
Computers & Operations Research 133 (2021) 105383

A
0
(

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Solving the generalized multi-port container stowage planning problem by a
matheuristic algorithm
Consuelo Parreño-Torres a,∗, Hatice Çalık b, Ramon Alvarez-Valdes c, Rubén Ruiz d

a Department of Applied Economics, Faculty of Economics and Business, University of Burgos, Plaza Infanta Doña Elena s/n, 09001, Burgos, Spain
b KU Leuven, Department of Computer Science, CODeS, Belgium
c Department of Statistics and Operations Research, Valencia University, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain
d Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Ciudad Politécnica de la Innovación, Edificio 8G, Acc. B. Universitat
Politècnica de València, Camino de Vera s/n, 46021, València, Spain

A R T I C L E I N F O

Keywords:
Container ship
Multiport stowage
Mathematical models
Matheuristics
Planning

A B S T R A C T

We focus on a simplified container stowage planning problem where containers of different size and weight
must be loaded and unloaded at multiple ports while maintaining the stability of the ship. We initially
investigate how the difficulty in solving the problem changes with and without the consideration of container
sizes and weight constraints. For this purpose, we provide integer programming formulations for the general
problem as well as some special cases with identical container size and/or identical weights and evaluate their
performance in randomly generated small- and medium-scale instances. We develop a matheuristic procedure,
namely, an insert-and-fix heuristic, exploiting the special structure of the proposed formulations. The Insert-
and-Fix method, in combination with a constructive algorithm that gives the solver an initial solution in each
iteration, provides solutions with a low number of rehandles for instances with up to 5000 TEUs.
1. Introduction

Maritime transportation is one of the most energy-efficient modes
of transportation. Seaborne trade constitutes a significant percentage
of world trade. According to the 2019 review of the United Na-
tions Conference on Trade and Development, world maritime trade
volume reached 11 billion tonnes in 2018 and 793 million Twenty-
foot Equivalent Units (TEUs) were handled in container ports world-
wide (UNCTAD, 2019). The capacity of container vessels reached
20000 TEUs (Parreño-Torres et al., 2019), with some vessels exceed-
ing that number launched in 2019. Considering such large volumes,
maximizing efficiency in container handling is crucial to the global
economy, as well as to the environment, since reducing unnecessary
port operations results in a greatly reduced carbon footprint.

In order to minimize the number of loading/unloading operations
at ports, it is essential to have an efficient stowage plan indicating
the exact position of each container in the ship. Consider a ship that
has to visit a set of ports in a given order to load and discharge
containers. It starts its route by loading an initial set of containers at the
first port, performs requested loading and unloading operations at the
intermediary ports, and finally unloads all the remaining containers at
the final port. The following data are given: (i) the number of containers

∗ Correspondence to: Department of Applied Economics, Faculty of Economics and Business, University of Burgos, Plaza Infanta Doña Elena s/n, 09001, Burgos,
Spain.

E-mail address: cparreno@ubu.es (C. Parreño-Torres).

to be loaded at each port, (ii) the port of load and port of discharge for
each container, and thus (iii) the number of containers to be unloaded
at each port.

Building a good stowage plan for a ship along the ports in its route is
an NP-hard problem, with many decision variables that make it difficult
to solve in practice. The main objectives are maximizing vessel utiliza-
tion and minimizing operational costs. This second objective involves
minimizing the number of rehandles and also minimizing the makespan
of the cranes loading and unloading the containers. There are three
main types of constraints. First, constraints related to container types.
The most common containers are 20’ and 40’ containers, but there
are also 45’ containers, high cube containers, and other out-of-gauge
(OOG) containers, whose positions are limited to certain positions in
the ship. Reefer (refrigerated) containers must be placed in positions
with power plugs. IMO containers (with dangerous goods of different
types) must obey strict separation rules. Second, constraints related
to the ship structure. The cargo space of a ship is divided into bays
and each bay has an on-deck and an under-deck part, separated by a
hatch-cover. Each part of a bay consists of a row of stacks, and each
tier of a stack is a cell consisting of two slots in which one 40’ or
two 20’ containers can be placed (see Fig. 1). Nevertheless, due to
vailable online 18 May 2021
305-0548/© 2021 The Author(s). Published by Elsevier Ltd. T

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cor.2021.105383
Received 7 April 2020; Received in revised form 13 May 2021; Accepted 14 May 2
his is an open access article under the CC BY-NC-ND license

021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:cparreno@ubu.es
https://doi.org/10.1016/j.cor.2021.105383
https://doi.org/10.1016/j.cor.2021.105383
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105383&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

1
t
a
a
t
p
t
b
g
a
s
a
a
p
a
t
f

t
t
c
w
c
f
p
(
w
1

r
p
p

Fig. 1. Container ship scheme.
f
t
i
a
t
t
e
S

2

p
r
f
a

K
v
a

the structure of the ship, there may be some odd-slots in which only
a 20’ container can be placed. The weight and the height of each stack
are limited. If a container has to be unloaded at a port, all containers
on top of it in the same stack going to later ports must be unloaded
and loaded again, causing rehandles. If the container is under deck, all
containers on deck in the same bay must be rehandled. Below deck,
the containers are secured by cell guides. On deck, they are secured by
lashing rods, of limited strength, or lashing bridges. Containers on deck
cannot block the line of sight from the pilot house to the sea in front of
the ship. Third, constraints related to the sailing conditions. For a ship
to be allowed to leave a port it must satisfy stability and stress forces
constraints. There are also limits for the maximum and minimum draft
and limits for the trim (inclination of the ship). A complete description
of the technical requirements can be found in Jensen et al. (2018).

Optimizing the stowage plan taking into account all practical con-
straints is very hard. In the pioneering work of Botter and Brinati
(1992), they considered all the constraints related to stability and other
forces acting on a vessel and developed an integer linear model. They
defined a binary variable for each container, position, and port and
for every loading or unloading movement so as to ensure that the
constraints are satisfied after each move, but this resulted in a huge
number of variables, in the order of 109 even for small instances of
000 TEUs and 6 ports and the model was not tested. Subsequently,
wo main strategies have been developed. One research line addresses

simplified problem, keeping its basic structure and progressively
dding the most important constraints. The basic problem, where all
he containers are of identical size and no additional constraints are
resent (stability, maximum weight, etc.), is referred to as the Con-
ainer Stowage Planning Problem (CSPP) and it has been proven to
e NP-Hard (Avriel et al., 2000). For the CSPP, several integer pro-
ramming (IP) formulations and exact algorithms have been proposed,
s well as heuristic approaches that can efficiently solve very large-
cale instances. On the other hand, another line of research follows
hierarchical decomposition of the problem where container groups

re first assigned to specific sections of the ship and then the exact
ositioning of each container is decided for each section. This paper
ims to fill the gap between these two strategies by providing methods
o solve the CSPP with container weight- and size-related constraints
or instances with thousands of containers.

Our contribution is three-fold: (1) We introduce three generaliza-
ions of the CSPP, which come with several additional complexities: (i)
he CSPP with 20’ and 40’ containers, container weights, and stability
onstraints, (ii) the CSPP with identical container sizes but different
eights and stability constraints, and (iii) the CSPP with 20’ and 40’

ontainers where stacking constraints are present. (2) We provide an IP
ormulation for the CSPP, which outperforms the IP formulations pro-
osed in the literature, and for the newly introduced generalizations.
3) Using the decomposable structure of these mathematical models,
e develop a matheuristic approach, namely Insert-and-Fix (Wolsey,
998), to solve the more general problem.

The remainder of this paper is organized as follows: Section 2
eviews the related papers from the literature. Section 3 describes the
roblems we study and defines the notation we use throughout the
aper. Section 4 presents the mathematical models that we introduce
2

or the aforementioned variants. Section 5 provides the details of
he matheuristic algorithm that we develop. In this section, we also
ntroduce a constructive procedure integrated into the insert-and-fix
lgorithm, which guarantees obtaining a feasible solution even when
he solvers cannot provide one within the time limit. Section 6 details
he computational experiments we conduct on our mathematical mod-
ls and matheuristic algorithms. Finally, we present our conclusions in
ection 7 and also provide some future research directions.

. Related work

This section reviews relevant papers that consider container stowage
lanning where multiple ports are visited. So as not to distract the
eader with a lengthy literature discussion, we exclude studies that
ocus only on single-port problems (see Larsen and Pacino, 2020 for
n up-to-date review).

Although proposals to solve the problem can be traced back to
essel (1977), the first mathematical formulation of the CSPP was pro-
ided by Avriel and Penn (1993) and revisited by Avriel et al. (1998). In
ddition to this formulation, Avriel and Penn (1993) introduce a Whole
Columns Heuristic Procedure to solve the CSPP. Given a transportation
matrix representing the demand between each pair of ports, the authors
decompose it into two sub-matrices. The containers for the first sub-
matrix are allocated through a simple procedure, whereas binary linear
programming is used for the second sub-matrix. Avriel et al. (1998)
extend this idea by using a dynamic slot-assignment scheme leading
to a more efficient heuristic, which is referred to as the Suspensory
Heuristic Procedure. The first metaheuristic approach by Dubrovsky
et al. (2002) provides a genetic algorithm with an efficient solution-
encoding scheme. This algorithm shows a similar performance to that
of Avriel et al. (1998) on the CSPP instances tested and also introduces
a ship stability constraint through a penalty function.

Ding and Chou (2015) point out that it is always possible to as-
sume that the ship is fully loaded when traveling between ports. The
transportation matrices satisfying this property are referred to as full
matrices and Ding and Chou (2015) present a method for generat-
ing such matrices. They further provide a new IP formulation and a
heuristic method to solve the CSPP for full transportation matrices. This
heuristic generates a stowage plan for each port without considering
the transportation information for subsequent ports (hence no look-
ahead strategy). The computational study by Ding and Chou (2015) on
large-scale problem instances indicates that their algorithm performs
better than the Suspensory Heuristic of Avriel et al. (1998) when the
number of ports visited is large.

A mixed integer programming (MIP) formulation of the CSPP with
an exponential number of variables is proposed by Roberti and Pa-
cino (2018). The authors develop a column generation-based lower
bounding procedure and combine it with a compact MIP model to
solve instances with up to 10 ports and 5000 containers to optimality.
Problem instances of this size remain unsolvable by the compact IP
formulations available in the literature.

The state-of-the-art compact IP formulation and heuristic method
for solving the CSPP have recently been provided by Parreño-Torres
et al. (2019). This new IP formulation has fewer variables than the



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

∀

𝑓

∀

𝜏

∀

formulations by Avriel et al. (1998) and Ding and Chou (2015). The
authors propose several valid inequalities to strengthen its linear pro-
gramming (LP) relaxation. The experimental study comparing the three
formulations for the CSPP indicates that the new IP model outper-
forms the previous models by Avriel and Penn (1993) and Ding and
Chou (2015) in terms of both solution quality and computing time.
Moreover, Parreño-Torres et al. (2019) develop a Greedy Randomized
Adaptive Search Procedure (GRASP) and compare it with the heuristic
algorithms by Avriel et al. (1998) and Ding and Chou (2015) on
medium- and large-scale instances that they generate. The GRASP
provides very good solutions, of higher quality than those obtained by
the previous algorithms, in less than five minutes for every instance
tested.

Compared to other combinatorial optimization problems, the liter-
ature on CSPP is relatively scarce, and a standard definition of the
problem and benchmarks have not yet really been established. For
the basic CSPP, some IP models, exact, and heuristic methods can be
found. However, the literature lacks methods to solve the CSPP with
different container sizes and weights as well as stability constraints.
Only the aforementioned paper by Botter and Brinati (1992) addresses
the problem with all of its characteristics.

