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Abstract
Matrices are a very common way of representing and working with data in data science 
and artificial intelligence. Writing a small snippet of code to make a simple matrix trans-
formation is frequently frustrating, especially for those people without an extensive pro-
gramming expertise. We present AUTOMAT[R]IX, a system that is able to induce R pro-
gram snippets from a single (and possibly partial) matrix transformation example provided 
by the user. Our learning algorithm is able to induce the correct matrix pipeline snippet by 
composing primitives from a library. Because of the intractable search space—exponential 
on the size of the library and the number of primitives to be combined in the snippet, we 
speed up the process with (1) a typed system that excludes all combinations of primitives 
with inconsistent mapping between input and output matrix dimensions, and (2) a proba-
bilistic model to estimate the probability of each sequence of primitives from their fre-
quency of use and a text hint provided by the user. We validate AUTOMAT[R]IX with a 
set of real programming queries involving matrices from Stack Overflow, showing that we 
can learn the transformations efficiently, from just one partial example.

Keywords  Automating data science · Inductive programming · Program synthesis

1  Introduction

Many areas in artificial intelligence, from data pre-processing to optimisation algorithms, 
from image transformation to the visualisation of tables and results, require common oper-
ations using matrices. This is especially the case in machine learning and data science, 
where programming languages, such as R or Python, are used to manipulate data. While 
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libraries and hand-crafted algorithms usually capture the core data pipelines, there is an 
extensive use of glue code, small snippets that perform simple transformation between the 
output of one module to the input of the following one. Sometimes, these transformations 
must be done by experts without a profound programming knowledge, with frustrating 
results (Jenkins 2002).

Matrices are a very common way of working with data. Data-frames, tables, spread-
sheets, bi-dimensional arrays and tensors are similar structures that can be assimilated to 
matrices. Matrix algebra can be applied to transform data or extract a variety of useful 
information. It is a common strategy for programmers, AI experts and data scientists to 
use an example of a problem and use it to solve the desired transformation or detect where 
it fails. A few examples are used to ‘verify’ whether the matrix snippet is doing the right 
processing, before applying the transformation to other examples.

For instance, consider an AI expert or a data scientist who wants to extract the positions 
of the non-empty values in the data matrix shown in Fig. 1a. She may just figure out the 
output she is expecting as a result of the desired transformation (represented in Table 1b), 
which may also be used to check the snippet once it is written. Interestingly, as happens 
with humans, having both the input and output matrices could be sufficient for an auto-
mated system to learn this transformation smoothly. This is what we do in this paper.

Common strategies to solve this problem by hand would be to program a snippet using 
a traditional loop, think of a more algebraic function that avoids the loop or simply check 
Stack Overflow1 to find an elegant transformation. Instead, we could rely on a system that 
takes Table 1a, b as inputs, and generate an elegant code snippet in the programming lan-
guage R such as which(!is.na(A), arr.ind=TRUE)? Note that in this example 
there is no similarity whatsoever between input and output. The input contains real num-
bers and NAs, and the output only has integer numbers, none of them in common with the 
input. Also, the dimension of the input matrix is 5 × 7, while the output matrix has dimen-
sion 5 × 2, where the same number of rows is just a coincidence. Is this problem solvable at 
all? And, to make it more challenging and realistic, what if we only give some of the rows 
(or even a few cells) of the solution?

Generating code from input-output pairs falls under the area of programming by exam-
ple (PbE) in program synthesis, and more generally inductive programming (Gulwani 
et  al. 2015). From the perspective of inductive programming, matrix transformation has 
several characteristics that make it more feasible than other problems: only one data struc-
ture is considered (matrices), we can use the matrix dimension as a constraint to restrict 
the search, and functional programming (with higher-order functions such as apply) is 

NA 0.30 0.50 NA NA NA NA
NA NA NA 0.90 NA NA 0.40
NA NA NA NA NA NA NA
NA NA NA NA 0.60 NA NA
NA NA NA NA NA NA NA

(a) MatrixA with some NA values.

1 2
1 3
2 4
4 5
2 7

(b) Position (row, column) of non-NA values in
A.

Fig. 1   Example of data transformation using matrices. The snippet must transform the matrix on the left 
into the matrix on the right. Can you code it?

1  https://​stack​overf​low.​com/.

https://stackoverflow.com/
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particularly appropriate here. A first key insight to tackle our problem is that very interest-
ing and complex transformations can be obtained by composing very few primitives. A 
second observation is that the primitives used in matrix pipelines usually have very low 
arity, with many of them having just one argument. A third consideration is that the input 
and output matrices represent just one—albeit rich—example: the information to exclude 
the infinitely-many alternative transformations must come from the (partial) content of the 
matrices and a strong simplicity prior. This makes other approaches that require significant 
amounts of data unfeasible and suggests a learning approach that is based on a composi-
tional search.

