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Abstract  30 

Pulsed electric field (PEF) pretreatments and ultrasound (US) application are techniques 31 

previously used to enhance the drying operation, not only increasing the kinetics but 32 

improving product quality. Because PEF pretreatments could affect product structure and 33 

US influence depends on the internal structure of products, the combination of both 34 

techniques could have a synergistic effect. Thus, the influence of the combined 35 

application of pulsed electric field (PEF) pretreatments and ultrasound (US) during drying 36 

on the color, total phenolic content, ascorbic acid and antioxidant activity of orange peel 37 

was studied. To this end, a series of drying experiments (50 °C) was performed without 38 

and with ultrasound application (20.5kW/m3) and with and without PEF pretreatments 39 

(1.20 kV/cm) for two different times, 200 µs (0.37 kJ/kg) and 600 µs (1.12 kJ/kg). Thus, 40 

when individually applied, ultrasound significantly shortened the drying time, and PEF 41 

pretreatments slightly extended the process. However, the shortest drying time was 42 

observed combining 200 µs PEF pretreatment and ultrasound. This combination also 43 

provided the more similar color parameter to the fresh samples and significantly increased 44 

the percentage of phenolic compound retention. In addition, every treatment with PEF 45 

exhibited a similar percentage of ascorbic acid retention, and only the longer pretreatment 46 

(600 µs) produced a reduction in the antioxidant activity retention. Therefore, the 47 

combined use of a PEF pretreatment and ultrasound application during orange peel drying 48 

can lead to an interesting way both to shorten the drying process and preserve important 49 

compounds. 50 

Keywords: By-products; drying time; color; antioxidant, phenolic content, vitamin C. 51 

  52 



1. Introduction 53 

One current global priority is the need for healthy foodstuffs, easy-to-prepare and 54 

of practical consumption. In this sense, the health benefits of fruit and vegetable 55 

consumption have been well established. Orange, produced and consumed worldwide, is 56 

highly appreciated for its flavor and for the fact that it has a variety of nutrients. On an 57 

industrial scale, orange is mainly processed for the purposes of juice production. This 58 

activity generates a massive amount of residue, orange peel being one of the major 59 

components. This by-product is a rich source of vitamin C, phenolic compounds and 60 

dietary fiber (Slama & Combarnous, 2011; Luengo, Álvarez, & Raso, 2013; Adiamo, 61 

Ghafoor, Al-Juhaimi, Babiker, & Mohamed Ahmed, 2018; Garcia-Amezquita, Tejada-62 

Ortigoza, Campanella, & Welti-Chanes, 2018) and can be used as flour and seasoning  63 

(Espinosa-Garza, Antonyan, & Loera-Hernández, 2018), as source of nanofibers (Hideno, 64 

Abe, & Yano, 2014), natural colorants (Różyło, 2020) or others. However, like many 65 

biological products, orange peel has a high moisture content, making it adequate for 66 

microbial and enzymatic degradation reactions. Therefore, there is a need for the 67 

application of conservation techniques which provide the product with stability (Bejar, 68 

Kechaou, & Mihoubi, 2011; Onwude, Hashim, Abdan, Chen, & Oladejo, 2017) 69 

permitting a subsequent permitting a subsequent valorization process.  70 

One of the most widely-applied conservation techniques is hot-air convective 71 

drying (HAD), mainly due to its user-friendliness (Valadez-Carmona et al., 2017). This 72 

technique promotes the removal of the moisture by creating a vapor pressure gradient 73 

between the product and the drying air. The energy needed by the process is provided by 74 

the high air temperature. Thus, a stable product is obtained with reduced weight and 75 

volume (Pérez-Won et al., 2016). However, HAD can promote changes in the material 76 

structure, color alterations, oxidation reactions, shrinkage or nutritional and functional 77 

quality degradation linked to the long exposure time to high temperatures, which also 78 

involves great energy consumption (Santacatalina et al., 2014; Pérez-Won et al., 2016; 79 

Corrêa, Rasia, Mulet, & Cárcel, 2017; Vallespir, Rodríguez, Cárcel, & Simal, 2019). 80 

Therefore, there is great interest in the development and application of techniques that 81 

can help to minimize both the decrease in quality and the energy costs. Some of the 82 

techniques tested include the application of microwave, osmotic dehydration, power 83 

ultrasound or pulsed electric fields (Rojas & Augusto, 2018; Ambros, Mayer, Schumann, 84 



