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Abstract

This paper presents FENOCOP, a game-theoretic approach for solving non-cooper-
ative planning problems that involve a set of self-interested agents. Each agent wants
to execute its own plan in a shared environment but the plans may be rendered infea-
sible by the appearance of potential conflicts; agents are willing to coordinate their
plans in order to avoid conflicts during a joint execution. In order to attain a con-
flict-free combination of plans, agents must postpone the execution of some of their
actions, which negatively affects their individual utilities. FENOCOP is a two-level
game approach: the General Game selects a Nash equilibrium among several combi-
nations of plans, and the Scheduling Game generates, for a combination of plans, an
executable outcome by introducing delays in the agents’ plans. For the Scheduling
Game, we developed two algorithms that return a Pareto optimal and fair equilib-
rium from which no agent would be willing to deviate.
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1 Introduction

Planning is the ability of selecting the appropriate action, among a set of alterna-
tives, in a particular situation considering the conditions of the world state, the
knowledge of the environment, the impact of the effects of the action, and the extent
to which the decision helps in finding a solution for the planning task. The single-
agent planning problem is conceived as a search process by which a single entity
synthesizes a set of actions (plan) to reach a goal from an initial situation (Ghallab
et al. 2004). There exists a large variety of planners, many of which have partici-
pated in the different editions of the International Planning Competition (IPC)!
event held to date. While the first IPCs aimed at evaluating the performance of solv-
ers in deterministic planning, the most recent editions have extended the competition
to temporal planning and probabilistic planning.

Planning with multiple agents involves coordinating planning, control and execu-
tion activities. In general, Multi-Agent Planning (MAP) deals with the problem of
automated planning in domains where multiple agents plan and act together in a
shared environment (Weerdt and Clement 2009; Nguyen and Katarzyniak 2009).
Motivated by the growing research in MAP, the first Competition of Distributed
and Multi-Agent Planners (CoDMAP) was held in 2015 in the context of the IPC
(Komenda et al. 2016).

MAP is characterized by two main factors, the type of task that agents are aimed
to solve and the type of environment. In this work, we restrict our attention to deter-
ministic environments so we assume that the only interactions that can emerge are
due to the coordination of the agents’ activities and not due to exogenous events or
uncertainty in the world. On the other hand, the typology of the MAP task alongside
the nature of the agents, altruistic/cooperative versus self-interested/strategic agents,
determine the characteristics of a MAP approach.

In a MAP context, a task is defined as a set of common goals to be jointly
achieved by several agents or as a number of goal sets in which each set must be
independently achieved by a single agent. When agents work together to achieve a
common goal or help each other to achieve their goals, this is called cooperative
planning. Cooperative planning has gained much attention lately within the planning
community to promote the resolution of automated planning problems among multi-
ple altruistic agents (Torrefio et al. 2014; Komenda et al. 2016). In this case, agents
have no private interests and they work for the common benefit of the group, either
solving a common MAP task or a set of independent tasks (Torrefio et al. 2018).
However, in the case of self-interested agents that have their own strategies, agents
are designed to make their strategic behavior prevail over the others when solving
the particular planning task.

The mainstream in MAP with self-interested planning agents is handling situa-
tions which involve interactive decision making with possibly divergent (conflicting)
interests. Game theory, the study of mathematical models of conflict and cooperation

! http://www.icaps-conference.org/index.php/Main/Competitions.
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between rational and self-interested agents (Osborne and Rubinstein 1994; Von
Neumann and Morgenstern 2007; Myerson 2013), arises naturally as a paradigm to
address human conflict and cooperation within a competitive situation. Particularly,
non-cooperative game theory (NCGT) is concerned with strategic equilibrium and
individual utility maximization given the actions of the other actors of the game.
Within NCGT, the purpose of an agent in the so-called strictly competitive games
or zero-sum games is to find a strategy that is good for such agent and bad for the
opponents. However, non-cooperative games that take place in non-strictly competi-
tive settings feature agents with conflicting and complementary interests. Conflicts
emerge as a consequence of all agents attempting to impose their strategic behavior
in a common environment. But agents are also willing to cooperate by resigning
their max-utility strategy for the sake of a joint solution that accommodates a strat-
egy for all the participants. This type of games, which are modeled as non-zero-sum
games or general-sum games, yield win—win strategies in which all participants can
profit from the game one way or the other (Gillies 1959; Shoham and Leyton-Brown
2009).

Non-cooperative games have been applied in strictly-competitive MAP settings,
also known as adversarial planning (Jensen et al. 2001; Sailer et al. 2007). The appli-
cation of NCGT to non-strictly competitive MAP gives rise to the field commonly
referred to as non-cooperative MAP. Unlike coalitional planning, which draws upon
cooperative games where agents contract each other’s behavior to form coalitions
(Brafman et al. 2009; Crosby and Rovatsos 2011), in non-cooperative settings plan-
ning agents act independently to each other. Non-cooperative MAP has been used to
solve a number of different tasks, which can be identified as a set of strategic agents
aimed at solving a common MAP task or several individual planning tasks.

Common MAP Task When agents are designed to solve one single task, the stra-
tegic behavior lies in the different utilities or rewards that agents earn accordingly
to the part of the task they solve. Solving a MAP task with self-interested agents
requires either distributing the task (goal allocation) among the agents or calculating
for each agent a plan that complies with its strategic behavior while optimizing some
global criterion.

One common problem in non-cooperative MAP is to determine the goals to be
achieved by each agent while maximizing their utility. Agents can exchange goals
and subgoals through an auction, using their own heuristics or utility functions to
determine when to auction and what to bid (Van Der Krogt and De Weerdt 2005).
In cost-optimal planning problems, on the other hand, it is important to ensure that
self-interested agents report truthfully their private information about its abilities
or its cost. The work in Nissim and Brafman (2013) presents a mechanism design
approach that optimizes social welfare where agents receive a payment that reflects
the impact each agent’s plan participation has on the other agents’ plans. In general,
solving a common task by a number of non-cooperative agents requires a strategy
that combines the private interests of the agents with the global purpose of the task.

Multiple Individual Planning Tasks In this case, the problem consists of
a series of planning tasks that have to be solved by self-interested agents that
wish to plan autonomously. Agents are assumed to independently work on their
own part of the planning problem either because of the existence of competitive
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relationships or because the impossibility of communicating during the planning
process. One first attempt in this direction is presented in Buzing et al. (2006),
where agents not only plan autonomously but also do not want to revise their
individual plans when the joint plan has to be assembled from the individual
plans. Hence, the proposal in Buzing et al. (2006) is a pre-planning coordination
method that ensures a feasible global solution to the multi-agent planning prob-
lem—whatever plans are chosen by the individual agents—by imposing (a mini-
mal set of) additional constraints to the original planning problem.

Most commonly, agents apply a post-planning method by which they evaluate
the interaction of their plans with the plans of the other agents and come up with
a joint assembled plan. Game-theoretic approaches have been proposed to eval-
uate combinations of agents’ plans and formalize equilibria solutions (Bowling
et al. 2003). Other works define a classification hierarchy of plan combinations
according to the level of goal satisfaction that each combination reports to the
agents (Larbi et al. 2007). In this latter work, authors also define the game-the-
oretic notions to characterize joint plans that are Nash equilibrium (NE), a more
widely accepted concept of solution that takes into account all agents’ opportuni-
ties. While these two works mainly focus on introducing a formal definition of
equilibria for MAP, a more recent proposal presents a general non-cooperative
MAP framework where agents dispose of a number of plans and each plan reports
a benefit to the agent accordingly to the number of goals achieved, duration of
the plan (makespan) or cost of the actions (Jordan and Onaindia 2015). This two-
game framework evaluates all possible schedules of the agents’ plans so that the
set of strategies of all the agents constitute a NE solution.

A Nash equilibrium joint plan is a stable solution in the sense that no agent has
anything to gain by changing their plans. Nevertheless, further criteria are appli-
cable to NE solutions without losing the stability provided by the equilibrium.
The Pareto Optimality (PO) criterion helps remove those NE solutions which
are improved by other NE solutions without decreasing the utility of any agent.
Yet, albeit PO determines when the allocation of agents’ schedules is optimal,
it makes no statement about equality, thus possibly resulting in agents unsatis-
fied regarding their individual utilities. This limitation can be overcome by subse-
quently selecting fair solutions so as to balance out the individual satisfaction of
the agents. The concept of fairness has been widely studied in voting theory, ana-
lyzing the compliance of voting methods with fairness criteria such as Majority,
Condorcet or Monotonicity criteria (Brandt et al. 2016). The maximin principle
of distributive justice, whereby a solution A is more fair than a solution B if the
worst off agent in A is better off than the worst off agent in B, is often interpreted
as a highly egalitarian principle; other works pinpoint that the fairest solution is
achieved by maximizing the minimum utility subject to the envy-freeness con-
straint (Gal et al. 2018).

Albeit there have been a few attempts to establish the theoretical foundations
of equilibrium solutions for non-cooperative MAP, no practical implementation
exists to date. Following the line of the two-game proposal of Jorddn and Onain-
dia (2015), we present here an enhanced version that contributes with the follow-
ing features:
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e A general framework, called FENOCOP, that solves non-cooperative MAP
tasks for independent agents that plan autonomously; agents calculate a set
of individual plans that solve their respective problems, and then engage in a
game to select a plan schedule that allows them to execute their plans simulta-
neously in a common environment.

e Two novel game algorithms that allow agents to consistently synchronize the
execution of their plans. Both algorithms find solutions compliant with Pareto
optimality and fairness, thus balancing out the individual satisfaction of the
agents. In this work, we opt for applying the egalitarian principle to return fair
schedules, in a transparent way without need of requesting agents their prefer-
ences for the schedules.

e Empirical evaluation of the FENOCOP framework with a special emphasis
on the performance of the two game algorithms. This is a relevant aspect of
our contribution since game-theoretic approaches are rarely empirically tested.

