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Abstract

Background and Objective: Optical coherence tomography (OCT) is

a useful technique to monitor retinal layer state both in humans and animal

models. Automated OCT analysis in rats is of great relevance to study possible

toxic effect of drugs and other treatments before human trials. In this paper, two

different approaches to detect the most significant retinal layers in a rat OCT

image are presented. Methods: One approach is based on a combination of lo-

cal horizontal intensity profiles along with a new proposed variant of watershed

transformation and the other is built upon an encoder-decoder convolutional

network architecture. Results: After a wide validation, an averaged absolute

distance error of 3.77±2.59 and 1.90±0.91 μm is achieved by both approaches,

respectively, on a batch of the rat OCT database. After a second test of the

deep-learning-based method using an unseen batch of the database, an averaged

absolute distance error of 2.67 ± 1.25 μm is obtained. The rat OCT database

used in this paper is made publicly available to facilitate further comparisons.

Conclusions: Based on the obtained results, it was demonstrated the compet-
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itiveness of the first approach since outperforms the commercial Insight image

segmentation software (Phoenix Research Labs) as well as its utility to gener-

ate labelled images for validation purposes speeding significantly up the ground

truth generation process. Regarding the second approach, the deep-learning-

based method improves the results achieved by the more conventional method

and also by other state-of-the-art techniques. In addition, it was verified that

the results of the proposed network can be generalized to new rat OCT images.

Keywords: Optical coherence tomography, rodent OCT, rat OCT, layer

segmentation, convolutional neural networks, intensity profile.

1. Introduction

Optical coherence tomography (OCT) is a powerful imaging technology able

to visualize high-resolution cross sections of the retina that has become a promi-

nent ophthalmic diagnostic technique and is routinely used to monitor retinal

damage [31]. A way of monitoring the retinal damage is through the analysis of

retinal layer thickness. To obtain proper layer thickness measurements, a previ-

ous accurate segmentation of the retinal layers from the OCT images is essential.

Due to the fact that manual OCT segmentation is tedious, time-consuming and

suffers from inter and intra-observer variability, the development of automatic

layer segmentation algorithms is of importance. However, automatic layer seg-

mentation can be very challenging because of factors such as speckle noise and

low image contrast that are present in OCT images [21].

OCT can be adapted for rodent eye imaging in order to be used in research

studies of ophthalmic diseases and also for treatment evaluation. It must be

taken into account that human and rodent retina present significant differences.

For example, rodents have no macula or fovea and their lenses are relatively

larger. Regarding the thickness of the retinal layers, the ganglion cell layer

(GCL) in rodents is not visually distinguishable (app. 2μm) while in humans

is around 20-60μm. The third innermost layer, the inner plexiform layer (IPL),

on the contrary, is relatively thick in the rat retina (app. 60 μm). In Figure 1,
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the differences between human and rodent OCT images can be observed.

(a) (b)

Figure 1: Retinal layers in two OCT scans: (a) Human retina, Spectralis OCT (Heidelberg

Eng.). (b) Rodent retina, Micron IV (Phoenix Research Labs). ILM: Internal Limiting Mem-

brane, RNFL: Retinal Nerve Fiber Layer. GCL: Ganglion Cell Layer. IPL: Inner Plexiform

Layer. INL: Inner Nuclear Layer. OPL: Outer Plexiform Layer. ONL: Outer Nuclear Layer.

IS: Inner Segment. OS: Outer Segment. RPE: Retinal Pigment Epithelium. b: image back-

ground.

While numerous methods for retinal layer segmentation have been proposed

in the literature for human OCT images [11, 8, 18, 9, 15, 24, 10, 16, 25, 19, 13,

12, 27, 17], few have addressed the segmentation of rodent eyes [21, 31, 29, 2, 3].

Yazdanpanah et al. proposed a semi-automated algorithm based on the Chan-

Vese active contours without edges to address the segmentation of 6 retinal layer

boundaries. It was a multi-phase, level-set Mumford-Shah model that incorpo-

rated a shape prior based on expert anatomical knowledge of the retinal layers

[31]. They applied their algorithm to 80 retinal OCT images of seven rats and

achieved an average Dice similarity coefficient of 0.84 over all segmented retinal

layers. Mishra et al. used a two-step kernel-based optimization to segment reti-

nal layers on a set of OCT images from healthy and diseased rodent retina [21].

The proposed algorithm segmented all intra-retinal layers (9 layers) in healthy

retinas but in the case of diseased retinas only RNFL, IPL, ISOS and RPE were

detected. Only two representative cases were shown but no quantitative results

were provided. Srinivasan et al. presented an automatic approach that used

sparsity based denoising, support vector machines, graph theory and dynamic

programming to segment retinal layer boundaries, which could range from seven
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to ten, in wild-type (WT) and rhodopsin knockout (Rho(-/-)) mice [29]. They

calculated the absolute value of the average pixel difference between automatic

and manual segmentations for every layer boundary in addition to compare to

the commercial automated Diver segmentation software (Bioptigen). Their au-

tomatic results differed from the more experienced manual grader by 2.17μm

for the WT group and 1.96μm for the Rho(-/-) group, respectively. Note that

the aforementioned works are based on classical image processing techniques.

In fact, machine learning methods have still not widely used to segment the

different layers of the rodent’s retina although some works can be found. The

work proposed in [2] used a random forest classifier to design a cost function to

be used as a part of a graph-theoretic method to segment ten retinal surfaces

from SD-OCT mice scans. This method provided a overall unsigned border

position error of 3.35± 0.62μm over all segmented retinal layers. Antony et at.

developed a flexible graph-based algorithm named ASIMOV for mouse OCT

volume segmentation, which segmented ten retinal surfaces in healthy mice and

six surfaces in light-damaged (LD) mice [3]. It was an extension of the work

described by [18] that was used for human retinal layer segmentation. They

learned a random forest classifier to identify the boundary pixels between lay-

ers, producing an accurate probability map for each boundary, which was then

processed to finalise the boundaries. The overall mean error (along all seg-

mented layers) with respect to three raters was 1.96 ± 0.61μm, 2.63 ± 0.94μm

and, 2.14 ± 0.62μm, respectively, in the normal scans. In the LD scans, the

overall error was 2.41± 0.56μm, 2.71± 0.73μm and 2.19± 0.49μm, respectively.