& Kulozik, 2018; Martins, Cortés, Eim, Mulet, & Carcel, 2018; Mello Jr, Corrêa, Lopes, 85 

de Souza, & da Silva, 2019).  86 

Pulsed electric field (PEF) is a non-thermal technique that involves the application 87 

of short and repeated high voltage pulses to a biological product. This can promote 88 

changes in the electrical conformation of the cell membrane, inducing the generation of 89 

pores, a phenomenon known as electroporation. These pores can ease both the mass 90 

transfer and the exit of the inner components of the cell, which can enhance operations 91 

such as extraction or drying (Traffano-Schiffo et al., 2017; Risvy, Lyng, Frontuto, Marra, 92 

& Cinquanta, 2018). Thus, the use of PEF as a pretreatment has been previously tested in 93 

the drying of blueberries, parsnips or carrots and the results showed that PEF application 94 

can contribute to shorten the drying time (Yu, Jin, & Xiao, 2017; Risvy, Lyng, Frontuto, 95 

Marra, & Cinquanta, 2018). However, the effect of PEF application depends on the 96 

conditions considered. Thus, Toepfl, Siemer, Saldana-Navarro, & Heinz (2014) found a 97 

reduction in the drying rate of radishes when an increased number of pulses were applied. 98 

As regards the quality of the products, some authors have found a reduction in the 99 

nutritional quality (Toepfl, Siemer, Saldana-Navarro, & Heinz, 2014; Yu, Jin, & Xiao, 100 

2017) and others (Soliva-Fortuny, Balasa, Knorr, & Martín-Belloso, 2009) have reported 101 

a reduction in the degree of product damage when compared with other techniques.  102 

The use of high intensity airborne ultrasound (US) has been widely studied as a 103 

means of intensifying the drying process and preserving the characteristics of dried 104 

products (Santacatalina et al., 2014; Clemente, Sanjuán, Cárcel, & Mulet, 2014; 105 

Santacatalina, Contreras, Simal, & Cárcel, 2016; Corrêa, Rasia, Mulet, & Cárcel, 2017; 106 

Cárcel, Castillo, Simal, & Mulet, 2018). The effects induced by US application can help 107 

to reduce the internal (sponge effect) and external (microstreaming at interfaces) 108 

resistance to mass transport (Cárcel, Castillo, Simal, & Mulet, 2018; Martins, Cortés, 109 

Eim, Mulet, & Cárcel, 2018). However, US can also affect the quality of dried food 110 

(Rodríguez et al., 2018); this influence is dependent on the drying conditions used, as was 111 

reported during the drying of passion fruit peel (Nascimento, Mulet, Ascheri, Wanderlei, 112 

& Cárcel, 2016) or green pepper (Szadzinska, Łechtanska, Kowalski, & Stasiak, 2017).  113 

The combination of PEF and ultrasound application in liquid media, both as 114 

pretreatments of drying proces have been previsouly studied (Wiktor & Witrowa-115 

Rajchert, 2020). However, to best of our knowledge, no previous studies about the 116 



combination of PEF pretreatments and the application of airborne ultrasound during 117 

drying have been carried out. Therefore, the aim of this study was to assess the influence 118 

of the combined use of PEF as a pretreatment and the ultrasonically asisted drying on 119 

some quality parameters of orange peel. 120 

 121 

2. Material and methods 122 

 123 

2.1. Raw material 124 

The oranges used in this study, (Citrus sinensis, Valencia Late var.) were 125 

purchased in a local market (Valencia, Spain). The fruits selected were homogenous in 126 

size and color. The oranges were washed and their surface dried with the aid of absorbent 127 

paper. Then, rectangular shaped samples (48 ± 1 x 26 ± 1 x 3.18 ± 0.04 mm) of orange 128 

peel, including both albedo and flavedo tissues, were obtained with a sharp knife. The 129 

moisture content was measured in triplicate by measuring the weight difference after 130 

maintaining peel samples at 60 ºC in a vacuum oven until constant weight (AOAC, 1997). 131 

 132 

2.2.  Pulsed electric field (PEF) treatment 133 

The PEF pretreatments were carried out in a laboratory scale system, with a 134 

maximum positive pulse voltage ranging up to 10 kV (EPULSUS-PM1-10, Energy Pulse 135 

