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A weighted distributed predictor-feedback control

synthesis for interconnected time delay systems✩

Antonio González

Abstract

The paper investigates the control design of interconnected time delay sys-
tems by means of distributed predictor-feedback delay compensation ap-
proaches and event-triggered mechanism. The idea behind delay compen-
sation is to counteract the negative effects of delays in the control-loop by
feeding back future predictions of the system state. Nevertheless, an exact
prediction of the overall system state vector cannot be obtained providing
that each system has only knowledge of their local data regarding the system
model and state variables. Consequently, predictor-feedback delay compensa-
tion may lose effectiveness if the coupling between subsystems is sufficiently
strong. To circumvent this drawback, the proposed distributed predictor-
feedback control incorporates extra degree of freedom for control synthesis
by introducing new weighting factors for each local prediction term. The de-
sign of the weighting factors is addressed, together with the event-triggered
parameters, by an algorithm based on Linear Matrix Inequalities (LMI) and
the Cone Complementarity Linearization (CCL). Simulation results are pro-
vided to show the achieved improvements and validate the effectiveness of
the proposed method, even in the case that other control strategies fail to
stabilize the closed-loop system.
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1. Introduction

Time delays are inevitably encountered in a great variety of engineering
applications, such as networked control systems [1, 2, 3, 4, 5] and multia-
gent systems [6, 7, 8, 9]. The presence of delays may cause instability or
poor performance in the control system if they are not taken into account in
the control design stage [10]. This fact has motivated over the last decades
the research of advanced control strategies to compensate the negative ef-
fects of delays in the closed-loop dynamics (see [11, 12, 13] and references
therein). Most of these methods are extensions of the classical Smith Predic-
tor [14], and the Finite Spectrum Assignment or predictor-feedback control
[15]. Smith predictor control uses prior knowledge of the plant model to re-
move the delayed dynamics of the control system by internal model control.
Predictor-feedback control allows obtaining an equivalent delay-free closed-
loop system by applying a state transformation based on the Artstein’s re-
duction method [16]. The underlying idea behind delay compensation is to
anticipate the system behavior in the control loop by predicting the state
variable. Thus, any controller designed to stabilize the delay-free control
system can ensure the stability for arbitrarily large delays, provided that an
exact description of the plant model and time delays is available for state pre-
diction. In the presence of model uncertainties and delay mismatches, further
studies revealed that better robust performance can be achieved by predictor-
feedback delay compensation under different implementations: discrete-time
predictor feedback [17, 18, 19], event-triggered predictor feedback [20], trun-
cated predictor-feedback [21], nonlinear predictor feedback in continuous-
time [22, 23, 13] and discrete-time [24]. Nevertheless, most of these studies
are focused on centralized controllers and, to the best author’s knowledge,
few works investigate the stabilization of interconnected time systems under
delay compensation approaches.

Interconnected systems consist of multiple coupled subsystems provided
with local controllers independent of the others, where each controller can
only access the past and current information of the corresponding subsys-
tem. Hence, a distributed control architecture is appropriate for intercon-
nected systems, such as multiagent systems or complex systems with strong
interactions [25]. For interconnected time delay systems, observer-predictor
delay compensation methods were proposed in [26, 27] to address the output
consensus design of networked multiagent systems. A delay compensation
based on multiple Smith predictors was further proposed in [28] to solve the

2
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formation control synthesis of multiagent systems. Nevertheless, the follow-
ing drawbacks still hold: (i) each agent requires full knowledge of the overall
interconnected system model, and (ii) the complexity of each local controller
is proportional to the number of systems. Other related delay compensation
strategies were proposed for consensus of multiagent systems by truncated
predictor-feedback approaches [29, 30, 31], discrete-time predictor-feedback
consensus [32, 33, 34]. A predictor-feedback control was also proposed to sta-
bilize two interconnected time delay systems based on a PDE representation
of delayed input [35]. In contrast to previous approaches, the complexity of
each local controller in [35] is independent of the number of subsystems and
only local data regarding the system model and state variables is required
for each controller. Nevertheless, a state prediction without error cannot
be obtained and delay compensation might therefore lose effectiveness if the
coupling between systems is enough strong.

In this paper, a novel distributed predictor-feedback control is proposed
by introducing weighting factors for each local predictor-feedback term. The
key idea is to reduce the negative effect of prediction error in the control
system by suitably designing such weighting factors. Moreover, we consider
an event-triggered control (ETC) protocol in order to only transmit data
packets when some event-based conditions are satisfied, enabling to further
reduce resource utilization such as bandwidth and energy consumption [36,
37, 38, 39, 40, 41]. Additionally, we provide a control design method based on
the Cone Complementarity Linearization (CCL) algorithm [42] and Linear
Matrix Inequalities (LMI) to design the predictor-feedback weighting factors
and event-triggered parameters in order to enhance the closed-loop dynamic
performance to the greatest extent.

The remainder of the paper is organized as follows: the problem statement
is given in Section 2. The proposed weighted predictor-feedback control
is presented in Section 3. The stability analysis and control synthesis are
addressed in Section 4 and Section 5 respectively. Simulation results are
provided in Section 6. Finally, some concluding remarks are gathered in
Section 7.

3
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2. Problem statement

Consider the following discrete-time interconnected system:

xi,k+1 = Ãi,kxi,k + B̃i,kui,k−hi
+

N
∑

j=1,j 6=i

F̃ij,kxj,k,

xi,0 = θi, ui,κ = φi(κ), κ = −hi,−hi + 1, · · · , 0 (1)

where i ∈ {1, ..., N} is the subsystem index, hi ≥ 0 are the input delays,
xi,k ∈ Rni and ui,k ∈ Rmi are respectively the state and the local control
input of the ith subsystem with ni and mi the number of states and inputs
respectively, Ãi,k ∈ Rni×ni is the state transition matrix, B̃i,k ∈ Rni×mi is
the input matrix, and F̃ij,k ∈ Rni×nj are coupling matrices. Terms θi, and
φi,κ represent the initial conditions for the system state xi,k and the control
input ui,k. All system matrices Ãi,k, B̃i,k and F̃ij,k in (1) are subjected to
additive time-varying uncertainties described by the classical norm-bounded
form [43]:

(

Ãi,k, B̃i,k

)

= (Ai, Bi) + Ji∆i,k

(

HA
i , H

B
i

)

, (2)

F̃ij,k = Fij + Ji∆ij,kH
F
j ,

i 6= j, j ∈ {1, ..., N}

where Ai, Bi, Fij ∈ Rni×ni , Ji ∈ Rni×l1,i , HA
i , H

F
i ∈ Rl2,i×ni , HB

i ∈ Rl2,i×mi ,
1 ≤ i ≤ N are known time-constant matrices, and ∆i,k, ∆ij,k are unknown
real and possibly time-varying matrices of appropriate dimensions such that
∆T

i,k∆i,k ≤ I, ∀i ∈ {1, ..., N}, and ∆T
ij,k∆ij,k ≤ I, (i, j) ∈ {1, ..., N} ×

{1, ..., N}, j 6= i, ∀k ≥ 0.

