

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/183893

Lanese, I.; Palacios, A.; Vidal, G. (2021). Causal-Consistent Replay Reversible Semantics
for Message Passing Concurrent Programs. Fundamenta Informaticae. 178(3):229-266.
https://doi.org/10.3233/FI-2021-2005

https://doi.org/10.3233/FI-2021-2005

IOS Press

Causal-Consistent Replay Reversible Semantics for
Message Passing Concurrent Programs*

Ivan Lanese
Focus Team, University of Bologna/INRIA

Mura Anteo Zamboni, 7, Bologna, Italy

ivan.lanese@unibo.it

Adrián Palacios
MiST, VRAIN, Universitat Politècnica de València

Camino de Vera, S/N, 46022 Valencia, Spain

apalacios@dsic.upv.es

Germán Vidal
MiST, VRAIN, Universitat Politècnica de València

Camino de Vera, S/N, 46022 Valencia, Spain

gvidal@dsic.upv.es

Abstract. Causal-consistent reversible debugging is an innovative technique for debugging con-
current systems. It allows one to go back in the execution focusing on the actions that most likely
caused a visible misbehavior. When such an action is selected, the debugger undoes it, including
all and only its consequences. This operation is called a causal-consistent rollback. In this way,

Address for correspondence: Germán Vidal, DSIC, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valen-
cia, Spain. Email: gvidal@dsic.upv.es.
*This work has been partially supported by the COST Action IC1405 on Reversible Computation - extending horizons
of computing. The first author has also been partially supported by INdAM – GNCS 2020 project Sistemi Reversibili
Concorrenti: dai Modelli ai Linguaggi. The first and third authors have been also partially supported by French ANR project
DCore ANR-18-CE25-0007. The second and third authors have been also partially supported by the EU (FEDER) and the
Spanish MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019-104735RB-C41, and by the Generalitat Valenciana
under grant Prometeo/2019/098 (DeepTrust).

the user can avoid being distracted by the actions of other, unrelated processes. In this work, we
introduce its dual notion: causal-consistent replay. We allow the user to record an execution of
a running program and, in contrast to traditional replay debuggers, to reproduce a visible misbe-
havior inside the debugger including all and only its causes. Furthermore, we present a unified
framework that combines both causal-consistent replay and causal-consistent rollback. Although
most of the ideas that we present are rather general, we focus on a popular functional and concur-
rent programming language based on message passing: Erlang.

Keywords: concurrency, logging, causal-consistent, debugging, reversible computing

1. Introduction

Debugging is a main activity in software development. According to a 2014 study [1], the cost of
debugging faulty software amounts to $312 billions annually. Another recent study [2] estimates
that the time spent in debugging is 49.9% of the total programming time. The situation is not likely
to improve in the near future, given the increasing demand of concurrent and distributed software.
Indeed, distribution is inherent to current computing platforms, such as the Internet or the Cloud,
and concurrency is a must to overcome the advent of the power wall [3]. Debugging concurrent
and distributed software is clearly more difficult than debugging sequential code [4]. Furthermore,
misbehaviors may depend, e.g., on the execution speed of the different processes, showing up only in
some (sometimes rare) cases.

A particularly unfortunate situation is when a program exhibits a misbehavior in its usual execu-
tion environment, but it runs smoothly when re-executed in the debugger. Moreover, even when the
misbehavior shows up, it is still difficult to locate the bug causing it: the bug might be in a process
different from the one showing a faulty behavior, so one needs to trace back the execution from the
visible misbehavior to the bug, jumping from process to process following causal links (determined
for instance by message exchanges). This last problem has been tackled by so called causal-consistent
reversible debugging [5], where one has the possibility of selecting a direct cause of a visible misbe-
havior and undo it, including all and only its consequences. This operation is called a causal-consistent
rollback [6, 7]. In most cases, iterating this operation leads to the bug.

Existing techniques and tools for causal-consistent reversible debugging do not provide a way to
record the execution of a program in its actual environment, thus there are no guarantees that the faulty
execution will be replayed in the debugger (i.e., it is up to the programmer to follow the right forward
steps, a challenging task for concurrent programs). A first contribution of this paper is a theoretical
framework for such a record and replay, which of course guarantees that misbehaviors are reproduced
during replay. Our approach to replay, which we call (controlled) causal-consistent replay, extends
the techniques in the literature as follows: given a log of a (typically faulty) concurrent execution, we
do not replay exactly the same execution step by step (as traditional record and replay debuggers do),
but we allow the user to select any action in the log (e.g., one showing a misbehavior) and to replay the
execution up to this action, including all and only its causes. This allows one to focus only on those
processes where (s)he thinks the bug(s) might be, disregarding the actual interleaving of processes. To
the best of our knowledge, the notion of causal-consistent replay is new.

Causal-consistent replay can be considered the dual of causal-consistent rollback. A second con-
tribution of the paper is the integration of the two techniques, which provides a complete setting to
explore a concurrent computation back and forth, always concentrating on the actions of interest and
following causality links. Notably, replay works well with rollback: it can be used not only to boot-
strap debugging activities by replaying the misbehavior as in standard debugging, but also during the
debugging process. Indeed, it is not unusual to go “too far” backward (i.e., beyond the bug) in the
execution, and replay allows the programmer to go forward again with the guarantee to replay the
same execution (or a causally equivalent one) up to the given misbehavior. This was not possible in
the standard framework of causal-consistent reversible debugging.

We develop the results of the present paper in the context of a (first-order) functional and concur-
rent language based on message passing. Therefore, our results can be directly applied to a language
like Erlang [8]. We chose such a language since Erlang is used in high-visibility projects (such as
some versions of the Facebook chat [9]), and it is particularly well-suited to program concurrent and
distributed applications. In particular, it provides native support for concurrency without the need to
rely on external libraries. Nevertheless, the theory of causal-consistent replay can be adapted to any
concurrent or distributed language based on message passing. Indeed, causal-consistent reversibility
has been studied for different foundational calculi as well as for the languages µOz [10], µKlaim [11]
and Erlang [12], and the dual notion of causal-consistent replay is equally generic.

In this paper, we also introduce a novel semantics for an Erlang-like language which is more
abstract than the ones in the literature [13, 14, 12], yet concrete enough to show misbehaviors and
to look for the bugs causing them. In particular, it allows us to significantly improve the notion of
concurrency as well as the formalization of reversibility and rollback for this language. Since these
improvements are quite technical, we will contrast them with the approaches in the literature after
having described them (see Sections 2.3 and 4.3).

The structure of this paper is as follows. First, we introduce the syntax and semantics of our lan-
guage (Sect. 2), which corresponds to the functional and concurrent subset of Core Erlang [15]. We
then present the generation of a log associated to a computation that can be used to drive the causal-
consistent replay of this computation (Sect. 3). Both replay and rollback computations are formalized
with a nondeterministic (uncontrolled) semantics (Sect. 4). We prove a number of properties for our
semantics, e.g., that the replay of an execution contains the same (mis)behaviors as the original one
(Theorem 4.22). We also prove the so called causal consistency of the reversible semantics (Theo-
rem 4.17), a key result in the field of causal-consistent reversibility. We then present a controlled
version of the semantics that is driven by a particular replay or rollback request (Sect. 5). Here, we
also prove the soundness (Theorem 5.1) and minimality (Theorem 5.6) of this controlled semantics.
Finally, we discuss some related work (Sect. 6) and conclude (Sect. 7).

This paper is a revised and extended version of [16], where causal-consistent replay has been
introduced. However, [16] concentrates on replay and mentions reversibility only briefly, while the
present paper integrates the notion of causal-consistent replay with the reversible semantics in [12].
Also, the present paper includes full proofs of the results. Additional material which is not central for
the discussion can be found in a companion technical report [17].

program ::= fun1 . . . funn

fun ::= fname = fun (X1, . . . , Xn)→ expr

fname ::= Atom/Integer

lit ::= Atom | Integer | Float | []

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)

| case expr of clause1; . . . ; clausem end

| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end

| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Figure 1. Language syntax rules

2. The Language

In this section, we present the considered language: a first-order functional and concurrent program-
ming language based on message passing that mainly follows the actor model.

2.1. Language Syntax

The syntax of the language is shown in Figure 1. A program is a sequence of function definitions,
where each function name f/n (atom/arity) has an associated definition fun (X1, . . . , Xn) → e,
where X1, . . . , Xn are (distinct) fresh variables and are the only variables that may occur free in e.1

We consider that a program consists of a single module for simplicity. The body of a function is an
expression, which can include variables, literals, function names, lists (using Prolog-like notation: [] is
the empty list and [e1|e2] is a list with head e1 and tail e2), tuples (denoted by {e1, . . . , en}),2 calls to
built-in functions (mainly arithmetic and relational operators), function applications, case expressions,
let bindings, receive expressions, spawn (for creating new processes), “!” (for sending a message),
and self. As is common practice, we assume that X is a fresh variable in a let binding of the form
let X = expr1 in expr2.

In this language, we distinguish expressions, patterns, and values. In contrast to expressions,
patterns are built from variables, literals, lists, and tuples. Patterns can only contain fresh variables.
Finally, values are built from literals, lists, and tuples, i.e., they are ground (without variables) patterns.
Expressions are ranged over by e, e′, e1, . . ., patterns by pat, pat′, pat1, . . . and values by v, v′, v1, . . .
Atoms (i.e., constants with a name) are written in roman letters, while variables start with an uppercase
letter. A substitution θ is a mapping from variables to expressions, and Dom(θ) = {X ∈ Var |
1Here, we consider that variable X is bound in let X = e1 in e2; also, all pattern variables occurring in case or receive
expressions and all parameters in function definitions are bound too; all other variables are free.
2As in Erlang, the only data constructors in the language (besides literals) are the predefined functions for lists and tuples.

X 6= θ(X)} is its domain. Substitutions are usually denoted by (finite) sets of bindings like, e.g.,
{X1 7→ v1, . . . , Xn 7→ vn}. Substitutions are extended to morphisms from expressions to expressions
in the natural way. The identity substitution is denoted by id. Composition of substitutions is denoted
by juxtaposition, i.e., θθ′ denotes a substitution θ′′ such that θ′′(X) = θ′(θ(X)) for all X ∈ Var . We
follow a postfix notation for substitution application: given an expression e and a substitution σ the
application σ(e) is denoted by eσ.

In a case expression “case e of pat1 when e1 → e′1; . . . ; patn when en → e′n end”, we first
evaluate e to a value, say v; then, we find (if it exists) the first clause pati when ei → e′i such that v
matches pati, i.e., such that there exists a substitution σ for the variables of pati with v = patiσ, and
eiσ (the guard) reduces to true; then, the case expression reduces to e′iσ.

In our language, a running system is a pool of processes that can only interact through message
sending and receiving (i.e., there is no shared memory). Received messages are stored in the local
(FIFO) queues of the processes until they are consumed. Each process is uniquely identified by its pid
(process identifier). Message sending is asynchronous, while receive instructions block the execution
of a process until an appropriate message reaches its local queue (see below).

In the paper, on denotes a sequence of syntactic objects o1, . . . , on for some n.
We consider the following functions with side-effects (where self and spawn are built-ins in the Er-

lang programming language): self, !, spawn, and receive. The expression self() returns the pid of a pro-
cess, while p!v sends a message v to the process with pid p, which will be eventually stored in p’s local
queue. New processes are spawned with a call of the form spawn(a/n, [vn]), so that the new process
begins with the evaluation of apply a/n (vn). Finally, an expression “receive patn when en → e′n end”
traverses the process’ queue until one message matches a clause in the receive statement; i.e., it should
find the first message v in the process’ queue (if any) such that case v of patn when en → e′n end can
be reduced to some expression e′′; then, the receive expression evaluates to the same expression to
which the above case expression would be evaluated, e′′, with the side effect of deleting the message v
from the process’ queue. If there is no matching message, the process suspends until a matching mes-
sage arrives. As in case expressions, patterns of receive statements can only contain fresh variables.

Our language models the functional and concurrent subset of Core Erlang [15], the intermediate
representation used during the compilation of Erlang programs. Therefore, our developments can be
directly applied to Erlang.

Example 2.1. The program in Figure 2 implements a simple client/server scheme with one server,
one client and a proxy. The execution starts with a call to function main/0. It spawns the server and
the proxy and finally calls function client/2. Both the server and the proxy then suspend waiting for
messages. The client makes two requests {C, 40} and 2, where C is the pid of client (obtained using
self()). The second request goes directly to the server, but the first one is sent through the proxy
(which simply resends the received messages), so the client actually sends {S, {C, 40}}, where S is
the pid of the server. Here, we expect that the server first receives the message {C, 40} and, then, 2,
thus sending back 42 to the client C (and calling function server/0 again in an endless recursion). If
the first message does not have the right structure, the catch-all clause “E → error” returns error and
stops.

main/0 = fun ()→ let S = spawn(server/0, [])

in let P = spawn(proxy/0, []) in apply client/2 (P, S)

server/0 = fun ()→ receive

{C,N} → receive

M → let X = C ! call + (N,M) in apply server/0 ()

end;

E → error

end

proxy/0 = fun ()→ receive {T,M} → let W = T !M in apply proxy/0 () end

client/2 = fun (P, S)→ let X = P ! {S, {self(), 40}} in let Y = S ! 2 in receive N → N end

Figure 2. A simple client/server program

2.2. A High-Level Semantics

In this section, we present an (asynchronous) operational semantics for our language. Following
[13], we introduce a global mailbox (there called “ether”) to guarantee that our semantics generates
all admissible message interleavings. In contrast to previous semantics [12, 14, 13], though, our
semantics abstracts away from processes’ queues. We will see in Sections 2.3 and 4.3 that this decision
simplifies both the semantics and the notion of concurrency, while still modeling the same potential
computations.