System, Lisbon, Portugal). The generated pulses were applied to the samples in a chamber 136 

containing electrodes (distance between electrodes of 8.2 cm) (Figure 1). For each 137 

experiment, the sample holder containing the peel samples (18 samples per run) was filled 138 

with tap water (electrical conductivity 1.11 mS/cm) at 20±1 °C as electricity driven 139 

medium (sample/water ratio of 1:4.7 g/mL). In this study, two PEF treatments were 140 

considered: one with 8 pulses and the other 24, of 25 µs each, which means a total 141 

treatment time of 200 (PEF 200 µs) and 600 µs (PEF 600 µs), respectively. A frequency 142 

of 10 Hz and an electrical field strength (E) of 1.20 kV/cm (Won, Min, & Lee. 2015), 143 

provided a specific energy input of 0.37 kJ/kg and 1.12 kJ/kg for PEF 200 µs and PEF 144 

600 µs, respectively. These parameters were in the range of the used by other authors 145 

(Chauhan, Sayanfar, & Toepfl 2018, Won, Min & Lee, 2015) studying the influence of 146 



PEF pretreatment in drying. After each treatment, the samples were removed from the 147 

treatment chamber and their surface dried with absorbent paper before the drying 148 

experiments. 149 

 150 

2.3.  Hot air drying (HAD) experiments 151 

HAD experiments were performed in an ultrasonically assisted convective dryer 152 

(Garcia-Perez, Ortuño, Puig, Carcel, & Perez-Munuera, (2012); Santacatalina et al., 153 

2015). In this system, the drying chamber is constituted by an airborne ultrasonic device 154 

(Figure 1), specifically, an aluminum-vibrating cylinder (height 310 mm, internal 155 

diameter 100 mm, thickness 10 mm) attached to a piezoelectric transducer (21.9 kHz) 156 

which is able to generate an internal high intensity ultrasonic field. Drying is conducted 157 

automatically with the control of temperature and air velocity. Each drying experiment 158 

was carried out with a parallel flux of air around 18 samples, randomly placed in a sample 159 

holder (Rojas, Augusto, & Cárcel, 2020). A balance permit the weighing of the samples 160 

at preset times and then, the monitoring of the drying kinetics. Every drying experiment 161 

was performed at 50±1 °C and 1 m/s and they were extended until the samples lost 70±1% 162 

of the initial weight, which assure the stability of samples after drying. Different 163 

conditions were tested by combining PEF pretreatments (200 µs and 600 µs) with the 164 

drying without and with (20.5 kW/m3; electric power applied to the transducer divided 165 

by drying chamber volume) US application. Moreover, conventional HAD experiments 166 

were carried out as reference (Table 1). Each experimental combination was performed 167 

at least in triplicate. 168 

 169 

2.4.  Quality parameters 170 

2.4.1.  Color 171 

The color of the dried orange peel samples was determined by measuring the 172 

CIELAB spectrum color parameters L* (lightness/darkness), a* (redness/greenness) and 173 

b* (yellowness/blueness) using a colorimeter (CM-2500d model, Konica Minolta, Japan) 174 

provided with a D65 illuminant reference system and a 10° opening angle. The excluded 175 



specular component (SCE) was considered. As a measurement of color saturation, the 176 

chroma value (C*)  was obtained from Eq. (2) (Wiktor et al., 2016). 177 

)( 2*2** baC +=          (2) 178 

2.4.2.  Antioxidant properties  179 

The measurements of the antioxidant properties (TPC, AA, and AC) of the fresh 180 

and dried orange peel were taken in an ethanolic extract. For that purpose, 1g of orange 181 

peel powder (particle size smaller than 200 µm), obtained with the help of a domestic 182 

grinder, was placed into 20 mL of ethanol (96% v/v) and homogenized with an ultraturrax 183 

for 1 min at 13000 r.p.m. Then, the mix was filtered and stored at 4 ± 0.5 ºC, protected 184 

from light, until analysis. 185 

2.4.2.1  Total phenolic content (TPC) 186 

The TPC was determined through the Folin-Ciocalteu method (Singleton, 187 

Orthofer, & Lamuela-Raventós, 1999). For this, 100 µL of the ethanolic extract of 188 

samples were mixed with 200 mL of Folin-Ciocalteu’s phenol reagent (Sigma-Aldrich, 189 

Madrid, Spain) and 2 mL of distilled water. After 3 min at 25 °C, 1 mL of Na2CO3 190 

(Panreac, Barcelona, Spain) solution (Na2CO3-water 20:80, w/v) was added and the 191 

mixture was kept in the dark at room temperature for 1 h. Finally, the absorbance was 192 

read at 765 nm using a spectrophotometer (Helios Gamma, Thermo Spectronic, 193 

Combridge, UK). A standard curve was previously prepared using solutions of a known 194 

concentration of gallic acid hydrate (Sigma-Aldrich, Madrid, Spain) in distilled water. 195 

