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Evaluating Model-Driven Development 
Claims with respect to Quality:  

A Family of Experiments 
Jose Ignacio Panach, Óscar Dieste, Beatriz Marín, Sergio España, Sira Vegas, Óscar Pastor, 

Natalia Juristo 

Abstract—Context: There is a lack of empirical evidence on the differences between model-driven development (MDD), 
where code is automatically derived from conceptual models, and traditional software development method, where code is 
manually written. In our previous work, we compared both methods in a baseline experiment concluding that quality of the 
software developed following MDD was significantly better only for more complex problems (with more function points). Qual-
ity was measured through test cases run on a functional system. Objective: This paper reports six replications of the base-
line to study the impact of problem complexity on software quality in the context of MDD. Method: We conducted replications 
of two types: strict replications and object replications. Strict replications were similar to the baseline, whereas we used more 
complex experimental objects (problems) in the object replications. Results: MDD yields better quality independently of prob-
lem complexity with a moderate effect size. This effect is bigger for problems that are more complex. Conclusions: Thanks 
to the bigger size of the sample after aggregating replications, we discovered an effect that the baseline had not revealed due 
to the small sample size. The baseline results hold, which suggests that MDD yields better quality for more complex prob-
lems. 

Index Terms— D.1.2 Automatic Programming; D.2.1.e Methodologies; D.2.1.i Validation 

——————————      —————————— 

1. INTRODUCTION 
 odel-driven development (MDD) [14] claims that 
conceptual models can represent systems abstract-
ly. These models can then be transformed into 

code through model-to-code transformations. As a result, 
the analyst (person that builds the system) can focus on 
conceptual models (the problem space), relegating the 
implementation (solution space) to highly automated 
transformations. There are several degrees of code gen-
eration from conceptual models; from stubs based on 
UML class diagrams to fully functional systems that do 
not require writing a single line of code. MDD aims at 
generating as much code as possible from conceptual 
models. So, when we talk in this paper about MDD, we 
refer only to such methods that generate a holistic system 
from models.  

Since the early days of MDD, several researchers have 

highlighted the benefits of developing software using this 
method. According to literature, MDD has several bene-
fits such as improving code quality [35], reducing devel-
oper effort [23], improving productivity [6] and enhanc-
ing developer satisfaction [34], among others. But there 
are few empirical validations of these claims. Most em-
pirical studies on MDD focus on effort and use small 
chunks of code generated from a conceptual model. In 
order to extend empirical evidence to other less analyzed 
software characteristics, such as software quality, we 
conducted an experiment in 2012 [38] to study quality, 
developer effort, developer productivity and developer 
satisfaction. The goal of that baseline experiment was to 
compare MDD versus a traditional software development 
method, where code is implemented manually. MDD was 
operationalized using INTEGRANOVA [26], a MDD tool 
that generates fully functional systems from conceptual 
models without writing any code (see details in Appendix 
C). Experimental objects were two textual descriptions of 
software systems to develop from scratch. Results 
showed that even though differences between MDD and 
traditional development were observed for quality, they 
were significant only for more complex problems (with 
more function points). Differences between MDD and 
traditional methods for developer efficiency, developer 
productivity and developer satisfaction were not signifi-
cant even for complex problems. The contribution of this 
paper is to mature results from the baseline experiment 
through a family of experiments. Of all the response vari-
ables used in the baseline experiment, we focus here on 
quality since it got the most promising results. By quality 
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we mean the percentage of passed test cases. Our replica-
tions aim to check and build upon the results of the base-
line experiment: 
 We conducted three identical replications at Universi-

dad Diego Portales in Chile. These replications were 
as similar as possible to the baseline. Strict replications 
increase sample size and thus the statistical power. 
The power of any statistical test is defined as the 
probability of rejecting a false null hypothesis. The 
baseline experiment had 13 experimental units (by ex-
perimental unit we mean a pair of subjects, since stu-
dents worked in groups). This posed a threat to con-
clusion validity. Experiments with low power (usually 
due to small sample sizes) have an increased risk of 
type II error (failure to detect a difference between 
treatments when there is one).  

