Modelling three-way catalytic converter oriented to engine cold-start conditions

Marcelo REAL¹, Raffael HEDINGER², Benjamin PLA¹, Christopher ONDER²

Abstract
This paper introduces a physical model of a three-way catalytic converter oriented to engine cold-start conditions. Computational cost is an important factor, particularly when the modelling is oriented to the development of engine control strategies. That is why a one-dimensional one-channel real-time capable model is proposed. The present model accounts for two phases, gas and solid respectively, considering not only the heat transfer by convection between both, but also the water vapour condensation and evaporation in the catalyst brick, which plays a key role during engine cold-start. Moreover, the model addresses the conductive heat flow, heat losses to the environment and exothermic reactions in the solid phase, as well as the convective heat flow in the gas phase. Regarding the chemical model, the oxidation of hydrocarbons and carbon monoxide is considered by means of the Langmuir-Hinshelwood mechanism. Three layers make up the model structure from a kinetic point of view, bulk gas, washcoat pores and noble metal in the catalyst surface. The model takes fuel-to-air ratio, exhaust gas mass flow, temperature, pressure and gas composition as inputs, providing the thermal distribution as well as the species concentration along the converter.

Keywords
Control-oriented modelling, Three-way catalyst, After-treatment systems, Catalyst warm-up, Engine cold-start

1 Introduction

Three-way catalytic converters (TWC) allow to oxidize hydrocarbons (HC) and carbon monoxide (CO) while reducing nitrogen oxides (NOₓ) simultaneously, but only if the temperature is high enough. It means that during the first 40 to 100 seconds of the engine cold-start, a noticeable amount of pollutant species are emitted, particularly CO and HC. In fact, during this period the HC emissions represent a 60-80% of the total HC emitted in a regulatory test procedure.¹⁻⁴ This is not only a consequence of the low efficiency of TWC at low temperatures, but also of the incomplete combustion that takes place when the engine is below its working temperature.⁵⁻⁷ Different approaches can be followed to deal with this issue, from using additional hardware components in order to heat-up faster the TWC, to developing specific control strategies like ignition retardation or homogeneous split mode injection, in order to not only heat-up the TWC faster but also reducing HC exhaust raw emissions.¹⁻²⁰ Ignition retardation allows to delay the combustion process, thereby the combustion remains active even during the exhaust stroke, which helps to speed up the catalyst heating process. Nevertheless, keeping low HC emissions represents a challenge when high levels of ignition retardation are imposed. At this point, homogeneous split mode injection plays a key role, since it enables lean global mixtures but also ensures the ignition. In order to fulfil both requirements the fuel injection is split into two parts. First, a homogeneous lean charge is carried out during the intake stroke. Then, an additional amount of fuel is injected just before the ignition, providing a local rich mixture around the spark plug to ensure a proper ignition of the homogeneous lean charge.²¹⁻²³

Taking into account the low emissions level allowed by current legislation and the future zero emissions trends, the pollutant emissions reduction during cold-start phase is imperative. The development of the aforementioned control strategies needs reliable models to gain insight into the TWC behaviour. However, multidimensional, detailed, first-principle models present excessive computational requirements for control purposes. Other first-principle models in the literature are one-dimensional evolutions of the previous ones, developed with the idea of reducing the computational demand.¹³⁻⁴⁵ But they often require a considerable amount of time to run simulations, and especially while properly identifying their parameters. Usually, because complex kinetic approaches are proposed, with a remarkable amount of chemical reactions.¹³⁻⁴¹,⁴⁶ On the other hand, lumped-parameter control-oriented models, some of them based on first principles and other ones gray or black-box models based on phenomenological correlations, are fast enough even for on-board applications, but usually their assumptions and simplifications of the physical phenomena do not allow to understand what is actually happening inside the converter. It is not common to find a first-principle TWC model with low computational requirements, oriented to

¹ CMT-Motores Térmicos, Universitat Politècnica de València, 46022 Valencia, Spain
² Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland

Corresponding author:
Marcelo REAL, Camino de Vera, s/n 46022 Valencia, Spain
Email: marreami@mot.upv.es
predict the converter behaviour under cold-start conditions, experimentally validated and which also takes into account water evaporation and condensation. Most of the models present in literature miss some of these features. The present paper aims to cover this room. In particular, the effect of water vapour condensation and evaporation is fundamental to properly predict the temperature evolution at the beginning of the catalyst heating up process. When the cold converter is fed with hot exhaust gases, the brick surface becomes wet due to the water vapour condensation. After some seconds, the heat transferred from the gas to the brick progressively increases the temperature on each longitudinal section from the inlet to the outlet, which involves the end of the water vapour condensation and the start of the evaporation. During the evaporation process, the temperature of the corresponding section remains constant. Then, the temperature of the dry section rises again pushed by the heat transfer from the exhaust gas. This process moves along the brick length and it can take more than 60 seconds, of course, depending on the exhaust gas mass flow and temperature. Meanwhile, the temperature in the inlet sections of the converter can be high enough to allow the start of the oxidation reactions, which in turn increases the heat available to evaporate the water condensed in the subsequent sections, thus speeding up the process.

This complex phenomenon leads the TWC behaviour during the heating up process, thereby a model capable of taking this issue into account is essential to help in the development of cold-start strategies. That is why a one-dimensional one-channel (hereinafter 1D-1Ch) scheme is proposed. The thermal model takes into account detailed heat transfer phenomena, including heat release of exothermic reactions as well as water evaporation and condensation. The kinetic reactions are also based on first principles, accounting for gas transfer between bulk gas and washcoat pores, as well as adsorption and desorption of species on noble metal coating in the catalyst surface. However, a simplified set of reactions is used to reduce the model complexity. The idea is to keep the model as simple as possible in order to preserve real-time capabilities. Only the sorption of all reactants as well as HC and CO oxidation are considered, since the model is oriented to aid in the development of engine control strategies during cold-start. That is why NOx reactions and oxygen storing in ceria are neglected. NOx raw emissions are expected to be low because of the retarded combustion imposed during cold-start. While oxygen storing in ceria neither plays a crucial role during cold-start, particularly, if fuel-to-air ratio is kept at lean conditions to decrease HC and CO raw emissions.

The paper is organised as follows: a description of the tools and facilities used in order to carry out the experimental activities is detailed in section 2. Section 3 explains the model structure and describes the thermal and chemical phenomena included. The experimental validation of the model is shown in section 4. Finally, the conclusions of the present work are summarized in section 5. Additionally, a specific process to get a proper parameter identification is proposed in Appendix A.

2 Tools
All the data collected for the model fitting and validation have been obtained by means of experimental tests in the facilities of the Institute for Dynamic Systems and Control, ETH Zurich. The engine test bench is equipped with two fast analyzers to measure hydrocarbons (HC) and carbon monoxide (CO) at the inlet and outlet of the TWC, in particular, the analyzers Cambustion HFR400 and NDIR500 have been used respectively. Regarding the internal combustion engine, it is a turbocharged GDI engine representative of the current state of the art. The advantage of using a real engine to collect the required data lies in the fact that the TWC is exposed to an exhaust gas flow totally equivalent to the real driving conditions, i.e., with the same temperatures, mass flows, pulsed gas flow and exhaust gas composition, which is particularly relevant. Concerning the catalytic converter used, it is fully instrumented to measure temperature at several points longitudinally distributed inside the brick as well as pressure and fuel-to-air ratio at catalyst inlet.

3 TWC model description
This model has been created keeping in mind the idea of developing control strategies for the TWC warm-up. In this sense, this work focuses mostly on operating conditions before and during light-off. However, the current approach is not restricted to those conditions, since the model could be also used to simulate operating conditions after light-off, although in this case there is no water vapour condensation and evaporation.

The development of control strategies requires an important experimental effort to understand, assess and validate the results. The present model helps to partially reduce this experimental work by providing reliable estimations about thermal distribution as well as CO and HC emissions. In this sense, this is not a control-oriented model for on-board applications, but a model for off-line approaches. However, low computational requirements are always an advantage, particularly when complex strategies with hundreds of different cases must be checked. That is why the authors have restricted the model complexity, although always keeping the first-principle approach, with the aim of creating a model with real-time capabilities.