Definition 2.2. (process)
A process is denoted by a configuration of the form 〈p, θ, e〉, where p is the pid of the process, θ is an
environment (a substitution of values for variables), and e is an expression to be evaluated.

In order to define a system (roughly, a pool of processes interacting through message exchange), we
first need the notion of global mailbox, a data structure modeling message communication.

Definition 2.3. (global mailbox)
We define a global mailbox, Γ, as a multiset of triples of the form (sender pid, target pid,message).
Given a global mailbox Γ, we let Γ ∪ {(p, p′, v)} denote a new mailbox also including the triple
(p, p′, v), where we use “ ∪” as multiset union.

In Erlang, the order of two messages sent directly from process p to process p′ is kept if both are
delivered; see [18, Section 10.8].3 To enforce such a constraint, we could define a global mailbox
as a collection of FIFO queues, one for each sender-receiver pair. In this work, however, we keep
Γ a multiset. This solution is both simpler and more general since using FIFO queues serves only
to select those computations satisfying the constraint. Nevertheless, if our approach to record and
replay is applied to a computation satisfying the above constraint (e.g., because the program is run

3Current implementations only guarantee this restriction within the same node.

in a standard environment for Erlang), then our replay computation will also satisfy it and, thus, no
spurious computations are introduced.4

A system is now defined as follows:

Definition 2.4. (system)
A system is a pair Γ; Π, where Γ is a global mailbox and Π is a pool of processes, denoted as
〈p1, θ1, e1〉 | · · · | 〈pn, θn, en〉; here “ |” represents an associative and commutative operator. We
often denote a system as Γ; 〈p, θ, e〉 | Π to point out that 〈p, θ, e〉 is an arbitrary process of the pool
(thanks to the fact that “ | ” is associative and commutative).

A system is initial if it has the form { }; 〈p, id, e〉, where { } is an empty global mailbox, p is a
pid, id is the identity substitution, and e is an expression (typically a function application that starts
the execution).

In [12], Γ was used to store messages after they were sent and before they were delivered to the local
queue of the target process, i.e., Γ represented an abstraction of the network. Here, we go one step
further and also abstract away the process’ queues, so now Γ stores all the messages that have been
sent and have not yet been consumed by a receive statement. In other words, Γ now denotes the union
of the network and the original process’ queues. The new formulation allows for a more efficient
tracing, since it would be difficult to trace message delivery, yet it is precise enough for the purpose of
this paper. In fact, all behaviors that can be obtained with the semantics in [12] can also be obtained
with the present semantics and vice versa, hence the abstraction is correct. Since the relation with
the semantics in [12] is not key to understand the present paper, we refer the interested reader to the
companion technical report [17].

Following the style in [12], the semantics of the language is defined in a modular way, so that
the labeled transition relations −→ and ↪→ model the evaluation of expressions and the reduction of
systems, respectively. Given an environment θ and an expression e, we denote by θ, e l−→ θ′, e′ a one-
step reduction labeled with l. The relation l−→ follows a typical call-by-value semantics for side-effect
free expressions; for expressions with side-effects, we label the reduction with the information needed
to perform the side-effects within the system rules of Figure 3. We refer to the rules of Figure 3 as
the logging semantics, since the relation is labeled with some basic information used to log the steps
of a computation (see Section 3). We also use this information to define a notion of concurrency for
our language (see Section 2.3). For the moment, the reader can safely ignore these labels (actually,
labels will be omitted when irrelevant). The topics of this work are orthogonal to the evaluation of
expressions, thus we refer the reader to [12] for the formalization of the rules of l−→. Let us now briefly
describe the interaction between the reduction of expressions and the rules of the logging semantics:

• A one-step reduction of an expression without side-effects (e.g., a function application or a case
expression) is labeled with τ . In this case, rule Seq in Fig. 3 is applied to update correspondingly
the environment and expression of the considered process.

• An expression p′ ! v is reduced to v, with label send(p′, v), so that rule Send in Fig. 3 can
complete the step by actually adding the triple (p, p′, {v, `}) to Γ (p is the process performing

4An alternative definition ensuring the order of messages between any two given processes can be found in [14].

(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, θ, e〉 |Π ↪→p,seq Γ; 〈p, θ′, e′〉 |Π

(Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′ and ` is a fresh symbol
Γ; 〈p, θ, e〉 |Π ↪→p,send(`) Γ ∪ {(p, p′, {v, `})}; 〈p, θ′, e′〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p′, p, {v, `})}; 〈p, θ, e〉 |Π ↪→p,rec(`) Γ; 〈p, θ′θi, e′{κ 7→ ei}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and p′ is a fresh pid
Γ; 〈p, θ, e〉 |Π ↪→p,spawn(p′) Γ; 〈p, θ′, e′{κ 7→ p′}〉 | 〈p′, id, apply a/n (vn)〉 |Π

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, θ, e〉 |Π ↪→p,self Γ; 〈p, θ′, e′{κ 7→ p}〉 |Π

Figure 3. Logging semantics

the send). Observe that the message is tagged with some fresh (unique) identifier `. These
tags will allow us to track messages and avoid confusion when several messages have the same
value. Moreover, they will become essential to uniquely identify every message, so that the
effects of sending and/or receiving a particular message can be undone (these tags are similar to
the timestamps used in [19]).

• The remaining functions, receive, spawn and self, pose an additional problem: their value cannot
be computed locally. Therefore, they are reduced to a fresh distinguished symbol κ (i.e., a sort
of future that we deal with as a variable for simplicity) which is then replaced by the appropriate
value in the system rules.

In particular, a receive statement receive cln end is reduced to κ with label rec(κ, cln). Then,
rule Receive in Fig. 3 nondeterministically checks if there exists a triple (p′, p, {v, `}) in the
global mailbox that matches some clause in cln; pattern matching is performed by the auxiliary
function matchrec. If the matching succeeds, it returns the pair (θi, ei) with the matching
substitution θi and the expression in the selected branch ei. Finally, κ is bound to the expression
ei within the derived expression e′.

• For a spawn, an expression spawn(a/n, [vn]) is also reduced to κwith label spawn(κ, a/n, [vn]).
Rule Spawn in Fig. 3 then adds a new process with a fresh pid p′ initialized with an empty
environment id and the application apply a/n (v1, . . . , vn). Here, κ is bound to p′, the pid of
the spawned process.

• Finally, the expression self() is reduced to κ with label self(κ) so that rule Self in Fig. 3 can
bind κ to the pid of the process executing the self() expression.

We often refer to reduction steps derived by the system rules as actions taken by the chosen process.

{ }; 〈c, , apply main/0 ()〉
↪→ { }; 〈c, , let S = spawn(server/0, []) in . . .〉
↪→ { }; 〈c, , let P = spawn(proxy/0, []) in apply client/2 (P, s)〉 | 〈s, , apply server/0 ()〉
↪→ { }; 〈c, , apply client/2 (p, s)〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {self(), 40}} in . . .〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , receive . . .〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c,p, {{s, {c, 40}}, `1})}; 〈c, , let Y = s ! 2 in . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c,p, {{s, {c, 40}}, `1}), (c, s, {2, `2})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c, s, {2, `2})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , let W = s ! {c, 40} in . . .〉
↪→ {(c, s, {2, `2}), (p, s, {{c, 40}, `3})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , apply proxy/0 ()〉
↪→ {(p, s, {{c, 40}, `3})}; 〈c, , receive . . .〉 | 〈s, , error〉 | 〈p, , apply proxy/0 ()〉

Figure 4. Faulty derivation with the client/server of Example 2.1

Example 2.5. Consider the program of Example 2.1 and the initial system {}; 〈c, id, apply main/0 ()〉,
where c is the pid of the process. A possible (faulty) computation from this system is shown in Fig. 4
(the selected expression at each step is underlined). In the figure, we ignore the labels of the relation
↪→. Moreover, we skip the steps that just bind variables and we do not show the bindings of variables
but substitute them for their values for clarity.

Roughly speaking, the computation is faulty since the messages reach the server in the wrong
order. Note that this faulty derivation is possible even by considering Erlang’s policy on the order of
messages, since they follow a different path.

2.3. Concurrency

In order to define a causal-consistent (reversible) semantics we need not only an interleaving semantics
such as the one we just presented, but also a notion of concurrency (or, equivalently, the opposite
notion of conflict). To this end, we use the labels of the logging semantics (see Figure 3). These labels
include the pid p of the process that performs the transition, the rule used to derive it and, in some
cases, some additional information: a message tag ` in rules Send and Receive, and the pid p′ of the
spawned process in rule Spawn.

Before formalizing the notion of concurrency, we need to introduce some notation and terminol-
ogy. Given systems s0, sn, we call s0 ↪→∗ sn, which is a shorthand for s0 ↪→p1,r1 . . . ↪→pn,rn sn,
n ≥ 0, a derivation. One-step derivations are simply called transitions. We use d, d′, d1, . . . to denote
derivations and t, t′, t1, . . . for transitions.

Given a derivation d = (s1 ↪→∗ s2), we define init(d) = s1 and final(d) = s2. Two derivations,
d1 and d2, are composable if final(d1) = init(d2). In this case, we let d1; d2 denote their composition
with d1; d2 = (s1 ↪→ s2 ↪→ · · · ↪→ sn ↪→ sn+1 ↪→ · · · ↪→ sm) if d1 = (s1 ↪→ s2 ↪→ · · · ↪→ sn) and

d2 = (sn ↪→ sn+1 ↪→ · · · ↪→ sm). Two derivations, d1 and d2, are said coinitial if init(d1) = init(d2),
and cofinal if final(d1) = final(d2).

For simplicity, in the following, we consider derivations up to renaming of bound variables, i.e.,
we say that derivations d1 and d2 are equal if they are identical except for (possibly) a renaming of
bound variables.

Under this assumption, the semantics is almost deterministic, i.e., the main sources of non-determinism
are the selection of a process p (where any fair strategy would be fine, but we leave it unspecified in this
work) and the selection of the message to be retrieved in rule Receive when more than one message
targets the selected process p. There is also some non-determinism in the choice of the fresh identifier
` for messages in rule Send and in the choice of the pid p′ of the new process in rule Spawn. However,
identifiers are just a technical mean to distinguish messages, hence we can safely consider them up to
renaming. We also consider pids up to renaming, since in general their value is not relevant, and this
simplifies the notion of concurrency (otherwise all applications of rule Spawn would be in conflict due
to the selection of the pid). Note that each process can perform at most one transition for each label,
i.e., s ↪→p,r s1 and s ↪→p,r s2 trivially implies s1 = s2.

Definition 2.6. (concurrent transitions)
Given two different coinitial transitions, t1 = (s ↪→p1,r1 s1) and t2 = (s ↪→p2,r2 s2), we say that they
are in conflict if they consider the same process, i.e., p1 = p2, and the applied rules are both Receive,
i.e., r1 = rec(`1) and r2 = rec(`2) for some `1, `2 with `1 6= `2. Two different coinitial transitions are
concurrent if they are not in conflict.

Now, we prove a key result for our notion of concurrency. For simplicity, we consider in the following
a fixed (implicit) program in the technical results.

Lemma 2.7. (square lemma)
Given two coinitial concurrent transitions t1 = (s ↪→p1,r1 s1) and t2 = (s ↪→p2,r2 s2), there exist two
cofinal transitions t2/t1 = (s1 ↪→p2,r2 s

′) and t1/t2 = (s2 ↪→p1,r1 s
′). Graphically,

s �
� p1,r1 //� _

p2,r2
��

s1

s2

=⇒
s �
� p1,r1 //� _

p2,r2

��

s1� _

p2,r2
��

s2
� �

p1,r1
// s′

Proof:
If p1 6= p2 then, by applying rule r2 to p1 in s1 and rule r1 to p2 in s2, we get two transitions t1/t2 and
t2/t1 which are cofinal. If p1 = p2, since the transitions are concurrent, at least one of the applied rules
must be different from Receive. This case is not possible, though, since the semantics is deterministic
in this case and, thus, there can be only one reduction issuing from s. ut

Our notion of concurrency is less restrictive than the one in [12], which also considers actions to
deliver messages to the local queues of the processes. Notably, the choice in [12] introduces some
(unnecessary) conflicts, e.g., between delivering a message to a process and receiving a (different)
message. Despite that, the two semantics model essentially the same derivations [17].