Definition 1. The interconnected system (1) is said to be robustly exponen-

tially stable with decay rate β if the overall system state xk =
[

xT
1,k · · · xT

N,k

]T

satisfies ||xk|| ≤ B||x0||βk, ∀k ≥ 0 for some B > 1 and any initial state con-

dition x0 =
[

xT
1,0 · · · xT

N,0

]T
.

4
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Figure 1: Block diagram of the closed-loop interconnected system with a distributed event-
triggered control (ETC) scheme.

The objective is to design an ETC distributed predictor-feedback delay
compensation scheme ui,k, i = 1, ..., N (see Fig. 1) in order to stabilize the
interconnected system (1) and improve the closed-loop performance to the
greatest extent.

3. Event-triggered weighted predictor feedback control

Consider the distributed event-triggered control:

ui,k =

{

ũi,k if (4) is true

ui,k−1 otherwise,
(3)

where ũi,k is later defined in (5), and the event-triggering condition given
below in (4) is used to decide whether the control action ui,k must be sent
via network to the actuator:

(ũi,k − ui,k−1)
T Ωi (ũi,k − ui,k−1) ≥ σiũ

T
i,kΩiũi,k, (4)

where Ωi = ΩT
i ∈ Rm > 0, i ∈ {1, ..., N} and the scalars σi ≥ 0 are the

event-triggered thresholds. Control actions will be transmitted if the relative
difference between one control action and the last one is sufficiently high
depending on Ωi and σi, that is to say, if (4) is true. Note that σi = 0
corresponds to a time-triggered control scheme, which means that all control
actions are transmitted at each sampling period. The average percentage
of transmitted control actions with respect to the total number of sampling
periods will be reduced as long as σi is higher, but at the expense of deterio-
rating the closed-loop performance. Hence, the existing compromise between

5
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closed-loop dynamics performance and number of data transmissions can be
adjusted by properly choosing σi, as discussed later in Example 2.

The proposed weighted predictor-feedback local controller ũi,k with the
above ETC scheme (3) is defined as:

ũi,k = Ki

(

Ahi

i xi,k +WiΦi,k

)

, i ∈ {1, ..., N}, (5)

where Ki ∈ Rmi×ni and Wi ∈ Rni×ni are respectively the controller gains,
and the weighting factors for each local prediction term Φi,k, defined as:

Φi,k =

hi
∑

j=1

Aj−1
i Biũi,k−j. (6)

Figure 2: Event-triggered control (ETC) scheme defined in (3) and (4), where z−1 denotes
a one-step delay.

(a) NDC control (b) PF-DC control (c) WPF-DC control

Figure 3: Different control schemes: (a) No delay compensation (NDC), (b) Predictor-
feedback delay compensation (PF-DC) and (c) Weighted predictor-feedback delay com-
pensation (WPF-DC), where the prediction scheme Φi,k is shown below in Fig. 4

6
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Figure 4: Prediction scheme defined in (6)

A block diagram of the above described control is represented in Fig. 2,
Fig. 3c and Fig 4. The ETC scheme and the weighted predictor feedack
control are depicted in Fig. 2 and Fig. 3c respectively (Fig. 3a and Fig.
3b correspond to a state-feedback control without delay compensation and a
non-weighted predictor-feedback control respectively). Fig. 4 represents the
block diagram of the prediction scheme used in Fig. 3b and Fig. 3c, which
is defined in (6).

Remark 1. Differently from other predictor-feedback controllers, we have
introduced the parameters Wi to weight the relative importance of prediction
components Φi,k in the control law (5). Note that the state-feedback control
scheme with no delay compensation (NDC) and the non-weighted predictor-
feedback delay compensation (PF-DC) controller (see Fig. 3a and Fig. 3b)
are both particular cases of the proposed weighted predictor-feedback control
(WPF-DC) given in Fig. 3c by setting Wi = 0 and Wi = I respectively.
Hence, the weighting factors Wi bring extra degree of freedom for control
synthesis (discussed later in Section 5), which may be helpful to improve the
closed-loop performance.

4. Exponential stability analysis with decay rate performance

Before addressing the stability analysis (Theorem 1 given below), an
equivalent state-space model for the interconnected system (1) with the
proposed control (3) is next obtained by means of the Artstein’s reduction
method [16]. Define:

zi,k = Ahi

i xi,k +WiΦi,k, (7)

7
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where xi,k is the local state of each system, and Wi, Φi,k are respectively the
weighting factor to be designed later and the prediction term defined in (6).