 We conducted three differentiated replications at the 
Universidad Politécnica de Valencia in Spain in which 
problem complexity was increased (with more func-
tion points). The aim was to increase the external va-
lidity of results in the problem space. Therefore, we 
conducted replications using different (and more 
complex) experimental objects than were used in the 
baseline experiment.  
In order to aggregate the data from the family of ex-

periments, we pool raw data from the six replications, 
adding new factors that represent the differences in set-
tings (like time pressure and problem difficulty). We re-
analyze the new data set using traditional inferential 
statistics to identify the impact of such moderator vari-
ables (variables considered as fixed effects to aggregate 
the data of several replications). This approach to experi-
ment synthesis (pooling together individual participant 
data) is used in more mature experimental disciplines like 
medicine [40]. In software engineering (SE), experiments 
are very often synthesized using aggregated data from 
replications (mean and standard deviation) rather than 
using individual participant data [1, 21-22, 43, 46]. Pool-
ing together individual participant data from several 
replications is more powerful than using group-level 
statistics, in particular, effect sizes, especially for identify-
ing moderator variables [10]. Even though, there are pa-
pers such as the work of Shepperd [47], that question the 
benefits of pooling data.   

Results from our family of experiments show that: (1) 
there are significant differences in quality between MDD 
and traditional methods irrespective of problem complex-
ity; (2) we observed significant differences in quality for 
easy problems only when we pooled together data from 
all replications and the baseline experiment to get 52 ex-
perimental units. (3) Differences between treatments are 
clearer as problem complexity increases, where MDD 
yields better values for quality than traditional methods.   

The paper is structured as follows. Section 2 analyzes 
the design of other families of experiments in the area of 
SE. Section 3 describes the research methodology. Section 
4 defines the design of the replications, Section 5 shows 
the statistical results after analyzing the data extracted 
from each replication individually. Section 6 analyzes the 
aggregation of the results from several replications. Fi-

nally, Section 7 presents some relevant conclusions. 

2. RELATED WORK 
In a previous work [38], we reported empirical studies on 
the use of MDD. The variables studied were: quality [3, 
7], effort [5, 9, 27, 35, 39, 46], productivity [3, 31], devel-
oper satisfaction [34]; model characteristics [4, 27], reuse 
[7], and compatibility [34]. Our baseline experiment fo-
cused on quality, developer effort, developer productivity 
and developer satisfaction. All these variables were pre-
viously studied in experiments of the literature except for 
productivity, which was analyzed in a case study.    

As Basili et al. [4] stated, replications contribute to 
building a body of knowledge combining and generaliz-
ing results. In the following, we report a number of repli-
cations performed in SE. For each replication, we ana-
lyzed a set of characteristics extracted from the research 
questions of two mapping studies ([33] and [12]) that 
reviewed replications in SE. Note that our search was not 
confined to the papers reported in the mapping studies 
since existing literature reviews were conducted many 
years ago and do not capture the details about each repli-
cation that was reviewed separately . We merely used the 
mapping studies to identify the set of characteristics re-
ported in each paper.  Of all these, we selected the charac-
teristics related to the design and results of the replica-
tions. These characteristics, shown in Appendix A-Table 
12, are: 

 Goal of the experiment. 
 Type of replication (internal: the original research-

ers performed the replication; or external: inde-
pendent researchers performed the replication). 

 Number of replications and number of subjects. 
 Confirmation or rejection of the baseline results. 
Additionally, we added two new characteristics to 

help to understand the changes made in each design: the 
purpose of the replication (opportunistic-replications 
without a specific goal- or goal-driven) and the changes 
made to the baseline experiment in the replications (sixth 
and seventh column in Appendix A-Table 12). By oppor-
tunistic we mean experiments that are not looking for 
specific results, for example, experiments that do not 
validate a new proposal but compare existing ones.  

We conducted a limited informal literature search to 
look for recent related work and also to provide more 
details about previous replications. The goal to look for 
related works was: What are the characteristics of experiment 
replications in software engineering? The search string used 
to search for literature on Scopus was “software engineer-
ing" AND ("family of experiments” OR “experiment rep-
lication” OR “series of experiments”). The inclusion cri-
teria were: (IC1) papers that compare a baseline experi-
ment versus n replications; (IC2) papers that compare 
replications in a family of experiments. The exclusion 
criteria were: (EC1) papers that do not describe the re-
sults of the comparison; (EC2) papers that do not describe 
the design of each replication; (EC3) papers that do not 
deal with modeling or coding to develop software; (EC4) 
papers that report experiments not conducted with hu-
mans. The search was run in March 2017 on Scopus.  The 



AUTHOR:  TITLE 3 

 

primary studies selected from the set of papers retrieved 
by the search were classified depending on the type of 
aggregation used in the family of experiments: 

 Narrative synthesis: aggregating the results quali-
tatively [30]. This approach is flexible and easy to 
apply, but it is also unsystematic, unreliable, and 
does not scale up [11, 44]. 

 Meta-analysis using effect size: aggregating data 
using studies of effect sizes by the sample sizes of 
the individual studies (although it can also in-
clude other factors) [24]. This analysis is usually 
used when there is no access to raw data. 