2.4. Independence

We now instantiate to our setting the well-known happened-before relation [20], and the related notion
of independent transitions:5

Definition 2.8. (happened-before, independence)
Given a derivation d and two transitions t1 = (s1 ↪→p1,r1 s

′
1) and t2 = (s2 ↪→p2,r2 s

′
2) in d, we say

that t1 happened before t2, in symbols t1 ; t2, if one of the following conditions holds:

• they consider the same process, i.e., p1 = p2, and t1 comes before t2;

• t1 spawns a process p, i.e., r1 = spawn(p), and t2 is performed by process p, i.e., p2 = p;

• t1 sends a message `, i.e., r1 = send(`), and t2 receives the same message `, i.e., r2 = rec(`).

Furthermore, if t1 ; t2 and t2 ; t3, then t1 ; t3 (transitivity). Two transitions t1 and t2 are
independent if t1 6; t2 and t2 6; t1.

An interesting property of our semantics is that consecutive independent transitions can be switched
without changing the final state:

Lemma 2.9. (switching lemma)
Let t1 = (s1 ↪→p1,r1 s2) and t2 = (s2 ↪→p2,r2 s3) be consecutive independent transitions. Then, there
exist two consecutive transitions t2〈〈t1 = (s1 ↪→p2,r2 s4) and t1〉〉t2 = (s4 ↪→p1,r1 s3) for some system
s4.

Proof:
By definition, we have that p1 6= p2, so that the transitions belong to different processes. Then, the
two transitions can be trivially switched except when r1 = spawn(p) and p2 = p, for some pid p, and
when r1 = send(`) and r2 = rec(`) for some tag `. These cases, though, are not possible since the
transitions are independent, thus the claim holds. Note that we can assume that the same fresh pids or
message tags are used in the switched transitions since these values are still fresh. ut

The happened-before relation gives rise to an equivalence relation equating all derivations that only
differ in the switch of independent transitions. Formally,

Definition 2.10. (causally equivalent derivations)
Let d1 and d2 be derivations under the logging semantics. We say that d1 and d2 are causally equiv-
alent, in symbols d1 ≈ d2, if d1 can be obtained from d2 by a finite number of switches of pairs of
consecutive independent transitions.

We note that our notion of causally equivalent derivations can be seen as an instance of the trace
equivalence in [21].

5Here, we use the term independent instead of concurrent, used in [20], to avoid confusion with the notion in Definition 2.6,
which is the typical meaning of the term concurrent in the literature of causal-consistent reversibility.

3. Logging Computations

In this section, we introduce a notion of log for a computation. Basically, we aim to analyze in a
debugger a faulty behavior that occurs in some execution of a program. To this end, we need to
extract from an actual execution enough information to replay it inside a debugger. Actually, we do
not want to replay necessarily the exact same execution, but any causally equivalent one. In this way,
the programmer can focus on some actions of a particular process, and actions of other processes are
only performed if needed (formally, if they happened-before these actions). As we will see in the next
section, this ensures that the considered misbehaviors will still be replayed.

In a practical implementation, one should instrument the program so that its execution in the
actual environment (e.g., the Erlang/OTP environment) produces a collection of sequences of logged
events (one sequence per process). In the following, though, we exploit the logging semantics and, in
particular, we compute the log from the information provided by the labels. The two approaches are
equivalent, but the chosen one allows us to formally prove a number of properties in a simpler way.

One could argue (as in, e.g., [19]) that logs should only store information about the receive events,
since this is the only nondeterministic action (once a process is selected). However, this is not enough
in our setting, where:

• We need to log the sending of a message since this is where messages are tagged, and we need
to know its (unique) identifier to be able to relate the sending and receiving of each message.

• We also need to log the spawn events, since the generated pids are needed to relate an action to
the process that performed it (spawn events are not present in the model considered in [19] and,
thus, their set of processes is fixed).

We note that other nondeterministic events, such as input from the user or from external services,
should also be logged in order to correctly replay executions involving them. One can deal with them
by instrumenting the corresponding primitives to log the input values, and then use these values when
replaying the execution. Essentially, they can be dealt with as the receive primitive. Clearly, their
detailed treatment would be needed in an implementation of a debugger for full Erlang. However, we
consider that this issue is orthogonal to our approach, and handling it would complicate our semantics
without necessity. As a consequence, we leave this discussion for a more practical work that considers
the implementation of this semantics.

In the following, (ordered) sequences are denoted by w = (r1, r2, . . . , rn), n ≥ 1, where ()
denotes the empty sequence. Given sequences w1 and w2, we denote their concatenation by w1+w2;
when w1 just contains one element, i.e., w1 = (r), we write r+w2 instead of (r)+w2 for simplicity.

Definition 3.1. (log)
A log is a (finite) sequence of events (r1, r2, . . .) where each ri is either spawn(p), send(`) or rec(`),
with p a pid and ` a message identifier. Logs are ranged over by ω. Given a derivation d = (s0 ↪→p1,r1

s1 ↪→p2,r2 . . . ↪→pn,rn sn), n ≥ 0, under the logging semantics, the log of a process p in d, in symbols

L(d, p), is inductively defined as follows:

L(d, p) =


() if n = 0 or p does not occur in d
r1+L(s1 ↪→∗ sn, p) if n > 0, p1 = p, and r1 6∈ {seq, self}
L(s1 ↪→∗ sn, p) otherwise

The log of d, written L(d), is defined as: L(d) = {(p,L(d, p)) | p occurs in d}. We sometimes call
L(d) the global log of d to avoid confusion with L(d, p). Trivially, L(d, p) can be obtained from L(d),
i.e., L(d, p) = ω if (p, ω) ∈ L(d) and L(d, p) = () otherwise.

Example 3.2. Consider the derivation shown in Example 2.5, here referred to as d. If we run it under
the logging semantics, we get the following logs:

L(d, c) = (spawn(s), spawn(p), send(`1), send(`2))

L(d, s) = (rec(`2))

L(d,p) = (rec(`1), send(`3))

Clearly, given a finite derivation d, the associated log L(d) is finite too. However, the opposite is not
true: we might have a finite log associated to an infinite derivation (e.g., by applying infinitely many
times rule Seq).

In the following we only consider finite derivations under the logging semantics. This is reasonable
in our context where the programmer wants to analyze in the debugger a finite (possibly incomplete)
execution that showed some faulty behavior.

An essential property of our semantics is that causally equivalent derivations have the same log,
i.e., the log depends only on the equivalence class, not on the selection of the representative inside the
class. The reverse implication, namely that (coinitial) derivations with the same global log are causally
equivalent, holds provided that we establish the following convention on when to stop a derivation:

Definition 3.3. (fully-logged derivation)
A derivation d is fully-logged if, for each process p, its last transition s1 ↪→p,r s2 in d (if any) is a
logged transition, i.e., r 6∈ {seq, self}. In particular, if a process performs no logged transition, then it
performs no transition at all.

Restricting to fully-logged derivations is needed since only logged transitions contribute to logs. Oth-
erwise, two derivations d1 and d2 could produce the same log, but differ simply because, e.g., d1

performs more non-logged transitions than d2. There are several ways of ensuring that d1 and d2

include the same amount of transitions. By restricting to fully-logged derivations, we include the
minimal amount of transitions needed to produce the observed log.

We first introduce an easy result, needed for the proof of Theorem 3.6.

Lemma 3.4. Let t1 = (s1 ↪→p1,r1 s2) and t2 = (s2 ↪→p2,r2 s3) be consecutive independent transi-
tions. Then, L(t1; t2) = L(t2〈〈t1 ; t1〉〉t2), where t2〈〈t1 = (s1 ↪→p2,r2 s4) and t1〉〉t2 = (s4 ↪→p1,r1 s3).

Proof:
By definition of independence, p1 6= p2. Thus the two transitions contribute to different logs. The
thesis follows since the log is a function of the label, and the labels of t1 and t2 coincide with the
labels of t1〉〉t2 and t2〈〈t1 , respectively. ut

We now present a lemma capturing the fact that, if the log is fixed, the behavior of each process is also
fixed (but not the interleavings among them).

Lemma 3.5. (local determinism)
Let d1, d2 be coinitial fully-logged derivations with L(d1) = L(d2). Then, for each pid p occurring
in d1, d2, we have S1

p = S2
p , where S1

p (resp. S2
p) is the ordered sequence of configurations 〈p, θ, e〉

occurring in d1 (resp. d2), with consecutive equal elements collapsed.

Proof:
We prove the claim by induction on the length n of the derivation d1. Since the base case is trivial,
let us consider the case n > 0. Since d1 and d2 are coinitial, we have init(d1) = init(d2). Let
s0 = init(d1). Let t1 = (s0 ↪→p1,r1 s1) be the first transition in d1 for some process p1 and label r1.
Since L(d1) = L(d2), we have L(d1, p1) = L(d2, p1). Let t2 = (s2 ↪→p1,r1 s3) be the first transition
for process p1 in d2. It is easy to see that t2 must be independent w.r.t. all previous transitions: no
transition can happen-before t2 in d2 since, then, t1 would not be applicable to s0 (note that d1 and d2

are coinitial). Therefore, by the switching lemma (Lemma 2.9), there exists a new derivation d3 which
is obtained from d2 by switching t2 with all previous transitions. It is easy to see that, for each pid p
occurring in d2, d3, we have S2

p = S3
p , where S2

p (resp. S3
p) is the ordered sequence of configurations

〈p, θ, e〉 occurring in d2 (resp. d3), with consecutive equal elements collapsed. Therefore, now we
have s0 ↪→p1,r1 s

′
1 as the first transition in d3 and, thus, s1 = s′1. Trivially, we have L(d2) = L(d3)

and, thus, the claim follows by applying the inductive hypothesis. ut

Finally, we present a key result of our logging semantics. It states that two derivations are causally
equivalent iff they produce the same log.

Theorem 3.6. Let d1, d2 be coinitial fully-logged derivations. L(d1) = L(d2) iff d1 ≈ d2.

Proof:
The “if” direction follows by induction on the number of switches using Lemma 3.4.

Let us now consider the “only if” direction. We prove the claim by contradiction. Assume that
L(d1) = L(d2) but d1 6≈ d2. Let us swap independent transitions in d2 so to match the longest
possible prefix of d1. Then, we have d1 = dc; t1; d′1 and d2 ≈ d′′2 = dc; t2; d′2, where dc is a common
prefix (which might be empty), and we cannot swap independent transitions in t2; d′2 so to match
t1. Since L(d1) = L(d2), we have L(d1) = L(d′′2) from the “if” direction. Moreover, since dc is
common to both derivations, we trivially have L(t1; d′1) = L(t2; d′2). Let t1 be labeled with p and r.
By Lemma 3.5, there exists a transition t′1 in t2; d′2 labeled with p and r too. Since t2 6= t′1, we have
t2 ; t′1. Here, we assume that t′1 has been moved as far to the left of the derivation as possible, so we
have a full chain of causally-dependent transitions starting from t2 (if there would be an independent
transition in between it could have been moved after t′1). Hence, t2; d′2 cannot be reordered so that the

first transition matches t1. Let us call t′2 the closest transition to t′1 such that t′2 ; t′1. According to
Definition 2.8, we have the following possibilities:

• Transition t′2 is performed by process p too. This is not possible since, thanks to Lemma 3.5,
the first transition performed by p is the same in both derivations, and we assumed it to be t′1.

• Transition t′2 spawns process p. This is not possible since we assumed that t1 was performed by
p. Hence, process p should have existed before.

• Transition t′2 sends a message received by t′1. Here, we get a contradiction since L(t1; d′1) =
L(t2; d′2) and t1 must reduce a receive statement taking the same message as t′1, so t2 cannot
send such a message since the message should have already existed.

In all cases, we reach a contradiction and, thus, the claim follows. ut

4. A Causal-Consistent Replay Reversible Semantics

In this section, we introduce an uncontrolled replay reversible semantics. It takes a program and the log
of a given derivation, and allows us to go both forward and backward along any causally equivalent
derivation. This semantics constitutes the kernel of our debugging framework. Following [22], the
term uncontrolled indicates that the semantics specifies how to go back and forward, but there is no
policy to select the applicable rule (when more than one is enabled) nor whether forward moves should
be preferred over backward moves or vice versa. Uncontrolled semantics are suitable to fix the basis
of a reversible computational model, yet they are not immediately useful in practice, since they do not
provide facilities to decide which actions to replay/undo. For this reason, in Section 5 we build on top
of this semantics a controlled one, where the selection of the actions to replay/undo is driven by the
queries from the user of a debugger. This allows the user to focus on particular actions and processes
(e.g., sending a given message, spawning a given process, etc).

In the following, processes have the form 〈p, ω, h, θ, e〉, with ω a log and h a history. Histories are
needed to enable reversibility: without a history, forward transitions may lose information and, thus,
it would not be possible to recover the predecessor of a given state. In this context, a history h records
the intermediate states of a process using terms headed by constructors seq, send, rec, spawn, and self,
and whose arguments are the information required to (deterministically) undo the step (following a
typical Landauer embedding [23]). We will characterize later on (see Theorem 4.17 and the discussion
preceding it) the suitable amount of history information to be stored.