The one-step ahead of zi,k yields zi,k+1 = Ahi

i xi,k+1+WiΦi,k+1. Replacing
xi,k+1 from (1), we obtain:

zi,k+1 = Ahi

i

(

Ãi,kxi,k + B̃i,kui,k−hi

)

(8)

+ Ahi

i

N
∑

j=1,j 6=i

F̃ij,kxj,k +WiΦi,k+1

Note that the above expression can equivalently be written as:

zi,k+1 = Ahi

i

(

Ãi,kxi,k + B̃i,kũi,k−hi

)

+
√
σiA

hi

i B̃i,kρi,k

+ Ahi

i

N
∑

j=1,j 6=i

F̃ij,kxj,k +WiΦi,k+1 (9)

where

ρi,k =
1√
σi

(ui,k−hi
− ũi,k−hi

) (10)

Replacing into (8) the terms Ãi,k, B̃i,k and F̃ij,k defined in (2), and taking
into account from (7) that Ahi

i xi,k = zi,k −WiΦi,k, the above expression (9)
renders:

zi,k+1 = Aizi,k − AiWiΦi,k + Ahi

i Biũi,k−hi
(11)

+
√
σiA

hi

i Biρi,k + Ahi

i

N
∑

j=1,j 6=i

FijA
−hj

j (zj,k −WjΦj,k)

+ Ahi

i Ji∆i,kH
A
i A

−hi

i (zi,k −WiΦi,k)

+ Ahi

i Ji∆i,kH
B
i ũi,k−hi

+
√
σiA

hi

i Ji∆i,kH
B
i ρi,k

+ Ahi

i Ji

N
∑

j=1,j 6=i

∆ij,kH
F
j A

−hj

j (zj,k −WjΦj,k)

+WiΦi,k+1

From the definition of Φi,k given in (6), it can be deduced that

Φi,k+1 = AiΦi,k +Biũi,k − Ahi

i Biũi,k−hi
(12)

8
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It is easy to deduce from the definition (7) that ũi,k in (5) can be expressed
as ũi,k = Kizi,k, leading to

Φi,k+1 = AiΦi,k +BiKizi,k − Ahi

i BiKizi,k−hi
(13)

Hence, applying the equivalence (13), the closed-loop system formed by (1)
and (5) can be obtained from (11) as:

zi,k+1 =
(

Ai +WiBiKi + Ahi

i Ji∆i,kH
A
i A

−hi

i

)

zi,k

+
(

(Ini
−Wi)A

hi

i Bi + Ahi

i Ji∆i,kH
B
i

)

Kizi,k−hi

+
(

WiAi − AiWi − Ahi

i Ji∆i,kH
A
i A

−hi

i Wi

)

Φi,k (14)

+ Ahi

i

N
∑

j=1,j 6=i

(

Fij + Ji∆ij,kH
F
j

)

A
−hj

j (zj,k −WjΦj,k)

−WjΦj,k−hi
) +

√
σiA

hi

i

(

Bi + Ji∆i,kH
B
i

)

ρi,k

Finally, the closed-loop system (14), together with (13), can be written in
compact form as:

ξ̄k+1 = Ãkξ̄k +
N
∑

i=1

M̃i,kξ̄k−hi
+ B̃ρ,kρ̄k (15)

where

ξ̄Tk =
[

zT1,k, · · · , zTN,k, ΦT
1,k, · · · , ΦT

N,k

]

, (16)

ρ̄Tk =
[

ρT1,k · · · ρTN,k

]

,

Ãk = A+ J ∆̄kH,

M̃i,k =Mi + Ji∆̄kHM ,

B̃ρ,k = Bρ + J ∆̄kHρ,

9
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and

A =

[

Ā+ W̄ B̄K̄ + ĀhF̄ Ā−h W̄ Ā− ĀW̄ − ĀhF̄ Ā−hW̄
B̄K̄ Ā

]

,

Mi =

[

Γi

(

In̄ − W̄
)

ĀhB̄K̄ 0
−ΓiĀhB̄K̄ 0

]

,

J =

[

1
0

]

⊗ ĀhJ̄ , Ji =

[

1
0

]

⊗ ΓiĀhJ̄ , Bρ =

[

1
0

]

⊗ σ̄B̄,

H =
[

H̄Ā−h −H̄Ā−hW̄
]

, σ̄ = diagNi=1 (
√
σi ) ,

HM =
[

H̄BK̄ 0
]

,

Hρ = diagNi=1

(√
σiH

B
i

)

,

Γi = diagNj=1 (λijIni
) , λij =

{

1 if i == j

0 otherwise,

∆̄k =









∆1,k ∆12,k · · · ∆1N,k

∆21,k ∆2,k · · · ∆2N,k

· · · · · · · · · · · ·
∆N1,k ∆N2,k · · · ∆N,k









(17)

where the symbol ⊗ stands for the Kronecker product, and

Ā = diagNi=1 (Ai) , W̄ = diagNi=1 (Wi) , (18)

B̄ = diagNi=1 (Bi) , K̄ = diagNi=1 (Ki) ,

Āh = diagNi=1

(

Ahi

i

)

, Ā−h = diagNi=1

(

A−hi

i

)

,

J̄ = diagNi=1 (Ji) ,

F̄ =









0 F12 · · · F1N

F21 0 · · · F2N

· · · · · · · · · · · ·
FN1 FN2 · · · 0









, H̄ =









HA
1 HF

12 · · · HF
1N

HF
21 HA

2 · · · HF
2N

· · · · · · · · · · · ·
HF

N1 HF
N2 · · · HA

N









Theorem 1. Given Ki,Wi and σi > 0, i ∈ {1, ..., N} where N is the number
of systems, the closed-loop system formed by (1) and the distributed weighted
predictor-feedback ETC control (3)-(5) is β-stable if there exist symmetric
matrices P,Qi, Zi ∈ R2n̄ > 0 with n̄ =

∑N
i=1 ni, matrices Ωi ∈ Rmi > 0 and

10
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scalars εi > 0 such that the following LMI is satisfied 1:









Π1 ΠT
2X 0 NΠT

4 Ē2

(∗) −X XΠ3 0
(∗) (∗) −Ē1 0
(∗) (∗) (∗) −Ē2









< 0 (19)

where 2

Π1 =





Π11 Π12 0
(∗) −Q̄− Z̄ 0
(∗) (∗) −Ω̄



 , X =





P 0 0
0 Z 0
0 0 Ω̄



 , (20)

ΠT
2 =





AT AT − I2n̄ 0
MT MT KT

BT
ρ BT

ρ 0



 , Π3 =





J J̄
J J̄
0 0



 ,

Π4 = 1(N+1)×1 ⊗
[

H 11,N ⊗HM Hρ

]

,

Π11 = −β2P +
N
∑

i=1

(

Qi − β2hiZi

)

+ LT
1 S̄1L1 − LT

2 S̄2L2,

Π12 =
[

β2h1Z1 · · · β2hNZN

]

,

Ē1 = diagNi=1

(

εiINl̄1

)

, Ē2 = diagNi=1

(

εiINl̄2

)

