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Abstract
This paper describes a high-order well-balanced central finite volume

scheme for solving the coupled Exner−shallow water equations in one

dimensional channels with rectangular section and variable width. Such

numerical method may solve the proposed bedload sediment transport

problem without the need to diagonalize the Jacobian matrix of flow.

The numerical scheme uses a Runge-Kutta method with a fourth-order

continuous natural extension for time discretization. The source term

approximation is designed to verify the exact conservation property.

Comparison of the numerical results for two accuracy tests have proved

the stability and accuracy of the scheme. The results of the laboratory

tests have also been used to calibrate different expressions of the solid

transport discharge in the computer code. Two experimental tests have

been carried out to study the erosive phenomenon and the consequent

sediment transport: one test consisting of a triangular dune, and other

caused by the effect of channel contraction.

KEYWORDS:
Sediment transport system; central scheme; numerical-experimental
contrast

1 INTRODUCTION

In this work a well-balanced central finite volume scheme is presented, which is fourth order accurate in time and
space, for solving the coupled Shallow Water Equations (SWE)-Exner Equation system in one-dimensional channels

†A high-order numerical method for sediment transport problems.
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with rectangular section and variable width. Sediment transport processes are caused by gravity effects and by fric-
tion effects with the air or the fluid containing the sediment. In this paper we focus the study on bedload sediment
transport, defined as the type of transport where sediment grains roll or slide along the bed. To model the bedload
sediment transport phenomenon caused by the movement of a fluid in contact with the bed sediment, we consider a
coupled model constituted by a hydrodynamical component and a morphodynamical component. The hydrodynam-
ical component is given by the Shallow Water Equations 21, used to study fluid movement in rivers, channels, etc. A
sediment transport equation, depending on the bedload transport rate, is considered to model the morphodynamical
component. It is necessary to develop efficient numerical methods to solve this problem accurately.

The need for high accuracy computational schemes has driven the development of numerical schemes for higher-
order spatial accuracy. There have been fourth order accurate numerical methods for certain fluid flows and the
convergence analysis has been establish for the incompressible Boussinesq equations 23. Numerical methods for
higher-order spatial accuracy also include weighted essentially non-oscillatory (WENO) schemes, discontinuous
Galerkin (DG) schemes and PNPM schemes (see for instance a recent review in 6). On the other hand, the most popu-
lar numerical methods for higher-order temporal accuracy are the the Runge-Kutta methods and the ADER (Arbitrary
DERivative in space and time) methods 20. The Runge–Kutta discretization of a time-dependent ordinary differential
equations splits the time evolution into a sequence of stages, each of which is only first order in time. The implemen-
tation of these methods is simple because each stage is practically identical to the previous stage. ADER schemes are
computationally less expensive because the reconstruction is done only once.

Caleffi et al. 8 presented a well-balanced central weighted essentially non-oscillatory scheme, fourth-order accu-
rate in space and in time, for numerical integration of 1D shallow water equations over movable bed. That method
combines a great versatility, due to the use of the central approach, with the main advantages of theWENO schemes
to achieve fourth-order formal accuracy in smooth regions while maintaining stable, to keep non-oscillatory property
near strong discontinuity 24. Even though a high order WENO schemes may use more CPU time than a second order
scheme, it may still be advantageous for many application problems because of its high accuracy 19. Balaguer and
Conde 1 described a new fourth-order nonoscillatory reconstruction procedure for central schemes that satisfies
shape preserving and number of extrema decreasing properties. That scheme can be an interesting computational
alternative to fourth-order WENO schemes in terms of efficiency and stability. In this paper we will use central
schemes with this type of spatial reconstruction.

This paper uses a central scheme to solve the proposed sediment transport problem without the need to diagonal-
ize the Jacobian matrix of flow. This property has facilitated its application in problems by incorporating new physical
parameters to the model. The numerical scheme uses a Runge-Kutta method with a fourth-order continuous natural
extension for time discretization. A Gaussian quadrature rule with two integration nodes is used to evaluate the time
integrals. The reconstruction operator, which calculates point values from average values, is based on a third degree
polynomial that avoids increasing the number of extreme points of the solution inside each cell. Such polynomial
also guarantees that the total number of local maxima and minima does not exceed the initial number of extremes
and therefore prevents the development of spurious numerical oscillations. The source term approximation has been
designed to verify the exact conservation property. This numerical scheme has been applied in previous works by the
authors 9,2 to solve accurately other kind of problems. This paper presents its extension to solve bedload sediment
transport problems in channels with a rectangular section and variable width, adding new terms of friction.

Some experimental tests in the laboratory of the Institute ofWater and Environmental Engineering of the Polytech-
nic University of Valencia have been carried out in this paper to study the erosive phenomenon, and the consequent
sediment transport. The first test case consists of a triangular dune, and the second is selected to analyze the effects
of flow contraction and expansion, due to the existence of inserted structures such as bridges. Comparison of the
numerical results for some accuracy tests have demonstrated the stability and accuracy of the numerical scheme and
the results of the laboratory tests have been used to calibrate different expressions of the solid transport discharge
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in the computer code, computing the best threshold value. The numerical results showed a good agreement with the
measured experimental data.