These two last approaches are based on a hand-craft feature extraction stage

and classification algorithms. However, very few works have focused on the seg-

mentation of the rodent’s retina layers by means of automatic feature extraction

using deep learning techniques [1, 7]. So far, this kind of methodology has been

mainly proposed to segment human retinal layers and the architectures pro-

posed for humans do not have discriminatory capability enough to detect the

thinnest layers in rodents because of the anatomical differences between both

retinas. For example, the basic scheme of fully convolutional networks (FCNs)

4



was followed in [24] and [10] for human retinal layer segmentation using Gaussian

Processes and the graph search technique as post-processing methods, respec-

tively. 3D FCNs were proposed in [16] to extract the spatial and inter-frame

informacion from human OCTs. FCN architectures composed by a contracting

and expansive paths were proposed in [25] and [19] with the aim of encoding

the relevant information of the human retinal layers for building a prediction

map by means of the contracting path. Two FCNs in cascade were introduced

in [13] to classify the human retinal layers with the first one and to remove

topology errors with the second FCN. A combination of a convolutional neural

network to extract the relevant features and long short term memory units to

trace the layer boundaries is another DL-based approach to segment human

retina layers using OCT [12]. The combination of a full convolutional network

with a multiphase level set is also explored in [27] for automatic segmentation

of nine boundaries in retinal OCT images belonging to patients with central

serous chorioretinopathy. Fully-convolutional deep learning methods are pro-

posed in [17] to determine retinal and choroidal segmentation in OCT images

from children. Regarding the deep-learning methods applied for rodent layer

segmentation, Amor et al. demonstrated that the FCN architecture proposed

in [25] for the segmentation of human OCTs, even followed by a robust post-

processing stage, only is able to obtain satisfactory results for the segmentation

of three layer boundaries in rodents [1]. Chen et al. proposed three different

strategies (training from scratch, transfer learning and continued training from

a pre-trained model of a different animal cohort) to segment the contour of three

layers leading similar performance in all of them. In this last work, the results

achieved by each layer are presented through boxplots instead of a quantitative

way which made the comparison difficult in addition to the fact that neither

the code nor the images used are publicly available. However, to the best of the

authors’ knowledge, no previous studies have achieved to segment more than

three retinal layers in rodent OCTs by means of automatic feature extraction

using deep learning techniques.

In this paper, two different approaches to detect the six most significant
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retinal layer boundaries in a rat OCT image are presented, one based on classical

image processing techniques and the other based on deep learning. The first one

combines the analysis of local horizontal intensity profiles, unlike other state-

of-the-art works based on global vertical projections, with a new variant of the

marker-controlled watershed transformation, the enclosed watershed, which is

not affected by layers lacking continuity or very close to each other, common

facts in this type of images. The second one proposes an encoder-decoder fully

convolutional network (FCN) architecture, built upon ReLayNet network [25],

to segment the rat retinal layers. The main novelty of the proposed architecture

is the ability for capturing the significant information contained in the thinnest

rodent layers by means of addition of five convolutional blocks and modifications

in loss function. Both methods are widely validated. The different experiments

carried out in this study let confirm that the best results are achieved with

the deep-learning-based approach which also outperforms other works of the

literature. However, it must be taken into account that the first approach has

the advantage of being a more versatile method, able to properly work on rodent,

other animal model and human OCTs without needing a specific training. In

addition, it does not require a high number of labelled samples for that training,

one of the main drawbacks of the deep learning algorithms. Thus, the classical

approach presented in the paper can be used to generate the labelled images

needed for training convolutional networks or to validate models pre-trained

with different images, as it was carried out in this paper. In that way, although

some images will require little manual modifications, the labelling process is

highly speeded up and it is much more efficient than manually labelling from

scratch.

Another contribution of this work is the presentation of a new rat OCT

database where the segmentation of the retinal layers was manually expert-

reviewed so that it can be used for further comparisons with other works. It is

possible to find in the literature human public databases of these characteristics

but not for rats which makes that most state-of-the-art works focused on rat

OCT analysis were validated on private databases. The goal of this database
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is to make possible a reliable comparison between segmentation methods for

rodent OCTs. The presented database is composed of two batches which allows

using the first batch for performance evaluation and the second one to analyse

the generalization ability of the method when it is applied in an image set with

different conditions to that used for training, as was done in this work.

2. Materials and Methods

2.1. Rodent model

For this study, we used two batches of a database of OCT images which were

acquired at different conditions and belong to different rodents. In particular, a

set of 22 Sprague-Dawley rats were used. For both batches, animal experiment

permission was granted by the Danish Animal Experimentation Council (license

number: 2017-15-0201-01213). Rat OCT images were taken with the Micron IV

equipment (Phoenix Research Labs, Pleasanton, USA) in different time points

and by different specialists. All rats were anesthetized previously to image

acquisition. Several OCT images were acquired before and after intravitreal

injection of endothelin-1 (ET-1). ET-1 causes vasoconstriction of retinal vessels

and subsequent ischemia, which contributes to the degeneration of the retinal

layers. These effects make rat model of intravitreal injection of ET-1 suitable

for research studies about retinal layer thickness monitoring.

Specifically, for the first batch of the database, a follow-up 3, 7 and 14 days

after injection was performed on 10 rats making a total of 129 OCT images of

1024x1024 pixels with 0.9775 μm/pixel. For the second batch, a follow-up 3

and 7 days after injection was performed obtaining a total of 115 OCT images

belonging to 12 rats with the same size and resolution that the first batch

images. On average, 13 images per rat for the first batch and 10 images for

the second were recorded from circular scans located on different positions at

different times during the study. Tables 1 and 2 detail the content of the two

batches of the database.
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Table 1: Content of the first batch of the rat OCT database. Before injection: Day 0. After

ET-1 injection: Day 3, Day 7 and Day 14.
Rat ID #images Day 0 Day 3 Day 7 Day 14

C23 GP1A A1 16 4 4 4 4

C23 GP1A A2 17 4 5 4 4

C23 GP1A A3 16 4 4 4 4

C23 GP1A A4 16 4 4 4 4

C24 GP2B A1 16 4 4 4 4

C24 GP2B A2 16 4 4 4 4

C24 GP2B A3 16 4 4 4 4

C24 GP2B A4 4 4 0 0 0

C25 GP1A A1 8 4 4 0 0

C25 GP2B A3 4 4 0 0 0

Table 2: Content of the second batch of the rat OCT database. Before injection: Day 0. After

ET-1 injection: Day 3 and Day 7
Rat ID #images Day 0 Day 3 Day 7

Rat01 7 5 2 0

Rat02 11 5 3 3

Rat03 10 5 3 2

Rat04 7 5 0 2

Rat05 11 5 2 4

Rat06 10 5 2 3

Rat07 11 4 4 3

Rat08 9 4 4 4

Rat09 14 5 4 5

Rat10 7 4 2 1

Rat11 10 3 4 3

Rat12 8 4 2 2

For the first batch of the database, the most significant retinal layer bound-

aries that were visibly distinguishable on these images were manually segmented

by an expert for training and validation purposes. However, the second batch

of the database, which was used to perform an alternative test, it was not man-

ually segmented from scratch but it was based on an automatic segmentation

manually reviewed and modified by experts. How the second batch is used will

be widely explained in Section 3.2. The goal of the two different approaches

presented in this paper will be to segment six layer boundaries (ILM, IPL-INL,

INL-OPL, OPL-ONL, IS-OS, RPE) as it is shown in Figure 2. The complete

database, including original images and the ground truth of the two batches, is

publicly available in [22].
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Figure 2: Ground truth of retinal layer boundaries.