,

l̄1 =
N
∑

i=1

l1,i, l̄2 =
N
∑

i=1

l2,i

1The symbol (∗) stands for the corresponding terms induced by symmetry.
2The symbol 1m×n stands for a m× n matrix with all coefficients equal to 1.
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and

L1 = [1 0]⊗ In̄, L2 = [0 1]⊗ In̄, (21)

Q̄ = diagNi=1

(

β2hiQi

)

, Z̄ = diagNi=1

(

β2hiZi

)

,

S̄1 = diagNi=1

(

hi
∑

j=1

hiβ
−2j

(

Aj−1
i BiKi

)T
Si

(

Aj−1
i BiKi

)

)

,

S̄2 = diagNi=1 (Si) , Ω̄ = diagNi=1 (Ωi) ,

Z =
N
∑

i=1

γihiZi, γi =

hi
∑

j=1

β2(j−1), i ∈ {1, ..., N},

M =
[

M1 · · · MN

]

,

K = K̄ · diagNi=1 (ui ⊗ ([1 0]⊗ Ini
)) ,

u1 = [1, 0, · · · , 0], u2 = [0, 1, · · · , 0], · · · , uN = [0, 0, · · · , 1],
J̄ =

[

J1 · · · JN

]

with Mi,Ji, i ∈ {1, ..., N} defined in (17).

Proof: See Appendix (Section 8) �

5. Control synthesis

This section provides a CCL-based algorithm to find the values of the
weighting matrices Wi and the event-triggered parameters Ωi of the pro-
posed control scheme (3) with the objective to achieve faster convergence by
minimizing the exponential decay rate β.

Before proceeding with the algorithm description, let us denote P̃ = P−1,

Z̃ = Z−1, and X̃ = diag
(

P̃ , Z̃, Ω̄
)

, By pre-and post multiplying (19) by

diag
(

I, T̃ , I, I
)

with T̃ = diag
(

P̃ , Z̃, I
)

, we obtain:









Π1 ΠT
2X 0 NΠT

4 Ē2

(∗) −X̃ XΠ3 0
(∗) (∗) −Ē1 0
(∗) (∗) (∗) −Ē2









< 0, (22)
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where X = diag
(

I, I, Ω̄
)

. Also, let us introduce the LMI conditions to

relax the equality constraints PP̃ = I and ZZ̃ = I for the CCL algorithm:
[

P I

I P̃

]

≥ 0,

[

Z I

I Z̃

]

≥, (23)

together with the objective function to minimize:

min(trace(PP̃ + P̃P + ZZ̃ + Z̃Z)). (24)

5.1. CCL algorithm description

The detailed CCL-algorithm is described as follows:

• Step (i): Solve the LMI’s given in Theorem 1 for β = β(0) and Wi =

W
(0)
i for some initial values β(0), W

(0)
i , i ∈ {1, ..., N}. If a feasible

solution is obtained, set q := 0, P (q) := P (q−1), P̃ (q) :=
(

P (q−1)
)−1

,

Z(q) := Z(q−1), Z̃(q) :=
(

Z(q−1)
)−1

and go to Step (ii). Otherwise,

increment β(0) until a feasible solution is found in Step (i).

• Step (ii): Solve the LMI’s (22) and (23) subjet to

min(trace(PP̃ (q) + P̃P (q) + ZZ̃(q) + Z̃Z(q))) (25)

where β = β(q) − δβ, being δβ an incremental value for each iteration.
Matrices P,Q, Zi, Si,Ωi > 0, together with the weigthing factors Wi

are defined in this step as LMI decision variables.

• Step (iii): If a feasible solution is found, go to step (iv). Otherwise, set
δβ = δβ/τβ for some τβ > 1 until a feasible solution is found in Step
(ii).

• Step (iv): If (19) holds with the obtained values in Step (iii): Wi =

W
(q)
i , Ωi = Ω

(q)
i , go to Step (v). Otherwise, set δβ = δβ/τβ for some

τβ > 1, and execute Steps (iii),(iv) until a feasible solution is found in
step (iv).

• Step (v): If the maximum number of iterations is still not reached and
|δβ| > ǫβ, being ǫβ > 0 a prescribed tolerance for stopping condition,

set q := q + 1, P (q) := P (q−1), P̃ (q) :=
(

P (q−1)
)−1

, Z(q) := Z(q−1),

Z̃(q) :=
(

Z(q−1)
)−1

, β(q) := β(q−1) and go to Step (ii). Otherwise, stop
and exit.

13
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6. Simulation results

This section presents three examples in order to validate the effectiveness
of the proposed method. The first example illustrates that the proposed
WPF-DC method can stabilize the system for larger delays than NDC and
PF-DC, even in the case that NDC and PF-DC fail. The second example
shows the comparative benefits of using WPF-DC with respect to NDC and
PF-DC with ETC in terms of reduction of the average number of transmitted
data. The third example shows the effectiveness of the proposed control
synthesis algorithm to stabilize two strong coupled inverted pendulums that
cannot be stabilized using NDC or PF-DC.

6.1. Example 1

Consider the interconnected system (1) formed by N unstable plants with
system matrices Ã1,k ≡ 1.1, B̃i,k ≡ 1, and F̃ij,k = γ, (i, j) ∈ {1, ..., N}× ∈
{1, ..., N}, j 6= i, where γ ≥ 0 describes the coupling strength between all
subsystems. Let us consider the following three control schemes:

• (i) No Delay Compensation (NDC) (Wi = 0, ∀i ∈ {1, ..., N} in (5)).

• (ii) Predictor-feedback Delay Compensation (PF-DC) (Wi = 1, ∀i ∈
{1, ..., N} in (5)).

• (iii) Weighted predictor-feedback Delay Compensation (WPF-DC).

