input, each element of this feature map
will correspond to a certain region of the image, which is equivalent to sepa-
rately processing each patch obtained through the sliding window approach.
However, as the size of the region depends on the architecture in combination
with the size of the input images, this option limits us in our choices at the
time of the network design to obtain the correct size of the output feature map
and the desired receptive fields. Namely, in this case the size of the regions
results to be equal to the factor by which the feature map was downscaled
before the original fully connected layers, somewhat confusingly often referred
to as the network stride, while the depth of the network and the size of the
convolutional kernels together determine the size of the receptive fields. Addi-
tionally, this method also does not allow us to detect areas of arbitrary aspect
ratios and different sizes, as all of the values in the output feature map then
correspond to a region of fixed size with respect to the input size.

To solve these issues of using regular CNNs for the purpose of detection, the
Regions with CNN features (R-CNN) method was suggested as an extension of
the traditional object detection pipeline [27]. This method allows for obtain-
ing more precise feature-based region proposals, instead of region extraction
methods that ignore the content such as those based on regular sampling or
the region sampling resulting from the CNN design in the aforementioned
method. The idea behind the original method was to integrate a smart region
proposal method into the overall detection method, classifying the proposed
regions with a CNN. This original approach and later approaches that kept
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this region proposal aspect are therefore often denoted proposal-based. As
this approach was further built upon by researchers, later approaches were
developed that no longer incorporated a separate region-proposal element and
instead only employ a single connected network architecture, essentially re-
gressing both bounding box coordinates and classification results in a single
feature map. This class of approaches is denoted regression-based. Regression-
based approaches have both advantages and disadvantages to proposal-based,
however, and were therefore not widely adopted to replace them under all cir-
cumstances, with the result that both branches are being further developed in
parallel. Recent work has also suggested to combine the best elements of both
worlds [50].

The general approach of proposal-based methods is given in Figure 4.2, while
the general approach of regression-based methods is given in Figure 4.3. Note
that neither of these examples correspond to any architecture in particular.
They are simply meant to indicate the main differences in the pipeline of both
classes of methods. In both proposal-based methods and regression-based
methods we can often distinguish two parts, namely the backbone and the
head. The backbone is the base network that essentially serves as the feature
extractor. The head is the network that classifies the features and regresses
or refines bounding box coordinates. Although some methods introduce their
own backbone, while other methods use popular CNN architectures such as
VGG, we we can often interchange the backbone for other architectures. In
doing so, we may have to pay attention to stride to avoid dimensionality issues
and ensure that the architecture is valid, especially in those architectures that
have additional shortcuts or branches to the head from within the backbone.
The head is the part of the architecture that further regresses those features
to predict class confidence scores and bounding box coordinates. Notably,
R-CNN was the pioneer method in converting CNNs in full object detectors
and therefore in this chapter we refer to all of these approaches as R-CNN-
based. As these methods are not mere classification networks but basically full
detection systems, we will also refer to them as detectors to distinguish them
from classification CNNs.

Before we further extend on concrete R-CNN methods or architectures, there
are some general concepts that are fundamental for these approaches, which
we elaborate on here. Each of these concepts is either relevant to all R-CNN-
based approaches or only to the proposal-based ones, but we consider them
fundamental R-CNN-based techniques in general. Namely, knowledge of the
techniques that are only commonly used in the proposal-based approaches can
contribute to a better understanding for how the purpose of these concepts is
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achieved in alternative ways in regression-based approaches. Here we identify
four important fundamentals that are substantially different from techniques
in traditional CNNs: informed region of interest (RoI) proposals, RoI pooling,
bounding box anchors and optimisation in R-CNNs.

4.3.2 Informed Region of Interest Proposals

The proposal-based methods heavily rely on the method employed to propose
regions, and by inference on the features on which it bases its decision. As
we shall see, the exact methods used differ for different variants of R-CNN, as
many of those variants aimed exactly at improving the region proposal method
or the manner in which it is incorporated in the overall detector. Here we
distinguish between two types of methods, namely the deterministic methods,
which find suitable regions based on predefined conditions or features, and the
learning methods, which attempt to learn appropriate regions for the specific
case. In essence, all of these methods are in a way generic object detectors, as
their purpose is to return regions that correspond to a likely object.

Methods of the first type, the deterministic methods, can usually be inter-
changed for other classic region proposal or region growing methods. By far
the most used method in literature is selective search, which is the method
first suggested in the first original papers on R-CNN. We will therefore ex-
plain selective search in detail and give the reader an intuition of how this
method may be replaced by methods that work similarly. Selective search is
a bottom-up region growing or grouping approach. It defines different simi-
larity measures between regions, in order to merge the most similar ones. In
doing so, it inherits ideas from traditional image segmentation and exhaustive
search, but instead of focusing on single features, the authors chose to diversify
the search for similar regions to merge together through applying more diverse
similarity measures [88]. Similarity is defined in a broad sense, as in fact it
does not only measure similarity between two separate regions, but rather how
well these regions fit together. It should be noted that these similarity mea-
sures in fact consider features that are not necessarily connected to the features
we are looking for in the main R-CNN method. Concretely, the method uses
predefined colour features, texture features, size features and location features
to determine which two regions in the image are most similar. Additionally,
they are chosen in such a way that merging the features of the most similar
regions can be done through directly combining the overall features of both
regions, without needing to recalculate the features from the pixel values for
the merged region. This merging step is repeated until the whole image is
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combined into a single region. Finally, the whole procedure is repeated for dif-
ferent colour spaces, and possibly other variants of the algorithm, thus yielding
many different results that are ordered to allow the specific implementation of
the method to make a trade-off between quality and quantity of found regions.
In the original R-CNN, for example, the first 2000 samples of this ordered
list were retained for further processing. The authors of the method suggest
ordering this list in the order the regions were found, i.e. from last found
to first found, although they introduce a degree of randomness in the sorting
algorithm to prevent the method from too heavily emphasising the large re-
gions. They do so by multiplying the rank of each of the image regions in the
sorted list by a random value, and finally sorting the entire list of objects by
the thus obtained values. When using bounding boxes and wanting to remove
duplicates, they note it is favourable to first sort the entire list in the explained
manner, and afterwards remove only the lower-ranked duplicates. This also
favours bounding boxes with duplicate detections, which the authors argue to
be desirable as objects that are proposed in multiple grouping strategies are
more likely to be visually coherent and thus to represent an object.

The second type of method, the learning methods, are commonly CNN archi-
tectures that are integrated into the overall architecture and are referred to as
Region Proposal Networks (RPNs). These architectures take an entire image
as input and produce an output feature map where each element contains the
probability that said element is part of an object, as well as the parametrised
coordinates of the corresponding bounding boxes, thus generating an output
of h × w × k, with h and w being the input image height and width respec-
tively and k being the number of bounding boxes we allow to be detected at
each element of the feature map. It is important to note that k has to be
set in advance and is thus a hyperparameter of the CNN architecture, as the
method regresses fixed size feature maps with bounding box coordinates and
classification of region proposals in a single feature map directly from the en-
tire image input. The bounding box coordinates are in fact not any absolute
coordinates, but are predicted relative to each of the k anchor boxes that have
a predefined width and height, with each anchor box corresponding to one of
the output bounding boxes. We will explain this important concept in more
detail in Section 4.3.4, along with the motivation of the necessity for them.

An important aspect of the RPN is its loss function and how it deals with class
balancing between positive samples and negative samples. Using an anchor
box approach, the number of negative samples commonly greatly outweighs
the number of positive samples, as will become clear when we discuss anchor
boxes in detail later on. This issue was already targeted by the authors of
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the first R-CNN-based method that implemented RPNs [72], who suggested
to take this into account by applying undersampling of the negative class in
the loss function. Concretely, they aim for a 1:1 ratio between positive and
negative samples by randomly sampling a fixed-size mini-batch (256 samples in
their case) of region proposals in the loss calculation, which in their case should
thus contain 128 samples of each class. Each time an image contains too few
positive samples to meet this ratio, the remainder of the batch is still padded
with negative samples to complete the mini batch. In following R-CNN-based
approaches, the approach of balancing positive and negative classes in the loss
function was further extended on, e.g. by changing the ratio (e.g. 1:3 [32]) or
by using weighted loss functions.

Since the RPN outputs the classification probability as well as the regressed
bounding box coordinates, both components participate in the loss function
of the network. The loss function essentially defines a sum of the classifica-
tion loss and the regression loss, both of which are normalised with respect
to the number of bounding boxes involved, weighted by a parameter λ that
controls the trade-off between the two. This is similar to the loss function of
regression-based approaches, as both approaches in fact rely on similar prin-
ciples in general. In fact, RPNs are regression-based detectors that detect
generic objects instead of multiple classified objects, thus producing an output
feature map that contains objectness scores along with the region coordinates,
whereas full regression-based detectors output classification scores instead of
objectness. Therefore, we will leave the details with respect to the loss func-
tion of the RPN to Section 4.3.6, where we discuss the different loss functions
in R-CNNs in general. In some approaches the RPN is trained separately
from the rest of the detector architecture, while in other approaches it is inte-
grated with the overall architecture and trained simultaneously while sharing
features, commonly alternating between freezing the weights of the RPN and
freezing the weights of main network to obtain appropriate weights for the
shared convolutional layers.

4.3.3 RoI Pooling

After obtaining regions using any of the region proposal methods, they need
to be further processed through the remainder of the R-CNN architecture to
predict classification results and final bounding boxes for each of the regions.
In R-CNN-based methods, it is interesting to first process the entire image
through several (convolutional) layers before we continue on a per-region basis
for efficiency purposes, as we then need to extract overall base features only
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once for all regions, thus saving redundant per-region operations. However, in
doing so, it is no longer straight-forward which of the features in the feature
map resulting from these shared layers correspond to each of the regions found
by the region proposal method. Additionally, the region-specific part of the
architecture requires a fixed input size that should be equal for all regions, for
which the features of each of these regions need to be mapped to a feature map
of the required size, regardless of their different original sizes. The RoI pooling
layer is a special type of layer that can perform both of these operations in
a single layer and output a feature map of a predetermined fixed size, thus
serving as a bridge between the base architecture and the region-specific part
of the architecture.

RoI pooling derives its name from the fact that it performs a pooling operation
comparable to the operation in the common pooling layers in CNNs described
in Section A.4.2. However, here the goal is to pool exactly those features
corresponding to the RoI from the feature map derived from the entire image
in such a way that the layer can be shared among RoIs and the output size
is constant and thus does not depend on the size of the RoIs [26], as this
should be equal for all of the regions for the detection network to ensure a
valid architecture. Therefore, for greater regions, these features need to be
pulled over a more extended area. This is where it differs from normal pooling
layers, for which the pooling operation has a fixed receptive field (commonly
2 × 2 or 3 × 3), while the stride of the resulting feature map is a dependent
variable that we have to take into account when ensuring the validity of the
architecture we define. In RoI pooling, we instead have a fixed output size,
while the resulting stride and receptive field, or the pooling window size, are
dependent variables. For example, if we require an output feature map of
ho × wo cells, we need to use a pooling window of ( hi

ho
× wi

wo
) for that specific

input region or sample.

The best way to understand these concepts is by a concrete visual example,
as shown in Figure 4.4. In this simplified example, we have an output feature
map from a shared convolutional layer of size 7× 7 and a desired input size of
2× 2 for the region-specific part of the architecture. In our example, we also
have coordinates of two different RoIs as a result from our proposal method,
each of which RoIs is provided as input to the RoI pooling layer. Let us
suppose that those regions correspond exactly to the dashed lines visualised
in Figure 4.4. As the coordinates of the RoIs are defined at a higher precision
than our feature map at this point, the position values corresponding to the
found RoIs are decimal values in a continuous range, while the feature map
values are only defined on a discrete range. The original RoI pooling method
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(a) (b)

Figure 4.4: RoI pooling visualised for a 2D convolutional feature map of 7 × 7 and
two proposed regions from the region proposal method. Figure (a) shows the case
for the first region of size 6 × 4 on the convolutional feature map, while Figure (b)
shows the case for the second region with odd dimensions of size 3 × 3, where the
pooling sections differ in size. The green backgrounds indicate the maximum values
in each of the pooling sections, which will thus form the output of the RoI pooling
layer.

dealt with this by first quantising the coordinates are then first quantised to
include all of the cells they overlap. This is commonly done by converting
the coordinates at the edges of the RoI from (x, y) to (⌊x⌋, ⌊y⌋), as this is
efficiently implemented as an integer cast.

In the case of the first region, the RoI located in the right-bottom corner of
the image as indicated in Figure 4.4a, would then be of size 6×4. In this case,
each pooling section will be of size 6

2 ×
4
2 , i.e. 3 × 2. The second RoI is of

size 3 × 3 on our feature map and is located close to the upper left corner as
shown in Figure 4.4b. As the resulting dimensions of the latter RoI are odd,
the same division for this RoI does does not yield integer results, due to which
the different cells of the pooling window will not all have equal receptive field
sizes. In this particular case, the four pooling sections will be of sizes 2 × 2,
2× 1, 1× 2 and 1× 1 respectively.

As this example shows, RoI pooling will not always be precise. Namely, due
to the quantisation of the coordinates, we may be losing information around
certain edges of the RoI, while on other edges we may actually be pooling
features that do not correspond to it. For example, in case of our 3×3 RoI, the
coordinates of the top-left corner are (1.25, 0.75). As this only partially covers
the feature map cell at position (1, 0) while we are pooling all the information
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from it, we are in fact pooling more information than really should be the
case. At the right and bottom sides of our RoI, the opposite happens, where
the cells at the fourth column and fourth row respectively are not taken into
account, even though our RoI covers a substantial part of them. Additionally,
we cannot guarantee the dimensions of the input region to be a multiple of
ho × wo, due to which the pooling windows are not of equal size all over the
input, and they will be sized differently near one of the edges of the image than
near the other in that case, e.g. with a subset of the pooling windows having
dimensions ⌊ hi

ho
⌋×⌋wi

wo
⌋, while the remaining windows would differ in at least

one of the dimensions, i.e. wp = wi − (wo − 1)⌈wi

wo
⌉ or hp = hi − (ho − 1)⌈ hi

ho
⌉,

depending on the exact implementation.

In order to deal with these issues, improved methods have been suggested
that make use of bilinear interpolation on the feature map. The two most
popular methods of these are RoI Warp and RoI Align. RoI Warp deals with
the problem of entirely losing information around the edges by introducing
bilinear interpolation within the pooling windows. In this manner, instead
of having the pooling windows we found before, we can define four pooling
windows of equal size, namely 1.5 × 1.5 each, while we regularly sample n

data points in each of the pooling windows at positions ( i
n+1 , j

n+1 ), for each
combination of i = 1 . . . n and j = 1 . . . n. RoI Align takes this idea one step
further by dropping quantisation altogether and aligning the sampled points
purely to the RoI instead, effectively aligning the data points to the RoI as its
name suggests.

4.3.4 Bounding Box Anchors

One way to obtain bounding boxes from input images through an R-CNN-
based approach would be to directly predict bounding box properties for a
detected object, i.e. location and dimensions. However, this approach is prone
to errors because it tends to favour bounding boxes with large dimensions,
while at the same time it destabilises the training process, since the range
of values to predict varies significantly between samples, while it leads to
further issues in the case of predicting multiple objects of different aspect
ratios. Therefore, an often used technique in the methods elaborated on in
this section is to predict such coordinates as translations and scaling factors
of a set of boxes with predefined aspect ratios, also called anchor boxes, which
makes it easier for a network to learn [69]. As in the R-CNN architecture
every cell of the output feature map independently makes predictions with
respect to each of the defined anchor boxes, we can essentially view these
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Figure 4.5: An example of two anchor boxes of different aspect ratios, tiled across
a CE image for exemplary purposes. The aspect ratios of the anchor boxes heavily
depends on the initialisation, although they can be refined through training. The
number of anchor boxes depends entirely on the network configuration, while whether
they overlap or not and to what extent largely does as well.

boxes as being tiled across the image as visualised in Figure 4.5. In that
example we used two anchor boxes with a different aspect ratio. The predefined
anchor boxes can thus be seen as a static part of the network architecture,
whereas the cells essentially predict an instance of each anchor box with specific
parameters, notably the specific translation and scaling factor, along with the
class confidence scores. The network learns to predict these parameters from
the ground truth bounding box, using bounding box overlap metrics such
as intersection over union (IoU) in the loss function of the network during
the training phase with the purpose to increase IoU values with the ground
truth.

From the above, we can understand that anchor box definitions have a vital
role in the detection performance of the R-CNN. Poorly defined anchor boxes,
e.g. with aspect ratios that do not correspond to our domain, negatively
affect performance. It is therefore important that the used anchor boxes are
relevant to the specific detection problem. It can be observed that in many
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cases, objects of a specific class of our problem have characteristic aspect
ratios, such as pedestrians, cars, for example. By defining our anchor boxes
in accordance with those aspect ratios, predictors (i.e. a set of output values
forming a single bounding box prediction) linked to a certain anchor box can
more easily become specialised in the detection of the class of objects that
have a characteristic shape with an aspect ratio similar to that of the anchor
box. To generate boxes that are relevant for the specific data or the domain
of the problem at hand, different methods have been suggested, of which the
most popular appears to be the use of clustering methods over box sizes or
aspect ratios on the training dimensions, as first proposed in YOLOv2 [69].

In most implementations, there is a fixed number of predictors to output a
fixed number of multiple bounding boxes per image or per grid cell. In this
case, each bounding box predictor corresponds to one anchor box and the pre-
dictions are somehow relative to the anchor box properties, such as positional
offsets and scaling factors. For example, in the case of YOLOv3, as we shall
see, the output that relates to the positional offset is first passed through a
sigmoid function and then summed to the coordinates of the grid cell, while
the output values that relate to the dimensions are passed through the natural
exponential function, then multiplied by the corresponding bounding box an-
chor dimensions, and subsequently multiplied by the image size, as the values
were normalised.

