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Abstract: The inclusion of technological innovation and the development of remote sensing tools in
wine production are an efficient and productive factor that supports the production and improves
the quality of the wine produced. In this study we explored models based on Sentinel-2 image bands
and spectral indices to estimate key wine quality variables, such as phenols (TP), anthocyanins (TA)
and color intensity (CI), providing different sensory characteristics of wine. Two Cabernet Sauvignon
wine harvest seasons were studied, 2017 and 2018, and models with coefficients of determination
(R2) higher than 60% were obtained for color intensity and total anthocyanins during the first season,
both in a period very close to harvest during the first days of April, so the high periodicity of Sentinel
2 becomes strategic. In addition, homogeneous sectors can be identified in the plots for selective
harvesting and thus the winery space can be programmed appropriately. These results suggest
further work on the number of samples in order to transform it into a useful tool with the potential
to define a differentiated harvest and estimate the accumulation of phenolic compounds and the
intensity of wine color, key elements in the final quality of the wine.

Keywords: phenols; anthocyanins; color intensity; cabernet sauvignon; precision viticulture;
remote sensing

1. Introduction

In a context of increasing competition in international markets, it has become of
utmost importance to achieve higher quality standards in the vineyard. This has led
to a renewal of viticulture, a revision of agricultural techniques [1] and the inclusion of
technological innovation [2] in the production of wine and in the control of the factors
that improve its quality. In red wine, tannins and anthocyanins are the most important
phenolic classes. Tannins contribute to the mouthfeel of wines and provide the pigments
necessary to give red wine its long-term color stability [3,4]. Anthocyanins are directly
responsible for the bluish-red color of red grape skins and naturally for the color of red
wine. Phenols are responsible for the color, astringency and bitterness of red wine and
contribute to the olfactory profile [5]. Since anthocyanins are located in the skin tissue of
most grape cultivars, fermentation and maceration (processes in which the skin is used)
have an important effect on the concentration of anthocyanin present in the final wine [6].
In red wines, color is one of the main qualitative parameters. On the one hand, it represents
the first organoleptic factor perceived by the taster, and on the other hand, high positive
correlations have been determined between color and overall wine quality [7,8]. The main
sources of red color in wines come from anthocyanins or their additional derivatives that
are extracted or formed during the winemaking process [4,9,10]. Wine color not only
provides information about possible defects, the type or state of evolution of the wine, but
also has an important influence on acceptability [8]. Even the price of wine is assigned not
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only by its alcohol content as before, but also by the intensity of its color; therefore, it is of
interest to gain knowledge of, to possibly control the factors that affect this parameter [11].

The ripening of the grape (acidity and sugar accumulation) as well as anthocyanin
and phenol content and coloring intensity are key variables in the quality of the wine. The
degree of total acidity influences the organoleptic characteristics of the wine. In red wines,
it influences their coloration, since at a more acidic pH, the anthocyanins that give color to
red wine are present in their reddest forms [12]; the pigment of red grapes is affected by
the pH of the grapes. Thus, berries with moderate to high acidity will be bright reddish
in color and, conversely, berries with low acidity and high pH will tend to be bluish and
dark [13].

In this context, developing and using remote sensing tools that allow not only to
improve product quality but also to increase efficiency, productivity and input reduction
is crucial, as it allows obtaining information quickly, accurately, objectively and non-
destructively in almost real time [14].

Recent technological advances have allowed the development of useful tools that help
in the monitoring and control of vine growth [1], such is the case of satellite images that
provide a synoptic view of the photosynthetically active vine biomass over entire vine-
yards quickly and cost-effectively. There are several studies that have used Polyphenolic
Composition (PC) and Color Intensity (CI) as factors of interest. However, few studies have
focused on these factors in produced wine; most have been done in grapes or must, relating
NDVI to the berry anthocyanin content [15], tannins [16], Brix and pH [17,18], and pH,
polyphenols and color [19]. Some of them especially focused on targeted harvesting and
its relationship to various wine quality factors [19–23], as well as on the phenolic content
and color in ripe grapes [24]. Other studies were focused on the effects of terroir on berry
ripening and composition [25] and on temperatures in relation to anthocyanin and flavonol
synthesis [26].