A common practice is to adopt a decomposition strategy in two
phases, solving first a Master Bay Planning Problem (MBPP) or a multi-
port MBPP (MP-MBPP) variant to allocate containers to different sec-
tions of the ship and then solving a Slot Planning Problem (SPP) to
determine the exact position (slot) of the containers in each section.
A decomposition of this kind makes it possible to solve the SPP in-
dependently for each section including constraints arising in practical
problems. However, it does not guarantee an optimal solution for
the complete problem. Among the studies utilizing this decomposition
structure for multi-port stowage planning problems, Wilson and Roach
(1999) derive a method based on Tabu Search (TS). Kang and Kim
(2002) iteratively solve the MP-MBPP via a greedy heuristic and the
SPP via a tree search method, Pacino et al. (2011) combine an IP
formulation for the MP-MBPP and a constraint programming approach
for the SPP, and Ambrosino et al. (2015a, 2017) provide an MIP
formulation for the MP-MBPP and a heuristic for the SPP. Ambrosino
et al. (2015b) developed a Relax-and-Fix matheuristic approach, which
solves at each iteration relaxations of the integer model progressively
fixing subsets of binary variables, obtaining good results for very large
instances of the MP-MBPP.

Other relevant papers include a variant of the CSPP where the
reshuffling cost is not identical for all ports (Zhang et al., 2018) and an
MP-MBPP variant with weight uncertainty (Li et al., 2018). To the best
of our knowledge, the combined CSPP with different container sizes,
weights, and stability constraints has not been studied in the literature.

3. Problem description

Container stowage plans use a bay-row-tier coordinate system to
identify the position of a container aboard the ship. The bays represent
the transverse sections of the ship and are numbered from bow (or
forward) to stern (or aft). The rows run the length of the ship, with
the starboard rows having odd numbers and the port rows having even
numbers. The last coordinate is the tier or layer of the containers. Each
position defined by these three coordinates is called a cell and it can
contain two 20’ or one 40’ container. We can use a fourth coordinate
to identify each slot with capacity for one 20’ container, as shown in
Fig. 1.

We consider a ship that visits several ports where container loading
and unloading operations are carried out. The boat is empty before
the route starts and also when the route is completed. The capacity
and structure of the ship are known and we are also provided with
the details of the containers to be loaded at each port, with their
weight and size and their port of discharge. We thus have to decide the
stowage plan of the ship along the whole route in order to minimize
3

the total number of rehandles. Rehandles are required at a port for
unloading containers placed below other containers that do not have
to be unloaded at this port and for loading containers in slots below
other existing containers. A feasible solution must satisfy the following
rules:

(a) No container can hang in the air. If a slot has a container, the
slots below it must also have containers.

(b) 20’ containers cannot be loaded on top of 40’ containers, but
one 40’ container can be stacked on top of two 20’ containers
(‘‘russian stacks’’ or ‘‘mixed stacks’’).

(c) A cell must be either empty or full (both slots occupied).
(d) Stability constraints are expressed in terms of the longitudinal

center of gravity (LCG) and the vertical center of gravity (VCG).

Let us consider a ship with capacity 𝛺 TEUs traveling along a trade
route consisting of 𝑁 ports. The ship has 𝐵 bays, where each bay 𝑏
contains 𝑅𝑏 rows, and each row 𝑟 of bay 𝑏 has 𝐿𝑏𝑐 cells with 2 slots
each. Let  be the index set of the bays, 𝑏 the index set of the rows
in bay 𝑏, 𝑏𝑐 the index set of the tiers in row 𝑟 of bay 𝑏, and  the
set of the slots at each cell. The total capacity of the ship can be
calculated as 𝛺 =

∑

𝑏∈
∑

𝑐∈𝑏
∑

𝑙∈𝑏𝑐
∑

𝑥∈ (𝑏 × 𝑟 × 𝑙 × 𝑥). We consider
two sizes of containers , 20’ and 40’, and three different weight classes
, depending on whether the containers are light, medium, or heavy.
Table 1 shows the notation used in the following sections.

Since the slots of a cell must be both occupied or both empty, the
number of empty slots after loading operations at each port has to be
even.

4. Integer programming models

In this section we present a BSW model, to address the problem
considering all the assumptions presented in Section 3, BW and BS
models that address the problem by relaxing some of the assumptions,
and finally a Base model to address the basic problem.

4.1. A new model with 20’ and 40’ containers, considering container
weights and stability constraints: the BSW model

We first present the BSW model, which involves five sets of binary
variables: two sets to identify the position of 20’ and 40’ containers at
each port, 𝑡 and 𝑓 ; two variable sets to identify those containers that
are unproductively moved, 𝜏 and 𝜑; and a last variable set to identify
empty cells, 𝑒.

𝑡𝑚𝑖𝑗 (𝑝, 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if one 20’ container of class 𝑚 with destination port 𝑗
is stowed in slot (p,x) after the loading operations at
port 𝑖

0, otherwise

(1)

𝑖 ∈ ; ∀𝑗 ∈ 𝑖; ∀𝑚 ∈ ; ∀𝑝 ∈  ; ∀𝑥 ∈ 

𝑚
𝑖𝑗 (𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if one 40’ container of class 𝑚 with destination port 𝑗
is stowed in cell 𝑝 after the loading operations at
port 𝑖

0, otherwise

(2)

𝑖 ∈ ; ∀𝑗 ∈ 𝑖; ∀𝑚 ∈ ; ∀𝑝 ∈  ;

𝑖(𝑝, 𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if one 20’ container stowed in slot (p,x) at port 𝑖 − 1
is relocated at port 𝑖

0, otherwise
(3)

𝑖 ∈ ; ∀𝑝 ∈  ; ∀𝑥 ∈ 



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

∀

𝑒

∀

s
a
b

M

R
m
i
w
l
b
(
e
o
(
s
i
4
i
t

Table 1
Notation employed throughout the paper.
𝛺 Container ship capacity, which is expressed in terms of the total number of slots.
 Index set of ports.  = {1,… , 𝑁}
 Ports where loading operations can occur.  = {1,… , 𝑁 − 1} ⊆ 
𝑟 Ports where rehandles can occur. 𝑟 = {2,… , 𝑁 − 1} ⊆  ⊆ 
𝑖 Set of possible destination ports for containers loaded at port 𝑖. 𝑖 = {𝑖 + 1,… , 𝑁}
 Index set of bays.  = {1,… , 𝐵}
𝑏 Index set of rows of bay 𝑏. 𝑏 = {1,… , 𝑅𝑏}
𝑏𝑟 Index set of tiers of bay 𝑏, row 𝑟. 𝑏𝑟 = {1,… , 𝐿𝑏𝑟}
 Set of cells.  = {𝑝 = (𝑏, 𝑟, 𝑙) ∶ 𝑏 ∈ , 𝑟 ∈ 𝑏 , 𝑙 ∈ 𝑏𝑟}
− Set of cells. − = {𝑝 = (𝑏, 𝑟, 𝑙) ∶ 𝑏 ∈ , 𝑟 ∈ 𝑏 , 𝑙 ∈ 𝑏𝑟 ⧵ {𝐿𝑏𝑟}}.

If 𝑝 = (𝑏, 𝑟, 𝑙) ∈ −, then 𝑝′ = (𝑏, 𝑟, 𝑙 + 1).
 Index set of slots.  = {1, 2}
 Set of weight classes (light, medium and heavy).
 𝛼 Set of 𝛼 ∈ {20, 40} feet containers.
 𝛼
𝑖 Set of 𝛼 ∈ {20, 40} feet containers loaded at port i.

𝑇 𝛼
𝑖𝑗 Number of 𝛼 ∈ {20, 40} feet containers going from port 𝑖 to port 𝑗.

𝑇 𝛼𝑚
𝑖𝑗 Number of 𝛼 ∈ {20, 40} feet containers of weight class 𝑚 going from port 𝑖 to port 𝑗.

𝐸𝑖 Number of empty cells after loading operations at port 𝑖.
𝑊𝑖 Total weight on board after loading operations at port 𝑖.
𝑤𝛼

𝑚 Weight of an 𝛼 ∈ {20, 40} feet container of class 𝑚.
𝑑𝑏 Distance from a cell in bay 𝑏 to the central longitudinal position of the ship. Distances to the

center of bays located on the bow side are represented by positive values while those of bays
located on the stern side are represented by negative values.

𝑑𝑥
𝑏 Distance from slot 𝑥 in bay 𝑏 to the central longitudinal position of the ship. Distances to the

center of slots in bays located on the bow side are represented by positive values while those
of slots in bays located on the stern side are represented by negative values.

𝑑𝑙 Distance from tier 𝑙 to the centerline of the ship. Distances of tiers above the centerline are
represented by positive values while those of tiers below the centerline are represented by
negative values.

𝐺−, 𝐺+ Longitudinal center of gravity limits. Maximum deviation distance of the LCG from 0, that is,
the central longitudinal position of the ship.

𝐿−, 𝐿+ Vertical center of gravity limits. Maximum deviation distance of the VCG from 0, that is, the
centerline of the ship.
w
C
c
c
c
b
b
i
c
l
V

4
t

w
𝑒
d
o

𝜑𝑖(𝑝) =

⎧

⎪

⎨

⎪

⎩

1, if one 40’ container stowed in cell 𝑝 at port 𝑖 − 1 is
relocated at port 𝑖

0, otherwise
(4)

𝑖 ∈ ; ∀𝑝 ∈  ;

𝑖(𝑝) =

{

1, if cell 𝑝 is empty after the loading operations at port 𝑖
0, otherwise

(5)

𝑖 ∈ ; ∀𝑝 ∈  ;

With these variables, the objective function of the BSW model (6)
eeks to minimize the total number of rehandles. We weight the 20’
nd 40’ rehandles alike, but a penalty could be applied to the 40’ ones
y adding a coefficient greater than one to the 𝜑 variables.

in
∑

𝑖∈𝑟

∑

𝑝∈

(

∑

𝑥∈
𝜏𝑖(𝑝, 𝑥) + 𝜑𝑖(𝑝)

)

(6)

The BSW model constraints are as in Box I.

For the sake of clarity, constraints can be divided into two groups:
ehandles and Storage. The Rehandles group identifies the unproductive
oves at each port and involves constraints (7) to (10). When a cell

s occupied, before unloading operations at port 𝑖, by a 40’ container
hose destination is not that port and it is no longer there after the

oading operations, there has been an unproductive rehandle in that cell
y constraints (7). Likewise for 20’ containers and slots by constraints
8). If a container going to port 𝑖 occupies a given cell at that port, then
ither the cells above it are occupied by containers going to that port
r the containers in those positions will be relocated, by constraints
9). Similarly, if a container is relocated at port 𝑖, either the upper
lot is occupied by a container going to that port or this container
s also relocated. Since constraints (9) combine rehandles of 20’ and
0’ containers, it could happen that one rehandle of a 40’ container
s incorrectly used, without any 40’ container being involved, when
4

wo rehandles of 20’ containers are needed. Therefore, constraints (10) l
ensure that rehandles of 40’ containers in cell 𝑝 at port 𝑖 can only occur
if there is one 40’ container not going to this port stowed in that cell
before unloading operations at port 𝑖 and the cell is not occupied by
20’ containers or by a 40’ container with destination port 𝑖.