2.2. Method 1: Local horizontal intensity profiles (M1)

Due to rat OCT image characteristics, outer nuclear layer (ONL) is the

thickest hyporeflective layer of the retina as shown in Figure 1 shows. This prior

knowledge makes the ONL one of the most stable layers taking into account

the existing noise and the variability among different OCT scans. Thus, the

retinal layer segmentation method presented in this subsection is focused on a

first rough ONL detection as basis for subsequent OCT image processing steps.

Other works in the literature are based on a first estimation of the Retinal

Pigment Epithelium (RPE) asserting that the RPE is the most hyperreflective

layer [8]. However, the choroid or the photoreceptors in some OCT images may

have higher reflectivity levels and cause subsequent errors. In the flowchart of

the Figure 3, the process to detect the six retinal layer boundaries is depicted.

Although not all layer boundaries are obtained in the same way due to their

own particularities, the layer-dependent parameters were equally set up for all

the images of the database. Each stage will be detailed throughout this section.

Note that M1 is directly designed to detect the six layer boundaries and M2

first detects the layers and, secondly, their boundaries are extracted.

2.2.1. Outer Nuclear Layer (ONL) Estimation

ONL estimation is based on horizontal projection of the image intensity, that

is a way to avoid noise without losing resolution in the vertical direction. To
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Figure 3: Flowchart of the proposed method M1 for retinal layer segmentation.

obtain a proper ONL estimation, the first step is to filter the image with a 2-D

Gaussian smoothing kernel and then to limit the image region to be analyzed.

As ONL is a hyporeflective layer, it is necessary to identify the retina region

and mask the image background to avoid misidentification. As background

we mean the dark region above the ILM towards the upper limit of the image,

corresponding to the vitreous humor and the dark region below the lowest bright

region of the image and the lower limit of the image. Both regions are noted in

Fig. 1b as “b”. The identification of the region of interest, i.e. the area that

corresponds with the retina, is performed by means of Otsu’s threshold after

image filtering. Afterwards, the filtered and masked image is divided into 32

vertical sections and they are processed separately. The horizontal projection

of each section is computed and the most prominent minimum between the two

most prominent maxima of the horizontal profile are found. The prominence of

a peak measures the intrinsic height of that peak with respect to other peaks.

The set of prominent minima of all vertical sections are fitted by a spline of grade

6 so that the profile followed by ONL is estimated such as it can be observed in

Figure 4.

2.2.2. Image Flattening

The estimation of the ONL is used for image flattening. Image is flattened

by vertically (up or down) shifting the points of the ONL profile so that they are

completely aligned. Once the image is flattened, all the layers will be practically

parallel. This knowledge will make layer segmentation more precise because

layers will be more visible in the horizontal projections of each vertical section

if its main direction is, indeed, horizontal. Figure 5(a) shows a non-flattened
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Figure 4: Graphic representation of ONL estimation. First, the image is divided into 32 ver-

tical sections (for better understanding only some of them are shown in the figure). Secondly,

the horizontal profile of each section is computed. Finally, the most prominent minimum

between the two most prominent maxima of each horizontal profile is detected as the ONL

estimation.

original image, and Figure 5(b) the resulting image after flattening process.

2.2.3. Inner Segment - Outer Segment (IS-OS) Detection

The boundary between IS and OS is the most enhanced because it is found

between hypo and hyperreflective layers. Making use of the peaks (prominent

maxima) and valleys (prominent minima) calculated in ONL estimation for each

vertical section, the region of interest to find the IS-OS boundary is determined

as the area located between the valley, that corresponds to the estimated ONL,

and the peak on the right side, that should correspond to the RPE (see Figure

4). The IS-OS boundary is detected by calculating the point of maximum

slope within that area. After IS-OS boundary detection, the original image is

flattened once again but using the IS-OS boundary as reference because it is

more accurate. The detection of the remaining boundaries is performed on the

resulting flattened image. A correct IS-OS boundary detection is key for the

segmentation of the other layers because this boundary can be used to limit the

image area where other layers will be looked for.

2.2.4. ILM Detection

Because of the presence of noise in the vitreo area, the search of peaks on

the local intensity profile may misidentifies the ILM so, for that reason, marker-

controlled watershed is used for ILM detection. The watershed transformation
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is a segmentation technique for gray-scale images where the image is considered

as a topographic surface so that light pixels represent high elevations and dark

pixels represent low elevations [6]. The basic idea consists of flooding the image

from its minima to split the image into the catchment basins and the watershed

lines. Due to this fact, the input image of this method is usually a gradient image

�(f) and it can be noted by WS(�(f)). The marker-controlled variant, WSfmrk
,

consists in flooding the topographic surface from a previously defined set of

markers fmrk to avoid over-segmentation caused by the existence of numerous

local minima in the image. In the case of ILM detection, the upper limit of the

retina (fUR), previously identified, and the IS-OS boundary (fIS−OS) are used

as markers.

fmrk(x) =

⎧⎨
⎩

1 if x ∈ fUR ∪ fIS−OS

0 Otherwise.
(1)

Retinal OCT images with prominent vessels may be a challenge for layer

segmentation because they result in vertical hyporeflective regions that disturb

the continuity of the different layers. Watershed transformation, as other tech-

niques, can be affected by this issue. To address this problem, vessel regions are

considered as missing pixels and they are restored using surrounding information

through a diffusion-based inpainting technique [5]. This technique involves fill-

ing the selected parts of the image by propagating external information into the

region to be inpainted. Vessels are inpainted from the original images previous

to gradient computation. For vessel detection, the vertical pixel intensity profile

of the flattened image is analysed. Due to the fact that the layers are practically

parallel, the vertical profile should not contain high-contrasted peaks. Once the

vertical profile is computed, the peaks whose intensity is greater than the Otsu’s

threshold are defined as vessel regions [20]. See Figure 5(b) and 5(c).