The production of quality wines recognizes that plots are not uniform and therefore
require differentiated phytosanitary treatments [27], which would directly benefit grape
quality and vineyard profitability [28]. For this reason, it is essential to select the fruit that
will be incorporated into the winemaking process [29] based on observable differences
in the vigor or vegetative development of the plant or quality parameters of the grape
or must [19]. Therefore, identifying intra-parcel variability becomes fundamental during
harvest [23], because it improves vineyard yield and grape quality, reducing costs and
environmental impact [30,31].

The polyphenolic composition of the wine is conditioned by the quality of the grape
and by the vinification method used. Duran and Trujillo (2008) stated that the ripeness of the
grapes is of great importance, since the proper development of fermentation depends on the
content of sugars and acids and, on the other hand, the color depends on the polyphenolic
content, especially anthocyanins and tannins [31]. Considering that (i) various studies
have found a relationship between the maturation of the grape and the canopy, and (ii) the
polyphenolic composition and color of the wine depends on the maturity of the grape
and directly reflect the quality of the wine, we can, therefore, hypothesize that the use of
spectral indices derived from satellite images can provide indirect but valuable information
regarding the vegetative behavior of the canopy in relation to polyphenolic composition
(anthocyanins and phenols) and wine coloring intensity. In addition, knowing its spatial
distribution at key moments would help to better plan selective harvesting to produce
quality wines. Therefore, acknowledging the importance of anthocyanins, phenols and
coloring intensity in the final quality of the wine, this study seeks to define a methodology
allowing for the estimation of both the phenolic compounds and color intensity that will be
obtained in the final wine, based on spectral information extracted from satellites. Multiple
regression analysis between indicators extracted from Sentinel 2 satellite images and data
obtained from the winemaking area were used to explore these relationships. The resulting
maps of the predicted wine quality parameters could be used as a tool to direct the harvest,
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contributing to detect intra-parcel variation and to identify zones with homogeneous
characteristics of anthocyanins, phenols and coloring intensity.

2. Study Area and Data Collection

This research comprises the study and analysis of data from two wine grape produc-
tion harvest seasons, 2017 and 2018, from two lots (group of plots) of adult plantations
of the Cabernet Sauvignon variety located in Viña Montes winery (Colchagua Valley, VI
Region, Chile). The phenological state of the vine until the time of harvest and subsequent
vinification was monitored. Micro-vinifications were carried out in order to accurately
assess the quality of the wine produced in the samples evaluated.

2.1. Study Area

Within the wine industry, Viña Montes, created in 1987, is a leading company in
Chile. In 2011, they implemented a research and development department, which has
led them to become a national benchmark. They have a total of 720 hectares of vineyards
of which 93% produce wine to export [32,33]. The plantation under study is located in
Marchigue, Colchagua Valley in Santa Cruz, VI Region, Chile (Figure 1). This is known
as Arcángel and has a total planted area of 499 ha, made up of lots of different varieties
such as Cabernet Sauvignon, Syrah and Carmenere, among others, and various quality
categories. The area where this study was carried out is made up of 23 plots. A plot
corresponds to the polygon that encloses a group of rows of the same vine. In this case,
they are grouped into 2 groups or lots: 12 plots formed by 13 polygons, totaling 64.8 ha,
and 11 plots formed by 12 polygons, totaling 71 ha, corresponding to plantings in 2007 and
2010 respectively, as shown in Figure 1. The lots are 100% Cabernet Sauvignon, category
Alfa, of the intermediate quality category, corresponding to the largest production of Viña
Montes, planted according to a 2 × 1 pattern.
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Figure 1. General location maps (left) and detailed location of the Cabernet Sauvignon plots (right).
Cyan polygons correspond to the 2007 plantings and red polygons to the 2010 plantings. Green
dots show the spatial distribution of the pre-harvest samples. Background Image: BaseMap ArcGIS,
World Imagery.

In the process carried out at Viña Montes the harvest is mixed, which means this is
done manually in lots that are historically identified as of better quality, and mechanized
in those of lower quality; however, even this differentiation is not strict and may have
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some modifications. Therefore, this practice is eventually decided during the course of
the harvest process. The lots, or predefined zonings of a lot, are evaluated weekly after
veraison (the development period in which grapes change color and begin to ripen), in
order to measure the sugar and acid content, two of the most common parameters on
which winemakers base their decisions on when to harvest [32]. Such evaluations help
to control the grape harvest and winemaking processes and thus meet the demands of
winemakers [33]. Defining when and which plots will be harvested is based solely on the
organoleptic evaluation that is carried out in the field daily, a task that takes between 10
and 30 min per sampling site. Therefore, only one sample is collected per visit, which is
expected to be representative of the entire plot.