In this paper, we present a system that is able to learn simple matrix pipelines from: 
(1) one input data matrix, (2) one partial output matrix filled by the user representing the 
desired transformation, and (3) optionally, a short description or hint in natural language 
of the desired transformation. The system works with a library of b primitives to combine 
into a snippet of at most d primitives. Because the combinatorics of primitives and opera-
tions is in the order of bd , we use several strategies to reduce the search space. First, we 
use the characteristics of the input and output matrices, and the primitives themselves, in 
the form of constraints. Basically, our system checks that the sequence of compositions is 
consistent with the dimensions. Second, we estimate the a priori probabilities of the primi-
tives according to how frequent they are used on Github. Third, when available, we can use 
small hints in natural language given by the user, such as a short text of the form: “posi-
tions of non-empty values” (see Fig. 1). This helps us estimate the conditional probabilities 
for primitive sequences. We use all this information for a tree-search procedure that re-
estimates branching candidates dynamically.

The main contributions of this paper2 are: (1) the definition of the matrix transforma-
tion problem from one single example, and (2) a learning algorithm guided by a tree-based 
search to learn these transformations efficiently. Besides, we also provide: (3) a collection 
of matrix pipeline transformations, matransf , some of them with textual hints, organised 
as a benchmark repository for the community, and (4) our system AUTOMAT[R]IX, vali-
dated with a battery of experiments on matransf . Code and data are publicly available for 
reproducibility.

The following section contains a summary of relevant work in programming by example 
and inductive programming, and how much this has impacted on the automation of some 
repetitive tasks in data manipulation and data science. Section 3 defines the problem that 
we address in this paper. Section 4 gives details of our approach and how it leverages novel 
and traditional ideas in artificial intelligence to solve this new problem effectively and effi-
ciently. Section 5 includes experiments with artificial and real data. Finally, Sect. 6 closes 
the paper with the applicability of the system and the future work.

2 � Related work

Teaching a machine new behaviours based on examples or demonstrations falls under the 
field of Programming by Example (PbE) (Lieberman 2001; Raza et al. 2014). PbE is both 
a subfield of program synthesis and inductive programming, in which the system learns 

2  This paper fully develops some preliminary and exploratory ideas we presented in Contreras et  al. 
(2020a). Here we present a new algorithm based on a probabilistic model and textual hints, as well as an 
extensive experimentation.
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programs that match examples provided by the user. Normally, only a few examples should 
be required to induce the solution. PbE with Domain-Specific Languages (DSLs) has been 
successfully applied for data transformation (see Wu et al. 2012; Cropper et al. 2015; Pari-
sotto et  al. 2016; He et al. 2018). These systems are mostly focused on mapping one or 
more cells into a single cell using string transformations. For example, FlashFill (Gulwani 
2011) is a tool included in Microsoft Excel that uses regular expressions, conditionals 
and loops on spreadsheet tables to make syntactic transformations of strings. BK-ADAPT 
(Contreras et al. 2020b, c) is a web-based tool for the automation of data format transfor-
mation that uses inductive programming with a dynamic background knowledge generated 
by a machine learning meta-model to select the domain and the primitives from several 
descriptive features of the data wrangling problem. The system allows users to provide a 
set of inputs and one or more examples of outputs, in such a way that the rest of examples 
are automatically transformed by the tool. Trifacta Wrangler (Kandel et al. 2011) generates 
a list of transformations (merge, move, pivot, split, etc.) also ranked and inferred automati-
cally from the user’s input. In Santolucito et  al. (2019) the authors use CVC4’s Syntax-
guided synthesis (SyGuS) algorithm (Reynolds and Tinelli 2017) for Javascript live cod-
ing.The most related work in this area is TaCLe (Paramonov et al. 2017; Kolb et al. 2017). 
TaCLe reconstructs the formulae used in a data spreadsheet based on a comma-separated 
file. The system is able of detect the formulas applied to rows, columns or cells that have 
generated the values of another cells, based on constraint templates. However, TaCLe only 
works by looking cell by cell but not if the whole table has been transformed into a differ-
ent table or value.

Despite everything, more and more transformations in AI require taking data rep-
resented as a matrix (e.g., an image, a dataset, a weight matrix, a result table, etc.) and 
apply a few primitives (e.g., a convolution, a pivoting, a thresholding, a column-wise mean, 
etc.). In Wang et al. (2017), the authors present an inductive framework called Blaze. The 
approach employs the abstract semantics of a DSL (the domain-specific language provided 
by a domain expert) and a set of examples to find a program whose abstract behaviour 
covers the examples. The authors used Blaze to build synthesisers for string and matrix 
transformations. Although the results of their experiments are positive, the number of func-
tions included in the DSL is limited (less than 10 functions). This is motivated by the huge 
search space, but their very short number of functions dramatically reduces the number 
of real examples that can be solved by the system. DSLs do not have to be less expressive 
than generic languages, but for some applications it is reasonable to exclude everything 
that is not needed, making them usually less expressive.

In contrast, we do not introduce any DSL, but develop a system that induces transforma-
tions in a general programming language. A generic language can contain syntactic sugar and 
present many alternative ways to do the same thing, increasing the search space, if all func-
tions and characteristics of the language are available. We have used the R language,3 having 
in mind that the final goal is to use it to solve real problem examples in that language. In our 
case, we start with a reduced core version of the language, only allowing unary function com-
positions, and the user is the one that chooses the functions. Accordingly, redundant functions 
or syntactic sugar can be reduced by this core part of the language and an appropriate choice 
of the background knowledge. As an advantage, the snippets that are found by our algorithm 

3  https://​www.r-​proje​ct.​org/.

https://www.r-project.org/


783Machine Learning (2021) 110:779–799	

1 3

will be directly applicable in the language and understood easily by anyone minimally familiar 
with R.