Furthermore, the model has been created with very specific purposes, since state-of-the-art cold-start strategies deal with particular operating conditions:

- TWC heating up process, that is, strong dependency between conversion efficiency and temperature.
- Atypical combustion due to retarded ignition and homogeneous split mode injection.
- Lean conditions to reduce as much as possible HC raw emissions.

As a consequence, the engine raw emissions have a very particular composition in comparison with normal operation, oxygen availability at catalyst inlet but low NOx emissions. In addition, phenomena such as the water condensation-evaporation that are usually neglected, play here a key role due to the cold conditions of the brick. In order to reduce
the actual complexity of the physical phenomena involved and fulfil the computational requirements, the following assumptions are made:13,35–37,41,57,59:

- The exhaust gas and flow at catalyst inlet is uniform, that is, the concentration, temperature and velocity are the same for all particles within a cross section. Therefore, the gas velocity as well as the temperature and concentration gradients in the radial direction are neglected. Only axial gradients are considered. However, axial diffusion is not considered in the mass balance because its effect is negligible for the current approach.
- The metal loading in the brick converter is totally homogeneous. Moreover, all channels are impenetrable to gas and have the same diameter. Thus, the behaviour of any individual channel is representative of the entire monolith.
- The number of free vacancies in noble metal (catalyst surface) is constant and all of them are equivalent for all species considered.
- Once the gas is inside the channel, heat radiation and conduction as well as axial diffusion are neglected. Since the effect of convection due to the gas flow prevails over the other ones.
- The pressure drop along the channel is neglected, thereby the gas density is only a function of the temperature. The effect of the gas composition is not considered.
- The feed-stream is always lean, so oxygen storing dynamics in ceria are neglected.

These simplifications lead to develop a 1D-1Ch approach. The specific features and formulation are detailed in the next sub-sections. A further explanation regarding some particular aspects of catalyst modelling can be found in the literature59. The main geometrical specifications of the TWC are summarized in Table 1:

<table>
<thead>
<tr>
<th>Table 1: TWC geometrical specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick length:</td>
</tr>
<tr>
<td>Brick diameter:</td>
</tr>
<tr>
<td>Brick cell density:</td>
</tr>
</tbody>
</table>

3.1 Thermal model

Two phases have been considered from the heat transfer point of view, the gas phase flowing along the channel and the solid phase that constitutes the walls of the aforementioned channel. A simplified diagram is shown in Figure 1.

The energy balance in the gas phase only accounts for two terms, the axial convection and the heat transfer between the gas and the solid phase, as it is shown in equation (1). The specific heat of the gas phase is the addition of two terms: the specific heat of the gas itself and the specific heat of the water vapour contained in the gas stream, weighted with the concentration of the water vapour.

\[
\varepsilon \cdot \varphi_g \cdot (c_g + X_w \cdot c_w) \frac{\partial T_g}{\partial t} =
\]

\[
= -\alpha \cdot a_v \cdot (T_g - T_{brick}) -
\]

\[
- \frac{\dot{m}_{zh}}{A} \cdot (c_g + X_w \cdot c_w) \frac{\partial T_g}{\partial x} +
\]

\[
\frac{(1 - \varepsilon) \cdot \varphi_{brick} \cdot (c_{brick} + X_w \cdot c_w) \cdot \frac{\partial T_{brick}}{\partial t}}{c_v \cdot A} =
\]

\[
= k_{brick} \cdot (1 - \varepsilon) \cdot \frac{\partial^2 T_{brick}}{\partial x^2} + \alpha \cdot a_v \cdot (T_g - T_{brick}) +
\]

\[
+ \delta \cdot \beta_i \cdot a_v \cdot \varphi_w \cdot (X_w - X_{w,sat},) \cdot
\]

\[
\cdot (\Delta H_{evap} + c_w \cdot (T_g - T_{brick})) +
\]

\[
+ \alpha_{env} \cdot a_v \cdot (T_{brick} - T_{env}) +
\]

\[
+ a_{cat} \cdot C \cdot \sum_{j=1}^{n} (-\Delta H_{r_j} \cdot r_j)
\]

\[(2)\]

The water vapour condensation and evaporation phenomenon has been considered following the approach proposed in Frauhammer et al.60. The associated term is weighted with the non-linear function δ, which is zero except when there is water vapour condensation or evaporation.