 Meta-analysis by pooling together individual 
data: aggregating data from studies using inferen-
tial statistics and adding moderator variables to 
the analysis. The experimenter needs to have ac-
cess to the raw data of the studies [18].  

2.1. Narrative synthesis 
Fucci and Turhan [17] conducted a replication to analyze 
the relationship between number of tests generated using 
TDD and code quality, as well as programmer productiv-
ity. Biffl et al. [5] conducted a family of three experiments 
to investigate the effect of tool support with respect to 
defect detection and inspection meetings. Gómez and 
Acuña [19] performed a replication to analyze how per-
sonality factors and team climate influence software de-
velopment team effectiveness, product quality and team 
member satisfaction. Macedo Santos and Gomes de Men-
donça [28] performed a family of three experiments to 
investigate factors affecting the human perception of code 
smells. Scanniello and Erra [42] performed a replication to 
evaluate a think-pair-square-based method for the dis-
tributed modeling of use case diagrams. Sfetsos et al. [45] 
performed a replication to analyze the impact of devel-
oper personalities and temperaments on pair perform-
ance. Albayrak and Carver [2] conducted one replication 
of an experiment to investigate the impact of individual 
factors on the effectiveness of requirements inspections. 
Scanniello et al. [44] conducted a family of four experi-
ments to assess whether the type of documentation for 
design patterns affects its comprehensibility.  

2.2. Meta-analysis using effect size 
González-Huerta et al. [21] performed three replications 
to validate QuaDAI, a method for evaluating and improv-
ing model-driven software architectures. Cruz-Lemus et 
al. [11] performed a family of experiments to investigate 
whether the use of composite states improves the under-
standability of UML statechart diagrams derived from 
class diagrams. Abrahao et al. [1] conducted a family of 
five experiments (one baseline and four replications) to 
investigate whether the comprehension of functional 
requirements is influenced by the use of UML sequence 
diagrams. Canfora et al. [8] conducted a family of six 
experiments (three baselines and three replications) to 
validate metrics for software process models. Fernández-
Sáez et al. [16] performed a family of experiments with 
two replications to investigate whether using class and 
sequence diagrams improves the maintainer’s perform-

ance when modifying source code.  

2.3. Meta-analysis by pooling together individual 
data 

Our search string and search criteria found only one pa-
per by Per Runeson et al. [41]. They conducted a family of 
three experiments (one baseline and two replications) to 
explore code inspection and structural unit testing.  

2.4. Conclusions of the literature review 
In sum, we draw attention to the fact that replications in 
SE mainly use narrative synthesis ([2, 5, 19, 28, 42, 44-45]) 
and meta-analysis using effect size ([1, 8, 11, 16, 21])    
while the use of meta-analysis pooling data ([41]) is less 
frequent. Maybe this imbalance is because pooling data 
needs access to the raw data of all replications. This re-
quirement is generally hard to meet (although rather 
easier in the case of families of experiments conducted by 
the same or related researchers). Although this meta-
analysis by pooling data is relatively uncommon in SE, 
we chose this technique to aggregate our replications 
because we do have access to the raw data and it is a 
powerful technique for identifying moderator variables 
[10]. 

 Another conclusion is that the number of replications 
in families of experiments is small (fifth column of Ap-
pendix A-Table 12). Of the studied replications, five pa-
pers report one replication ([2, 17, 19, 42, 45]), six papers 
report from two to three replications ([5, 16, 21, 28, 41, 44]    
) and three papers report from four to five replications ([1, 
8, 11]). Again, this might not be the whole picture but it 
definitely defines a trend. Our family (composed of six 
replications) merits the consideration of a medium- to 
large-sized family.  

We found that it is not uncommon for families of ex-
periments to have large numbers of subjects. There are 
two papers with fewer than 50 subjects ([17, 42]), six pa-
pers with from 51 to 100 subjects ([1-2, 21, 28, 41, 44]), and 
six papers with more than 100 subjects ([5, 8, 11, 16, 19, 
45]). Our family has 52 experimental units (104 subjects). 
This would appear to be a small number of subjects com-
pared with previous works.  

Note that, to the best of our knowledge, no previous 
family of experiments has compared MDD against a tra-
ditional software development method (see third column 
in Appendix A-Table 12). Of the related work, there is 
only one paper addressing MDD ([21]). The goal of that 
paper was to validate software architectures, which is 
unrelated to our aim. 