2 THE SEDIMENT TRANSPORT SYSTEM

The system of equations that models sediment transport in one dimensional channels with rectangular section and
variable width, including the friction term, can be expressed as coupled system with the Shallow Water Equations
(SWE) 22 and the Exner equation 12, given by

ht + (q)x = −q
B′(x)

B(x)

(q)t +

(
q2

h
+

1

2
gh2
)
x

= −gh(Zb)x −
q2

h

B′(x)

B(x)
− g n2 q

∣∣∣ q
h

∣∣∣R−4/3
h

(Zb)t + ξ(qb)x = −ξqb
B′(x)

B(x)

(1)

where h(x, t) is thewater depth; q(x, t) is the specific discharge (flow rate per unit-width), which is related to the aver-
age horizontal velocity v(x, t) by the expression q(x, t) = h(x, t)v(x, t);Zb(x, t) is the bed elevation; g = 9.8m/s2 is
the acceleration of gravity;B(x) is the channel width at each point; n is Manning’s roughness coefficient andRh(x, t)

represents the hydraulic radius, which is given by:

Rh(x, t) =
h(x, t)B(x)

B(x) + 2h(x, t)
(2)

The first two equations in (1), the hydrodynamical component of the system, simulate the movement of a fluid in
areas such as rivers, channels, coastal areas, etc. The third equation of the system (1), is the Exner equation and
it represents the sediment transport phenomenon, defined by the solid bed flux (volume rate of transport per unit
length of surface) qb(h, q), applied on the moving bed Zb(x, t). The parameter ξ is defined by:

ξ =
1

1− ρ0
(3)

where ρ0 is the porosity of the riverbed. For the resolution of the system (1), a transport equation is necessary to
evaluate qb from the results (h, q) of the hydrodynamic module of the system. Subsequently,Zb(x, t) is obtained from
the third equation of (1).

2.1 Formulation for the bedload sediment transport rate
Bed load sediment transport can be expressed by the simple power law: qb(h, q) = A(q/h)3 as in 9, where A is a
constant. However, in the comparative between numerical results and laboratory experiments to evaluate qb(h, q) in
this paper, transport models were proposed for granular non-cohesive sediments 3,10. We used well-known transport
formulas based on the bed shear stress. These models, which apply for the sand size used in the experimental cam-
paign, are the classical Meyer-Peter and Müller formulation (MPM) 15 or with Wong and Parker (W-P) correction 25,
the Einstein-Brown (E-B) 11, 5, Van Rijn formulation (VR) 18 and Nielsen (Niel) 17 equation. These formulations are usu-
ally expressed as a relation between three nondimensional parameters, which are the dimensionless bed-load flux q∗,
the Shields stress τ∗ and the dimensionless particle diameter d∗, given by

q∗ =
qb√

(G− 1)gd3s
, τ∗ =

τb

ρ(G− 1)gds
, d∗ = ds

(
(G− 1)g

ν2

) 1
3

, (4)

where ds is the diameter of the sediment; G = ρs/ρ is the relative density of sediment in water and ν is the water
kinematic viscosity.
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Using these dimensionless parameters, sediment transport formulas used in this paper are given by

MPM : q∗ = 8(τ∗ − τ∗c )3/2 , (5)

W-P : q∗ = 3.97(τ∗ − τ∗c )3/2 , (6)

VR : q∗ =
0.053

d∗0.3

(
τ∗

τ∗c
− 1

)2.1

, (7)

Niel : q∗ = 12(τ∗ − τ∗c )
√
τ∗ . (8)

These equations assume that the movement of the granular sediment begins when the shear stress is bigger than a
certain critical shear stress (τ∗ > τ∗c ). This parameter can be quantified using the Shields diagram for incipient motion.
The original paper of MPM 15 assumed τ∗c = 0.047 whilst W-P suggested τ∗c = 0.0495. On the other hand, Van Rijn’s
formulation 18 uses the following definition for τ∗c :

τ∗c =



0.24 (d∗)−1 if d∗ ≤ 4

0.14 (d∗)−0.64 if 4 < d∗ ≤ 10

0.04 (d∗)−0.1 if 10 < d∗ ≤ 20

0.013 (d∗)0.29 if 20 < d∗ ≤ 150

0.056 if d∗ > 150

(9)

Instead, Einstein-Brown formulation modifies the expression of q∗ depending on whether the τ∗ value is less or
greater than 0.182, as we see in the following definition:

E-B : q∗ =


K exp(−0.391

τ∗ )

0.465
if τ∗ < 0.182

40 K (τ∗)3 if τ∗ ≥ 0.182
(10)

being:

K =

√
2

3
+

36

(d∗)3
−

√
36

(d∗)3
. (11)

These formulas have a range of application in function of grain size and the slope of the bottom. In this work, shear
stress has been obtained using Manning’s coefficient given by Strickler’s formula:

τ∗ =
n2v2

(G− 1)dsR
1/3
h

,

where v = v(x, t) is the average horizontal velocity defined below Eq. (1). To determine τ∗c many experiments have
been performed. For example, Shields proposed the well known Shields diagram. Meyer-Peter and Müller (MPM) is
one of the most used models and it is applied to rivers and channels with slope lower than 2%, but the rest of the
methods were subsequently introduced with the aim of trying to adjust the formulation to experimental results. In
Section 4 we have used these models in order to compare numerical results with experimental data.