Results were expressed as mg of gallic acid (GAE) per g of dry matter of orange peel 196 

samples. The measurements were taken in triplicate for each condition tested. 197 

2.4.2.2  Ascorbic acid content (AA) 198 

The AA was measured according to Jagota & Dani (1982). To this end, 0.5 mL of 199 

the ethanolic extract of sample was mixed with 0.5 mL of a trichloroacetic acid solution 200 

(7.5%). After 5 min at 4 °C, the mix was filtered. Subsequently, 0.2 mL of extract, 2 mL 201 

of distilled water and 0.2 mL of diluted Folin reagent (1:10 v/v) were blended and 202 

maintained for 10 min at room temperature (Jagota & Dani, 1982). Afterwards, 203 

absorbance was measured at 760 nm in a spectrophotometer (Helios Gamma, Thermo 204 

Spectronic, Combridge, UK). The procedure was also performed in triplicate for each 205 



condition considered. The concentration of vitamin C was obtained from a calibration 206 

curve made up of solutions of known ascorbic acid concentration.  207 

2.4.2.3  Antioxidant capacity (AC) 208 

The AC was determined by using the Ferric-Reducing Ability Power (FRAP) 209 

method, which was described by Benzie & Strain (1996). In a spectrophotometer cuvette, 210 

30 µL of distilled water, 30 µL of ethanolic extract of sample and 900 µL of FRAP were 211 

mixed in this order. The FRAP reagent was prepared by adding 2.5 mL of 10 mM TPTZ 212 

(Fluka, Steinheim, Germany) in a 40 mM HCl (Panreac, Barcelona, Spain) solution plus 213 

2.5 mL of 20 mM FeCl3.6H2O (Panreac, Barcelona, Spain) and 2.5 mL of 0.3 M acetate 214 

buffer (Panreac, Barcelona, Spain), pH 3.6. For the AC determination, 30 mL of each 215 

sample were used  completed with 30 mL of distilled water and 900 mL of FRAP reagent 216 

and kept at 37 °C for 30 min. Using a spectrophotometer (Helios Gamma, Thermo 217 

Spectronic, Cambridge, UK), the absorbance was read at 595 nm. A calibration curve was 218 

previously obtained using ethanol solutions of known Trolox (SigmaeAldrich, Madrid, 219 

Spain). The procedure was performed in triplicate and concentrations were described as 220 

millimole Trolox equivalent per gram of dry mass of orange peel. 221 

 222 

2.5. Statistical analysis 223 

For the statistical analysis, the color parameters, TPC, AA and AC were 224 

considered as process-dependent variables, and the PEF pretreatments and US application 225 

as factors. The analysis of variance was calculated using Statgraphics Centurion XVI 226 

(StatPoint Technologies, Inc) to check the significance (p<0.05) of the differences 227 

between the values of each dependent variable. The Least Significant Difference (LSD) 228 

intervals were also estimated to determine the significance of the differences between 229 

treatments. Additionally, the values from the replicates of the different kinds of 230 

experiments carried out were averaged and represented as mean and standard deviations. 231 

 232 

3. Results and discussion 233 

 234 



3.1.  Drying experiments 235 

The initial moisture content of the orange peel was 2.70 ± 0.31 kg water/kg dry 236 

matter, this value being similar to that reported in the literature (Angoy et al., 2020). The 237 

evolution of the dimensionless moisture content of orange peel during drying at the 238 

different conditions tested is shown in Figure 2. As can be observed, the application of 239 

PEF as a pretreatment did not accelerate the drying process, but slightly delayed it. Thus, 240 

for example, the time needed to reach a moisture content of 0.6 kg water/kg dry matter in 241 

HAD experiments (3.5 ± 0.3 h) was 19 and 17% shorter than in HAD-200 µs (4.4 ± 0.2 242 

h) and HAD-600 µs (4.3 ± 0.1 h), respectively. A similar effect was observed by Liu et 243 

al. (2016) during the drying of radish. However, the opposite results can be found in the 244 

literature, namely a shortening of the drying time when PEF was applied as a pretreatment 245 

to the drying processes of apple (Wiktor et al., 2013) or red pepper (Won, Min, & Lee, 246 