4.3.5 Bounding Box Regression

Before we delve deeper into the other concepts of R-CNN, it is important
to understand the concept behind bounding box regression, that all methods
discussed here employ in one way or another. Although they may all differ
in the exact implementation of this regression and how this is combined with
the classification of the regions, bounding box regression generally refers to
the regression of the parameters that determine the extent of the bounding
boxes, which commonly relate to their x- and y-positions, their width and
their height, thus yielding four coordinates. Even though in the proposal-based
methods we already obtain regions as the input for the classification part of R-
CNN head, in many proposal-based methods bounding boxes are still regressed
by means of refining the first proposed region, to fit the boxes more tightly
around the objects of a certain class contained within. In regression-based
approaches, bounding box coordinates are instead regressed directly alongside
the classification scores. In all cases, the regression targets of the coordinates
are usually defined relative to other boxes, whether it be anchor boxes or the
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boxes found in the region proposal method, which often leads to improved
stability as explained in Section 4.3.4, with regression thus working similarly
in all cases.

In this section we explain the regression targets of the bounding box coordi-
nates by the example of the original R-CNN approach with region proposals
from the selective search algorithm, while we also largely following the ex-
planation in the original paper [27]. In this case, we thus already deal with
proposed regions from proposal-based methods as input of the network head,
instead of entire images. Also, note that here we no longer operate on the
original image input, but instead on the shared feature map that is the output
of the backbone, as addressed in Section 4.3.3.

Essentially, in training an R-CNN detector with region proposals, the goal
is to map the bounding box coordinates obtained from the region proposal
method to a corrected bounding box that fits better to the ground truth box.
In other words, we want to find a function that maps the proposal box coordi-
nates (px, py, pw, ph), hereafter denoted p, to the ground truth box coordinates
(gx, gy, gw, gh), hereafter denoted g. The parameters we want to estimate are
not the direct coordinates, however, as these can be within a wide range of
numbers. Instead, the authors of R-CNN suggest to parametrise them using
scale-invariant translations for the location coordinates px and py, while using
log-space translations of the width and the height [27]. The values we actually
want to regress are then defined as d∗, where d∗ = wT

∗ ϕk, with k being the
index of the last feature map layer of the network, i.e. a weighted combination
of the features returned by the CNN. The true estimated coordinates ĝ of the
ground truth boxes can then be defined in terms of transformations on these
functions through the following transformations on d∗:

gx̂ = pwdx(ϕ(p)) + px,

gŷ = phdy(ϕ(p)) + py,

gŵ = pw exp(dw(p)),
gĥ = ph exp(dh(p)).

As the functions d∗ need to be optimised for, the authors model the ground
truth boxes analogously in terms of the ground truth boxes g, such that we
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obtain the regression targets t∗:

tx = gx − px

pw
,

ty = gy − py

ph
,

tw = log gw

pw
,

th = log gh

ph
.

Using these regression targets, the problem can be modelled as an ordinary
least squares regression problem:

w∗ = argmin
ŵ∗

N∑︂
i

(︂
ti
∗ − ŵT

∗ ϕk(p(i))
)︂2

+ λ||ŵ∗||2.

In the Fast R-CNN method and later methods, the bounding box parameters
are instead regressed through a connecting MLP with one or more layers [72].
In the case of a layer with a linear activation function this is equivalent, while
in the case of non-linear activations it can define more complex relationships.
It should be noted that this comes at the cost of efficiency, considering the
much less efficient stochastic optimisation of neural networks.

4.3.6 Loss Functions

In contrast to classification networks, in the case of R-CNN approaches both
class confidence scores and bounding box parameters are regressed simulta-
neously. Therefore, additionally to the classification error, the loss functions
should take the localisation error into account. As a consequence, these often
become a sum of both components, weighted with a regulating factor λ, i.e.

L(p̂, p, t̂, t) = Lcls(p̂, p) + λ1p≥1Lloc(t̂, t),

where p̂ and t̂ correspond to the predicted class confidence scores and bounding
box regression values respectively, while p and t correspond to the true classes
and bounding box regression targets respectively. For bounding box regression,
smooth L1-loss is a common choice as well as L2-loss, while for classification
cross-entropy is commonly chosen as we have seen for classification with CNNs
before. Some methods use hinge-loss for classification instead, as was the case
for the first R-CNN architecture, which used SVM instead of an MLP. The
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details of all these specific loss functions are discussed in the appendix on
CNNs in Section A.5.

In case of integrated region proposals, the region proposal loss is regressed
simultaneously. This often occurs in the case of a connected RPN or fully
regression-based approaches, which thus incorporate an additional component
in the loss function that corresponds to the quality of the region proposals.
This component is calculated similarly to the classification error, but this time
simply based on the two classes “object” and “no object”. In methods that are
based on a separately trained RPN, the loss for this regression is a different
loss function altogether, commonly only including the previously mentioned
objectness classification and the bounding box regression. As the proposals
are not connected to the final bounding box and class predictions of the overall
detector, it is often desirable in this case to have a particularly high recall, as
boxes that are wrongfully not detected in this stage, can never be detected in
the second stage.

4.3.7 Model Evaluation

While we already discussed evaluation of CNNs used for classification in Sec-
tion 3.2.3, the networks we discuss in this chapter are full object detectors that
predict bounding boxes on top of classification. Therefore, we require different
evaluation metrics. For object detectors in general, a specific evaluation metric
that is widely used is the average precision (AP). This measure was first in-
troduced by the popular PASCAL VOC object detection challenges, after first
making its introduction in the challenge of 2007 [22], and has since then been
widely adopted as evaluation metric in object detection papers and in other
challenges, such as COCO. When using all data points, its value is calculated
per class by first collecting all the individual detections for that class over all
images and sorting them based on their confidence scores in descending order,
and at each rank in that list summing the precision values multiplied with the
difference in recall value compared to the last rank, which is equivalent to a
setting the threshold at that confidence score. The formula for AP is given
by

AP =
N∑︂
n

(Rn −Rn−1)Pn, (4.1)

where R0 is 0. This is exactly the area under the precision-recall curve obtained
from plotting the recall and precision values at each rank in the list against each
other. In the earlier challenges, the organization of PASCAL VOC used an

89



4.4. Proposal-based Detectors

interpolated AP which sampled the AP at 11 fixed, uniformly spaced intervals,
attempting to even out the small “wiggles” usually present in the precision-
recall curve caused by small variations in the ranking of the samples. From
2010 onwards, they decided to start using Eq. 4.1 as they concluded the
interpolated AP was not discriminative enough at low AP [21].

As can be understood from the above, the AP is very sensitive to the relative
ranking of the detected objects and severely punishes false object detections in
the high ranks, as well as a low detection rate, i.e. low precision values at low
recall values. Reviewing both of these measures together while not directly
considering the negative class is necessary especially in case of an imbalance
towards negatives, which is practically always the case in object detection
as background and other objects occupy significantly more area in the input
images than the object itself. By considering the entire relative ranking, i.e.
the entire area below precision-recall curve, we obtain information about the
robustness of a model in the sense that a good model should be able to return
relatively many true positive detections before returning false positives. In our
case, we also decide for using AP as an evaluation metric as calculated in Eq.
4.1, since the objects we aim to detect also occupy significantly less area than
the background. Furthermore, we consider that this metric depends on all
terms of the confusion matrix except for the true negatives, which is exactly
what we are least interested in.

4.4 Proposal-based Detectors

The original R-CNN method consists in using a sophisticated method to gen-
erate about 2000 class-independent region proposals for each input image at
test time, from which it then extracts and classifies feature vectors. Even
though the authors chose for the selective search algorithm to generate region
proposals, R-CNN can be used with any chosen region proposal method. The
images corresponding to each region proposal are then resized (and possibly
warped) to the input size required by the employed CNN architecture in order
to obtain a fixed-length feature vector for each region from the CNN. Finally,
the obtained feature vectors are classified through class-specific linear SVM
models. The authors also suggested performing further bounding box regres-
sion to reduce localization errors introduced by the region proposal method,
which they did through a linear regression model to predict a new detection
window given the deepest spatial features of the CNN.
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Fast R-CNN [26] introduced innovations to this method that mainly allowed
for faster training and prediction times. Namely, instead of processing the
whole CNN for each region, the authors proposed to first process the whole
image through the CNN and then extract the features per region proposal, or
region of interest (RoI). This idea was based on modifications to R-CNN by
SPPnet, which already proposed to speed up R-CNN by sharing computation
through the introduction of a shared convolutional feature map which it ex-
tracts the feature vectors from for each of the proposals, using spatial pyramid
pooling. However, SPPnet is still a multi-stage pipeline that involves feature
extraction, a fine-tuning stage in which earlier feature extraction layers are
fixed, training SVMs and fitting bounding-box regressors, while, in contrast
to R-CNN, it does not allow for updates to the convolutional layers preceding
the spatial pyramid pooling during fine-tuning. Fast R-CNN instead has a
single-stage training procedure, which can update all network layers. Features
are pooled from the convolutional feature map into to a fixed-size feature map
with a width of W and a height of H through RoI pooling, which we discussed
in Section 4.3.3. These W and H parameters are incorporated into the CNN
architecture and therefore hyperparameters of the model. While we already
discussed how RoI pooling operates to output a feature map of a constant size,
we can now see how configuring the size of the output feature map inversely de-
termines the extent of the pooling operation. Namely, if the width and height
of the region corresponding to a RoI are w and h respectively on the convo-
lutional feature map derived from the entire image, the size of each pooling
section would be approximately w

W ×
h
H , but would be subject to quantisation

as we only deal with integer values. Instead of using separate SVMs for clas-
sification, Fast R-CNN uses a fully connected layer with a softmax activation
function on the feature vector on one hand to obtain the class probabilities,
while on the other hand they use a parallel fully connected layer on the feature
vector to perform the bounding box regression.

Finally, building forth on Fast R-CNN, Faster R-CNN was developed. The
main innovation of this method was a significant reduction of the number of
region proposals, while ensuring a more accurate object detection. Namely,
in Fast R-CNN the region proposal method was separate from the remainder
of the detector, due to which the method needed to have a specifically high
recall often at the cost of a lower sensitivity, as briefly explained at the end
of Section 4.3.6. Faster R-CNN instead introduced region proposals through
an integrated RPN as explained in Section 4.3.2 which operates on the feature
map generated by layers shared with the backbone CNN. The region proposal
model outputs both a bounding box prediction and a binary class prediction,
which is either object or background, after which non-maximum suppression
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is used to eliminate similar bounding boxes that are predicted to correspond
to an object. This region proposal network is trained together with the rest
of the model and can finally learn to generate high-quality and precise region
proposals, which significantly reduces the number of proposed regions. As in
Fast R-CNN, RoI pooling is then applied to the output of the first CNN for
each proposed region after which through several fully connected layers finally
a class is predicted along with a bounding box. Mask R-CNN takes the idea
of Fast R-CNN a step further by replacing the RoI pooling layer by a RoI
align layer and adding a fully convolutional network to the output in order to
predict a pixel-level mask for each object. The RoI align layer removes the
quantization applied in the RoI pooling layer due to sampling the RoI features
only at discrete coordinates of the RoI projection on the feature map. This
may not lead to wrong classification results as classification is robust to small
translations, but it does cause a misalignment in the case of predicting pixel-
accurate masks [32]. The RoI align layer instead applies bilinear interpolation
to compute values at continuous locations, which has the additional advantage
of being able to set the number of data points to sample from for each value
of the output feature map.

4.5 Regression-based Detectors

The other type of CNN object detectors are the regression-based, which first
emerged from the need to improve the speed for implementation on devices
with fewer resources. In these approaches, regression-based refers to the fact
that bounding box coordinates are directly regressed from the input image
pixels into the output feature map in a single stage, thus entirely eliminating
the expensive step of intermediate region proposals. Despite the name, they
also still perform classification simultaneously, combining both aspects into
a single loss function during training. Pioneer methods among these were
MultiBox and AttentionNet, which did not yet perform well enough to compete
with the region proposal-based methods.

Later approaches further refined the ideas presented in those methods, starting
with the You Only Look Once (YOLO) method [68], which was later redesigned
to improve detection rates of smaller objects specifically through YOLOv2 [69]
and YOLOv3 [70]. The original version of YOLO introduced the concept that
the central box in the last feature map of the network was responsible for
predicting the presence of an object along with its bounding box coordinates
and classification. In YOLOv2 the concept of anchor boxes was adopted to
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control the gradients in the bounding box regression, which was found to also
improve detection rates if the dimensions of the anchor boxes were chosen
wisely, basically making anchor boxes specialists in detecting certain objects
with a typical aspect ratio. As the authors of YOLO continued to improve their
method, YOLOv3 still provides a highly competitive accuracy as compared to
other R-CNN-based approaches, especially considering its inference times. In
between iterations of YOLO, other competitive methods were suggested that
dealt with issues in earlier YOLO versions.

One of these in particular became a popular approach by itself, namely Single
Shot Detector (SSD) [53], which also seems to have served as an inspiration
of the YOLOv3 method. Namely, the older YOLO methods had difficulties in
detecting small objects. SSD therefore used the observation that CNNs usually
gradually reduce the size of the feature maps in the hidden layers to reduce
dimensionality towards the final classification layers that eventually predict the
classes. To be able to detect the smaller objects in a regression-based approach
without the need for a region proposal method, they suggested an approach
where bounding box regression was performed on intermediate layers of a
CNN detector each time before pooling layers, resembling a classical feature
pyramid approach, instead of only doing this for the smallest output layer.
This approach also made use of anchor boxes that MultiBox also used, while
the original method of YOLO did not. Additionally, this method made use of
hard negative mining to address the extreme majority of negative samples as
opposed to positive samples in object detectors, which was first used in Fast
R-CNN. Using the observation that many of those samples are easily classified
as background, hard negative mining limits the number of negatives included
in the calculation of the loss function to an approximate 1:3 ratio between
positive and negative samples after ranking the negatives by their loss value
and including only those with the highest ones. SSD outperformed Faster
R-CNN on the COCO benchmark [52] as well as YOLO and YOLOv2.

Apparently inspired by the SSD approach, several of its concepts were in-
tegrated in the method of YOLOv3. Namely, it included both the idea of
regressing bounding box coordinates from output feature maps from interme-
diate layers of the CNN and the usage of anchor boxes, which were already
adopted in YOLOv2 and further improved in YOLOv3. The authors also ex-
perimented with a recent innovation for multi-class object detection through
regression-based models that was introduced in RetinaNet, namely the con-
cept of focal loss. This concept extends the earlier mentioned hard negative
mining defined in SSD and addresses the imbalance between positive and neg-
ative samples dynamically [51]. Concretely, it is a version of cross-entropy
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loss extended by a scaling factor that decays to 0 as the confidence of correct
classification decreases, thus forcing the model to focus on the hard samples.
In this manner, the threshold on the inclusion of samples in the loss function
is effectively continuously adjusted in the form of sample weights. However,
the authors of YOLOv3 observed that this concept actually dropped average
precision values in their method [70]. Nonetheless, the method of RetinaNet
on itself is interesting as it achieves high average precision values on COCO,
but at the cost of a significantly increased inference time. Another interesting
recent method that obtained a higher average precision on the COCO data set
than YOLOv3 is CornerNet [45], which introduced bounding box detection
through detecting only its top-left and bottom-right corners, eliminating the
need for anchor boxes altogether. They also introduced corner pooling to train
the network to better localize the corners.

With the shift from classification to full object detection using bounding boxes,
the loss functions of the CNNs also changed to incorporate localisation loss
and objectness loss. While R-CNN still used SVM for classification of the
regions, in Fast R-CNN this was done in the same network using a single loss
function, which consisted of the weighted sum of the log-loss (or cross-entropy)
for classification and a smooth L1-loss over the bounding box coordinates for
bounding box regression. Even though Faster R-CNN introduced the con-
cept of anchor boxes, which was also adopted by the later approaches with
fully convolutional elements, the loss functions always remained similar, using
a weighted sum of cross-entropy for classification and a smooth L1-loss for
bounding box regression, while e.g. Mask R-CNN only introduced an addi-
tional loss for the segmentation mask. The original YOLO method, however,
introduced a slightly more complicated loss function, as YOLO strictly deter-
mined that the cell of the feature map that corresponded to the centre of an
object was responsible for the prediction of the corresponding bounding box
and class scores. Therefore, the loss function only sums the loss over bounding
box predictions and classification from those grid cells, while it does consider
objectness scores from all cells. Namely, if the objectness score does not meet
a predefined threshold, all other predicted values are ignored. Instead of using
smooth L1-loss, in YOLO all of these partial losses were defined as L2-loss. It
also had parameters to regularize the contribution of the localization error as
well as the contribution of cells that had to predict no object. In later versions
of YOLO, i.e. YOLOv2 and YOLOv3, the method changed considerably and
with it did the loss function, as it was gradually transformed to include the
concept of anchor boxes as well as new thresholds and regularization methods.
This discussed in detail in the following section.
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4.6 You Only Look Once (v3)

The method of YOLOv3 is one of the most recent popular variants on R-CNN
focused on resource efficiency. It directly combines feature extraction, region
proposals, final bounding box predictors and classification into a single fully
convolutional network (FCN). It is thus designed to deduce class probabilities
and bounding box coordinates simultaneously straight from the input pixels.
Due to this, YOLOv3 requires a significantly lower processing time and com-
puter resources or energy than most other R-CNN methods. An additional
advantage of the fully convolutional manner is that it allows the method to
implicitly encode contextual information, while the region proposal techniques
or regular sampling used in most R-CNN methods do not consider the context
of a RoI and can thus miss information that only becomes obvious by seeing
the wider picture.

In the original version of YOLO [68], bounding boxes were predicted only
from the latest, fully reduced feature maps, which resulted in smaller objects
often being missed as the cells of those maps have a too large receptive area
for small objects to play a significant role in the values at that stage. In
YOLOv3 [70], bounding box predictions are made based on three distinct
feature maps of three different sizes. According to its authors, this resulted
in a higher detection rate of smaller objects, although detection of big and
medium-sized objects was slightly sacrificed for it. We opted for this latest
version as it seemed to offer an acceptable trade-off for us, hypothesizing that
the case of a clearly visible, open tunnel is the most straight-forward case
for detection, while the small centres of the contracted muscles are the most
difficult to detect.