3. RESEARCH METHOD 
For our experiment, we used Design Science [49] as re-
search method. Design Science is the design and investiga-
tion of artefacts in context. According to Design Science, 
artefacts are intended to interact with a problem context 
in order to improve something in that context.  In our 
research, the artefact is the software development 
method, while the context is the product attributes. 

The main research goal of our work is to replicate 
studies about the benefit of MDD. The research question 
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is: RQM: How is MDD better than a traditional software de-
velopment method?  

Mainly, in the Design Science method, two activities 
should be considered: Design and Investigation.  In De-
sign, we analyze the main benefits that previous studies 
grant to MDD and we design an experiment to check 
those benefits. In Investigation, we conduct an experi-
ment, analyze its results and discuss the conclusions.  

Fig. 1 shows the steps of the methodology in detail. In 
the activity Design we have one task to study the existing 
MDD advantages in the literature (T1), then we define the 
experiment to contrast such advantages empirically (T2). 
In the activity Investigation we have one task to conduct 
the baseline experiment (T3) and to analyze the results 
(T4). The work and results of these four tasks was already 
published [38]. The results of the baseline experiment 
gave us feedback to apply small changes in the experi-
ment design in order to check in more detail the conclu-
sions extracted in the baseline (T5).  This task is the be-
ginning of the contribution of this paper. Next, we con-
duct a family of experiments in order to improve the 
statistical power of the baseline and to analyze the impact 
of the changes in the design (T6). Once we have replicated 
the experiment through several years in different sites, we 
analyze the results of such replications (T7). We can ana-
lyze the replications individually or we can aggregate 
them studying moderator variables. Finally, we can con-
trast the results of the family of experiments versus the 
results of the baseline. Moreover, we can contrast the 
conclusions with the benefits of MDD claimed in the lit-
erature (T8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Research Method according to Design Science  

 
The family of experiments is composed of 7 experi-

ments: 3 replications as similar as possible to the baseline; 
3 replications with more complex problems, and the base-
line experiment. Next, we describe the 6 replications.     

4. CHANGES MADE IN THE REPLICATIONS 
The details of the baseline experiment are published in a 
previous paper [38] and they can be seen in Appendix B. 
The baseline experiment aimed to compare MDD versus a 
traditional software development method through the 
response variables: quality, developer effort, developer 
productivity and developer satisfaction. Quality is a wide 
concept [27], we focused on the characteristic functional 
suitability and its sub-characteristic accuracy. We meas-
ured accuracy through the percentage of test cases run 
successfully. Each test case was defined as a sequence of 
steps; we considered each step as an item that the code 
must satisfy (see example in Appendix B-Table 13).  We 
used four aggregation metrics to decide whether or not a 
test case was passed: All or Nothing (AN), the test is a 
success if every item is passed; Relaxed All or Nothing 
(RAN), the test is a success if at least 75% of the items are 
passed; Weighted Items (WI), each item has a weight 
depending on its importance, the test case is the addition 
of the weights of all the passed items; Same Weight (SM), 
the same as WI but each item has the same weight as the 
others. Developer effort was measured as time spent in 
the development; developer productivity as the accuracy 
to effort ratio; and developer satisfaction as a 5-point 
Likert questionnaire. All these metrics were calculated 
manually. The design of the baseline experiment was a 
paired design with the development method as factor 
with two treatments: MDD and traditional. The problem 
was a blocking variable (to avoid the learning effect be-
tween treatments). Subjects already knew a traditional 
method but they were trained with MDD before the ex-
periment.  From a textual description of the experimental 
problems, subjects had to develop a functional system 
from scratch (through a traditional method or through 
MDD). The MDD tool used in the experiment was INTE-
GRANOVA (Appendix C), while the choice of the tradi-
tional method was free, depending on subject’ prefer-
ences. Raw data are in Appendix D and the problems in 
Appendix F. Results of the baseline showed that when 
problem complexity increases slightly, the accuracy re-
mains stable only with MDD, obtaining better results 
than with a traditional method. There were  no significant 
differences for developer effort, developer productivity 
and developer satisfaction. 

Taking the baseline experiment as starting point, we 
performed two types of replications: replications that are 
as similar as possible to the baseline experiment (strict 
replications from now on) and replications changing the 
experimental objects (object replications from now on). 