The contents of the paper are organized as follows. Section 2 introduces the
formal notions related to the planning task of the agents. Section 3 presents an
overview of FENOCOP. Sections 4 and 5 outline the characteristics of the two-
level game approach; the top-level General Game and the internal Scheduling
Game. Section 6 is devoted to explain the two algorithms for solving the Sched-
uling Game, and Sect. 7 presents the empirical evaluation. Finally, Sect. 8 con-
cludes and discusses the limitations of the model.

2 Planning Scenario

The problem we want to solve involves a set of n rational and self-interested
agents AG = {1, ...,n}, where each agenti € AG has an individual task, which is
defined as follows:

Definition 1 (Individual task of an agent) The task of an agenti € AG is a tuple
T ={(T,I"), where T' describes the initial state of the task, and I'={ ni, ,71'; }is
a finite set of plans that attain 7".

Our model is based on propositional STRIPS planning tasks. In this context,
a plan 7' € I'' is defined as a sequence of actions =’ = [ag, ,ain_l]. An action
a € ©' is a triple a = (pre(a), add(a), del(a)): pre(a) is the set of preconditions of
a; add(a) and del(a) are two lists that denote the positive and negative effects of a,
respectively. An action a is executable in a state S if pre(a) C S. Executing a in a
state S yields a new state S, such that S’ = S\del(a) U add(a).

The execution of a particular plan z' € I' reports agent i a reward or utility. In
this planning scenario, every agent i € AG wishes to execute the plan of I'' that

reports the maximal utility.
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Definition 2 (Plan profile) A plan profile is a collection of one plan per agent
denoted with the tuple IT = (x!, 72, ..., "), where #' € I'' represents the individual
plan choice of agent i.

The actual utility that a plan z' reports to agent i depends on the concurrent exe-
cution of z’ with the rest of plans of the plan profile IT. Therefore, in this problem,
the objective of an agenti € AG is to select a plan z’ of I'* such that, when sched-
uled along with the rest of agents’ choices in IT, it reports maximum utility to i.

Definition 3 (Schedule of a plan) The schedule of a plan z' € I'" is a temporal
sequence of actions that results from interleaving the actions in #/ with an arbitrary
number of empty actions L. A plan schedule indicates the action of z' to be executed
at each time point.

We will denote by Y = {1//6, w{,...,y., ...} the infinite set of all possible sched-
ules of plan z'. Given a particular schedule y/;, the finish time of the execution of v
will be the time instant of the last action in ;. In general, given two plan schedules
wx, 1//)( L € Y, the finish time of w, is assumed to be prior or equal to the finish time
of w, o In the following, we will s1mp1y use the notation y' to refer to any schedule
of Y.

The ideal schedule of a plan 7' = [af.....a! ], w{, consists in executing g, in

the state at # = 0 or initial state 7', and executing the subsequent actions of z' at
consecutive time instants. Thus, presumably, agent i will finish the execution of z* at
t = m — 1, the time of the last action scheduled in 1//6 (afn_l). However, since agents
execute their plans simultaneously in a common environment, conflicts that prevent
agents from executing the ideal schedules of their preferred plans may arise. In case
that a conflict comprormses the ideal schedule l[/o of a plan x', agent i may select an
alternative schedule, v, which will comprise a number of empty actions L that will
help solve the conflict. The introduction of empty actions obviously entails a delay
in the finish time of the plan execution, which in turn entails a loss of utility. The
purpose of delaying actions is to avoid conflicts and ensure the executability or fea-
sibility of a plan schedule.
Example 1 leen a plan 77,' [ao, al az, i] of agent i, possible schedules for
”l, are: (a ) v, = (J_ dg 2,a ), 1//10 (ay.a), L, a , L, a3)'
Wiy = (ao,a 1, a J_ J_ a3) etc. Partlcularly, W is the earliest plan executlon of 7'
(finishing at = 3) l//l completes the execution of 7' at 7 = 4, |, att =5 and y/19 at
t=6.

The ultimate objective of the agents in AG is to come up with a combination
of plan schedules (one per agent’s plan) that is jointly executable. Since the plan
choices of the agents may affect each other’s utilities, the model proposed in this
paper is a non-cooperative game-theoretic approach that solves the problem of find-
ing a conflict-free (feasible) schedule profile which guarantees that the agents’ plans
of a plan profile I1 are executable.
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Definition 4 (Schedule profile) Given a plan profile IT = (z',z2,...,7z"), a

schedule profile of I1, s, is a combination of one schedule per plan in II; that is,
sp = .y yleYl

A schedule profile s;; = (w',w?, ..., w") induces a sequence of joint actions. A
joint action is a tuple A, = (a',a?, ..., a"), where d' is the action of y' scheduled
at time instant ¢. In other words, A, collects the actions of the plan schedules in s,
(one action per agent in .4G) that agents intend to execute at time ¢.

Example 2 Given a schedule profile s;; = (y!, w2, y3), A= (aé, 1, ag) is the joint
action to be executed at time ¢, where agent 1 wants to execute its action aé, agent 2
executes the empty action and agent 3 executes its action ag.

Joint actions are applied over joint states. The initial joint state of the prob-
lem, Z, is defined as the union of the initial states of the agents in .AG; that is,
T=T7"u--UZ" A joint action A, is executable in a joint state S if no conflict
arises at the time of executing the actions of A,. We identify two types of conflicts
in A

e Precondition conflict One condition for A, to be executable in a joint state S
is that Ya € A,, pre(a) C S. It may happen that the execution of a joint action
prior to A, leads to a joint state S where some precondition of an action a of A,
does not hold. In this case, we say a precondition conflict occurs and, conse-
quently, A, is non-executable.

®  Mutually exclusive (mutex) conflict This happens when two actions a and a’ of
A, cannot be simultaneously executed at time ¢ due to a mutex relationship as
identified in the GraphPlan approach (Blum and Furst 1997). Particularly, two
actions a and @’ are said to be mutex if:

o They have inconsistent effects; i.e., add(a) N del(a’) # @.
o They interfere with each other; i.e., pre(a) Ndel(a’) # @.

Hence, if none of the above conflicts appears in A,, then we say A, is execut-
able. The result of applying an executable joint action A, = (a',d?,...,da") in a
joint state S is a new joint state S" = S\(J|_, del(a")) U (J}_, add(a’)). When 4, is
not executable, this may be fixed by delaying the action(s) in conflict through the
introduction of empty actions in the corresponding schedule profile.

Definition 5 (Feasible (conflict-free) schedule profile) A schedule profile s ; = (y!,
w?,...,y™")is feasible if and only if every joint action A, of s is executable.

Example 3 Let us assume that two agents 1 and 2 want to execute the plan pro-
file IT = (x'=la),a} a)], 7> =[a},a},a5]); a possible schedule profile is
S = ' = (a(l), 4, J_,a{,aé), yl= (J_,a%,a],ag)). Additionally, s; is a feasi-
ble schedule profile if every joint action is executable (the joint actions for s;; are
AO = <a(l)’l>’ Al = <J-7a%>’ AZ = <J-7a%>’ A3 = <a:7a%>’ A4 = (aé»
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Given a plan profile IT = (x!,...,z") and an associated schedule profile
S = !, ... v, ..., w"), the maximum number of empty actions in the schedule
w' of an agent i, is limited by the sum of the actions of the other agents’ plans in IT,
denoted by A% :

rell

A=) Al (1

J#

If we consider a problem where the number of schedules of a plan z' associated
to a plan profile 7 is not limited by /1;7, it is possible to find additional schedule pro-
files by adding more empty actions. Any additional schedule profile of a non-limited
problem will report less utility to (at least) some agent i because it would include a
number of empty actions larger than /1"H. Therefore, we can conclude that the addi-
tional schedule profiles that can be formed in a non-limited planning problem are
weakly Pareto dominated by the schedule profiles of the original problem limited by
A
Example 4 Given a plan profile [T =(z' = [a),a;,a}], 7 = [a}.a},a5]),
A}, =3 for both agents, i={1,2}. A schedule with more than 3 empty
actions for any agent is useless since the maximum number of empty actions
necessary to address the conflicts is 3. For instance, the schedule profile
S = (y' = (a('),a},a;), wl=(L1, J.,a%,a%,a%)) introduces 3 empty actions in w?
and so all the joint actions in s ; include a single action (4, = (a(]), 1), A = (ai, 1),
A, = (aé, 1), Ay = (J.,a%), A, = (J_,a%) and Ay = (J_,a%)).

Thus, given a plan profile I1, if a feasible schedule profile cannot be obtained by
means of /1",., empty actions for every agent i € AG, introducing more empty actions
than A%, in the plan schedule of any agent will not yield a feasible schedule pro-
file for I1. In this case, we say that all the schedule profiles for IT are infeasible.
Particularly, an infeasible schedule profile is due to a precondition conflict because
mutex conflicts are always solvable by introducing empty actions. However, even
introducing /1",7 empty actions in all the schedule profiles, it may not be possible to
find a joint state S in which all the preconditions of an action in a joint action A, are
satisfied.

Definition 6 (Utility of a plan schedule) The utility function u': Y’ — R returns
the utility of a schedule y' of a plan z' for agent i. For a given 7/, the difference of
utility of two plan schedules q/;' and q/)’;,, x' > x, is given only by the difference in
their finish execution times. The later the finish time, the less utility. Consequently,
by default, the ideal schedule q/é of a plan 7' is the schedule that reports agent i the
maximal utility and the rest of schedules of Y* will have a lower utility accordingly
to their finish time. An infeasible (non-executable) schedule profile reports each
agenti € AG a utility u’ = —co.