3.2 Reaction scheme

Three layers make up the structure of the chemical model considered, as it is shown in Figure 2. In the same way that happens with the structure of the heat transfer model, the outer layer corresponds to the gas that flows inside the channel.

In the gas phase, the mass balance of each species considered (i) consists of only two terms (equation (3)), the mass transfer between gas and washcoat pores as well as the convective flow. Axial diffusion is neglected in this approach.
In the third layer, assuming that all vacancies are equivalent, the mass balance (equation (6)) of species adsorbed and desorbed (as well as the free vacancies) in the noble metal coating, consists of as many terms as reactions (j) in which the considered species (i) takes part.

$$\frac{\partial \Theta_j}{\partial t} = \sum_{j=1}^{n} \bar{v}_{i,j} \cdot r_j$$

(6)

Only 5 reactions are considered (equations (7)-(11)). Carbon monoxide as well as hydrocarbons adsorption and desorption are taken into account. For simplicity, the oxidation of HC is lumped in just one reaction: propylene (C_3H_6), which usually represents the predominant and easily oxidizing HC.

Regarding oxygen, only its adsorption is modelled, the desorption is carried out by means of CO and HC oxidation. As mentioned previously, the reaction that considers the reduction of NOx with CO has been omitted because low NOx exhaust raw emissions are expected under very retarded ignition conditions. Pt represents the vacant sites of noble metal on which the gaseous species can be adsorbed, while Pt- represents the vacancies occupied by the corresponding species.

$$O_2 + 2Pt \rightarrow 2PtO$$

(7)

$$CO + Pt \rightleftharpoons PtCO$$

(8)

$$C_3H_6 + Pt \rightleftharpoons PtC_3H_6$$

(9)

$$PtCO + PtO \rightarrow CO_2 + 2Pt$$

(10)

$$PtC_3H_6 + 9PtO \rightarrow 3CO_2 + 3H_2O + 10Pt$$

(11)

Forward reaction-rate constants follow the Arrhenius equation (12) in the case of oxidation reactions, or the sticking equation (13) in the case of adsorption reactions.

$$k_f^j = A_j \cdot \exp \left(\frac{-E_{a,j}}{RT_{brick}} \right)$$

(12)

$$k_f^j = \frac{1}{C_p} \cdot \frac{s_i}{\sqrt{2 \cdot \pi \cdot M_i \cdot R \cdot T_g}}$$

(13)

According to the model structure, it consists of 13 states: temperatures of gas and solid phases (T_g and T_{brick} respectively); water, oxygen, carbon monoxide and hydrocarbons concentration in both gas and washcoat pores (X_i and Y_i respectively); and vacancies occupied by all adsorbed species in the noble metal coating of the catalyst surface (Θ_j). All the model states are summarized in the state vector S:

$$S = \begin{bmatrix} T_g \\ T_{brick} \\ X_{CO} \\ X_{O_2} \\ X_{HC} \\ X_w \\ Y_{CO} \\ Y_{O_2} \\ Y_{HC} \\ Y_w \\ \Theta_{CO} \\ \Theta_{O_2} \\ \Theta_{HC} \end{bmatrix}$$

(14)
3.3 Numerical solution

The present 1D-1Ch approach requires solving a partial differential equations (PDE) system. It is solved discretizing the problem with the finite differences method (FDM), in particular, the Euler forward method is chosen for first-order temporal derivatives. For the spatial discretization of first-order derivatives, backward differences are used, while the spatial second-order derivative (imposed by the thermal conduction term) is discretized with central differences. Concerning the boundaries, Dirichlet conditions are imposed in spatial and temporal first-order discretizations, since the inlet values of gas concentration, temperature and exhaust mass flow are known, as well as the temporal solution of the previous step. Neumann boundary conditions are set for the spatial second-order derivative, that is, null conductive heat flow at the inner and outer sections of the solid phase (equation (15)).

\[
\frac{\partial T_{\text{brick}}(0, t)}{\partial x} = \frac{\partial T_{\text{brick}}(L, t)}{\partial x} = 0, \quad x \in [0, L] \tag{15}
\]

Since relatively low air mass flow is expected under cold-start conditions, the spatial discretization is set to 10 mm, while the temporal discretization is 1 ms. Defining the real-time ratio as the elapsed time to perform a simulation divided by the duration of the simulation, the present approach runs at 0.35 s/s, thus, in real-time. The processor used for such rating is an Intel® Core™ i5-4460 @ 3.2 GHz. The authors consider that the model is fast enough for the required offline tasks.