2.2. Vine Cycle Climate of the Study Area

Most of the world’s wine production takes place in Mediterranean climates, character-
ized by high temperatures during the summer, high light intensity and humidity levels
that decrease sharply throughout the day [34]. Soil and climate conditions are key for vines,
so that the same grape variety, at a similar degree of ripeness but grown in two different
areas, may result in two different wines [35–38]. This is the reason why terroir is important,
which we can define as the extension of land whose natural characteristics are a unique
set of factors (soil, terrain and climate); therefore, it is the terroir that imprints a distinctive
seal onto the wine [35,36]. The study area is dominated by a warm Mediterranean-type
temperate climate [38] with a dry season of six months and a rainy winter, with a total
annual precipitation between 400 and 600 mm. Additionally, the soils are of alluvial origin,
with silt loam textures [39].

The vegetative cycle begins when the buds start growing in early spring (September
or October) and generally ends from April to May. The cycle may have some variations
that are influenced by differences in temperature and precipitation conditions [40]. An
increase in average temperatures and a reduction in thermal oscillation influence varietal
aroma and wine color.

The 2017 phenological cycle is marked by the 2016 rainfall, scarce compared to the
cumulative rainfall of 2017 (2018 grapevine phenological cycle), which doubled compared
to 2016 (Figure 2a). In the 2018 season, the air temperature was relatively lower than in
2017 during the grapevine ripening cycle. The mean temperature difference reached 2 ◦C,
which is equivalent to 11% decrease in that period. Figure 2b shows the comparison of
these differences in degrees Celsius with respect to the DOY (day of year).
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2.3. Data Collection

The images used were acquired from the Sentinel 2A and Sentinel 2B platforms and
downloaded at processing Level-1C, then atmospherically corrected to obtain surface reflec-
tivities, using the Sen2cor application in the SNAP environment (Sen2Cor v2.9 developed
by ESA, last access on: http://step.esa.int/main/snap-supported-plugins/sen2cor/sen2
cor-v2-9/ (accessed on 20 November 2021)). The Sentinel-2 images were downloaded
directly from the Copernicus Open Access Hub platform (https://scihub.copernicus.eu/
dhus/#/home (accessed on 30 August 2021)).

The Sentinel-2 constellation is formed by 2 satellites in heliosynchronous orbit with
a temporal resolution of 10 days for each satellite, or 5 altogether. Both satellites carry a
multispectral image sensor (MSI) able to acquire images in 13 spectral bands, from 433 nm
to 2280 nm. The red (665 nm) and near infrared (842 nm) bands are of particular interest
for agricultural applications, since they allow for the calculation of several vegetation
indices at a 10 m spatial resolution [41]. The productive cycle of the grapevine has several
phases: pruning, weeping, budding, flowering, fruit set, veraison, maturity and leaf fall.
The budding phase, in which new stems appear and the first leaves appear, occurs in the
first fortnight of October; therefore, the date of the beginning of the season was established
as 15 October. Figure 3 shows the acquisition date of a set of 8 images used in this work for
the two years of study, referred to the day of the season (DOS).
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Figure 3. Acquisition dates of the Sentinel-2 images used to model the polyphenols and color
intensity. (a) shows images 2017 regarding day of season. (b) shows images 2018 regarding day
of season.

To establish the ripening of the plots, a total of 14 grape samples were collected in
the field after veraison. The location of the sampling points was established by identifying
strategic and homogeneous response areas. Zones that share common characteristics of
vegetative expression and topography were selected, and the samples were homogeneously
distributed in the plots. A sample was positioned in each plot except for plot 7.08, which
presents two sampling positions, which were averaged (Figure 1). These positions were
considered to carry out the micro-vinification in which phenols, anthocyanins and color
intensity were measured.

3. Methods
3.1. Satellite Data Preparation

Sentinel images were co-registered using ground control points and applying the
nearest neighbor resampling method preserving the original pixel size. Eight of the thirteen
Sentinel-2 bands were used, corresponding to B3 (Green band—centered on 0.560 µm), B4
(Red band—0.665 µm), B5 (Red Edge band—0.705 µm), B6 (Red Edge band—0.740 µm), B7
(Red Edge band—0.783 µm), B8 (NIR band—0.842 µm), B11 (SWIR band 1—1.610 µm) and
B12 (SWIR band 2—2.190 µm). Four spectral indices were calculated: Green Normalized
Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index (NDVI),
Normalized Difference Moisture Index (NDMI) and Chlorophyll Index.

http://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor-v2-9/
http://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor-v2-9/
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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The term vegetation index refers to any transformation of two or more spectral bands
for assessing vegetation properties either at the leaf or canopy levels, developed for different
types of vegetation [42].