Our aim with strict replications is twofold: study 
whether results hold for different experimenters and 
increase sample size (therefore power). Strict replications 
were performed by different experimenters in a different 
site, but the original experimenters were involved in their 
coordination. Our aim with object replications is to study 
whether more complex experimental objects make differ-
ences of quality between treatments bigger. This goal is 
inspired by the results of the baseline experiment, where 

DESIGN

INVESTIGATION 1: BASELINE 
EXPERIMENT

INVESTIGATION 2: 
REPLICATIONS

T1. STUDY OF 
MDD 

ADVANTAGES

T2. EXPERIMENT 
DESIGN

T3. CONDUCT THE 
EXPERIMENT

T4. ANALYZE 
RESULTS

T5. CHANGES IN 
THE DESIGN

T6. CONDUCT THE 
REPLICATIONS

T7. ANALYZE 
RESULTS OF 

REPLICATIONS

T8. CONTRAST 
RESULTS VERSUS 

PREVIOUS STUDIES
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MDD quality was less sensitive to small variations in the 
complexity of experimental objects. This led us to suspect 
that there might be significant differences between the 
quality of software output using a traditional method and 
MDD using more complex problems. The same experi-
menters that performed and analyzed the object replica-
tions conducted the baseline experiment.  

 Strict replications were conducted at Universidad 
Diego Portales (UDP) in Chile, while object replications 
were conducted at the same site as the baseline, namely 
the Universidad Politécnica de Valencia (UPV) in Spain. 
Each type of replication was run three times over three 
consecutive years. Table 1 shows the replications of each 
type by year. Raw data can be found in Appendix D. 

Table 1. Experiments that form the family  

Year Baseline Strict     
Replications 

Object    
Replications 

2012 Baseline SR1 - 
2013 - SR2 OR1 
2014 - SR3 OR2 
2015 - - OR3 

 
Both types of replications share the essentials of the 

baseline experiment but we purposely made small 
changes. Table 2 shows the changes. To discuss these 
changes in the following sections, we classify experiment 
elements using the term dimension following the work of 
Gómez et al. [20]. A dimension is a configurable element 
that can be changed in a replication. The replication can, 
however, still be considered to be the same experiment as 
the baseline. We work with the four dimensions defined 
by Gómez et al.: 
 Operationalization: Instantiation of constructs (MDD, 

traditional, and the quality effect) into variables (IN-
TEGRANOVA, a traditional method based on a pro-
gramming language, and accuracy). 

 Population: Subjects and objects. 
 Protocol: Apparatus, materials, forms and proce-

dures. 
 Experimenters: Researchers involved in conducting 

the experiment. 

4.1. Strict replications 
These three replications should be as similar as possible 
to the baseline experiment in order to be able to aggregate 
data and improve statistical power by increasing sample 
size. Next, we describe the characteristics of strict replica-
tions according to the four dimensions and the changes 
regarding the baseline experiment. Table 2 shows a sum-
mary. 

Operationalization. Factors, treatment definition, treat-
ment transmission, treatment instructions, treatment re-
sources, response variables, measurement procedure and met-
rics are the same as for the baseline experiment 
(Appendix B). Note that even though we have the same 
response variables as for the baseline experiment, we only 
report quality here. We leave out developer effort, devel-
oper productivity and developer satisfaction for space 
reasons. We chose quality since the baseline experiment 

showed that there might be significant differences be-
tween treatments when problem complexity increases, 
while the other three variables did not show such trend. 
The sub-characteristic of quality we study is accuracy. Of 
the four metrics used to measure quality in the baseline 
(AN, RAN, WI and SW), we focused replications on SW 
because a comparative study of metrics is beyond the 
scope of this paper. We chose SW since it is the least de-
manding metric. For each test case, we considered the 
percentage of passed items (test case accuracy). System 
accuracy is the mean accuracy regarding the items of each 
test case. The treatment application procedure differs from 
the baseline experiment in that each session is 10 minutes 
shorter due to class schedule restrictions. This reduction 
in time is so small that it should not affect the results of 
the experiment. 

Population. Properties of experimental objects and subjects 
were unchanged with respect to the baseline experiment. 
SR1 used 14 subjects, SR2 recruited 6 subjects and SR3 
had 14 subjects. According to the information extracted 
from the demographic questionnaire, subjects had the 
same profile as in the baseline experiment, all of them had 
a background in Computer Science. Note that there are 
slight differences between SR2 and SR1 versus SR3; and 
between SR2 versus the baseline. These differences arise 
because SR2 is composed of only 3 experimental units, a 
very small number compared with the other replications. 
Small variations with a small sample may produce big 
changes in the average. Most of the subjects were novice 
programmers with a little experience in industry or stu-
dents with no work experience at all. Most subjects had 
not used MDD often, even though most were acquainted 
with the technique. Therefore, we can conclude that all 
strict replications include different sample sizes of the 
same population used in the baseline experiment. Ap-
pendix E shows the details of subjects' previous experi-
ence with MDD and traditional development methods. 