In this section, we have introduced and formalized all the components that are
necessary for the specification of our game-theoretic approach FENOCOP.
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3 Overview of FENOCOP

FENOCOP (Fair Equilibria in NOn-COoperative Planning) is our computational
framework for the resolution of conflicts in non-cooperative MAP. As described
in Sect. 2, the problem we aim to solve involves a set of self-interested planning
agents, AG, where each agent i independently works on its individual task 7° by
calculating a finite collection I'* of plans of different utility that solve 7'.

In a game-theoretic context like FENOCOP, the plans of I' represent the dif-
ferent strategies of agent i to accomplish its task; i.e., the options or alternatives
that the agent can choose in the game. As commented in Definition 2, the actual
utility that a plan or strategy z’ reports to agent i will be subject to the schedule of
#' with the rest of agents’ strategies in a plan profile IT. In the following, we will
refer to a plan or a strategy interchangeably.

Every agent i wishes to execute the ideal plan schedule 1//(") of the maximum
utility plan z'. On the other hand, given that this is a non-strictly competitive
environment, agent i also wants to make its course of action 1//(") compatible with
the rest of the agents’ proposals of a plan profile and thus ensure that every agent
is able to execute a plan that achieves its task.

Conflicts may appear when the plan schedules of multiple agents are put
together to execution in a shared environment. A conflict between two particular
plan schedules 1//;: and l/f)], entails that either agent i or agent j cannot execute its
plan. When this happens, one or both agents must switch to a different sched-
ule so as to avoid the interference. Assuming agent i selects a new schedule 1;/;,,
some actions of y will be delayed in y, through the inclusion of empty actions
in order to solve the conflict, which in turn implies a delay in the finish time of
the execution of agent i. If the new schedule 1//;, entails a significant loss of util-
ity, agent i may select a different plan from I"* that, when scheduled with the rest
of agents’ plans, brings higher utility. Hence, agents must find together a feasible
schedule profile s,; that ensures the executability of the plans while satisfying the
private interests (utility) of the participants.

A rational way of solving the conflicts that arise among a set of self-interested
agents with potentially conflicting interests implies modelling the problem as a
non-cooperative game. FENOCOP is a non-cooperative two-game mechanism
guided by a top-level game called General Game (GG), which leverages an inter-
nal game called Scheduling Game (SG). Particularly, the GG of FENOCOP
works as follows:

1. It generates the I'! X --- X I"" plan profiles that result from combining the strate-
gies of the n agents in AG.

2. For every plan profile IT, the GG calls the SG to calculate a schedule profile s ;.
The outcome s ; returned by the SG holds the following properties:

(a) itis a stable outcome from which no agent is willing to deviate; that is, it
is a Nash equilibrium (NE) solution
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General Game General Game
 Agenti Plan-profile matrix - : - Utility matrix
" {'T; Fé} | n 5 | | -‘T‘{ _rr:i |
Q| [A @=L =i | || [A] (08 [m=@m |

Agent wh || o N(wh#d) | 1122 = (b)) [ % || maff (xhood) | 1722 = (s md) |

I¥ = {nd, xl} \ : )
Scheduling Game (11, = (=}.7]11 // ™

Payoff matrix (schedule profiles)
S|

i (o' = —oco,ud = —o0) Gn' =0, ul _HD

w L5] {u* =56,u’ = 8} (u' =5, uf =6)

Fig. 1 An iteration of FENOCOP

(b) itisa Pareto Optimal (PO) outcome and as such it outperforms any Pareto-
inefficient NE solution
(c) itis a fair solution that guarantees a balance among the agents’ utilities

3. From the set of feasible or infeasible schedule profiles {s 1,511, ...} calculated
by the SG, the GG returns a stable s7,, a NE solution that guarantees (1) the plan
schedules of all the agents in .AG are executable; and (2) no agent will deviate
from its course of action in 57, because no agent can do better by unilaterally
changing its strategy. In the case that the schedule profile for every plan profile is
infeasible then the task is unsolvable. That is, there is not an executable combina-
tion of the agents’ strategies.

Since agents operate in a non-strictly competitive environment, the GG is
designed as a general-sum game or non-zero sum game (Shoham and Leyton-Brown
2009; Osborne and Rubinstein 1994). In this type of games there can be win—win
situations because, unlike competitive games, general-sum games feature situations
where one decision agent’s gain (or loss) does not necessarily result in the other
decision agents’ loss (or gain).

Figure 1 shows graphically an example of FENOCOP for two self-interested
agents i and j, each having two strategies I' = {n'i,zré} and IV = {nJl,n';}, respec-
tively. The two upper matrices represent the GG in normal or strategic form. This
form is given by the two sets I and IV of agents’ strategies (plan-profile matrix on
the left), and two real-valued utility functions defined on I'" X IV, representing the
payoffs to both agents (utility matrix on the right). The bottom matrix represents
the internal Scheduling Game. The SG is actually the game that computes a stable
(NE), PO and fair schedule profile s; for each plan profile IT. Thus, for each cell in
the plan-profile matrix, the GG invokes the SG, which returns the utility received
by each agent with s;;. For instance, in Fig. 1, the SG is called to compute a feasi-
ble schedule profile for IT,;, selecting the outcome s , = {q/f, wé}, which is then
stored in the utility matrix of the GG. Note that the top left cell of the payoff matrix
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denotes an infeasible schedule that reports a utility value —oco to both agents. Once
the utility values of all plan profiles are stored in the utility matrix, the GG returns a
stable solution s7;.

The key novelty of FENOCOP with respect to other game-theoretic approaches
like Bowling et al. (2003) and Larbi et al. (2007) is the introduction of a planning
algorithm in the form of a game, the Scheduling Game, to compute the payoffs of
the plan profiles. Specifically, these two works propose a framework equivalent to
our top-level GG, but there is no indication on how to actually achieve a feasible
schedule profile that accommodates the plans of all the agents.

4 The General Game

The top-level game of FENOCOP, called the General Game (GG), aims to select a
stable (NE) schedule profile among the combinations of the agents’ strategies. The
GG is then modelled as a non-cooperative general-sum game represented in the nor-
mal-form. This type of game is defined by its players (agents), the strategies or plans
among which they can choose, and the payoffs they will each receive for a given
strategy. Formally, the GG is defined as follows:

Definition 7 General Game (GG) The GG is a general-sum game with an associ-
ated triple (AG, I, u), where:

e AG=1{1,...,n}is the set of n rational and self-interested agents, the players of
the GG.

e I'=T"!X-+XI"represents a finite set of plan profiles or combinations of the
agents’ strategies. A plan profile is a set of plans of the form IT = (z', z2, ..., z"),
where 7' € I'' for each agenti € AG.

o u=(u',...,u")is a set of utility functions, where u':Y' = R is the real-valued
payoff function for agent i (as specified in Definition 6). Particularly, let Y(z') be
all possible schedules y' (see Definition 3) for plan z'. Then, Y' = (J, e/ Y(7')
is the set of all plan schedules for agent i in the GG. So u/(y') is the utility that a
particular schedule y' € Yi(z) of plan z' € I reports to agent i.

We must note that the payoff that a particular strategy or plan z' reports to agent i
depends on how #' is combined with the rest of plans of the plan profile IT; i.e., the
actual utility is given by the schedule profile s;; = (w!, ..., ', ..., ") returned by
the SG. s;; will determine the specific plan schedule y' for each agent i, which in
turn determines the utility obtained by agent i in the plan combination, /().

In order to create the utility matrix of the GG, agents launch I'' X --- x I'"
instances of the SG, one per plan profile I, and the SG computes a schedule profile
s along with the utility that s;; reports to each agent. Once all the agents’ utilities
are in place, solving the GG means to compute the final solution s7,. This schedule
profile constitutes a NE stable solution from which no agent will benefit from invali-
dating another agent’s plan schedule.
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5 The Scheduling Game

As described in Sect. 3, the Scheduling Game (SG) is invoked for each combina-
tion of strategies or plan profile IT = (z', ..., z") of the GG in order to retrieve a
feasible (executable) schedule profile s,; that satisfies stability, Pareto optimality
and fairness, if such a schedule profile exists. The SG is structured around the
following two stages:

L. Synthesis of schedule profiles The SG computes the schedule profiles that coordi-
nate the agents’ strategies of the plan profile I1. The resulting payoff matrix (see
bottom matrix in Fig. 1) contains the utilities that the schedule profiles report to
each participant.

2. Schedule profile selection Agents solve the game in order to select a stable, PO
and fair outcome.

In the first stage of the SG, agents coordinate their plans to guarantee that they
are executable in a shared environment. Given a schedule profile s,;, agents ver-
ify that each joint action A, € s; is executable; otherwise, empty actions (1) are
introduced in A, in order to solve the conflicts that prevent A, from being execut-
able in a state S. The introduction of an empty action defers the execution of an
action of A, to a later time step ' > ¢. The number of empty actions that an agent i
can introduce in a plan schedule y' € s5;; is delimited by A’_, and hence, there is a
finite number of schedule profiles for any given plan profile II.

After synthesizing the schedule profiles for II, the self-interested agents
jointly select an outcome that maximizes their utilities by taking into account the
plan schedules of the other participants. Since a conflict between a subset of plan
schedules renders the whole schedule profile infeasible, every agent i receives a
utility u'(y') = —co for its plan schedule y' in an infeasible schedule profile. For
this reason, we can affirm that the loss of utility of an agent is not the utility gain
of the other agents; and so, the SG is a non-strictly competitive problem mod-
elled as a general-sum game. Formally:

Definition 8 Scheduling Game (SG) The SG is a general-sum game defined by an
associated tuple (I1, AG, ¥;, u), where:

e Il =(x',...,7") is a combination of plans or plan profile for which the SG
must find an executable schedule profile s;.

e AG={1,...,n}is the set of n rational and self-interested agents or players.

o ¥, = 'P117 X+ XWpr is the set of schedule profiles for the plan profile
II = (x',...,7") represented in the payoff matrix (see Fig. 1), where each

agent i has a finite set of strategies ¥ = {wiw.....w.}, where ¥}, CY", the
possible schedules of its plan z* € II.

e u=(u',...,u") where u': Y’ - R is a real-valued payoff function for agent i.
u'(y') is defined as the utility of the schedule y' € ¥}, when executed in a
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schedule profile s;; = (y!, ..., @~ yi, ™, .. w"). If 5 is infeasible, then

u'(y') = —oo for all agents.