In the following, we introduce two transition relations: ⇀ and ↽. The former, ⇀, is similar to
the logging semantics ↪→ (Figure 3) but it is now driven by the considered log. In contrast, the latter,
↽, proceeds in the backward direction, “undoing” actions step by step. We refer to ⇀ and ↽ as the
(uncontrolled) forward and backward semantics, respectively. We denote their union ⇀ ∪↽ by
.

4.1. Uncontrolled Forward Semantics

The uncontrolled forward semantics is shown in Figure 5. Even if not necessary from a practical point
of view, labels of the forward semantics contain the same information in the labels of the logging

(Seq)

θ, e
τ−→ θ′, e′

Γ; 〈p, ω, h, θ, e〉 |Π ⇀p,seq,{s} Γ; 〈p, ω, seq(θ, e)+h, θ′, e′〉 |Π

(Send)

θ, e
send(p′,v)−−−−−−→ θ′, e′

Γ; 〈p, send(`)+ω, h, θ, e〉 |Π ⇀p,send(`),{s,`⇑} Γ ∪ {(p, p′, {v, `})};
〈p, ω, send(θ, e, p′, {v, `})+h, θ′, e′〉 |Π

(Receive)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p′, p, {v, `})}〈p, rec(`)+ω, h, θ, e〉 |Π
⇀p,rec(`),{s,`⇓} Γ; 〈p, ω, rec(θ, e, p′, {v, `})+h, θ′θi, e

′{κ 7→ ei}〉 |Π

(Spawn)

θ, e
spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and ω′ = L(d, p′)

Γ; 〈p, spawn(p′)+ω, h, θ, e〉 |Π ⇀p,spawn(p′),{s,spp′} Γ; 〈p, ω, spawn(θ, e, p′)+h, θ′, e′{κ 7→ p′}〉
| 〈p′, ω′, (), id, apply a/n (vn)〉 |Π

(Self)

θ, e
self(κ)−−−−→ θ′, e′

Γ; 〈p, ω, h, θ, e〉 |Π ⇀p,self,{s} Γ; 〈p, ω, self(θ, e)+h, θ′, e′{κ 7→ p}〉 |Π

Figure 5. Uncontrolled forward semantics

semantics. We do it for technical reasons, so that results such as Lemma 4.13 (see below) can be more
easily formalized. Moreover, the labels now also include a set of replay requests. The reader can
ignore these elements until the next section. For simplicity, we also consider that the log L(d, p) of
each process p in the original derivation d is a fixed global parameter of the transition rules (see rule
Spawn , where logs are added to new processes).

The rules for expressions are the same as in the logging semantics (an advantage of the modular
design). The forward semantics is similar to the logging semantics, except for two main differences.
First, some parameters are fixed by logs: the fresh message identifier in rule Send , the message
received in rule Receive, and the fresh pid in rule Spawn . Second, we build a history with a sequence
of items which allows us to go backwards to any point in the computation. The history items are
headed by the applied rule (Receive is shortened to rec), and contain the current environment and
expression, as well as some rule-specific information. In particular, rule Send records the target pid
and the message, rule Receive the sender pid and the message, and rule Spawn the pid of the new
process. We could optimize the information stored in these terms following [24, 25, 26], but this is
orthogonal to our purpose in this paper.

Example 4.1. Consider the logs of Example 3.2. Then, we have, e.g., the forward derivation in Fig. 6.
For simplicity, in the histories we only show events send, rec and spawn and, moreover, we skip the

{ }; 〈c, (spawn(s), spawn(p), send(`1), send(`2)), (), , apply main/0 ()〉
⇀ { }; 〈c, (spawn(s), spawn(p), send(`1), send(`2)), (), , let S = spawn(server/0, []) in . . .〉
⇀ { }; 〈c, (spawn(p), send(`1), send(`2)), (spawn(, , s)), , let P = spawn(proxy/0, []) in

apply client/2 (P, s)〉 | 〈s, (rec(`2)), (), , apply server/0 ()〉
⇀ { }; 〈c, (spawn(p), send(`1), send(`2)), (spawn(, , s)), , let P = spawn(proxy/0, []) in

apply client/2 (P, s)〉 | 〈s, (rec(`2)), (), , receive . . .〉
⇀ { }; 〈c, (send(`1), send(`2)), (spawn(, , p), spawn(, , s)), , apply client/2 (p, s)〉

| 〈s, (rec(`2)), (), , receive . . .〉 | 〈p, (rec(`1), send(`3)), (), , apply proxy/0 ()〉
⇀ { }; 〈c, (send(`1), send(`2)), (spawn(, , p), spawn(, , s)), , let X = p ! {s, {self(), 40}} in . . .〉

| 〈s, (rec(`2)), (), , receive . . .〉 | 〈p, (rec(`1), send(`3)), (), , apply proxy/0 ()〉
⇀ { }; 〈c, (send(`1), send(`2)), (spawn(, , p), spawn(, , s)), , let X = p ! {s, {c, 40}} in . . .〉

| 〈s, (rec(`2)), (), , receive . . .〉 | 〈p, (rec(`1), send(`3)), (), , apply proxy/0 ()〉
⇀ {(c, p, {{s, {c, 40}}, `1})}; 〈c, (send(`2)), (send(, ,p, {{s, {c, 40}}, `1}), spawn(, , p),

spawn(, , s)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (rec(`1), send(`3)), (), , apply proxy/0 ()〉

⇀ {(c, p, {{s, {c, 40}}, `1})}; 〈c, (send(`2)), (send(, ,p, {{s, {c, 40}}, `1}), spawn(, , p),

spawn(, , s)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (rec(`1), send(`3)), (), , receive . . .〉

⇀ { }; 〈c, (send(`2)), (send(, ,p, {{s, {c, 40}}, `1}), spawn(, , p),

spawn(, , s)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (send(`3)), (rec(, , c, {{s, {c, 40}}, `1})), , let s ! {c, 40} in . . .〉

⇀ {(p, s, {{c, 40}, `3})}; 〈c, (send(`2)), (send(, ,p, {{s, {c, 40}}, `1}), spawn(, ,p),

spawn(, , s)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (), (send(, , s, {{c, 40}, `3}), rec(, , c, {{s, {c, 40}}, `1})), , apply proxy/0 ()〉

⇀ {(p, s, {{c, 40}, `3}), (c, s, {2, `2})}; 〈c, (), (send(, , s, {2, `2}), send(, ,p, {{s, {c, 40}}, `1}),
spawn(, ,p), spawn(, , s)), , receive . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (), (send(, , s, {{c, 40}, `3}), rec(, , c, {{s, {c, 40}}, `1})), , apply proxy/0 ()〉

⇀ {(p, s, {{c, 40}, `3})}; 〈c, (), (send(, , s, {2, `2}), send(, ,p, {{s, {c, 40}}, `1}),
spawn(, ,p), spawn(, , s)), , receive . . .〉 | 〈s, (), (rec(, , c, {2, `2})), , error〉
| 〈p, (), (send(, , s, {{c, 40}, `3}), rec(, , c, {{s, {c, 40}}, `1})), , apply proxy/0 ()〉

Figure 6. Uncontrolled forward derivation with the traces of Example 3.2

(Seq)
Γ; 〈p, ω, seq(θ, e)+h, θ′, e′〉 |Π ↽p,seq,{s}∪V Γ; 〈p, ω, h, θ, e〉 |Π

where V = Dom(θ′)\Dom(θ)

(Send)
Γ ∪ {(p, p′, {v, `})}; 〈p, ω, send(θ, e, p′, {v, `})+h, θ′, e′〉 |Π

↽p,send(`),{s,`⇑} Γ; 〈p, send(`)+ω, h, θ, e〉 |Π

(Receive)

Γ; 〈p, ω, rec(θ, e, p′, {v, `})+h, θ′, e′〉 |Π
↽p,rec(`),{s,`⇓}∪V Γ ∪ {(p′, p, {v, `})}; 〈p, rec(`)+ω, h, θ, e〉 |Π

where V = Dom(θ′)\Dom(θ)

(Spawn)
Γ; 〈p, ω, spawn(θ, e, p′)+h, θ′, e′〉 | 〈p′, ω′, (), id, e′′〉 |Π

↽p,spawn(p′),{s,spp′} Γ; 〈p, spawn(p′)+ω, h, θ, e〉 |Π

(Self) Γ; 〈p, ω, self(θ, e)+h, θ′, e′〉 |Π ↽p,self,{s} Γ; 〈p, ω, h, θ, e〉 |Π

Figure 7. Uncontrolled backward semantics

first two arguments (the environment and the expression). The actions performed by each process
are the same as in the original derivation in Example 2.5, but the interleavings are slightly different.
Moreover, after ten steps, the server is waiting for a message, the global mailbox contains a matching
message but, in contrast to the logging semantics, receive cannot proceed since the message identifier
in the log is `2, so message `3 cannot be received. Taking message `3 would lead to a derivation which
is not causally equivalent to the original one.

4.2. Uncontrolled Backward Semantics

Fig. 7 shows the rules of the (uncontrolled) backward semantics. All rules restore the environment
and the expression of the process, and rules Send , Receive and Spawn additionally restore its stored
log. Let us briefly discuss a few particular situations:

• Rule Send only applies if the message sent is in the global mailbox. If, instead, the message
has already been received, then one should first apply backward steps to the receiver until,
eventually, rule Receive puts the message back into the global mailbox, enabling rule Send . In
the next section, we will introduce a strategy that achieves this effect in a controlled manner.

• A similar situation occurs in rule Spawn . Given a process p with a history item spawn(θ, e, p′),
rule Spawn cannot be applied until the history of process p′ is empty. Therefore, one should
first apply a number of backward steps to p′ in order to be able to undo the spawn item.6

Example 4.2. Consider the last system in the replay derivation of Example 4.1 and assume that we
want to undo the actions of process c up to the sending of the message (tagged with `2) that produced
the error. Such a derivation could be performed, e.g., as shown in Fig. 8 (the history item selected

6We note that there is no need to require that no message targeting the process p′ (which would become an orphan message)
is in the global mailbox: in order to send such a message the pid p′ is needed, hence the sending of the message depends on
the spawn and, thus, it must be undone beforehand.

{(p, s, {{c, 40}, `3})}; 〈c, (), (send(, , s, {2, `2}), send(, ,p, {{s, {c, 40}}, `1}),
spawn(, ,p), spawn(, , s)), , receive . . .〉 | 〈s, (), (rec(, , c, {2, `2})), , error〉
| 〈p, (), (send(, , s, {{c, 40}, `3}), rec(, , c, {{s, {c, 40}}, `1})), , apply proxy/0 ()〉

↽ {(p, s, {{c, 40}, `3}), (c, s, {2, `2})}; 〈c, (), (send(, , s, {2, `2}), send(, ,p, {{s, {c, 40}}, `1}),
spawn(, ,p), spawn(, , s)), , receive . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (), (send(, , s, {{c, 40}, `3}), rec(, , c, {{s, {c, 40}}, `1})), , apply proxy/0 ()〉

↽ {(p, s, {{c, 40}, `3})}; 〈c, (send(`2)), (send(, ,p, {{s, {c, 40}}, `1}), spawn(, ,p),

spawn(, , s)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), (), , receive . . .〉
| 〈p, (), (send(, , s, {{c, 40}, `3}), rec(, , c, {{s, {c, 40}}, `1})), , apply proxy/0 ()〉

Figure 8. Uncontrolled backward derivation

to be undone is underlined now). Note that process s must first undo the receiving of the message in
order for the rule Send to be applicable to process c. Once the backward derivation is completed, one
could inspect the current system and see what the problem is: there is no guarantee that the message
tagged with `3 will be received before the message tagged with `2.

4.3. Basic Properties of the Replay Reversible Semantics

In this section we show that the uncontrolled semantics (involving both forward and backward transi-
tions) is consistent and we relate it to the logging semantics. We need the following auxiliary func-
tions:

Definition 4.3. Let d = (s1 ↪→∗ s2) be a derivation under the logging semantics, with7

s1 = Γ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉

The system corresponding to s1 in the reversible semantics is defined as follows:

addLog(L(d), s1) = Γ; 〈p1,L(d, p1), (), θ1, e1〉 | . . . | 〈pn,L(d, pn), (), θn, en〉

Conversely, given a system s = Γ; 〈p1, ω1, h1, θ1, e1〉 | . . . | 〈pn, ωn, hn, θn, en〉 in the reversible
semantics, we let del(s) be the system obtained from s by removing both logs and histories, i.e.,
del(s) = Γ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉. It is extended to derivations in the obvious way: given a
derivation d of the form s1 ↪→ . . . ↪→ sn, we let del(d) be del(s1) ↪→ . . . ↪→ del(sn).

Essentially, function addLog equips each process with its log and an empty history.
In the following, we consider that the notion of log (cf. Definition 3.1) is extended to the for-

ward semantics in the obvious way. We also extend the definitions of functions init and final from

7We note that we consider a derivation starting from a system which is not necessarily an initial system since a debugger
might consider checkpoints that save the state of a computation periodically, so that one wants to replay the derivation from
the last checkpoint to the faulty state.