Protocol. Experimental objects, experimental design, guides 
and measurement instruments are the same as in the base-
line experiment. The only change affects data analysis 
technique, where we used mixed model instead of General 
Linear Model (GLM). We purposely changed the statisti-
cal test used to analyze the data (data analysis technique, 
protocol dimension). The main reason behind this change 
is that, using a mixed model, we can deal with moderator 
variables. Besides, GLM only provides for one variable 
with repeated measures. In our design we have two vari-
ables with repeated measures: the development method 
and the problem. Note that all subjects apply both devel-
opment methods to both problems. In the baseline ex-
periment, we analyzed the variable problem as a covari-
able. Now we have decided to include such variable as a 
fixed variable in order to study possible significant inter-
actions between the method and the problem. Hence, 
even though this change could affect the results, the ad-
vantages of using a mixed model makes the change 
worthwhile. We re-analyzed the results of the baseline 
using the mixed model to check that results were the 
same as for GLM and made them comparable with repli-
cations results. 
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Table 2. Summary of differences across experiment designs. Replications and changes are described following [20] 

 
 Baseline Experiment Strict Replications Object Replications 

 SR1 SR2 SR3 OR1 OR2 OR3 

O
p

er
at

io
n

al
iz

at
io

n
 

Factor Development method 
Treatment Definition Traditional development method and MDD 
Treatment Transmission Transport/Videoclub 

 
Videoclub/ 
Transport 

Transport/ 
Videoclub 

Videoclub/  
Transport 

Treatment Instructions Free application of a traditional method vs 18h (theory classes (12 hours) and practical classes (6 hours)) of MDD 
Treatment Application Pro-
cedure 

Each treatment is applied in 2 2-
hour sessions (2x2h) 

Two sessions of 1:50 hours each treatment 
(2x1:50h) 

2x2h 
 

Treatment Resources Free in a traditional method vs INTEGRANOVA in MDD 
 

Metrics Percentage of passed test cases, 
time, percentage of passed test 
cases/time, level of satisfaction 

Percentage of passed test cases 
 

 
Response Variables Accuracy, developer effort, developer productivity, developer satisfaction 

 
Measurement Procedure Test cases, time and satisfaction questionnaire 

P
op

u
la

-
ti

on
 Subjects 13 units 7 units 3 units 7 units 10 units 6 units 6 units 

Properties of Experimental 
Objects 

Requirements specified according to IEEE standard 830-1998  

P
ro

to
co

l 

Experimental Objects OIP and OPP EIP and EPP 
Experimental design Paired-blocked 
Guides INTEGRANOVA guide 
Measurement Instruments Test Cases/Web application/Satifaction Questionnaire 

 
Data analysis techniques GLM repeated measures Mixed model 
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Experimenters. Designers and analysts were unchanged 
with respect to the baseline experiment. There was a dif-
ferent trainer, monitor and measurer from the baseline ex-
periment. The original experimenters were in contact 
with the replicating experimenters, and the design and 
instruments were the same as in the baseline. Moreover, 
the new experimenters were perfectly well acquainted 
with the MDD method and the INTEGRANOVA tool 
since they had been collaborating with the original ex-
perimenters for the last six years. Therefore, results 
should not be affected by this change.  

4.2. Object replications 
Since we concluded that MDD is more robust to small 
variations in object complexity in the baseline experiment, 
these three replications aim to study whether an increase 
in problem complexity affects results. According to this 
goal, we purposely made some changes with respect to 
the baseline experiment. Table 2 shows a summary of 
these changes by dimension. 

Operationalization. The treatments transmissions are 
treatments to train the subjects but not useful to analyze 
data. Treatment transmission change affects only replica-
tions OR1 and OR3. We swapped the training problems 
in such a manner as “Transport” (a system to manage 
routes of public buses) and “Videoclub” (a system to 
manage films renting) were the training for MDD and for 
the traditional method, respectively. This change was 
done in order to prevent training problems from affecting 
the results of the experiment. OR2 follows the same order 
as the baseline experiment. 

Population. OR1 used 20 subjects, OR2 recruited 12 
subjects and OR3 had 12 subjects. There are slight differ-
ences between OR2 versus OR1 and OR3; and between 
OR2 versus the baseline. Subjects of OR2 had a more 
professional profile. Most of the subjects were novice 
programmers or students that had not yet developed a 
real system. We can conclude that object replications have 
the same population as the baseline experiment and strict 
replications. Appendix E shows the details of the subjects. 