Let Ω(x) stand for the vessel regions to be inpainted and Υ(f,Ω)(x) be the

vessel-inpainted image of the original image f(x). The ILM boundary is com-

puted as the marker-controlled watershed of the vessel-inpainted image imposed

by fmrk, WS(�(Υ))fmrk
. Afterwards, the resulting boundary of the marker-
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controlled watershed is smoothed to remove irrelevant fluctuations. In Figure

5 the difference to apply the watershed transformation for ILM detection with

and without vessel inpainting can be observed.

(a) (b) (c)

(d) (e) (f)

Figure 5: ILM detection: (a) Original OCT image. (b) Prominent vessel detection on the

flattened image (vessels marked in red, Otsu’s threshold in blue, intensity vertical profile in

green). (c) Watershed transformation after inpainting (upper row: region of interest with

the area to be inpainted in red, middle row: gradient after inpainting, watershed result). (d)

ILM detection after inpainting on the original image. (e) Watershed transformation without

inpainting (upper row: region of interest, middle row: gradient without inpainting, watershed

result). (f) ILM detection without inpainting on the original image.

2.2.5. Inner Plexiform Layer - Outer Nuclear Layer (IPL-ONL) Detection

For the detection of IPL-INL, INL-OPL and OPL-ONL boundaries, the same

approach followed in IS-OS detection is performed but restricting the search for

prominent maxima and minima of the horizontal intensity profile to the area

limited by the ILM and the ONL boundary previously estimated as it is depicted

in Figure 6. The horizontal intensity profile of each vertical section is filtered

with a Gaussian smoothing kernel (σ = 4) to eliminate small fluctuations before

the search for the most significant peaks.

It is considered the IPL corresponds to the first maximum of each horizontal

intensity profile in this restricted area, the INL to the first minimum and the
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OPL to the next maximum. After peak identification, IPL-INL, INL-OPL and

OPL-ONL boundaries are detected as the point of maximum slope among the

corresponding peaks. Finally, the points detected in the 32 vertical sections are

fitted by a spline of grade 6.

Figure 6: Graphic representation of IPL-ONL detection. IPL corresponds to the first max-

imum of the horizontal profile, INL to the first minimum and OPL to the next maximum.

IPL-INL, INL-OPL and OPL-ONL boundaries are detected as the point of maximum slope

among these points.

2.2.6. Retinal Pigment Epithelium (RPE) Detection

Inherent choroid characteristics, the lack of continuity in RPE and its prox-

imity with other layers make either the method proposed for ILM detection or

that based on the peaks of the horizontal intensity profile inappropriate for RPE

identification. Therefore, a new variant of the marker-controlled watershed that

combines both approaches is proposed. We named this variant enclosed water-

shed transformation and it is based on adapting the markers as their reliability

grade to avoid leaks of the watershed lines caused by discontinuity of the RPE

which would provoke subsequent errors in the segmentation.

First, the area for RPE search is restricted to the area between the IS-OS and

a fixed threshold above the lower retina limit (50 pixels). See Figure 7-1. Due

to the fact that the RPE is a very thin layer, instead of detecting its upper and

lower edge, the goal of the enclosed watershed is to detect the middle line of the

RPE. For that reason, the watershed transformation is not applied on a gradient

image as usual but on the result of a morphological top hat performed with a

vertical structuring element (Figure 7-3). Top-hat transformation is the residue

between the original image and its morphological opening and its aim is to sup-
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press slow trends and enhance the contrast of some features in images, according

to size and shape criteria. In this case, it is used to extract the light contrasted

components of specific shape and size. The size of the structuring element must

be a bit lager than the RPE width. Prior knowledge about RPE characteristics

is used to determine these parameters (horizontal light lines of less than 5 pixel

width). To remove small structures and get a cleaner background, a supremum

of 3 openings calculated using a 7-pixel line of angle 0°, +25°and -25°, is applied

(Figure 7-4). Afterwards, the horizontal intensity profiles of the 32 vertical sec-

tions are computed (Figure 7-5) and a small intensity image of 32 pixel width is

composed by combining the resulting horizontal profiles (Figure 7-6). Marker-

controlled watershed will be then applied on this image, obtaining the markers

to be used as follows. Note that each horizontal profile is individually analysed

to determine those markers. Let Pi(x) be the horizontal profile of the vertical

section i and Mi = Pi(xmax) the most prominent maximum of the profile. The

marker fmrk of a section i is computed as:

fmrki =

⎧⎪⎨
⎪⎩

mi(x) if
⋂

i−2≤k≤i+2

{Mk >= t}

ni(x) if Otherwise

, (2)

t being a fixed threshold used to determine the minimum value of Mi to be

a representative maximum. However, a representative maximum Mi only is

considered reliable if the most prominent maximum of its k neighbouring sec-

tions also are representative. In that case, the marker of a section i with a

representative and reliable maximum is defined as:

mi(x) =

⎧⎨
⎩

0 if x ∈ (xmax − h, xmax + h)

1 Otherwise.
, (3)

and if the maximum is not reliable, the marker would be equal to:

ni(x) =

⎧⎨
⎩

1 if x = 1 ∪ x = end

0 Otherwise.
, (4)
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where h is a 10% of the height of the region of interest where RPE is being

searched. The final marker image will be formed by the concatenation of the

markers of the 32 sections, fmrk =
{
fmrki

}
i=1,...,32

. In that way, the markers

will closely enclose the RPE when the maxima are reliable, forcing the path of

the watershed lines, and allow a major degree of freedom when their reliability

is unknown. The more reliable maxima are, the path of the watershed will be

more restricted and the possible leaks because of the discontinuity of the RPE

will be hindered.

Marker-controlled watershed is applied on the small intensity image using

the enclosed markers previously computed (Figure 7-6). Due to the size of the

input image, enclosed watershed transformation is very efficient computation-

ally. Each pixel of the resulting enclosed watershed boundary will correspond

with the central pixel of the 32 vertical sections which will be finally fitted by

a spline of grade 6 (Figure 7-7). As seen throughout this subsection, Figure 7

summarises the process for RPE detection.

2.3. Method 2: Fully convolutional neural networks (M2)

With the aim of comparing a methodology based on classical image-processing

techniques (see Section 2.2) with one of the most trending technique in the com-

puter vision field (i.e. deep learning), an encoder-decoder fully convolutional

network built upon ReLayNet [25] is presented. To the best of the author’s

knowledge, this is the first FCN architecture designed with the ability of au-

tomatically capture the relevant information of the thinnest retinal layers of

rodent eyes.

2.3.1. Encoder-decoder architecture

The proposed network architecture able to segment five different retinal lay-

ers from rat OCTs can be observed in Figure 8. In particular, it is composed by

a contracting path in charge of encoding the relevant information into feature

maps and an expansive path responsible to transform the stacked features result-

ing from the last encoder block into probability maps with the same dimensions
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Figure 7: Graphic representation of RPE detection. The horizontal intensity profiles of the

32 sections are computed after image filtering. The combination of these 32 profiles gener-

ates the intensity profile image where the enclosed watershed transformation will be applied.