Section 2.2 to reversible derivations, as well as the notions of composable, coinitial and cofinal deriva-
tions. Furthermore, we now call a system s′ initial under the reversible semantics if there exists a
derivation d under the logging semantics, and s′ = addLog(L(d), init(d)).

We extend the notion of fully-logged derivations to our reversible semantics:

Definition 4.4. (fully-logged reversible derivation)
A derivation d under the replay reversible semantics is fully-logged if, for each process p in final(d),
the log is empty and the last element in the history (if any) corresponds to a logged transition (i.e., one
which is not labeled with seq nor self).

Note that, in addition to Definition 3.3, we now require that processes consume all their logs.
We relate the uncontrolled forward and backward semantics using the well-known loop lemma

(see, e.g., [27, Lemma 6] in the context of the process calculus CCS), stating that each forward (resp.
backward) transition can be undone by a backward (resp. forward) transition. We need to restrict the
attention to systems reachable from the execution of a program:

Definition 4.5. (reachable systems)
A system s is reachable if there exists an initial system s0 such that s0
∗ s.

Since this restriction is needed for other results as well, and since only reachable systems are of interest
(non-reachable systems are ill-formed), in the following we assume that all the systems are reachable.
We can now show the loop lemma.

Lemma 4.6. (loop lemma)
For every pair of systems, s1 and s2, we have s1 ⇀p,r s2 iff s2 ↽p,r s1.

Proof:
The proof that a forward transition can be undone follows by rule inspection. The other direction relies
on the restriction to reachable systems: consider the process undoing the action. Since the system is
reachable, restoring the memory item would put us back in a state where the undone action can be
performed again (if the system would not be reachable the memory item would be arbitrary, hence
there would not be such a guarantee), as desired. Again, this can be proved by rule inspection. ut

The loop lemma ensures that each transition t has an inverse, that we denote by t. More precisely,
given a transition t, we let t = (s′ ↽p,r s) if t = (s ⇀p,r s

′) and t = (s′ ⇀p,r s) if t = (s ↽p,r s
′).

This notation is naturally extended to derivations. We let εs denote the zero-step derivation s
∗ s.
A nice property of our reversible semantics is that the key notions of concurrency (Definition 2.6)

and independence (Definition 2.8) for the logging semantics are now subsumed by the following notion
of concurrency for the reversible semantics (see Lemma 4.10 and 4.11 below):

Definition 4.7. (Concurrent transitions)
Given two different coinitial transitions, t1 = (s
p1,r1 s1) and t2 = (s
p2,r2 s2), they are in
conflict if at least one of the following conditions holds:

1. both transitions are forward, they consider the same process, i.e., p1 = p2, and the applied rules
are both Receive, i.e., r1 = rec(`1) and r2 = rec(`2) for some `1, `2 with `1 6= `2;

2. one is a forward transition that applies to a process p, say p1 = p, and the other one is a
backward transition that undoes the spawning of p, i.e., r2 = spawn(p);

3. one is a forward transition where a process p1 receives a message with identifier `, i.e., r1 =
rec(`), and the other one is a backward transition that undoes the sending of the same message,
i.e., r2 = send(`);

4. one is a forward transition and the other one is a backward transition such that p1 = p2.

Two different coinitial transitions are concurrent if they are not in conflict. Note that two coinitial
backward transitions are always concurrent.

Consequently, the following lemma subsumes both Lemma 2.7 (square lemma) and Lemma 2.9 (switch-
ing lemma) from the logging semantics:

Lemma 4.8. (square lemma)
Given two coinitial concurrent transitions t1 = (s
p1,r1 s1) and t2 = (s
p2,r2 s2), there exist two
cofinal transitions t2/t1 = (s1
p2,r2 s

′) and t1/t2 = (s2
p1,r1 s
′). Graphically,

s
p1,r1 /

p2,r2
�

s1o

s2

O
=⇒

s
p1,r1 /

p2,r2

�

s1

p2,r2
�

o

s2 p1,r1
/

O

s′

O

o

Proof:
We distinguish the following cases depending on the applied rules.

• Two forward transitions. This case is perfectly analogous to the proof of Lemma 2.7.

• One forward transition and one backward transition. In this case, the proof is similar to the
proof of Lemma 2.9.

• Two backward transitions. If p1 6= p2, the claim follows trivially. The case where they apply
to the same process, i.e., p1 = p2, is not possible since the backward semantics is deterministic
once fixed the selected process: the top element in the history determines the rule to apply (as
well as the message to be received in rule Receive).

ut

Nevertheless, we explicitly state a switching lemma for reversible transitions which is an easy conse-
quence of the square lemma above and the loop lemma (Lemma 4.6):

Lemma 4.9. (switching lemma)
Given two composable transitions of the form t1 = (s1
p1,r1 s2) and t2 = (s2
p2,r2 s3) such that
t1 and t2 are concurrent, there exist a system s4 and two composable transitions t2〈〈t1 = (s1
p2,r2

s4) and t1〉〉t2 = (s4
p1,r1 s3).

Proof:
First, using the loop lemma (Lemma 4.6), we have t1 = (s2
p1,r1 s1). Now, since t1 and t2 are
concurrent, by applying the square lemma (Lemma 4.8) to t1 = (s2
p1,r1 s1) and t2 = (s2
p2,r2

s3), there exists a system s4 such that t1〉〉t2 = t1/t2 = (s3
p1,r1 s4) and t2〈〈t1 = t2/t1 = (s1
p2,r2

s4). Using the loop lemma (Lemma 4.6) again, we have t1〉〉t2 = t1/t2 = (s4
p1,r1 s3), which
concludes the proof. ut

Finally, let us formally prove that the definition of concurrent transitions in the replay reversible se-
mantics subsumes both the definition of concurrent transitions and of independent transitions in the
logging semantics.

Lemma 4.10. Let t1 and t2 be forward transitions under the replay reversible semantics. Then t1 and
t2 are concurrent iff del(t1) and del(t2) are concurrent under the logging semantics.

Proof:
Trivial, since the case of the definition of concurrency for two forward actions under the replay re-
versible semantics (case 1 in Definition 4.7) coincides with the definition of concurrency for the log-
ging semantics (Definition 2.6). ut

Lemma 4.11. Let t1 and t2 be independent transitions under the replay reversible semantics. Then
del(t1) and del(t2) are independent under the logging semantics.

Proof:
Trivial, since the case of the definition of concurrency for a forward and a backward action under the
replay reversible semantics (cases 2-4 in Definition 4.7) coincides with the definition of independence
for the logging semantics. ut

4.4. Causal Consistency of the Replay Reversible Semantics

In this section, we prove a number of properties that guarantee that our replay reversible semantics is
causal-consistent, an essential result in the literature of reversible computation (see [27] for a detailed
discussion).

We first extend the notion of causal equivalence from the logging semantics (cf. Definition 2.10)
to consider both backward and forward reversible transitions (we use the same symbol to denote this
relation since it subsumes the old notion, see below).

Definition 4.12. (causal equivalence)
Causal equivalence, in symbols ≈, is the least equivalence relation between transitions closed under
composition that obeys the following rules:

t1; t2/t1 ≈ t2; t1/t2 t; t ≈ εinit(t)

Causal equivalence amounts to say that those derivations that only differ in swaps of concurrent transi-
tions or the removal of consecutive inverse transitions are equivalent. Observe that any of the notations
t1; t2/t1 and t2; t1/t2 requires t1 and t2 to be concurrent.

Causal equivalence for reversible derivations subsumes the corresponding notion for the logging
semantics in the following sense. Consider two forward composable transitions t1 and t2 under the
reversible replay semantics. According to the notion of causal equivalence in Definition 2.10, they can
be switched if t1 and t2 are independent. However, if t1 and t2 are independent, we have that t1 and t2
are concurrent (cases (2)-(4) in Definition 4.7). Therefore, by Lemma 4.9, they can be switched and,
thus, the old notion is just a particular case of the new causal equivalence relation.

Now, we can tackle the problem of proving that our replay semantics preserves causal equivalence,
i.e., that the original and the replay derivations are always causally equivalent. First, the forward
semantics is a conservative extension of the logging semantics in the following sense:

Lemma 4.13. Let d be a fully-logged derivation under the logging semantics. Then, there exists a fi-
nite fully-logged derivation d′ under the forward semantics such that init(d′) = addLog(L(d), init(d)),
del(d′) = d and L(d) = L(d′).

Proof:
The claim is trivial from the rules of the replay semantics, since each item consumed from the log
of a process generates exactly the same item in the process’ log. The fact that in final(d′) the log of
each process is empty ensures that the whole the log is re-created. Finiteness of d′ is ensured since we
assume all logging derivations to be finite and derivations d and d′ have the same length. ut

The replay and the original computation are causally equivalent:

Theorem 4.14. Let d be a fully-logged derivation under the logging semantics. Let d′ be any finite
fully-logged derivation under the forward semantics such that init(d′) = addLog(L(d), init(d)). Then
d ≈ del(d′).

Proof:
First, a consequence of Lemma 4.13 is that a derivation under the replay semantics for a given global
log produces, for each process p, the corresponding log again, i.e., for each p we have L(d′, p) =
L(d, p). The logs of d′ and del(d′) are the same: L(d′, p) = L(del(d′), p). Furthermore, if d′ is
a finite derivation under the replay semantics, del(d′) is a derivation under the logging semantics.
Therefore, we have L(d) = L(del(d′)). The claim follows by Theorem 3.6. ut

We will generalize Lemma 4.13 above to include backward and forward transitions in Lemma 4.20.
We prove such a result exploiting the theory of causal-consistency, first developed in [27] in the context
of the process calculus CCS. We present below its main result, namely the causal consistency theorem,
adapted to our setting. The causal consistency theorem is also interesting in itself, since it guarantees
that the amount of history information in our history is correct w.r.t. the chosen notion of concurrency.

Intuitively, causal consistency states that two coinitial derivations reach the same final state if and
only if they are causally equivalent. On the one hand, it means that causally equivalent derivations lead
to the same final state and, in particular, produce the same history information, hence it is not possible
to distinguish such derivations looking at their final states (hence, also their possible evolutions coin-
cide). In particular, swapping two concurrent transitions or doing and undoing a given transition has

no impact on the final state. On the other hand, derivations differing in any other way are distinguish-
able by looking at their final state, e.g., the final state keeps track of any past nondeterministic choice.
In other terms, causal consistency states that the amount of history information stored is enough to
distinguish computations which are not causally equivalent, but no more.

We prove now two results needed for the proof of the causal consistency theorem.

Lemma 4.15. (rearranging lemma)
Given systems s, s′, if d = (s
∗ s′), then there exists a system s′′ such that d′ = (s ↽∗ s′′ ⇀∗ s′)
and d ≈ d′. Furthermore, d′ is not longer than d.

Proof:
The proof is by lexicographic induction on the length of d and on the number of steps from the earliest
pair of transitions in d of the form s1 ⇀ s2 ↽ s3 to s′. If there is no such pair we are done. If
s1 = s3, then s1 ⇀ s2 = (s2 ↽ s3). Indeed, if s1 ⇀ s2 adds an item to the history of some process
then s2 ↽ s3 should remove the same item. Then, we can remove these two transitions and the claim
follows by induction since the resulting derivation is shorter and (s1 ⇀ s2 ↽ s3) ≈ εs1 . Otherwise,
we apply Lemma 4.9 commuting s2 ↽ s3 with all forward transitions preceding it in d (note that a
forward transition t followed by a backward transition t′ can always be switched since t and t′ are then
both backward transitions and, thus, concurrent). If one such transition is its inverse, then we reason
as above. Otherwise, we obtain a new derivation d′ ≈ d which has the same length of d, and where the
distance between the earliest pair of transitions in d′ of the form s′1 ⇀ s′2 ↽ s′3 and s′ has decreased.
The claim follows then by the inductive hypothesis. ut

Lemma 4.16. (shortening lemma)
Let d1 and d2 be coinitial and cofinal derivations, such that d2 is a forward derivation while d1 contains
at least one backward transition. Then, there exists a forward derivation d′1 of length strictly less than
that of d1 such that d′1 ≈ d1.

Proof:
We prove this lemma by induction on the length of d1. By the rearranging lemma (Lemma 4.15)
there exist a backward derivation d and a forward derivation d′ such that d1 ≈ d; d′. Furthermore,
d; d′ is not longer than d1. Let s1 ↽p1,r1 s2 ⇀p2,r2 s3 be the only two successive transitions in d; d′

with opposite direction. We will show below that there is in d′ a transition t which is the inverse of
s1 ↽p1,r1 s2. Moreover, we can swap t with all the transitions between t and s1 ↽p1,r1 s2, in order
to obtain a derivation in which s1 ↽p1,r1 s2 and t are adjacent.8 To do so we apply Lemma 4.9, since
for all transitions t′ in between, we have that t′ and t are concurrent (this is proved below too). When
s1 ↽p1,r1 s2 and t are adjacent we can remove both of them using ≈. The resulting derivation is
strictly shorter, thus the claim follows by inductive hypothesis.