Despite consisting of a single FCN architecture, we can still distinguish two
sub-networks in YOLOv3. Namely, the first of those sub-networks contin-
uously decreases the feature map in size through convolutional layers with
different strides and serves as main feature extractor, which we hereafter refer
to as the base CNN, while the second sub-network, hereafter referred to as
the top CNN, makes predictions using a concept similar to feature pyramid
networks, namely by upscaling this feature map through several layers and
merging the increased feature maps with feature maps of the same size from
the base CNN by concatenation, hereafter referred to as the top CNN. For the
base CNN the authors of YOLOv3 suggest their self-designed CNN architec-
ture Darknet53, which we also used in our work, as they found it to obtain
similar results to ResNet-152 with a significantly lower number of operations.
Through its convolutional layers, this architecture downscales the input image
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by a factor of 32, which is also referred to as a stride of 32 considering moving
one cell in the final feature maps is equal to a distance of 32 pixels in the
input image. For the top CNN, the authors propose a network that effectively
makes predictions at three levels of a spatial pyramid. Namely, they first ap-
pend several convolutional layers to the base CNN. The last of these outputs
a 3-D tensor that simultaneously predicts bounding box coordinates, object
probability and class probabilities [70]. This corresponds to three different
bounding box predictions with corresponding probabilities per cell of the fea-
ture map. Separately, they also sum the feature map obtained from two layers
before this first predicting layer to the last feature map from the base CNN of
the same size, to get more meaningful and finer-grained semantic information.
They then process this feature map through several more convolutional lay-
ers, of which the last one again makes predictions analogously to the previous
predicting layer, although now twice the size. Analogously, the third and last
predicting layer is again based on a stack of convolutional layers on top of the
feature map from two layers back. This is visualised in Figure 4.6.

4.7 Experiments and Results

4.7.1 Data Preparation

4.7.1.1 Data Conditioning

We obtained our data in collaboration with Hospital Universitari i Politecnic
La Fe, Spain. With the explicit consent from 10 different patients, we collected
the videos of their capsule endoscopy procedures with the PillCam SB 3 cap-
sule. Through the official software that ships with the capsule, we exported
segments of those videos that correspond to the small intestine to a public
format for further processing. From these videos, we then exported individual
frames at a regular interval and eventually exported 1385 frames. Addition-
ally, we collected five different videos that we use to evaluate our manometry
approximation method.

The frames we obtained show different scenes from the intestine, which could
be roughly divided into two different cases of interest: facing the wall (FW)
and facing the tunnel (FT). This is visualised in Figure 4.7. Through a tool
we developed for bounding box annotation, two expert readers observed all
collected frames and carefully annotated the center of contraction and the
lumen with bounding boxes. In some situations, even though we may be facing
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(a) (b) (c)

Figure 4.7: The two situations we aim to distinguish. Facing the wall (FW) in (a)
and (b), and facing the tunnel (FT) in (c).

the center of contraction or the lumen in an open tunnel, we cannot observe it
due to intestinal content occluding them. As it is relatively common to observe
some intestinal content within the tunnel in non-contracted state, we still used
those frames both in training and in testing without bounding box annotation
to train our algorithm not to mistake intestinal content for the tunnel.

To deal with the black frame around our images, as already discussed in Chap-
ter 3, we made use of the same mask as there, visualised in Figure 3.2b. In this
case, as we use the entire image, we first replaced all the pixels corresponding
to the black area of the mask by pure black pixels, to ensure any remainders of
metadata usually present in the frame was removed. We then tightly cropped
the image around the area of interest, including a minimal number of pixels
from the black frame, to reduce dimensionality as much as possible without
removing any useful information. In this way, from the image originally ex-
tracted at full resolution from the manufacturer’s software of 576× 576 pixels,
we finally obtained images of 512×512 pixels, as shown in Figure 4.1, to serve
as the input to our method.

4.7.1.2 Data Partitioning

For the learning procedure, we subsequently partitioned our data so that in our
test set we would not have any images from the same patients whose images
were used during the training procedure, in order to provide a fair evaluation of
our method by testing that our method generalised not only to new images, but
also to new patients. Therefore, we wrote a script that first randomly shuffled
all the patients. Then, for each patient, we randomly removed frames from
our data set until we had at most 5 positive frames and 5 negative frames of
each patient. Subsequently, we created our data set by repeatedly reading the
first patient from the list, adding the corresponding frames to the test set and
removing that patient from the list, until we obtained the desired percentage
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of frames in our test set, which we set to be 10%. For the remainder of the
patients, we simply used a random partitioning by a hold-out of 20% to obtain
our train and validation sets. In this way, we finally ended up with a training
set of 921 frames, a validation set of 263 frames and a test set of 201 frames.

4.7.2 Tunnel Detection

In our tunnel detection experiment, our aim was to detect the tunnel both in
contracted and in non-contracted state. For this purpose we used YOLOv3 as
visualised in Figure 4.6. However, in the paper published about YOLOv3 [70]
it remains unclear to what extent the author changed the loss function with
regards to previous versions of YOLO. Namely, through the two subsequent
iterations (YOLOv2 and YOLOv3), the method changed significantly, and the
loss function must have changed along with it, as can also be deduced from
the code in the official YOLO repository [67]. Therefore, we compared the loss
function in the code we used against the loss function we deduced from the
official repository, and found them to be equivalent. This loss function can be
defined as follows:

L =
B∑︂

i=0
f(wi, yi)H([xi, yi], [xî, yî])

+
B∑︂

j=0

1
2f(wi, yi)[(wi − ŵi)2 + (hi − ĥi)2]

+
S2∑︂
i=0

B̂∑︂
j=0

1obj
ij H(Cij , Ĉij)

+
S2∑︂
i=0

B̂∑︂
j=0

1noobj
ij 1IoU(i,j)≤T

ij H(Cij , Ĉij)

+
B∑︂

i=0

∑︂
c∈classes

H(pi(c), p̂i(c)),

(4.2)

where B is the number of ground truth boxes, f(w, h) = 2 − w ∗ h to make
the absolute displacement proportional to the box size, S is the number of
grid cells along the width and the height of the feature map resulting from
the considered YOLO layer, B̂ is the number of anchor boxes, 1obj

ij is 1 if
the anchor box j in grid cell i is responsible for predicting a bounding box
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according to the ground truth and 0 otherwise, with 1noobj
ij being exactly the

inverse, 1IoU(i,j)
ij ≤ T is 1 if the IoU of the bounding box predicted for anchor

box j in grid cell i is smaller than or equal to a predefined threshold T and
0 otherwise to ignore the prediction, and H(y, ŷ) is the binary cross-entropy
function.

We implemented YOLOv3 by adapting a Keras implementation [65]. We
trained the network using the official YOLOv3 weights that were pretrained on
the COCO data set, in two stages: first freezing all the base network weights
(Darknet53) in the first stage and then unfreezing and readjusting the weights
of all layers. We used a learning rate of 0.001 in the first stage with a batch
size of 32, while in the second stage we used a learning rate of 0.0001, with a
decay of 0.1 in every 3 epochs without an improvement in validation loss, and
a batch size of 8. As for data augmentation, we randomly employed jitter of a
maximum factor of 0.1, rotations of 0, 90, 180 or 270 degrees, a hue variation
between -0.05 and 0.05 with saturation and value manipulation of a maximum
factor of 1.5. Finally, we set the value of the IoU ignore threshold T to 0.3.
We determined all of these values empirically.

As we evaluated our detection model on the images from our test set of 221
images, our method detected 103 true positive cases of tunnels, 13 false posi-
tives and 16 false negatives, while in the remainder of the images it correctly
did not detect anything. This corresponds to a recall of 86.55% and precision
of 88.79% each, using an IoU threshold of only 0.3 with the ground truth, as
the tunnel is difficult to localize accurately lacking clearly defined borders, and
a default confidence threshold of 0.5.

We extracted the precision-recall curve from our model, which is given in
Figure 4.8. In this curve, we can observe that up to a recall of 40% our
model obtains a precision of 100%, while by relaxing the threshold, we can
obtain up to a recall close to 100% in exchange for the precision lowering to
approximately 76% at its minimum. The AP that summarizes the precision-
recall curve according to the calculation method elaborated in Section 4.3.7 is
0.9571. The mean inference time per image we measured for our method was
0.0317 seconds with a standard deviation of 0.0011 seconds on a Titan V GPU
after initialization.

In Figure 4.9 we show selected results from our detection model. In the upper
row we can observe the true positives, while in the bottom row we show two
representative cases of the false positives as well as two representative cases of
the false negatives.
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Figure 4.8: The precision-recall curve of our tunnel detection model.

4.7.3 Optical Manometry Approximation

Using our tunnel detection method from the previously described experiment,
we attempted to approximate an intestinal manometry that is traditionally
used to perform intestinal motility assessment using invasive procedures [83].
This experiment consists of two parts which are combined into a single visual
result, namely determining the correct orientation of the capsule from the
tunnel detection information and subsequently using hand-engineered feature
extraction to create the manometry approximation. For this experiment, we
used five CE videos.

In the first step of this method, we aimed to filter the frames where the capsule
is oriented towards the anterograde pathway. Namely, only the frames where
the intestinal muscles are clearly visible provide sufficient motility information,
whereas the frames in which we are facing the wall would only cause noise if
they were to be included our method. In order to determine how the capsule
moves through the intestine and thus deduce the accurate capsule orientation
at each moment, an ideal approach would be based on motion estimation
techniques to deduce frame-to-frame dislocation information of the capsule.
This is what we focused our first efforts on, using optical flow based on the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Selected examples from our method (continued on the following page).
In all examples, the box as detected by our model is shown in red along with the
confidence score, while the ground truth annotation is shown in blue. Figures (a),
(b), (c) and (d) show true positives, while (e) and (f) show false positives.
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(g) (h)

Figure 4.9 (cont.): Selected examples from our method (continued). Figure (g)
shows a false negative, while (h) shows an example where our method correctly did
not detect anything.

Lucas-Kanade method as well as AffineSIFT [100]. However, it turned out
that the low framerate of 2 to 6 frames per second did not allow for such
techniques to be effective, as the scenes in the frames would commonly be so
far apart that they did not sufficient landmarks.

Therefore, we instead decided to filter the frames that have the approximate
orientation we require for our method, i.e. facing the tunnel with the tunnel
detection being located in the centre of its view, based solely on our tunnel
localisation from the previous experiment. We thus discard the frames with-
out any tunnel detections, which are considered to be oriented towards the
intestinal wall. The remaining frames all contain the tunnel in its view, but
the capsule may be oriented slightly sideways, due to which we first need to
determine whether the tunnel detection is centred in the frame. In order to
do so, we slice each frame with a tunnel detection into three equal parts both
horizontally and vertically, yielding a total of nine patches of size 1

3 w× 1
3 h each

as shown in Figure 4.10, where w and h refer to the width and height respec-
tively. We then filter the frames where the centre of a bounding box from the
tunnel detection was contained within the central patch and discarded those
for which this criterium is not met.

From the remaining frames, we derive an approximation of a traditional
manometry as we explain next. This can then be used to visually evaluate the
intestinal motility instantly, while the method essentially provides a fingerprint
of intestinal motility which can also be used to efficiently train machine learn-
ing algorithms to distinguish between healthy motility and motility disorders.
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Figure 4.10: The grid from which we extracted the central patch in which we
required the centre of the bounding box to be for our manometry approximation
method.

To construct the approximation, for each frame we process the bounding box
information. Note that under certain circumstances, e.g. false detections or
tunnels that are partially closed in the middle, there may be more than one
bounding box in an image. We therefore only process the bounding box that
has its centre closest to the centre of the of the image.

For each frame, we then want to determine the relative size of the opening
of the tunnel. As the bounding box always contains more image area than
the actual tunnel, due to the nature of a bounding box, we need a more
accurate method to extract the actual tunnel data from the image. One way
to do this, is to obtain the segmentation directly from the CNN detector, e.g.
using Mask R-CNN. However, not only is this method much more expensive
in terms of resource requirements, which would make it less useful as a generic
preprocessing method, but it would also require expensive mask annotations
for each tunnel. Along with this, we would likely require significantly more
training data to learn the correct mask segmentations, while the base model
itself also requires more parameters than a light-weight method as YOLOv3.

Therefore, we instead opted to combine our tunnel detection with classical
feature extraction for this purpose. An important concept in our method
below is the largest inscribing circle in an area, which is used in two different
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steps as we will explain in the following paragraphs. To calculate the largest
inscribing circle of an area, we first need to derive a contour of the area. For
this purpose, we first determine the borders of an area given by a binary image,
where values of 0 correspond to the background and values of 1 correspond to
the area of interest. We then construct a distance map for all pixels within
the bounding box, with positive distance values for pixels within one of the
detected areas and values of zero outside. From the resulting distance map,
we finally derive the largest inscribing circle by finding the greatest value.
The corresponding coordinates correspond to the location of the centre of the
largest inscribing circle, while the value corresponds to the radius. Following,
we explain our method for determining the per-frame relative tunnel size in
detail. The whole procedure is also visualised in Figure 4.13.

As we already localised the tunnel within the frame, we can make assumptions
about the locality of the tunnel area within the bounding box part of the im-
age to apply segmentation techniques. We aimed to segment the darker area
corresponding to the deeper part of the tunnel from the lighter area, which,
in turn, would correspond to the closest contracting muscles. Therefore, we
first convert the image from RGB to CIELAB in order to have the lightness
of pixels separated into a single channel over which we can perform the seg-
mentation. In order to avoid the pixels corresponding to the black frame of
the image from interfering with the clustering procedure, we then extract the
values corresponding to the region of interest Lr from the frame, which is the
greatest informative rectangular area we can obtain from our images, as pre-
defined by the mask image we have been using throughout our work. While
clustering methods such as k-means and mean shift already proved to be use-
ful for this purposes in our experiments, after empirical evaluation we finally
opted for segmentation based on morphological active contours without edges
to take advantages of the circular shape of the intestinal muscles that enclose
the tunnel area. This method is a part of the family of segmentation meth-
ods of morphological snakes, which approximate contour evolution algorithms
by approximating the partial differential equations used within through the
successive application of a set of morphological operations [57].

The geodesic nature of this technique allows us to use the naturally present
borders of the contracting muscles to segment exactly the area within the ones
below a certain lightness threshold. The algorithm also guarantees that the
segmented area is contained within an area of contrasting properties. This
means that if a tunnel is detected and contained within our bounding box in
an otherwise clean image, the tunnel can be assumed to be the darker area
within the image, due to which the resulting segmented area is highly likely
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to correspond to the tunnel. The particular variant we chose to use, is the
approximation of active contours without edges (ACWE) [11], as in our case
the contours do not always fully enclose the areas of interest and we expect
different averages for the inside and outside regions of our segmentation, in
which case this variant tends to work better than its alternatives.

Additionally, to steer the segmentation procedure towards the desired results,
we derive an initial level set for the segmentation based on the same threshold
we applied above. This part of the method only considers the part of the
image within the bounding box corresponding to the detection. Namely, we
create a binary image for the bounding box, in which we set all the pixels
below the threshold to 1 and all the other pixels 0. To all pixels we then
first apply a threshold at the value of 65, which we empirically determined
to work well for this trade-off under different circumstances. For images that
only contain values higher than the threshold, we instead set the threshold at
min(Lb)+2, where Lb corresponds to the lightness values of the bounding box,
to ensure that the following steps would still derive a valid level set. From this
binary image, we then derive the largest inscribing circle cb for the greatest
area. Using the properties of the derived circle, we derive a circle level set,
where the relevant circle has a radius of the size of 0.5× radius(cb), while we
chose the position of the circle to be equal to the found centre, converted to its
coordinates in Lr. Figure 4.11 gives a general overview of this procedure.

The segmentation itself, as well as all of the other following operations, is then
performed on the lightness values of the entire area of interest, Lr, that we
extracted from the frame initially. As there may be more than one area in the
resulting binary segmentation image, we use the greatest one, as we assume it
to be the most likely to correspond to the inner part of the tunnel under the
condition of the parameters that we derived above. From the contours of this
area, we then calculated the largest inscribing circle as explained previously.
Some examples of original frames with the resulting largest inscribed circle of
the tunnel area as an overlay, are displayed in Figure 4.12.

Finally, we convert the obtained information to a column image, where each
column of pixels is constructed from a single frame in the sequence. For this,
we simplified the visualisation to two colours: one colour that represents the
mucosa corresponding to intestinal wall, and black, corresponding to the actual
tunnel. As each column contains the same number of pixels, the absolute size
of the tunnel should be converted to a value relative to the entire frame to
indicate the extent of contraction. Therefore, we calculate the ratio of the
tunnel size, obtained from the diameter of the largest inscribing circle, to the
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Figure 4.11: The process of deriving the initial level set for our segmentation al-
gorithm. We first extract the lightness channel of the largest relevant area Lr as
explained in the text for the main procedure. From this, we extract the values corre-
sponding to the bounding box Lb, to which we apply a threshold, derive the contours
of the area below the threshold and calculate the largest inscribing circle cb within.
Finally, we initialise the level set with the dimensions of the Lr of the image we use
for the remainder of the method, the coordinates of the derived circle converted to
the corresponding coordinates in Lb and half the radius of cb.
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(a) (b) (c)

Figure 4.12: Some examples of circles obtained as the largest inscribed circles by
our method from the segmented areas. Figures a and b show correct results for a
closed and half open tunnel respectively, while the position of the inscribed circle of
Figure c shows us that the segmentation was slightly off in the presence of intestinal
content.

dimensions of the image, and converted this to the number of pixels that should
be coloured black in the manometry approximation.

For the five videos we used in this experiment, this led to the results provided
in Figure 4.14 after processing the first 400 frames with the desired orienta-
tion. For comparison, we also attempted to visualise the original frames in a
comparable column image. To do so, for each frame we divided all the pixels
along the diagonal into 30 equally sized bins, after removing the pixels cor-
responding to the mask. We then appended a column per frame to the final
image by letting each pixel correspond to the mean value of the bin at that
position. Each of the images extracted from the original frames in this way
is displayed above the corresponding manometry image we derived from the
same frame using our method.