2.2 Algebraic manipulation of the sediment transport system
The system of equations (1) can be rewritten using the total surface elevation, η(x, t) = h(x, t) +Zb(x, t), instead of
the water depth h(x, t), as suggested by Caleffi et al. in 7, resulting in this matrix form system:


η

q

Zb


t

+


q + ξqb

q2

η − Zb
+

1

2
g(η − Zb)2

ξqb


x

=


−(q + ξqb)

B′(x)

B(x)

−g(η − Zb)(Zb)x −
q2

η − Zb
B′(x)

B(x)
− g Sf

−ξqb
B′(x)

B(x)

 , (12)

where Sf models the friction term by means of the Manning’s law:
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Sf = n2 q

∣∣∣∣ q

η − Zb

∣∣∣∣ (Rh)−4/3 .

The matrix system (12) can be expressed as ut + f(u)x = s(x, u) = s1(x, u) + s2(x, u) + s3(x, u), where
u = u(x, t) is the vector of variables u = [η, q, Zb]

T ; f(u(x, t)) is the flux vector; s1(x, u) is the source term related
to the bed slope; s2(x, u) depends on the channel width and s3(x, u) is the friction term:

s1 =


0

−g(η − Zb)(Zb)x
0

 , s2 =


−(q + ξqb)

B′(x)

B(x)

−
q2

η − Zb
B′(x)

B(x)

−ξqb
B′(x)

B(x)

 , s3 =


0

−g Sf
0

 . (13)

In the next Sections we extend the methodology presented by Capilla and Balaguer in 9 to develop a high-order
well-balanced numerical scheme that solves the system (12). This extension incorporates to the numerical model the
new source term, s(x, u(x, t)), that includes the width of the channel and the friction term.

3 NUMERICAL SCHEME

The computational domain [0, L] is divided into N equally spaced nodes xj , then the spatial step ∆x = L/N is
defined. We consider 5 additional nodes on the left of x = 0, and also on the right of x = L, to avoid loss of accuracy
in the domain boundaries and therefore we have the points xj+ 1

2
= −5∆x + j∆x, j = 0, 1, . . . , (N + 10). Then

the nodes xj = 1
2

(xj− 1
2

+ xj+ 1
2

), j = 1, . . . (N + 10) are considered.
The time interval is discretized into the values t0 = 0, tn = tn−1 + ∆tn, n ≥ 1. The time step ∆tn is computed

taking into account the following Courant-Friedrichs-Lewy or CFL condition, that is a necessary condition for the
stability of numerical methods:

∆tn = CFL ∆x

max
j

(√
gĥnj + |v̂nj |

) , CFL ≤ 0.35 (14)

where ĥnj and v̂nj are the point-values at time tn of the water depth h and the water velocity v, respectively, consid-
ering x = xj when n is even and x = xj+ 1

2
when n is odd. The use of a CFL equal to 0.45 is recommended in central

schemes, when the scheme used is second order in accuracy. In river hydrodynamic models, a value between 0.30 and
0.45 is usually used to correctly represent the flow operation, without reaching prohibitive calculation times. In our
case, the value of 0.35 has been a good compromise solution, thus achieving a stable model, sufficiently accurate and
with acceptable computation times. This choice is related to the numerical stability of the Runge–Kutta scheme used
in the time integration and the capability of this method to achieve the desired fourth order of accuracy, as can be
seen in previous works with central schemes 29. Large values of CFL number >0.35 may lead to an instable solutions.

The central scheme integrates equation (12) in the control volume [xj , xj+1]× [tn, tn+1] when n is odd, obtaining

un+1

j+ 1
2

= un
j+ 1

2

−
1

∆x

(∫ tn+1

tn
fj+1(τ) dτ −

∫ tn+1

tn
fj(τ) dτ

)
+

∫ tn+1

tn
sj+ 1

2
(τ) dτ , (15)

being:

un
j+ 1

2

=
1

4x

∫ xj+1

xj

u(x, tn) dx , fj(t) = f(u(xj , t)) , sj+ 1
2

(t) =
1

4x

∫ xj+1

xj

3∑
k=1

sk(x, u(x, t)) dx . (16)
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At the next time step, the solution is computed on the non-staggered grid, from the calculated cell averages un+1

j+ 1
2

and using a similar procedure:

un+2
j = un+1

j −
1

∆x

[∫ tn+2

tn+1
fj+ 1

2
(τ) dτ −

∫ tn+2

tn+1
fj− 1

2
(τ) dτ

]
+

∫ tn+2

tn+1
sj(τ) dτ . (17)

The ideas described in previous works 9,16 are extended for developing the numerical scheme of this paper, con-
sidering the source term s, which also includes the channel width s2, and the friction term s3. As we will describe, the
numerical algorithm takes into account the reconstruction, at time tn, of averages un

j+ 1
2

and point-values ûnj , and the

reconstruction of Runge-Kutta fluxes, k(i)j . Time integration will be developed by means of a Runge-Kutta scheme
coupled with a Natural Continuous Extension (NCE) 7.