0 0.1 0.2 0.3 0.4
0

10

20

30

γ

h
m

a
x

NDC

PF−DC

WPF−DC

(a) hmax (N = 3)

0 0.1 0.2 0.3
0

10

20

30

γ

h
m

a
x

NDC

PF−DC

WPF−DC

(b) hmax(N = 6)

Figure 5: Comparison of the maximum allowable delay hmax for closed-loop stability as a
function of the coupling factor γ that can be reached using NDC, PF-DC and WPF-DC
for system given in Example 1 with (a) N = 3, (b) N = 6.
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NDC (K=−0.23,β=1.1)

PF−DC: (K=−2.01,β=1.1)

  WPF−DC: (K=−1.56,W=0.75,β=0.97)

(a) h = 5, N = 3, γ = 0.1
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1.8

2

K
β

NDC (K=−0.27,β=1.09)

PF−DC: (K=−2.13,β=1.11)

    WPF−DC: (K=−1.59,W=0.72,β=0.94)

(b) h = 4, N = 6, γ = 0.05
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0

5

10

15

20

25

30

Time (k)

||
x

k
||

NDC
(K=−0.23,unstable)

PF−DC
(K=−2.01,unstable)

WPF−DC

(K=−1.56,W=0.75,β=0.97)

(c) h = 5, N = 3, γ = 0.1

0 50 100 150 200
0

50

100

150

Time (k)

||
x

k
||

NDC
(K=−0.27,unstable)

PF−DC
(K=−2.13,unstable)

WPF−DC

(K=−1.59,W=0.72,β=0.94)

(d) h = 4, N = 6, γ = 0.05

Figure 6: (a) and (b): Exponential decay rate β vs K obtained from the control schemes
NDC, PF-DC and WPF-DC. (c) and (d): Time evolution of the closed-loop state ||xk||
for each control design.

In this example, we will consider the time-triggered version by choosing
Ωi = 1 and σi = 0, ∀i, so we have that ui,k = ũi,k. Since all subsystems have
the same dynamics, we choose Ki = K, Wi = W and hi ≡ h in order to
simplify our analysis.

Let hmax be the maximum allowable delay such that the interconnected
system is stable ∀h ≤ hmax. The maximum allowable delay hmax that can be
reached using the three above control schemes as a function of the coupling
factor γ has been depicted in Fig. 5a and Fig. 5b for N = 3 and N = 6
respectively. It can be appreciated that WPF-DC can tolerate larger delays
than NDC and PF-DC. The maximum allowable delay hmax has been an-
alytically obtained by searching the maximum delay value h such that the
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minimum spectral radius of the augmented closed-loop matrix (equivalent to
the decay rate β) is less than one.

Fig. 6a and Fig. 6b compare the achieved decay rate β as a function of
K using non-predictor (NDC: blue dashed line), predictor-feedback (PF-DC:
red dash-dotted line), and the proposed weighted predictor-feedback (WPF-
DC: solid green lines for different values of 0 ≤ W ≤ 1). Two different cases
have been studied in this example: (h = 5, N = 3, γ = 0.1 in Fig. 6a) and
(h = 4, N = 6, γ = 0.05 in Fig. 6b). Note that in both cases, the system
cannot be stabilized using NDC and PF-DC for any K (minimum decay rate
β is always greater than 1). Nevertheless, the system can be stabilized by
WPF-DC with K = −1.56, W = 0.75, obtaining β = 0.97 in the first case
(Fig. 6a), and K = −1.59, W = 0.72 obtaining β = 0.94 in the second
case (Fig. 6b). Hence, we have shown that the proposed control scheme can
stabilize the system in two cases where both NDC and PF-DC fail.

To confirm this, simulation results of the state evolution have been de-
picted in Fig. 6c and Fig. 6d using the three control designs pointed out
by text arrows in Fig. 6a and Fig. 6b. It can be observed that, contrary to
NDC (dashed red line) and PF-DC (dotted blue line), the proposed WPF-DC
scheme (solid green line) stabilizes the closed-loop system with an approx-
imate 5%-error settling time of log(0.05)/log(β) ≈ 100 sampling periods in
Fig. 6a (β = 0.97) and log(0.05)/log(β) ≈ 50 sampling periods in Fig. 6b
(β = 0.94).

6.2. Example 2

Consider an interconnected system with three input delayed plants with
time-varying model uncertainties: Ãi,k = 1.1 + µ∆i,k, B̃i,k = 1 + µ∆i,k, i =
1, 2, 3, F̃ij,k = 0.1(1+µ∆ij,k), (i, j) ∈ [1, 2, 3]× [1, 2, 3], j 6= i and input delays
hi = 3, where µ ≥ 0 determines the size of uncertanties, and ∆i,k, ∆ij,k are
unknown time-varying parameters satisfying |∆i,k| ≤ 1 and |∆ij,k| ≤ 1, ∀k ≥
0, ∀i, j ∈ {1, ..., N} × {1, ..., N}.

Control scheme K W βmin

NDC -0.23 0 0.98
PF-DC -1.75 1 0.92

WPF-DC (proposed) -1.41 0.85 0.85

Table 1: Different controller schemes designed to achieve the fastest convergence and the
obtained minimum decay rate βmin (Example 2)
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Following the same procedure as in the previous example, stabilizing con-
trollers are designed using NDC, PF-DC and WPF-DC. As can be appreci-
ated in Table 1, the faster convergence (minimum decay rate βmin = 0.85)
is achieved by WPF-DC (bold-face row), where the controller parameters K
and W designed for each case are depicted in columns 2 and 3.

0 100 200 300 400 500
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10

20

30

Time (k)

||
x

k
||

NDC (σ=0)

PF−DC (σ=0.02)

WPF−DC (σ=0.3)

(a) µ = 0.005

0 100 200 300 400 500
0

10

20

30

Time (k)

||
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k
||

NDC (σ=0)

PF−DC (σ=0.02)

WPF−DC (σ=0.3)

(b) µ = 0.04

0 500 1000
0

10

20

30

Time (k)

||
x

k
||

NDC (σ=0)

PF−DC (σ=0.03)

WPF−DC (σ=0.33)

(c) µ = 0.04

Figure 7: Comparison of the state evolution between the controllers given in Table 1 after
100 simulations for various µ and σ (Example 2) . The solid lines represent the average
value for each case and the shadow regions represent the different state trajectories.