NDVI ((NIR − Red)/(NIR + Red)) is a simple indicator closely related to crop vege-
tative and productive features [30]. GNDVI ((NIR − Green)/(NIR + Green)) is a variant
of NDVI more sensitive to water and nitrogen uptake into the plant canopy [18]. In the
case of the Chlorophyll Index ((Red − Blue)/Green), the effect of photosynthetic pigments
is dominating the reflectance in the visible spectral region [42]. Carotenoids contribute
to strong absorption at 445 nm, anthocyanin at 529 nm and chlorophyll at 650 nm [43].
The NDMI ((NIR − SWIR1)/(NIR + SWIR1)) is sensitive to the moisture content in the
canopy [44]. The SWIR1 band corresponds to the wavelength comparatively more similar
to the Landsat shortwave band, the base of this indicator [45–48].

The visualization of the behavior and evolution of the vineyard allows to overview
the state of the plots and the development in both seasons. For this purpose, the NDVI
was used, since this is considered an indicator related to the quantity, quality and state of
vegetation [48]. The best vegetative expression, or the maximum potential of NDVI, occurs
in summer shortly before the veraison, since just after this, the foliage begins to change,
and near the harvest the vines begin to lose their leaves. The development cycle of the
vines begins with pruning and new plantings in July/August, and then starts the flowering
in August/September, budding in September/October, flowering in October/November,
fruit set in November/December, veraison in January/February and finally the harvest in
March/April. Therefore, to characterize the entire cycle of each season, the set of NDVI
images used was from September to April.

Figure 4 shows the NDVI maps displayed on a 10-rank scale. The plots are grouped by
year of planting, 2007 and 2010. The 2007 plantation, located north, is made up of 12 plots
and the 2010 plantation, located south, by 11 plots. In order to avoid mixed pixels in the
boundary of the plots, a buffer of 15 m was applied.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 16 
 

 

The term vegetation index refers to any transformation of two or more spectral bands 
for assessing vegetation properties either at the leaf or canopy levels, developed for 
different types of vegetation [42]. 

NDVI ((NIR − Red)/(NIR + Red)) is a simple indicator closely related to crop 
vegetative and productive features [30]. GNDVI ((NIR − Green)/(NIR + Green)) is a variant 
of NDVI more sensitive to water and nitrogen uptake into the plant canopy [18]. In the 
case of the Chlorophyll Index ((Red − Blue)/Green), the effect of photosynthetic pigments 
is dominating the reflectance in the visible spectral region [42]. Carotenoids contribute to 
strong absorption at 445 nm, anthocyanin at 529 nm and chlorophyll at 650 nm [43]. The 
NDMI ((NIR − SWIR1)/(NIR + SWIR1)) is sensitive to the moisture content in the canopy 
[44]. The SWIR1 band corresponds to the wavelength comparatively more similar to the 
Landsat shortwave band, the base of this indicator [45–48]. 

The visualization of the behavior and evolution of the vineyard allows to overview 
the state of the plots and the development in both seasons. For this purpose, the NDVI 
was used, since this is considered an indicator related to the quantity, quality and state of 
vegetation [48]. The best vegetative expression, or the maximum potential of NDVI, 
occurs in summer shortly before the veraison, since just after this, the foliage begins to 
change, and near the harvest the vines begin to lose their leaves. The development cycle 
of the vines begins with pruning and new plantings in July/August, and then starts the 
flowering in August/September, budding in September/October, flowering in 
October/November, fruit set in November/December, veraison in January/February and 
finally the harvest in March/April. Therefore, to characterize the entire cycle of each 
season, the set of NDVI images used was from September to April. 

Figure 4 shows the NDVI maps displayed on a 10-rank scale. The plots are grouped 
by year of planting, 2007 and 2010. The 2007 plantation, located north, is made up of 12 
plots and the 2010 plantation, located south, by 11 plots. In order to avoid mixed pixels in 
the boundary of the plots, a buffer of 15 m was applied. 

 
Figure 4. Representation of NDVI (Normalized Difference Vegetation Index) maps from blooming 
to harvest for the 2017 (upper row) and 2018 (lower row) seasons. Color scale of 10 unique ranges 
for all dates. 