The set of plan schedules, ’{’;7, that agent i uses to combine its plan z* € IT with
the rest of plans of IT is a finite subset of Y. Considering, as stated in Eq. 1, that
the number of empty actions of any plan schedule y is limited by A’ the number
of plan schedules in 'I’;T is given by all the combinations that can be formed with the
actions in z' and up to A}, empty actions.

6 Solving the Scheduling Game

This section is devoted to explain two different solving algorithms for the SG. First,
we motivate the relevance of three well-known solution concepts in non-cooperative
game-theory; namely, Nash equilibrium, Pareto Optimality and fairness. Next, in
Sect. 6.2, we present two key properties of the SG that will strongly contribute to
guarantee the solution concepts of a schedule profile. The following two subsections
explain the normal-form and extensive-form SG algorithms, respectively. Both algo-
rithms follow the two stages of the SG presented in Sect. 5 and compute solutions
that meet the three aforementioned concepts.

6.1 Solution Concepts in Non-cooperative Games

We aim for finding equilibrium solutions that represent a stable joint plan sched-
ule for all the agents. Since multiple equilibrium solutions can be found, we further
apply an optimality criteria to filter out those solutions which do not comparatively
bring any utility improvement to any of the agents. Subsequently, in case various
outcomes still remain, we apply a further criteria of fairness so as to promote the
individual satisfaction of the agents with a given solution.

Nash equilibrium A Nash equilibrium (NE) or stable solution reflects the best
response of an agent taking into account the responses of the rest of agents. In an
equilibrium, no agent can benefit from deviating unilaterally from a joint solution.
In the SG, a NE outcome is a schedule profile in which an agent cannot improve its
utility unless another agent changes its plan schedule. Since an SG can have several
NE outcomes (feasible or infeasible schedule profiles), we introduce a second crite-
rion to choose among them, Pareto optimality.

Pareto Optimality We promote schedule profile solutions for which we know that
there is no other schedule profile that is at least as good for all agents, and strictly
better for one. This best equilibrium schedule profile is called a Pareto Optimal (PO)
schedule profile and reflects a situation where no agent can be better off without
making at least one agent worse off.

Fairness Fairness is a criterion that applies to the satisfaction of the agents
with their individual utilities. Among the many existing fairness criteria, the
egalitarian principle in ethical theory asserts that all the individuals should
enjoy equal benefits from the society (Rawls 1971). As long as there is a positive
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Table 1 SG example in normal-

i j

form for two agents 'V(l) L4
v — 00, — 00 79
v 86 7,6

NE outcomes in bold, PO outcomes in italics, and fair outcome
underlined

trade-off between the utility of different individuals, the egalitarian principle
leads to the same social choices as the maxmin principle, which maximizes the
utility of the most unfortunate individuals of a society (egalitarian social wel-
fare) (Myerson 1981). According to the maxmin principle, an outcome is fair if
it maximizes the minimum utility received by any agent; i.e., the least satisfied
agent is as satisfied as possible. This way, a resource allocation amongst agents in
multi-agent systems is considered fair if it is egalitarian (Chevaleyre et al. 2006;
Endriss et al. 2006).

In this work, the application of fairness lies in analyzing the schedule profiles in
terms of the individual satisfaction of the participants in order to ensure a proper
balance of the agents’ utilities. In the context of the SG, egalitarian social welfare
guarantees that the least satisfied agent has the minimum possible delay. Given a
set of NE and PO schedule profiles for a plan profile 17, denoted by £, C ¥, we
define a fair schedule profile 5;; € Q2 as the schedule profile that results from the
application of the max-min utility criterion over £2;:

% =) ®
The schedule profile that maximizes the utility of the agent which has less util-
ity among the schedule profiles of £2,; is selected as the fair solution §; of the SG.
More than one fair solution can be found if several schedule profiles with the same
max—min utility exist in ;.
Let us introduce an example to illustrate how the presented solution concepts are
applied to the SG.

Example Assume we have a 2-agent (agent i and agent j) SG with 4 possible out-
comes (schedule profiles) as shown in Table 1. A cell like y, y; is a schedule pro-
file that represents the strategy O of agent i when combined with the strategy O of
agent j and the values in the cell are the utilities that the agents receive with this
schedule profile. The outcome of the schedules/strategies are:

e the outcome of the schedule profile wé, x/fé reports utilities (—oo, —oco) to agent i
and j, respectively ‘

e the outcome of the schedule profile y, y| reports utilities (7, 9) to agent i and j,
respectively ‘

e the outcome of the schedule profile y|, y; reports utilities (8, 6) to agent i and j,
respectively
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e the outcome of the schedule profile u/f, q/jl reports utilities (7, 6) to agent i and j,
respectively

There are three NE outcomes in this SG (in bold in Table 1); that is, all the out-
comes are NE except the one with utilities (—oo, —o0). We can filter the three NE
solutions by applying additional criteria. Hence, if we apply the PO criterion we will
end up with two solutions (in italics in Table 1), those with utilities (7, 9) and (8, 6),
since the outcome (7, 6) is Pareto dominated by both of them. Finally, it is still pos-
sible to further filter the solutions that are both NE and PO by applying the concept
of fairness. In this case, the outcome (7, 9) is a fair solution (underlined in Table 1)
while (8, 6) is not. Note that the most harmed agent in the outcome (7, 9) is agent
i with a utility of 7 while the most harmed in outcome (8, 6) is agent j but with a
utility of 6. Thus, applying fairness over these two solutions returns the outcome (7,
9) because the most harmed agent in this solution (i) is not as harmed as the most
harmed agent (j) in the other outcome. Consequently, the schedule profile with utili-
ties (7, 9) is the solution of this SG because it is the only one that meets the three
criteria, namely: NE, PO, and fair. In case of more than one outcome that meets the
three criteria, a random solution would be chosen.

6.2 Properties of the Scheduling Game

As a first observation, we must note that the utility of the SG is only influenced by
the conflicts and the empty actions. Additionally, an agent only impacts the utility of
another agent through the conflict handling. The SG features two properties that can
be enunciated as follows:

e Monotonicity An SG is said to be monotonic if the utility u/(y’) of any feasible
plan schedule y' € 5”;7 decreases according to the number of empty actions L in
w'. In other words, given two plan schedules y and y|_,, then u'(y}) > u'(y ).
In Definition 6, we stated that the loss of utility of a plan schedule is only
dependent on the finish time of the schedule. Consequently, every SG is mono-
tonic.

e Order An SG is ordered if the strategies of the agents are ordered by decreas-
ing utility in the game. More precisely, if the game is monotonic, for an agent
i € AG, the strategies of ‘Pj7 are ordered from O to /1"” empty actions. This prop-
erty is useful to reduce computation time of the algorithms by pruning.

Proposition 1 In an SG, if the schedule profile formed by the ideal schedule 1//(")
of each agent i is feasible, then this schedule profile is the only outcome of the SG
which is both NE and PO.

Proof In the absence of conflicts, all agents have the highest utility ui(wé) with
their ideal schedule since there are no empty actions. This schedule profile will also
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Table2 SG example 2 in 2 2 2
normal-form for two agents Yo Vi v,
WJ — 00, — 0 —00,— 00 — 00, — 00
u/ll — 00, — 0 — 00, — 0 9,8
v, — 00, — 00 8,9 8,8

NE outcomes in bold

be unique because any other schedule profile will have less utility for at least one
agent. O

A feasible schedule profile s;; with maximum utility for an agent i is PO if,
for any other feasible schedule profile s;j with the maximum utility for the agent
i, the utility of the other agents is not higher than their utility in s;. In this situa-
tion, all the agents in AG are in best response; and thus, s,; is a PO NE schedule

profile.
Theorem 1 In an SG, any PO schedule profile is a NE.

Proof By contradiction, suppose a change in strategy of an agent j from a PO profile
increases its utility: it must be reducing its empty actions because a conflict cannot
be introduced since then its utility is decreased to —oco. So the utility of no other
agent is affected, while j’s utility is improved; this is a contradiction with the profile
being PO. Hence j cannot change its strategy to increase its utility, so the PO sched-
ule profile is also a NE. O

In a monotonic SG we thus only need to seek PO outcomes because a PO out-
come s is always a NE, which guarantees that no agent will be willing to deviate
from its strategy in s,;. Therefore, any potential solution of the SG is a PO NE
schedule profile.

In the SG, not every NE schedule profile is necessarily PO and it can actu-
ally be an infeasible outcome. In the example of Table 2, the top left cell is a NE
with utility u/(y') = —oo for both agents. This happens because there is no better
response for those strategies (all the cells that involve the optimal strategy q/(’; for
any agent i are infeasible outcomes with u'(y;) = —oo). For this reason, a solution
of the SG must not only be a NE, but also PO.

Corollary 1 If there is at least one feasible schedule profile for a monotonic SG,
there will be at least a PO NE solution for the game.