Finally, a different and interesting approach is Generalised Planning (Segovia-Aguas et al. 
2019), which is able to generate a single solution using one or more examples. In this type of 
problems, a plan is a sequence of actions that induces a state sequence to reach a goal condi-
tion (for instance, a termination instruction end) departing from an initial state. In this sense, 
a matrix transformation could also be seen as a planning problem.

In this work: (1) We can solve a much wider range of problems than systems such as Wang 
et al. (2017); and (2) by increasing the number of primitives we need to reduce the search 
space by prioritising some over others. The ideas explained in this paper are easily extensible 
to other languages such as Python or Matlab. The automation of small but convoluted snippets 
in these languages could represent an important reduction of the time needed in many AI and 
data science projects.

3 � Problem definition

We assume there is a set of operations that can be combined and applied to a matrix A in order 
to obtain a result S. The operations are primitives or functions in some specific language (in 
our case, R) and a human needs some assistance to generate the code from a single example. 
This is the setting that serves as problem formulation: 

1.	 We are given an input matrix A: a finite real matrix of size m × n ( m, n > 0).
2.	 We are given a partially filled matrix B: a finite real matrix of size m� × n� ( m′, n′ > 0 ) 

where only some elements are filled and the rest are empty (we will use the notation ‘ ⋅’).
3.	 Optionally, we are given some textual hint or short description T in natural language: 

this is provided by the user, describing the problem to solve.
4.	 We look for a function f̂  such that f̂ (A) = S , where S is a finite real matrix of size 

m� × n� , such that for every non-empty bij ∈ B the corresponding sij ∈ S matches, i.e., 
bij = sij.

5.	 We produce the function f̂  , expressed as a composition of matrix operations in a given 
programming language.

As additional criterion we will consider that the representation of f̂  in the programming 
language should be as short as possible in number of functions combined , and we will also 
allow for some precision error � (so that we relax item 4 above with |bij − sij| ≤ � , instead of 
bij = sij ). We use the notation f̂ (A) ⊧𝜖 B to represent this, and say that the transformation cov-
ers B.

As a basic example, consider the matrices A and B:

where A is the input matrix and B the partially-filled output. We try to find f̂  such that 
f̂ (A) ⊧𝜖 B . In this case the function colSums in R, which adds the values columnwise, 
gives the following matrix S that covers B.

A =

⎡
⎢⎢⎣

1 3 5

4 2 6

3 8 7

⎤⎥⎥⎦
B =

�
8 13 ⋅

�
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Note that we look for a system that: (1) works with only one input matrix and only one par-
tially-filled output matrix, and nothing more (the textual hint is optional), (2) automatically 
synthesises the composition of primitives in the base programming language that solves 
the above problem, and (3) returns the complete transformed matrix and the synthesised 
code.

As far as we know from the related work seen in the previous section, no other approach 
is able to solve this problem using only one or few cells of the solution matrix.

4 � Method

We emphasise a series of characteristics of this problem: (1) the combination of a few func-
tional primitives can achieve very complex transformations, (2) the arity of the primitives 
is usually low (one in many cases), so the snippet becomes a pipeline, where the output of 
one primitive becomes the input of the next one, (3) we work from one example and (4) we 
want the shortest transformation with the given primitives, as built-in primitives usually 
lead to more efficient transformations. All these characteristics suggest that the problem 
can be addressed by exploring all combinations of primitive sequences, by using a strong 
simplicity bias (the number of primitives used). This strategy is common in other inductive 
programming scenarios (Mitchell et al. 1991; Katayama 2005; Menon et al. 2013; Mitchell 
et  al. 2018) but it must always be coupled with some constraints (e.g., types, schemata, 
etc.) or strong heuristics. In our case, we will use the dimensions of the matrices as the 
main constraint for reducing the combinatorial explosion, as well as some priors about the 
frequency of each primitive and, optionally, some posteriors using text hints in order to 
guide a tree-based search where each combination of functions will be sorted and selected 
based on its assigned probability.

4.1 � Dimensional constraints

We consider the background knowledge as a set of primitives G. This number of primitives 
|G| taken into account for the search is known as the breadth (b) of the problem, while the 
minimum number of such primitives that have to be combined in one solution is known as 
depth (d). Clearly, both depth and breadth highly influence the hardness of the problem, in 
a way that is usually exponential, O(bd) (Ferri-Ramírez et al. (2001)) affecting the time and 
resources needed to find the right solution. This expression is exact if we consider unary 
primitives, so that solutions become matrix operation pipelines, i.e., a string of primitive 
c = g1g2 … gd.

The first optimisation to this search comes from the constraints about the dimensions 
of the primitives and the input/output matrices. For each matrix primitive g we take into 
account the dimension of the input and output at any point of the composition, and also 
some other constraints about minimum dimension (for instance, calculating correlations, 
function cor, requires at least two rows, i.e., m > 1 ). More formally, for each primitive g 
we define a tuple ⟨mmin, nmin, �⟩ where mmin and nmin are the minimum number of rows and 
columns (respectively) for the input (by default mmin = 1 and nmin = 1 ), and � ∶ ℕ

2
→ ℕ

2 
is a type function, which maps the dimension of the input matrix to the dimension of the 

S =
[
8 13 18

]
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output matrix. For instance, for g = colSums, mmin = 1 and nmin = 1 as you need at least 
one column and row for the primitive to work. �(m, n) = (1, n) , because g takes a matrix of 
size m × n and returns a matrix of size 1 × n . Similarly, for g = cor, mmin = 2 and nmin = 1 , 
as we need at least two rows to calculate a correlation. �(m, n) = (n, n) , because g takes a 
matrix of size m × n and returns a matrix of size n × n.