The enclosed markers are determined according to the representativity and reliability of the

maxima of each profile.

as the input image, recovering the spatial information.

Each encoder block is composed by four layers, in sequence: convolution

layer, batch normalization layer, ReLU activation layer (represented together

by the blue layer in Figure 8) and max-pooling layer. 64 rectangular kernels of

7 × 3 are defined in the convolutional layers of all encoder blocks. This kernel

size is established with the aim of capturing the transitions between the different

retinal layers. Note that zero-padding is used in each convolutional layer to guar-

antee the preservation of the feature map dimension after the convolution. In
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addition, batch normalization technique is applied to avoid overfitting [14] and

ReLU activation function is used to introduce non-linearities [23]. Max-pooling

operation is introduced in the last layer of each encoder block. In particular,

this layer simplifies the feature information reducing the spatial dimensions by

half (i.e. 2× 2 kernels with a stride equal to two). The pooling indexes of this

operation are achieved and transferred to the corresponding unpooling layer in

the decoder block to preserve spatial consistency.

Decoder blocks consist of five layers, in sequence: unpooling layer, con-

catenation layer, convolution layer, batch normalization and ReLU activation

function. The unpooling layer upsamples the feature maps from the previous

decoder block to a double resolution by using the achieved pooling indexes cor-

responding to the matched encoder block. After this step, a concatenation of

the upsampled feature maps with the corresponding output feature maps of the

matched encoder block is performed to enrich the information and avoiding van-

ishing gradient problems [28]. Finally, convolutional layer, batch normalization

and ReLu are applied to the concatenated feature map. Note that the kernel

size remains constant for all the decoder blocks and it is the same as we used

in the encoder path (i.e. 7× 3).

The final decoder block is responsible to associate each pixel to one of the

seven possible classes (i.e. upper bound, RNFL+GCL+IPL, INL, OPL, ONL,

IS+OS , bottom bound). For this purpose, it is composed by a convolutional

layer with 1× 1 kernel and the softmax activation function.

2.3.2. Training process

Attending to Section 2.1, the available database is composed of two different

batches. The first batch of the database was used for training and validation

purposes and the second one for testing. Therefore, in this section, only the

first batch of the database was used.

Data conditioning. Training the proposed network with whole OCT im-

ages would require several GPUs working in parallel to provide the required

RAM for this task. In order to avoid memory problems in the training stage,
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Figure 8: Proposed encoder-decoder architecture. In the contracting path, blue layers repre-

sent a convolution with a kernel 7× 3 (stride equal to 2 and 64 filters) followed by the batch

normalization operation and the ReLU activation function. The maxpooling layer defined by

a kernel size of 2 × 2 and a stride of 2 is represented in green. Regarding to the expansive

path, red layers correspond to the unpooling operation responsible of upsampling the feature

maps from the previous decoder block to a double resolution (i.e. kernel size 2× 2). For this

purpose, the achieved pooling indexes corresponding to the matched encoder block are needed

(this transference is illustrated by the dotted red lines.). After this step a concatenation of the

upsampled feature map with the feature map of the corresponding encoder block is carried

out. The final yellow layer is a convolutional layer with 1×1 kernel and the softmax activation

function.

a patch-wise learning methodology is used in this work. This fact implicates

a notable increasing of the database instances. In particular, using 1024 × 128

patches, a total of 1032 instances are generated. Further, we augment the sliced

data by introducing random geometric transformations such as croppings, hor-

izontal flips, rotations and translations. Memory requirements in the testing

stage are more permissive allowing to predict a test sample in two slices of

1024× 512 with a Titan V GPU.

Data partitioning. As Section 2.1 details, the first batch of the dataset

is composed by 129 images coming from ten different rodents. With the aim of

avoiding biased results due to a specific partition of the database into training

and test subsets and obtaining the segmentation of the 129 images, an external
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K-fold cross-validation technique was carried out. Specifically, K = 8 partitions

were created according to the number of images acquired from each rat. The

images belonging to rats 1-7 composed seven individual partitions while the

images from the last three rats were grouped forming the eighth fold (see Table

3). Consequently, in the training process, K − 1 different folds in each external

iteration were used while the remaining partition was utilized to test the model

performance. In addition, an internal leave-one-out cross-validation was carried

out, using the images from one different training fold in each internal iteration

as validation set. As a result of this process, (K − 1)×K models were learned.

This technique guarantees reliable results and robust models.

Table 3: Distribution of the images belonging to the first batch of the database throughout

the eight folds.
Rat ID #images Fold

C23 GP1A A1 16 1

C23 GP1A A2 17 2

C23 GP1A A3 16 3

C23 GP1A A4 16 4

C24 GP2B A1 16 5

C24 GP2B A2 16 6

C24 GP2B A3 16 7

C24 GP2B A4 4 8

C25 GP1A A1 8 8

C25 GP2B A3 4 8

Loss function. The proposed network is trained by optimizing a weighted

multi-class logistic function. This logistic loss provides a probabilistic measure

of similarity between the prediction and the ground truth. Let pc(x) be the

probability for the pixel x of belonging to the class c and gc(x) the ground truth

probability, the basic logistic loss function can be defined as:

L(x) = −
∑
x

ω(x)gc(x)log(pc(x)) (5)

The weights ω(x) are introduced in loss function with two objectives: (i)

compensating the effects produced by the imbalance character of the classes.

The different thickness of each retinal layer and the huge quantity of background

pixels propitiates imbalanced pixel-wise samples. (ii) boosting the accurate

segmentation of the retinal layer boundaries. The pixels near to the tissue-
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transition regions are the most challenging cases to be correctly segmented due

to diffused boundaries, speckle noise and the limited OCT resolution. Given

the cumulative frequency fc of class c in the training data (i.e. the prior class

probability), the logic operator I, a ground truth image M and the 2D gradient

operator Δ, the ω(x) term is formulated as:

ω(x) =
∑
c

I(M(x) = c) · f̃

fc
+ ω0 · I(|ΔM(x)| > 0) (6)

where f = [f1, f2, ..., fc] is a vector containing all frequencies. The first

term models median frequency balancing and compensates for the classes im-

balance problem by enhancing classes with low probability [4]. The second term

puts higher weight on anatomical boundary regions to emphasize on the correct

segmentation of contours [26]. ω0 balances both terms.