In the next Subsections we describe the steps of the numerical algorithm, needed to obtain the solution (15) in a
single time step.

3.1 Reconstruction, at time tn, of point-values and averaged values
We start the reconstruction at time t = tn, with a given approximation of fourth order of the cell averages:

unj =
1

∆x

∫ x
j+1

2

x
j− 1

2

u (ϕ, tn) dϕ .

We analyzed 9 the definition of the reconstruction three-degree polynomial Rj(x;un), which approximates the
pointwise values starting from the cell averages uni , i ∈ {j − 2, j − 1, j, j + 1, j + 2}, so:

Rj(x;un) = u(x, tn) +O((∆x)4), ∀x ∈
[
xj− 1

2
, xj+ 1

2

]
. (18)

We use these polynomials to approximate the point-values of the solution on the non-staggered grid at time tn:

ûnj ≡ unj −
θnj

24

(
unj−1 − 2unj + unj+1

)
, (19)

that will be used in the numerical approximation of source term and fluxes. Also, the cell-averaged values on the
staggered grid at time tn are approximated:

un
j+ 1

2

≡
1

∆x

∫ x
j+1

2

xj

Rj(x;un) dx+

∫ xj+1

x
j+1

2

Rj+1(x;un) dx

 . (20)

The polynomial Rj(x, un) has been designed in order to have the same shape as the cell-averages,
{unj−1, u

n
j , u

n
j+1} in the domain Ij =

[
xj− 1

2
, xj+ 1

2

]
so that:

1. Rj(x;un) is monotonically increasing in Ij if unj−1 ≤ unj ≤ unj+1.

2. Rj(x;un) is monotonically decreasing in Ij if unj−1 ≥ unj ≥ unj+1.

3. Rj(x;un) has a maximum in Ij if and only if unj−1 < unj > unj+1.

4. Rj(x;un) has a minimum in Ij if and only if unj−1 > unj < unj+1.

Moreover, the parameter θ(n)j in (19) has been defined to preserve the stability and the non-oscillatory behaviour
of the numerical scheme. In this way, our central approximation give rise to monotone scheme that it avoids spurious
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oscillations in the solution using a fixed-central stencil. For more details see references 1,9. To maintain the positivity
of the numerical scheme we should add additional requirements to the θ(n)j definition, similar to those described by
Liu and Osher 14 to satisfy the local maximum principle. This would allow a better treatment of wet/dry fronts.

In 9 a test with a dry bed generation was solved in a fixed bed suggesting that the water depth may be negative if
that local maximum principle condition has not been taken into account. We could also change the definition of θ(n)j

using the positivity-preserving limiter introduced by Xing et al. 28 or Xing and Shu 27. In fact, there have been many
scientific computing articles that have theoretically addressed the positivity property for certain physical variables,
such as local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations 30, positivity-
preserving schemes of density and pressure in ideal magnetohydrodynamics and positivity and bound-preserving
limiters for the compressible Euler equations 13.

3.2 Time integration: Runge–Kutta scheme
The time flux integrals in Eq. (15) are evaluated by means of a Gaussian quadrature rule with two integration nodes:

1

∆x

∫ tn+1

tn
fj(τ)dτ ≡

∆t

2∆x

(
f(ûn+β0j ) + f(ûn+β1j )

)
, (21)

where β0 = 1/2
(

1− 1/
√

3
)
and β1 = 1/2

(
1 + 1/

√
3
)
. Then, we have to compute the point-values of the solution,

u(xj , t
n + βk∆t), at two intermediate time steps, tn+βk for k = 0, 1. For this purpose, we apply a Runge-Kutta

scheme coupled with the following Natural Continuous Extension (NCE) 4:

û
n+βk
j ≡ u(xj , t

n + βk∆t) = ûnj +4t
4∑
i=1

bi(βk)k
(i)
j , (22)

where the constants bi(βk) can be seen in 9 and k(i)j , 1 ≤ i ≤ 4 are the Runge-Kutta fluxes, which coincide with
a numerical evaluation of (−fx + s1 + s2 + s3) in Eq. (12) and are computed considering the point-values of û(i)k ,
k ∈ {j − 2, j − 1, j, j + 1, j + 2}, being:

û
(1)
j = ûnj , û

(2)
j = ûnj +

4t
2
k
(1)
j , û

(3)
j = ûnj +

4t
2
k
(2)
j , û

(4)
j = ûnj +4tk(3)j . (23)

3.2.1 Reconstruction of the Runge–Kutta fluxes
We calculate the Runge-Kutta fluxes k(i)j , 1 ≤ i ≤ 4 in Eq. (22), starting from the approximation described in 9. Then
we define a function given by:

Kj(xk; û(i)) = −
[
f(û

(i)
k )− f(û

(i)
j )
]

+

∫ xk

xj

(
s1(x, û(i)) + s2(x, û(i)) + s3(x, û(i))

)
dx , (24)

where the contribution of the channel width and friction term has been incorporated into the source term of the
system of equations. From the definition (24) of the functionK(i)

j , it holds that

∂K
(i)
j

∂x

∣∣∣∣∣∣
x=xj

= k
(i)
j = (−fx + s1 + s2 + s3)