4.2 � Probabilistic model

Now, during exploration we can consider that not all primitives, and consistent sequences 
of primitives, are equally likely. Given our inputs: the hint text T, an input matrix A and 
partially filled output matrix B, we estimate the probability of a sequence of primitives, as 
follows:

The expression on the right can be used partially as we include candidates for primitives 
during the search procedure.

In order to estimate this probability we consider the a priori probability p(g) for each g, 
which we can derive from the frequency of use of the primitives in the library, as we will 
see in the following section. When T is available, we will use a frequency model that com-
pares TF-IDF values (Salton and Buckley 1988) of the primitive in its R help documenta-
tion and the TF-IDF values in T. This model produces the conditional probability p0(g|T) 
∀g,T  . We combine these probabilities as follows:

with � ∈ [0, 1] . Clearly, if T is not available � = 1 . Basically, � gauges how much relevance 
we give to the primitive prior (valid for all problems) over the relevance of the hint given 
by the user.

Finally, we have the intuition that the probability of a primitive may depend on the pre-
vious primitives. In this paper, we explore a very simple model for sequential dependen-
cies, by limiting the effect to trigrams and exploring whether the same primitive is repeated 
in any of the three previous operations. We use a parameter � ∈ [0, 1] , where high � values 
imply that repetitions are more penalised. More formally,

and the repetition part is simply:

which means that if the primitive is repeated in the three previous operations, then the 
value is 0, becoming more relevant the lower � is. We will explore whether this repetition 
intuition has an important effect on the results.

(1)p(g1g2 … gd|T ,A,B) =
d∏
i=1

p(gi|gi−1gi−2 … g1, T ,A,B)

(2)p(g|T ,A,B) = �p(g) + (1 − �)p0(g|T)

(3)p(gi|gi−1 … g1, T ,A,B) = �p(g|T ,A,B) + (1 − �)p(gi|gi−1gi−2gi−3, T ,A,B)

p(gi|gi−1gi−2gi−3, T ,A,B) = 0 if gi ∈ {gi−1, gi−2, gi−1}

= p(g|T ,A,B) otherwise
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4.3 � Algorithm

With Eq. 1 using the expansion of Eq. 3, we can recalculate the probability after any primi-
tive is introduced in a tree-based search. Note that every combination of primitives whose 
sizes do not match have probability 0 and are ruled out. However, for those that are valid, 
can we use extra heuristics to determine whether we are getting closer to the solution? One 
idea is to check whether we are approaching the final size of matrix. For instance, if the 
result has size (m, 1) and an operation takes the dimension to exactly that, it may be more 
promising than another that leads to a size (2m, n3) (which would require further operations 
to be reduced, at least in size).

In particular, each node in the tree where functions g1g2 … gd have been introduced will 
be assigned with the following priority4:

where m = 1 if the final dimension match the size of the output matrix B, i.e., 
�d(�d−1(… �1(minput, ninput)…)) = (moutput, noutput) , and m = 0 otherwise. For those ongoing 
transformations where the output size matches (even if the values are not yet equal) the 
priority will be higher than if the dimensions do not match. In other words, it is just an esti-
mate of whether “we may already be there”. The parameter � ∈ [0, 1] simply gives weight 
to this. If � = 1 then the priority of a situation with the final size is doubled over another 
situation where the final size does not match. For � = 0 the priority is not affected by the 
final size matching or not.

Now we can use Eq. 4 in the tree-based search. The search algorithm works as follows 
(see Algorithm 1): 

1.	 The system can be configured to use a set of primitive functions (G), for each of them 
including the minimum values for the size of the input ( mmin,nmin ) and the type function 
�.

2.	 For each particular problem to solve, we take the input matrix A and the partially filled 
matrix B. Optionally, we take a text hint T describing the problem to solve.

3.	 Being dmax the maximum number of functions allowed in the solution, the procedure 
evaluates sequences of primitives g1g2 … gd , with 0 ≤ d ≤ dmax where each gi ∈ G . 
The parameter smax determines the maximum number of solutions (when reached, the 
algorithm stops).

4.	 We start with a set of candidate solutions C = G.
5.	 We extract c = g1g2 … gd ∈ C such that p∗(c) is highest. We use � on A and all primi-

tives in c to see if the combination is feasible according to the dimension constraints 
and, in that case, we calculate the output size. If the dimension of any composition in 
c does not match, we delete the node from C. If the dimension of the output matches 
the dimension of B, we effectively execute the combination on A, i.e., c(A), and check 
whether the result covers S, as defined in the previous section. In the positive case, we 
add c as a solution, and we delete it from C. In any other case, if d < dmax we expand c 

(4)p∗(g1g2 … gd) = (1 + �m)

d∏
i=1

p(gi|gi−1gi−2 … g1, T ,A,B)

4  This is an unnormalised value of the expectation that a partial primitive sequence could lead to the final 
solution, as used in a tree-based search. Because of the � correction, it may even be greater than 1, so it is 
not a probability.
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into c ⋅ gd+1 with all gd+1 ∈ G . We calculate p∗ for each of them and add them to C. We 
remove c from C.