3.2. Samples and Micro-Vinification 
A Unicam Helios Gamma 9423 1000E spectrophotometer was used to measure both 

color intensity and phenolic compounds in general. Due to the wide chemical diversity of 
phenolic compounds, total phenols in must and wines are generally presented in arbitrary 
units of a phenolic standard, such as the amount of gallic acid needed to produce the same 
analytical response or gallic acid equivalents [5], as was performed in this case. When 

Figure 4. Representation of NDVI (Normalized Difference Vegetation Index) maps from blooming to harvest for the 2017
(upper row) and 2018 (lower row) seasons. Color scale of 10 unique ranges for all dates.

3.2. Samples and Micro-Vinification

A Unicam Helios Gamma 9423 1000E spectrophotometer was used to measure both
color intensity and phenolic compounds in general. Due to the wide chemical diversity of
phenolic compounds, total phenols in must and wines are generally presented in arbitrary
units of a phenolic standard, such as the amount of gallic acid needed to produce the same
analytical response or gallic acid equivalents [5], as was performed in this case. When
measuring the phenolic compounds with spectrophotometers, no specific compounds but
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rather total compounds are measured, which are expressed on the basis of the specific
compounds that recur most frequently among phenols and anthocyanins.

The method for measuring total phenols was measuring absorbance at 280 nm (a gallic
acid calibration curve was used). The measurement of the total anthocyanins was carried
out by decolorization and measured at 520 nm. The method to measure color intensity was
the Glories method, which corresponds to the sum of the absorbances at 420 nm, 520 nm
and 620 nm [49].

Micro-vinification was made from the abovementioned 14 field samples. Approxi-
mately 1000 kg of grapes per micro-vinification were crushed and blended to enter the
alcoholic fermentation process and this ended when 2 g of sugar per liter was reached.
The wine was then transferred to barrels. Then came malolactic fermentation, which was
carried out in a heated place to increase the speed of fermentation.

3.3. Oenological Evaluation

Since phenolic compounds are important in the overall quality of wine, they are the
subject of intense research worldwide [6]. They provide sensory characteristics such as
flavor, aroma, color, and astringency, among others [31].

Viña Montes evaluates wines in three categories: Limited (LIM), Premiun (PRE)
and Superior (SPR). Each of these has three variants with a lower (−) and a higher (+)
subcategory, indicating that a taster can evaluate a wine as Premium, but below or above
the average of this category.

The factors used to evaluate the wines were as follows: (i) Visual factors: mainly
associated with color; therefore, anthocyanins and color intensity will predominate them.
Cleanliness was also observed (cloudy, clear, clean, bright, etc.), which is associated to
physicochemical stability. Color intensity varies according to the grape variety but seeks
to identify colorimetric intensities such as red, intense red, ruby red, violet, intense violet,
etc. (ii) Olfactory factors: associated with volatile properties and it is described through
aromas (wood, vanilla, fruits, etc.). The greater the number of descriptors and complexity,
the higher the classification of a wine. (iii) Flavor factors: tannins, compounds found in
the skin and seeds of berries, which produce the sensation of astringency. Not only a high
concentration of tannins is sought, but they must be of good sensory quality. Together with
the alcohol, they confer the sensation of structure and body. A wine with more body and
better structure is classified as superior quality. (iv) Finish of a wine: indicates a higher
or lower category; the finish is the persistence of a wine in the mouth, so a wine with a
persistent, long, medium or short finish is also a factor associated with categories.

Attending to these factors, each wine sample was evaluated by four winemakers who
assigned an individual evaluation. Then, they were averaged to give a final category to each
sample. Table 1 shows the final quality category assigned to each plot and the color intensity
value, total phenolic compounds and anthocyanins measured with the spectrophotometer.
Figure 5 shows the comparison of the quality factors in the two seasons.

3.4. Modeling Phenolic Compounds (PC) and Color Intensity (CI)

The modeling of the variables requires the values measured in the micro-vinification
and the response of the foliage that will be reflected in the spectral bands and indices.
Since the variables are obtained post-harvest, it will be necessary to know the relationship
between the samples and the series of images to represent the vegetative expression from
veraison to harvest. The average value of pixels considered as representative of the images
was taken to the set of pixels within a 15 m radius around the location corresponding to
the sampling and micro-vinification (Figure 1).