Hyper-parameter configuration. The proposed network is learned through

the stochastic gradient descent (SGD) optimizer using mini batches of eight sam-

ples. A momentum value of 0.9 is set to compensate for this small batch size.

The learning rate is initially established to 0.001 and reduced by one order after

every 20 epochs. The training stage is composed by sixty epochs. As it was

mentioned above, the Titan V GPU was used to carry out this process. An

overview of the whole training/testing process can be observed in Figure 9.

3. Results

3.1. First batch images: Performance evaluation

To evaluate the performance of the proposed approaches, the results of our

segmentation methods (M1 and M2) obtained on the first batch of the database

are directly compared to other state-of-the-art approaches making use of the

expert manual segmentation (ground truth). The two other compared methods

are the proposed by Chiu et al. [8] and the commercial Insight software from

Phoenix Research Labs which offers a tool for automatic segmentation. Note

that Chiu’s method was focused on human OCT segmentation. This method

was chosen with the aim of checking if a reproducible and open source method
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Figure 9: Pipeline of the training/testing process. The data is divided in K = 8 folds to

remove the bias of a specific data partitioning. Pixel-wise weights for the training images are

computed using the ground-truth to mitigate the class imbalance problem and to emphasize

on the correct segmentation of contours. Slices of 1024 × 128 pixels are extracted from the

images to learn the models. An internal leave-one-out cross-validation results on a committee

of K − 1 trained networks.

that is widely referred by the research community for human OCT segmentation

was able to adapt itself and achieve good results on rodent OCTs.

First, for a qualitative evaluation, Figure 10 shows three examples of repre-

sentative segmentation results. Secondly, quantitative measures were computed:

absolute distance error between layer boundaries, layer thickness error and Dice

similarity coefficient. See Tables 4-6. Due to the fact that the absolute distance

error of the Insight software was the greatest among the compared methods, an

overall error of 10.97± 6.51 μm, and not all the layers are segmented, the value

of layer thickness and Dice coefficient of this method was not included in Tables

5 and 6.

Next, the results of the presented approaches were also compared with those

obtained by [31], [2] and [3], three methods specifically designed for rodent

OCT segmentation (Table 7-8). Same measures performed in those works were

calculated. These methods were tested on a different image database thus the

comparison is not fully reliable. However, it is useful to see if the performance

of our algorithms is similar to other state-of-the-art methods. Note that, to best

of author’s knowledge, there is no a publicly available rat OCT segmentation
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Figure 10: Automated segmentation results on three representative examples of the first

batch of the rodent OCT images using different algorithms. Color code: ILM (cyan), IPL-

INL (yellow), INL-OPL (magenta), OPL-ONL (orange), IS-OS (green), RPE (red). (∗) Note

that Insight software does not segment a fixed number of layers and either identifies the layer

that is being segmented, thus it is considered that the segmented layer corresponds to the

closest ground truth layer.

method that can be tested on our own images to perform a direct comparison

because most methods designed for this goal are not open access or require a

specific image format. For example, the code of the ASiMOV tool presented

in [3] was made available but it only works for Bioptigen images. In addition,
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Table 4: Absolute distance errors (mean and standard deviation in μm) calculated comparing

the results of the proposed methods (M1 and M2), InSight software and Chiu et al. [8] with

the ground truth on the first batch of database. Color code used in Figure 10: ILM (cyan),

IPL-INL (yellow),INL-OPL (magenta), OPL-ONL (orange), IS-OS (green), RPE (red). (∗)

Note that Insight software does not segment all layers under analysis. Only the segmented

layers are taken into account to calculate the absolute distance error (out of 129 OCT images,

ILM is only detected in 113, IPL-INL in 26, ONL-OPL in 48, OPL-ONL in 19, IS-OS in 70

and RPE in 75).
Layer Boundaries M1 M2 InSight (∗) Chiu et al.[8]

ILM 3.52 ± 1.11 1.79 ± 0.55 6.97 ± 4.59 2.57 ± 0.58

IPL-INL 3.65 ± 1.30 2.61 ± 0.72 10.49 ± 4.06 11.50 ± 14.08

INL-OPL 2.73 ± 1.91 1.71 ± 1.00 7.90 ± 3.70 9.04 ± 17.20

OPL-ONL 3.19 ± 2.12 1.76 ± 0.92 7.99 ± 5.53 7.87 ± 16.90

IS-OS 6.18 ± 5.93 1.89 ± 1.12 8.67 ± 5.90 14.75 ± 26.84

RPE 3.33 ± 3.15 1.62 ± 1.17 23.81 ± 15.29 11.62 ± 20.00

Overall 3.77 ± 2.59 1.90 ± 0.91 10.97 ± 6.51 8.19 ± 15.93

Table 5: Thickness errors (mean and standard deviation) calculated comparing the results of

the proposed methods (M1 and M2) and Chiu et al. [8] with the ground truth (GT) on the

first batch of database. Color code used in Figure 10: RNFL+GCL+IPL (cyan-yellow), INL

(yellow-magenta),OPL (magenta-orange), ONL (orange-green), IS+OS (green-red)

Layers
Average thickness (μm) Absolute thickness errors (μm) Relative thickness errors

GT M1 M2 Chiu et al. M1 M2 Chiu et al. M1 M2 Chiu et al.

RNFL+GCL+IPL 66.81 65.17 66.42 71.66 1.92± 1.49 1.51± 1.10 7.96± 7.77 0.028± 0.022 0.022± 0.016 0.116± 0.114

INL 24.81 22.41 24.85 19.77 2.70± 2.02 1.53± 1.18 5.79± 4.62 0.106± 0.080 0.060± 0.046 0.228± 0.182

OPL 12.12 11.70 12.67 12.59 1.39± 1.09 0.91± 0.85 2.21± 2.51 0.112± 0.088 0.073± 0.069 0.178± 0.202

ONL 60.67 67.50 60.13 72.62 6.98± 6.18 1.30± 1.17 12.42± 11.45 0.112± 0.100 0.021± 0.019 0.200± 0.184

IS+OS 38.79 35.54 38.63 37.58 4.99± 5.45 1.35± 1.24 10.66± 15.94 0.126± 0.137 0.034± 0.031 0.269± 0.402

Overall 203.20 202.31 202.69 214.22 3.59± 3.24 1.32± 1.11 7.81± 8.46 0.097± 0.085 0.042± 0.036 0.198± 0.217

neither the code nor the images used in [31] and [2] are publicly available.

Finally, a time analysis was performed on an Intel i7 @ 3.10 GHz of 16 GB

of RAM with a Titan V GPU. Note that both methods were executed in MAT-

LAB 2018a and MatConvNet framework was used [30] for M2. The averaged

prediction time was 1.1668 and 5.1687 seconds for M1 and M2, respectively.