4 Experimental validation

Several validation tests are shown next. The simulation results provide information experimentally non-measurable that helps to gain insight into the TWC behaviour during cold-start, which is in fact one of the model purposes.

Figures 3 and 4 show the results provided by the model during a cold-start test at idling, with the engine speed set to 1200 rpm. As a consequence of the high ignition retardation (the center of combustion is set to 100 CA degrees ATDC) as well as to the lean fuel-to-air equivalence ratio imposed (0.95), the combustion efficiency is low, thus a mass flow of 26 kg/h is needed to avoid stalling. The transient from 0 to 1200 rpm takes 1 second, while other operating parameters, as fuel-to-air ratio or center of combustion need 4 seconds to reach steady conditions (basically the time needed by the λ-sensor to provide a reliable measurement). These particular operating conditions are part of a cold-start strategy proposed in the literature.

At the very beginning, both the gas and the converter are at ambient temperature, thus the water content of the exhaust stream begins to condensate in the catalyst surface, particularly in the front face of the brick. After five seconds, the inlet gas temperature increases, which heats up the first centimetres of the brick. This temperature increase involves the end of the water condensation in the front face of the catalyst and the starting of the evaporation. The subsequent sections of the brick are warmer than environment but still cold, thus the inlet water vapour along with the water evaporated in the first sections tend to condensate progressively on them. After seven seconds, the inlet brick sections are completely dry. In these sections gas and catalyst temperature increase strongly following the inlet temperature profile with a small delay, while the temperature in the brick sections that are still wet is kept at 50 °C.

The conversion of species is zero during the first 40 seconds, so inlet and outlet concentrations are almost identical for CO. However, during first 15 seconds HC emissions behaves in a different way according to the experimental measurements. It seems that at the very beginning of the cold-start the catalyst is able to store HC, since the concentration at the inlet is higher than at the outlet. However, a few seconds later the behaviour is the opposite. The explanation for this phenomenon could be based on the fact that not only water but also HC condensates in the catalyst surface. Of course the model is not able to represent such behaviour, since only water vapour condensation is taken into account. Anyway, from the emissions point of view, this behaviour is negligible because these HC are not being converted, only stored and released within the first 15 seconds of the cold-start.

After 40 seconds, the front sections of the brick reach the lower threshold of the conversion temperature (240 °C). Because of that, tailpipe CO emissions begin to decrease. Activation energy for HC oxidation is slightly higher, thus
Figure 4. Air mass flow equal to 26 kg/h. Model predictions for water content and sites occupied by the species adsorbed in noble metal. Dashed (---), dash-dot (····) and dotted (·····) lines correspond to first section, central section and outlet respectively.

Figure 5. Air mass flow equal to 26 kg/h. Model predictions for temperatures, water content and emissions distribution along the TWC axis.

their conversion begin later. This start of conversion involves a change in the heat transfer phenomenon, until this moment the inlet gas was heating the brick, but from second 40 on, the exothermic reaction of CO oxidation is heating the first brick sections. Figure 5 shows this evolution based on the catalyst length for the same test as the previous figures.

The parameter identification indicates that conductive heat flow is negligible in solid phase, which is reasonable, since the heat conduction coefficient of the ceramic is low. Furthermore, the heat transfer surface is very small due to the thin brick walls. However, exothermic reactions not only heat up the sections at which the reaction is taking place, but also the following ones. It is due to the heat exchange between gas and brick together with the conductive heat flow in gas phase, that drags the reactions heat. According to the model, the temperature at the front face of the converter rises from 240 to 340 °C in 12 seconds (from 40 to 52 s), surpassing the inlet gas temperature (first and second plot of Figure 3). The experimental measurements corroborates the model estimation, since gas temperature in the first section of the converter also exceeds the inlet gas temperature from second 46 onward. By then, the whole brick is dry, as all water vapour has been evaporated. The model simulation matches with the experimental data regarding the duration of the plateau for the outlet temperature. Both heat sources have contributed to this fact, the inlet heat as well as the heat of the exothermic reactions.