For each sampling point a table was prepared, including the name of the plot, the
values obtained in the microvinification corresponding to total phenols (TP), the total
anthocyanins (AT) and the color intensity (CI), which were used as the dependent variables.
Similarly, the independent variables correspond to the average value of pixels around the
sample in the original Sentinel 2 bands and in the four spectral indices, on the four dates of
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each season, from January to April. A multiple ordinary linear regression model was used
to determine the relationship between the image-derived data and the variables (phenolic
compounds and color intensity).

Table 1. Post-harvest evaluation of the wine. Final average tasting: color intensity (absorbance); total phenols (mg/L gallic
acid equivalent) and total anthocyanins (mg/L malvidin equivalent).

Harvest 2017 Harvest 2018

Plots Tasting Color
Intensity

Phenols
Total

Anthocyanins
Total Plots Tasting Color

Intensity
Phenols

Total
Anthocyanins

Total

10.10 PRE− 16.6 426 499.3 10.10 PRE+ 23.8 978 885.5
10.13 PRE 11.7 908 406.7 10.13 PRE 14.7 1194 831.3
10.12 LIM 10.9 1019 360.1 10.12 SPR− 22.6 1184 926.6
10.06 PRE− 12.2 923 419.4 10.06 PRE+ 20.2 1113 840.0
10.11 PRE 12.3 1101 426.1 10.11 SPR− 27.3 1245 959.9
10.08 LIM+ 10.7 918 379.7 10.08 SPR+ 27.6 1154 739.0
10.07 LIM− 11.3 1107 437.9 10.07 SPR 28.2 1138 986.1
10.04 PRE 12.2 1197 372.9 10.04 PRE 13.6 1184 727.1
7.15 PRE 15.4 1153 533.3 7.15 PRE 16.8 1070 704.4
7.10 LIM+ 14.8 1117 532.9 7.10 SPR− 20.5 1220 1070.1
7.12 PRE+ 20.5 1349 566.3 7.12 PRE+ 23.8 1265 1074.2
7.08 PRE+ 18.4 1491 559.9 7.08 PRE+ 24.0 1180 840.0
7.07 PRE+ 15.4 1210 489.7 7.07 PRE+ 19.8 944 971.3
7.02 PRE 13.8 1132 442.8 7.02 PRE+ 21.0 893 787.5
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To select the best model, a descriptive analysis of the variables was carried out,
for which the correlation matrix of the bands on the different dates was reviewed. In
order to identify the strength of the linear relationship between the variables, as well as
the statistical significance of the estimated correlations, a confidence level of 95% was
considered; therefore, p-values less than 0.05 will be sought.

To avoid severe multicollinearity between the variables, variance inflation factors (VIF)
were considered, which allow measuring the correlation between the predictor variables of
the model.

Ordinary multiple linear regression models were used to find the best coefficient
of determination (R2) between January and April. To do this, the best combination of
variables or the variable that was significant both for the model and individually was
selected, followed by the collinearity check of the variables using the variance inflation
factor (VIF).

4. Results

The selected models included only 1 or 2 variables. Some models composed of
variables with a high degree of significance and a slight degree of collinearity were retained
(e.g., CI February 2017), as well as one of the models with low collinearity that included a
variable with a p-value greater than 0.05 (TP April 2017).

During the 2017 season, color intensity presented high R2 values for the four dates,
April being the best of them, as well as the results for total anthocyanins. In both variables,
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during the 2018 season, the models reached very low R2 values. The mean absolute error
(MAE) corresponding to the average value of the residuals was higher in the 2018 season.
The total phenols variable presented more similar errors in both seasons and reached a
better R2 in the 2018 season, February being the best of them.

Table 2 shows the summary statistics for each dependent variable for the four dates
under study—color intensity (CI), total phenols (TP), total anthocyanins (TA)—including
the coefficient of determination (R2), the variables included in each model, their mean
absolute error (MAE), the variance inflation factor (VIF) and the significance (p-value) for
the model and the individual variables, which constitute all the information necessary to
select the month with the best indicators.

Table 2. Summary statistics for each variable. The R2, MAE, VIF and p-value results are shown.