4.8 Discussion

In our capsule orientation estimation, we manually observed both the frames
with false positives and those with false negatives in order to try to understand
under what circumstances our method makes its mistakes. For both groups, we
found that in the the majority of cases these situations were the same situations
in which the expert could not accurately determine either the presence of the
location of the tunnel and therefore hesitated in making the corresponding
annotations. Examples of such frames for a false positive and a false negative
are given in Figure 4.9f and Figure 4.9g respectively. However, in the case of
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Figure 4.13: The procedure from detecting and localising the tunnel up to obtaining
the inscribed circle, where the order is indicated by the red arrow. We first obtain
the bounding box from our YOLOv3 detector. We then extract the greatest relevant
area from the image to exclude the pixels from the black frame, convert this area from
RGB to CIELAB colour space and extract the lightness channel. Using these values
and the bounding box information, we then derive an appropriate initial level set for
our segmenteation algorithm, a Morphological Snake approximation of ACWE, as
explained in text and visualised in Figure 4.11. Finally, we perform the segmentation
and calculate the largest inscribed circle from the contours of the segmented area,
which gives us the values of a single column in our output manometry approximation
as shown in Figure 4.14. All images are shown in original relative sizes.

.

109



4.8. Discussion

F
igure

4.14:
T

he
m

anom
etry

approxim
ations

generated
by

our
m

ethod
based

on
visual

analysis
of

C
E

procedures
for

the
five

different
test

videos
w

e
used

(continued
on

follow
ing

page).
For

com
parison,for

each
fram

e
w

e
also

extracted
the

m
ean

colours
of

30
equally

sized
bins

along
the

diagonalofthe
originalfram

es,excluding
pixels

corresponding
to

the
black

fram
e.

E
ach

ofthese
is

visualised
above

the
derived

m
anom

etry
approxim

ation.

110



4. Determination of Capsule Orientation for Motility Analysis

F
ig

ur
e

4.
14

(c
on

t.
):

T
he

m
an

om
et

ry
ap

pr
ox

im
at

io
ns

ge
ne

ra
te

d
by

ou
r

m
et

ho
d

ba
se

d
on

vi
su

al
an

al
ys

is
of

C
E

pr
oc

ed
ur

es
fo

r
th

e
fiv

e
di

ffe
re

nt
te

st
vi

de
os

w
e

us
ed

(c
on

tin
ue

d)
.

111
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false positives, there were also cases that were more obvious to the human eye,
such as Figure 4.9e.

To make a good trade-off between these values, it is important to consider the
purpose. In the case of our motility visualisation, for missed tunnel frames,
relating to low recall, the consequence would be that the frame gets discarded
and we may miss motility information in our manometry approximation that
was in fact present in the original data. This can disrupt the continuity of the
result as noise is introduced. However, erroneously detected tunnels, related to
low precision, would have the same consequence. Namely, this would result in
the frame and the bounding box information being processed by our method,
where the assumptions made for the post-processing to obtain the tunnel size,
would no longer hold. Therefore, both recall and precision are important
to minimise the effect of noise. For our tunnel detection model, we measured
precision and recall values using the predetermined confidence threshold, which
thus appears to be an acceptable trade-off.

There are two important practical aspects we have also considered in our
methodology and find relevant to discuss here, even though we did not include
them in our final method. The first of these was adaptation of the loss function.
We initially felt this would be necessary for our method as the loss function
of YOLOv3 strictly punishes any mismatch in bounding box overlap. In our
case, strict bounding box overlap is not of vital importance, as it is difficult
to consider where the space of the tunnel exactly starts and ends. Namely,
in case of a short tunnel, e.g. before the intestine makes a curve and changes
direction, there is relatively good illumination of the intestinal wall at the end
of the tunnel, which makes the borders difficult to determine. We therefore
considered changing the loss function both by increasing the relative weight of
the confidence loss to the localization loss and by including the localization loss
of only the central coordinates of the bounding box, which should correspond
to the coordinates of the deepest part of the tunnel.

Another idea was to consider a different method altogether that does not per-
form direct bounding box regression but central coordinate regression instead
from which bounding box widths and heights can subsequently be intelligently
deduced [102], which at first sight appears to be more suitable to our pur-
pose. However, through evaluation with experts we learnt that the tunnel can
actually be accurately annotated through bounding box annotation. Namely,
despite different grades of illumination of the tunnel depending on the visible
depth, i.e. the proximity of the centre of the tunnel in non-contracted state,
we will always find the relatively least illuminated part of the image, while
the border around this area is practically always marked by one of the circular
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muscles or folds on at least end, and the other side of the tunnel is either
marked by the same end or by a intestinal wall in case of a curve. In the
case of a contracted state, the centre of the contraction always has the same
characteristic shape of different intestinal folds coming together. In this case,
we decided the expert should annotate only the central point of this shape
with a minimal amount of surrounding.

This observation of different characteristics of the tunnel in different states
led us to our second idea, which was to use different detection models for
tunnel detection in the contracted state and in the non-contracted state. This
technique has shown promising results in related capsule endoscopy research
for the colon [86]. The more different the characteristics are in a detection
problem, the more complex is the training procedure and the more parameters
will be necessary when attempting to include all of those characteristics in a
single network. Logically, with the increase of the number of parameters and
the complexity, exponentially more images will be required to train the network
successfully. Also at the time of prediction, it may be more efficient in terms
of computer resources to merge separate detections from two detectors than to
incorporate the full detection into a single network. If a lower prediction time is
required in the future, this technique may be considered. However, we did not
further investigate this idea, as our method was able to sufficiently capture
the complexity of the features required to recognize both distinct cases by
successfully training a single, resource efficient network. We showed that our
method required 0.0326 seconds to detect the tunnel with a standard variation
of only 0.0019 seconds, which results in 30.67 frames per second (FPS) with
small post-processing time included. Although this was on superior hardware
than the available processor in endoscopic pills, it was in a non-optimised code
environment, making us confident that through optimisation our method may
even be used in real-time for 6 FPS, which is the maximum frame rate of
current popular capsule endoscopes [59], on processors of endoscopic pills.

During our work, we became aware of a couple of limitations of our tunnel
detector that we want to elaborate on here. First, even though we included
frames with clear bubble formation, we did not include frames with coloured,
sight-occluding intestinal content. In the presence of such intestinal content
in a loose frame, it is impossible even for an expert to determine the tunnel
size due to the occlusion of the relevant information. Therefore, as opposed
to trying to deduce information from such frames, we suggest to discard them
altogether by using our previously developed model for intestinal content de-
tection to detect the presence of intestinal content within a tunnel bounding
box.
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Second, our model does not distinguish between the tunnel that the capsule
has already traversed and the tunnel that eventually leads to the rectum.
Namely, when the capsule rotates due to the forces acting upon it, it may be
positioned backwards. In our case of motility analysis, we argue that it does
not make a significant difference we expect similar movement on either side
as we expect similar motion at each side of the capsule. For other purposes,
however, such as capsule navigation, this may be more of an issue. In order to
choose the correct tunnel in that case, we suggest the incorporation of tracking
methods to attempt to track the two different tunnels throughout the proce-
dure. Even though we argued that frame-to-frame motion estimation of the
capsule is implausible considering the frame rate and the sudden movements
of the capsule, we hypothesise that it is plausible to track the different features
observed when the capsule faces either way. This hypothesis would however
need to be investigated first, although future development of active capsules
may make it possible for capsules to be controlled and steered at a constant
rate. In the latter case, additionally to the possibility of incorporating accu-
rate tracking mechanisms through this method to track the right tunnel, we
could also improve detection rates even further, as we would be able to relate
the tunnel in the contracted state to the tunnel in the non-contracted state in
an earlier or later frame.

Finally, we consider that an important limitation of our method is the case
of detecting two tunnels in a single frame. Often, one of the tunnels is then
likely to be a false detection. For our purpose of intestinal motility analysis,
we have already discussed this issue and our considerations, but if our tunnel
detection method is used for other purposes such as navigation purposes, it
is important to consider that sometimes there can in fact be two tunnels in a
frame. Namely, this can be due to a rare condition that occurs in patients who
have had previous bowel surgery and in this case, normally either of the tunnels
will lead to the rectum. However, in certain cases one of the tunnels may in
fact be a dead end, as is the case with the appendix. In such a case, making
the wrong choice could lead to health consequences and high discomfort for the
patient, as it could theoretically induce an appendix infection. Therefore, for
such purposes, it should be possible to extend this method with a mechanism
to make a more informed choice for right tunnel, as experts can also distinguish
the appendix from the usual tunnel in endoscopic images.

Concerning our manometry approximation, we believe that it still has certain
limitations relating to the relative tunnel size. One of these limitations is in
case we are close to an intestinal curve and thus deal with shallow tunnels,
which was already discussed as an issue in determining the correct tunnel
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size both for our tunnel detection model and for human evaluation in the
annotation procedure. Namely, our approach may not be able to determine
the correct tunnel size close to the a curve in the intestine, where the tunnel is
likely to be shallow, which could result in a small tunnel size in our approach in
spite of relaxed muscles. To improve this, we believe that it would be useful to
train a model with sufficient data to distinguish not only between tunnel and
wall, but also between tunnel in state of contraction and in state of relaxation.
One could then base the value of the threshold in determining the initial level
set for the algorithm on the type of tunnel, i.e. make a different choice for a
contracted tunnel than for an open tunnel.

Additionally, upon inspection of the largest inscribed circle results from which
we derived the relevant information for the manometry approximation, we
found that there was only one obvious cause for inscribed circles being signifi-
cantly off either in position or size, which was the presence of intestinal content.
Independently from the tunnel detection, our method does not perform well
in the presence of intestinal content, which is often in front of the tunnel and
closer to the camera, resulting in higher lightness values. This is especially
an issue if the intestinal content is dense, or when light reflections from bub-
bles cause our method to segment darker tunnel areas areas contained within
small bubbles separately. While two of the images in Figure 4.12 show results
exactly as desired, both the position and the size of the circle in Figure 4.12c
show how the segmentation for that image did not include the whole tunnel
within the largest inscribing circle due to the segmentation being influenced by
the intestinal content. In future lines of work, a possible solution here would
be to use an intestinal content detection model such as the one introduced in
Chapter 3 in order to filter out those frames. This would, however, disturb
the continuity of the manometry approximation.

Finally, the latter leads us to the last important limitation we found for our
method, which is in the outliers in the manometry approximation. Apart from
the issues discussed above that could lead to of incorrectly determined tunnel
sizes or to false detections from our tunnel detection approach, these outliers
are due to frames that were filtered out for not having the tunnel in the centre
of the image as a consequence of rotation of the capsule. We believe that this
issue can be diminished in future work by discarding more frames in between
to align the tunnel frames more carefully. An different or additional approach
could be to investigate further post-processing to the resulting approximation,
e.g. through fitting a function to the individual or combined contractions and
openings, which could also help to fill in missing data from discarded frames
for relatively small gaps.
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The effect of these limitations can be observed in Figure 4.14. Namely, we can
clearly observe the effect of discontinuities in the manometry approximation
due to frames discarded while facing the intestinal wall, which commonly align
with discontinuities in the original frames, thus showing that these are due to
discarded frames rather than incorrectly derived tunnel sizes. Additionally, we
can observe incorrectly derived tunnel sizes, which show up as outliers in the
first, second and last video especially. In the majority of these cases, we found
they were due to the presence of intestinal content upon closer inspection. We
can also clearly observe the mentioned effect of shallow tunnels in our results
through the longer segments with shallow tunnels in the second, third and
fifth video. This pattern is can clearly be seen from the colours in the original
frames as well. Regardless, within most of these segments, tunnel sizes within
a segment are commonly within a similar range and the pattern of intestinal
motility, although reduced, still appears to be there, and can be accounted
for by observers or processing algorithms. In most cases, we thus observe
that the information given by the derived manometry approximations align
correctly with the information we can deduce from the original, while it filters
and displays the motility information in such a way that it is significantly
better observed both by human observers and processing algorithms than the
column image of the original frames. Therefore, despite the limitations, we
believe that our method can be valuable for its intended purpose of computer-
aided assistance in motility analysis.

We are aware that a manometric recording for intestinal motility is commonly
performed by introducing different substances and carefully measuring the
intestinal motility response to each of these. In the case of capsule endoscopy,
we do not have this level of control, while at the same time the visibility would
be compromised in case of digestion. As we have both seen and discussed in
Chapter 3, it is vital to the degree of visibility of the visual recording system
of capsule endoscopy that the procedure is used in fasting state only. For
patients who need a more thorough motility analysis, the method presented in
this paper may thus be insufficient. Nonetheless, while our method does not
explicitly detect intestinal contractions, in contrast to an earlier study [90],
we believe the method presented here extracts both more detailed and more
relevant information for computer-aided analysis of intestinal motility, and
provides an excellent base for future methods that do want to detect specific
events related to intestinal motility.
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Chapter 5

Conclusion
This thesis project took placing during a phase in which machine learning
research was transitioning from hand-crafted feature extraction to deep learn-
ing techniques using CNNs. While CNN theory is in fact aimed at generic
parameter optimisation and often requires little domain knowledge from the
researcher to obtain decent results, the features that are extracted within are
often poorly understood, even though visualisation techniques exist and are
providing us with hopeful information to what would otherwise be considered
a black box. Today, we can say that CNNs have surpassed traditional machine
learning techniques in a wide range of fields, despite the genericness of the
method and extensive search space. Nonetheless, we think it is interesting to
keep traditional machine learning techniques in mind, as features extracted
through such methods can be combined with CNNs, while knowledge of how
they work can also help in reasoning about CNN architectures and construct-
ing better performing CNN methods.

In this work, we therefore investigated and implemented both traditional ma-
chine learning techniques and deep learning techniques. Using these either
individually or combined, we aimed to contribute to the field of capsule en-
doscopy, which allows for the visualisation of the entire small intestine for
disease diagnosis in a minimally invasive manner. In close cooperation with re-
searchers and gastroenterologists from hospital La Fe in Valencia, we identified
important issues in CE that are underrepresented in contemporary research
where there is still significant advancement to be made, other than in auto-
matic detection of pathologies. We identified two objectives that we aimed to
achieve in this work, which are both related to optimising the information ex-
traction from capsule endoscopy through often overlooked manners. Namely,
our main objective was to develop a tool for automatic, objective assessment
of the degree of visibility, or cleanliness, of the intestinal mucosa, as there is
still no consensus on the optimal patient preparation in the medical field due
to which CE procedures often still need to be repeated as a consequence of a
lack of visibility. Secondary to the main objective, we defined an additional
objective to automatically determine the capsule orientation throughout a CE
procedure for motility analysis.
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Through our main objective, we aimed to provide medical researchers with a
means for accurate and objective evaluation of the effect of different prepara-
tion methods for CE patients. This would allow them to reach consensus on
the optimal method, which has not been possible so far due to conflicting re-
sults in studies in the absence of such a means. For this purpose, we developed
an intestinal content detection algorithm to form the core of our method. As
the intestinal content detection is the most significant part of the evaluation,
this is what we focused most of our research work on. We started off with
carefully designed traditional machine learning methods, compared their per-
formance to fine-tuned CNN architectures and eventually decided to find the
solution for this objective completely within the field of CNN techniques.

In order to further improve performance compared to fine-tuned architectures,
we eventually designed a new CNN architecture tailored to our problem do-
main, with which we reached both improved efficiency and higher accuracy
compared to fine-tuned architectures. The core of our proposed method is a
model based on a CNN architecture we designed, capable of classifying image
patches into intestinal content or clean mucosa, which was inspired by the
architecture presented in [37]. For this model we obtained a high accuracy
of 95.23%, surpassing the accuracy of the model we trained on the popular
VGG-16 architecture using exactly the same data, while we achieved a signif-
icantly lower prediction time and decreased number of parameters. We also
obtained significantly higher accuracy for this model than for the one based
on the original architecture.

Using this model for patch-based classification at the core, we finally imple-
mented the entire method for complete cleanliness evaluation of CE videos,
by estimating pixel probabilities from the patch probabilities and visualising
these intuitively, while also determining the average probability of a pixel of
corresponding to intestinal content and finally converting this to an evalua-
tion score on a discrete scale with four categories. In this way, the proposed
method is capable of automatically evaluating the frames of CE videos on a
scale that is meant to be equivalent to the cleanliness evaluation score pro-
posed in [5]. We then validated our method in a clinical setting, evaluating
the scores thus assigned to 854 frames extracted from 30 different CE videos
using a 5-fold cross-validation procedure for threshold adjustment, we found
acceptable agreement with each of the human specialists, despite strong dis-
agreement between our method and both specialists on frames that showed
bleeding in one fold in particular, where our method correctly did not de-
tect the blood as intestinal content. In a three-way comparison, using the
two-way mixed, absolute agreement-based intraclass correlation coefficient for
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5. Conclusion

single rater reliability, we also showed that the value found when including
our method did not move outside the 95% confidence interval found for both
specialists alone.

Despite promising results in the validation of our method, we have observed
and discussed some current limitations of our method, most of which we believe
we can overcome by adapting our method in future lines of study. Namely,
it may be interesting to investigate the influence of the relative location of
detected intestinal content in the cleanliness as perceived by humans. Addi-
tionally, we aim to further optimise our thresholds on new, more extensive
data sets using video material being currently collected from different medical
centres world-wide, to assure that the thresholds are averaged out over a wide
cohort of medical specialists to obtain a satisfactory agreement with each one
of them individually, and to simultaneously further extend the validation of
our method in a clinical setting involving a greater number of specialists from
different institutions.

To accomplish our secondary objective, we first developed a method to deter-
mine the capsule orientation. For this purpose, we implemented an underlying
method to automatically detect the tunnel, which is the term we use to refer
to the anterogade patheway, both in the state of contracted muscles and in
the state of relaxed muscles. Using the YOLOv3 R-CNN-based object detec-
tor, pretrained on the COCO data set [52], in combination with an annotated
private dataset that included the tunnel in all states of contraction, we man-
aged to achieve a high recall and precision of 86.55% and 88.79% each at the
default threshold of 0.3 IoU. The average precision (AP), which relates to the
area under the precision-recall curve, was as high as 0.9571, indicating a ro-
bust classifier as it returns true tunnel detections with high confidence before
starting to return more false detections at lower confidence thresholds.