The Storage group ensures proper stowage and involves constraints
(11) to (21). Constraints (11)–(14) specify the number of containers of
each size and type to be loaded in each port. Constraints (11) and (13)
do so for the 20’ containers and (12) and (14) for the 40’ containers.
Upon leaving port 𝑖, the number of containers to be unloaded at the
next port 𝑖+ 1 equals the total number of containers going to port 𝑖+ 1
loaded since the beginning of the route, by constraints (11) and (12).
By constraints (13) and (14), the number of containers to be unloaded
at any port after 𝑖 + 1, upon leaving port 𝑖 + 1, equals the number
of containers on board the ship when it leaves port 𝑖 plus those that

ill be loaded at 𝑖 + 1. Constraints (15) set the number of empty cells.
onstraints (16) ensure that a cell stows at most one 40’ or one 20’
ontainer in its first slot. This is also satisfied for the second slot by
onstraints (17), which also ensure that a cell stows either two 20’
ontainers or none. Constraints (17) and (18) prevent 20’ containers
eing stacked on top of 40’ containers, and no containers can hang
ecause of constraints (19). Following the approximation described
n Pacino et al. (2011), ship stability is related to the position of the
enter of gravity. Constraints (20) and (21) limit the position of the
ongitudinal center of gravity LCG and of the vertical center of gravitiy
CG within given thresholds.

.2. A new model considering container weights and stability constraints:
he BW model

To consider the stability constraints but only one container size,
e present the BW model. It uses the same definition for 𝑓 , 𝜑, and
variables as before. Since it only deals with 40’ containers, variables
efining positions and rehandles of 20’ containers and the stacking and
ccupancy assumptions described in Section 3, items b and c, are no

onger considered.



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

M

s

𝑓

𝑅𝑒ℎ𝑎𝑛𝑑𝑙𝑒𝑠 ∶

𝑓𝑚
𝑖−1𝑗 (𝑝) − 𝑓𝑚

𝑖𝑗 (𝑝) ≤ 𝜑𝑖(𝑝) ∀𝑖 ∈ 𝑟, ∀𝑗 ∈ 𝑖, ∀𝑚 ∈ , ∀𝑝 ∈  (7)

𝑡𝑚𝑖−1𝑗 (𝑝, 𝑥) − 𝑡𝑚𝑖𝑗 (𝑝, 𝑥) ≤ 𝜏𝑖(𝑝, 𝑥) ∀𝑖 ∈ 𝑟, ∀𝑗 ∈ 𝑖, ∀𝑚 ∈ , ∀𝑝 ∈  , ∀𝑥 ∈  (8)
∑

𝑚∈

(

𝑡𝑚𝑖−1𝑖(𝑝, 𝑥) − 𝑡𝑚𝑖−1𝑖(𝑝
′, 𝑥) + 𝑓𝑚

𝑖−1𝑖(𝑝) − 𝑓𝑚
𝑖−1𝑖(𝑝

′)
)

+ 𝜏𝑖(𝑝, 𝑥) + 𝜑𝑖(𝑝) ≤ 𝜏𝑖(𝑝′, 𝑥) + 𝜑𝑖(𝑝′) + 𝑒𝑖−1(𝑝′) ∀𝑖 ∈ 𝑟, ∀𝑝 ∈ −, ∀𝑥 ∈  (9)

𝜑𝑖(𝑝) +
∑

𝑚∈

(

∑

𝑗∈𝑖−1

𝑡𝑚𝑖−1𝑗 (𝑝, 1) + 𝑓𝑚
𝑖−1𝑖(𝑝)

)

≤ 1 ∀𝑖 ∈  ⧵ {1}, ∀𝑝 ∈  (10)

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 ∶

∑

𝑝∈

∑

𝑥∈
𝑡𝑚𝑖(𝑖+1)(𝑝, 𝑥) =

𝑖
∑

𝑘=1
𝑇 20𝑚
𝑘(𝑖+1) ∀𝑖 ∈ , ∀𝑚 ∈  (11)

∑

𝑝∈
𝑓𝑚
𝑖(𝑖+1)(𝑝) =

𝑖
∑

𝑘=1
𝑇 40𝑚
𝑘(𝑖+1) ∀𝑖 ∈ , ∀𝑚 ∈  (12)

∑

𝑝∈

∑

𝑥∈
𝑡𝑚𝑖𝑗 (𝑝, 𝑥) =

∑

𝑝∈

∑

𝑥∈
𝑡𝑚(𝑖+1)𝑗 (𝑝, 𝑥) − 𝑇 20𝑚

(𝑖+1)𝑗 ∀𝑖 ∈  ⧵ {𝑁 − 1}, ∀𝑗 ∈ 𝑖+1, ∀𝑚 ∈  (13)

∑

𝑝∈
𝑓𝑚
𝑖𝑗 (𝑝) =

∑

𝑝∈
𝑓𝑚
(𝑖+1)𝑗 (𝑝) − 𝑇 40𝑚

(𝑖+1)𝑗 ∀𝑖 ∈  ⧵ {𝑁 − 1}, ∀𝑗 ∈ 𝑖+1, ∀𝑚 ∈  (14)

∑

𝑝∈
𝑒𝑖(𝑝) = 𝐸𝑖 ∀𝑖 ∈  (15)

∑

𝑗∈𝑖

∑

𝑚∈

(

𝑡𝑚𝑖𝑗 (𝑝, 1) + 𝑓𝑚
𝑖𝑗 (𝑝)

)

+ 𝑒𝑖(𝑝) = 1 ∀𝑖 ∈ , ∀𝑝 ∈  (16)

∑

𝑗∈𝑖

∑

𝑚∈

(

𝑡𝑚𝑖𝑗 (𝑝, 2) − 𝑡𝑚𝑖𝑗 (𝑝, 1)
)

= 0 ∀𝑖 ∈ , ∀𝑝 ∈  (17)

∑

𝑗∈𝑖

∑

𝑚∈

(

𝑡𝑚𝑖𝑗 (𝑝
′, 2) − 𝑡𝑚𝑖𝑗 (𝑝, 2)

)

≤ 0 ∀𝑖 ∈ , ∀𝑝 ∈ − (18)

𝑒𝑖(𝑝) − 𝑒𝑖(𝑝′) ≤ 0 ∀𝑖 ∈ , ∀𝑝 ∈ − (19)

𝐺− ≤

∑

𝑗∈𝑖
∑

𝑚∈
∑

𝑝=(𝑏,𝑐,𝑙)∈

(

∑

𝑥∈ 𝑑𝑥𝑏𝑤
20
𝑚 𝑡𝑚𝑖𝑗 (𝑝, 𝑥) + 𝑑𝑏𝑤40

𝑚 𝑓𝑚
𝑖𝑗 (𝑝)

)

𝑊𝑖
≤ 𝐺+ ∀𝑖 ∈  (20)

𝐿− ≤

∑

𝑗∈𝑖
∑

𝑚∈
∑

𝑝=(𝑏,𝑐,𝑙)∈ 𝑑𝑙
(

∑

𝑥∈ 𝑤20
𝑚 𝑡𝑚𝑖𝑗 (𝑝, 𝑥) +𝑤40

𝑚 𝑓𝑚
𝑖𝑗 (𝑝)

)

𝑊𝑖
≤ 𝐿+ ∀𝑖 ∈  (21)

Box I.
𝐺

𝐿

The BW model is:

in
∑

𝑖∈𝑟

∑

𝑝∈
𝜑𝑖(𝑝) (22)

.t.
𝑚
𝑖−1𝑗 (𝑝) − 𝑓𝑚

𝑖𝑗 (𝑝) ≤ 𝜑𝑖(𝑝) ∀𝑖 ∈ 𝑟, ∀𝑗 ∈ 𝑖, ∀𝑚 ∈ , ∀𝑝 ∈  (23)
∑

𝑚∈

(

𝑓𝑚
𝑖−1𝑖(𝑝) − 𝑓𝑚

𝑖−1𝑖(𝑝
′)
)

+ 𝜑𝑖(𝑝) ≤ 𝜑𝑖(𝑝′) + 𝑒𝑖(𝑝′) ∀𝑖 ∈ 𝑟, ∀𝑝 ∈ − (24)

∑

𝑝∈
𝑓𝑚
𝑖(𝑖+1)(𝑝) =

𝑖
∑

𝑘=1
𝑇 40𝑚
𝑘(𝑖+1) ∀𝑖 ∈ , ∀𝑚 ∈  (25)

∑

𝑝∈
𝑓𝑚
𝑖𝑗 (𝑝) =

∑

𝑝∈
𝑓𝑚
(𝑖+1)𝑗 (𝑝) − 𝑇 40𝑚

(𝑖+1)𝑗 ∀𝑖 ∈  ⧵ {𝑁 − 1}, ∀𝑗 ∈ 𝑖+1, ∀𝑚 ∈ 

(26)
∑

𝑝∈
𝑒𝑖(𝑝) = 𝐸𝑖 ∀𝑖 ∈  (27)

∑

𝑗∈𝑖

∑

𝑚∈
𝑓𝑚
𝑖𝑗 (𝑝) + 𝑒𝑖(𝑝) = 1 ∀𝑖 ∈ , ∀𝑝 ∈  (28)

𝑒 (𝑝) − 𝑒 (𝑝′) ≤ 0 ∀𝑖 ∈ , ∀𝑝 ∈ − (29)
5

𝑖 𝑖
− ≤
∑

𝑗∈𝑖
∑

𝑚∈
∑

𝑝=(𝑏,𝑐,𝑙)∈ 𝑑𝑏𝑤40
𝑚 𝑓𝑚

𝑖𝑗 (𝑝)

𝑊𝑖
≤ 𝐺+ ∀𝑖 ∈  (30)

− ≤
∑

𝑗∈𝑖
∑

𝑚∈
∑

𝑝=(𝑏,𝑐,𝑙)∈ 𝑑𝑙𝑤40
𝑚 𝑓𝑚

𝑖𝑗 (𝑝)

𝑊𝑖
≤ 𝐿+ ∀𝑖 ∈  (31)

The formulation is similar to that of the previous model but without
considering the loading of 20’ containers. The objective function (22)
minimizes the number of rehandles. Constraints (23)–(24) identify
them and constraints (25)–(27) identify the number of containers for
each destination and in each weight class that must be on board when
leaving each port as well as the number of empty slots. Constraints
(28)–(29) enforce the rules regarding stowage: each slot holds at most
one container and no containers can hang in the air. Finally, constraints
(30)–(31) handle the stability of the ship.