CI—2017 R2 Variables MAE VIF p-value model p-value vbles

January 62 B11 —– 1.54 1.0 0.0008 0.0008 —–
February 71 B12 NDVI 1.27 20.2 0.0010 0.0074 0.0435

March 67 B11 —– 1.37 1.0 0.0004 0.0004 —–
April 75 B11 —– 1.21 1.0 0.0001 0.0001 —–

CI—2018 R2 Variables MAE VIF p-value model p-value vbles

January 20 NDMI —– 3.31 1.0 0.1072 0.1072 —–
February 18 NDMI —– 3.34 1.0 0.1314 0.1314 —–

March 25 B8 —– 2.95 1.0 0.0688 0.0688 —–
April 15 GNDVI —– 3.29 1.0 0.1758 0.1758 —–

TP—2017 R2 Variables MAE VIF p-value model p-value vbles

January 41 B8 —– 138.49 1.0 0.0130 0.0130 —–
February 35 NDMI —– 126.51 1.0 0.0255 0.0255 —–

March 36 GNDVI —– 127.99 1.0 0.0230 0.0230 —–
April 49 B5 GNDVI 137.32 9.1 0.0251 0.0707 0.0195

TP—2018 R2 Variables MAE VIF p-value model p-value vbles

January 53 B3 B5 63.01 34.9 0.0162 0.0157 0.0313
February 57 NDMI NDVI 53.74 8.8 0.0091 0.0225 0.0055

March 36 GNDVI —– 127.99 1.0 0.0230 0.0230 —–
April 52 GNDVI NDMI 65.59 3.1 0.0179 0.0064 0.0407

TA—2017 R2 Variables MAE VIF p-value model p-value vbles

January 59 B11 —– 35.35 1.0 0.0014 0.0014 —–
February 53 B11 —– 36.65 1.0 0.0030 0.0030 —–

March 61 B11 —– 35.4 1.0 0.0010 0.0010 —–
April 67 B11 —– 32.72 1.0 0.0003 0.0003 —–

TA—2018 R2 Variables MAE VIF p-value model p-value vbles

January 47 B12 CHLORO 73.51 5.2 0.0316 0.0105 0.0245
February 25 B6 —– 81.51 1.0 0.0665 0.0665 —–

March 12 B3 —– 93.98 1.0 0.2306 0.2306 —–
April 12 B3 —– 91.49 1.0 0.2196 0.2196 —–

Considering the small number of samples studied and in order to avoid using variables
with high collinearity, those models with VIF values less than 10 were chosen. Figure 6
shows the coefficient of determination obtained at each date and the number of variables
included in the model.

Attending to the results obtained, April is the best month to predict the intensity of
the coloration and anthocyanins, unlike phenols, whose best R2 is presented in February.

A summary of the complete statistics of the selected models as well as a scatter plot of
the individual models, including the equations of the models in both seasons for the three
dependent variables, color intensity (CI), total phenols (TP) and total anthocyanins (TA),
are shown in the Figure 7.
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As shown in Figure 7, variables are not repeated in the models with respect to the
comparison by variable between the two years. The 2017 season presents two models with
one variable (CI and TA) and TP with two variables. In the case of the 2018 season, only CI
is selected with one variable and TP and TA with two variables. Regarding the coefficients
of determination, only the 2017 season shows reliable models above 60%.

Since these models are different depending on the date, their precision is limited in
time, which implies that they should be obtained monthly. Although the study brings us
closer to a date in which the greatest relationship occurs, the moment could vary slightly
in each campaign, due to external factors such as the meteorological conditions. This
temporal limitation does not restrict the benefits of this tool in the objective of this study,
since these models would serve to identify the zoning where the next sampling or field
visit will take place. This would contribute to carry out the harvest differentiation within
a plot, allowing to improve the determination of the maturity and optimize the harvest
moment in each plot.

By applying phenolic compounds and color intensity estimation models, it is possible
to obtain representative maps of the quality status at a given date, showing the variability
of each plot in terms of the ripening potential represented by the canopy. This would allow,
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through the use of a limited number of field samples and Sentinel-2 images, to estimate
these wine quality variables in the entire plot and, subsequently, to identify ripeness
variability and zonation to determine a selective harvesting.

Figure 8 shows comparative maps between the NDVI and estimated total antho-
cyanins. In agreement with Cortell et al. (2007) [50], who determined that vines with
low vigor show higher levels of anthocyanin and flavanol in the grape skin, an inverse
relationship between the estimated anthocyanins and NDVI can be noticed.
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5. Discussion

Defining the quality of wine is relative; however, there are some standard variables to
determine the technological maturity (state of greater accumulation of sugar and low acid-
ity), phenolic maturity responsible for the color of the berries [51], sensorial characteristics,
such as color, astringency and bitterness, and aging capacity, which are closely related to
the perception of wine quality [52]. For this purpose, it is key to consider the variability of
a parcel, since the mixture of grapes from different quality indicators do not result in an
intermediate quality wine, since some properties found in low-quality grapes (immature
phenolic compounds, herbaceous aromas, etc.) prevail in the wine even when a small
proportion of grapes with those characteristics are present [53]. All these considerations
are key in the quality of wine, allowing a better use of resources from an environmental
and food safety point of view [54].