Control µ = 0.005 µ = 0.04 µ = 0.04

NDC 100% (σ = 0)
100%(σ = 0)
Unstable

100%(σ = 0)
Unstable

PF-DC
[99.87%− 99.94%]

(σ = 0.02)
[97.72%− 98.84%]

(σ = 0.02)

[97.18%− 98.24%]
(σ = 0.03)
Unstable

WPF-DC
[65.97%− 67.05%]

(σ = 0.3)
[66.66%− 68.38%]

(σ = 0.3)

[64.98 %
- 66.52%]
(σ = 0.33)

Table 2: Percentage of transmitted data (expressed as the 95%-confidence interval, t-
value=2.22) obtained with the control schemes given in Table 1 after running 100 simula-
tions for different values of µ and σ (Example 2)

Fig. 7a compares the different state evolutions using the three above con-
trollers after performing 100 simulations for each one by considering model
uncertainties of size µ = 0.005 and different uncorrelated random sequences
to generate time-varying patterns for ∆i,k ∈ (−1, 1) and ∆ij,k ∈ (−1, 1)
in each simulation. The solid lines (NDC, red color; PF-DC, blue color;
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WPF-DC, green color) represent the average value of all system trajectories,
and the shadow region is the overlapping of the different system trajecto-
ries achieved in all simulations. For simulation results given in Fig. 7a, the
NDC has been implemented using time-triggered (σ = 0), but PF-DC and
WPF-DC have been implemented with ETC scheme by choosing σ = 0.02
and σ = 0.3 respectively. As a result, we obtain the percentage of trans-
mitted data: [99.87% − 99.94%] with PF-DC (thereafter expressed as the
95%-confidence interval, t-value=2.22), and [65.97% − 67.05%] with WPF-
DC, respectively (see Table 2, second column). Hence, WPF-DC achieve a
significant reduction of the number of transmitted data packets (from an av-
erage of 99.9% to 66.5%) by keeping almost the same dynamic performance
as PF-DC.

Now, let us increase the size of model uncertainties to µ = 0.04. It can be
appreciated in Fig. 7b that NDC (red color) becomes unstable and PF-DC
(blue color) exhibits slow convergence, whereas WPF-DC (green color) keeps
comparatively a reasonable convergence rate. Note that the percentage of
transmitted data are quite similar as the previous case: [97.72% − 98.84%]
with PF-DC and [66.66% − 68.38%] with WPF-DC, respectively (see Table
2, third column).

Fig. 7c performs the same comparison as Fig. 7b with µ = 0.04 but
slightly increasing the value of σ in PF-DC (from σ = 0.02 to σ = 0.03)
and WPF-DC (from σ = 0.3 to σ = 0.33). In this case both NDC and
PF-DC are unstable, but WPF-DC still keeps stable but close to the verge
of instability. In both cases, the number of trasmissions is also quite similar
as previous cases: [97.18% − 98.24%] for PF-DC and [64.98% − 66.52%]
for WPF-DC respectively [97.18% − 98.24%].(see Table 2, fourth column).
Hence, it has been illustrated that WPF-DC can achieve larger reduction
of data transmissions and better trade-off between robust performance and
bandwidth consumption in comparison to NDC and PF-DC.
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6.3. Example 3

[t!]

Figure 8: Two coupled inverted pendulums on two carts (Example 3).

In this example, we study the example already proposed in [2, 35] which
consists in two coupled inverted pendulums on two carts (see Fig 8). After
discretization with sampling time Ts = 50ms, the interconnected time delay
system model can be described by (1) with system matrices:

A1 = A2 =









1.00 0.05 0 0
0.15 1.00 0 0
0 0 1.00 0.05

−0.08 0 0 1.00









, B1 = B2 = 10−3 ·









0
−0.21
0

0.83









T

,

F12 = F21 = γ









0 0 0 0
0.02 0 0.01 0
0 0 0 0

−0.01 0 −0.01 0









where γ > 0 is a scalar that describes the coupling strength between both
inverted pendulums. The stabilizing controller gains are chosen as [2, 35]:

K1 = 104 ·
[

1.1308 0.7144 0.0574 0.1198
]

, (26)

K2 = 104 ·
[

2.9023 1.8007 0.2873 0.3691
]

.

Let hi = 5, i = 1, 2. Differently from [2, 35], the coupling strength
between both inverted pendulums is increased to γ = 303 to force the system
to closed-loop instability with NDC and WPF-DC controllers. The objective
is to find a stabilizing controller using WPF-DC.
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To this end, two different WPF-DC stabilizing controllers have been ob-
tained by CCL-based Algorithm (see Section 5.1). The first one has been ob-
tained after 14 iterations by setting σi = 0, i = 1, 2 (time-triggered scheme)

and other CCL parameters as W
(0)
1 = W

(0)
2 = I, β(0) = 1.3, δβ = 0.1, τβ = 2,

ǫβ = 10−4 and σ1 = σ2 = 0. As a result, a stabilizing controller is obtained
with guaranteed exponential decay rate decay rate β = 0.9999314 and the
following weighting factors:

W1 =









−0.4548 0.8679 −0.1159 0.1693
2.8766 −0.7292 0.1042 −0.4364
0.9988 −1.4330 1.0191 −0.4116
−4.1495 1.2132 1.5267 1.2194









, (27)

W2 =









0.3057 0.6856 −0.0826 0.1698
2.4498 0.2260 0.0805 −0.1479
0.5968 −0.6738 1.1598 −0.2591
−3.9114 0.2065 1.1310 0.8400









The second WPF-DC stabilizing controller has been obtained with the same
algorithm and CCL parameters setting, but considering the largest σ (σ =
0.17) that allows a feasible solution. As a result, we have obtained after 15
iterations with guaranteed exponential decay rate β = 0.999971. The new
designed weighting factors, together with the event-triggered parameters, are
depicted below:

W1 =









−0.4304 0.0818 −0.1469 −0.0188
0.5655 −0.4776 −0.3671 −0.2935
0.3397 −0.6364 0.8356 −0.2517
−1.7230 0.8018 1.7514 0.7671









, (28)

W2 =









0.3896 0.1166 −0.0873 0.0266
−0.6282 0.1826 −0.8762 −0.0616
−1.2456 −0.5106 0.7139 −0.2233
3.4734 0.6210 3.8938 0.5060









,

Ω1 = 1517.7, Ω2 = 277.9, σ = 0.17
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(a) Time-triggered (σ = 0)
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Figure 9: (a) Comparison of the state evolution between NDC, PF-DC and WPF-DC with
W1,W2 given in (27) and (28) with σ = 0 in all three cases. (b) Comparison of the state
evolution between WPF-DC (27) (σ = 0.09) and WPF-DC (28) (σ = 0.17).