4.3. A new model with 20’ and 40’ containers and no stability constraints:
the BS model

We now present the BS model, which considers two container sizes,
20’ and 40’ containers, and size-related constraints but no weight-
related constraints such as stability constraints. It uses the definition
of the 𝜏 and 𝜑 variables in the BSW model. With respect to variables



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

t

𝑡

∀

𝑓

∀

w
a
T
u
a

4
m

c
u

𝑓

T
t
m
a
b

5

a
s
n
s
i
d
f
a

i
e
d
a
p
l
m
m
f
b
b
s
o
i
o
e
w
g
s
h
r

5

a
e
p
a
p
a
t
r
t

f
s
𝑖
a
𝑡
t
i
𝑖
i
t

S
n
m
v
𝑖
V
O

5

s
p
𝐵

c
a
p
p

describing the position of 20’ and 40’ containers, the super-index 𝑚 for
he weight class is no longer needed, as follows:

𝑖𝑗 (𝑝, 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if one 40’ container with destination port 𝑗 is
stowed in slot (p,x) after the loading operations
at port 𝑖

0, otherwise

(32)

𝑖 ∈ ; ∀𝑗 ∈ 𝑖; ∀𝑝 ∈  ; ∀𝑥 ∈ 

𝑖𝑗 (𝑝) =

⎧

⎪

⎨

⎪

⎩

1, if one 40’ container with destination port 𝑗 is stowed
in cell 𝑝 after the loading operations at port 𝑖

0, otherwise
(33)

𝑖 ∈ ; ∀𝑗 ∈ 𝑖; ∀𝑝 ∈  ;

As container weights are not included in this model, we can assume,
ithout loss of generality, that the ship is full after loading operations
t each port 𝑖 by adding 𝐸𝑖 containers of 40’ from port 𝑖 to port 𝑖 + 1.
hese containers will not produce rehandles and will be assigned to the
pper positions. So, in this model we do not need to declare 𝑒 variables
nd we are considering 𝐹𝑖,𝑖+1 as 𝐹𝑖,𝑖+1 + 𝐸𝑖 ∀𝑖 ∈ . See Eq. (34) to

Eq. (45) in Box II.
The objective function (34) minimizes the number of rehandles of

20’ and 40’ containers. Constraints (35)–(38) identify the unproductive
moves of 20’ and 40’ containers at each port and constraints (39)–(45)
ensure that all containers are properly loaded and stored in a similar
way to the BSW model but without considering the stability constraints.

.4. A base model with 40’ containers and no stability constraints: the base
odel

We finally present the Base model, which addresses the problem by
onsidering a single container size (40’) and no stability constraints. It
ses the definition of the 𝑓 and 𝜑 variables in the BS model. Again, we

do not need to declare 𝑒 variables considering 𝐹𝑖,𝑖+1 as 𝐹𝑖,𝑖+1+𝐸𝑖 ∀𝑖 ∈ .
We can formulate the problem as follows:

Min
∑

𝑖∈𝑟

∑

𝑝∈
𝜑𝑖(𝑝, 𝑥) (46)

s.t.

𝑓𝑖−1𝑗 (𝑝) − 𝑓𝑖𝑗 (𝑝) ≤ 𝜑𝑖(𝑝) ∀𝑖 ∈ 𝑟, ∀𝑗 ∈ 𝑖, ∀𝑝 ∈  (47)

𝑖−1𝑖(𝑝, 𝑥) + 𝜑𝑖(𝑝, 𝑥) ≤ 𝑓𝑖−1𝑖(𝑝′, 𝑥) + 𝜑𝑖(𝑝′, 𝑥) ∀𝑖 ∈ 𝑟, ∀𝑝 ∈ − (48)
∑

𝑝∈
𝑓𝑖(𝑖+1)(𝑝) =

𝑖
∑

𝑘=1
𝑇 40
𝑘(𝑖+1) ∀𝑖 ∈  (49)

∑

𝑝∈
𝑓𝑖𝑗 (𝑝) =

∑

𝑝∈
𝑓(𝑖+1)𝑗 (𝑝) − 𝑇 40

(𝑖+1)𝑗 ∀𝑖 ∈  ⧵ {𝑁 − 1}, ∀𝑗 ∈ 𝑖+1 (50)

∑

𝑗∈𝑖
𝑓𝑖𝑗 (𝑝) = 1 ∀𝑖 ∈ , ∀𝑝 ∈  (51)

he objective function (46) minimizes the number of rehandles along
he ship’s route. Constraints (47) and (48) identify these unproductive
oves. Constraints (49)–(50) set the number of containers to be loaded

t each port. Finally, constraints (51) ensure that each cell is occupied
y one container.

. An insert-and-fix matheuristic to solve the generalized CSPP

The BSW model requires a large number of variables and constraints
nd solvers such as CPLEX do not provide satisfactory results for real-
ize instances. The structure of the model, in which the variables can be
aturally divided into groups corresponding to the ports on the route,
uggests the use of matheuristics such as Insert-and-Fix (Wolsey, 1998),
n which, at each step, the variables corresponding to a new port are
efined as binary and variables which were binary in previous steps are
ixed. Matheuristics of this kind, and others of similar structure such
6

s Relax-and-Fix or Fractional-Relax-and-Fix, have been widely used a
n lot-sizing and scheduling problems arising in foundries (de Araujo
t al., 2008), animal feed plants (Toso et al., 2009), or flat-panel
isplay industries (Lee and Lee, 2020), as well as in other areas such
s bin packing problems (Paquay et al., 2018), production–distribution
lanning (Wei et al., 2017), or production planning and warehouse
ayout problems (Zhang et al., 2017). One main advantage of these
atheuristics is that they are based on the decomposition of mathe-
atical models, so they inherit their main advantages: they are easy

or practitioners to implement; they are flexible, allowing constraints to
e added or removed to fulfill the requirements of the specific problem
eing solved; and they are solved by commercial solvers, which have
hown a dramatic increase in performance in recent years, often by five
r even more orders of magnitude (Bixby, 2002), and are constantly
mproving. This section presents an Insert-and-Fix matheuristic based
n the decomposition of the BSW model into simpler models that are
asier to solve. It starts from the stowage plan at port 𝑁 − 1 (in which
e have all the information about what to transport to port 𝑁) and
oes backwards, including at each iteration a previous port, until the
towage plans for all ports are built. It is combined with constructive
euristics that make it possible to obtain feasible solutions in short
unning times.

.1. The Insert-and-Fix algorithm: IF

Insert-and-Fix is an iterative algorithm that solves, at each iteration,
n integer linear problem (ILP), which is a subset of the original. In
ach iteration, the variables that had been declared as binary in the
revious iteration are set to the values obtained and new constraints
re added together with the binary variables inherent in them. The
roposed Insert-and-Fix algorithm, IF algorithm, is also combined with
heuristic procedure, StowagePlan(), to provide initial feasible solu-

ions. Fig. 2 shows a schematic diagram of the IF algorithm, where 𝜋∗

epresents the best solution found so far and 𝜋 the solution from which
he initial solution provided to the solver is obtained.

In the first iteration, 𝑖 = 𝑁 −1, the StowagePlan function provides a
easible solution to the entire problem 𝜋 that initially equals 𝜋∗. The ILP
olved in this iteration considers only the stowage plans at ports 𝑖 − 2,
−1, and 𝑖, with the aim of minimizing the number of rehandles at 𝑖−1
nd 𝑖. The problem therefore consists of: (i) the sets of binary variables
and 𝑓 to identify the position of 20’ and 40’ containers and variables 𝑒
o identify empty cells at ports 𝑖−2, 𝑖−1, and 𝑖; (ii) variables 𝜏 and 𝜑 to
dentify the containers that are unproductively moved at ports 𝑖−1 and
; and (iii) the Storage and Rehandle constraints from the BSW model
nvolving these variables. We give the solver an initial solution taking
he corresponding part of 𝜋.

In all successive iterations 𝑖, such that 𝑖 ∈ 𝑟 and 𝑖 ≤ 𝑁 − 2,
towagePlan builds new solutions and, if necessary, updates 𝜋 and 𝜋∗. A
ew ILP is then solved to obtain the stowage plans at ports 𝑖−2 and 𝑖−1,
inimizing the number of rehandles at 𝑖−1 and 𝑖. It considers the binary

ariables 𝑡, 𝑓 , and 𝑒 at ports 𝑖−2 and 𝑖−1, and 𝜏 and 𝜑 at ports 𝑖−1 and
, together with the corresponding Storage and Rehandle constraints.
ariables 𝑡, 𝑓 , and 𝑒 at port 𝑖 are fixed to the values provided by 𝜋.
nce 𝑖 equals 2, the algorithm ends with the best solution found 𝜋∗.

.2. Description of the StowagePlan function

The StowagePlan function builds feasible solutions for the complete
towage problem. Algorithm 1 shows its pseudocode. It receives as
arameters the iteration 𝑖, the solution of the model previously solved,
𝑣, as well as 𝜋∗ and 𝜋, and returns the updated solutions 𝜋∗ and 𝜋.

When 𝑖 = 𝑁 − 1, the sets 𝐵𝑣, 𝜋∗ and 𝜋 are empty. First, the
onstructive algorithm FinalPort builds the stowage plan of the ship
t port 𝑁 −1 (see line 3). Then, taking this stowage plan as its starting
oint, another constructive algorithm PriorPort generates the stowage
lan at port 𝑁 − 2. This process is repeated until the stowage plans for

ll ports are obtained (lines 4 and 5).



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.
Min
∑

𝑖∈𝑟

∑

𝑝∈

(

∑

𝑥∈
𝜏𝑖(𝑝, 𝑥) + 𝜑𝑖(𝑝)

)

(34)

s.t.

𝑓𝑖−1𝑗 (𝑝) − 𝑓𝑖𝑗 (𝑝) ≤ 𝜑𝑖(𝑝) ∀𝑖 ∈ 𝑟, ∀𝑗 ∈ 𝑖, ∀𝑝 ∈  (35)

𝑡𝑖−1𝑗 (𝑝, 𝑥) − 𝑡𝑖𝑗 (𝑝, 𝑥) ≤ 𝜏𝑖(𝑝, 𝑥) ∀𝑖 ∈ 𝑟, ∀𝑗 ∈ 𝑖, ∀𝑝 ∈  , ∀𝑥 ∈  (36)

𝑡𝑖−1𝑖(𝑝, 𝑥) + 𝑓𝑖−1𝑖(𝑝) + 𝜏𝑖(𝑝, 𝑥) + 𝜑𝑖(𝑝) ≤ 𝑡𝑖−1𝑖(𝑝′, 𝑥) + 𝑓𝑖−1𝑖(𝑝′) + 𝜏𝑖(𝑝′, 𝑥) + 𝜑𝑖(𝑝′) ∀𝑖 ∈ 𝑟, ∀𝑝 ∈ −, ∀𝑥 ∈  (37)

𝜑𝑖(𝑝) +
∑

𝑗∈𝑖−1

𝑡𝑖−1𝑗 (𝑝, 1) + 𝑓𝑖−1𝑖(𝑝) ≤ 1 ∀𝑖 ∈  ⧵ {1}, ∀𝑝 ∈  (38)

∑

𝑝∈

∑

𝑥∈
𝑡𝑖(𝑖+1)(𝑝, 𝑥) =

𝑖
∑

𝑘=1
𝑇 20
𝑘(𝑖+1) ∀𝑖 ∈  (39)

∑

𝑝∈
𝑓𝑖(𝑖+1)(𝑝) =

𝑖
∑

𝑘=1
𝑇 40
𝑘(𝑖+1) ∀𝑖 ∈  (40)

∑

𝑝∈

∑

𝑥∈
𝑡𝑖𝑗 (𝑝, 𝑥) =

∑

𝑝∈

∑

𝑥∈
𝑡(𝑖+1)𝑗 (𝑝, 𝑥) − 𝑇 20

(𝑖+1)𝑗 ∀𝑖 ∈  ⧵ {𝑁 − 1}, ∀𝑗 ∈ 𝑖+1 (41)

∑

𝑝∈
𝑓𝑖𝑗 (𝑝) =

∑

𝑝∈
𝑓(𝑖+1)𝑗 (𝑝) − 𝑇 40

(𝑖+1)𝑗 ∀𝑖 ∈  ⧵ {𝑁 − 1}, ∀𝑗 ∈ 𝑖+1 (42)

∑

𝑗∈𝑖

(

𝑡𝑖𝑗 (𝑝, 1) + 𝑓𝑖𝑗 (𝑝)
)