While the tunnel detection and capsule orientation determination is useful for
multiple purposes as discussed in the previous chapter, we used the results to
construct an approximation of an intestinal manometry. Intestinal manometry
is an invasive technique to record the activity of the intestinal muscles, which is
essentially displayed as a graph of muscle activity over time. This in turn gives
physicians information about the intestinal motility of a patient and possible
disorders thereof. We instead proposed a method to perform motility analysis
using only a capsule endoscopy procedure. Our method is built on the tunnel
detection method to align the frames where the capsule is oriented towards
the tunnel and extracted relevant features from the detection bounding boxes
to estimate the relative tunnel size. Subsequently, we used this information
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to construct a visual equivalent of an intestinal manometry as visualised in
Figure 4.14.

For future lines of study, we consider our tunnel detection method may be
improved by training a deeper R-CNN-based architecture, which should at
the same time be combined with more training data, while more training data
could also allow the model to be trained to distinguish between contracted tun-
nels and open tunnels. Additionally, in the case of future capsule endoscopes
allowing for a higher recording frame rate, we think it could be interesting to
incorporate long short-term memory (LSTM) or the more recent Transformer
architectures for frame-to-frame tracking. Unfortunately, in our experiments
we have observed that frame-to-frame tracking in videos of the currently avail-
able capsule endoscopes appears to be more complicated than in other settings
due to the low frame rates in combination with sudden movements.

Concerning our manometry approximation method that we built upon the tun-
nel detection, we consider it should be validated on patients with and without
diagnosed motility disorders to determine whether physicians can properly dis-
tinguish between both cases using solely our method. Additionally, despite the
limitation of our method of not being able to feed the patient different sub-
stances during the recording, our method should be compared against actual
manometry procedures recorded for the same patient in future work. Finally,
we consider that a more sohpisticated approach towards false detections as
well as a method of reducing noise originating from the respective exclusion
or inclusion of such frames, could improve the results of the manometry ap-
proximation.

While medical research and technical research often go separate directions,
we were fortunate to be able to collaborate closely with medical doctors from
hospital La Fe in the context of the WiBEC project. Through this coopera-
tion, we have been able to conduct research on problems surrounding the still
novel technique of capsule endoscopy that are under-represented in contem-
porary research. As a result, we have been able to produce tangible results
with our intestinal cleanliness evaluation tool, which is currently being used
in a large-scale medical study that aims to achieve consensus on the issue of
adequate patient preparation for CE procedures, in which we actively partici-
pate to acquire the data, process the data through our tool and organise the
results in a completely automatic and anonymous manner with encrypted data
transfers.
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Appendix A

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a branch of artificial neural net-
works (ANNs), the design of which was largely inspired by work done on the
functioning of the mammal brain by Hubel and Wiesel as early as 1968 [35].
Due to this, many of the terms have brain analogies. Although we will briefly
introduce them, we will not expand on them in detail as we consider it to
be outside the scope of this thesis. Namely, comprehension of the biologi-
cal analogies is not essential to understand the theory and the mathematics
behind neural networks that we will focus on. Additionally, ANN and CNN
models are highly simplified compared to actual current neuroscience, which
has advanced significantly since the aforementioned work, finding among other
things that there are many different types of neurons and that synapses do
not just have a single weight as we will detail out below for CNNs, but are
on themselves complex non-linear systems [54]. Nonetheless, CNN models are
powerful tools in the performance complex machine learning tasks. Although
CNNs obviously have a lot of common ground with general ANN theory, we
will not explain general neural network theory more in detail than required
to properly understand the concept of CNNs in the context of image process-
ing, or more specifically, our CE image patches. We will, however, sometimes
resort to basic ANN theory to explain certain CNN concepts, as this allows
us to simplify those concepts on lower-dimensional data. Another term for an
ANN is Multi-Layer Perceptron (MLP).

Apart from their similarities with other forms of ANNs, CNNs distinguish
themselves with the introduction of important new concepts designed specifi-
cally for the processing of images, pioneered by [46]. The most characteristic
of these concepts is the one it derives its popular name from, namely the con-
volution operation (although this is in fact a correlation, as we will discuss
in Section A.3). Processing image data through basic ANNs would be unnec-
essarily expensive in terms of operations and computer resources considering
the number of pixels a single image usually contains already with lower dimen-
sions, but even more so with the image dimensions that are common nowadays.
The assumption of the input data being image data, however, allows for the
implementation of concepts that make sense for image data, while they may
not for generic data, such as the sharing of weights between input pixels at
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different locations of the input image as introduced in the work by LeCun et
al. [46]. This constraint on the weights is, in fact, the way the convolution
operation is implemented in the network. Thanks to these concepts, not only
can the network size and computation times be significantly reduced in com-
parison with processing image data through basic ANNs, but at the same the
performance is often improved.

As CNNs, just like ANNs, can be considered as universal function approxi-
maters, there is essentially no limit to the number and ranges of output values
they can be predict. This makes them applicable both for regression, where
the output value(s) are continuous, and classification tasks, where the output
value(s) are discrete. In this appendix, however, we only consider CNNs for
classification, unless specified otherwise.

A.1 Learning Procedure

In general, neural networks can be considered function approximators. In
fact, it has been proven that a neural network can, when certain conditions
are met, uniformly approximate any continuous function [18]. Whether in
the end we manage to make them in fact approximate a desired function,
depends largely on the configuration of the network and on its parameters or
weights. These may be learnt through the training procedure such that the
neural network can adapt those to the problem at hand as much as possible.
The configuration of a neural network mainly depends on the architecture and
on its hyperparameters that are used during training, and therefore we will
thus first discuss the architecture of CNNs in Section A.2. The architecture
is made up out of layers of different types. In ANNs these types are mainly
distinguished by their connectivity with other layers or by their operations,
and in CNNs this is essentially no different. However, the layer operations
are focused on 2-dimensional input data, such as images, which may make
the operations more intuitive and allow for a better visual imagination, while
they abstract the fact that such operations are essentially implemented as a
combination of specific connectivity and restrictions on updating the weights
and using functions that are specifically useful for 2-dimensional data. As one
of the most important layer types is the layer type that essentially performs
convolutions, an image operation which the method derives its name from and
that were already widely used in signal and image processing before CNNs
became popular, we will first discuss this operation in Section A.3, before we
discuss the layer types in Section A.4.

134



A. Convolutional Neural Networks

The process of training a CNN is then as follows. First, we initialise all the
weights that we defined in our network, usually with a degree of randomness,
but using heuristics to avoid bad weight initialisations. Namely, proper weight
initialisation is an often overlooked factor for good convergence of the network.
We then train the weights through iteratively passing our input data through
the network and calculating the output, called a forward pass, after which we
measure the difference with the ground truth according to a chosen error func-
tion, backpropagating this error through the network to calculate the extent
to which each of the weights is responsible for that error in a backward pass,
and finally adjusting the weights according to a chosen optimisation method.
Completing a single forward pass and a single backward pass in this way is
called an iteration. In current practice, the famous backpropagation algorithm
is the most popular way to efficiently backpropagate the error to each of the
individual weights, which we will therefore explain in detail in Section A.8.
Within such an iteration, we can choose to process a subset of our training
samples containing multiple samples at once, so that we update our weights
using the values of all those samples simultaneously. This subset is called a
batch and its size is called the batch size, which is an important hyperparam-
eter. As we shall see, processing multiple samples has its advantages and its
disadvantages. Each time we have completed such an iteration for each el-
ement in our training data set exactly once, we say we have completed one
epoch. We commonly repeat this procedure until we have converged to a pre-
defined desired minimum error value, or until we have completed a predefined
number of epochs. For the optimisation method, by far the most common
method isgradient descent, which, however, comes in many different varieties,
as we will discuss in Section A.9.

Finally, in recent years CNN algorithms have been boosted significantly by the
concept of transfer learning, which allows us to reuse models with pretrained
weights and adjust them to our problem, as we will explain in Section 3.4.1,
while we give an overview of the most popular existing models with available
pretrained weights that we experimented with for our detection of intestinal
content. In all of this, proper partitioning of our training and testing data
remains as important as it was for learning through hand-crafted features. In
general, however, we will need a significantly greater amount of data as we
tend to have a far larger solution space, especially when training a CNN from
scratch, i.e. without making use of any pretrained weights.
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A.2 Architecture

With respect to the architecture, we will first explain the theory that general
ANNs and CNNs have in common, as those concepts will be easier to grasp
before we explain the specifics of CNNs. ANNs, essentially graphs in which
its nodes, also called neurons in analogy to the brain, are grouped into lay-
ers, where neurons within a single layer are not interconnected. The idea of
grouping of neurons into layers plays an important role in the functioning of
CNNs as we will show below. Usually, there is at least one input layer, one
output layer and one or more layers in between. These in-between layers are
also denoted hidden layers, as only the input to the network and its final out-
put are directly observed, while the inputs and outputs of the hidden layers
are hidden from direct view. This does not mean, however, that their inputs
and outputs cannot be observed if desired, as methods exist to visualise those.
When referring to the number of layers, the common convention is not to
count the input layer because the inputs are not active [71]. Thus, if we talk
about a 2-layer network, we refer to a network with one hidden layer and one
output layer. The neurons in a layer are then connected to neurons in one or
more other layers through connections which are also called synapses in anal-
ogy to the brain. Each of these connections has a weight value assigned to it
by which the inputs passed through that connection are scaled, such that the
weights define the strength of the connection. Additionally, in every neuron,
the input values are translated with a bias value. This is usually interpreted
as an additional input to each layer with a value of 1, such that the weights
of its connections to the next layer are in fact the bias values. In Figure A.1
we visualise a simple 3-layer ANN, where the bias values are indicated with
bi and the weights with wi. As we can see, the bias values themselves are not
very different from common weights when interpreted this way, as long as we
consider that the input they are associated with is a constant.

Like the ANN architecture in our previous example, CNN architectures are
often visualised with the layers ordered horizontally from left-to-right, where
the rightmost layers represent the deeper layers. Alternatively, they can also be
visualised with the layers stacked upon each other in a vertical manner, where
the lower layers represent the deeper layers. Although both visualisations
represent the exact same thing, for consistency we choose for a left-to-right
approach in this work. Through these stacked layers, CNNs extract features
while gradually reducing the output size of each layer, which are then fed to
the classification layers that eventually output a probability for each class. For
this, different layer types are utilised, each with its own purpose in achieving
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Figure A.1: An example of a 3-layer ANN architecture, input layer not counted as
explained in the text, with weight values indicated by wi and bias values indicated
by bi. The output of the network is the vector ŷ with 2 elements. The two middle
layers are hidden layers, as their inputs and outputs are hidden from direct view.

the final classification targets, as we will discuss in Section A.4.

When a neuron receives the outputs from all of the connected neurons from the
previous layer as its inputs, these are first individually scaled by the weights
assigned to the corresponding connections. Then those values are summed,
the bias is added and an activation function is applied element-wise to the
result. Essentially, for each layer, the input is passed through the following
equation:

Fl(x, b) = fa(W · x + b), (A.1)

where W is the matrix of weights, with in each row the weights corresponding
to the connections of a single neuron, fa is the layers’ activation function, x is
the vector of layer inputs and b is the bias term.

The main purpose of an activation function is to introduce non-linearities into
the model that would be linear otherwise. Therefore it is desirable to choose
non-linear activation functions at least in some layers, in which case they are
often also simply referred to as non-linearities. We will address popular choices
for activation functions and their pros and cons in Section A.6. Although the
activation function is essentially a part of the neuron and could therefore
differ between the different neurons of a layer, it is commonly defined as a
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parameter of the layer, such that all neurons contained in that layer share
the same activation function. Namely, this makes it possible to calculate the
function over all neurons in a single matrix operation, allowing us to implement
the forward pass of the network in an efficient dot product. Additionally, this
paves the way for using activation functions that combine the values of different
neurons, which is commonly the case in classification layers. We will therefore
talk about the layers’ activation function, rather than the neuron’s.

In this way, CNNs can, inherently to general ANNs, essentially be seen as
the definition of a set of functions that is parametrised by the weights of the
network. It has even been shown that even when the network only contains
one layer with a sufficient number of neurons with a continuous, bounded and
non-constant activation function, this set of functions can approximate any
continuous function [34]. Parameters thus play an important role in the defi-
nition of a CNN model, as, once a structure has been defined, they essentially
determine the function it implements. The size or complexity of a CNN model
is also commonly expressed in its number of parameters, as nearly all calcu-
lations in the CNN involve a parameter value, although there are cases where
the number of neurons is used. Note, however, that not all parameters are
weights or learnable parameters: a CNN training procedure is commonly also
influenced by its hyperparameters.

Hyperparameters are all the parameters of our model that control or influence
the learning procedure, but have to be set before we start training a network
as they cannot be learnt through training. Here one should think not only
of parameters that control the learning procedure, such as the learning rate,
the optimisation algorithm, parameters to the optimisation algorithm (such
as batch size or momentum in the case of the gradient descent, as we will see
in Section A.9), and parameters of each layer that are specific to the layer
type as we will discuss in Section A.4, but even of elements of the architecture
itself, such as the number of neurons in each layer. In contrast, the learnable
parameters are those parameters that we want to optimise through the training
procedure. They essentially consist of the weights and the biases of all layers,
although specific layer types may have additional learnable parameters.

The layers of a CNN are usually characterised by a common connectivity of
the neurons contained within the layer to the neurons in the previous layer
and/or other common parameters, such as the activation function. In this way,
we can distinguish different types of layers. In the original ANNs, the most
common layer type is the fully-connected layer, which has the property that all
of its neurons are fully connected in a pair-wise manner to all of the neurons
in adjacent layers. The main contribution of CNNs was exactly to replace this
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layer with the focus on image input, as a fully-connected layer with a single
neuron following the input layer for a CNN would already result in a large
number of weights in the case of images. Namely, in the case of one of our CE
image patches of 64× 64 pixels with three colour channels, this would already
result in 64× 64× 3 = 4096 weights. It is easy to see how this number would
increase quickly as we increase the number of neurons and layers, which is a
likely desire for any non-trivial real-world problem. Not only does this quickly
increase computation times during the training procedure of a network, but
having a large number of parameters also makes the architecture prone to
overfitting [85].

Overfitting is one of the major architecture-related issues with CNNs. The
trade-off between the variety and the division of our input data, the depth
of our network and the general architecture is important to consider. For
example, the deeper the network is, the more complex the relationships are.
Although this allows us to learn a separation between classes that adjusts
more tightly to our input data, a slight variation between our training data
and the domain we want our model to generalise to, can cause our model
to overfit to the training data. Therefore, an important focus in CNNs is
on several techniques that have been invented to prevent this and provide
regularisation. This can happen both at the level of layer types and at the
level of the the optimisation procedure and the cost function as we will discuss
further ahead.

Apart from the issues in terms of computation, it can be argued that compared
to a basic ANN, CNNs can learn relationships for images more efficiently
performance-wise. Namely, we often seek for the appearance of a specific
structure in the image which does not immediately depend on the remainder
of the content of the image, making only the local neighbourhood of the object
an area of interest to consider, such as a liquid bubble in our case of intestinal
content. Instead of at a fixed location, this structure could appear anywhere
and repeatedly in a single input image. Not only would using fully-connected
layers for this result in an unnecessarily high quantity of weights, but at the
same time multiple neurons would have to be responsible for recognising the
exact same information where the only the order of the weights would differ,
which it would have to learn independently. Therefore, CNNs implement the
concept of convolutional layers, which are based on this exact insight that in
each layer only a restricted neighbourhood of each input activation is relevant,
while it is also sensible to share the parameters over different regions of the
image. Despite often being implemented as a full dot product for calculation
efficiency, where the convolution parameters, or simply weights, are duplicated,
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it is equivalent to performing old-fashioned sliding window convolutions.

A.3 Convolution

The convolution operation has a long history in its application in image pro-
cessing and signal processing in general. It is a form of filtering: an operation
intended to remove unwanted components from a signal to emphasise the ones
of interest. Specifically, convolution is a form of linear filtering, as it involves
fixed-weighted combinations of input components, in our case pixels, in small
neighbourhoods. Before we further expand on CNNs, we discuss this opera-
tion from the perspective of image processing as we believe it helps to create a
better understanding the inner workings of CNNs and a foundation for making
appropriate decisions on architectures and redefining models.

Convolution in image processing is a specific case of mathematical convolution.
Mathematical convolution is defined as the integral of the product of two
functions (or signals) with respect to an input value τ , denoted f(τ) and g(τ),
after one of them is reversed and shifted by a value t. In the remainder of
this section we take f(τ) to be our original function or signal, while we g(τ)
denotes the function by which we modify our input signal to obtain a desired
output signal. This integral is then calculated at all shift positions, which
results in a new function over t, (f ∗ g)(t). Formally, the convolution can thus
be defined as

(f ∗ g)(t) =
∫︂ ∞

−∞
f(τ)g(t− τ)dτ. (A.2)

The term convolution refers both to the operation and to the result function,
as in “the convolution of f(τ) and g(τ)”. When t represents the time domain,
we can consider the convolution as as weighted average of the function f(τ)
at the moment t, where the weights are given by g(−τ) shifted by the amount
t [81]. A nice property of the convolution operation is that it is commutative,
i.e. (f ∗ g) = (g ∗ f).