6.	 We repeat the procedure in 5 above until smax is reached or C is exhausted.

As mentioned in the problem formulation we allow for some small precision error � 
between the cells in S (generated by f̂  ) and the cells that are present in B (and are gener-
ated by f̂ ).

4.4 � Use of text hints

In some cases the user may provide a few words describing what she wants to do. This can 
be very helpful to give more relevance to those primitives that may be involved in the solu-
tion. For instance, if we consider a problem like “compute the correlation of a matrix”, the 
primitive cor will probably appear in the solution. In our model, this is what we denoted 
p0(g|T) . We now explain how we estimate this value.

First, we consider the set of primitives G and, for each of them, we download the 
text description from the corresponding R package help documentation. For instance 
help(“det”) gives the description for the function det as follows: “det calculates 
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the determinant of a matrix. determinant is a generic function that returns separately 
the modulus of the determinant, optionally on the logarithm scale, and the sign of the 
determinant”. In the same way, the description of diag is: “Extract or replace the 
diagonal of a matrix, or construct a diagonal matrix”. Each of these help texts Hg is 
converted into an array by applying a bag-of-words transformation, after removing the 
useless words (included in a list of stop words) and performing a stemming conversion 
(reducing inflected words to their word stem).

Secondly, given a short description T of the task we want to solve, we also apply 
the bag-of-words transformation, remove the stop words and do stemming. Now we 
have the processed text chunks Hg for each g ∈ G and the processed text chunk T. We 
extract the vocabulary V from all these text chunks.

Thirdly, we apply the TF-IDF conversion (Salton and Buckley 1988) to all vectors 
Hg and T using the same vocabulary V. TF-IDF gives more relevance to more informa-
tive words. This leads to a word vector �g for each g ∈ G and a word vector � . As an 
example, in Fig.  2 we can see the frequent terms for these two functions, as repre-
sented by their TF-IDF values. For instance, for the function det, it is clear that when 
the word determinant (and its steammed form determin) appears in a text hint, the 
function must have a higher probability of being required for the solution compared 
with other functions, such as the diag function.

Finally, for each g we calculate the cosine similarity s(Hg, T) between �g and � . We 
normalise the |G| similarities to sum up to one as follows:

This estimate is used for Eq. 2.

p0(g�T) =
s(Hg, T)∑
g∈G s(Hg, T)

det(A) diag(A)

0.00 0.25 0.50 0.75 0.0 0.2 0.4

replace

extract

diagonals

construct

matrix

diagonal

sign

separately

scale

optionally

modulus

logarithm

det

calculates

calculate

determinant

tf_idf

Fig. 2   TF-IDF values for two R primitives extracted from the R help documentation
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5 � Experiments

We have implemented AUTOMAT[R]IX for R, a language and environment for statistical 
computing, data science and graphical representations. R operates on named data struc-
tures (vectors, matrices, data frames, etc.). In our case, we work with those functions such 
that input and output are data-related structures (matrices, vectors, etc.). These include 
primitives that extract characteristics of a matrix, such as number of rows or maximum 
value, or apply operations to the values, for instance bind columns, calculate the mean or 
compute a correlation matrix. More specifically, we take 34 R functions5 related to matri-
ces from the base,6 stats7 and Matrix8 packages included in R. The experiments shown in 
this section aim to answer the following questions: 

Q1	� How much impact on success do the a priori probabilities have?
Q2	� Are both � and � key to obtain better and faster results? How much?
Q3	� Is the user text helpful and how much relevance ( � ) should we give to it?

In order to answer these questions, in this section we describe how we obtain p(g), the a 
priori distribution for the primitives, and how much impact has in the results; we describe 
the text models that lead to p0(g|T) , we perform an ablation study to obtain the best values 
for parameters � , � and � and then, we evaluate the algorithm with real problems taken 
from Stack Overflow.

For replicability and to encourage future research, all the matrix transformations used 
here (the matransf  repository) and the code for AUTOMAT[R]IX are published on: 
https://​github.​com/​licon​oc/​Progr​amSyn​thesis-​Matrix.

5.1 � A priori Probabilities: p(g)

To answer question Q1 and calculate the a priori distribution for the primitives we use the 
“Top 2000 most used R functions on GitHub” dataset, available for download on GitHub.9 
We reduce the 2000 functions to a subset containing only the functions included in our 
library G. When a function is duplicated in different packages we take one of them follow-
ing this package order: base, stats, Matrix. Table 1 shows the six most used R functions 
from those functions included in G.