= 1 ∀𝑖 ∈ , ∀𝑝 ∈  (43)

∑

𝑗∈𝑖

(

𝑡𝑖𝑗 (𝑝, 2) − 𝑡𝑖𝑗 (𝑝, 1)
)

= 0 ∀𝑖 ∈ , ∀𝑝 ∈  (44)

∑

𝑗∈𝑖

(

𝑡𝑖𝑗 (𝑝′, 2) − 𝑡𝑖𝑗 (𝑝, 2)
)

≤ 0 ∀𝑖 ∈ , ∀𝑝 ∈ − (45)

Box II.
Fig. 2. Schematic figure of the Insert-and-Fix algorithm.
7



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

𝑖
a
p

Algorithm 1 A heuristic algorithm to provide initial solutions for the solvers.
1: function StowagePlan(𝑖, 𝐵𝑣, 𝜋∗, 𝜋)
2: if 𝑖 = 𝑁 − 1 then
3: 𝜋𝑁−1 ← FinalPort(𝑁−1,𝑁−1) ⊳ Let 𝜋𝑖 be the stowage plan of the ship when leaving port 𝑖
4: for 𝑘 = 𝑖 to 𝑘 = 2 do
5: 𝜋𝑘−1 ← PriorPort(𝑘, 𝜋𝑘,  , )
6: 𝜋∗ ← 𝜋
7: else
8: 𝜋1 ← 𝜋; 𝜋2 ← 𝜋;
9: 𝜋𝑖

1 ← 𝐵𝑣𝑖; 𝜋𝑖
2 ← 𝐵𝑣𝑖; ⊳ Let 𝐵𝑣𝑖 be the stowage plan at port 𝑖 given by the ILP

10: 𝜋𝑖−1
2 ← 𝐵𝑣𝑖−1

11: for 𝑘 = 𝑖 to 𝑘 = 2 do
12: 𝜋𝑘−1

1 ← PriorPort(𝑘, 𝜋𝑘
1 ,  , )

13: for 𝑘 = 𝑖 − 1 to 𝑘 = 2 do
14: 𝜋𝑘−1

2 ← PriorPort(𝑘, 𝜋𝑘
2 ,  , )

15: if R(𝜋1) ≤ R(𝜋2) then
⊳ Let R(𝜋) the number of total rehandles produced by solution 𝜋

16: if R(𝜋1) < R(𝜋∗) then 𝜋∗ ← 𝜋1
17: if R(𝜋𝑖+1

1 ) < R(𝜋𝑖+1) or [R(𝜋𝑖+1
1 ) = R(𝜋𝑖+1) and R(𝜋1) < R(𝜋)] then 𝜋 ← 𝜋1

18: else
19: if R(𝜋2) < R(𝜋∗) then 𝜋∗ ← 𝜋2
20: if R(𝜋𝑖+1

2 ) < R(𝜋𝑖+1) or [R(𝜋𝑖+1
2 ) = R(𝜋𝑖+1) and R(𝜋2) < R(𝜋)] then 𝜋 ← 𝜋2

21: return 𝜋∗, 𝜋
Fig. 3. Example showing the construction phase used in FinalPort() function. The 20’ containers are highlighted in red and 40’ containers in gray.
r
p

5
𝑁

For the remaining ports two new solutions 𝜋1 and 𝜋2 are created.
Both share with 𝜋 the stowage plans at ports 𝑁 − 1,… , 𝑖 + 1. Their
stowage plans at port 𝑖 are given by the solution of the ILP solved in
the previous iteration, 𝐵𝑣𝑖. As regards 𝜋1, the stowage plans at ports
−1,… , 1 are built by using PriorPort. As regards 𝜋2, the stowage plan
t port 𝑖 − 1 is also taken from the ILP and all other stowage plans at
orts 𝑖−2,… , 1 are built by PriorPort. If 𝜋1 or 𝜋2 improves on the best

solution found in terms of the number of rehandles, 𝜋∗ is updated in
lines 16 and 19. Let 𝜋1 (or 𝜋2) be the solution with the least number
of rehandles. If it produces a lower number of rehandles than 𝜋 at port
𝑖+1, or produces the same rehandles at port 𝑖+1 and has a lower overall
8

l

number, then 𝜋 is updated to 𝜋1 (or 𝜋2) in line 17 (or 20). The idea
behind this is simple. At each iteration we aim to set the best stowage
plan at port 𝑖, so we keep the one that produces the fewest rehandles
at 𝑖 + 1, regardless of its total number of rehandles. The objective is to
educe this number step by step, each time setting a port with the least
ossible number of rehandles.

.2.1. FinalPort: Obtaining the stowage plan of the ship when leaving port
− 1
The constructive algorithm used to obtain the stowage plan in the

ast port 𝑁 − 1 works in two phases: construction and repair. The



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

𝑏

n

b

T
𝑟
i
s

6

f
p
v
m
b
s
G
t
1

6

t
L
b
a
a
R
f

construction phase starts by placing the 20’ containers from heavier
to lighter. When there are no 20’ containers left, it places the 40’
containers also from heavier to lighter. It is carried out starting from
the bay that occupies the central position in the ship, 𝑏central = 𝐵+1

2 ,
filling each of its rows one by one. Once all the rows of the central bay
have been filled, the construction phase fills the remaining bays from
the central bay to the stern and bow of the ship. First bays 𝑏central−1 and

central+1, then 𝑏central−2 and 𝑏central+2, . . . , until bays 1 and 𝐵 are filled
up or no containers are left. If the number of bays is even, 𝑏central is not
integer, so it would start by filling bays ⌈𝑏central − 1⌉ and ⌊𝑏central + 1⌋,
then ⌈𝑏central −2⌉ and ⌊𝑏central +2⌋, and so on up to bays 1 and 𝐵. Fig. 3
shows an example of how this construction phase works. The ship is
initially empty (Fig. 3(a)) and the algorithm starts filling each of the
central bay rows (Fig. 3(b)) with 20’ containers. Once all the rows of
the central bay have been filled, it fills bay 𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙 − 1 (Fig. 3(c)) and
then bay 𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙 + 1 (Fig. 3(d)). The algorithm continues filling bays
𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙 −2, 𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙 +2, and 𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙 −3 with 20’ containers until there are
no 20’ containers left (Fig. 3(e)). At that stage, it starts placing the 40’
containers also from heavier to lighter. If there are free tiers in the row
and bay where it has run out of 20’ containers, they are filled up with
40’ containers (Fig. 3(f)).

The repair phase checks whether the stowage plan meets the sta-
bility conditions. First, it checks whether the vertical center of gravity,
VCG, is below the centerline of the vessel. When this is not the case,
movements are made until this condition is satisfied following the
RepairVCG() function described in Algorithm 2. First, the bays are
explored looking for empty cells below the centerline and occupied cells
above the centerline on lines 2–8. If they are found, containers placed
above the centerline are shifted to empty cells below the centerline
on lines 9–11. Then, if 𝑉 𝐶𝐺 is not yet within the limits, changes
are made between heavier containers above the centerline and lighter
containers below the centerline that are in the same bay and of the
same size. For each bay, the algorithm builds two lists (lines 13–14),
𝐻𝐶 to store the information of heavy and medium weight containers
placed above the centerline and 𝐿𝐶 to store the information of light
and medium weight containers placed below the centerline. Tiers below
the centerline of all rows in each bay are explored (line 16), looking
for cells or slots occupied by light or medium weight containers (lines
19–20 and 27–28). Simultaneously, the upper tiers of the rows in the
same bay are explored (line 17), looking for cells or slots occupied by
heavy or medium weight containers (lines 21–22 and 29–30). As soon
as there are 40’ containers in both 𝐿𝐶 and 𝐻𝐶, i.e., 𝐿𝐶[0] and 𝐻𝐶[0]
are not empty, their positions are exchanged on line 24. Similarly, when
both 𝐿𝐶 and 𝐻𝐶 have 20’ containers located in slots of same index,
𝐿𝐶[1] and 𝐻𝐶[1] or 𝐿𝐶[2] and 𝐻𝐶[2], their positions are exchanged
on line 32. Then, the repair phase checks whether the LCG is within
the required limits, otherwise a similar procedure is used exchanging
heavier and lighter containers in the same tier and of the same size
between bays, until the longitudinal stability conditions are satisfied.

5.2.2. PriorPort: Obtaining the stowage plan at port 𝑘−1 given the stowage
plan at port 𝑘

The PriorPort function provides the stowage plan at port 𝑘 − 1. It
initializes it to that at port 𝑘 and then adjusts the plan to suit port
𝑘−1, removing containers to be loaded at port 𝑘 and adding those to be
unloaded at port 𝑘. Let 𝑘 and 𝑘 be the sets of 20’ and 40’ containers
loaded at port 𝑘, 𝑛𝑒𝑥𝑡 and 𝑛𝑒𝑥𝑡 the sets of 20’ and 40’ containers
to be unloaded at port 𝑘 ordered by non-increasing weight, and 𝑟𝑒𝑚
and 𝑟𝑒𝑚 empty sets that will be used to store temporary container
movements.

All tiers are traversed from top to bottom. At tier 𝑡, all its slots are
explored, first the slots of the central bay 𝑏central =

𝐵+1
2 , then those of

bay 𝑏central − 1, those of bay 𝑏central + 1, and so on up to bay 𝐵. If the
umber of bays is even, it starts with bay ⌈𝑏central − 1⌉, then moves on

to ⌊𝑏central+1⌋, and so on up to bay 𝐵. Each time a slot or cell occupied
y a container in  or in  is found, it is removed from the stowage
9

𝑘 𝑘 C
plan and from the corresponding set and the following steps are carried
out:

Step 1. Go through all the slots above tier 𝑡 in the same bay and row,
removing all existing containers. The 20’ containers are added
to set 𝑟𝑒𝑚 and the 40’ containers to set 𝑟𝑒𝑚 in non-increasing
weight order.

Step 2. Go through all the tiers below tier 𝑡, from tier 𝑡− 1 to 1, in the
same bay and row. If a container in the given tier is in 𝑘 or 𝑘,
it is removed, updating the corresponding set, and the next tier,
i.e., the tier below, is explored. Otherwise, the lower tiers are no
further explored. Consequently, no containers are left hanging in
the stowage plan at any time. If one 20’ container is removed from
a cell in slot 1 but the container in slot 2 cannot be removed, then
the algorithm will only explore the lower slots with index 1.

Step 3. Fill up the slots that have been left empty in that bay and row,
as follows:

Step 3.1. If there are 40’ containers in the row, but not enough
40’ containers in sets 𝑟𝑒𝑚 and 𝑛𝑒𝑥𝑡 to fill up the row,
all the 40’ containers are removed and added to set 𝑟𝑒𝑚
in non-increasing weight order. Then go to Step 3.3. If
there are 40’ containers in the row and there are enough
40’ containers in sets 𝑟𝑒𝑚 and 𝑛𝑒𝑥𝑡 to fill it, then go to
Step 3.4.

Step 3.2. If there are cells in the row occupied by just one 20’
container, fill in the other slots by assigning first containers
from 𝑟𝑒𝑚 until it is emptied and then from 𝑛𝑒𝑥𝑡 . If it is not
possible to fill all these cells, remove as many containers as
necessary from the uncompleted cells to fill the maximum
number of cells.

Step 3.3. Complete as many cells as possible by assigning 20’
containers, first from set 𝑟𝑒𝑚 and then from 𝑛𝑒𝑥𝑡 . First
the slots of index 1 are filled and later those of index 2.