2015). The fact that studies can give different results may be related with both the 247 

characteristics of each product studied but also with the operational conditions of the PEF 248 

treatment. In the case of orange peel, there is two main tissues, flavedo, the external layer 249 

of orange peel, and albedo, the internal one, which can be differently affected by the PEF 250 

pretreatment. Thus, the longer drying process in PEF pretreated samples could be related 251 

with a possible partial sealing effect in flavedo layer, which can make the inner moisture 252 

transport to the sample surface difficult. 253 

The application of ultrasound during the drying of orange peel samples 254 

accelerated the process in every condition tested (Figure 2). Thus, for instance, to reach 255 

a moisture content of 0.6 kg water/kg dry matter, the time needed was 25% shorter in 256 

HAD-US experiments (2.6 ± 0.5 h) than in HAD ones (3.5 ± 0.3 h). Similar behavior has 257 

been previously reported in the literature for the ultrasonically-assisted drying of various 258 

fruits and vegetables. Thus, Nascimento et al. (2016) found a drying time reduction of 259 

49% for passion fruit drying (50 °C, 1 m/s) when ultrasound was applied (30.8 kW/m3). 260 

Rojas, Augusto, & Cárcel (2020) reported a 41% reduction in the case of apple drying 261 

(50 °C, 1 m/s and 20.5 kW/m3) and Ortuño et al. (2010) observed that the drying time for 262 

orange peel (40 °C, 1 m/s and 37 kW/m3), Navel variety, was 45 % shorter. 263 

The effects on the drying kinetics of the combined application of the PEF 264 

pretreatment and ultrasonically-assisted drying depended on the PEF pretreatment 265 

applied. Thus, compared with the HAD experiments, HAD-US-600 µs meant only an 8% 266 



shorter drying time, while in the case of HAD-US-200 µs this reduction reached 33% 267 

(Table 2). How much an effect ultrasound has on the drying rate is related with the 268 

structural properties of product, such as porosity (Ozuna, Álvarez-Arenas, Riera, Cárcel, 269 

& Garcia-Perez, 2014). PEF could induce changes in the internal structure of albedo 270 

tissue, affectig it porosity, and therefore the magnitude of the US effects. In this sense, 271 

the less intense PEF treatment of the HAD-US-200 µs experiments (only 8 pulses of 1.2 272 

kV/cm) could enhance the ultrasound effects. On the contrary, the more intense PEF 273 

treatment applied in HAD-US-600 µs (24 pulses) could partially degrade the inner 274 

structure; this would make it difficult for ultrasound to have significant effects and could 275 

also hinder the drying itself.  276 

 277 

3.2. Quality parameters 278 

3.2.1. Color 279 

Color is a very important parameter in the sensory evaluation of dried fruits and 280 

vegetables. Therefore, it is essential to understand the influence of the drying processes 281 

and the pretreatments on possible changes in the color of the products. Thus, the color 282 

parameters of fresh and dried orange peel samples were measured to determine the 283 

influence of the process variables studied the PEF pretreatments and the application of 284 

US during drying. Compared with fresh samples, HAD promoted a decrease of color 285 

parameters which was significant (p<0.05) for b* and chroma (Table 2). These results 286 

were no significant different than those obtained in HAD-200 µs experiments (Table 2) 287 

but significantly (p<0.05) greater than the L*, b* and C* values observed for HAD-600 µs. 288 

These changes may be related to the leaching of compounds responsible for the 289 

characteristic coloring of the orange peels, which occurs during the pretreatment, this 290 

effect being proportional to the intensity of the PEF applied. Wiktor et al. (2016) found 291 

no changes in the lightness of PEF treated carrot samples. On the contrary, they observed 292 

changes in the a* parameter, probably linked with electroporation. Furthermore, Rizvi et 293 

al., (2018) observed that the effect of the pre-treatment promoted reductions in the value 294 

of L* in carrots. Wiktor et al. (2016) also reported that the increase in the intensity of the 295 

PEF treatments promoted reductions in b* and C*. While studying the influence of PEF 296 

on pumpkin samples, Rahaman et al. (2019) also observed that the PEF pretreatment 297 

developed changes in the b* and C* parameters. The fact that several studies into the 298 



application of PEF have obtained this variability of  results could be a consequence of 299 

several factors, including differences in equipment, varying process conditions, the 300 

application of different pretreatments and even the intrinsic characteristics of each 301 

product (Raso et al., 2016). 302 

Ultrasound application during drying induced changes in all the analyzed color 303 

parameters (p<0.05). Thus, the L*, a*, b* and C* figures obtained in HAD-US experiments 304 

were significantly lower than those in HAD ones (Table 3). When studying the drying of 305 

apple peel in similar conditions of temperature and ultrasound power applied, Martins et 306 

al. (2018) did not observe differences between the L* and b* figures of ultrasonically and 307 

non-ultrasonically assisted dried samples but did report a significant increase in a* and C* 308 

after applying ultrasound. Nowacka & Wedzik (2016) identified several effects as a result 309 

of ultrasound application during the drying of carrot slices, and reported a reduction in L* 310 

and an increase in b* due to ultrasound application in every case studied.  311 

As for the color parameters of experiments carried out with the combination of 312 