3.2. Second batch images: Generalization ability of the encoder-decoder FCN

As it was observed in Section 3.1, M2 is the method that obtained the best

results. To analyse the generalization ability of this method, a new test was

carried out. The segmentation of images belonging to the second batch of the

database was predicted using the models trained with the first batch. To obtain
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Table 6: Dice similarity coefficient (mean and standard deviation) calculated comparing the

results of the proposed methods (M1 and M2) and Chiu et al. [8] with the ground truth on

the first batch of database.
Layers M1 M2 Chiu et al.

RNFL+GCL+IPL 0.945 ± 0.015 0.967 ± 0.008 0.899 ± 0.098

INL 0.866 ± 0.054 0.913 ± 0.029 0.703 ± 0.164

OPL 0.770 ± 0.102 0.865 ± 0.057 0.674 ± 0.168

ONL 0.927 ± 0.050 0.969 ± 0.019 0.856 ± 0.154

IS+OS 0.865 ± 0.108 0.954 ± 0.028 0.707 ± 0.226

Overall 0.875 ± 0.066 0.934 ± 0.028 0.768 ± 0.162

Table 7: Comparison between the results of the proposed methods (M1 and M2) and ACWOE-

SW [31] based on thickness errors. Analysis carried out on different datasets.

Layers
Absolute thickness error (μm) Relative thickness error

M1 M2 ACWOE-SW M1 M2 ACWOE-SW

RNFL+GCL+IPL 1.92 ± 1.49 1.51 ± 1.10 3.76 ± 1.47 0.03 ± 0.02 0.02 ± 0.02 0.06 ± 0.02

INL 2.70 ± 2.02 1.53 ± 1.18 2.94 ± 1.11 0.11 ± 0.08 0.06 ± 0.05 0.16 ± 0.06

OPL 1.39 ± 1.09 0.91 ± 0.85 3.06 ± 1.38 0.11 ± 0.09 0.07 ± 0.07 0.14 ± 0.06

ONL 6.98 ± 6.18 1.30 ± 1.17 2.54 ± 1.16 0.11 ± 0.10 0.02 ± 0.02 0.04 ± 0.02

IS+OS 4.99 ± 5.45 1.35 ± 1.24 3.43 ± 1.77 0.13 ± 0.14 0.03 ± 0.03 0.09 ± 0.05

Overall 3.59 ± 3.24 1.32 ± 1.11 3.15 ± 1.37 0.10 ± 0.09 0.04 ± 0.04 0.10 ± 0.04

the ground truth of images of the second batch and validate the results obtained

on these images, M1 was used. As it was explained in Section 2.2, M1 was an

unsupervised method based on classic image processing techniques so it does

not require specific training stage based on labelled images. However, as it can

be observed in Figure 11(a), the M1 method made some minor faults in layer

segmentation so that small manual modifications should be performed to obtain

a quality ground truth. The final ground truth is shown in Figure 11(b).

First, for a qualitative evaluation, Figure 12 shows three examples of rep-

resentative segmentation results on the second batch of the database. There

Table 8: Comparison between the results of the proposed methods (M1 and M2), the work

presented by Antony et al. [2] and ASiMOV [3] based on absolute distance error. Analysis

carried out on different datasets.
Layer boundaries M1 M2 Antony et al. ASiMOV

ILM 3.52 ± 1.11 1.79 ± 0.55 2.48 ± 0.72 1.40 ± 0.38

IPL-INL 3.65 ± 1.30 2.61 ± 0.72 3.24 ± 0.83 2.90 ± 1.06

INL-OPL 2.73 ± 1.91 1.71 ± 0.67 2.59 ± 0.71 2.02 ± 0.67

OPL-ONL 3.19 ± 2.12 1.76 ± 0.92 3.98 ± 1.33 2.34 ± 0.77

IS-OS 6.18 ± 5.93 1.89 ± 1.12 2.89 ± 0.80 2.28 ± 1.23

RPE 3.33 ± 3.15 1.62 ± 1.17 3.72 ± 1.15 1.79 ± 1.48

Overall 3.77 ± 2.59 1.90 ± 0.91 3.15 ± 0.92 2.12 ± 0.93
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(a) (b)

Figure 11: Workflow for ground truth generation of the second batch of database: (a) Seg-

mentation obtained by M1 (b) Ground truth after of the manual modification.

exists more variability between images belonging to this batch than to the first

one. In addition, these images present more artefacts (large black spots) that

compromise the correct definition of the different retinal layers in OCT images.
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Figure 12: Segmentation results on three representative examples of the second batch of

the rodent OCT images. Color code: ILM (cyan), IPL-INL (yellow), INL-OPL (magenta),

OPL-ONL (orange), IS-OS (green), RPE (red).

Secondly, the same measures computed in Section 3.1 were presented. See

Tables 9-10.
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Table 9: Absolute distance errors (mean and standard deviation in μm) calculated on the

second batch of the database.
Layer Boundaries M2

ILM 2.64 ± 0.87

IPL-INL 2.85 ± 0.94

INL-OPL 2.74 ± 1.51

OPL-ONL 2.34 ± 1.12

IS-OS 2.33 ± 1.12

RPE 2.82 ± 2.17

Overall 2.67 ± 1.25

Table 10: Average thickness, Absolute thickness error and Relative thickness error calculated

on the second batch of database.

Layers
Average thickness (μm)

Absolute

distance error

(μm)

Relative

thickness

error (μm)

DICE

GT M2 M2 M2 M2

RNFL+GCL+IPL 68.58 66.80 2.72 ± 1.79 0.04 ± 0.03 0.96 ± 0.01

INL 23.07 25.81 23.24 ± 1.51 0.14 ± 0.06 0.89 ± 0.03

OPL 12.02 11.98 1.14 ± 0.99 0.09 ± 0.08 0.77 ± 0.08

ONL 63.71 61.63 2.36 ± 2.02 0.04 ± 0.03 0.96 ± 0.02

IS+OS 39.76 38.18 2.97 ± 2.39 0.07 ± 0.06 0.94 ± 0.03

Overall 207.16 204.41 2.49 ± 1.74 0.08 ± 0.05 0.90 ± 0.03

4. Discussion

A wide validation of the proposed methods was performed in the previous

section. Methods M1 and M2 achieve more similar results to the ground truth

than the other analysed solutions, as shown in Figure 10 and Tables 4-6. It

must be emphasized that the commercial software Insight does not segment a

fixed number of layers and its segmentation is not sufficiently accurate. Thus,

most times, requires manual segmentation or modification through some specific

tool as that provided in the software. The results achieved by Chiu et al.

are also less accurate compared to those obtained by the proposed methods

although it should be taken into account that this method was not initially

designed for rodent OCT segmentation but for humans. Therefore, it makes

sense that the best results were achieved in the ILM identification because is

where the difference between rodents and humans is less appreciable. Regarding

absolute distance errors (Table 4), M1 achieves the best results in the INL-

OPL (magenta) and OPL-ONL (orange) identification and M2 in INL-OPL

(magenta) and RPE (red). Concerning thickness errors (Table 5), the first layer
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formed by RNFL, GCL and IPL (from the cyan to the yellow boundary) is that

whose error is the lowest with M1 and the same layer along with ONL (from the

orange to the green boundary) achieve the best results with M2. The same is

appreciated in Table 6 as for the Dice similarity coefficient. Based on the data

of those tables, M2, the deep-learning-based approach, outperforms M1.