In the noble metal coating, the vacancies occupied by the different species show that the TWC is mostly filled with oxygen during the whole test (Figure 4) as expected, since lean fuel-to-air ratio is applied. The percentage of vacancies occupied by CO and HC reaches its maximum just before the beginning of the oxidation reactions, again some seconds earlier for CO than for HC. After 100 seconds, the conversion efficiency is high for both species considered. However, due to the relatively low air mass flow, only the first two thirds of the catalyst length are above light-off temperature (Figure 5). The evolution of the emissions shows how most of the oxidation takes place in the first 10 centimetres. The temperature of the brick also corroborates this fact, since only the first half of the converter’s length shows a change of slope in the temperature profiles (Figure 3). Figures 6 and 7 show similar cold-start tests with different air mass flows, 21 and 18 kg/h respectively. As a consequence of the mass flow decrease, the duration of the plateau for the outlet temperature increases. The model is able to predict this phenomenon, where water condensation and evaporation play a key role, as well as the consequent emissions decrease.

The error distribution for temperature, CO and HC emissions at catalyst outlet in the three tests shown previously is summarized in Figure 8. The x-axis represents
the percentage of samples with an error below a certain threshold, while the y-axis represents the corresponding value of the error for each parameter assessed. In particular, during the simulation the 90 % of the samples have an error in the outlet temperature below 23 degrees, as well as below 408 ppm in the case of CO and HC emissions respectively. The highest errors in terms of emissions correspond to the first seconds of the tests, when the inlet gas composition changes fast as a consequence of the engine start-up, as well as to the aforementioned HC condensation.

In Figure 9 a double step in air mass flow is performed. It reaches 40 kg/h until second 27, then decreases fast until 16 kg/h. Finally, the air mass flow increases again until 29 kg/h at second 50 and it is kept at steady conditions until the end of the test. As a consequence of these changes, the plateau of the outlet temperature is not so well defined, and the model overestimates the outlet temperature. However, the emissions prediction is still good because that temperature is not driving the species conversion, but the temperatures of the front sections. A zero-dimensional model would fail if that happens. In contrast to previous tests, the air mass flow evolution involves the change of the slope at the inlet temperature. Both the inlet temperature as well as the temperature in the first section of the converter reach a value above 400 °C before decreasing again to 300 °C. The HC conversion is affected by this temperature reduction showing a peak in emissions. However, this is not the case of CO emissions because of its lower activation energy. The model is also able to predict that peak, although the slight temperature overestimation anticipates the aforementioned emissions increase.
developed model is able to represent this evolution along the TWC accurately, and also provides useful estimations for CO and HC emissions. According to the results obtained, probably not only water but a mix of water vapour and HC is condensing at the very beginning of the cold-start. Future works could improve the model capabilities by considering the condensation of different species.

Although the conductive heat flow in solid phase is included in the model, the parameter identification process shows that it could be neglected. According to the authors’ point of view, this result is coherent with the typical low conduction capabilities of ceramic materials, as well as with the small heat transfer surface, due to the extremely thin brick walls. This fact can be taken into account for future model updates, simplifying the the complexity and speeding up the model.

Appendix A: Parameter identification

It is not easy to find in the literature details about how tuning the wide variety of existing catalyst models. Partly because the proper model fitting process strongly depends on the variety and amount of experimental information available, as well as on the type of model used. Despite these difficulties, some authors have provided general guidelines for this purpose. In this sense, the current section proposes an specific iterative method for the developed model. Although it can be also taken as a general guide for similar models. Some of the parameters can be known if detailed data sheet of the TWC is available, as it is not always the case, the proposed method is based on the assumption that most of them are unknown.