PEF and US application, the values obtained were similar (p<0.05) to those obtained in 313 

HAD experiments. Only small, but significant (p<0.05), decreases in both b* and C* were 314 

found in the HAD-US-600 µs, which was similar to that observed in the HAD-600 µs 315 

samples. Therefore, the PEF pretreatment seemed to reduce the effect of ultrasound 316 

application on color parameters.   317 

 318 

3.2.2. Antioxidant properties  319 

3.2.2.1. Total phenolic content (TPC) 320 

The TPC of fresh orange peel was 0.30±0.03 mg GAE/g dry matter. This content 321 

was similar to that reported by Teixeira et al. (2020), 0.31±0.06 mg GAE/g dry matter, 322 

and higher than those found by Montero-Calderon, Cortes, Zulueta, Frigola, & Esteve 323 

(2019), 0.16±0.06 mg GAE/g dry matter. In addition, Park, Lee, & Park (2014) reported 324 

a TPC for orange peel ranging from 1.39 to 1.85 mg GAE/g dry matter. Drying reduced 325 

the initial TPC of fresh sample in every condition tested. However, the lower TPC 326 

retention, 27%, was observed in the HAD experiments, as shown in Figure 3. As Wiktor 327 

et al. (2019) reported, this can be attributed to the long drying time of these experiments, 328 

which also means a long thermal treatment. 329 



The PEF pretreatments significantly (p<0.05) increased TPC retention compared 330 

with HAD experiments, however the level achieved depended on the intensity of the 331 

treatment. Thus, the TPC retention of the HAD-200 µs samples (48%) was significantly 332 

(p<0.05) greater than the observed in HAD-600 µs ones (37%) (Figure 3). Application of 333 

PEF can favor the extraction of intracellular compounds, including phenolic compounds 334 

(Kim, Kwon, & Lee, (2019). However, this fact also favor degradation reaction of these 335 

compounds. These results could indicate the existence of a suitable range of PEF 336 

intensity, which could provide the greater TPC retention. Additional experiments at 337 

different PEF conditions should be carried out to identify the value of this optimum 338 

intensity.  339 

 The application of ultrasound during drying (HAD-US) significantly (p<0.05) 340 

increased the TPC retention compared with the HAD experiments (38% vs 27%, 341 

respectively). A similar positive effect of ultrasound application on TPC was reported by 342 

Nascimento et al. (2016) during the ultrasonically-assisted drying (30.8 kW/m3) of 343 

passion fruit peel at a moderate temperature (50 °C). Such effect can be related to the 344 

reduction of the polyphenols degradation due to the shorter exposure time of the samples 345 

to the drying air (Nascimento et al., 2016). 346 

The TPC retention obtained when combining PEF and US was similar to the same 347 

experiments carried out without US application. Thus, the HAD-US-200 µs experiments 348 

promoted a 48% retention of phenolic compounds (vs 48% of the HAD-200 µs) and 33% 349 

in the case of the HAD-US-600 µs (vs 37% of the HAD-600 µs), both values being 350 

significantly greater from the HAD experiment (p <0.05) (Figure 3). This indicates that, 351 

in the case of TPC, the effects of both techniques can be complementary. The PEF 352 

pretreatment contributes to a better TPC preservation and US contributes to a significant 353 

increase in the drying rate. 354 

3.2.2.2. Ascorbic acid (AA) 355 

Ascorbic acid is a compound of great nutritional relevance, which is highly 356 

sensitive to thermal processes. This is the main reason why it is used as an indicator of 357 

thermal treatment damage. The ascorbic acid content of fresh orange peel samples was 358 

0.25 ± 0.01 mg ascorbic acid/g dry matter, this value lying in the range of that found in 359 

the literature. Thus, Tasirin et al. (2014) reported a content of 0.50 ± 0.02 mg ascorbic 360 



acid/g dry matter and Hernández-Carranza et al. (2016) observed values between 0.18 to 361 

1.02 mg ascorbic acid/g dry matter, according to the extraction parameters used. 362 