As it was mentioned in Section 2.3, M2 is built upon ReLayNet architecture

[25] although it had to be modified to adapt itself to rodent OCTs by providing

the network with a deeper level through the addition of an extra convolutional

block. This new architecture is key to achieve the required precision to de-

tect the thinnest retinal layers. Other essential contributions that improve the

segmentation results on rodent layers were to modify the loss function used in

ReLayNet and optimize the encoder-decoder CNN performance following a grid-

search methodology to find the optimal learning rate value, optimizer, batch size

and number of epochs. All these modifications make that the performance of

the proposed method was quite different to that obtained by the original Re-

LayNet on rodent images as Figure 13 shows. That figure compares the results

of the original ReLayNet architecture with those obtained by our proposed ar-

chitecture on the same representative examples of the Figure 10. As can be

observed, in spite of the promising results of ReLayNet in human OCTs, if the

additional convolutional block is not included in the rodent’s case, the network

has not discriminator capability to detect the OPL, that is the thinnest layer of

those analyzed (shown in purple color in the results of M2) and the remaining

layers are misidentified, so the architecture proposed in M2 can be considered

as an RelayNet improvement. In fact, the authors already demonstrated in a

previous publication that the original Relaynet architecture, even followed by a

robust post-processing stage, only is able to obtain satisfactory results for the

segmentation of the three most significant retinal layer boundaries instead of

the six boundaries detected in this work [1]. Thus, it is verified that the direct

transfer of the method from human retinal OCT images to rodents images does

not properly work when the thinnest retinal layers are involved.

Due to the lack of public rodent OCT databases, M1 and M2 could not be
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Figure 13: Comparison of M2 and ReLayNet [25] performance on the same representative

examples shown in Figure 10.

tested on the same images used in other state-of-the-art methods originally pro-

posed for rodent retinal layer segmentation. Thus, Table 7 and 8 are not a fully

reliable evaluation but they are useful as an indirect comparison. From these

tables, it is possible to see that M1 has a similar performance to ACWOE-SW

[31] and M2 reduces significantly its average relative thickness error. More-

over, the averaged absolute distance error of M2 is even lower than ASiMOV [3]

and that proposed by [2]. To avoid this fact in the future and facilitate direct

comparisons, we have made our own database publicly accessible.

Regarding prediction time, it must be emphisized that, although M1 is based

on classical image processing techniques, it is faster than M2 when m = K − 1

prediction models are used (1.1668 vs 5.1687 s). If only one model was used for

M2, the time would have to be divided by the number of models (m = 7 in this

work), resulting in 0.7383 s per image. In that case, the prediction with both

models is almost immediate. However, M1 does not require a training stage

with a high number of manually segmented images which makes possible to use

M1 to facilitate ground truth generation.

Concerning the alternative test with the second batch of the database, its
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results are very rewarding in spite of the variety and artefacts existing in this

batch, as is shown in Figure 12. This demonstrates that M2 can be generalized

and does not need to be retrained to segment images belonging to different

databases to those previously used to train the model if the time, hardware or

software required is not available. In addition, the use of M1 to obtain a first

approximation of the ground truth in these images considerably reduces the

time required to perform a manual segmentation because only requires small

modifications.

5. Conclusion

Automated OCT analysis in rats is of great relevance because it can facili-

tate fast evaluation of data from a large study population of animals. This fact

is especially important when screening for a possible toxic effect of drugs and

other treatments before human trials. In that context, this paper proposes two

approaches to segment six retinal layer boundaries in rat OCT images, one is a

more conventional approach based on classical image processing techniques and

the other makes use of deep learning algorithms. The conventional approach

is based on a combination of local horizontal intensity profiles along with two

variants of the watershed transformation. One of these variants, the enclosed

watershed, is presented for the first time in this work and could be satisfactorily

used in other cases where the segmentation of boundaries that lack continu-

ity is required. The deep-learning-based method is an adaptation of the FCN

architecture presented in [25] which allows increasing the network precision to

detect the rodent retinal layers. Although the proposed network in this paper is

built upon ReLayNet architecture, it also incorporates own contributions such

as the addition of an extra convolutional block to encode the information of the

very thin layers and the modification of the loss function, which are essential

to obtain satisfactory segmentation results in rodent OCTs. After a wide val-

idation, it was demonstrated that both methods significantly outperform the

commercial Insight image segmentation software (Phoenix Research Labs), ob-
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taining an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 μm,

respectively, on the first batch of the database. Moreover, an averaged absolute

distance error of 2.67 ± 1.25 μm on the second batch of the database confirms

that the deep-learning-based method can be used to generate the segmentation

of images of other rodent OCT databases previously unseen and with different

conditions to that used for training.

Because of the first approach proposed in this paper is an unsupervised

method can be used as an easy way to generate labelled images. Note that, in

that case, the labelled images should to be manually reviewed and modified if

required but, taking into account that labelling process is very time-consuming

and the results of M1 are very competitive, it significantly speeds up the process.

It is a fact that the limited existence of rodent OCT databases in the liter-

ature conditions the evaluation of retinal layer segmentation methods applied

to rat OCT images. With the aim of facilitating further comparisons and avoid

having to use different databases to evaluate the goodness of two segmentation

methods, the dataset used in this work along with their ground truth (expert-

reviewed segmentations) were made publicly available in [22].

From a technical perspective, the future lines of work will focus on adapting

the network architecture to segment a greater number of layers through the

inclusion of extra convolutional blocks and optimizing the different hyperpa-

rameters involved (i.e. number of filters, kernel size, etc.). In the case of having

OCT volumes, a 3D fully CNN could be proposed or the segmentation could

be performed by capturing information between adjacent scans making use of

a CNN + LSTM architecture. After the validation performed in the paper, a

clinical study to quantitatively evaluate the retinal layer degeneration caused

by the ET-1 injection over the time could be also carried out.
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