(i)
j . (25)

Considering the point-values of û(i)k , k ∈ {j − 2, j − 1, j, j + 1, j + 2}, we calculate the function Kj(xk; û(i)).
The integrals

∫ xk
xj

s(x, û(i))dx, xj ≤ xk can be calculated adding integrals of the type (26), changing the sign when
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xj > xk . ∫ xj+1

xj

s(x, û(i))dx =

∫ x
j+1

2

xj

Pj(x; û(i))dx+

∫ xj+1

x
j+1

2

Pj+1(x; û(i))dx . (26)

Using the interpolating polynomial Pj(x; K̂
(i)
j ) of degree three defined in 9, the evaluation of the Runge-Kutta fluxes

k
(i)
j is performed. Furthermore, in the case of a flow at rest, with q = 0 and η = cte, thenKj(xk; û(i)) = 0 and this

ensures that the scheme is well balanced.

3.3 Source term integration
The time source term integrals in Eq. (15) are also evaluated using a Gaussian quadrature rule with two integration
nodes:

∫ tn+1

tn
sj+ 1

2
(τ) dτ =

∆t

2

(
sn+β0
j+ 1

2

+ sn+β1
j+ 1

2

)
, with s

n+βk
j+ 1

2

=
1

4x

∫ xj+1

xj

3∑
i=1

si(x, u(x, tn + βk4t)) dx ,

(27)

where tn+βk = tn + βk ∆t (k = 0, 1), and {si}3i=1 were defined in (13). The integration of the source term
s1(u(x, tn+βk )) in (27) is calculated using the procedure described in 9. The first step to perform this integration
consists of an integration by parts, in order to involve the spatial derivative of the free surface elevation η = h+ Zb

instead of the water depth h:

s
[2]

1,j+ 1
2

= −
1

4x

∫ xj+1

xj

g(η − Zb)
∂Zb

∂x
dx

=
g

24x

[
Ẑ2
b,j+1 − Ẑ

2
b,j − 2η̂j+1Ẑb,j+1 + 2η̂jẐb,j

]
+

1

4x

∫ xj+1

xj

ψ(x) dx , (28)

where ψ(x) = g Zb
∂η(x)
∂x

. This formulation depends on the spatial derivative of the free surface level (η), which is
preferable to prevent numerical errors in the solutions. In order to compute 1

4x
∫ xj+1
xj

ψ(x) dx in Eq. (28), we follow
this numerical treatment:

• Starting from the point-values η̂j , we compute the interpolating polynomials Pj(x; η̂), that approximate the
point-values ψ̂j starting from point-values 9.

• We compute the polynomials Pj(x; ψ̂) starting from the point-values ψ̂j and with these polynomials, we
evaluate the integration of the function ψ(x) in (28).

The integrals of the source terms relative to the width channel, s2(u(x, tn+βk )), and the friction source term
s3(u(x, tn+βk )) are evaluated using the procedure shown in (26).

4 APPLICATIONS

In this Section, the numerical method described previously is calibrated bymeans of different test cases. First, in order
to prove the global order of accuracy of our method, we present in Section 4.1 two accuracy tests. In Sections 4.2
and 4.3 we describe laboratory scale experiments where we simulate sediment evolution and the numerical solution
is compared with the experimental data obtained by the Institute of Water and Environmental Engineering of the
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Polytechnic University of Valencia. These experiments were carried out in a sand bed open channel, and they will be
described in the following paragraphs.

Numerical results for these test experiments were obtained with transport equations described in Section 2.1.
Different values for critical shear stress are also considered in the simulations.

These are the values considered in the comparison with laboratory experiments for the Manning coefficient n, the
relative density of sediment in water G, the diameter of the sediment ds, the porosity of the riverbed ρ0 and the
water kinematic viscosity ν:

n = 0.0136 , G =
ρs

ρ
= 2.65 , ds = 0.000515 m , ρ0 = 0.4 , ν = 1.09 · 10−6 m2/s .

4.1 Test 1: Accuracy tests
We tested the order accuracy of our scheme using the tests cases proposed in 26 and 8. Initial conditions were given
by the following expressions:

h(x, 0) = 5 + ecos(2πx), q(x, 0) = sin (cos(2πx)) , Zb(x, 0) = sin2(πx), x ∈ [0, 1] (29)

and periodic boundary conditions are considered. The width of the channel was not modified at any point soB′(x) =

0, ∀x ∈ [0, 1] and for simplicity we assumed a null Manning’s roughness coefficient so the friction term Sf = 0.
The analytical solution is not known for this problem, and therefore we used our scheme with NX = 12800 cells to
compute a reference solution.We took this reference solution as the exact solution in computing the numerical errors.

First, in the Exner equation we considered that qb(h, q) = 0 and ξ = 0. It can be seen that despite the absence of
sediment transport, our scheme interpolates bed elevation values on a staggered grid. Table 1 shows errors in the L1

and L∞ norms together with the numerical orders of accuracy, computed considering different number of cells. Final
time of computation was equal to T = 0.1 s, when the solution is still smooth because shocks developed later in time
for this problem. We can see that fourth order accuracy is achieved for this example for the free surface elevation
and the specific discharge. Fig. 1 shows L1 errors given in Table 1 versus CPU times, in a log-log scale. The points of
this Figure fit a straight line.