Our results show that during the 2017 season, the R2 values of the studied quality
parameters are better starting in April. The results obtained in both seasons do not allow to
establish a common pattern of behavior in both seasons. This difference is appreciated in
the comparison of the values obtained in the microvinification; in the case of anthocyanins,
in some lots the content practically doubles, not a very strange condition if we consider
that the typical concentrations of free anthocyanins in full-bodied young red wines are
around 500 mg/L, but in some cases can be higher than 2000 mg/L [55–58].

Several studies have established that anthocyanins begin to be produced more in-
tensely from veraison onwards [58], but the process is complex as it is affected by multiple
factors that could affect berry composition and anthocyanin accumulation, such as environ-
mental conditions [59] and agricultural management [60]. These factors can significantly
influence the anthocyanin content of grapes [61]. For example, water deficit has been
shown to have a positive effect on anthocyanin accumulation during ripening [62,63] and
others have shown that water limitation has negative effects [59,64].

The fact that the highest modelling potential of phenolic compounds occur later in
2017 may be justified by the study of Mori et al. (2007) who showed that high tempera-
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tures reduced the total anthocyanin content to less than half of what was expected [64].
A number of other studies agree that temperature is a critical variable in the final amount
of anthocyanins present in wine [6,65,66]. The comparison of the analysis of the micro-
vinifications for both seasons shows higher absorbance values for both color intensity and
phenolic compounds for the 2018 season, in agreement with other studies that obtained
better results with cooler temperatures [66]. This seems to be one of the key factors to
consider [67], since vegetative growth and phenolic compound synthesis are affected by
temperature [68]. Global warming produces an increase in the gap between technological
maturity, corresponding to the stage of higher sugar accumulation and low acidity (which
comes earlier) and phenolic and aromatic maturity (which comes later) [69,70] which is
ratified by the results obtained in this study, where the best correlations occur in April
the first season (warmer). These works suggest the convenience to include temperature
variables in the models, which could eventually improve the results obtained.

The study of the variables directly involved in wine quality, such as phenolic com-
pounds and color, contributes to the interest of researchers to delve into studies of non-
destructive and affordable techniques based on the use of satellite images that allow
understanding the factors that determine the concentration of these quality variables.
These models might be useful for the differentiated management of harvests, providing
spatial information for selective harvesting, which could be used to categorize different
types of wine, and might be complemented with the very extensive information that is
progressively available in a vineyard, related to agronomic management, such as nutrition,
thinning, leaf removal and grafting, among others.

6. Conclusions

The purpose of this research was to determine models from Sentinel-2 image series
that allow estimating, prior to harvest, wine quality variables such as phenols (TP), an-
thocyanins (TA) and color intensity (CI). These variables provide sensory characteristics
that are evaluated in the wine. Two harvest seasons were studied and models with R2

coefficients of determination above 60% were obtained for CI in 2017 (75%) and TA in 2017,
at 67%. These results transform the estimated TP, TA and CI maps into a useful tool, with
the potential to define selective harvests.

Sentinel 2 images play a key role, as their high periodicity allows modeling of pre-
harvest vine conditions. The final stage of ripening and the harvest time is a very short
but strategic stretch that would allow identifying homogeneous sectors for harvesting and
thus scheduling the winery space.

The results also show the convenience to deepen this study on two specific aspects
in the future: (i) to increase the number of samples to improve the dispersion and variety
of the data; and (ii) to include a climatic variable, such as cumulative temperature, which
could help in understanding the behavior of phenolic compounds and the changes in color
in order to obtain more robust models.

The optimization of all processes in the wine production chain aims to raise the quality
level of winemaking. Therefore, the production of maps that allows spatially differentiating
the variability and quality potential of wine produced in terms of color intensity and
phenolic compounds accumulation presents a practical and attractive potential to identify
aging capacity and the style of wine expected from different plots as well as their productive
aptitude. This work suggests that remote sensing and selective harvesting can be used to
better manage the style and quality of wine produced.
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