In the case of image processing, one of our functions is our image signal, which
is essentially the function over the positions in the image, i.e. the x- and y-
coordinates. The function we define to convolve our image with is called the
kernel function or simply the kernel and we can simply imagine this kernel as
a small image on its own. Usually, it is carefully designed by researchers with
a certain objective, i.e. to filter the input image, to sharpen it, to blur it or
to enhance certain structures. As defined in mathematical convolution, the
kernel values are reversed and shifted, i.e. during the convolution the upper
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left value of the area of our input image is multiplied by the bottom right
value of the kernel. In this way, convolutions in image processing are used to
detect patterns in the image signal by observing the output image, which is
exactly the concept that is used in CNNs. The convolution operation sums
the value of a pixel and those of its neighbours to the extent defined by the
kernel size, weighted by the kernel values at the corresponding positions after
reversing them, with the centre of the kernel of the filter aligned with the
pixel in question. Formally we can define the discrete image convolution as
follows:

(f ∗ g)(tx, ty) =
⌊ wg

2 ⌋∑︂
x=−⌊ wg

2 ⌋

⌊ hg
2 ⌋∑︂

y=−⌊ hg
2 ⌋

f(tx − x, ty − y)g(x, y), (A.3)

where f(x, y) is our image function, g(x, y) our kernel function, hg and wg

the width and height of our kernel respectively and tx and ty the position
of our shift analogous to t in Equation A.2, or equivalently the location in
the output image. For intuitive reasons, here we shifted and inverted our
image signal f(x, y), as this works better for imagining the operation as a
convolution window that slides over the input image. We also gave the limits
of the sums only for convenience, as the kernel function would not be defined
outside of those limits and those terms would simply yield a multiplication by
0. Note that, due to the commutative property, an equivalent definition would
be

∑︁ ∑︁
f(x, y)g(tx − x, ty − y).

In practice, kernels that are used in image processing often tend to be sym-
metric which makes them identical to the the reversed versions of themselves.
Notice that if we use an even-sized filter, there will not be a central pixel. In
this case, the convention was originally is to anchor each input pixel to the
right-hand value of the two central kernel values. However, as each time we
then consider a greater part of the image to the left of the kernel than to the
right, a non-symmetric filter shape would yield a non-symmetric filter response
due to which the pixels in the output would be shifted, which would distort
the image. In a CNN, where convolutions are applied sequentially as we will
see, while being intervened by other operations, this shift could rapidly accu-
mulate [97]. Therefore, even-sized kernels are rarely interesting in practice and
are uncommonly seen in the context of CNNs and we will assume odd-sized
kernels in the remainder of this section.

In the context of CNNs, it helps to clarify the nomenclature and convolution
details. In this work, we will distinguish between filter, kernel and feature de-
tector. Since the rise of CNNs, these terms have often been used interchange-
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ably and become mixed up as CNNs and general image processing techniques
grow further apart. The term kernel refers to a 2D-matrix, which defines the
kernel function by which we convolve an input image. The entries of the kernel
are somewhat confusingly called the filter coefficients. The term filter, how-
ever, refers to a concatenation of such kernels, which could be just a single
one. In turn, feature detector refers to a general method for extracting fea-
tures from an input image, and could consist of one or multiple filters and
even other types of layers. Another slightly confusing aspect is that a CNN
does not actually perform convolutions, but a related operation that is known
as correlation. Namely, in this operation the signs of the offsets of the kernel
function are not inverted:

(f ⊗ g)(tx, ty) =
⌊ wg

2 ⌋∑︂
x=−⌊ wg

2 ⌋

⌊ hg
2 ⌋∑︂

y=−⌊ hg
2 ⌋

f(tx + x, ty + y)g(x, y). (A.4)

The correlation operation is also not commutative, contrary to the convolution.
Although we will keep speaking of convolutions instead of correlations despite
not reversing the kernel, as is common in CNN theory, it is important to be
aware of this difference with traditional image filtering. In the CNN learning
procedure, as we shall see, the filter values make up the vast majority of the
weights that we optimise in the context of CNNs, thus aiming to find the
optimal filters for feature extraction in the problem at hand without the need
of manually designing them.

An important consideration in image convolution are the pixels at the border
of an image. Namely, note that the input to f(x, y) in Equation A.3 may
attain values for which the function is not defined, i.e. there are no pixels at
that position, due to which the function will cannot produce an output value
at those locations. Although in image processing several solutions to this issue
are popular depending on the case, in the context of CNNs only two of those
solutions have been widely adopted. The first of those is zero-padding. In
this idea, we use the value 0 in all cases where the original image function is
not defined. This is equivalent to padding the image with as many zeroes as
required for our specific convolution. Concretely, resulting from Equation A.3,
we would pad the image with wg−1

2 zero values horizontally and with wh−1
2

zero values vertically. For example, in the case of a convolution with a 5 × 5
kernel, we would pad the image with two zero values in both directions. This
solution ensures that our output image has the same dimensions as our original
input image. However, it could introduce distortions along the edges, as we add
invalid information to our original input image. Therefore, the second solution
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is simply to ignore the boundary pixels and only perform the convolution at
those positions at which f(x, y) is defined in all cases, and thus only maintain
the valid part of the convolution. With this solution, the dimensions of output
image are decreased by the same value as the number of zeroes required in
zero-padding, thus leading to an increased loss of information. Effectively,
we can see that we lose the information at the border more rapidly than
elsewhere in the image, as the border pixels now participate in increasingly
fewer convolutions than the centre pixels participate in as they are nearer to
the border. Still, in the case of CNNs there is a clear preference in literature
for zero-padding, which we will discuss in Section A.4.

Visually, we can imagine a convolution as sliding our filter over the input image
and can thus view it as a sliding window operation as we discussed in chapter
3.2.1. In this view, the filter is slid over all the pixels of the input image to
calculate the convolution, which is often also called a feature map, especially
in the context of CNNs, as it essentially shows where certain features can be
found in an image. Remember from the previous section that in the case of
CNNs, we also commonly apply an activation function before we obtain the
final feature map. Equivalently, as it thus corresponds to the activations in the
different parts of the input, it is also called an activation map. For example,
consider the CE image shown in Figure A.3a. The values of its pixels are
given in Figure A.2, where we also display the kernel values and the values of
the feature map. The filter we use here is one that we may use if we wish to
highlight diagonal edges. This filter is a good choice for the detection of lines
as it has a response different from zero wherever the pixels along the diagonal
differ significantly from the surrounding pixels on either side. Note that if this
is not the case, the resulting convolution will commonly be closer to zero than
at the edges, as the sum of all weights in the filter is equal to zero. The same
convolution showing the corresponding images, i.e. the input image, kernel
image and feature map, is given in Figure A.3.

Finally, we explain an idea from image processing that may serve as a bridge
between convolutions and CNNs, namely the idea of filter banks. Instead of
filtering an image using a sequential concatenation of convolutions to generate
a single output, we can use several in parallel, thus having several parallel
filters with each of them being applied to the image independently and gener-
ating a distinct output. Instead of only detecting edges into one direction, for
example, we could simultaneously have a parallel filter that is responsible for
detecting edges in the other direction. If we defined an entire set or bank of
such filters that complement each other, we could detect different structures
and combinations of them at once by feeding them to a classifier or combining
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Figure A.2: An example convolution to detect a diagonal edge over our input image.
Note that the resulting convolution has decreased dimensions since here we used the
valid area of the convolution instead of zero-padding around the edges. For clarity,
we highlighted the values in the resulting image in the same colour as the values of
the original image that were involved in its calculation. Note that the resulting value
is given by summing all the values of the the multiplication of the values in the image
area by the corresponding values of the kernel, after both rows and the columns of
the kernel are flipped, which in this case leads to an identical arrangement.

(a) (b)

Figure A.3: The input image to the diagonal edge detection filter is visualised on
the left-hand side, while the result is visualised on the right-hand side, both scaled
by 4. Note that the output has fewer pixels, as the filter cannot be centred along
the edges where there are not enough pixels on at least one side of the pixel.
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or analysing the information in a different manner.

Several types of filter banks studied in literature have become generally popular
for particular detection tasks. Some of those, such as the Leung and Malik
(LM) filter bank, define a finite set of filters that can be used directly. Others,
such as Gabor filter banks, define a wider family of filter banks originating
from a generic filter definition, in this case the Gabor filter. Filter banks
of the latter type were also used in work on detection of intestinal content
detection in endoscopy images [91, 92].

This traditional image processing method, that has often been used for feature
extraction in traditional machine learning methods, shares similarities with
today’s CNNs in the sense that CNNs also apply filters and combine the results.
In fact, a filter bank is very similar to a single convolutional layer in CNNs as
also suggested by Andrearczyk and Whelan [1]. Namely, we could interpret
such a layer as representing an entire family of filter banks, with the difference
that we now learn the values or weights of those filters through optimisation.
However, CNNs further expand on this concept by concatenating several such
layers, with each one thus defining its own family of filter banks, extracting
each time more complex and more abstract features to comprehend in each
deeper layer. Additionally, CNNs do not only consist of such layers, but are
additionally intervened with non-linearities, pooling and other operations that
further aid improved feature extraction and the learning procedure in general,
as we explain in the following section.

A.4 Layer Types

We can roughly divide CNNs into two parts; the first set of layers that together
perform the job of feature extraction, which we hereafter referred to as base-
model, and the deeper set that together serve as classifier, hereafter referred to
as top-model. The features extracted in the base-model are mainly extracted
through convolutions in convolutional layers. While the first layers of the
network extract simple low-level features, through concatenating more layers,
a CNN can learn to detect features of higher complexity, each time through
non-linear combinations of features from the previous layers [2]. Such non-
linearities are introduced by defining activation functions that transform the
outputs of each convolutional layer in a non-linear manner, as we will discuss in
detail in Section A.6, thus introducing converting an otherwise linear model.

Apart from the convolutional layers, there are important other common layer
types that aid the feature extraction in the base-model in distinct ways. Often,
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they do so by reducing dimensionality and introducing further non-linear rela-
tionships between features, which all together help to prevent overfitting to the
training samples and improve the generalization performance of the network.
Although researchers may define any sort of custom layer specific to a certain
task, there are standard layer types that have become widely adopted in prac-
tically all fields where CNNs are applied which we will discuss here, namely
convolutional layers, pooling layers, batch normalization layers, drop-out lay-
ers and softmax layers. Most of these layers have important hyperparameters,
other than the number of neurons within that applies to all of them, which are
specific to the layer type. Here we discuss each of these layer types in detail,
along with their most important functions and hyperparameters.

A.4.1 Convolutional

The convolutional layer is the core of a CNN, responsible for extracting fea-
tures from our input images that become more detailed and complex as we
concatenate them, intervened with well-chosen non-linear activation functions
other layer types. However, the extent to which we obtain richer features
when concatenating more layers always depends on our input data; both on
the amount of data and the variety we capture within. In a convolutional
layer, the weights that we aim to learn are in fact the values of the kernel or
convolution window, as described in Section A.3. Although the operation of
the convolutional layer is equivalent to the traditional convolution, it is imple-
mented through a full dot-product with weight sharing between the different
inputs of a filter. We explain the weight sharing scheme further ahead in Sec-
tion A.8. As shown in Equation A.1 for the general case, in convolutional
layers there is also a bias term involved. In this case, the bias term is shared
for a filter just as the weights are, through the same sharing scheme.

First and foremost, it is important to understand the term filter in the context
of a CNN. As discussed in Section A.3, this term is often used interchangeably
with kernel or feature extractor. We already explained the general nomencla-
ture in that section. However, in the context of a CNN, filter more concretely
refers to the stack of kernels of depth C, with C being the number of channels
in the layer input, which together output a single feature map. In case the
convolutional layer is the first layer of the network, this number is commonly
3, as our inputs are usually RGB images as in the case of our work. Deeper
in the network, this number tends to be higher as we tend to use more than
three filters per layer, thus yielding an output of C > 3.

146



A. Convolutional Neural Networks

In Figure A.4 we show how a convolutional layer operates, displaying the case
of a single filter. As we can see, a filter has the same number of channels
as the input with different weights for each channel, where each channel ci

operates on input channel ci. The outputs over the different channels are then
summed to create a single output value for each point of the input feature
map over the entire depth of the input. In this figure we can also observe
the effect of some important hyperparameters, namely the stride S and kernel
size w × h, which we will explain in this section along with the other main
hyperparameters, padding and weight initialisation. The stride, kernel size
and padding are highly correlated, as different combinations of values for these
hyperparameters can render the network structure invalid, or invalid for images
of a certain input size. It is also important here to mention the term receptive
field. With the term receptive field, people often refer to the pixels of the
original input image that are involved in the calculation of a single value in
the output feature map. Thus, as we progress through the network in a forward
pass, the receptive field size continuously increases as with each convolutional
layer, and, as we shall see, with each pooling layer, we incorporate information
that originates from more distinct pixels in the input.

First, the stride determines the connectivity to the previous layer. It refers to
the distance between successive convolutions performed by the same filter. We
can set different values for the stride in the horizontal and vertical directions.
Next, the kernel size determines the size of our convolution window and is
commonly chosen to be an odd value for reasons that should be clear from
Section A.3, where the height and the width can differ from each other if
desired to create a non-square filter shape. Finally, padding allows us to
deal with the border values in different ways, which we already discussed
in Section A.3. The most common option is zero-padding, while the next
most common option is to retain only the valid part of the convolution. The
reason zero-padding is the more popular choice, is related to the dependency
on the other parameters that we briefly mentioned. Namely, when using zero-
padding, we can think of different ways of padding the image. For example,
we could pad the image with two zero values on the left of the image and
only one on the right. However, in the vast majority of cases we will simply
want to add as many zeroes as required to obtain output dimensions of 1

S

times the original to have dimensional consistency. Therefore, popular CNN
software libraries allow the user simply to specify the usage of zero-padding,
after which it determines the required amount of zero-padding automatically to
yield an output of the same spacial dimensions as the input, depending on the
input size and the other parameters. Guaranteeing dimensional consistency
as our input is passed through the network, allows us to reason intuitively
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Figure A.4: An example of the calculation of two adjacent output values through
the convolutional layer, with an input of 8 × 8 × 3 and an output of 6 × 6 × 1. Note
that to compute the value marked in dark green in the output, all of the values that
are marked in the input feature map involved, each with its own specific weight as
specified in the filter. As the filter weights are shared for all inputs, the filter values
in the calculation of the second output value, displayed in the bottom operation, are
exactly the same as those in the upper part. Relevant hyperparameters are indicated:
a stride of 1 and a filter width and filter height of 3 each.
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about the size reduction of the feature maps throughout the network, as the
width and height output dimensions of the layer then thus only depend on
the stride parameter. As with traditional convolutions, it is often argued that
using zero-padding allows us to take the information around the borders of
the image further throughout the network, though it has to be noted that
this information is polluted with non-information we introduce in the form of
padded values. If we instead decided to use the valid part of the convolution
only, then even with a stride of only 1 our dimensions would gradually be
reduced as we concatenate convolutional layers. We can also see how in this
case the loss of the information at the border rapidly accumulates, while we
would carefully have to keep track of the input dimensions and the output
dimensions of each layer to ensure that our architecture is valid and converges
properly. Using zero-padding thus avoids extra complications in the design of
the architecture and simplifies its reusability for new input sizes. Additionally,
it is often argued that zero-padding allows us to create deeper networks, as the
size of the feature maps is not reduced as quickly. A final important reason that
the choice for the valid part of the convolution only is not as popular, is that
this choice would prevent us from using shortcut connections, i.e. connections
between a neuron and a layer further ahead, skipping at least one layer in
between, as the dimensions would no longer match. Many widely adopted
architectures, or modules introduced by such architectures, implement such
connections, as we will see in Section 3.4.1.

The last hyperparameter we discuss here, is the initialisation of the weights
of our network, which can be based on different theories. If we start learning
from scratch, we most commonly want to initialise our network with random
weights, but heuristics have been investigated to improve the initial weights
by drawing values from certain distributions that have been investigated in
literature for this purpose. For special cases, we may opt for different types of
initialisation, such as in transfer learning. Weight initialisation methods are
further discussed in Section A.8.

Formally, we can now define the convolutional operation as for a single output
value in our output feature map as follows:

f(i, j, o, X) = σ

⎛⎝ ⌊w/2⌋∑︂
x=−⌊w/2⌋

⌊h/2⌋∑︂
y=−⌊h/2⌋

N∑︂
u=1

Θx,y,u,oXsi+x,sj+y,u

⎞⎠ , (A.5)

where i, j and o are the dimensions in the width, height and depth of the the
layer output feature map respectively, X is the layer input matrix, w and h

are respectively the width and the height of our filter, s is the layer’s stride
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parameter and N is the number of channels in the layer input.

A.4.2 Pooling

Pooling layers are layers that apply a function over a small area of adjacent
pixels in order to produce a single output value with the objective of progres-
sively reducing the spatial size of the feature maps, which reduces the number
of parameters in subsequent layers along with the computation time. At the
same time, their input connections have no weights, so that they introduce no
extra parameters and barely any overhead to our CNN model. The function
that is most often used for this purpose is the max-function, although histor-
ically other popular choices are the average function or the L2-norm. It has
two hyperparameters, which are the stride and the size of the pooling area. In
the state-of-the-art, most often the size of the pooling area is chosen to be 2,
along with a stride of either 2 or 3, as larger pooling areas generally quickly
leave out too important information. Formally, we can summarise the pooling
operation as

f(i, j, u, X) =

⎛⎝ ⌊w/2⌋∑︂
x=−⌊w/2⌋

⌊h/2⌋∑︂
y=−⌊h/2⌋

|Xsi+x,sj+y,u|p
⎞⎠1/p

, (A.6)

where i, j and u are the dimensions in the width, height and depth of the the
layer output feature map respectively, X is the 3-dimensional feature map that
is the layer input, w and h are respectively the width and the height of our
pooling area, s is the layer’s stride parameter and p is the p-norm value. If we
set p =∞, we obtain L∞, which is commonly known as the max-function.