Let us now prove the results used above. Thanks to the loop lemma (Lemma 4.6) we have the
derivations above iff we have two forward derivations which are coinitial (with s2 as initial state) and
cofinal: d; d2 and d′. Since the first transition of d; d2, (s1 ↽p1,r1 s2), adds some item k1 to the history

8More precisely, the transition is not t, but a transition that applies the same rule to the same process and producing the same
history item, but possibly applied to a different system.

of p1 and such an item is never removed (since the derivation is forward), then the same item k1 has
to be added also by a transition in d′, otherwise the two derivations cannot be cofinal. The earliest
transition in d′ adding item k1 is exactly t.

Let us now justify that for each transition t′ before t in d′ we have that t′ and t are concurrent. First,
t′ is a forward transition and it should be applied to a process which is different from p1, otherwise
the item k1 would be added by transition t in the wrong position in the history of p1. We consider the
following cases:

• If t′ applies rule Spawn to create a process p, then t should not apply to process p since the
process p1 to which t applies already existed before t′. Therefore, t′ and t are concurrent.

• If t′ applies rule Send to send a message to some process p, then t cannot receive the same mes-
sage since the received messages necessarily existed before (after the corresponding Receive
has been performed). Thus t′ and t are concurrent.

• If t′ applies some other rule, then t′ and t are clearly concurrent.
ut

We can now state and prove the causal consistency of our reversible semantics.

Theorem 4.17. (causal consistency)
Let d1 and d2 be coinitial derivations. Then, d1 ≈ d2 iff d1 and d2 are cofinal.

Proof:
By definition of ≈, if d1 ≈ d2, then they are coinitial and cofinal, so this direction of the theorem is
verified.

Now, we have to prove that, if d1 and d2 are coinitial and cofinal, then d1 ≈ d2. By the rearranging
lemma (Lemma 4.15), we know that the two derivations can be written as the composition of a back-
ward derivation, followed by a forward derivation, so we assume that d1 and d2 have this form. The
claim is proved by lexicographic induction on the sum of the lengths of d1 and d2, and on the distance
between the end of d1 and the earliest pair of transitions t1 in d1 and t2 in d2 which are not equal. If
all such transitions are equal, we are done. Otherwise, we have to consider three cases depending on
the directions of the two transitions:

1. Consider that t1 is a forward transition and t2 is a backward one. Let us assume that d1 =
d; t1; d′ and d2 = d; t2; d′′. Here, we know that t1; d′ is a forward derivation, so we can apply
the shortening lemma (Lemma 4.16) to the derivations t1; d′ and t2; d′′ (since d1 and d2 are
coinitial and cofinal, so are t1; d′ and t2; d′′), and we have that t2; d′′ has a strictly shorter
forward derivation which is causally equivalent, and so the same is true for d2. The claim then
follows by induction.

2. Consider now that both t1 and t2 are forward transitions. By assumption, the two transitions
must be different. Let us assume first that they are not concurrent. Therefore, they should be
applied to the same process and both rules are Receive. In this case we get a contradiction to
the fact that d1 and d2 are cofinal since both derivations are forward and, thus, we would end up

with systems where some process has a different history item in each derivation. Therefore, we
can assume that t1 and t2 are concurrent transitions.

Now, let t′1 be the transition in d2 creating the same history item as t1. Then, we have to
prove that t′1 can be switched back with all previous forward transitions. This holds since no
previous forward transition can add any history item to the same process, since otherwise the two
derivations could not be cofinal. Hence the previous forward transitions are applied to different
processes. The only possible source of conflict would be rule Spawn and rule Receive, but this
could not happen since, in this case, t1 could not happen.

Therefore, we can repeatedly apply the switching lemma (Lemma 4.9) to have a derivation
causally equivalent to d2 where t2 and t′1 are consecutive. The same reasoning can be applied
in d1, so we end up with consecutive transitions t1 and t′2. Finally, we can apply the switching
lemma once more to t1; t′2 so that the first pair of different transitions is now closer to the end
of the derivation. Hence the claim follows by inductive hypothesis.

3. Finally, consider that both t1 and t2 are backward transitions. By definition, we have that t1 and
t2 are concurrent. Here, we have that t1 and t2 cannot remove the same history item. Let k1 be
the history item removed by t1. Since d1 and d2 are cofinal, either there is another transition in
d1 that puts k1 back in the history or there is a transition t′1 in d2 removing the same history item
k1. In the first case, t1 should be concurrent to all the backward transitions following it but the
ones that remove history items from the history of the same process. All the transitions of this
kind have to be undone by corresponding forward transitions (since they are not possible in d2).
Consider the last such transition: we can use the switching lemma (Lemma 4.9) to make it the
last backward transition. Similarly, the forward transition undoing it should be concurrent to all
the previous forward transitions (the reason is the same as in the previous case). Thus, we can
use the switching lemma again to make it the first forward transition. Finally, we can apply the
simplification rule t; t ≈ εinit(t) to remove the two transitions, thus shortening the derivation. In
the second case (there is a transition t′1 in d2 removing the same history item k1), one can argue
as in case (2) above. The claim then follows by inductive hypothesis.

ut

4.5. Usefulness for Debugging

In this section, we show that our replay reversible semantics is useful as a basis for designing a de-
bugging tool. In particular, we prove that a (faulty) behavior occurs in the logged derivation iff the
replay derivation also exhibits the same faulty behavior, hence replay is correct and complete. Notably,
correctness and completeness do not depend on the scheduling.

In order to formalize such a result we need to fix the notion of faulty behavior we are interested in.
For us, a misbehavior is a wrong system, but since the system is possibly distributed, we concentrate
on misbehaviors visible from a “local” observer. Given that our systems are composed of processes
and messages in the global mailbox, we consider that a (local) misbehavior is either a wrong message
in the global mailbox or a process with a wrong configuration.

Before proving the correctness and completeness of our replay semantics, we need a few results
and definitions.

First, we extend local determinism (Lemma 3.5) to the forward semantics:

Lemma 4.18. (local determinism for the forward semantics)
Let d1, d2 be coinitial fully-logged derivations under the forward semantics. Then, for each pid p
occurring in d1, d2, we have S1

p = S2
p , where S1

p (resp. S2
p) is the ordered sequence of configurations

〈p, ω, h, θ, e〉 occurring in d1 (resp. d2), with consecutive equal elements collapsed.

Proof:
First, since d1 and d2 are coinitial, we have that Γ contains the same messages in both derivations
and that the initial configuration for each process p existing since the beginning is the same in both
derivations. Now, observe that the forward semantics is deterministic but for the selection of the
process to be reduced. Hence, since d1 and d2 are coinitial, the same sequence of configurations
must be produced in both d1 and d2 for each process p. Note that if a process p is created during the
derivation, then it is created in both derivations with the same initial configuration. Furthermore, since
d1 and d2 are fully logged, we know that the transitions of each process stop in a logged transition. For
each process p there is a unique configuration where the log is empty and the last element in the history
is a logged transition, namely the configuration just after the last logged action has been performed (if
the log is empty since the beginning this is the initial configuration). Hence, S1

p = S2
p for each process

p. Note that, given the deterministic sequence of transitions for each process, messages with the same
identifier sent in d1 and d2 also have the same value. ut

As a corollary, we have the following result for the forward semantics:

Corollary 4.19. Let d1, d2 be coinitial fully-logged derivations under the forward semantics. Then d1

and d2 are cofinal.

Proof:
Let us consider the final states. First the two final states include the same processes, since the same
processes were present at the beginning of the derivations, and the same spawn operations have been
performed since logs have been completely consumed. Thanks to Lemma 4.18 each process is in the
same configuration in the two derivations. Also, the two global mailboxes contain the same messages,
since they contained the same messages in the initial state, and the same send and receive operations
have been performed. The thesis follows. ut

Now, we can show that any reachable state in the reversible semantics corresponds to a state reachable
in the logging semantics:

Lemma 4.20. Let d, d′ be fully-logged derivations under the logging and the replay reversible seman-
tics, respectively. Let init(d′) = addLog(L(d), init(d)). Then there exists a finite forward computation
d′′ ≈ d′ such that d = del(d′′).

Proof:
Thanks to Lemma 4.13 there exists a finite forward derivation d′′ with init(d′′) = addLog(L(d), init(d))
and del(d′′) = d. We have that d′ and d′′ are coinitial. By Corollary 4.19 they are also cofinal. Then,
the result follows from the causal consistency theorem (Theorem 4.17). ut

Note that we cannot directly state d ≈ del(d′) since in this case ≈ would be at the level of logging
derivations, hence it would only deal with forward moves.

Now, we can extend local determinism to the reversible semantics. The extension uses the notion
of embedding between ordered sequences. We say that S1 can be embedded in S2 iff there is a strictly
monotone function f from positions of S1 to positions of S2 such that for each position i of S1 we
have S1[i] = S2[f(i)], where S1[i] denotes the i-th element in S1.

Lemma 4.21. (local determinism for the replay reversible semantics)
Let d1, d2 be coinitial fully-logged derivations under the replay reversible semantics, with d1 forward.
Then, for each pid p occurring in d1, d2, we have that S1

p can be embedded in S2
p , where S1

p (resp. S2
p)

is the ordered sequence of configurations 〈p, ω, h, θ, e〉 occurring in d1 (resp. d2), with consecutive
equal elements collapsed.

Proof:
The proof is by induction on the number of backward transitions in d2. If also d2 is forward, then S1

p

and S2
p coincide thanks to Lemma 4.18, as desired (the identity is an embedding). Let t = (s ↽p,r s

′)
be the first backward transition in d2. Since all transitions performed by p are in conflict, tmust recover
the previous configuration of p. Since all previous transitions are forward, t is independent from them
and we can switch t with them using the switching lemma (Lemma 4.9) until it becomes adjacent
to t. We can then simplify t and t. The resulting derivation d̂2 has one less backward transition, is
fully-logged and is coinitial with d1. Furthermore, all the sequences are unchanged, but for the one
for p, that we denote with Ŝ2

p . Ŝ2
p can be trivially embedded in S2

p . By inductive hypothesis S1
p can be

embedded in Ŝ2
p , hence the thesis follows by transitivity of embedding. ut

We can now prove correctness and completeness of replay.

Theorem 4.22. (Correctness and completeness)
Let d be a fully-logged derivation under the logging semantics. Let d′ be any fully-logged derivation
under the uncontrolled replay semantics such that init(d′) = addLog(L(d), init(d)). Then:

1. there is a system Γ; Π in d with a configuration 〈p, θ, e〉 in Π iff there is a system Γ′; Π′ in d′

with a configuration 〈p, θ, e〉 in del(Γ′; Π′);

2. there is a system Γ; Π in d with a message (p, p′, {v, `}) in Γ iff there is a system Γ′; Π′ in d′

with a message (p, p′, {v, `}) in Γ′.

Proof:
From Lemma 4.20 there exists a forward derivation d′′ ≈ d′ such that del(d′′) = d. Trivially, the thesis
holds for d′′. Item (1) follows by applying local determinism (Lemma 4.21) to derivations d′′ and d′.

Concerning item (2), every message in Γ should either be in init(d) or must be sent by a transition of
d. In the first case, the claim follows since del(init(d′)) = init(d). In the second case, there should be
a send action in d producing it, and the thesis follows from item (1), observing that since the derivation
d′ is fully-logged the send action is replayed. ut

The result above is very strong: it ensures that a misbehavior occurring in a logged execution is
replayed in any possible fully-logged derivation. This means that any scheduling policy is fine for
replay. Furthermore, this remains true whatever actions the user takes, including going back and
forward: either the misbehavior is reached, or it remains in any possible forward computation.

One may wonder whether more general notions of misbehavior make sense. Above, we consider
just “local” observations. One could ask for more than one local observation to be replayed. By
applying the result above to multiple observations we get that all of them will be replayed, but, if they
concern different processes or messages, we cannot ensure that they are replayed at the same time or in
the same order. For instance, in the derivation of Figure 4, process c sends the message with identifier
`2 before process p receives the messages with identifier `1, while in the replay derivation of Figure 6
the two actions are executed in the opposite order. Only a super user able to see the whole system at
once could see such a (mis)behavior. Hence, such misbehaviors are not relevant in our context.

5. Controlled Replay/Rollback Semantics

In this section, we introduce a controlled version of the replay reversible semantics. The semantics
in the previous section allows one to replay a given derivation, both forward and backward, and be
guaranteed to replay, sooner or later, any local misbehavior. In practice, though, one normally knows
in which process p the misbehavior appears, and thus (s)he wants to focus on a process p or even on
some of its actions. However, to correctly replay these actions, one also needs to replay the actions
that happened before them. We present in Figure 9 a semantics where the user can specify which
actions (s)he wants to replay or undo, and the semantics takes care of replaying them or undoing
them. Replaying an action requires to replay all and only its causes, while undoing an action requires
to undo all and only its consequences. Notably, the bug causing a misbehavior causes the action
showing the misbehavior.

Here, we consider that, given a system s, we want to start a replay (resp. rollback) until a particular
action ψ is performed (resp. undone) on a given process p. We denote such a replay (resp. rollback)
request with bbscc({p,ψ}) (resp. ddsee({p,ψ})). In general, the subscript of bb cc (resp. dd ee) represents a
sequence of requests that can be seen as a stack where the first element is the most recent request. In
this paper, we consider the following rollback/replay requests:

• {p, s}: one step backward/forward of process p;9

• {p, `⇑}: a backward/forward derivation of process p up to the sending of the message tagged
with `;

9The extension to n steps is straightforward. We omit it for simplicity.