Comparative simulation results are depicted in Fig. 9a using time-triggered
scheme (σ = 0), where it can be appreciated that NDC and PF-DC become
unstable, meanwhile the proposed WPF-DC (5) with the designed weighting
factors in (27) and (28) stabilizes the interconnected system.

Fig 9b compares the average closed-loop response obtained with the event-
triggered scheme for WPF-DC (28) (solid red line, σ = 0.17) and WPF-DC
(27) (green dash-dotted line, σ = 0.094) after running 10 time simulations
and considering different initial conditions in each case. As expected from
the second CCL Algorithm design (28), it can be appreciated that WPF-DC
(28) is stable with a similar transient response as Fig. 9a, but achieving
a significant reduction of transmitted data: [30.34% − 30.53%]. However,
the closed-loop response with WPF-DC (27) becomes unstable although
the number of data transmissions is bigger in comparison to WPF-DC (28)
([38.84% − 39.27%] versus [30.34% − 30.53%]). This is due to the fact that
WPF-DC (27) was designed for a time-triggered control (σ = 0). In this
case, σ = 0.094 is just the maximum threshold that forces the system to
instability. Therefore, the average number of transmission data cannot be
further reduced with WPF-DC (27), whereas the designed event-triggered
WPF-DC (28) with the proposed control design method can achieve larger
reduction of transmission data keeping the stability.
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7. Conclusions and perspectives

This paper has presented a novel distributed event-triggered predictor-
feedback control for interconnected systems with input delays. New weight-
ing factors for each local prediction term have been introduced, bringing
extra degree of freedom for control synthesis. Moreover, we have provided a
CCL-based algorithm to design the weighting factors, together with event-
triggered parameters, to improve the convergence rate. Finally, simulation
results have been provided to show that: (i) the control system can be stabi-
lized by the proposed method even in the case that other control strategies fail
(ii) not only faster convergence, but also larger delays, better robustness and
less bandwidth consumption can be achieved in comparison to previous ap-
proaches. Future developments could address the research of output-feedback
observer-predictor control strategies aimed at improving the compromise be-
tween complexity and performance.

8. Appendix: Proof of Theorem 1

Let us consider the Lyapunov-Krasovskii functional Vk = V1,k + V2,k +
V3,k + V4,k, where:

V1,k = ξ̄Tk P ξ̄k, V2,k =
N
∑

i=1

hi
∑

j=1

β2(j−1)ξ̄Tk−jQiξ̄k−j, (29)

V3,k =
N
∑

i=1

hi

(

hi
∑

m=1

m
∑

j=1

β2(m−1)δTz,k−jZiδz,k−j

)

,

V4,k =
N
∑

i=1

hi

(

hi
∑

m=1

m
∑

j=1

β2(j−1)ηTi,k−j(m) Si ηi,k−j(m)

)

where δz,k = ξ̄k+1 − ξ̄k and

ηi,k(m) = β−mAm−1
i BiKizi,k (30)

The system is β-stable if there exists Vk > 0 such that Vk+1 − β2Vk < 0.
Then, defining the forward difference ∆βVl,k = Vl,k+1 − β2Vl,k, l = 1, 2, 3, 4,
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we have that:

∆βV1,k = ξ̄Tk ÃT
kP Ãkξ̄k

+ 2ξ̄Tk ÃT
kP

(

N
∑

i=1

M̃i,kξ̄k−hi

)

+ 2ξ̄Tk ÃT
kP B̃ρ,kρ̄k

+

(

N
∑

i=1

M̃i,kξ̄k−hi

)T

P

(

N
∑

i=1

M̃i,kξ̄k−hi

)

+ 2

(

N
∑

i=1

M̃i,kξ̄k−hi

)T

P B̃ρ,kρ̄k + ρ̄Tk B̃T
ρ,kP B̃ρ,kρ̄k − β2P, (31)

∆βV2,k = ξ̄Tk

N
∑

i=1

Qiξ̄k −
N
∑

i=1

β2hi ξ̄Tk−hi
Qiξ̄k−hi

,

∆βV3,k = δTz,kZδz,k −
N
∑

i=1

β2hi

(

hi

hi
∑

j=1

δTz,k−jZiδz,k−j

)

,

∆βV4,k =
N
∑

i=1

hi

(

hi
∑

j=1

ηTi,k(j) Si ηi,k(j)

)

−
N
∑

i=1

hi

(

hi
∑

j=1

β2jηTi,k−j(j)Siηi,k−j(j)

)

,

= ξ̄Tk
(

LT
1 S̄1L1

)

ξ̄k

−
N
∑

i=1

hi

(

hi
∑

j=1

(

βjηi,k−j(j)
)T

Si

(

βjηi,k−j(j)
)

)

Applying Jensen’s inequality [44], from the rightmost part of ∆βV3,k and

taking into account that
∑hi

j=1 δz,k−j = ξ̄k − ξ̄k−hi
, we obtain:

− hi

hi
∑

j=1

δTz,k−jZiδz,k−j

≤ −
(

hi
∑

j=1

δz,k−j

)T

Zi

(

hi
∑

j=1

δz,k−j

)

= −
(

ξ̄k − ξ̄k−hi

)T
Zi

(

ξ̄k − ξ̄k−hi

)

(32)
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Applying again Jensen’s inequality, from the rightmost part of ∆βV4,k and
taking into account that βjηi,k−j(j) = Aj−1

i BiKizi,k−j and the definition of

Φi,k in (6), we obtain that
∑hi

j=1 β
jηTi,k−j(j) = Φi,k, and therefore:

−
N
∑

i=1

hi

(

hi
∑

j=1

(

βjηi,k−j(j)
)T

Si

(

βjηi,k−j(j)
)

)

(33)

≤ −
N
∑

i=1

(

hi
∑

j=1

βjηTi,k−j(j)

)T

Si

(

hi
∑

j=1

βjηi,k−j(j)

)

= −
N
∑

i=1

ΦT
i,kSiΦi,k = −ξ̄Tk

(

LT
2 S̄2L2

)