Table 1   Top six R functions 
most used on GitHub

Function p(g) Function p(g)

1 length 0.327975648 4 max 0.055495595
2 nrow 0.088785612 5 mean 0.046439995
3 is.na 0.082437026 6 cbind 0.045872954

5  See the complete list of functions in “Appendix 1”.
6  https://​stat.​ethz.​ch/R-​manual/​R-​devel/​libra​ry/​base.
7  https://​stat.​ethz.​ch/R-​manual/​R-​devel/​libra​ry/​stats.
8  https://​stat.​ethz.​ch/R-​manual/​R-​devel/​libra​ry/​Matrix.
9  Top 2000 R functions: http://​short​url.​at/​pDFRZ.

https://github.com/liconoc/ProgramSynthesis-Matrix
https://stat.ethz.ch/R-manual/R-devel/library/base
https://stat.ethz.ch/R-manual/R-devel/library/stats
https://stat.ethz.ch/R-manual/R-devel/library/Matrix
http://shorturl.at/pDFRZ
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Being ng the absolute frequency of use for the function g, we calculate the a priori prob-
ability as follows:

Benchmark We will test whether the use of p(g) as a very straightforward a priori prob-
ability is already useful in order to reduce the search time and space. For this, we first have 
tested the system with synthetic data. We have generated 10 random real matrices of differ-
ent dimensions m × n where m, n ∈ (2, 10) . These matrices are filled with numeric values 
following a uniform distribution between 0 and 100. For each of these 10 matrices A we 
generate 10 transformations of depth d = 1..4 each using the functions from G according to 
their a priori probability (explained in Sect. 5). Finally, for each of the 10 × 10 × 4 = 400 
matrices S we generate a matrix B where we replace a percentage uniformly chosen 
between 60% and 80% of the cells by empty values. In total we have 400 pairs of matrices 
A, B to test the algorithm with different numbers of operations.

Results As we work with artificial examples with no text hints we cannot use p0(g|T) for 
these experiments. So, in this case we have tested the strategy using the a priori probabili-
ties for p(g) compared with a uniform baseline, assuming p(g) uniform (so it is actually a 
breadth-first strategy). In both cases, we use � = 1 , � = � = 0 , dmax = 4 , smax = 1 (we only 
need to find one solution) and a timeout of 60 s.10 Table 2 shows the results in accuracy 
(percentage of correct solutions found, i.e. f̂ (A) = S ), average of the number of nodes gen-
erated and actually explored, and time in seconds. From these results we can clearly see 
that the use of probabilities following the real use of the functions from GitHub has a great 
impact on accuracy and even more on the size of the space explored, reducing drastically 
the time needed to find one solution.

5.1.1 � Including text hints: p
0
(g|T )

Benchmark Now, we want to test the algorithm also including p0(g|T) , i.e., using text 
hints provided by the user. To do this we need to find real matrix transformation prob-
lems. In this case, we have used questions and answers collected with the Stack Over-
flow API using the following parameters: tagged=“R”, title=“matrix” and 
is_accepted_answer=1. With these parameters we guarantee that (1) the posts 

p(g) =
ng∑
g∈G ng

Table 2   Results for the synthetic 
examples

Average of generated and explored nodes, accuracy (percentage of 
correct solutions) and time in seconds, for the uniform and prior strat-
egies. Experiments are performed with dmax = 4 and smax = 1 . The 
timeout is set to 60s. Best results are highlighted in bold

Strategy Accuracy Generated Explored Time

Uniform 0.47 ± 0.51 5610 ± 3543 168 ± 104 59.54 ± 46.78
Prior 0.65 ± 0.49 790 ± 1266 24 ± 38 3.69 ± 7.01

10  Note that as B is partial, each problem can be consistent with many transformations, so the first solu-
tion may not be what the user expects (in our case the one we used to generate the example), i.e. f̂ (A) ⊧𝜖 B , 
while f̂ (A) ≠ S . In those cases more non-empty cells would be required to disambiguate the right solution, 
which may need more primitives.
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received are answered and the answer is accepted by the creator of the post, (2) they are 
related to R and (3) they contain the term “Matrix” in the title. In total we collected 20 
questions and answers of R problems dealing with matrix transformations. Just as exam-
ple, some of the questions used are: “How to reverse a matrix”, “Get positions for NA in 
a matrix”, “Rotate a Matrix in R” or “How to get the sum of each four rows of a matrix 
in R”. Each example includes an input matrix A, an output matrix B, a text T (the title) 
and a solution. The solution is not used in the process, but just to generate B.

Computation time and parameter settings In order to answer questions Q2 and Q3, 
we have performed an ablation study to determine the good ranges for the parameters � , 
� and � . As said in the previous section, higher � increases the weight for those (partial) 
solutions that match the dimension of the output matrix, whereas higher � increases the 
penalisation for those solutions including repeated functions. Finally, higher values of 
� give more weight to the prior probability over the text hint. In our ablation study, we 
consider all the possible permutations including values from 0 to 1 with increments of 
0.25 each time.

Figure  3 shows the average number of explored nodes for the real problems when 
using different values for the parameters. Here, we can see that � = 0 increases drasti-
cally the nodes needed to find the right solution. In this case, the number of nodes is 
reduced considerably when � ≥ 0.75 (i.e., we give more relevance to the dimensions of 
the output matrix when building a partial solution during the search) and for values of 

Fig. 3   Average of the number of nodes that need to be explored to find the solution, depending on the value 
of � , � and � parameters. Results using the matransf  data, dmax = 4 and smax = 1
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� ≤ 0.75 (not giving all the relevance to the prior probabilty). We can see that, in this 
case, � seems to have no relevance in the number of nodes explored.