TABLE 1 Errors at T = 0.1 s in L1 and L∞ norms and the numerical orders of accuracy considering (29) as initial
conditions, periodic boundary conditions, qb(h, q) = 0, ξ = 0,B′(x) = 0, ∀x ∈ [0, 1] and a null Manning’s roughness
coefficient.

Cells
η, free surface elevation q, specific discharge
L1 Order L∞ Order L1 Order L∞ Order

100 8.99E-04 1.14E-02 7.64E-03 9.11E-02
200 7.33E-05 3.62 1.23E-03 3.20 6.15E-04 3.63 1.02E-02 3.16
400 3.95E-06 4.21 9.22E-05 3.74 3.22E-05 4.26 7.82E-04 3.71
800 1.77E-07 4.47 5.93E-06 3.96 1.35E-06 4.58 5.15E-05 3.93
1600 8.74E-09 4.34 2.62E-07 4.50 6.97E-08 4.27 2.22E-06 4.54

Second, we considered the bed load transport problem assuming that qb(h, q) = 0.2
( q
h

)3 and ξ = 1
8
as in 8. Errors

in the L1 and L∞ norms and the numerical orders of accuracy are presented in Table 2. Shape-preserving conditions
imposed to defineRj(x, un) may cause that the numerical scheme is not of orderO(4x)4 in a small number of cells,
so the experimental order of accuracy may be about 3 as we can see in Table 2.
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FIGURE 1 L1 errors given in Table 1 as function of the CPU time (in seconds), in logarithmic scale.

TABLE 2 Errors in L1 and L∞ norms and the numerical orders of accuracy considering (29) as initial conditions,
periodic boundary conditions, bed load transport with qb(h, q) = 0.2

( q
h

)3, ξ = 1
8
, B′(x) = 0, ∀x ∈ [0, 1] and a null

Manning’s roughness coefficient.

Cells
η, free surface elevation q, specific discharge
L1 Order L∞ Order L1 Order L∞ Order

200 2.96E-04 8.21E-03 2.49E-03 6.91E-02
400 2.65E-05 3.48 1.15E-03 2.84 2.22E-04 3.49 9.69E-03 2.83
800 1.40E-06 4.25 9.53E-05 3.59 1.19E-05 4.23 8.08E-04 3.58
1600 5.94E-08 4.56 6.41E-06 3.89 5.17E-07 4.52 5.44E-05 3.89

4.2 Test 2: Triangular dune
In the first case, we apply the numerical model presented to an experiment that consists of a triangular dune. The
experimental test was developed introducing a sand layer in the laboratory channel, as it is shown in the sketch of the
experiment with dimensions in Fig. 2. The dune is 0.15 m long and 0.02 m high, and it starts at x = 0.10 m and ends
at x = 0.25 m. The peak is located at x = 0.215 m. The width of the channel is not modified at any point, being 0.064
m in the entire section. For the numerical computations, we consider the one-dimensional domain of 0.6 m length
discretized in 360 mesh points.

As the width of the channel B(x) is constant, the system of equations (12), applied to this particular test, takes
this form: 

η

q

Zb


t

+


q + ξqb

q2

η − Zb
+

1

2
g(η − Zb)2

ξqb


x

=


0

−g(η − Zb)(Zb)x − g Sf
0

 . (30)

Boundary conditions for this problem are: q(0, t) = (8.75 · 10−4/0.064) m2/s for the water discharge and
h(0.6, t) = 0.063 m for the fixed downstream water depth. The following initial conditions are also considered:
h(x, 0) = 0.063 m ∀x ∈ [0, 0.6] and q(x, 0) = (8.75 · 10−4/0.064) m2/s ∀x ∈ [0, 0.6]. Remember that B(x) =
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FIGURE 2 Sketch of the profile of the triangular dune case.

0.064 m ∀x. The experimental value, h(0, t) upstream, has been around 0.065 m although it will only be used for
comparison.

4.2.1 Numerical-experimental comparative for Test 2
Water surface profile
Fig. 3 shows numerical and experimental results for the free water surface at t = 10min in the range 0.07m ≤ x ≤
0.4m. Numerical solutions were obtained withWong and Parker and Van Rijn models (see Eqs. (6) and (7)) considering
τ∗c = 0.06; this value for τ∗c has been chosen since the bed elevation obtained with it is closer to the experimental
results as will be analyzed later in Figs. 4 and 5. The value of the critical shear stress using formula (9) is equal to
0.0311. Fig. 3 also shows the experimental result for the sand bed profile at this time step in the same range. The
vertical dashed lines represent where the dune starts and ends at the initial time t = 0 s. Numerical water surfaces
represented in Fig. 3 show that the model is able to simulate the drop in the water level that occurs when the bed
level rises, under subcritical flow conditions. This same drop is observed in the experimental results, although it occurs
slightly downstream.