Step 3.4. Complete the row by assigning 40’ containers, first from
set 𝑟𝑒𝑚 and then from 𝑛𝑒𝑥𝑡 .

he procedure ends when all the sets, 𝑘, 𝑘, 𝑛𝑒𝑥𝑡 , 𝑛𝑒𝑥𝑡 , 𝑟𝑒𝑚 ,
𝑒𝑚 , are empty. This algorithm also uses the repair phase explained
n Section 5.2.1 to ensure that the stowage plan provided meets the
tability conditions.

. Computational experiments

We conducted an extensive computational analysis to test the per-
ormance of the integer programming models and the matheuristic
roposed in this paper. They were coded in C++ and executed on
irtual machines with 4 virtual processors and 16 GBytes of RAM
emory each. The virtual machines run Windows 10 Enterprise 64

its. Virtual machines are run in an OpenStack virtualization platform
upported by several blade servers, each with two 18-core Intel Xeon
old 5220 processors running at 2.2 GHz and 384 GBytes of RAM. All

he algorithms and models were run on a single thread using CPLEX
2.10 as a solver.

.1. Test instances

We use the 405 instances from Roberti and Pacino (2018), in which
he ship is full in all ports. These instances are divided into 5 groups:
ong, Mixed, Short, Authentic, and Required. The number of ports
etween the port of load and the port of discharge of containers is on
verage large in Long instances, small in Short instances, and follows
more random distribution in Mixed and Authentic instances. The

equired instances are more challenging because they are generated to
orce rehandles. Since these instances were generated to test the basic

SPP with all containers of the same size and no stability conditions,



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

𝐿
s
m
f

a
w
𝑅
4
t
t
s

s
d

Algorithm 2 A heuristic algorithm to repair solutions not satisfying the VCG limits.
1: function RepairVCG(𝜋𝑖)
2: for 𝑏 ∈  do
3: 𝐸𝑏, 𝐹 𝑏 ← ∅
4: for 𝑟 ∈ 𝑏 do
5: if There are empty cells below the centerline then
6: Add 𝑟 to 𝐸𝑏 sorted by increasing number of containers placed in the rows.
7: else
8: Add 𝑟 to 𝐹 𝑏 sorted by non increasing weight of containers at the row above the centerline
9: for 𝑏 ∈  do

10: for 𝑒 ∈ 𝐸𝑏 do
11: Fill 𝑒 up to the centerline with containers of rows in 𝐹 𝑏 and if 𝑉 𝐶𝐺 into the limits then END
12: for 𝑏 ∈  do
13: 𝐻𝐶 ← ∅ ⊳ Heavy and medium weight containers placed in cells or slots above the centerline
14: 𝐿𝐶 ← ∅ ⊳ Light and medium weight containers placed in cells or slots below the centerline
15: 𝐿 ← max{𝐿𝑏𝑟 ∶ 𝑟 ∈ 𝑏}
16: for 𝑡𝑏𝑒𝑙𝑜𝑤 = 1 to 𝑡𝑏𝑒𝑙𝑜𝑤 < 𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 do
17: 𝑡𝑢𝑝𝑝𝑒𝑟 ← 𝐿 − 𝑡𝑏𝑒𝑙𝑜𝑤 + 1
18: for 𝑟 ∈ 𝑏 do
19: if 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑡𝑏𝑒𝑙𝑜𝑤) = 𝐿𝑖𝑔ℎ𝑡 or 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑡𝑏𝑒𝑙𝑜𝑤) = 𝑀𝑒𝑑𝑖𝑢𝑚 then
20: Add info to 𝐿𝐶[0]
21: if 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑡𝑢𝑝𝑝𝑒𝑟) = 𝐻𝑒𝑎𝑣𝑦 or 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑡𝑢𝑝𝑝𝑒𝑟) = 𝑀𝑒𝑑𝑖𝑢𝑚 then
22: Add info to 𝐻𝐶[0]
23: if 𝐻𝐶[0] <> ∅ and 𝐿𝐶[0] <> ∅ then
24: Exchange positions from containers in 𝐻𝐶[0] and 𝐿𝐶[0]
25: if VCG into the limits then END
26: for 𝑥 ∈  do
27: if 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑥, 𝑡𝑏𝑒𝑙𝑜𝑤) = 𝐿𝑖𝑔ℎ𝑡 or 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑥, 𝑡𝑏𝑒𝑙𝑜𝑤) = 𝑀𝑒𝑑𝑖𝑢𝑚 then
28: Add info to 𝐿𝐶[𝑥]
29: if 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑥, 𝑡𝑢𝑝𝑝𝑒𝑟) = 𝐻𝑒𝑎𝑣𝑦 or 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠(𝑏, 𝑟, 𝑥, 𝑡𝑢𝑝𝑝𝑒𝑟) = 𝑀𝑒𝑑𝑖𝑢𝑚 then
30: Add info to 𝐻𝐶[𝑥]
31: if 𝐻𝐶[𝑥] <> ∅ and 𝐿𝐶[𝑥] <> ∅ then
32: Exchange positions from containers in 𝐻𝐶[𝑥] and 𝐿𝐶[𝑥]
33: if VCG into the limits then END
34: return 𝜋𝑖
t
(
2
T
a
r
c
m

the ship is seen as a single bay with 𝑙 tiers and 𝑟 rows. The number
of ports varies between 𝑁 = 6, 8, 10, the number of tiers between

= 6, 8, 10, and the number of rows between 𝑅 = 100, 300, 500. These
ets of instances are used in Section 6.2, in which we compare the Base
odel with other exact methods previously proposed in the literature

or the basic CSPP.
The models and algorithms tested in Sections 6.3 and 6.4 require

more complex ship structure. Instead of considering a single bay,
e consider 𝐵 = 10 bays with a number of rows varying between
= 5, 15, 25. Each position defined by bay-row-tier can contain one

0’ or two 20’ containers. Therefore the ship capacity ranges from 600
o 5000 TEUs. In addition, the original instances needed to be adapted
o consider weight- and size-related constraints. We generated four new
ets of instances:

TR1: Only considering 40’ containers.
TR2: Considering 40’ containers and different container weights: 1/3 of

the containers on board are light, 1/3 medium, and 1/3 heavy.
TR3: Dividing the total number of TEUs between 20’ and 40’ contain-

ers. In this case, the loading percentage of 20’ and 40’ containers
varies. In one third of the instances, 25% of the TEUs are occupied
by 20’ containers and 75% by 40’ containers. In another third,
75% are occupied by 20’ containers and 25% by 40’ containers.
The remaining instances have a 50%–50% occupancy rate.

TR4: Adding weights to TR3 with rates of light, medium, and heavy
containers being 1/3-1/3-1/3.

The weights of the containers are set according to Table 2. When
tability conditions are included, we assume that the LCG should not
eviate from the central bay (or the midpoint between the two central
10

A

Table 2
Weights of the containers in tonnes according to their size 
and weight class .



 Light Medium Heavy

20’ 7 14 21
40’ 10 20 30

bays if the number of bays is even) by more than 5% of the total length
of the ship. Therefore, in the instances used we consider G = 20 feet. We
take the line that crosses the half height of the rows as the centerline
of the ship.

6.2. Comparing the base model with existing exact methods for the basic
CSPP

We compare the performance of the Basemodel with the mathemati-
cal formulations proposed by Avriel et al. (1998) and by Parreño-Torres
et al. (2019), and the exact approach by Roberti and Pacino (2018),
which combines a column generation-based lower bounding procedure
with an MIP model. We refer to them as APSW, PAP, and RP, respec-
ively. An alternative formulation was also proposed by Ding and Chou
2015) but it is less efficient than APSW and PAP (Parreño-Torres et al.,
019; Roberti and Pacino, 2018), so it is not tested in this comparison.
o compare the Base model with the existing methods, we have to
dapt the definition of the binary variables and assume that each bay-
ow coordinate holds a 20’ container, as the other methods do. We
oded both the Avriel et al. (1998) and the Parreño-Torres et al. (2019)
odels and used the original code of RP kindly provided by the authors.
ll results except RP were obtained with CPLEX 12.10. In the case of RP



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

w
f
w
p

m
P
L
a
o
o
a
R
b
i
t
B
m
r

a
t
m
p
b
i

Table 3
Comparison between the Base model and the methods proposed by Avriel et al. (1998) [APSW ], Parreño-Torres et al.
(2019) [PAP], and Roberti and Pacino (2018) [RP], on the instances from Roberti and Pacino (2018).

APSW PAP RP Base APSW PAP RP Base

N # O F O F O F O F #OS CPU CPU CPU CPU

Short
6 27 27 27 27 27 27 27 27 27 27 52 34 1 8
8 27 27 27 27 27 27 27 27 27 27 245 310 4 62

10 27 24 27 25 25 27 27 27 27 24 569 874 16 284
81 78 81 79 79 81 81 81 81 78 278 388 7 111

Mixed
6 27 27 27 27 27 27 27 27 27 27 80 50 1 7
8 27 27 27 27 27 27 27 27 27 27 339 341 5 57

10 27 24 27 23 23 27 27 27 27 23 670 916 19 276
81 78 81 77 77 81 81 81 81 77 347 411 8 105

Authentic
6 27 27 27 27 27 27 27 27 27 27 74 80 1 14
8 27 27 27 27 27 27 27 27 27 27 407 771 5 190

10 27 23 27 16 18 27 27 25 27 16 916 1231 60 402
81 77 81 70 72 81 81 79 81 70 395 610 16 171

Long
6 27 27 27 27 27 27 27 27 27 27 71 55 1 13
8 27 27 27 27 27 27 27 27 27 27 428 383 8 109

10 27 22 27 22 22 27 27 27 27 21 743 915 26 324
81 76 81 76 76 81 81 81 81 75 388 414 11 135

Required
6 27 0 27 8 27 27 27 10 27 0 - - - -
8 27 0 27 3 22 19 27 3 27 0 - - - -

10 27 1 27 2 11 15 25 1 27 1 162 177 10 110
81 1 81 13 60 61 79 14 81 1 162 177 10 110

Total/Avg 405 310 405 315 364 385 403 336 405 301 350 451 10 129

Columns ‘‘N’’, ‘‘#’’, ‘‘O’’, and ‘‘F’’ indicate number of ports, instances tested in each group, and optimal and feasible
solutions obtained, respectively. Column ‘‘#OS’’ represents the number of instances optimally solved by the 4 methods
and the ‘‘CPU" columns show the average running time (in seconds) on those instances. The ‘‘Total/Avg.’’ row indicates
the totals of the columns that contain absolute frequencies and the averages of the columns that contain average values.
Rows with similar information are available for each of the five groups of instances. The notation ‘‘-’’ is used when the
averages cannot be calculated.
6
g

s
m
w
b
i
h

s
i
a
i
i
o
‘
i
a
4
a
i
s
o
1
b
d
o

e used CPLEX 12.7.1, as the code provided by the authors included
unctions that are not available in CPLEX 12.10 and the adaptations
ere far from straightforward. A maximum running time of one hour
er instance was imposed on each method.

Table 3 shows the comparison between the Base, APSW, and PAP
odels as well as the RP method on the 405 instances from Roberti and
acino (2018) grouped by type of instances (Short, Mixed, Authentic,
ong, and Required) and by number of ports 𝑁 . The Basemodel reaches
solution in all the tested instances and obtains a greater number of

ptimal solutions than APSW and PAP (336 versus 310 and 315). It
ptimally solves all the instances in the Short, Mixed, and Long groups,
ll but two instances in the Authentic group, but only 14 out of 81
equired instances. A greater number of optimal solutions is obtained
y RP, reaching 385, even though it does not provide a feasible solution
n 2 instances. The last 4 columns in Table 3 show the average running
ime in the 301 instances optimally solved by the four methods. The
ase model is 63% faster than the APSW model and 71% than the PAP
odel. Nevertheless, RP outperforms the Base model with an average

unning time of just 10 s.