 Drying process induce a significant degradation of AA. Thus, in the case of HAD 363 

experiments, a retention of 51% was observed (Figure 4). The retention was similar in the 364 

other conditions tested, ranging from 52% to 45% of the initial content which indicates 365 

the main damage to AA content was produced by the drying itself. The experiments 366 

carried out with PEF pretreatments, exhibited slightly but significant lower (p<0.05) 367 

retentions values (45 and 46% for HAD-200 µs and HAD-600 µs experiments 368 

respectively) than HAD experiments. These results can be explained by the 369 

electroporation mechanism and the side effects that the PEF can cause in the matrix, 370 

resulting in a slightly increase in the exposure of the AA to the drying air, according to 371 

Wiktor et al. (2019). 372 

The application of ultrasound during the drying process did not directly affect the 373 

percentage of AA retention in the samples under study, this (51% in the HAD-US) not 374 

being significantly different (p<0.05) than those obtained in the HAD experiments, even 375 

with the reduction of the exposure time of the samples to the drying process which US 376 

application meant. Martins et al. (2018) reported that the application of ultrasound during 377 

the drying of apple peel did not affect the retention of ascorbic acid during drying at low 378 

and moderate temperatures (-10, 30 and 50 ° C). Furthermore, the combined application 379 

of US and PEF did not significantly affect AA retention compared to HAD experiments. 380 

3.2.2.3. Antioxidant capacity (AC) 381 

The antioxidant capacity of the samples under study was 7.40 ± 0.15 mg Trolox/g 382 

dry matter. This was slightly higher than that reported by Hernández-Carranza et al. 383 

(2016), who found orange peel AC in the range of 5.01 - 6.03 mg Trolox/g dry matter. In 384 

this case, the drying also produced an important reduction of AC as showed the 45% of 385 

AC retention in HAD experiments (Figure 5). The application of PEF did not influence 386 

the retention percentage of AC in the HAD-200 µs experiments if compared to the HAD 387 

ones (Figure 5). However, the experiments carried out with the more intense pretreatment, 388 

the HAD-600 µs, exhibited a lower (p <0.05) AC retention (31%) than that of the HAD 389 

experiments (45%) (Figure 5). When studying the drying of blueberries at 45 and 60 °C, 390 

Yu, Jin, & Xiao (2017) found that the PEF (2kV/cm and 96 µs of total time process) 391 

pretreatment reduced the values of AC compared to the non-pretreated samples. 392 



Similarly, Wiktor et al. (2015) found that, in general, the application of PEF reduced the 393 

antioxidant capacity of apples. The decrease in antioxidant activity may be related to the 394 

cell leakage that occurs during pretreatment, which promotes a greater exposure of the 395 

bioactive compounds to the drying process, thus leading to a higher degree of degradation 396 

(Lammerskitten et al., 2019). 397 

Ultrasound application during drying was observed to exert no influence on the 398 

antioxidant capacity of the orange peels. Thus, both the HAD and HAD-US experiments 399 

showed the same AC retention figure, 45% (Figure 5). Martins et al. (2018) also found 400 

that the application of ultrasound (20.5 kW/m3) during the drying of apple peel at -10, 30, 401 

50 and 70 ° C and under similar conditions of ultrasonic power led to no significant 402 

difference. The combination of PEF and US retained less AC than the experiments 403 

without US (45% in the HAD-200 µs vs 37% in the HAD-US-200µs; 31% in the HAD-404 

600 µs vs 25% in the HAD-US-600 µs), both values of the HAD-US-200µs and the HAD-405 

600 µs being significantly different from those of the HAD experiment (p<0.05). It is 406 

worth mentioning the wide variety of compounds present in the orange peel which can 407 

contribute to the total antioxidant activity. It will need more specific analysis to identify 408 

and measure their particular antioxidant activity. Therefore, in relation to the AC, these 409 

data indicate that the PEF contributes to a better preservation and the US plays an 410 

important role in shortening the drying time, both being complementary techniques for 411 

the dehydration process of orange peels.  412 

 413 

4. Conclusions 414 

The combination of PEF pretreatment and airborne ultrasound application during 415 

drying significantly shorten the drying process of orange peel. Moreover, they contributed 416 

to a better preservation of quality characteristics such as color, phenolic content or the 417 

antioxidant capacity. Therefore, combining both technologies with conventional drying 418 

process is a feasible means of obtaining dried products with a lower impact on quality. 419 