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

t = 10 min

B
ed

 e
le

v
at

io
n

 a
n

d
 f

re
e 

w
at

er
 s

u
rf

ac
e 

(m
)

x (m)

Experimental
W-P, τc* = 0.06
VR, τc* = 0.06
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Sand bed profile
Figs. 4 and 5 show the computed profile of the dune at two time steps, t=5min and t=10min, together with the exper-
imental data for this test. These Figures show numerical results obtained with the different formulations described
in Section 2.1 for the bedload sediment transport rate. Classical Meyer-Peter and Müller formulation (MPM, Eq. (5))
with τ∗c = 0.047 produces excessive erosion. The same occurs withWong and Parker (W-P) method with τ∗c = 0.053,
which is the value of the dimensionless shear stress according to Shields diagram for the hydraulic conditions of the
test. The results improve with this same method by increasing τ∗c to τ∗c = 0.06, which is the maximum value that is
usually recommended. The Einstein-Brown (E-B, Eq. (10)) solution is similar to that of Wong and Parker (W-P) with
τ∗c = 0.06. Finally, Van Rijn’s formulation (VR) using τ∗c = 0.06 produces results closer to the experimental results.
This value for τ∗c is much higher than that defined using formula (9), which would give a value equal to 0.0311.
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FIGURE 4 Comparison between experimental and computed sand bed profile for the triangular dune at t = 5 min.
Left: using W-P, MPM and Nielsen models. Right: using VR, E-B and W-P models.
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4.3 Test 3: Channel with variable width
This case is selected from a set of experiments presented by Nácher-Rodríguez et al. in 16, to be simulated with the
numerical model. Cross section of the channel is rectangular, with a variable width. The sand used to represent the
river bed has a very uniform grain size distribution. The sketch and parameters for this experiment can be seen in
Fig. 6. Channel length is 0.9 m with abutment plates of width 0.013 m located in the center.

1

4

0.052 m 0.055 m 0.052 m

0.038 m 0.064 m

FIGURE 6 Sketch of the channel with variable width.

Simulations were carried out by establishing a constant flow rate and a fixed downstream depth as boundary
conditions:

h(0.9, t) = 0.066 m ; q(0, t) = (8.8333 · 10−4/0.064) m2/s . (31)

Initial conditions are the following:

h(x, 0) = 0.066 m ; q(x, 0) = (8.8333 · 10−4/0.064) m2/s ; Zb(x, 0) = 0.072 m . (32)

For the numerical computations, we consider the one-dimensional domain of 0.9 m length discretized in 540 mesh
points. During the test experiment, a set of photographs were made in order to analyze the profile. To extract data
from pictures, two moving vertical scales were located against channel walls. Experimental results from this test
comprise water surface and sand bed profiles at different time steps.

The test was carried out for a longer period of time, but after 90 min (1.5 h), we observed that the erosive part
of the bed profile did not change significantly. Two different values for critical shear stress are considered in this
simulation, these values are τ∗c = 0.053 and τ∗c = 0.06. As in Test 2, first value corresponds to dimensionless shear
stress according to Shields diagram for the hydraulic conditions of the test. Second value was fixed in order to achieve
a better agreement between numerical and experimental results.

4.3.1 Numerical-experimental comparative for Test 3
Water surface profile
Fig. 7 shows computed versus experimental free water surface at t = 90min with W-P and VR models, considering
τ∗c = 0.053. With the rest of the formulations presented in Section 2.1, the changes in the free water surface are
minimal and therefore, as an example, this Figure presents results with the twomethods that are subsequently deeply
analyzed. Fig. 7 also shows the experimental sand bed profile at t = 90min along the maximum depth location; it can
be seen that maximum erosion takes place close to the abutments. Vertical dashed lines represent where abutments
start and where they end, and also the transitions.
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We observe from that Figure that there is reasonable agreement between numerical and experimental water
surfaces, despite the minor oscillations located between the abutments. These fluctuations in experimental profile
located in the contracted flow area are not obtained with the numerical model.
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FIGURE 7 Experimental versus computed water surface profile and experimental sand bed profile, for Test 3 at t=90
min.

Sand bed profiles
Fig. 8 shows the sand bed results at time t = 10min; in this Figure different transport methods are compared with
each other and with the experimental data. The transport methods used in this Figure are Wong and Parker, Van
Rijn, Einstein-Brown and Nielsen, with τ∗c = 0.06. We have observed that the results of this same comparison at
time t = 30min are very similar. In this Test, W-P and E-B methods give very similar results; in the erosion zone the
W-P method is closer to the experimental result, since the maximum depth is less and therefore more similar to the
experiment. From the results obtained for this Test case with the different transport models, we have selected the
W-P and VR methods to carry out a more in-depth analysis, as will be shown in the following.
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FIGURE 8Comparison between experimental and computed sand bed profiles for Test 3 at t = 10min, using different
transport models.
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In Fig. 9, a comparison between numerical and experimental sand bed profiles is shown for several time steps (10,
30, 60 and 90 min). Left column in the Figure shows results obtained with the W-P transport equation, and right col-
umn corresponds to VR transport equation. Results of both transport models are presented for two different values
for critical shear stress (τ∗c = 0.053 and τ∗c = 0.06). It can be seen that both transport models give an erosion/deposi-
tion profile qualitatively similar to the experimental profile. Erosion is located between the abutments, and deposition
starts at downstream transition.Wong and Parker formula tends to overestimate maximum scour depth, whereas Van
Rijn’s equation provides smaller values, more consistent with those from the experiment.