The definition of Pareto optimality establishes that a schedule profile
sy = @', ...,p") is PO if it is not Pareto dominated by any other schedule pro-
file s/, = (', ... p"); that is, ui(y') > ul(y"), Vi € AG and u'(y’) > u'(y") for
some i € AG. From this definition, it can be drawn that every game must have at
least one such optimum (Shoham and Leyton-Brown 2009, Chapter 3). Given that
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Fig.2 BFS tree with all the schedule profiles for 3 agents and 3 schedules per agent

any PO outcome is a NE according to Theorem 1, if at least one feasible schedule
profile exists, there is a PO NE solution for the SG.

6.3 Normal-Form SG Algorithm

Given an ordered monotonic SG, the normal-form algorithm obtains all fair PO NE
feasible schedule profiles (solutions) of the game. The algorithm applies a breadth-
first search (BFS) where each node of the search tree represents a specific schedule
profile s;; = (w', ..., w"). The algorithm can be summarized as follows:

1. The root node of the tree is a schedule profile that contains the ideal or highest-
utility plan schedule for each agent; i.e., s;; = (q/(}, e 3).

2. The feasibility of a schedule profile is checked at the time of expanding the node.
If 57 results infeasible, its children nodes are generated. A successor node changes
the plan schedule of a single agent in s; by its next plan schedule in decreasing
order of utility; for instance, the children of (y/(}, N 6’) are (q/ll, 1//3, ey 6‘),
(q/(}, 1//12, ,1//6’) ...(y/(}, q/g, e 1//1’). In case that s;; is feasible, the algorithm
applies the PO and fairness conditions over s; in order to check whether or not
s 7 Pareto dominates and is fairer than any previous feasible node.

3. The search concludes when there are no more nodes to be expanded. At this
point, the algorithm returns the set §;;, which comprises the nodes of the tree that
represent NE, PO and fair solutions.

Figure 2 shows an illustrative example of the BFS tree. This example includes
three ggents (named 1, 2, and 3), each having three different plan schedules (u/é, q/f
and y,, for each agent ). The numbers in squares are the node identifiers and the pa
labels indicate the pivot agent of the node (see details below).

Algorithm 1 details the normal-form SG procedure. The initial schedule profile,
consisting of the ideal schedule of each agent, is added to a queue (lines 1-3). The
parameter s;;.pivotAgent represents the agent whose plan schedule is changed in
s with respect to its parent node. s,;.pivotAgent is used to prevent the generation
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of repeated or Pareto dominated nodes. The maxMinBound parameter stores the
maxmin utility of §7; for fairness purposes, and maxUAg' stores the maximum utility
of agent i. Both parameters are initialized to —oo (lines 4-6).

The while loop of the algorithm iterates until the queue of schedule profiles is
empty. An iteration of the procedure extracts a schedule profile s;; from the queue
and verifies its fairness. sy is fair if the minimum utility obtained by an agent in s;
(min W/ (y’), where y/ € sp;) is greater or equal than maxMinBound (line 9). Other-
wise, s is discarded.

Next, the feasibility of s;; is checked by means of the conflicts(sy) function
(line 10). Depending on the result of this verification, different tasks are performed:

e sy is feasible (lines 11-17) The Pareto optimality of s;; is analyzed by check-
ing that u'(s;;) > maxUAg' for at least one agent i in AG (line 12). If this condi-
tion holds, s,; is confirmed as PO because the agents’ schedules are processed
in decreasing utility order. Otherwise, s,; is discarded. If s;; is fairer than the
schedule profiles in 5, (that is, min /(s ;) > maxMinBound), s is stored as the
single fair solution in 5. Otherwise, s; is added to the 57 set (lines 14-17).

e sy is infeasible (lines 18-22) The successor nodes of s, are generated and
added to the queue. A successor node changes the plan schedule u/; of an agent
i by w_,, the next schedule of the agent in decreasing order of utility. The for
loop (lines 19-22) iterates (using the index i) from the pivot agent (stored in
s 7.pivotAgent) to agent n, generating a total of n — i 4 1 successor nodes.

The successor nodes of a feasible schedule profile s;; are not generated because
they would be Pareto dominated by s,;. This conclusion is easily drawn by the
monotonicity property, which ensures that the utility of the pivot agent in a succes-
sor node is always lower or equal than the utility of its parent schedule profile while
the plan schedules of the rest of agents are kept unchanged. All in all, Pareto domi-
nance allows for a meaningful pruning of the BFS search tree.
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Algorithm 1: Normal-form SG algorithm

n
1 sy=U ¥h;

i=1
s7.pivotAgent = 1;
add sj7 to queue;
maxMinBound = —oo;
for i=1,...,n do

L maxUAg" = —o0;

while —(empty queue) do

R

<

8 extract sy from queue;

9 if min w/ (y9), ¥ € s > marMinBound then

10 if = conflicts(sr ) then

11 for i=1,...,n do

12 if u'(s;r) > mazUAg" then

13 mazUAg" = u'(sq);

14 if min uw’(s;;) > mazMinBound then
15 mazxzMinBound = min u’ (syy);

16 L S5 =0;

17 add sy, to 57;; break;

18 else

19 for i=sj;.pivotAgent,...,n do

20 S = (W1 Ul ) UL € s W, € W
21 sy .pivotAgent = i;

22 add s, to queue;

23 return 577;

6.3.1 Complexity of the Normal-Form SG Algorithm

The normal-form algorithm develops a search tree with a maximal branching factor
of |.AG|. For instance, in the example of Fig. 2, which includes 3 agents, up to three
successors per schedule profile are generated (excluding repeated nodes). The maxi-
mal depth of the search tree is determined by the number of schedule profiles for I7,
1#,1.

Given the previous considerations, the normal-form SG algorithm presents an
exponential cost that can be denoted as 0(|Ag|IWnl). In practical terms, several
mechanisms are applied in order to alleviate the complexity of the algorithm, as
illustrated in Fig. 2:

e The successors of a feasible and PO schedule profile are never generated because
the order and monotonicity properties of the SG ensure that all the successors of
a feasible PO schedule profile are always Pareto dominated by their parents.

e Cycles in the search tree are controlled in order to prevent the appearance of
repeated nodes. For instance, in Fig. 2, the node (l//ll , wlz, y/g) does not appear as
a successor of node 2 because it is already included in the subtree of node 1 (see
node 5 in Fig. 2).

e Pareto dominance is also checked among nodes of different subtrees. Let us
suppose that the node 1 of Fig. 2, (l//ll,lllé,l//g), is a feasible schedule profile,
in which case the subtree of this node would not be generated. The schedule
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(w!, w2 yy), which is Pareto dominated by node 1, would not either be included
in the subtree of node 2, (1//5, l//lz, 1//3), because the generation of the successors of
a node s; goes from s;.pivotAgent to n. Since the pivot agent of node 2 is agent
2, its two successors represent a change in the plan schedules of agent 2 and 3,
respectively, leaving the schedule of agent 1 unchanged; i.e., 1//5. Consequently,
no successor with W,l will be generated as a descendent of node 2 even though the
subtree of node 1 is not created.

Despite the usage of pruning mechanisms in the BFS tree, the normal-form SG
algorithm is a costly procedure that entails exploring most of the schedule profiles in
¥ in order to find a feasible PO and fair solution. Moreover, the branching factor of
the search tree is determined by |.AG|, which significantly impacts the performance
of the algorithm when the number of agents is increased.

6.4 Extensive-Form SG Algorithm

In this section, we propose a completely different approach to solve the SG which
relies in modelling the problem as an extensive-form game (Shoham and Leyton-
Brown 2009, Chapter 5). The extensive-form algorithm poses the SG as a multi-
round sequential game where agents play in turns and incrementally build a feasible
schedule profile. This algorithm, which also obtains all fair PO and NE solutions,
draws upon a former algorithm presented in Jordan and Onaindia (2015). The work
in Jordan and Onaindia (2015), a theoretical framework that features an extensive-
form game, applies the Subgame Perfect Equilibrium (SPE) solution concept (Sho-
ham and Leyton-Brown 2009, Chapter 5). An SPE solution is a refinement of a NE
solution that finds the schedule profiles that are NE for any subgame of the game.
Informally speaking, the SPE eliminates the branches of an extensive-form tree
which would involve any player making a move that is not credible (because it is
not optimal) from that node. However, the present proposal applies a more advanced
concept of solution different from the SPE. The solution concept of the current
proposal searches for efficient schedule profiles (Pareto optimality property, which
implies NE by Theorem 1) that present an equitable distribution of the loss of utility
caused by the existence of conflicts (fairness property).

The extensive-form game is based on a binary tree where agents incrementally
generate the schedule profiles for IT action by action. Thus, the branching factor
of the tree remains constant regardless of the number of participating agents. This
algorithm executes a depth-first search (DFS) where a tree node represents the
action choice of an agent given the actions introduced in its predecessor nodes.

Figure 3 presents an illustrative example of the tree which includes two different
agents, AG = {1,2}. The top left square represents the plan profile of this particu-
lar SG, IT = (z' = [a],a}], #* = [a},a}]), where preconditions and effects of the
actions are shown above and below the nodes, respectively. The nodes of the tree
are numbered according to the order in which they are visited by the DFS search.
The nodes introduced by agent 1 are depicted in a darker color than those of agent
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\
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sp6 (8, 10)

502 (10, 8) ! sp4 (9,10) sp5 (8, 9)

spl (9, 10)

Fig.3 SG extensive-form tree example

2. Using this example, we can summarize the behavior of the extensive-form SG
algorithm as follows:

1. From the root node, agent 1 generates two successors that represent its possible
initial choices, either introducing the first action of its plan, a} € z!, or an empty
action L (nodes 1 and 10). At the next level, agent 2 expands node 1 and generates
two successors with actions a% € n?and L (nodes 2 and 6). Next, agent 1 responds
by expanding node 2, incorporating actions aé and 1, respectively. Specifically,
the lines labelled as t = 0, r = 1, etc., delimit the levels of the game; that is, the
first game level comprises the nodes up to r = 0, which represent the choices of
the joint action A; the third and fourth level of the tree represent the second game
level (¢ = 1) whose nodes represent the formation of A;; and so on.