REPLAY RULES:

Γ; Π ⇀p,r,Ψ′ Γ′; Π′ ∧ ψ ∈ Ψ′

bbΓ; Πcc{p,ψ}+Ψ bbΓ′; Π′ccΨ
Γ; Π ⇀p,r,Ψ′ Γ′; Π′ ∧ ψ 6∈ Ψ′

bbΓ; Πcc{p,ψ}+Ψ bbΓ′; Π′cc{p,ψ}+Ψ

Γ; 〈p, rec(`)+ω, h, θ, e〉 |Π 6⇀p,r,Ψ′ ∧ sender(`) = p′

bbΓ; 〈p, rec(`)+ω, h, θ, e〉 |Πcc{p,ψ}+Ψ bbΓ; 〈p, rec(`)+ω, h, θ, e〉 |Πcc({p′,`⇑},{p,ψ})+Ψ

6 ∃p in Π ∧ parent(p) = p′

bbΓ; Πcc{p,ψ}+Ψ bbΓ; Πcc({p′,spp},{p,ψ})+Ψ

ROLLBACK RULES:

Γ; Π ↽p,r,Ψ′ Γ′; Π′ ∧ ψ ∈ Ψ′

ddΓ; Πee{p,ψ}+Ψ ddΓ′; Π′eeΨ
Γ; Π ↽p,r,Ψ′ Γ′; Π′ ∧ ψ 6∈ Ψ′

ddΓ; Πee{p,ψ}+Ψ ddΓ′; Π′ee{p,ψ}+Ψ

Γ; 〈p, ω, send(θ, e, p′, {v, `})+h, θ′, e′〉 |Π 6↽p,r,Ψ′

ddΓ; 〈p, ω, send(θ, e, p′, {v, `})+h, θ′, e′〉 |Πee{p,ψ}+Ψ

 ddΓ; 〈p, ω, send(θ, e, p′, {v, `})+h, θ′, e′〉 |Πee({p′,`⇓},{p,ψ})+Ψ

Γ; 〈p, ω, spawn(θ, e, p′)+h, θ′, e′〉 |Π 6↽p,r,Ψ′

ddΓ; 〈p, ω, spawn(θ, e, p′)+h, θ′, e′〉 |Πee{p,ψ}+Ψ

 ddΓ; 〈p, ω, spawn(θ, e, p′)+h, θ′, e′〉 |Πee({p′,sp},{p,ψ})+Ψ

ddΓ; 〈p, ω, (), θ′, e′〉 |Πee{p,sp}+Ψ ddΓ; 〈p, ω, (), θ′, e′〉 |ΠeeΨ

Figure 9. Controlled replay/rollback semantics

• {p, `⇓}: a backward/forward derivation of process p up to the reception of the message tagged
with `;

• {p, spp′}: a backward/forward derivation of process p up to the spawning of the process with
pid p′.

• {p, sp}: a backward derivation of process p up to the point immediately after its creation;

• {p,X}: a backward derivation of process p up to the introduction of variable X .

We do not include the variable creations as targets for replay requests, since variable names are not
known before their creation (variable creations are not logged). The requests above are satisfied when
a corresponding uncontrolled transition is performed. This is where the third element labeling the
relations of the reversible semantics in Figures 5 and 7 comes into play. This third element is a set
with the requests that are satisfied in the corresponding step.

Let us explain the rules of the controlled replay/rollback semantics in Fig. 9. Here, we assume that
the computation always starts with a single request. We have the following possibilities:

• If the desired process p can perform a step satisfying the request ψ on top of the stack, we do it
and remove the request from the stack of requests (first rule of both replay and rollback rules).

• If the desired process p can perform a step, but the step does not satisfy the request ψ, we update
the system but keep the request in the stack (second rule of both replay and rollback rules).

• If a step on the desired process p is not possible, then we track the dependencies and add a
new request on top of the stack. For the replay semantics, we have two rules: one for adding a
request to a process to send a message we want to receive and another one to spawn the process
we want to replay if it does not exist. Here, we use the auxiliary functions sender and parent
to identify, respectively, the sender of a message and the parent of a process. Both functions
sender and parent are easily computable from the logs in L(d).10

For the rollback semantics, we have three rules: one to add a request to undo the receiving of
a message whose sending we want to undo, one to undo the actions of a given process whose
spawning we want to undo, and a final one to check that a process has reached its initial state
(with an empty history), and the request {p, sp} can be removed. In this last case, the process p
will actually be removed from the system when a request of the form {p′, spp} is on top of the
stack.

The relation can be seen as a controlled version of the uncontrolled replay reversible semantics in
the sense that each derivation of the controlled semantics corresponds to a derivation of the uncon-
trolled one, while the opposite is not generally true. In order to formalize this claim we need some
notation. Notions for derivations and transitions are easily extended to controlled derivations. We also
need a notion of projection from controlled systems to uncontrolled systems:

uctrl(bbΓ; ΠccΨ) = Γ; Π uctrl(ddΓ; ΠeeΨ) = Γ; Π

The notion of projection trivially extends to derivations.

Theorem 5.1. (Soundness)
For each controlled derivation d, uctrl(d) is an uncontrolled derivation.

Proof:
Trivial by inspection of the controlled rules, noting that each controlled rule either executes an uncon-
trolled step, or does some bookkeeping which is removed by function uctrl. ut

While simple, this result allows one to recover many relevant properties from the uncontrolled seman-
tics. For instance, by using the controlled semantics, if starting from a system s = addLog(L(d), init(d))
for some logging derivation d we find a wrong message (p, p′, {v, `}), then we know that the same
message exists also in d (from Theorem 4.22).

Our controlled semantics is not only sound but also minimal: causal-consistent replay (resp. roll-
back) redoes (resp. undoes) the minimal amount of actions needed to satisfy the replay (resp. rollback)
request.

Here, we need to restrict the attention to requests that ask to replay transitions which are in the
future of the process or that ask to undo transitions which are in the past of the process.
10The implementation of functions sender and parent requires some care: without additional information they need to
explore the full log. However, explicit representation of the functions can be easily computed during logging, or by a single
preprocessing pass on the log. Hence, we have a tradeof among time of replay, size of the log, and time of other phases.

Definition 5.2. A controlled system c = bbscc({p,ψ}) (resp. c = ddsee({p,ψ})) is well initialized iff
there exist a derivation d under the logging semantics, a system s0 = addLog(L(d), init(d)), an
uncontrolled derivation s0
∗ s, and an uncontrolled forward (resp. backward) derivation from s
satisfying {p, ψ}. A controlled derivation d is well initialized iff init(d) is well initialized.

The existence of a derivation satisfying the request can be efficiently checked. For replay requests
{p, s} it is enough to check that process p can perform a step, for other replay requests it is enough to
check the process log. For rollback requests the check can be done by inspecting the history.

We can now show that controlled derivations are finite.

Lemma 5.3. Let d be a well-initialized controlled derivation. Then d is finite.

Proof:
First, note that uctrl(d) is finite. Indeed, for rollback request, the length is bounded by the total length
of histories. For replay requests, we can always extend uctrl(d) to a fully-logged derivation. From
Lemma 4.13 there exists a derivation d′ such that del(d′) is the original logging derivation, hence d′

is finite. Note that uctrl(d) and d′ are coinitial, hence by applying twice Theorem 4.14 and using
transitivity we get uctrl(d) ≈ d′. Since both derivations are forward, they can only differ for swaps
of concurrent actions, hence they have the same length, as desired.

In addition to lifting the uncontrolled steps, the controlled semantics also takes some adminis-
trative steps. If we show that between each pair of uncontrolled steps there is a finite amount of
administrative steps then the thesis follows. Let us consider the replay semantics. Administrative
steps correspond to ask to send a message and ask to spawn a process. These are bound, respectively,
by the number of messages and the number of processes in the log. Let us now consider the rollback
semantics. The last rule can be applied only a finite number of times since it removes one rollback
request. We also have rules asking to rollback a process to the beginning and to undo a receive, but
they are bound, respectively, by the number of processes and the number of messages. The thesis
follows. ut

We can now show that all the uncontrolled transitions executed as a consequence of a replay/rollback
request depend on the action that needs to be replayed/undone.

Theorem 5.4. For each well-initialized controlled system c = ddΓ; Πee({p,ψ}) (resp. c = bbΓ; Πcc({p,ψ})),
consider a maximal derivation d with init(d) = c. Let us call t the last transition in uctrl(d). We have
that t satisfies {p, ψ}, and for each transition t′ in uctrl(d), t′ ; t (resp. t; t′).

Proof:
In both the cases, we can prove that t satisfies the request {p, ψ} by inspection of the rules, since a
derivation only terminates when the request at the bottom of the stack is removed, and this is always
the original request {p, ψ}. In order to show this we need to show that the controlled semantics never
gets stuck otherwise, namely that if the uncontrolled semantics gets stuck a new request is generated.
This can be shown by contrasting uncontrolled and controlled rules.

For the second part of the thesis, let us consider the replay semantics. We will show two invariants
of the derivation. First, consider transitions t1 and t2 satisfying two replay requests {p1, ψ1} and

{p2, ψ2} on the stack, such that {p1, ψ1} is on top of {p2, ψ2}. Then t1 ; t2. Second if t1 satisfies
the request on top of the stack, and transition t3 is performed, then t3 ; t1. Both the invariants can
be proved by inspection of the rules. The thesis then follows by transitivity of ;.

The case of the rollback semantics is dual to the one above. ut

We conclude this section by showing that a controlled derivation causes an uncontrolled derivation
satisfying the given request which is minimal. We first need some confluence results.

Proposition 5.5. (Confluence)
Let s be a system in the uncontrolled replay semantics. If s
∗ s1 and s
∗ s2 then (backward
confluence) there exists s3 such that s1 ↽

∗ s3 and s2 ↽
∗ s3 and (forward confluence) there exists s4

such that s1 ⇀
∗ s4 and s2 ⇀

∗ s4.

Proof:
Let s0 be the system obtained from s by undoing all actions. Consider the derivation s0 ⇀

∗ s
∗

s1, where the first part exists from the loop lemma (Lemma 4.6). From the rearranging lemma
(Lemma 4.15) we have s0 ↽∗⇀∗ s1. Since there is no possible backward transition from s0 we
have s0 ⇀

∗ s1. Similarly, we get s0 ⇀
∗ s2. Backward confluence follows from the loop lemma.

For forward confluence, extend s
∗ s1 and s
∗ s2 by forward actions to get fully-logged
derivations d1 and d2. Derivations s1 ↽∗ s3; d1 and s2 ↽∗ s3; d2 are coinitial and fully-logged, hence
from Corollary 4.19 they are also cofinal. Forward confluence follows. ut

Theorem 5.6. (Minimality)
Let d be a well-initialized controlled derivation such as init(d) = bbscc({p,ψ}) or init(d) = ddsee({p,ψ}).
Derivation uctrl(d) has minimal length among all uncontrolled derivations d′ with init(d′) = s in-
cluding at least one transition satisfying the request {p, ψ}.

Proof:
The proofs for the two cases are dual.

Take an uncontrolled derivation d′ satisfying the premises. By definition uctrl(d) and d′ are coini-
tial. We can assume that there is in d′ a unique transition satisfying the request, and that it is the last
transition in d′. Let us focus on the second case. For forward (resp. backward) derivations, by forward
(resp. backward) confluence (Prop. 5.5) we can extend the derivations to cofinal derivations d′; d′′ and
uctrl(d); d′′′ with d′′ and d′′′ forward (resp. backward). Thanks to the shortening lemma (Lemma 4.16)
we can assume d′; d′′ to be forward (resp. backward) too. By causal consistency the two derivations are
causally equivalent, and since they are forward (resp. backward) they differ only for swaps of concur-
rent actions. Note also that for each request there is a unique action satisfying it (the step of a process
after/before a given one is unique, and other requests are determined by process identifiers, message
identifiers and variables), hence there is a sequence of swaps of independent transitions transforming
d′; d′′ into uctrl(d); d′′′. Assume towards a contradiction length(d′) < length(uctrl(d)). Then t in
d′ must be swapped with some of the transitions preceding (resp. following) t in uctrl(d), but this is
impossible thanks to Theorem 5.4. ut

6. Related Work

As mentioned in the Introduction, this paper is a revised and extended version of [16], where causal-
consistent replay has been introduced. However, [16] concentrates on replay and mentions reversibility
only briefly, while the present paper integrates the notion of causal-consistent replay with the reversible
semantics in [12].

Our replay mechanism is strongly related (indeed dual) to causal-consistent rollback, and its in-
stance on debugging, namely causal-consistent reversible debugging. Causal-consistent reversible
debugging has been introduced in [5] in the context of the toy language µOz, and, beyond this, it has
only been used so far in the CauDEr [7, 28] debugger for Erlang. Causal-consistent rollback has also
been studied in the context of the process calculus HOπ [6] and the coordination language Klaim [11].
We refer to [5] for a description of the relations between causal-consistent debugging and other forms
of reversible debugging.