However, a too intense PEF pretreatment can induce negative effects on both kinetics and 420 

product characteristics and it its necessary to find the optimum value of PEF treatment 421 

variables which enhance not only the ultrasonic drying but also the quality of the dried 422 

product. In this sense, PEF pretreatment can affect other important components of orange 423 

peel such as pectin, which must be considered in further research.  424 
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Figure caption 653 

Figure 1. Scheme of the cell used in PEF pre-treatments and the vibrating drying chamber 654 

of the ultrasonically assisted dryer. 655 

Figure 2. Experimental dimensionless moisture content (moisture content divided initial 656 

moisture content) evolution of orange peel non-pretreated and pretreated with PEF (200 657 

and 600 µs) during drying (HAD, 50 ºC; 1 m/s) without and with ultrasound application 658 

(US, 20.5 kW/m3). 659 

Figure 3. Retention of the total phenolic content (TPC) of orange peel after drying at 50 660 

°C without and with (US) ultrasound (20.5 kW/m3) application and PEF pretreatment 661 

(200 and 600 µs). Mean values and standard deviation are shown. Different letter 662 

indicates different least significant difference intervals (p<0.05). 663 

Figure 4. Retention of the total ascorbic acid (AA) of orange peel after drying at 50 °C 664 

without and with (US) ultrasound (20.5 kW/m3) application and PEF pretreatment (200 665 

and 600 µs). Mean values and standard deviation are shown. Different letter indicates 666 

different least significant difference intervals (p<0.05). 667 

Figure 5. Retention of the antioxidant capacity (AC) of orange peel after drying at 50 °C 668 

without and with (US) ultrasound (20.5 kW/m3) application and PEF pretreatment (200 669 

and 600 µs). Mean values and standard deviation are shown. Different letter indicates 670 

different least significant difference intervals (p<0.05). 671 

 672 

  673 



Table captions 674 

Table 1. Conditions tested in drying experiments 675 

Table 2. CIELAB color parameters (L*, a* and b*) and chroma (C*) of orange peel dried 676 

at 50 °C without (HAD) or with (20.5 kW/m3) ultrasound (US) application and PEF (200 677 

µs and 600 µs) pretreatment  678 
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Figure 3. Retention of the total phenolic content (TPC) of orange peel after drying at 50 691 
°C without and with (US) ultrasound (20.5 kW/m3) application and PEF pretreatment 692 
(200 and 600 µs). Mean values and standard deviation are shown. Different letter 693 
indicates different least significant difference intervals (p<0.05). 694 
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Figure 5. Retention of the antioxidant capacity (AC) of orange peel after drying at 50 °C 702 
without and with (US) ultrasound (20.5 kW/m3) application and PEF pretreatment (200 703 
and 600 µs). Mean values and standard deviation are shown. Different letter indicates 704 
different least significant difference intervals (p<0.05). 705 
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Table 1. Conditions tested in drying experiments 707 
Experiment 

code 
PEF pretreatment time 

(s) 
US application during drying 

(20.5 kW/m3) 
HAD 0 No 
HAD-US 0 Yes 
HAD-200 µs 200 No 
HAD-US-200 µs 200 Yes 
HAD-600 µs 600 No 
HAD-US-600 µs 600 Yes 

 708 
 709 
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Table 2. CIELAB color parameters (L*, a* and b*) and chroma (C*) of orange peel dried 711 
at 50 °C without (HAD) or with (20.5 kW/m3) ultrasound (US) application and PEF (200 712 
µs and 600 µs) pretreatment  713 
Treatment L* a* b* C* 
Fresh Sample 64.17 ± 1.77a 25.93 ± 1.36a 39.91 ± 3.76a 47.60 ± 3.86a 
HAD 62.32 ± 0.63ac 27.30 ± 0.97a 33.53 ± 0.68b 43.24 ± 0.82ac 
HAD-US 45.61 ± 2.34b 11.88 ± 4.60b 9.20 ± 3.87c 34.90 ± 1.33b 
HAD-200 µs 62.28 ± 1.43ac 27.61 ± 1.05a 33.96 ± 2.05b 43.78 ± 2.00ac 
HAD-US-200 µs 61.98 ± 1.45ac 27.50 ± 0.90a 31.45 ± 1.66bd 41.80 ± 1.35c 
HAD-600 µs 60.61 ± 1.50c 27.28 ± 1.29a 28.17 ± 2.07d 39.22 ± 2.26c 
HAD-US-600 µs 60.98 ± 2.18ac 26.39 ± 0.80a 30.21 ± 1.44d 40.12 ± 1.16c 

Same letters in each column show homogeneous groups determined by least significant difference intervals 714 
(p<0.05). 715 
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