If fewer nodes have to be explored, the time needed can be reduced. Figure 4 shows 
the average of time needed for the experiments to find the solution depending on dif-
ferent values of � , � and � . We can see clearly again that � is very relevant to decrease 
the time needed to find the solution. The best times are obtained when � = 0.5 and 
� = 1 . We can also see again that � seems to be not very useful in this study. However, 
although the � axis on the figures seems completely flat, there are values that do dif-
fer, yet slightly, with times and number of nodes in ranges which are insignificant in 
comparison with the other two parameters. It seems that penalising (or not) the use of 
repeated primitives in a matrix pipeline does not have a visible effect on the results. The 
reason for this is that the examples extracted from StackOverflow do not have repeated 
functions in their solutions (since the solutions proposed in this forum tend to be short 
and efficient), in such a way that there is not a big difference in the results using � . In 
general, elegant solutions rarely have repeated primitives, except when these primitives 
are constants (e.g., “the element in the third row and the third column”, using “3” in the 
solution as a repeated constant). However, we have not included constants in our list of 
functions because we would need to cherry pick a few small or frequent constants. This 
could be solved by a further study on how to include constants in the solutions without 
the use of explicit functions, by considering all constants in the algorithm itself but with 
an increasing cost for higher constants (lower probability). This would make the use and 
study of the beta parameter more insightful, with a controlled use of repetitions in the 

Fig. 4   Average of time (in seconds) needed to find the solution depending on the value of � , � and � param-
eters. Results using the matransf  data, dmax = 4 and smax = 1
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solutions. For now, we are assuming that � is no longer needed so we remove it from the 
experiments (i.e. � = 0).

With the ablation study, we see that most ranges of the parameters are safe, but some 
of the refinements we introduced are relevant (except the primitive repetition). We can 
decide the parameters and run the experiments using the best settings. For the real-
world datasets we have tested the strategy using the a priori probabilities including the 
text hint and the calculated parameters (Prior+Text). We have compared this strategy 
with two baselines: the uniform and the a priori (without text hint) probabilities as they 
are explained in Sect. 5. Concretely, we have tested the following strategies: 

1.	 Uniform As said in Sect. 5, we consider p(g) uniform with � = 1 and � = 0.
2.	 Prior p(g) is estimated with the a priori probabilities with � = 1 and � = 0.
3.	 Prior+Text We use p(g) as in the Prior strategy and p(g|T) calculated using the text hint, 

with � = 0.5 and � = 1 (i.e., favouring solutions matching the dimension of B).

Table 3   Results for the examples 
from StackOverflow

Average and standard deviation for accuracy, number of generated 
and explored nodes, and time in seconds, broken down by the three 
strategies and smax = 1 . The timeout is set to 120 s and dmax = 4 . Best 
results are highlighted in bold

Strategy Accuracy Generated Explored Time

Uniform 0.60 ± 0.50 3414 ± 3511 867 ± 549 57.91 ± 52.36
Prior 0.65 ± 0.49 1065 ± 201 620 ± 362 39.84 ± 43.73
Prior + text 1.00 ± 0.00 477 ± 429 14 ± 12 1.26 ± 1.18

Fig. 5   Percentage of cases ( y-axis) that are solved in less than the time (seconds) on the x-axis depending 
on the strategy used. Results using dmax = 4 and smax = 1
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For each strategy we run the experiments with dmax = 4 and smax = 1 . We give a time-out 
of 120 s.11

Results We now analyse whether the new strategy is able to reduce the search space sig-
nificantly. Table 3 shows the nodes that are generated and explored. We see that the search 
space is considerably reduced when the text hint is considered and � is higher. The use 
of this strategy not only increases the accuracy (percentage of correct solutions found) to 
100% but it also reduces significantly the search space and, consequently, the computation 
time. We can see the results in a different way in Fig. 5. This plot shows on the y-axis the 
percentage of cases that are solved in less than the time expressed on the x-axis.

Note that with 34 primitives there are 34dmax nodes to explore as a maximum. For 
example, with dmax = 4 this is 1,363,336 nodes. How can we get only an average of 867 
explored with the uniform strategy, which is breadth-first? The answer is given by the 
combinations that are pruned because the type function does not match, and all the fur-
ther reduction is given by the use of probabilities in the other strategies. Table 4 shows 
that the number of solutions over the pruned hypothesis given by the type function is 
a huge improvement over the initial 344 space. We can see that the average number of 
solutions found when running the experiments using dmax = 4 and smax = ∞ (trying to 

Table 4   Number of solutions 
found for each example using 
dmax = 4 and smax = ∞ , with a 
timeout = 120 s

nsols represents the number of different solutions found; nexplored is the 
total number of explored nodes; ncreated represents the total number of 
created nodes

Example nsols nexplored ncreated

1 1 267 9078
2 4 273 9180
3 16 285 9145
4 1 272 9282
5 2 273 9214
6 3 275 9235
7 3 268 8987
8 6 273 9050
9 1 270 9173
10 3 275 9224
11 2 268 9078
12 2 262 8874
13 2 265 8976
14 8 267 8806
15 32 292 8874
16 36 295 8806
17 28 286 8783
18 33 290 8747
19 2 272 9202
20 3 268 9078

11  A complete list of events produced during the execution of the algorithm for a simple example can be 
seen in “Appendix 2”.
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find all the possible solutions), with a time-out of 120 s is 9.4, even when the average 
on the number of explored nodes is 275. In conclusion, the pruning by the type func-
tion is the main reason for the reduction of the search space.