Protocol. We changed the experimental objects and data 
analysis technique (as in strict replications). Experimental 
objects (problems) were extended in the object replica-
tions, although the context of both problems is the same 
as in the baseline experiment: Invoice Problem and Pho-
tography Problem. In the baseline, Invoice Problem aims 
to manage a company of electrical appliance. Once repa-
ration is finished, the system must create the invoice. 
Photography Problem aims to manage a company that 
works with freelance photographers. The system must 
register who is the owner of each photo and the amount 
of money to pay to each photographer. From now on, we 
refer problems of the baseline as Original Invoice Prob-
lem (OIP) and Original Photography Problem (OPP) re-
spectively. Problems are described in Appendix F. 

The extension in the object replications was designed 
to check experimentally our hypothesis (based on the 
findings of the baseline experiment): when object com-
plexity increases, there are bigger differences between 
traditional development methods and MDD. Problems 

were divided into three parts in such a way that the first 
part is OIP and OPP. Other two parts were extensions. 
Subjects were not allowed to start the second part until 
they had completed the first (and the same applies for the 
second and third parts). Problems can be found in Ap-
pendix F. 

The Photography Problem was extended with the 
functionality to support the management of delivery 
notes and scoops. From now on, we refer to this problem 
as Extended Photography Problem (EPP). In Appendix F-
Fig. 8.b, the classes that support OPP are highlighted in 
grey while the classes that support EPP are highlighted in 
white. EPP has 199 function points versus the 94 function 
points of OPP, including CRUD operations.  

The Invoice Problem was extended with functionality 
to manage repair training courses and manage audits. 
From now on, we refer to this problem as Extended In-
voice Problem (EIP). Appendix F-Fig. 8.a shows the class 
diagram, where classes highlighted grey refer to OIP. 
Classes highlighted white refer to EIP. EIP has 272 func-
tion points versus 100 function points of OIP. Experimen-
tal objects description can be seen in Appendix F as they 
were shown to the subjects. Note that class diagrams of 
Appendix F are part of our solution and they were not 
available for subjects. Subjects built their own class dia-
gram from the textual description and their model could 
be different from our solution.  

Experimenters. There were no changes for this dimen-
sion with respect to the baseline experiment. 

4.3. Analysis of replications 
The statistical analysis was done applying the mixed 
model statistical test [48] with unstructured repeated 
covariance. The development method and the problem 
were defined as fixed-repeated variables (since we ap-
plied two levels of both variables to all subjects). The 
subjects were defined as random variables.  

The assumption for applying the mixed model is nor-
mality of residuals. The normality of residuals can be 
tested with Saphiro-Wilk test applied to the residuals 
automatically calculated during the application of the 
mixed model test [36]. We checked the assumption of 
normality of residuals for all replications; details of the 
normality are shown in Appendix G-Table 20. There are 
some residuals whose p-values are lower than 0.05 but 
higher than 0.00. We can accept a weak normality for p-
values between 0.001 and 0.05; and a high normality for 
p-values higher than 0.05. In the case of Row 13, we ob-
tained a p-value of 0.00. In order to solve this problem, 
we applied a monotonous transformation named “reverse 
score” [32]. The transformation is log(Subtract Xi from 
highest score). After the transformation we get a p-value 
of 0.14, indicating that these residuals have a normal dis-
tribution. 

We have used Cohen’s d [9] to calculate effect size. 
Cohen’s d is defined as the difference between two means 
divided by a standard deviation of the data. According to 
Cohen [9], the meaning of the effect size is as follows: 
more than 0.8 is a large effect; from 0.79 to 0.5 is a moder-
ate effect; from 0.49 to 0.2 is a small effect. 
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Using the mixed model, we cannot calculate power 
statistically as we did in the baseline experiment (inde-
pendently of the statistical tool used in the analysis). Still 
we used G*Power [15], finding that, for a repeated meas-
ures statistical test, we need a sample size of 16 units for 
an effect size of 0.8 (large effect) to get a power of 80%. 
The sample size of each replication is less than 16 units, 
which implies a low power. In order to deal with this 
issue, we analyze not only the data for each replication 
but also the aggregation of several replications, whose 
number of experimental units is greater than 16. From a 
practical point of view, small effects are not relevant 
since, if the difference between MDD and traditional 
methods is small, it is not worth the effort of learning 
MDD (which is usually an unknown method).  

For each analysis, we report descriptive data using 
box-and-whisker plots to illustrate the differences be-
tween the two treatments. We apply a mixed model to 
calculate the p-value for method and method*problem 
and the mean for each treatment. If the p-value is less or 
equal1 to 0.05, we assume that there are significant differ-
ences between treatments, and we calculate the effect size 
to analyze the magnitude of the differences. Problem is 
included in the analysis only when the method*problem 
interaction is significant. Being a blocking variable, the 
significance of the problem is not relevant without such 
an interaction.  