This method consists of four steps, each one is oriented to obtain a different set of parameters by using a particular experimental test and cost function. The order is based on the need to use the parameters obtained with the previous step in the next step:

- **Step 0:** allows to obtain a first estimation of thermal parameters: \(\beta_{H_2O}, k_{brick}, \alpha, \alpha_{env} \) and \(c_{brick} \). The use of experimental tests with a non-impregnated TWC is proposed.
- **Step 1:** allows to obtain the kinetic and chemical parameters: \(\beta_{O_2}, \beta_{CO}, \beta_{C_3H_8}, \epsilon_{washcoat}, C, s_{O_2}, s_{CO}, s_{C_3H_8}, a_{cat}, k_{CO}^b \) and \(k_{C_3H_8}^b \). Experimental tests with an already warmed catalyst (above light-off temperature) but with low heat generation due to exothermic reactions are recommended.
- **Step 2:** allows to obtain the Arrhenius coefficients: \(A_{CO}, A_{C_3H_8}, E_{a,CO} \) and \(E_{a,C_3H_8} \). Experimental tests with the whole evolution of the catalyst heating up process but still with lower requirement of heat generation.
- **Step 3:** allows to obtain the reaction enthalpies (\(\Delta H_{rCO} \) and \(\Delta H_{rC_3H_8} \)) for the first time, and also to update the thermal parameters obtained in **Step 0**. Experimental tests with high heat generation are required.

In order to clarify the aforementioned process, a detailed explanation of each step can be found next.
Step 0: preliminary estimation of thermal parameters

First, the reaction enthalpy is set to zero for both CO and C₃H₆ oxidation reactions, therefore, the exothermic reactions heat are neglected. The appropriate experimental test would be a cold-start with a non-impregnated catalyst. If this hardware is not available, any test with low heat generation could be useful. By using any non-linear programming (NLP) or optimization solver, the preliminary values of the parameters that drive the model heat transfer can be identified: water vapour mass transfer coefficient ($\beta_{H₂O}$), heat transfer conduction coefficient (h_{brick}), heat transfer convection coefficient between gas and solid phase (α), heat losses convection coefficient (α_{env}), and specific heat capacity of the solid phase (c_{brick}). The cost function should provide information of, at least, inlet and outlet temperature errors, although any additional intermediate measurement is valuable.

Step 1: kinetics and chemical reaction parameters

Still neglecting the reaction enthalpies but once obtained a first estimation of the thermal parameters, the parameters related to the chemical reactions and the species mass transfer can be identified. Pre-exponential factors and activation energies of Arrhenius equations are still unknown, but they can be taken from the literature as first approach. Experimental tests with at least, inlet temperature and exhaust mass flow, O₂, CO and HC concentrations upstream and downstream of the TWC are needed (again, intermediate measurements would be valuable) to feed the cost function. In this case, operating conditions with TWC temperature above light-off are desirable, since Arrhenius parameters are just an estimation at this stage. However, tests with low heat generation due to exothermic reactions are still needed, because the reaction enthalpies are equal to zero by now. A NLP solver fed with a predefined cost function can provide the first estimation of the following parameters: O₂, CO and C₃H₆ mass transfer coefficients ($\beta_{O₂}$, β_{CO} and $\beta_{C₃H₆}$), washcoat porosity ($\epsilon_{washcoat}$), maximum capacity of adsorbed species (C), fraction of collisions actually leading to O₂, CO and C₃H₆ adsorption reactions ($s_{O₂}$, s_{CO} and $s_{C₃H₆}$), relative catalytically active area per catalyst volume (a_{cat}), and backward coefficients for CO and C₃H₆ desorption reactions (k_{CO}^{b} and $k_{C₃H₆}^{b}$).

Step 2: Arrhenius coefficients

Imposing the parameters identified in previous steps and neglecting the reaction enthalpies again, the pre-exponential factors (A_{CO} and $A_{C₃H₆}$) along with the activation energies ($E_{a,CO}$ and $E_{a,C₃H₆}$) of the Arrhenius equation can be updated. In this case, the proper experimental test must include the whole evolution of the catalyst heating up process from cold conditions, but still a heat of exothermic reactions as low as possible is desirable. Therefore, at least inlet temperature and exhaust mass flow, besides O₂, CO and HC concentrations upstream and downstream of the TWC are required. The cost function must provide information regarding the error in CO and HC emissions, at least at the catalyst outlet.