2. For each node, the presence or absence of conflicts is verified to ensure that
only feasible schedule profiles are generated. In Fig. 3, a precondition conflict is
detected when agent 1 expands node 2 to insert the action aé (the precondition
pE pre(aé) does not hold in the corresponding joint state because of the nega-
tive effect =p of a%). This node is discarded because it does not yield a feasible
schedule profile and the algorithm generates the other successor (node 3).

3. Clearly, the intermediate nodes of the tree represent schedule profiles under con-
struction. When a leaf node that contains a fair PO schedule profile is generated,
this solution is stored in §;; and it is used as a bound to prune further branches.
Given a node nd that represents a partially built schedule profile, we apply an
optimistic estimation of the maximum utility that can be obtained from nd by
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assuming that the expansion of nd up to a solution leaf node does not contain
empty actions for any agent. Subsequently, the utility of the estimated solution,
say s7;, is compared to the utility of the bound. If s7; is unfair or Pareto dominated
by the bound, the node nd is pruned. Otherwise, nd is expanded.

For example, node 5 in Fig. 3 corresponds to a feasible schedule profile
spl € s with associated utilities u' = 9 and 4> = 10. This allows us to prune
the following partially built schedule profiles: (1) node 8 because the schedule
profile sp2 derived from node 8 is unfair compared to sp1; (2) node 9 because the
resulting schedule profile sp3 is Pareto dominated by sp1; and 3) node 11 because
the expansion of this node would lead to a schedule profile, sp4, as good as spl
(the other schedule profiles sp5 and sp6 are Pareto dominated by spl).

4. The algorithm returns the solutions of the SG when the search is concluded; in
our example, §; = {sp1} is the solution found.

The extensive-form algorithm resembles an alpha-beta search. On the one hand, a
node of the tree represents the move of a player after the moves of its opponents in the
preceding levels of the tree. On the other hand, the generation and evaluation of the tree
are performed simultaneously and the DFS search ensures that a feasible schedule pro-
file is reached as soon as possible, which will be later used to prune the tree.

The extensive-form algorithm expands first the schedule profiles with fewer
empty actions (monotonicity property) with the aim to promptly reach a good solu-
tion bound. As it occurs in the alpha-beta expansion, the sooner a good bound is
reached, the more pruning is applied. On the other hand, note that if the leftmost
branch is not pruned, this would represent the ideal schedule of all agents. In short,
the DFS expansion together with the chronological backtracking ensures a rational
tree expansion, making agents generate first the solutions that report them higher
utility (order property).

6.4.1 Complexity of the Extensive-Form SG Algorithm

The extensive-form structure is a binary search tree, whose maximal depth is given
by the total number of actions of the longest possible schedule profile for the input
plan profile IT, which is formally defined as |s7,| = X icjy |7'] + Xic 4 14} In
other words, each joint action A, € 57, includes only one non-empty action for a sin-
gle agent. We can thus define the complexity of the extensive-form tree algorithm in
the worst-case scenario as Q21 ).

In practical terms, a substantial part of the tree is pruned in most cases with the
best bound found so far and stored in 5, thus reducing the overall complexity of the
algorithm.

7 Experimental Results
This section is devoted to experimentally analyze the performance of our FENO-

COP framework. Section 7.1 presents a comparative analysis of the two SG algo-
rithms presented in Sect. 6. In Sect. 7.2, we compare the game-theoretic solutions of
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FENOCOP (which combines the GG and the SG) with the results of a centralized
planner.

7.1 SG Results

The purpose of this test is to evaluate the performance of the two SG algorithms
presented in Sect. 6; namely, the normal-formSG algorithm and the ext-formSG pro-
cedure. The tasks of the benchmark comprise one plan 7' per agent forming a plan
profile IT = (x', ..., x',..., 7). We used the planner LPG-td (Gerevini and Serina
2002) to generate the individual plan of each agent in 7. All the tasks were run on a
single machine” with a 30-min timeout.

The benchmark contains tasks of two different planning domains:

e Transport Domain This domain is inspired by the well-known zenotravel domain
of the International Planning Competitions (IPC).* Agents are travel agencies
that organize their fleets of airplanes to deliver passengers to different destina-
tions. Some of the airplanes are resources shared by the agents; when two or
more agents try to use the same plane at the same time, a conflict arises.

e Space Domain This is an adaptation of the IPC rovers domain. Agents are Mars
rovers that navigate through a network of waypoints, analyze samples and com-
municate the results to a lander, which acts as a communication center. Conflicts
arise when agents attempt to analyze the same sample or to simultaneously com-
municate with the lander.

The main reason for selecting these two domains is that they feature different
types of conflicting situations. In the Transport domain, conflicts arise when a travel
agency uses a plane that another agency is also planning to use. In this case, unless
the plane flies back to the original location, the second agency will need to resort to
a different plane. On the other hand, conflicts in the Space domain arise when two
rovers attempt to analyze the same sample simultaneously. In this case, the conflict
is solved by making one rover wait until the other one finishes. Transport is thus a
more constrained domain and, therefore, its solution space is much smaller. In con-
trast, the Space tasks feature many more possible solutions, as well as a significantly
larger search space. As we will see in the remainder of this section, the particular
characteristics of these two domains will impact the computational results.

The tasks of our benchmark feature 2, 3 or 4 agents. The 2-agent and 3-agent
tasks include from 1 to 6 different resources (planes in the Transport domain and
samples in the Space domain). We created four task configurations, each accord-
ingly to a different degree of shared resources among agents and where the high-
est degree corresponds to the case where all resources are shared and no individual
resources are available to the agents. These four variants combined with a maximum

2 Intel Core i7-3770 CPU at 3.40 GHz, 8 GB RAM.
3 http://icaps-conference.org/index.php/Main/Competitions.
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Table 3 Tasks solved by the normal-formSG and the ext-formSG algorithms
| AG| Domain  Solvable normal-formSG ext-formSG

Solved Partially  Unsolved Solved Partially ~ Unsolved

2 Transport 164 164 0 0 164 0 0
(100%) (100%)
Space 240 240 0 0 234 0 6 (2.5%)
(100%) (97.5%)
3 Transport 127 92 0 35 127 0 0
(72.4%) (27.6%)  (100%)
Space 236 236 0 0 216 19 (8.0%) 1(0.4%)
(100%) (91.6%)
4 Transport 53 18 3(5.6%) 32 51 2(4.0% O
(34.0%) (60.4%)  (96.0%)
Space 297 34 216 47 118 179 0
(11.4%)  (727%) (159%) (39.7%)  (60.3%)
Global results 1117 784 219 114 910 200 7 (0.6%)

(702%)  (19.6%)  (102%)  (81.5%)  (17.9%)

number of 6 resources yield 24 different planning settings. For each planning set-
ting, we generated 10 random tasks with 2 and 3 agents, totalling 240 tasks for each
number of agents. In the case of 4-agent tasks, the number of available resources
ranges from 1 to 8, which results in 320 tasks. This makes a total of 800 tasks per
domain.

In this test, the utility that a plan schedule reports to an agent i € .AG depends
on the makespan or finish time of such a schedule. Formally, we define the utility
that an agent i obtains from a plan schedule y' € IT as u'(y') = —|y’|. Therefore,
given a schedule profile s;; = (w!, ..., y', ..., w"), the utility of an agent i is a value
between —|z'| and —(|z’| + 4’,), depending on the number of empty actions of v
(the schedule of its plan z* within s ).

We first analyze the coverage or number of solved tasks by normal-formSG and
ext-formSG, and then, we compare the computation time results according to the size
of the tasks and the number of conflicts addressed by the solutions.

7.1.1 Coverage

Table 3 collects the coverage results of both SG algorithms, classified by domain
and number of agents. The table shows the percentage of solved, partially solved
and unsolved tasks for each setting. A task is said to be solved if the search space is
exhausted within the 30-minute timeout and so all the task solutions are found. If
the time limit expires before the search space is exhausted and at least one solution
is returned, we say the algorithm partially solves the task. Otherwise, if no solution
is found, the task is not solved by the algorithm (unsolved task). Note that, for both
algorithms, the fairness property is only guaranteed when a task is solved. Regard-
ing Pareto optimality, ext-formSG guarantees this property when a task is solved. In
contrast, Pareto optimality is held in any solution obtained by normal-formSG.
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Before running the tests, we executed all the tasks without a time limit to verify
which tasks are solvable (see column Solvable of Table 3). A task is unsolvable if
any of the SG algorithms exhausts the search space without finding a feasible sched-
ule profile. As shown in Table 3, 1117 out of 1600 tasks in the benchmark were
found to be solvable. In line with our prior comments on the differences between the
two domains, we note that the number of solvable tasks in the Transport domain is
significantly lower than in the Space domain.

We can observe in Table 3 that the SG algorithms are rather sensitive to the num-
ber of agents in the game. Both approaches solve most of the tasks with 2 and 3
agents, except for the 3-agent Transport setting, where normal-formSG fails to solve
27% of the tasks. However, the performance of both methods clearly degrades with
4 agents: normal-formSG solves only 34% of the Transport tasks and 11% of the
Space tasks, respectively. On the other hand, ext-formSG shows a good performance
in the Transport domain, but 60% of the Space tasks are only partially solved.

Table 3 also shows that the Transport domain presents the highest number of
unsolved tasks. Moreover, the ext-formSG strategy explores the complete search
space in a significantly larger number of Transport tasks. As previously mentioned,
these results are justified by the more constrained search space of the Transport
tasks, which comprises fewer solutions compared to the Space domain and requires
less computation time to be explored.