In the light of the results, the proposed model improves on the
lternative APSW and PAP models, although the best exact method for
he basic CSPP problem is RP. However, the RP model cannot be easily
odified to add new conditions, except if they can be handled in the
ricing problem. On the other hand, the here proposed MIP model can
e easily extended to handle additional constraints (although this may
ncrease solution times).
11

t

.3. Performance of the proposed IP models for the basic CSPP and its
eneralizations

We aim to evaluate how the simplified problem, which only con-
iders 40’ containers with no stability constraints, becomes more and
ore complex as we add different container sizes as well as container
eights and stability constraints. Table 4 shows the results obtained
y the integer programming models, 𝐵𝑎𝑠𝑒, 𝐵𝑊 , 𝐵𝑆, and 𝐵𝑆𝑊 , on the
nstance sets TR1, TR2, TR3, and TR4, considering a time limit of one
our per instance.

With respect to the simplified problem, the Base model finds a fea-
ible solution in every single instance tested. It optimally solves all the
nstances in the Short, Mixed, and Authentic groups with zero rehandles
nd an average running time lower than 75 s. All but one of the Long
nstances were also optimally solved. However, only 26 out of the 81
nstances in the Required group were optimally solved, with an average
f 1.4 rehandles. The high number of rehandles indicated in column

‘R’’ explains the poor quality of the feasible solutions when optimality
s not ensured. If we study the problem considering container weight
nd stability constraints, the BW model obtains solution in 301 of the
05 instances, solving 238 of them to optimality. It can be seen that
s the number of ports increases, the difficulty of the problem also
ncreases. The model that considers different container sizes and no
tability constraints, BS, performs worse than the BW model because
f the stacking constraints. It reaches optimal and feasible solutions in
94 and 283 instances out of 405 respectively. The problem considering
oth different container sizes and stability constraints is much more
ifficult. The BSW model only solves 74 instances and just 2 instances
f 10 ports and 5 of 8 ports. From Table 4 it can be concluded that
he inclusion of container sizes has a stronger effect than the container



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.
Table 4
Performance of the Base, BW, BS, and BSW models on Short, Mixed, Authentic, Long, and Required instances, grouped by number of ports 𝑁 .

Base BW BS BSW

N # O F R CPU O F R CPU O F R CPU O F R CPU

Short
6 27 27 27 0.0 3 27 27 0.0 83 27 27 0.0 321 16 16 0.0 871
8 27 27 27 0.0 20 22 22 0.0 816 18 20 1.0 1339 4 4 0.0 1396

10 27 27 27 0.0 107 9 9 0.0 623 6 11 22.0 2548 0 1 6.0 3600
81 81 81 0.0 44 58 58 0.0 445 51 58 4.5 1094 20 21 0.3 1101

Mixed
6 27 27 27 0.0 3 27 27 0.0 81 27 27 0.0 187 15 15 0.0 1042
8 27 27 27 0.0 18 25 25 0.0 731 19 22 85.2 1424 1 1 0.0 2339

10 27 27 27 0.0 123 15 16 0.2 1444 5 12 484.8 2732 0 0 – –
81 81 81 0.0 48 67 68 0.0 641 51 61 126.1 1134 16 16 0.0 1123

Authentic
6 27 27 27 0.0 6 27 27 0.0 178 27 27 0.0 421 11 12 0.7 1639
8 27 27 27 0.0 53 19 20 0.1 1175 12 17 269.2 2647 0 0 – –

10 27 27 27 0.0 337 2 9 10.9 3325 0 7 1737.1 3600 0 0 – –
81 81 81 0.0 132 48 56 1.8 1040 39 51 328.2 1599 11 12 0.7 1639

Long
6 27 27 27 0.0 5 27 27 0.0 134 26 27 0.0 463 13 13 0.0 1105
8 27 27 27 0.0 43 24 25 0.2 1056 18 22 1.4 2053 0 0 – –

10 27 26 27 0.0 362 10 13 0.8 1726 3 11 429.6 2875 1 1 0.0 2161
81 80 81 0.0 137 61 65 0.2 807 47 60 79.3 1489 14 14 0.0 1181

Required
6 27 17 27 2.1 1429 3 27 232.9 3225 4 27 198.3 3114 1 11 3.3 3397
8 27 3 27 4.4 3273 1 18 4.6 3412 2 17 792.9 3251 0 0 – –

10 27 6 27 285.2 2950 0 9 16.8 3600 0 9 1904.7 3600 0 0 – –
81 26 81 97.2 2551 4 54 120.8 3350 6 53 678.8 3240 1 11 3.3 3397

Total/Avg 405 349 405 19.5 582 238 301 22.1 1199 194 283 231.2 1679 62 74 0.7 1549

Columns ‘‘N’’, ‘‘#’’, ‘‘O’’, and ‘‘F’’ indicate number of ports, instances tested in each group, and optimal and feasible solutions obtained, respectively. The ‘‘R’’
and ‘‘CPU’’ columns represent the average number of rehandles and the average running time (in seconds) on instances in which a feasible solution is obtained.
The ‘‘Total/Avg.’’ row indicates the totals of the columns that contain absolute frequencies and the averages of the columns that contain average values. Rows
with similar information are available for each of the five groups of instances. The notation ‘‘-’’ is used when the averages cannot be calculated.
a

Table 5
Performance of the IF algorithm on the instances of set TR4 solved and not solved by
BSW model, grouped by number of ports 𝑁 .

BSW IF IF

N # F R CPU R CPU NSF R CPU

Short 6 27 16 0.0 871 0.7 360 11 0.0 827
8 27 4 0.0 1396 1.5 368 23 22.2 2131

10 27 1 6.0 3600 1.0 408 26 91.2 2992
81 21 0.3 1101 0.9 364 60 48.1 2265

Mixed 6 27 15 0.0 1042 0.0 39 12 0.0 163
8 27 1 0.0 2339 0.0 36 26 12.3 2038

10 27 0 – – – – 27 40.7 2303
81 16 0.0 1123 0.0 39 65 21.8 1802

Authentic 6 27 12 0.7 1639 2.8 1390 15 2.0 1287
8 27 0 – – – – 27 19.2 2665

10 27 0 – – – – 27 55.8 3384
81 12 0.7 1639 2.8 1390 69 29.8 2647

Long 6 27 13 0.0 1105 3.5 1086 14 6.1 1142
8 27 0 – – – – 27 38.0 2854

10 27 1 0.0 2161 2.0 1218 26 114.8 3220
81 14 0.0 1181 3.4 1096 67 61.1 2638

Required 6 27 11 3.3 3397 34.4 3236 16 68.9 3600
8 27 0 – – – – 27 135.0 3511

10 27 0 – – – – 27 256.9 3563
81 11 3.3 3397 34.4 3236 70 166.9 3551

Total/Avg 405 74 0.7 1549 6.5 1025 331 66.9 2601

Columns ‘‘N’’ and ‘‘#’’ indicate the number of ports and number of instances tested
in each group. The ‘‘F’’ and ‘‘NSF’’ columns represent the instances solved and not
solved by BSW model, and columns ‘‘R’’ and ‘‘CPU’’ represent the average number of
rehandles and the average running time (in seconds). The ‘‘Total/Avg.’’ row indicates
the totals of the columns that contain absolute frequencies and the averages of the
columns that contain average values. Rows with similar information are available for
each of the five groups of instances.

weights and stability constraints, and that the combination of both
12

characteristics makes the resulting model very difficult to solve.
6.4. Performance of the proposed matheuristic algorithm: IF algorithm

We evaluate the matheuristic IF algorithm on the TR4 instances; the
results are shown in Table 5. We differentiate between the instances
in which the model obtains a solution and those in which no solution
is obtained. Out of the 74 instances solved by the BSW model, the IF
algorithm solves the 16 in the Mixed group with an average of zero
rehandles, the 21 in the Short group with an average of 0.9 rehandles,
and the 12 and 14 instances in the Authentic and the Long group with
an average of 2.8 and 3.4 rehandles. These values are slightly larger
than those obtained by the BSW model. However, the average number
of rehandles increases considerably in the Required group with 34.4
rehandles. Out of the 331 instances not solved by the BSW model, the
IF algorithm reaches a solution in each of them with an overall average
number of rehandles of 66.9.

Table 6 shows the results obtained by the IF algorithm considering
s a time limit one, two, and four hours (IF 1h, IF 2h, and IF 4h).

We assign a maximum time at each iteration that is equal to the
overall time remaining divided by the number of iterations still to be
performed. The table also shows the solutions obtained by the fully
constructive procedure Heur and by the BSW model with the initial
solutions provided by Heur and a time limit of one, two, and four hours
per instance. We refer to the model with an initial solution provided as
BSW ∗. The Heur procedure consists of using the StowagePlan function
with inputs 𝑖 = 𝑁 − 1 and empty sets. The Heur procedure obtains a
solution in all instances, with an average of 128.8 rehandles. Launching
the BSW model with initial solutions, we see that no satisfactory
results are obtained, since in most cases CPLEX does not manage to
improve on the initial solution, due to the high number of variables
and restrictions involved in the model. It only improves the average
number of rehandles by 6.4% in an average running time of 3203 s. If
instead with a time limit of one hour, the model is run with two and
four hours, the average number of rehandles is cut by 2.7% and 5.4%.
The IF algorithm obtains an average of 55.8 rehandles in an average



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.

r
t
f
o
i
4
p
p
a
4
a
8
a
R
i
1

7

w
t
p
t
s
a
s
t
s
F
i
c
t

Table 6
Performance of the IF algorithm with time limits of one, two, and three hours on the Authentic, Long, Mix, Required,
and Short instances, grouped by number of ports 𝑁 .