Lately, it has been argued that in many architectures pooling layers may be
unnecessary as convolutional layers with equal stride and filter size would out-
perform such pooling layers in a fully convolutional neural network [82], noting
that the number of parameters would increase. The authors of that work argue
that a pooling layer can in fact be seen as a special case of a convolutional
layer with equal stride and filter size, but with a p-norm activation function
and a weight-matrix fixed in such a way that the operation is applied to each
channel of the feature map independently. We can derive the case of pooling
from Equation A.5 if we fix the weights such that Θx,y,u,o = 1 if u = o and
0 otherwise. Through experiments, they provide support for their hypothesis
that among the three aspects that differ between common convolutional lay-
ers of stride and pooling layers, i.e. the p-norm activation function and the
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Figure A.5: An example of the calculation of two adjacent output values through
the pooling layer, with an input of 7 × 7 × 3 and an output of 3 × 3 × 3. Here,
contrary to the convolutional layer in Figure A.4, each depth channel has its own
output value, i.e. the values marked in different colours are not combined. Hence,
the pooling operation is only performed over each 9 values of the same colour to
yield the corresponding value in the output feature map. This time, we use a stride
of 2 as we are pooling, with a filter width and filter height of 3 each, thus having a
degree of overlap between pooling operations.
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spatial dimensionality reduction that makes the network capable of covering
larger parts of the input in deeper layers, only the latter is crucial for achieving
good performance. In similar experiments they show how equivalent convo-
lutional layers can replace pooling layers with improved performance. As per
the terminology the authors introduce in this work, architectures that replace
pooling layers in this way are often denoted fully-convolutional networks. We
were interested in this concept in our work, and experimented with replacing
pooling layers by convolutional layers. In fact, we can see that the architecture
we eventually came up with in Figure 3.16 is fully convolutional.

A.4.3 Drop-out

Drop-out layers are another form of input regularisation.The purpose of drop-
out layers is to prevent overfitting to the training samples. It does so by
randomly disabling a node of the previous layer at each step during training
time with a frequency that is a hyperparameter of this layer type. Commonly,
drop-out values between 0.2 and 0.5, thus dropping 20% to 50% of the input
nodes respectively each time, are recommended in function of the size of the
network. Namely, we would have to assure that not too many nodes are being
dropped, so that the remaining nodes in the architecture are can together still
be representative enough for our input samples. Drop-out is generally less
effective for convolutional layers than for fully-connected layers [87], which is
why it is more recommended for regularising the top-model. Namely, con-
volutional layers have spatial relationships encoded in feature maps due to
which activations can become significantly correlated, in which case randomly
dropping nodes would do more harm than good to the learning procedure. It
has been argued that often, drop-out layers can be replaced by batch normal-
isation layers for their regularising effect [36], while batch normalisation has
other benefits than to prevent overfitting. We also experimented with this in
our intestinal content classification architecture.

A.4.4 Batch Normalisation

Batch normalization layers normalise the output of the previous layer [36].
They do so by calculating the mean and standard deviation for its input batch,
after which the batch mean is subtracted from each of the inputs and the re-
sult is divided by the standard deviation of the batch: Fl(x) = x−µb

σb
. This

layer thus basically applies one of the most common forms of feature nor-
malisation from traditional machine learning techniques, albeit now applied
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over the batches that we feed as the input to the CNN instead of all of the
training samples. Batch normalization layers have a regularising effect, as in
each step different examples are randomly included in the batch over which
the output is normalised, due to which we can consider the batch mean and
standard deviation as values with a degree of randomness. As both of them are
used to modify the neurons’ output values, this concept introduces variation
in the layers’ outputs, which, in turn, means that the layer has to be more
robust to deal with this variation. At the same time, by ensuring zero mean
and unit variance throughout the training procedure, decreasing the relative
differences between different input values once scaled and translated by the
weights and bias terms, it helps to fight the vanishing gradients problem. We
will revisit this problem when we explain in Section A.8, where we also explain
the importance of gradients in the optimisation of CNNs in general.

A.4.5 Softmax

Even though Softmax is not actually a layer type, but an activation function,
we still list it here as it is the most common activation function in the output
layer in classification CNNs, which is therefore often referred to as the Softmax
layer. In fact, it is simply a fully-connected layer, of which the number of
neurons corresponds to the number of output classes, so that it assigns a
score to each of them, with Softmax as its activation function. As we will
discuss in Section A.6, the choice of the Softmax activation function ensures
that the values of this layers’ activations sum to one, and, in turn, allows for
the interpretation of those values as probabilities. This activation function is
different from most others as it does not take a single value as input to produce
a single output for a neuron in the layer, but instead considers all neurons at
once, requiring the sum of their input values in its calculation.

A.5 Loss Functions

Loss functions or cost functions are a core component of the training procedure
that measure our disagreement with the output of the CNN, or that, in other
words, quantify the difference between the output and our ground truth labels.
Although researchers can define their own loss functions based on their specific
problem, there are a few popular loss functions that appear to work well in
general cases or with specific popular architectures. Below, we list and briefly
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discuss the most important ones of these. Note that we focus on loss functions
for classification networks, not for regression in general.

A.5.1 Cross-Entropy

The cross-entropy loss function is one of the most used loss functions in CNN
classification and is often considered to be a generalisation of logistic regression
to multiple classes. The loss function used in logistic regression is the nega-
tive log-likelihood, commonly also called log loss, and is popular in maximum
likelihood estimation in statistics. Strictly speaking, these are in fact different
functions with different origins, but calculate the same value under the con-
ditions of CNN classification problems, due to which the terms are often used
interchangeably. We will not dive further into this as it is not necessary in the
context of CNNs, but we refer interested readers to the excellent explanation
by Goodfellow et al. [29]. We do note, however, that from a statistic points of
view the cross-entropy function measures the entropy between two probability
distribution. The entropy refers to the average bits of information, or in other
words the average amount of “surprise” a probability distribution represents.
Balanced probability distributions have a high entropy, while probability dis-
tributions with a very high probability for a specific event have a relatively
low entropy. The cross-entropy then measures the entropy of the combination
of two distributions, which essentially sums up to the difference in entropy
plus the entropy of the original distribution. In fact, it is much related to the
Kullback-Leibler (KL) loss function, which simply corresponds to the difference
between the cross-entropy and the entropy of the original distribution.

Often, theory and software packages distinguish between binary cross-entropy
and generic or categorical cross-entropy, while the binary cross-entropy is actu-
ally a special case of the categorical function that cross-entropy loss function.
The binary cross-entropy function applies to a classification problem between
two classes, here referred to by class 1 and class 2. As this function is the most
intuitive to understand, we will first discuss that definition to then deduce the
generic function. Binary cross-entropy is defined as:

L(y, ŷ) = −y1 log(ŷ1)− (1− y1) log(1− ŷ1), (A.7)

where y1 = 1 if the ground truth label of the sample corresponds to class 1
and y1 = 0 if it corresponds class 2, while p1 is the predicted score for class 1
by the algorithm. This formula shows why it is also called log loss, as we take
the logarithm of the predicted values. If the sample thus corresponds to class
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1, only the first term remains and the formula is reduced to − log (p1), while
in the other case, only the second term remains and the formula is reduced to
− log (1− p1). We can thus observe that the function can always be reduced to
−log(pc), in which pc is the predicted score for the class the sample corresponds
to, i.e. yc = 1. We thus attempt to minimise the negative logarithm of pc, i.e.
the score assigned to the correct class. The closer this value is to 1, the correct
prediction, the smaller this term is, as the logarithm of values between 0 and
1 is negative. From this observation, we can finally deduce the categorical
cross-entropy function for multiple, mutually exclusive classes

L(y, ŷ) = −
M∑︂

c=1
yc log(ŷc), (A.8)

where M is the number of possible output classes, yc is 1 if the sample belongs
to class c and 0 otherwise, and pc is the predicted scores for class c by the
algorithm. It is relevant to note that if the classes were not mutually exclusive,
i.e. a sample can belong to multiple classes at the same time, also called multi-
label classification, we would instead use the binary cross-entropy function
multiple times.

The cross-entropy function has the interesting property that its derivative with
respect to the inputs of the (softmax) activation function, also called logits,
as used in backpropagation, is trivial to calculate. Namely, this derivative is
simply p− y.

A.5.2 Kullback-Leibler Divergence

As mentioned above, this loss function is much like the cross-entropy function,
but instead measures only that part of the entropy that is due to the difference
between the probability distributions. The result of this function plus the
entropy of the original distribution, together make up the entire cross-entropy
loss. This is formally defined as

L(y, ŷ) = −
M∑︂

c=1
yc log

(︃
yc

ŷc

)︃
. (A.9)
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A.5.3 Hinge Loss

Hinge Loss is the maximum margin loss function that is also used in SVM
classifiers. This classifier is only intended for binary classification, although
extensions exist for multi-class classification that are not widely used and which
we did therefore not consider in this work. Using this classifier in fact turns
the classifying layers of the CNN into an equivalent of an SVM classifier, as
it attempts a maximum margin between positive and negative samples. Its
binary definition is

L(y, ŷ) = max(0, 1− yT ŷ), (A.10)

where y ∈ {−1, 1} is our vector of ground truth labels and ŷ the vector of scores
assigned by the model. Note that, in contrast to the other loss functions we
described, this loss function thus requires us to modify our target variables
from the labels, commonly 0 and 1, to -1 and 1 and respectively. We also have
to be careful in our choice for the activation function of the output layer, as
our outputs should at least cover the range of -1 to 1, which means sigmoid
cannot be used directly and tanh, for example, may be a more appropriate
choice.

Also note that, effectively, the minimisation of this loss will only consider
examples that infringe the margin, as for all other samples the function would
yield 0 and thus a 0 gradient, comparable to the support vectors in SVM
classification. Although the function itself is not differentiable, the gradient is
easily computed locally.

A.5.4 L1-loss and L2-loss

Although the L1 and L2 loss functions are used in regression problems and
are in fact not used stand-alone in classification problems, they are still useful
to consider here, as they are often added to other loss functions as regularis-
ing terms. When used stand-alone, they thus apply when the output values
represent metrics or scalars of a wider variety.

L1-loss, also referred to as mean absolute error (MAE), is based on the L1-
norm, which, in turn, is alternatively referred to as least absolute error (LAE)
or least absolute deviations (LAD). It is defined as

L(y, ŷ) = ||ŷ− y||1 =
i=N∑︂
i=1
|yî − yi|, (A.11)
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where y is the vector of outputs for our samples, ŷ the vector of ground truth
labels and N the number of samples. It thus yields the sum of all the individual
distances of our samples to the ground truth.

Alternatively, L2-loss is used, which is commonly known as the mean squared
error (MSE), least squared error (LSE), Euclidean loss or simply sum of
squares, although the terms are technically not equal, and is based on the
L2-norm. Instead of minimising the absolute differences, we now minimise the
squared differences:

L(y, ŷ) = ||ŷ− y||22 =
i=N∑︂
i=1

(yî − yi)2, (A.12)

where y is the vector of outputs for our samples, ŷ the vector of ground
truth labels and N is the number of samples. As Equation A.12 shows, this
loss function does in fact not compute the L2-norm, but the squared L2-
norm. Although both the L2-norm and the squared version would provide the
same optimisation objective, the squared L2-norm is often preferred as it is
computationally more efficient as it avoids the square root.

The most interesting aspect of L1 and L2 loss in this work, however, is their use
as regularisation terms by adding them to any other loss function we may use.
Here, instead of applying the L1-norm and L2-norm to the differences between
predictions and ground truth labels, they are simply applied to the values of
the weights and multiplied by a parameter λ that determines the amount of
regularisation. In this sense they help to keep the values of the weight matrices
low, which is understood to lead to simpler models and reduce overfitting to
a certain extent.

In general, L1-loss is more robust in the presence of outliers, but as its deriva-
tives are not continuous it is inefficient and unstable in optimisation. In con-
trast, L2-loss is sensitive to outliers, but is more stable and more efficient [98].
Therefore, unless the dataset contains outliers that are important to take into
consideration, L2-loss often preferred. If required, preprocessing methods can
be used to remove outliers beforehand. While as regularisation terms both
L1 and L2 are used to keep the weights small and therefore the model less
complex, L1 has the property to force weights all the way to zero, while L2
ensures they never actually get down to zero merely due to regularisation. As
having weights of zero is often undesirable as we will explain in Section A.8,
the L2-norm is relatively more popular for this purpose.
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A.6 Activation Functions

Sometimes specified as a separate layer, activation functions are vital to the
learning process of CNNs. The concept of an activation function derives its
name from the fact that this function determines whether the neuron activates,
i.e. whether it produces a signal at all as well as the magnitude of this acti-
vation. For a neural network to learn non-trivial relationships, it is necessary
that such functions are non-linear to reproduce a non-linear function as briefly
mentioned above. If only linear functions were chosen in several concatenated
convolutional layers, we would simply be able to reduce all of those layers to
a single one by concatenating all the weight matrices. Therefore, here we will
discuss several non-linear activation functions that have become popular in
CNN theory, or were so historically.

A.6.1 Logistic function

The logistic function is also often referred to as “the Sigmoid function”, even
though a sigmoid function is any mathematical function that has a charac-
teristic S-shaped curve and as we will see, the Tan-h loss function is also a
sigmoid function. The logistic function is defined as follows:

fa(x) = 1
1 + e−x

It was was suggested and frequently used historically in basic neural networks,
because it has the attractive property of squashing real numbers to range be-
tween 0 and 1. Specifically, large positive numbers are clipped to 1, while large
negative numbers are clipped to 0, which historically had the interpretation
of a neuron being maximally activated, i.e. emitting a signal at an assumed
maximum frequency, or being inactivated, emitting no signal at all. However,
due to this it has the tendency to kill gradients when the activation of the
neuron is saturated at either end of the tail of the sigmoid. Another problem
is that the output of the logistic function is not zero-centered, which would
make the gradients during back-propagation either all positive or all negative.
This is only an inconvenience though, as processing the data in batches would
cause the updates to the network to have variable signs.
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A.6.2 Tan-h

The Tan-h loss function, or hyperbolic tangent, is also sigmoidal, but has
the advantage that it is zero-centred as it symmetrically squashes the output
between -1 and 1 instead. It is in fact a shifted and scaled version of the
logistic function:

fa(x) = tanh x = ex − e−x

ex + e−x
.

Because it is zero-centred, it is often preferred to the logistic function, but it
still suffers from saturation.

A.6.3 ReLU

As a solution for both of these problems, as well as being significantly more
efficient, the ReLU function was suggested and has now been widely adopted
in CNN architectures. The ReLU function simply clips any negative values to
0, while positive values remain untouched:

fa(x) = max(0, x).

Despite its simplicity, it has been shown to accelerate convergence of stochastic
gradient descent and is inexpensive to compute, especially compared to the
aforementioned non-linearities. The ReLU function is also not completely
free of issues though. Namely, ReLU activations can become unreversibly
inactivated during training if a large gradient causes the weights to be updated
in a certain way, which can become especially frequent with high learning rates.
With an appropriate configuration of the learning rate, this is less likely to be
an issue.

A.6.4 Leaky ReLU

There are some variations on the ReLU function which mainly attempt to
generalise concepts of ReLU or solve the issue of dying neurons, such as Leaky
ReLU. Leaky ReLU instead has a small negative slope, i.e. αx in which α is
a very small constant to ensure that the output will never be equal to 0:

fa(x, α) = max(αx, x).
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A.6.5 ELU

The exponential linear unit (ELU) is another modification of the ReLU func-
tion. For input values equal to or higher than 0 it follows the same slope as
ReLU, but for input values lower than 0 it has an exponential slope:

fa(x, α) =
{︄

x, for x ≥ 0
α(ex − 1), for x < 0

}︄

A.6.6 Maxout

Finally, a different type of neuron has been proposed, Maxout, where the
activation function is not simply a function of the single input value of the
dot product of the weights and the data summed by the bias, but where there
is a second input value defined by a second set of weights and a second bias.
Maxout is a generalisation of both ReLU and its leaky function, allowing for
the configuration of both the slope and the offset of the two different slopes
through optionally learnt parameters:

fa(x, α, β, b1, b2) = max(αx + b1, βx + b2).

Although optimising the parameters through the network training procedure
may sound attractive, it doubles the number of parameters, while the problems
with ReLU can relatively easily been overcome through an appropriate config-
uration of the learning rate. The ReLU function is therefore considered a good
starting point in the design of new CNN architectures when there is no clear
preference for another specific function, while researches can later experiment
with other activation functions if results are not satisfactory. In our work on
intestinal content detection we experimented with the use of Sigmoid, Rectified
Linear Unit (ReLU), Exponential Linear Unit (ELU) and Leaky ReLU.

A.7 Weights Initialisation

CNNs often make use of stochastic algorithms for the optimisation in the
training procedure. The best way to view this is by interpreting the algorithms
as search algorithms, that search for the optimal solution in a landscape of
many different combinations. If we imagine a visualisation of this solution
space, we may do so as a manifold where every point on the manifold represents
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a different combination of parameters. Our global solution would then be the
lowest point at the manifold, while there are many locations where the manifold
is locally low. Deterministic algorithms would explore the whole solution space
and we can be certain they find the global optimum and make guarantees
about its running time. However, with this manifold growing in vastness and
complexity due to an increased number of outcomes or size of the input data,
the problem may become too hard to be solved by deterministic algorithms
in reasonable time, leading us to opt for stochastic algorithms. These are
algorithms that use a degree of randomness or uncertainty to solve the problem
and therefore usually find a solution that is not the global optimum, but a local
one. They are non-deterministic algorithms, although a more reliable class
among those, as they quantify the solution space in terms of probabilities
instead of mere possibilities [75]. This allows us to estimate the probability
that we find a solution that is as good as the global optimum for our purpose.

The use of stochastic algorithms in CNNs implies that, as opposed to de-
terministic algorithms, a different, likely non-optimal result is produced each
time if the algorithm is run multiple times. This means that each time we
train a CNN model, the model we produce will be slightly different, with dif-
ferent evaluation results. Concretely, in CNNs this randomness commonly at
least applies to the initialisation of the weights, biases and to the division
of the training data. The partitioning of the training data generally applies
to machine learning problems. The randomness in this partitioning can be
kept constant. For research purposes, we can choose to partition our data
into training, validation and test data beforehand, in order to keep the data
division constant and eliminate this factor of randomness. While we would
still use a degree of randomness to partition the data, we could use this same
partition to train different models or test different values for parameters. It is
also desirable to use multiple such partitions, as we do in cross-validation, as
we are then less likely to get stuck with a single partition of the data for which
our model always convergences to a sub-optimal solution for the data domain
in which our CNN should operate. In contrast to the data division, in the
decision about initialising the weights we do not have as much information. In
data division we can assess and decide on the variety, origin, e.g. originating
from different patients, and conditions, e.g. different lighting, by visualisation
or other forms of data analysis.