Step 3: thermal parameters

This is the last step of the first iteration. At this stage an initial estimation of all parameters, except the reaction enthalpies ($\Delta H_{r,CO}$ and $\Delta H_{r,C₃H₆}$), is available. For the first time, the experimental tests used to identify the parameters require high heat generation from the oxidation of CO and HC. Of course, including the whole evolution of the catalyst heating up process from cold conditions is more beneficial than tests with the TWC already heated up. All the thermal parameters estimated at Step 0 together with the reaction enthalpies can be updated now. The cost function used to feed the NLP solver must provide information of, as least, the outlet temperatures, although intermediate temperature profiles can also be useful.

Once Step 3 is completed, additional iterations from Step 1 can be done until reaching the parameter convergence. The only difference is that, from the first iteration on, it is not necessary to neglect the reaction enthalpies. Which means that the experimental tests used in all steps can include the complete evolution of the catalyst heating up process without limitations regarding heat of exothermic reactions.

Appendix B: Nomenclature

- i: Sub-index that takes into account the species considered
- j: Sub-index that takes into account the reactions considered
- w: Sub-index that represents the water vapour considered
- ε: Volume fraction of the catalyst filled with gas
- φ_g [kg/m³]: Exhaust gas density
- c_g [J/kgK]: Specific heat of the exhaust gas
- X_w: Mass fraction of water vapour in gas phase
- c_w [J/kgK]: Specific heat of the gas
- T_g: Gas temperature
- t: Time
- x: Axial dimension
- α: Heat-transfer coefficient by convection between solid and gas phase
- a_v: Relative cross-sectional surface
- I_{brick} [K]: Catalyst brick temperature
- \dot{m}_{exh} [kg/s]: Exhaust gas mass flow
- A: Channel cross-section surface
- φ_{brick} [kg/m³]: Catalyst brick density
- c_{brick} [J/kgK]: Specific heat of the catalyst brick
- k_{brick} [W/mK]: Heat conduction coefficient of the solid phase
- δ: Switch to enable or disable water vapour condensation-evaporation
- β_i [m/s]: Mass transfer coefficient
- φ_w [kg/m³]: Water vapour density
- $X_{w,sat}$: Saturation threshold for water vapour mass fraction in gas phase
\[\Delta H_{\text{evap}} \left[\frac{J}{m^2} \right] \] Water evaporation enthalpy
\[\alpha_{\text{env}} \left[\frac{m}{K m^2} \right] \] Heat-transfer coefficient by convection between solid and environment
\[\alpha_{v,\text{env}} \left[\frac{m^2}{s} \right] \] Relative surface of heat losses
\[T_{\text{env}} \left[K \right] \] Environment temperature
\[\sigma_{\text{cat}} \left[\frac{m^2}{T} \right] \] Relative catalytically active surface per catalytic volume
\[L \left[\text{m} \right] \] Catalyst brick length
\[C \left[\frac{\text{mol}}{\text{m}} \right] \] Maximum capacity of adsorbed species
\[\Delta H_{rj} \left[\frac{J}{mol} \right] \] Reaction enthalpy
\[r_j \left[\frac{s}{mol} \right] \] Reaction rate
\[k_j \left[s^{-1} \right] \] Forward reaction-rate constant
\[s_i \left[- \right] \] Sticking probability
\[M_i \left[\frac{mol}{mol} \right] \] Molecular mass
\[A_j \left[s^{-1} \right] \] Pre-exponential factor of Arrhenius law
\[E_{a_j} \left[\frac{J}{mol K} \right] \] Activation energy of Arrhenius law
\[R \left[\frac{mol K}{mol} \right] \] Universal gas constant
\[X_j \left[- \right] \] Mass fraction of species in gas phase
\[Y_j \left[- \right] \] Mass fraction of species in solid phase
\[d_b \left[\text{m} \right] \] Channel side length
\[d_w \left[\text{m} \right] \] Washcoat thickness
\[\varepsilon_{\text{washcoat}} \left[- \right] \] Washcoat porosity
\[n_{i,j} \left[- \right] \] Stoichiometric factor
\[\Theta_i \left[- \right] \] Fraction of sites in the noble metal coating occupied by the species \(i \)
\[S \left[- \right] \] State vector

Funding
This work was developed during the research stay of Marcelo Real at ETH Zurich, supported by the Programa de Movilidad para la Formación de Personal Investigador del Vicerrectorado de Investigación, Innovación y Transferencia de la UPV.

References