Heur BSW ∗ IF 1h IF 2h IF 4h

N # R R 1h R 2h R 4h R CPU R CPU R CPU

Short
6 27 35.4 14.6 11.4 10.1 0.4 550.4 0 660 0.4 930
8 27 110.8 99.0 95.0 79.9 19.1 1869.5 7 3070 5.3 5621

10 27 235.7 235.7 227.3 212.3 87.9 2896.0 59 5225 23.7 8341
81 127.3 116.4 111.3 100.8 35.8 1771.9 22 2985 9.8 4964

Mixed
6 27 14.5 3.7 3.7 3.7 0.0 94 0.0 92 0.0 93
8 27 93.5 90.2 85.7 83.8 11.9 1964 11.6 3502 10.9 6597

10 27 207.6 207.6 207.6 207.6 40.7 2303 30.1 3943 26.8 7521
81 106.2 101.6 100.0 99.4 17.5 1454 13.9 2512 12.5 4737

Authentic
6 27 22.7 16.4 14.5 7.0 2.4 1333 2.0 2473 1.8 4311
8 27 52.9 52.9 51.5 48.4 19.2 2665 17.1 4750 12.3 8806

10 27 114.7 114.7 114.7 114.7 55.8 3384 40.0 6625 25.1 11837
81 63.4 61.3 60.2 56.7 25.8 2460 19.7 4616 13.0 8318

Long
6 27 34.4 15.5 12.6 12.0 4.9 1115 4.4 1976 4.4 3709
8 27 129.5 125.6 121.9 121.9 38.0 2854 34.1 5336 34.7 10546

10 27 197.0 197.0 195.9 195.8 110.6 3146 97.4 6123 88.3 12168
81 120.3 112.7 110.1 109.9 51.1 2371 45.3 4478 42.4 8808

Required
6 27 113.0 64.9 54.6 49.7 54.9 3452 51.0 6896 49.8 13608
8 27 211.7 211.7 205.0 205.0 135.0 3511 126.3 6891 122.0 13513

10 27 356.0 356.0 356.0 356.0 256.9 3563 247.4 7069 222.0 14082
81 226.9 210.9 205.2 203.6 148.9 3508 141.6 6952 131.3 13734

Total/Avg 405 128.8 120.6 117.4 114.1 55.8 2313 48.5 4309 41.8 8112

Column ‘‘N’’ and ‘‘#’’ indicate number of ports and number of instances tested in each group, and columns ‘‘R’’ and
‘‘CPU’’ represent the average number of rehandles and the average running time (in seconds). The ‘‘Total/Avg.’’ row
indicates the totals of the columns that contain absolute frequencies and the averages of the columns that contain
average values. Rows with similar information are available for each of the five groups of instances.
w
C
A
i
i

A

m
w
I

unning time of 2313 s by considering a time limit of one hour. It cuts
he number of rehandles by 13% and 25% with time limits of two and
our hours, respectively. Focusing on the number of ports, the number
f rehandles is reduced by 9.7% with time limits of 1 h to 4 h in the
nstances with 6 ports. It is reduced by 17% with time limits of 1 to

h in the instances with 8 ports and by 30% in the instances with 10
orts. The results reveal a significant increase in the difficulty of the
roblem as the number of ports increases, dramatically increasing the
verage number of rehandles. The IF algorithm with a time limit of
h solves the instances with 6 ports in the Short, Mixed, Authentic,

nd Long groups with an average of 1.6 rehandles, the instances with
ports with an average of 15.7 rehandles, and those of 10 ports with

n average of 40.9 rehandles. The average number of rehandles for the
equired group is 131.3: an average of 49.8 rehandles for the 6-port

nstances, 122.0 rehandles for the 8-port instances, and 222.0 for the
0-port instances.

. Conclusions and future research

We have studied a simplified container stowage planning problem
ith different container sizes, weights and stability constraints which,

o the best of our knowledge, has never been solved without decom-
osition before. We provided integer programming formulations for
his general problem and for three special cases: (i) identical container
izes and different container weights, (ii) identical container weights
nd different container sizes, and (iii) identical container weights and
izes. Through the computational study conducted, it can be seen
hat the model proposed for case (iii), that is for the basic container
towage planning problem, outperforms the state-of-the-art models.
urthermore, we observe that the difficulty of solving the problems
ncreases considerably as containers of different sizes and stability
onstraints are included. In fact, when solved via a commercial solver,
he integer programming model only obtained 2 feasible solutions in
13
the 81 instances of 10 ports and 5 in the 81 instances of 8 ports within
the time limit of one hour. Although the formulation did not perform
well as a whole, failing to provide a solution in 82% of the instances,
exploiting its decomposable structure led to the IF algorithm, which
solves each of the instances tested. IF is an Insert-and-Fix matheuristic
combined with constructive algorithms providing the model solved at
each iteration with an initial solution. We observed that the average
number of rehandles increases sharply with the number of ports. The
IF algorithm solves all the instances of 6 and 8 ports in the Short,
Mixed, Authentic, and Long groups with an average of 8.7 rehandles;
however, the average of rehandles is 40.9 for the 10-port instances in
these groups.

Future research directions will focus on including other character-
istics of the real problems as well as on developing new modeling
techniques and other metaheuristic approaches that will not rely on
the performance of integer programming solvers.

CRediT authorship contribution statement

Consuelo Parreño-Torres: Conceptualization, Methodology, Soft-
are, Validation, Data curation, Writing - original draft. Hatice Çalık:
onceptualization, Methodology, Writing - review & editing. Ramon
lvarez-Valdes: Supervision, Methodology, Conceptualization, Fund-

ng acquisition, Writing - review & editing. Rubén Ruiz: Conceptual-
zation, Resources, Funding acquisition, Writing - review & editing.

cknowledgments

We would like to thank the anonymous referees for their com-
ents which have helped to significantly improve this paper. This
ork has been partially supported by the Spanish Ministry of Science,

nnovation, and Universities, FPU Grant A-2015-12849 and under the



Computers and Operations Research 133 (2021) 105383C. Parreño-Torres et al.
project “OPTEP-Port Terminal Operations Optimization” (No. RTI2018-
094940-B-I00) financed with FEDER, Spain funds. The second au-
thor acknowledges the partial support by Data-driven logistics, Spain
(FWO-S007318N) and Internal Funds KU Leuven, Spain.

References

Ambrosino, D., Paolucci, M., Sciomachen, A., 2015a. Experimental evaluation of mixed
integer programming models for the multi-port master bay plan problem. Flexible
Serv. Manuf. J. 27 (2–3), 263–284.

Ambrosino, D., Paolucci, M., Sciomachen, A., 2015b. A MIP heuristic for multi port
stowage planning. Transp. Res. Proc. 10, 725–734.

Ambrosino, D., Paolucci, M., Sciomachen, A., 2017. Computational evaluation of a MIP
model for multi-port stowage planning problems. Soft Comput. 21 (7), 1753–1763.

de Araujo, S., Arenales, M., Clark, A., 2008. Lot sizing and furnace scheduling in small
foundries. Comput. Oper. Res. 35, 916–932.

Avriel, M., Penn, M., 1993. Exact and approximate solutions of the container ship
stowage problem. Comput. Ind. Eng. 25 (1–4), 271–274.

Avriel, M., Penn, M., Shpirer, N., 2000. Container ship stowage problem: complexity
and connection to the coloring of circle graphs. Discrete Appl. Math. 103 (1–3),
271–279.

Avriel, M., Penn, M., Shpirer, N., Witteboon, S., 1998. Stowage planning for container
ships to reduce the number of shifts. Ann. Oper. Res. 76, 55–71.

Bixby, R.E., 2002. Solving real-world linear programs: A decade and more of progress.
Oper. Res. 50 (1), 3–15.

Botter, R., Brinati, M., 1992. Stowage container planning: A model for getting an
optimal solution. In: Vieria, C., Martins, P., C., K. (Eds.), Proc. IFIP TC5/WG5.6
Seventh International Conference on Computer Applications in the Automation of
Shipyard Operations and Ship Design, VII. North Holland, pp. 217–229.

Ding, D., Chou, M.C., 2015. Stowage planning for container ships: A heuristic algorithm
to reduce the number of shifts. European J. Oper. Res. 246 (1), 242–249.

Dubrovsky, O., Levitin, G., Penn, M., 2002. A genetic algorithm with a compact solution
encoding for the container ship stowage problem. J. Heuristics 8 (6), 585–599.

Jensen, R., Pacino, D., Ajspur, M., Vesterdal, C., 2018. Container Vessel Stowage
Planning. Weilbach.
14
Kang, J.-G., Kim, Y.-D., 2002. Stowage planning in maritime container transportation.
J. Oper. Res. Soc. 53 (4), 415–426.

Kessel, O., 1977. Planning the Loading and Unloading Procedures for Containerized
Cargoships: An OR Case-Study. Technical Report, IMSOR, Technical University of
Denmark.

Larsen, R., Pacino, D., 2020. A heuristic and a benchmark for the stowage planning
problem. Marit. Econ. Logist. 23 (1), 94–122.

Lee, Y., Lee, K., 2020. Lot-sizing and scheduling in flat-panel display manufacturing
process. Omega 93, 102036.

Li, J., Zhang, Y., Ma, J., Ji, S., 2018. Multi-port stowage planning for inland container
liner shipping considering weight uncertainties. IEEE Access 6, 66468–66480.

Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T., 2011. Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. In: International
Conference on Computational Logistics. Springer, pp. 286–301.

Paquay, C., Limbourg, S., Schyns, M., Oliveira, J., 2018. MIP-based constructive
heuristics for the three-dimensional Bin Packing Problem with transportation
constraints. Int. J. Prod. Res. 56, 1581–1592.

Parreño-Torres, C., Alvarez-Valdes, R., Parreño, F., 2019. Solution strategies for a
multiport container ship stowage problem. Math. Probl. Eng. Art. ID 9029267.

Roberti, R., Pacino, D., 2018. A decomposition method for finding optimal container
stowage plans. Transp. Sci. 52 (6), 1444–1462.

Toso, E., Morabito, R., Clark, A., 2009. Lot sizing and sequencing optimisation at an
animal-feed plant. Comput. Ind. Eng. 57, 813–821.

UNCTAD, 2019. Review of maritime transport 2019. In: United Nations Conference on
Trade and Development. URL https://unctad.org/en/PublicationsLibrary/rmt2019_
en.pdf.

Wei, W., Guimaraes, L., Amorim, P., Almada-Lobo, B., 2017. Tactical production and
distribution planning with dependency issues on the production process. Omega
67, 99–114.

Wilson, I.D., Roach, P.A., 1999. Principles of combinatorial optimization applied to
container-ship stowage planning. J. Heuristics 5 (4), 403–418.

Wolsey, L., 1998. Integer Programming. Wiley.
Zhang, E., Mei, Q., Liu, M., Zheng, F., 2018. Stowage planning in multiple ports with

shifting fee minimization. Sci. Program. Art. ID 3450726.
Zhang, G., Nishi, T., Turner, S., Oga, K., Li, X., 2017. An integrated strategy for

a production planning and warehouse layout problem: Modeling and solution
approaches. Omega 68, 85–94.

http://refhub.elsevier.com/S0305-0548(21)00153-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb1
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb2
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb2
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb2
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb3
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb3
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb3
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb4
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb4
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb4
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb5
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb6
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb7
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb8
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb8
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb8
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb9
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb10
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb11
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb12
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb13
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb14
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb15
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb16
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb16
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb16
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb17
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb17
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb17
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb18
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb19
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb20
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb21
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb21
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb21
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb22
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb22
https://unctad.org/en/PublicationsLibrary/rmt2019_en.pdf
https://unctad.org/en/PublicationsLibrary/rmt2019_en.pdf
https://unctad.org/en/PublicationsLibrary/rmt2019_en.pdf
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb24
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb25
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb26
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb27
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb27
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb27
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb28
http://refhub.elsevier.com/S0305-0548(21)00153-2/sb28

	Solving the generalized multi-port container stowage planning problem by a matheuristic algorithm
	Introduction
	Related work
	Problem description
	Integer programming models
	A new model with 20' and 40' containers, considering container weights and stability constraints: the BSW model
	A new model considering container weights and stability constraints: the BW model
	A new model with 20' and 40' containers and no stability constraints: the BS model
	A base model with 40' containers and no stability constraints: the base model

	An insert-and-fix matheuristic to solve the generalized CSPP 
	The Insert-and-Fix algorithm: IF
	Description of the StowagePlan function
	FinalPort: Obtaining the stowage plan of the ship when leaving port N-1
	PriorPort: Obtaining the stowage plan at port k-1 given the stowage plan at port k


	Computational experiments
	Test instances
	Comparing the base model with existing exact methods for the basic CSPP
	Performance of the proposed IP models for the basic CSPP and its generalizations
	Performance of the proposed matheuristic algorithm: IF algorithm

	Conclusions and future research
	CRediT authorship contribution statement
	Acknowledgments
	References