The solution space of the values of the weights in a CNN architecture is more
difficult for us to interpret. Therefore, a degree of randomness in the ini-
tialisation of weights is always desirable. Once we have found good initial
weights, we may choose to keep them constant in a production environment
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or for research purposes, to allow us to measure the effects of changes in our
data set or changes of the other parameters. Care has to be taken for the
initialisation of the weights, as the final solution could be largely dependent
on the initial weights. Poor weight initialisation, for example when the weights
are relatively too close to zero, could even cause gradients to vanish in back-
propagation; this is known as the vanishing gradients problem, which we will
revisit in Section A.8. There are different ways to incorporate randomness into
the initialisation of the weights. In essence, there are three popular options for
drawing our random samples: we can draw them from a uniform distribution,
a normal distribution and a truncated normal distribution. For these distribu-
tions, we can further specify the desired distribution parameters, i.e. the mean
and standard deviation in case of the normal distribution and the mininum
and maximum values in case of the uniform distribution. Apart from this
method, there has been research on the use of heuristics that can improve or
speed up convergence of the training procedure that can increase the chances
of finding a global optimum. Glorot and Bengio showed in their work how
drawing the weights straight from certain random distributions could increase
the probability of the occurrence of vanishing gradients and suggested heuris-
tics to avoid this problem [28]. Concretely, they suggest to draw the weights
from a truncated normal distribution with a mean of 0 and a standard devia-
tion of

√︂
2

nin+nout
, where nin is the number of input connections and nout is

the number of output connections. Their method is now popularly named the
“Xavier initialisation” or “Glorot initialisation”, and is currently the default
of the popular Keras (Tensorflow) software package. Other random initialisa-
tion options are using an orthogonal matrix obtained from a matrix of random
numbers or initialisation from a random distribution with variance scaling, i.e.
the variance of the random distribution from which the weights are drawn is
scaled to a specified extent with the number of input or output units. The
latter is essentially a generalisation of the Xavier initialisation. Other often
used options that do not involve randomness and are only recommendable for
specific circumstances are initialisation with a constant value (including 0 and
1) or with the identity matrix.

A.8 Back-propagation

Once the weights are initialised we can use those values in a forward pass of a
batch of our inputs through the network, ultimately producing output values.
In first instance, if the weights have not been loaded from a pretrained network
with specific domain information, the output will likely differ significantly from
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the desired output that is in our case given by labels or annotations of the
images. The degree of this difference or error is given by the loss function we
have chosen to use, as discussed in Section A.5. But how do we then use this
function to actualise and improve the weights, and thus eventually optimise
the network?

The only widely accepted manner to optimise CNNs for this nowadays is
through backpropagation, which is an algorithm to efficiently calculate the
derivatives of the error function with respect to each of the weights to opti-
mise their values according to a chosen optimisation method [95]. The gradient
in fact makes up an important part of the limited information we have about
the surface of the solution space (alternatively named error surface in this
context). As analysing the whole solution space in the context of a CNN is
unnecessarily complex, the gradient of the loss function gives us information
about the direction of the steepest slope of the error surface, which, in the
absence of general information about the solution space, is highly useful in-
formation about the direction towards a minimum. To be able to use this
information, of course the loss function has to be differentiable and we should
be able to calculate the gradient efficiently.

In this sense, it is difficult to see backpropagation algorithm loose from the
optimisation method, commonly gradient descent, which uses the calculated
gradient values for steering the training procedure towards the direction of
a minimum. It is, however, important to make this distinction. Namely,
backpropagation strictly refers to the algorithm that efficiently computes the
gradient of the loss function with respect to each weight, while making no
assumptions about how the weights are updated afterwards. Instead of sep-
arately calculating this gradient for each of the weights independently, which
would be highly inefficient and involve calculating intermediate values many
times, the backpropagation algorithm does this through combining the lay-
ered structure of neural networks with intelligent use of the chain rule for
derivatives, using dynamic programming. To clarify this, let us visualise back-
propagation on a simplified situation of a basic ANN in Figure A.6. Refer to
this image for the variables that we discuss below and to keep an overview of
how we deduce the error back to the individual weights.

In this network, imagine we have activation function f (l)(x) in layer l, which
could be the ReLU function as we discussed in Section A.6, or the Sigmoid
function. Additionally, let the weights matrix of layer l be given by W(l) and
the input vector, as opposed to the matrix we would have in the case of a CNN,
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Figure A.6: An example of a three-layer ANN on which we visualise the backprop-
agation principle. Note that L(y, ŷ) is the loss function which measures the error
between the prediction and the ground truth, while the δl values are the error or
negative gradients with respect to the layer input values, scaled by their weights and
translated by the bias values. These values are only calculated once, after which they
are reused in the calculation of the gradients with respect to each weight individually,
as we propagate the values further backwards through the network.

by x. In that case, we can compose the function calculated by the network:

g(x) = f (3)(W(3)f (2)(W(2)f (1)(W(1)x + b(1)) + b(2)) + b(3)). (A.13)

However, backpropagation theory would get unnecessarily complicated if we
did not define additional helpful variables. The following variables with recur-
sive definitions help to simplify the equations:

z(l) = W(l)a(l) + b(l),

a(l) = f (l)(z(l)),

a(0) = x.

Provided these definitions, we can see that g(x) = a(3). In implementation, it
is useful to store these variables while we process a forward pass, as we will
need the terms again in the backward pass.
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In backpropagation during the training procedure, we do not simply only cal-
culate the result of Equation A.13, but also calculate the value of the loss
function, or in fact, as we shall see, of its derivative. Let this loss function de-
noted L(y, ŷ). We then want to calculate each of the partial derivatives ∂L

∂wij
,

with wij being the weight of the connection between neuron i of one layer and
neuron j of the following. Namely, the entire vector of partial derivatives make
up the gradient that indicates the direction of greatest change of the loss func-
tion at the location of interest. Remember that the chain rule can briefly be
explained in the following way: if a variable f depends on a variable a that on
itself depends on a variable x, then df

dx = df
da · da

dx [89]. The backpropagation
principle is best explained when we consider the partial derivative with respect
of L with respect to the input x instead of the individual weights, which we
finally actually need. Namely, applying the chain rule to this calculation, we
obtain an expression that has many intermediate terms that are full deriva-
tives, from which we can then calculate the partial derivatives with respect to
each of the weights:

∂L
∂x = dL

da(3) · da(3)

dz(3) · dz(3)

da(2) · da(2)

da(2) · dz(2)

da(1) · da(1)

dz(1) · ∂z(1)

∂x . (A.14)

The dai

dzi
terms are the derivatives of the activation function f (i)′(z(i)), while

the dz(i)

da(i−1) terms are exactly equal to W (i). The first two terms correspond to
the derivative of the loss function with respect to z(3), L′(z(3), y), which also
involves the derivative of the activation function of the third layer, f (3)′(z(3)).
Often, the pair of activation function and loss function are chosen in such a
way that this derivative corresponds to a trivial calculation. For example, in
case of combining the Sigmoid function for f (3)(z(3)) with the binary cross-
entropy loss function for L(y, ŷ), where ŷ = a(3), it can be shown that these
two terms together correspond to a(3) − y. We will assume those functions
in the remainder of this section to simplify the terms further. Following, we
explain how we can use these terms to calculate the gradients of the weights.

Although Equation A.14 corresponds to the partial derivative, we actually
want to obtain the gradient. The gradient and the derivative are related in
the sense that the gradient is simply the transpose of the vector that is the
derivative. It can therefore simply be obtained by transposing the weight
matrices and changing the order of the terms [96]. Here, however, we will con-
tinue to explain the procedure from the partial derivative perspective, which
will eventually lead to the same values and is more intuitive, as we can read
it from left to right. In the case of the gradient expression, we would have to
multiply from right to left instead. With the assumptions and replacement of
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the terms as indicated in our explanation below Equation A.14, the expression
becomes as follows:

∂L
∂x = (a(3) − y)W(3)f (2)′(z(2))W(2)f (1)′(z(1))W(1). (A.15)

Before we can evaluate this expression, we will have to rearrange them to
ensure that the dimensions of the matrices align. Note that we will not actually
perform the last multiplication, as we are interested in the partial derivative
with respect to the input itself, but use the intermediate terms because they
also appear in the expressions of partial derivatives with respect to each of
the individual weights. These common terms are in fact the derivatives with
respect to each layer’s vector of scaled and translated input values z(l). We
will equivalently denote these terms δ(l). The algorithm thus evaluates this
expression with a single term at a time, which corresponds to traversing the
network backwards, starting at the deepest layer, storing each δ(l) in between.
From those values, we can calculate ∂L

∂wij
, with node j being in layer l, as

∂L
∂W (l) = δ(l+1)(a(l))T . Note that the bias values are also included in this, as
we recall from Figure A.6 that the biases are in fact simply common weights
assigned to the bias node of the previous layer, and are therefore multiplied
with the constant value of 1 as indicated by that node. The formula of this
term, denoted δ(l), lends itself nicely to an intuitive recursive definition [96]:

δ(l−1) = f (l−1)′(z(l−1)) ◦ (W(l))T δ(l). (A.16)

Note that here we corrected the order to align the dimensions of the matrices.
The vector δl contains the derivatives with respect to z(i), which were the
values of W(i) multiplied by a(i−1), as we recall from Equation A.13.

From Equation A.16, an important problem with neural network training also
becomes clear: the vanishing gradient problem. Several loss functions have
gradients that yield values between 0 and 1. If we propagate such values back-
wards and use them in the chain rule multiplication, we would persistently
end up with smaller values each time we propagate the error further back-
wards, i.e. δ(l−1) < δ(l), thus decreasing drastically. Once the value becomes
infinitesimally small, the earlier layers in the network may not be able to learn
at all any more from that point onwards. Notice that small gradient values do
not only depend on the weights and the derivative of the activation function,
but also on the input values, which is where batch normalisation layers could
help. There is also the opposite effect, where the gradient can increase as it
is propagated backwards. This can happen with loss functions of which the
gradients yield values greater than 1, in which case the gradient could in fact
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increase exponentially as we propagate the error backwards.

Additionally to reusing the already calculated value of δ(l) in our calculation of
δ(l−1), as argued above, backpropagating the error instead of propagating the
error forwards through a multiplication starting at an earlier layer, translates
itself to a multiplication of the vector δ(l) by the weight matrix by the deriva-
tive of the loss function, compared to the matrix by matrix multiplication we
would obtain by multiplying forwards instead [96]. Note that the specific loss
functions and activation functions do not matter in backpropagation, as long
as they are differentiable and the gradient can preferably be calculated in an
efficient manner. After calculating the gradient with respect to each weight
individually, the weights are then updated accordingly to steer the network
towards a lower loss value.

An important note to make in this section is that the revolutionary idea of
CNNs, namely that of shared weights for convolutional layers, is applied in this
step. Namely, even though the gradients are calculated for the weights of the
synapses correspondonding to each pixel individually, these are then summed
and averaged across the depth slice to update shared weights only once [48].

A.9 Gradient Descent

After thus obtaining the partial derivatives with respect to each of the weights
individually, a specific optimisation algorithm determines how exactly the cal-
culated gradients are used to update the weights. Commonly, the gradient
descent algorithm is used for this purpose. Although many variations on this
algorithm now exist and have been shown to perform better than the generic
version under certain circumstances, the basic concept of gradient descent ap-
plies to them all. Intuitively, we can visualise the solution space of the loss
function or cost function of our network as a manifold, which we may imagine
as a hilly landscape in a simplified 3D space, as visualised in Figure A.7. Gra-
dient descent is an algorithm that then searches to minimise the function by
repeatedly taking a step into the direction of the steepest descent as indicated
by the negative of the gradient that we obtained from the backpropagation.
In Figure A.7 this process is visualised for a 3D solution space, which is vi-
sualised as the aforementioned hilly landscape. We also show the step-wise
solution the gradient descent algorithm would find, parting from the shown
(random) starting point, as we explain below. Note that this simplified exam-
ple only has a single minimum, while in reality, problem spaces can have many
local minima.
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Gradient descent only has information about the gradient, and thus the di-
rection of the greatest change, of the loss function at the current point. We
can imagine this value to represent the steepness of the hill in our 3D solution
landscape. All gradient descent knows, is that it wants to perform a param-
eter update that will take us a step lower on the hilly landscape, towards a
minimum. As we do not have any further information about the shape of the
often complicated manifold (an often used analogy is that our hilly solution
landscape is misty), all we can do is take a step into the direction of the neg-
ative gradient towards a lower point. However, what should the optimal size
of this step be? This step size that the gradient descent algorithm should use
at any point in time thus becomes an important parameter, often referred to
as the learning rate. It is commonly multiplied by the values of the negative
gradient with respect to each weight to update those weights and finally take a
step into the direction of a minimum. In this way, the learning rate essentially
allows us to control the overall time gradient descent requires to converge to
a minimum, also called the convergence time.

However, there are some issues with the learning rate that are important to
consider. The risk of setting this parameter too high is that we may overshoot
the minimum. As the gradient will be relatively large at those locations of our
solution space where the slope is relatively steep, a high learning late on such
a location could cause us to constantly overshoot the minimum, i.e. to jump
out of the region of valley in our solution space, and make our gradient descent
fail to converge. In this figure we plotted our loss function in a 2D-space for
illustrative purposes. If, on the other hand, we use a too low learning rate,
not only will our algorithm take unnecessarily long to converge as we take tiny
steps on surfaces with a shallow slope, but at the same time it could cause
us to end up with a very weak local minimum that gradient descent would
ignore (overshoot) with a more appropriate learning rate. In the basic version
of gradient descent, we usually have to make this trade-off at the start of our
learning procedure, although heuristics can be employed to change the learning
rate throughout the learning procedure. In fact, many of the later variants on
gradient descent implement an method to intelligently adjust the learning rate
automatically. We will discuss these and other methods in the remainder of
this section, although we will first discuss different variants of gradient descent
based on how much data they consider in a single update.

With respect to the amount of update considered in a single update, we can
distinguish between three variants of gradient descent: batch gradient descent,
mini-batch gradient descent and stochastic gradient descent [73]. Batch gra-
dient descent computes the gradient on the entire training set at once before
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Figure A.7: A generic example of the gradient descent algorithm, with its step-wise
solution visualised as a blue line, for a 3D problem space.

it performs a single update to the weights. With this method, it is necessary
to load the whole dataset into memory, which for most datasets nowadays is
infeasible, while it also converges very slowly due to performing redundant
computations in large datasets where gradients are recomputed for similar ex-
amples as weights are not changed in between. On the other extreme, we have
stochastic gradient descent (SGD), which performs a parameter update for
every single training training example. Although this avoids the redundant
computations in batch gradient descent for large data sets, relatively big dif-
ferences between subsequent training samples causes significant fluctuations
in the cost function throughout the training procedure. On the one hand it is
sometimes argued that this can help SGD jump out of a relatively high local
minimum and converge to the global or a lower one, while on the other hand
it could even cause SGD to overshoot important minima, or even the global
minimum, during the learning procedure. Choromanska et al. show, however,
that for sufficiently large datasets, local minima are likely comparably good
and at least as good as global minima, as adjusting to the global minima tends
to lead to overfitting [12]. Therefore, the variant that is the middle ground
between the two and is often considered to have best of both worlds, is mini-
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batch gradient descent. This variant instead calculates the gradient for a small
batch of predefined size n of input samples, which can be adjusted to the data
set and the available memory as needed. If the batch size is perfectly adjusted
to the data set to contain a combination of samples that is representative for
the data set, this method would be the most efficient memory-wise, time-wise
and solution-wise. This is therefore also most popular variant in the state of
the art. It is also referred to as “SGD with a batch size of n”.

Apart from the update procedure, gradient descent algorithms further vary
based on the heuristics they employ, which are designed to help overcome
certain inconveniences of naïve gradient descent. Most of these aim at varying
the learning rate throughout the learning procedure. In our work using CNNs
to detect intestinal content, we made use of Momentum, Adam and Nadam
and will therefore briefly explain each of them.

A.9.1 Momentum

Momentum is a method designed to help SGD navigate better towards the
minimum when one of the parameters contributes significantly more to the
gradient than the others, which we can imagine as being around a ravine
on our simplified manifold, where the surface decrease much more steeply into
one direction than into others. While naïve gradient descent would only slowly
take steps towards the minimum oscillating around the slope of the ravine, this
method accelerates and improves that procedure by always adding a fraction
of the previous update vector to the current one [73]. The fraction to be
used is a parameter of the momentum method, often simply referred to as
the momentum in SGD.

A.9.2 Adam

The next method, Adam (Adaptive Motion Estimation), is a method that
computes adaptive learning rates for each of the input features in accordance
with their prevalence. This idea was not new, as it was first introduced by
Adagrad and improved in Adadelta and its equivalent method RMSprop. The
prevalence of the features is determined through the magnitude of the gradi-
ents, whereas a greater magnitude is associated with a lower prevalence, for
which the learning rate is adjusted to higher values. Adam uses the improved
method of using a decaying average of past squared gradients. The concept
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that Adam newly introduces is that of using an exponentially decaying aver-
age of past gradients that is similar to the idea of momentum. In our earlier
example of going down a ravine with momentum behaving as a heavy ball,
Adam would behave as a heavy ball with friction and thus prefer flat minima
in the error surface [73].

A.9.3 Nadam

The last method that we used in our work is Nadam proposed by Dozat [20].
This method improves on the Adam method with the same idea as the
Nesterov-accelerated gradient (NAG) applied to the original momentum
method. Namely, NAG attempted to look ahead to save a future step, by
calculating the gradient over the value of the parameter that has already been
adjusted for the momentum term. After that, the momentum is calculated as
before and the parameter value is adjusted accordingly. Dozat does not only
propose to apply this concept to Adam to create their Nadam method, but
at the same time proposes to modify the concept by, instead of calculating
the gradient over an already adjusted value, applying the look-ahead momen-
tum vector directly to the parameter adjustment. Both the gradient and the
momentum are then calculated as normally, while instead of updating the pa-
rameter value with the current momentum value, we update its value with a
look-ahead momentum vector, which adjusts the calculated momentum with
the momentum proportion and again sums the gradient already adjusted by
the learning rate.
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