Considering the complexity results of Sects. 6.3.1 and 6.4.1, clearly the 2-agent
setting constitutes the sweet spot of the normal-formSG approach, because this
algorithm explores a tree which is not as deep as the extensive-form tree. Since the
branching factor of the normal-formSG method is given by the number of agents,
| AG], its performance significantly degrades in the 3-agent tasks and, most notably,
with 4 agents, where it is clearly outperformed by the ext-formSG approach. Particu-
larly, it only solves 34% of the Transport tasks and 11% of the Space instances. Yet,
normal-formSG obtains in general good results, solving almost 70% of the tasks and
partially attaining 20% of the instances.

In contrast, the ext-formSG approach is proven to scale up much better due to
the reduced branching factor of the tree and the effectiveness of its pruning mecha-
nisms. In fact, this approach solves (completely or partially) more than 99% of the
benchmark (910 tasks solved and 200 tasks partially solved, out of 1117 solvable
instances), only failing to generate a solution for 7 tasks.

The difference in the coverage results of both approaches is also explained by
the fact that normal-formSG does not leverage the appearance of the same conflict
in similar schedule profiles. The ext-formSG algorithm exploits better this situation
because it generates the schedule profiles incrementally. Hence, once a conflict is
detected, the infeasible branch is directly discarded, thus saving a significant amount
of computation time.

7.1.2 Computation Time with Respect to Task Size
Figure 4 compares the computation time required by both SG algorithms with

respect to the size of the tasks included in our benchmark. Each data point in the
plots represents the average computation time (in milliseconds) for tasks whose
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Fig.4 Computation time results of the normal-formSG and the ext-formSG algorithms according to task
size

input plan profiles have the same number of actions. For instance, a value of
10 on the horizontal axis represents the plan profiles that contain a total of 10
actions. Note that a data point of 1,800,000 ms in Fig. 4 (30 min) indicates that
the timeout was reached in the execution of all the corresponding plan profiles; in
other words, these tasks were partially solved. Finally, in case no task of a given
size is solved by either normal-formSG or ext-formSG, the data point is not plot-
ted. For example, Fig. 4c shows that normal-formSG does not solve any of the
tasks with an associated plan profile of 19 or more actions.
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In general, the size of the plan profiles in the Transport domain is significantly
lower (up to 11, 19 and 27 actions, depending on the number of agents) than the
Space domain (with a maximum of 36, 54 and 83 actions, respectively). None of the
two SG algorithms was able to solve the largest instances of the Transport domain
because of the high number of conflicts among agents.

In the Transport domain, the ext-formSG clearly outperforms the normal-formSG,
as shown in Fig. 4a, c, e. This fact becomes more evident in large instances that
involve 3 and 4 agents. As noted above, the normal-formSG algorithm is particularly
sensitive to the number of agents because this parameter determines the branching
factor of the search tree. The performance of the ext-formSG algorithm, however,
is not so dependent on the number of agents because this algorithm always builds a
binary tree. ext-formSG solves most of the instances of the Transport domain in less
than a minute, and scales up significantly better than normal-formSG.

Regarding the Space domain, the normal-formSG approach presents a more
steady behavior (see Fig. 4b, d, f). In this domain, ext-formSG is significantly more
expensive to reach a convergence point in some of the tasks. This is because, in the
Space domain, ext-formSG is unable to effectively prune the tree due to the relative
lack of conflicts, which results in a large search space to explore. Moreover, ext-
formSG partially solves a large number of tasks (particularly in the 4-agent setting),
which explains the 30-min values in Fig. 4f. In contrast, the computation times of
the normal-formSG approach are significantly lower because the order property of
the SG is better exploited in this approach. This, together with the low number of
conflicts of the Space domain, makes the normal-formSG a very efficient approach
to find feasible schedule profiles in this domain.

All in all, although the normal-formSG method slightly outperforms the exz-
formSG algorithm in domains that have a low number of conflicts, the ext-formSG
algorithm presents in general a more consistent behavior and it is particularly suit-
able for tasks with a large number of conflicts.

7.1.3 Computation Time with Respect to Task Conflicts

In this section, we analyze the influence of the conflicts in the computation time of
both SG algorithms. We evaluate the number of conflicts that arise in a task as the
total loss of utility of the solution; that is, we measure the number of conflicts as the
number of empty actions that need to be introduced in a schedule profile to solve the
arising conflicts. In other words, given the schedule profile s;; computed by an SG
algorithm for an input plan profile IT, the number of conflicts of the task is calcu-
lated as [s ;| — [IT].

Figure 5 depicts the results of this experiment considering only the tasks solved
by both SG algorithms, ignoring the partially solved tasks. Each data point shown
in the plots represents the average computation time (in milliseconds) of the tasks
whose solutions (schedule profiles) have the same number of empty actions (hori-
zontal axis).

In general, we can observe that the computation time increases with the num-
ber of conflicts in both SG algorithms. It is also noticeable some peak values in
tasks with a relatively low number of conflicts (see Fig. 5c). This usually happens
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Fig.5 Computation time results of the normal-formSG and the ext-formSG algorithms according to task
conflicts

in large tasks because both SG algorithms are sensitive to the task size, as dis-
cussed in the previous section. Generally speaking, the Space domain features
fewer conflicts than the Transport domain.

The computational time tends to increase in the Transport domain with the
number of conflicts, particularly in the normal-formSG algorithm, whose perfor-
mance is clearly compromised as the number of conflicts raises (see Fig. 5a, c).
On the other hand, ext-formSG exhibits a more stable performance in this domain,
showing shorter computation times in general. All in all, ext-formSG is clearly
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more efficient than normal-formSG at solving complex Transport tasks featuring
a large number of conflicts.

Regarding the Space domain, ext-formSG outperforms normal-formSG in most
2-agent tasks, but it presents a higher average computation time for tasks with 3
conflicts (see Fig. 5b). In the case of 3-agent tasks, the computation time raises
exponentially as the number of conflicts increases. Again, ext-formSG outperforms
normal-formSG in most 3-agent tasks (see Fig. 5d). Most of the 4-agent Space
tasks were partially solved by both approaches, or unsolved by normal-formSG (see
Table 3), and so they were excluded from Fig. 5f. In general, ext-formSG has signifi-
cantly lower computation times than normal-formSG in this setting.

The results confirm that ext-formSG is better suited to deal with conflicts since
it explores a binary search tree and prunes the branches with conflicts. In summary,
ext-formSG applies a DFS strategy in a tree depth-bounded by Y. AG }”37 and it
is able to find a first feasible outcome early on (even in tasks that involve a large
amount of conflicts). This outcome as well as further refinements of this solution
will be used to efficiently prune the search tree.

On the other hand, the normal-formSG algorithm follows a BFS strategy where
every node is a schedule profile. Nodes are introduced from the highest to the low-
est quality (the deeper the node is, the more empty actions it has) and the pruning
mechanism discards any successor of a feasible PO schedule profile by Pareto domi-
nance. In domains that feature multiple conflicts, such as the Transport and Space
domains, the BFS will take time to find a solution, possibly at a very deep level of
the tree if the number of conflicts is relatively high. This limits the pruning effec-
tiveness, resulting in a very costly process, which justifies the poor results of this
SG algorithm. Moreover, the branching factor increases with the number of agents,
which compromises the overall performance of this method, as shown in Fig. Se, f

All in all, the results obtained in this experiment prove that ext-formSG is more
tolerant to conflicts than normal-formSG. These results are in line with the theoreti-
cal analysis presented in Sects. 6.3.1 and 6.4.1. Furthermore, unlike normal-formSG,
ext-formSG is able to fully or partially solve most of the tasks in the benchmark, as
shown in Table 3. We can thus conclude that ext-formSG is more stable than nor-
mal-formSG in complex tasks with many conflicts, thanks to its robust search strat-
egy and its efficient pruning mechanism.

7.2 FENOCOP Results

In this section, we perform an evaluation of the global planning task when agents
have several plans in their sets I'"¥, which requires executing both the GG and the
SG of FENOCOP. Particularly, we want to compare the quality of the FENOCOP
solutions against the solutions of the centralized planner LPG-td (Gerevini and
Serina 2002) with respect to Pareto optimality and fairness. We must first point out a
couple of observations:

1. The PO and fair equilibrium schedule profiles returned by the normal-formSG or
ext-formSG algorithms for each plan profile are stored in the utility matrix of the
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GG (see illustrative example in Fig. 1). Then, we solve the normal-form GG and
we return a solution that is a Nash equilibrium. However, this does not guarantee
that the solution returned by the GG is PO and fair, since, in contrast to the SG,
it does not guarantee these two properties. Consequently, we must check which
of the NE solutions returned by the GG satisfy the PO and fairness solution con-
cepts.

2. In LPG-td, we used the standard objective function that minimizes the number
of actions so the planner returns the best possible global solution with respect
to this optimization criterion. Since a centralized planner does not individually
reason on the plan of each agent but on the global plan as a whole, solutions may
exhibit a non-equitable distribution of the utilities. This is precisely the key point
of comparison between the FENOCOP and LPG-td solutions.

FENOCORP is the result of integrating a variety of tools, including existing
technologies and explicitly designed resources. The input parameters of FENO-
COP are the planning tasks of the agents, which are encoded as STRIPS tasks
(Fikes and Nilsson 1971). We run LPG-td for solving each planning task and
the solution plans are stored in the set IV of each agent. For each combination of
plans or plan profile IT, an instance of the SG is launched and solved with one of
the SG algorithms presented in Sect. 6. Once the utilities of the SG solutions are
saved in the normal-form matrix of the GG, the NE solutions of the GG are com-
puted by means of the Gambit tool (McKelvey et al. 2014). Finally, from the set
of stable solutions, if there are more than one, we select a PO and fair outcome as
the final solution of the task.