ξ̄k

From (3) and (4), it can be deduced that the following condition always holds
∀i ∈ {1, ..., N}:

(ui,k−hi
− ũi,k−hi

)T Ωi (ui,k−hi
− ũi,k−hi

) (34)

≤ σiũ
T
i,k−hi

Ωiũi,k−hi

The above condition, together with the definition of ρi,k given in (10), leads
to:

ρTi,kΩiρi,k ≤ ũT
i,k−hi

Ωiũi,k−hi
(35)

which can equivalently be expressed as:

ρi,k = ∆ρ,i,kũi,k−hi
(36)

where ∆ρ,i,k : ũi,k → ρi,k, i ∈ {1, ..., N} are time-varying operators satisfy-
ing:

||Ω1/2
i ∆ρ,i,k Ω

−1/2
i ||∞ ≤ 1 (37)

From the definition of ρ̄k given in (16) and ũi,k = Kizi,k (see (5) and (7)), we
can write (36) in compact form as:

ρ̄k = ∆̄ρ,kω̄k (38)

where ∆̄ρ,k = diagNi=1∆ρ,i,k and

ω̄k = K̄
[

zT1,k−h1
, · · · , zN,k−hN

]T
(39)
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with K̄ = diagNi=1Ki. Note from ξ̄k and L1 defined in (16) and (21) that
z̄k = L1ξ̄k. Hence, ω̄k can also be reformulated as:

ω̄k = K
[

ξ̄Tk−h1
· · · ξ̄Tk−hi

]

(40)

where K is defined in (21). Then, given Ω̄ = diagNi=1Ωi,k and the above term
∆̄ρ,k, it is easy to see that

||Ω̄1/2 ∆̄ρ,k Ω̄
−1/2||∞ ≤ 1 (41)

The negativeness of the forward difference ∆βVk = Vk+1−β2Vk =
∑4

l=1∆βVl,k

along trajectories of ξ̄k with ∆βVl,k, l = 1, 2, 3, 4 given in (31), together with
the fulfilment of the constraint (41), can be ensured by proving the inequality:

∆βVk + ω̄T
k Ω̄ω̄k − ρ̄Tk Ω̄ρ̄k < 0, (42)

where Ω̄ = diagNi=1 (Ωi) and ρ̄k, ω̄k are defined in (38) and (40) respectively.
From (31) and the inequalities given in (32) and (33), we deduce that (42)
can be expressed as χ̄T

kΞkχ̄k < 0, where χ̄k is defined as

χ̄T
k =

[

ξ̄Tk ξ̄Tk−h1
· · · ξ̄Tk−hi

ρ̄k
]

(43)

and

Ξk = Π1 + Π̃T
2,kXΠ̃2,k, (44)

where X is defined in (20), and

Π̃T
2,k =





ÃT
k ÃT

k − I 0

M̃T
k M̃T

k KT

B̃T
ρ,k B̃T

ρ,k 0



 (45)

with M̃k = (M1,k, ...,MN,k). Recalling the definitions of Ãk, M̃i,k and B̃ρ,k

given in (16), we can write Π̃2,k = Π2 + Π3

(

IN+1 ⊗ ∆̄k

)

Π4 with Π2,Π3,Π4

defined in (20) and ∆̄k in (17). From (44) and applying Schur Complement,
the above inequality χ̄T

kΞkχ̄k < 0 is true ∀χ̄k 6= 0 if and only if
[

Π1 ΠT
2X

XΠ2 −X

]

+

([

0
XΠ3

]

(

IN+1 ⊗ ∆̄k

) [

Π4 0
]

)

+

([

0
XΠ3

]

(

IN+1 ⊗ ∆̄k

) [

Π4 0
]

)T

< 0 (46)
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Note from the definition of ∆i,k,∆ij,k and ∆̄k in (2) and (17), we have that
||∆̄k||∞ ≤ N . Applying the Petersen inequality [45] and defining ∆̃k =
1
N

(

IN+1 ⊗ ∆̄k

)

, we have that there exists positive scalars εi, i ∈ {1, ..., N+1}
such that

He

([

0
XΠ3

]

∆̃k

[

NΠ4 0
]

)

(47)

+

([

0
XΠ3

]

∆̃k

[

NΠ4 0
]

)T

≤
[

0
XΠ3

]

Ē−11

[

0 (XΠ3)
T
]

+

[

NΠT
4

0

]

Ē2

[

NΠ4 0
]

,

where Ē1 > 0 and Ē2 > 0 are defined in (20) and satisfy Ē1∆̃k = ∆̃kĒ2.
Hence, applying (47) and Schur Complement, we have that (47) is equivalent
to









Π1 ΠT
2X 0 NΠT

4

(∗) −X XΠ3 0
(∗) (∗) −Ē1 0
(∗) (∗) (∗) −Ē−12









< 0 (48)

Finally, pre- and post-muliplying the above inequality by diag
(

I, I, I, Ē2

)

we obtain (19), concluding the proof.
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predictor-based control with gain-scheduling and extended state ob-
server for networked control systems, Information Sciences 491 (2019)
90–108.

[40] S. Ding, X. Xie, Y. Liu, Event-triggered static/dynamic feedback control
for discrete-time linear systems, Information Sciences 524 (2020) 33–45.

[41] L. Guo, H. Yu, F. Hao, Event-triggered control for stochastic networked
control systems against denial-of-service attacks, Information Sciences
527 (2020) 51–69.

[42] L. El Ghaoui, F. Oustry, M. AitRami, A cone complementarity lineariza-
tion algorithm for static output-feedback and related problems, IEEE
Transactions on Automatic Control 42 (8) (1997) 1171–1176.

[43] Q.-L. Han, K. Gu, On robust stability of time-delay systems with norm-
bounded uncertainty, IEEE Transactions on Automatic Control 46 (9)
(2001) 1426–1431.

[44] C. Briat, Convergence and equivalence results for the Jensen’s inequality
- application to time-delay and sampled-data systems, IEEE Transac-
tions on Automatic Control 56 (7) (2011) 1660–1665.

[45] I. R. Petersen, A stabilization algorithm for a class of uncertain linear
systems, Systems & Control Letters 8 (4) (1987) 351–357.

30