Beyond CauDEr, the only reversible debugger for actor systems we are aware of is Actoverse [29],
for Akka-based applications. It provides many relevant features complementary to ours, such as
a partial-order graphical representation of message exchanges that would nicely match our causal-
consistent approach. On the other side, Actoverse has several limitations. For instance, its facilities
to replay misbehaviors, such as message-oriented breakpoints to force specific message interleavings
and support for session replay, are more limited than our causal-consistent replay. Furthermore, it
allows one to explore only some states of the computation, such as the ones corresponding to message
sending and receiving.

Another interesting related work is [30], where an approach to record and replay for actor lan-
guages is introduced. While we concentrate on the theory, they focus on low-level issues: dealing
with I/O, producing compact logs, etc. Actually, we could consider some of the ideas in [30] in order
to produce more compact logs.

At the semantic level, the work closer to ours is the reversible semantics for Erlang in [12]. How-
ever, both our logging semantics and our replay reversible semantics do not consider queues in the
processes nor a rule Sched to deliver messages from Γ to the local queue of a process. This might
seem a minor change, but it has a significant effect: the notion of concurrency is much more natural,
as explained in Section 2.3, since we do not need to consider that moving a message from Γ to a local
queue and receiving a message are in conflict. This conflict was artificially introduced in [12] because
of the design of the semantics therein. Moreover, while the reversible semantics in [12] basically
models a reversible interpreter for the language, our replay reversible semantics is driven by the log
of an actual execution. Finally, our controlled semantics, built on top of the uncontrolled reversible
semantics, is much simpler and elegant than the low-level controlled semantics in [12] which, anyway,
is based on undoing the actions of an execution up to a given checkpoint (rollback requests were later
introduced in [7]).

None of the works above treats the possibility of a causal-consistent replay and, as far as we know,
such notion has never been explored in the (huge) literature on replay. For instance, no reference
to it appears in a recent survey [31]. According to the terminology in the survey, our approach is
classified as a message-passing multi-processor scheme (the approach is studied in a single-processor
multi-process setting, but it makes no use of the single-processor assumption). It is in between content-

based schemes (that record the content of the messages) and ordering-based schemes (that record the
source of the messages), since it registers just unique identifiers for messages. This reduces the size
of the log (content of long messages is not stored) w.r.t. content-based schemes, yet differently from
ordering-based schemes it does not necessarily require to replay the system from a global checkpoint
(but we do not yet consider checkpoints).

Main distinctive traits of our work, beyond considering causal-consistent replay, are a formal
characterization of the approach at the semantic level, and its instantiation to the Erlang language. A
related work using the ordering-based scheme is [19]: it provides an interesting technique based on
race detection to avoid logging all message exchanges, that we may try to integrate in our approach
in the future (though it considers only systems with a fixed number of processes). A content-based
work is [32] for MPI programs, which does not replay calls to MPI functions, but just takes the values
from the log. By applying this approach in our case, the state of Γ would not be replayed, and causal-
consistent replay would not be possible since no relation between send and receive is kept.

Our work is also related to slicing, and in particular to [33], since it also deals with concurrent
systems. Both the approaches are based on causal consistency, but slicing considers the whole com-
putation and extracts the fragment of it needed to explain a visible behavior, while we instrument the
computation so to be able to go back and forward.

Techniques similar to the ones we used for rollback can also be used to define and implement safe
sessions, where a computation that fails can automatically be re-executed, thus managing transient
faults. Such an approach has been used, e.g., in Stabilizers [34] and Transactors [35].

7. Conclusions and Future Work

In this work, we have introduced the notion of causal-consistent replay, which is dual to the recent
notion of causal-consistent reversibility. Our framework considers a functional and concurrent pro-
gramming language based on message passing. Indeed, our language is close to Erlang, thus providing
an excellent background for the development of a causal-consistent replay debugger for this language.
Nevertheless, the basic ideas are applicable to other concurrent languages and calculi based on mes-
sage passing. In principle, it could also be applied to shared memory languages, yet it would require to
log all interactions with shared memory (which may give rise, in principle, to an inefficient scheme).
In our framework, the actual execution of a program produces some logs that can be used to replay this
particular execution, or a causally equivalent one, back and forth. Moreover, we have proved that the
same misbehaviors appear in the logged derivation and in all causally equivalent replays. Therefore,
the user can focus on the actions and processes of interest, and still be able to find the bug. For this pur-
pose, we have introduced a replay/rollback semantics controlled by the user requests which is sound
and minimal. Thus, it constitutes an excellent basis for the implementation of a causal-consistent
replay debugger.

We have undertaken the development of a proof-of-concept implementation of a replay debugging
tool for Erlang, which is based on the developments presented in this work. In particular, we are
working on an extension of our debugger CauDEr [7, 28] to accept both a source program and a log
of a computation. Furthermore, we will incorporate all replay and rollback requests introduced in
Section 5.

References

[1] Undo Software. Increasing software development productivity with reversible debugging, 2014. URL
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf.

[2] Britton T, Jeng L, Carver G, Cheak P, Katzenellenbogen T. Reversible Debugging software – Quantify the
time and cost saved using reversible debuggers. http://www.roguewave.com, 2012.

[3] Sutter H. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. Dr. Dobb’s
Journal, 2005. 30(3).

[4] Huang J, Zhang C. Debugging Concurrent Software: Advances and Challenges. J. Comput. Sci. Technol.,
2016. 31(5):861–868.

[5] Giachino E, Lanese I, Mezzina CA. Causal-Consistent Reversible Debugging. In: Gnesi S, Rensink A
(eds.), Proceedings of the 17th International Conference on Fundamental Approaches to Software Engi-
neering (FASE 2014), volume 8411 of Lecture Notes in Computer Science. Springer, 2014 pp. 370–384.

[6] Lanese I, Mezzina CA, Schmitt A, Stefani J. Controlling Reversibility in Higher-Order Pi. In: Katoen
J, König B (eds.), Proceedings of the 22nd International Conference on Concurrency Theory (CONCUR
2011), volume 6901 of Lecture Notes in Computer Science. Springer, 2011 pp. 297–311.

[7] Lanese I, Nishida N, Palacios A, Vidal G. CauDEr: A Causal-Consistent Reversible Debugger for Erlang
(system description). In: Gallagher JP, Sulzmann M (eds.), Proceedings of the 14th International Sympo-
sium on Functional and Logic Programming (FLOPS’18), volume 10818 of Lecture Notes in Computer
Science. Springer, 2018 pp. 247–263.

[8] Cesarini F, Thompson S. Erlang Programming - A Concurrent Approach to Software Development.
O’Reilly, 2009. ISBN 978-0-596-51818-9.

[9] Letuchy E. Erlang at Facebook. http://www.erlang-factory.com/conference/

SFBayAreaErlangFactory2009/speakers/EugeneLetuchy, 2009.

[10] Lienhardt M, Lanese I, Mezzina CA, Stefani JB. A Reversible Abstract Machine and Its Space Overhead.
In: Giese H, Rosu G (eds.), Proceedings of the Joint 14th IFIP WG International Conference on Formal
Techniques for Distributed Systems (FMOODS 2012) and the 32nd IFIP WG 6.1 International Conference
(FORTE 2012), volume 7273 of Lecture Notes in Computer Science. Springer, 2012 pp. 1–17.

[11] Giachino E, Lanese I, Mezzina CA, Tiezzi F. Causal-consistent rollback in a tuple-based language. J. Log.
Algebr. Meth. Program., 2017. 88:99–120.

[12] Lanese I, Nishida N, Palacios A, Vidal G. A Theory of Reversibility for Erlang. Journal of Logical and
Algebraic Methods in Programming, 2018. 100:71–97.

[13] Svensson H, Fredlund LA, Earle CB. A unified semantics for future Erlang. In: 9th ACM SIGPLAN
workshop on Erlang. ACM, 2010 pp. 23–32.

[14] Nishida N, Palacios A, Vidal G. A Reversible Semantics for Erlang. In: Hermenegildo M, López-Garcı́a
P (eds.), Proceedings of the 26th International Symposium on Logic-Based Program Synthesis and Trans-
formation (LOPSTR 2016), volume 10184 of Lecture Notes in Computer Science. Springer, 2017 pp.
259–274.

[15] Carlsson R, Gustavsson B, Johansson E, Lindgren T, Nyström SO, Pettersson M, Virding R. Core Erlang
1.0.3. Language specification, 2004. Available from URL: https://www.it.uu.se/research/group/
hipe/cerl/doc/core_erlang-1.0.3.pdf.

https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

[16] Lanese I, Palacios A, Vidal G. Causal-Consistent Replay Debugging for Message Passing Programs. In:
Pérez JA, Yoshida N (eds.), Proceedings of the 39th IFIP WG 6.1 International Conference on Formal
Techniques for Distributed Objects, Components, and Systems (FORTE 2019), volume 11535 of Lecture
Notes in Computer Science. Springer, 2019 pp. 167–184.

[17] Lanese I, Palacios A, Vidal G. Causal-Consistent Replay Reversible Semantics for Message Passing
Concurrent Programs. Technical report, DSIC, Universitat Politècnica de València, 2019. URL http:

//personales.upv.es/~gvidal/german/fi/paper.pdf.

[18] Frequently Asked Questions about Erlang. Available at http://erlang.org/faq/academic.html,
2018.

[19] Netzer RH, Miller BP. Optimal tracing and replay for debugging message-passing parallel programs. The
Journal of Supercomputing, 1995. 8(4):371–388.

[20] Lamport L. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM, 1978.
21(7):558–565.

[21] Mazurkiewicz AW. Trace Theory. In: Brauer W, Reisig W, Rozenberg G (eds.), Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course,
1986, volume 255 of Lecture Notes in Computer Science. Springer, 1987 pp. 279–324.

[22] Lanese I, Mezzina CA, Tiezzi F. Causal-Consistent Reversibility. Bulletin of the EATCS, 2014. 114.

[23] Landauer R. Irreversibility and heat generation in the computing process. IBM Journal of Research and
Development, 1961. 5:183–191.

[24] Matsuda K, Hu Z, Nakano K, Hamana M, Takeichi M. Bidirectionalization transformation based on
automatic derivation of view complement functions. In: Hinze R, Ramsey N (eds.), Proc. of the 12th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2007. ACM, 2007 pp. 47–
58.

[25] Nishida N, Palacios A, Vidal G. Reversible Term Rewriting. In: Kesner D, Pientka B (eds.), Proceedings
of the 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016),
volume 52 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016 pp. 28:1–28:18.

[26] Thomsen MK, Axelsen HB. Interpretation and programming of the reversible functional language RFUN.
In: Proc. of the 27th International Symposium on Implementation and Application of Functional Lan-
guages (IFL 2015). ACM, 2016 pp. 8:1 – 8:13.

[27] Danos V, Krivine J. Reversible Communicating Systems. In: CONCUR, volume 3170 of LNCS. Springer,
2004 pp. 292–307.

[28] Lanese I, Nishida N, Palacios A, Vidal G. CauDEr website. URL: https://github.com/mistupv/
cauder, 2018.

[29] Shibanai K, Watanabe T. Actoverse: A Reversible Debugger for Actors. In: AGERE. ACM, 2017 pp.
50–57.

[30] Aumayr D, Marr S, Béra C, Boix EG, Mössenböck H. Efficient and deterministic record & replay for
actor languages. In: Tilevich E, Mössenböck H (eds.), Proceedings of the 15th International Conference
on Managed Languages & Runtimes (ManLang 2018). ACM, 2018 pp. 15:1–15:14.

[31] Chen Y, Zhang S, Guo Q, Li L, Wu R, Chen T. Deterministic Replay: A Survey. ACM Comput. Surv.,
2015. 48(2):17:1–17:47.

http://personales.upv.es/~gvidal/german/fi/paper.pdf
http://personales.upv.es/~gvidal/german/fi/paper.pdf
http://erlang.org/faq/academic.html
https://github.com/mistupv/cauder
https://github.com/mistupv/cauder

[32] Maruyama M, Tsumura T, Nakashima H. Parallel Program Debugging based on Data-Replay. In: Zheng
SQ (ed.), Proceedings of the IASTED International Conference on Parallel and Distributed Computing
and Systems (PDCS 2005). IASTED/ACTA Press, 2005 pp. 151–156.

[33] Perera R, Garg D, Cheney J. Causally Consistent Dynamic Slicing. In: Desharnais J, Jagadeesan R
(eds.), CONCUR, volume 59 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016 pp.
18:1–18:15.

[34] Ziarek L, Schatz P, Jagannathan S. Stabilizers: a modular checkpointing abstraction for concurrent func-
tional programs. In: Reppy JH, Lawall JL (eds.), Proceedings of the 11th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16-21, 2006.
ACM, 2006 pp. 136–147.

[35] Field J, Varela CA. Transactors: a programming model for maintaining globally consistent distributed
state in unreliable environments. In: Palsberg J, Abadi M (eds.), Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2005). ACM, 2005 pp. 195–208.