6 � Conclusions and future work

The process of generating code automatically can help data scientists when dealing 
with matrices (or data frames), the most common representation of information in data 
science, artificial intelligence and many other areas. Users can easily produce an exam-
ple of the input matrix and a few cells of the output matrix, and the system will gener-
ate the code for them.

We have presented AUTOMAT[R]IX, a new system that is able to solve this very 
common problem of matrix transformation successfully. The system is based on a 
breadth-search approach pruned by the consistency of the types given by the dimen-
sions of the matrices and the intermediate results. Besides, the system is guided by a 
strategy based on dynamic probabilities from a prior value depending on the frequency 
of the use of primitives on Github and, optionally, the relevance (TF-IDF) values of 
the terms in the text hints provided by the user compared with the terms in the R help 
documentation of the primitives.

We have tested the two baseline approaches with a synthetic dataset of 400 matri-
ces and 34 different transformations in R. We have also tried the baselines compared 
with our algorithm using real examples of 20 problems extracted from Stack Overflow. 
The results show that the AUTOMAT[R]IX system is able to give the correct result 
for all of them in a very short time. In this case, using the strategy Prior+Text , which 
uses the text hints giving more importance to those solutions that match the dimension 
of the output matrix, AUTOMAT[R]IX can achieve 100% accuracy, reducing signifi-
cantly the time spent to find the solution. Both datasets, with synthetic pipelines and 
real examples from Stack Overflow are available as matransf .

As future work we plan to add new characteristics (constraints) over the types (con-
sider if data is numerical, text, boolean, etc.) or over the values (consider if numbers 
are negative or positive, consider the data distribution, etc.). We would like to include 
more primitives, new data structures and a deeper study of the � parameter also includ-
ing more complex problems (i.e., needing more than 4 functions) and repeated func-
tions (for instance, including constants). We also plan to create a visual interface or R 
package for ease of use. We would also like to explore and compare our algorithm with 
other optimisation approaches, such as planning or solvers. We encourage the approach 
to be replicated to synthesise functions for other languages such as Python. In general, 
the key ideas and the procedure to reduce the search space can be used for other simi-
lar problems in inductive programming, and other areas of artificial intelligence.

Appendix 1: List of functions included in the library

See Table 5.
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Appendix 2: Pipeline of events for a simple example

Figure  6 shows an example of a pipeline of events when running the algorithm. In this 
example, the goal is to learn a function that given an input matrix, returns an output matrix 
where each cell contains a Boolean value indicating if the corresponding position in the 
input matrix is NA. In the top of the figure, we include: matrix A (input), matrix B (partial 

Table 5   List of functions from 
the R language included in 
the background knowledge of 
AUTOMAT[R]IX

minput × ninput represents the size of the input, while moutput × noutput 
represents the size of the output once the function is applied. m_min 
and nmin are the minimum number of rows and columns respectively 
that the input matrix requires for the function to be applicable

Function minput ninput moutput noutput mmin nmin

rowSums(A) m n 1 m 2 0
colSums(A) m n 1 n 2 0
rowMeans(A) m n m 1 0 0
colMeans(A) m n 1 n 2 0
nrow(A) m n 1 1 2 0
ncol(A) m n 1 1 2 0
cor(A) m n n n 2 0
det(A) m m 1 1 2 0
diag(A) m n 1 n 2 0
t(A) m n n m 0 0
is.0(A) m n m n 0 0
!is.0(A) m n m n 0 0
A==0 m n m n 0 0
A!=0 m n m n 0 0
A<=0 m n m n 0 0
A>=0 m n m n 0 0
A<0 m n m n 0 0
A>0 m n m n 0 0
A==1 m n m n 0 0
A!=1 m n m n 0 0
A<=1 m n m n 0 0
A>=1 m n m n 0 0
A<1 m n m n 0 0
A>1 m n m n 0 0
A*A m n m n 0 0
apply(A,1,rev) m n m n 2 0
apply(A,2,rev) m n m n 2 0
as.table(A) m n m m 0 0
cbind(A,A) m n m n × 2 0 0
rbind(A,A) m n m × 2 n 0 0
length(A) m n 1 1 0 0
max(A) m n 1 1 0 0
min(A) m n 1 1 0 0
mean(A) m n 1 1 0 0
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output) and matrix S (complete output). The text used as a hint is: “Get positions for NA”. 
In the figure we show the three iterations of the algorithm. BK represents the five functions 
with highest probability for each iteration. Variables shows the function selected, whether 
the solution has been found or the three has been completely explored, the total number of 
nodes explored at the moment and the number of nodes created in this iteration. Note that 
in Iteration 2 we explore the branch of the tree that falls under length(A). One of the 
compositions in that branch is precisely length(length(A)), i.e., apply the function 
again, which, because the a priori probability of length alone is so high, still gets sufficient 
probability to appear in the top 5 in the figure.

(a)

(b)

(c)

Fig. 6   Short example of the pipeline of events for a simple problem: marking the positions with NA 
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