The deposition starts before in the numerical model than in the lab test. At early time steps both numerical models
overestimate maximum height of deposition, but numerical and experimental tend to reach the same value after
approximately 60 min. The numerical model described in this research is 1D, and it gives good results when compared
to the experiment, where the flow has one main direction, which is the longitudinal one. However, the laboratory
flume has a certain width (which is small, in comparison to its length) and the erosive process that takes place is
intrinsically 3D, as downward and lateral flows appear as the erosion hole starts to develop. In this case, erosion is
mainly caused by the increase in the longitudinal velocity of the flow due to a local narrowing of the channel, and
that is why a 1D model is able to simulate the location of the scour hole and its maximum depth. However, there are
other processes taking place due to the actual 3D nature of the flow, and while they are not so relevant, they play a
role in the final configuration of the sand bed profile. The numerical model cannot represent that effect. Therefore,
differences between the experimental and computed bed profile are to be expected.

Table 3 displays the values of the maximum scour depth and its location at different time steps; the Table compares
the data of the experiment with the numerical results obtained with Wong and Parker and Van Rijn’s models and
considering two different values for critical shear stress. The relative errors for the values obtained for maximum
depth and its location, with respect to the experimental data, are tabulated in Table 4. We can see from these Tables
that solutions using Van Rijn’s model with the higher Shields parameter τ∗c = 0.06, differ from experimental result by
a 10%, which is acceptable taking into account the model limitations.

TABLE 3 Values of maximum scour depth and its location. Length units are in meters.

t = 10 min t = 30 min t = 60 min t = 90 min
Scour depth X Scour depth X Scour depth X Scour depth X

Experimental 0.0126 0.469 0.0137 0.474 0.0149 0.475 0.0162 0.479

Numerical τ∗c

W-P
0.053 0.0208 0.421 0.0241 0.419 0.0257 0.431 0.0261 0.441
0.06 0.0175 0.421 0.0202 0.416 0.0211 0.444 0.0215 0.438

VR
0.053 0.0150 0.418 0.0188 0.428 0.0208 0.431 0.0216 0.436
0.06 0.0116 0.418 0.0149 0.423 0.0167 0.433 0.0174 0.434

5 CONCLUSIONS AND FUTUREWORK

5.1 Conclusions
After analyzing the experimental results and the numerical comparison, we establish the conclusions of this work.We
have presented a fourth order accurate central scheme that solves the 1D coupled SW–Exner Equation system in a
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FIGURE 9 Comparison between experimental and computed sand bed profile for Test 3 at (a) t = 10 min, (b) t = 30

min, (c) t = 60 min and (d) t = 90 min. W-P model on the left, VR model on the right.

rectangular channel with variable width. The treatment for the source term spatial integration preserves the time and
space accuracy and has been designed to obtain a well-balanced finite volume scheme. This central numerical scheme
has been tested in previous works by the authors with other kind of problems, and now the method is extended
to the incorporation of the variable width and the friction term. The method is capable of achieving great accuracy
without using a very fine mesh. Its non-oscillatory behaviour prevents the presence of new outliers in the computed
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TABLE 4 Relative errors in erosive profile (scour depth and location) between numerical and experimental results.

Model τ∗c
t = 10 min t = 30 min t = 60 min t = 90 min

Scour depth X Scour depth X Scour depth X Scour depth X

W-P
0.053 65.1 -10.3 75.9 -11.5 72.5 -9.2 61.1 -8.1
0.06 38.9 -10.3 47.4 -12.1 41.6 -6.4 32.7 -8.7

VR
0.053 19.0 -11.0 37.2 -9.6 39.6 -9.2 33.3 -9.1
0.06 -7.9 -11.0 8.8 -10.8 12.1 -8.8 7.4 -9.5

solutions. Also, the method allows to work with different models for the sediment transport rate and to incorporate
new physical parameters in the model.

A comparative between experimental results and numerical model has been analyzed: an acceptable agreement
under certain conditions was found. Figs. 4, 5, 8 and 9 show significant differences between computed sand bed
profiles with different critical shear stress values. Themodel is highly sensitive to this parameter, and therefore special
attention is required to determine its value. Model calibration is crucial in sediment transport problems, and when
experimental data is not available, sensitivity analysis should always be performed to assess the model’s uncertainty.

In the two laboratory tests used in this work, it was necessary to choose a higher Shields parameter τ∗c than that
used in previous references in order to obtain results closer to the experimental ones, avoiding excessive erosion. In
the second laboratory test, maximum scour locating was properly computed, and the model is able to simulate both
erosion and deposition, but overestimates scour depths. Then, additional modifications have to be implemented, in
order to accurately compute maximum scour depths with more representative parameters.

5.2 Future work
Transition from one to two-dimensional tests is necessary and it will provide a better representation of experimental
tests. Also the incorporation in the model of a non-erodible fixed bed and the existence of bedforms, that may be the
key to obtain smaller computed scour depths. Other factors have to be taken into account; for example, different bed
materials and more complex structures or different angles of approach of the flow to the structure, which are factors
that normally influence erosive processes.
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