This benchmark includes 20 3-agent tasks from the Transport domain. Transport
was chosen for this test as it is the most challenging domain in our SG benchmark,
giving rise to complex instances with a wide variety of conflicts. For FENOCOP,
a benchmark task was encoded as an independent STRIPS task per agent and each
task was solved with LPG-td. For running LPG-td as a centralized planner, we
encoded each benchmark task as a single global planning task. We used the standard
objective function of minimizing the number of actions in both configurations of
LPG-td.

Table 4 collects the experimental results of this test. Columns labeled with
u' show the utility of the three agents in both configurations. Note that, as in
the SG test, the utility that a plan schedule ' reports to an agent i is defined as
u'(y") = —|w'|. PO and fair columns indicate respectively, whether or not the plan
obtained by an approach is Pareto optimal and fair with respect to the plan yielded
by the other method. In other words, we compare the solution of LPG-td against
that of FENOCORP in order to assess which one is PO and fair.

The results clearly prove that FENOCOP is the superior approach when it comes
to attain a feasible solution that is also efficient (PO) and represents a balance of the
agents satisfaction (equitable loss of utility). As shown in Table 4, all the FENO-
COP solutions are PO and all but one are fair. Note that the solution of tra4 is unfair
because the least satisfied agent (agent 2 with u> = —6) would be more satisfied with
the utility of the LPG-td solution (1> = —5).
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Table 4 Solution plans obtained by FENOCOP and the centralized planner LPG-td

LPG-td FENOCOP
u! u? u’ PO Fair u' u? u’ PO Fair
tral -8 —4 -5 b e b e -5 -3 -5 v v
tra2 =5 —4 =5 v 4 =5 —4 -5 v v
tra3 -3 —4 -6 v X —4 —4 -4 v v
trad —4 -5 —4 v v —4 -6 -3 v x
tra5 —4 —4 -3 v v —4 —4 -3 v 4
tra6 -3 —4 -3 v v -3 —4 -3 v v
tra7 =5 —4 -3 v v =5 —4 -3 v v
tra8 -3 -3 =5 by x -3 -3 -4 v v
tra9 -3 -5 =5 b e b e -3 -3 =5 v v
tral0 -5 -3 -6 X b e -4 -3 -5 v v
trall —4 =5 -5 X b e -3 —4 -5 v v
tral2 -3 -3 -4 v v -3 -3 -4 v v
tral3 -3 -5 -3 v v -3 -5 -3 v v
tral4 —4 -3 —4 v 4 —4 -3 —4 v v
tral5 -5 -3 -4 X X -4 -3 -3 v v
tral6 —4 —4 —4 b e X —4 -3 —4 v v
tral7 -4 —4 —4 b e X —4 -3 —4 v v
tral8 -10 -6 -12 X x -7 -6 -4 v v
tral9 —4 —4 —4 X X —4 -3 —4 v v
tra20 -5 -3 =17 by x -4 -3 -5 v v
Global 45% 40% 100% 95%

Utilities of specific agents that outperform their counterpart between the two approaches are shown in
bold

As expected, less than half of the solutions of LPG-td when run as a centralized
planner are PO and fair. Since the planner decisions are based on global optimi-
zation and non-individualized reason, most of the outcomes are non-efficient and
unfair. This is interpreted as a solution that reports a low degree of satisfaction to the
involved parties.

Another key advantage of FENOCOP is that, as opposite to centralized planners,
we ensure the generation of a stable (Nash equilibrium) solution. Let us illustrate
this through a 2-agent example task based on the Transport domain. The task fea-
tures two travel agencies (agents) that must organize each a trip for a passenger (p1
and p2, respectively). Passenger p1 starts at city c1 and wants to travel to c2, while
p2 is at c2 and wants to visit c4. Aircraft al is located at c3 and a2 is at c2.

FENOCOP generates two individual plans per agent, as shown in Table 5 (r,
and né for agent 1, and 71'12 and ﬂ'; for agent 2). The inherent utilities of these plans are
also displayed in Table 5. The SG is invoked with the four possible combinations of
plans (11}, = (x!,7%), I}, = (z!,73), Iy, = (z), x?) and IIy, = (z), x2)) in order
to generate four feasible schedule profiles that are stable, PO and fair.
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Table 5 Individual agents’ plans synthesized by FENOCOP for the example Transport task

i 1 1 2 2
Time  x} , an @
0 fly a2 c2 cl fly al c3 c2 board p2 a2 c2 fly al c3 c2
1 board pl a2 cl fly al c2 cl fly a2 c2 cl board p2 al c2
2 fly a2 cl c2 board pl al cl fly a2 cl c4 fly al c2 c3
3 debark pl a2 fly al cl c2 debark p2 a2 fly al c3 c4
c2 c4
4 debark pl al debark p2 al c4
c2
Utilities u'(x!) = -4 ul(x)) = -5 u(x?) = -4 u*(x3) = =5
Table6 GG utility matrix of the ) 2
T b4
example Transport task ! 2
”|1 -7,—4 —4,—5
;z21 -5-4 — 00, — 00

NE outcome in bold

The utilities of the resulting feasible schedule profiles are reflected in the GG
utility matrix of Table 6, which shows that the solution chosen by FENOCOP
is the schedule profile that combines n'% and 71'12, with associated utilities u' = =5
and u? = —4. Despite having the same sum of utilities as the schedule profile
that combines n'll and n'% (— 9 units), the solution chosen by FENOCOP is the
only NE of Table 6, since no agent would benefit from unilaterally deviating
from this strategy.

We solved this example task with LPG-td, and the returned solution was n'll,
71’% (see Table 6). As previously stated, a centralized planner, such as LPG-td,
optimizes a global metric (in this case, the number of actions of the plan). For
this reason, LPG-td considers the solution that combines n21 and n'lz as good as
the combination of 71’11 and n%, since they equally minimize the objective function
of LPG-td. Hence, LPG-td returns any of these solutions indistinctly. Since the
LPG-td solution for this example task is not a NE, the agents could deviate from
this outcome and execute their alternative plans instead, which could potentially
cause conflicts that would endanger the executability of the plans.

We can thus conclude that FENOCOP is an appropriate approach to solve
the non-cooperative planning task formulated in this paper. Our approach not
only guarantees the selection of a Nash equilibrium solution for the task, but
also guarantees that the solutions hold the Pareto optimality and fairness proper-
ties in most cases, as empirically demonstrated. In contrast, centralized planners
focus on the optimization of global magnitudes, failing in most cases to attain a
stable, PO and fair solution that properly balances the utilities of the self-inter-

ested agents.
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8 Conclusions

In this paper, we presented FENOCOP, a game-theoretic approach for non-
cooperative agents that want to execute their plans in a shared environment. Each
agent generates a collection of plans that attain its individual task, and takes part
on a game that allows the participants to jointly select a feasible schedule profile
that guarantees the concurrent execution of their plans. FENOCOP includes two
different games: the General Game (GG) is a general-sum game in which agents
select the schedule profile to execute among the set of executable combinations of
their plans. The generation of a feasible schedule profile for each combination of
the agents’ plans is taken care of by means of the Scheduling Game (SG). In the
SG, agents study how to schedule their individual plans in order to ensure their
executability. Agents address conflicts by delaying the execution of their actions
while trying to maximize their utilities.

Whereas the solutions of the GG are guaranteed to be Nash Equilibria (NE),
the outcomes of the SG hold two additional solution concepts: Pareto optimality
allows to return the best outcome among the stable feasible schedule profiles of
an SG, and fairness maximizes the utility of the least satisfied agent. The satis-
faction of these concepts maximizes the quality of the schedule profiles among
which the GG selects the solution of the planning problem.

We introduced and experimentally validated two algorithms that address the
SG problem. We also implemented the overall FENOCOP framework by com-
bining the GG together with the SG. The NE solution of the GG is obtained by
means of the Gambit tool (McKelvey et al. 2014).

The results of the SG algorithms reveal that the exz-formSG approach scales
up significantly better than the normal-formSG approach, thanks to its steady
branching factor and the effectiveness of the pruning mechanisms applied. In
contrast, the normal-formSG algorithm performs slightly better than ext-formSG
in small instances that involve a reduced amount of conflicts among agents.

Regarding the FENOCOP results, we confirmed that, as expected, our
approach is more effective than a centralized planner at satisfying the agents’
interests and fairly balancing their utilities. In contrast, centralized planners focus
on optimizing some metric of the planning task as a whole, being unaware of the
presence of self-interested agents with independent objectives.

In conclusion, we defined and empirically validated an approach that realisti-
cally addresses the non-cooperative multi-agent planning problem. FENOCOP
leverages the utilities of self-interested agents and promotes the individual satis-
faction of the participants through a set of algorithms which aim for the genera-
tion of solutions that are stable, Pareto optimal and fair.

FENOCOP follows a two-level game scheme which separates the problem
of selecting an executable plan combination from the generation of the execut-
able schedule profiles. This division aims to reduce the computational complexity
of the task. However, one can observe that, even with this decomposition, the
task we aim to solve has exponential complexity, which limits the applicability of
FENOCORP to problems of a relatively restrained size.
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For this reason, as a future work, we intend to focus on the synthesis of individual
plans. FENOCOP assumes that each agent has a pre-calculated collection of plans
and schedules their actions until all the combinations of agents’ plans fit together.
We believe that the complexity of this costly problem could be significantly allevi-
ated if we equip each agent with the appropriate resources to synthesize a response
that directly fits with the rest of agents’ plans. Our goal, therefore, is to study the
state of the art in multi-agent planning in order to come up with a planning tech-
nique that allows an agent to synthesize plans that can be directly integrated with the
rest of agents’ proposals, thus overcoming the costly task of combining pre-existing
individual plans via the delay of individual actions.
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