5. INDIVIDUAL REPLICATION RESULTS 

5.1. Strict replications 
This analysis studies each strict replication separately. 
Fig. 2 shows the box-and-whisker plot for accuracy in SR1 
(histogram is in Appendix H-Fig. 9). The line between the 
two boxes connects the means. The median is better for 
MDD, even though the first and third quartile values for 
accuracy are better using a traditional method.  
 

 
Fig. 2. Box-and-whisker plot for accuracy of SR1  

 
1 Traditionally, only p-values lower to 0.05 are considered as signifi-

cant.  We are also considering significant values equal to 0.05. This choice 
depends on how conservative we want to be with the analysis. We think 
that with this choice we are not rejecting significant results very close to 
0.05 but lower, since SPSS rounds results.  

Results for SR2 and SR3 are similar to SR1. Appendix 
H shows the histograms and box-and-whisker plots for 
both replications.   

The power of each replication is low since all three 
have small sample sizes. Table 3 shows the p-values 
yielded by the mixed model and the means of both treat-
ments. There are no significant results since all p-values 
are greater than 0.05. Moreover, we only have three units 
in SR2, which is not enough data to run the test.  

 
Table 3. P-values for strict replications 

Rep.2 E.U.3 Factor Value 
SR1 7 Method p-value 0.37 

meanTraditional 84.5 
meanMDD 73.6 

Method*Problem p-value 0.13 
SR2 3 Method p-value - 

meanTraditional 65.9 
meanMDD 91.3 

Method*Problem p-value - 
SR3 7 Method p-value 0.12 

meanTrad 80.8 
meanMDD 90.8 

Method*Problem p-value 0.98 
 

We cannot reject the null hypothesis H01 (The quality of 
software built using MDD or a traditional method is similar). 
Note that the problem type does not affect the results 
since the method*problem interaction is not significant. 

Comparing the results of strict replications with the 
baseline experiment, we find that SR1, SR2 and SR3 get 
similar results to the baseline: there are no significant 
differences for accuracy using MDD or a traditional 
method for simple problems. Since these replications 
were conducted at a different site and by different ex-
perimenters, we can state that the results of the baseline 
experiment hold for other sites and experimenters. 

5.2. Object replications with extended problems 
Fig. 3 shows the box-and-whisker plot for accuracy in 
OR1 (histogram is in Appendix H). We find that the me-
dian, and the first and the third quartiles for accuracy are 
larger using MDD than a traditional method. This means 
that subjects who worked with MDD appear to achieve 
better results for accuracy. Note that OR1 is the replica-
tion with the biggest sample size (10 units). Even though 
the sample size of the baseline experiment was bigger (13 
units), the problems used in OR1 are more complex. 
Therefore, we might expect to get significant differences 
even with a smaller sample size. Descriptive data for OR2 
and OR3 is similar to OR1, plots can be seen in Appendix 
H. 

The power of each replication is low. Table 4 shows the 
p-values, effect size and means. There are significant 
results for OR1 and OR3. In OR1 results are significant for 
the method factor. MDD has the effect of accuracy being 
moderately higher than for the traditional method. 
 

2 Replication 
3 Experimental units 
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In OR1 there is also a significant result for the 
method*problem interaction. This means that problem is 
affecting the method. Appendix H-Fig. 19 shows a profile 
plot. Accuracy for MDD is clearly better than for tradi-
tional methods with respect to both problems. However, 
the increase in quality for MDD is greater for the Invoice 
Problem than for the Photography Problem. As the result 
for method*problem was significant, we analyzed the 
blocking variable Problem in OR1. Results for Problem 
show that there are no significant differences between 
treatments. 

 

 
Fig. 3. Box-and-whisker plot for accuracy of OR1 with EIP and EPP 

Table 4. P-values for object replications 

Rep. E.U. Factor Value 
OR1 10 Method p-value 0.00 

effect size 0.61 
meanTraditional 31 
meanMDD 66.3 

Method*Problem p-value 0.01 
Problem p-value 0.78 

OR2 6 Method p-value 0.94 
meanTraditional 30.5 
meanMDD 30.7 

Method*Problem p-value 0.79 
OR3 6 Method p-value 0.05 

effect size 0.53 
meanTraditional 21.4 
meanMDD 47.7 

Method*Problem p-value 0.14 
   
In OR3 the significance between both treatments was 

still moderate but lower than in OR1. We found no sig-
nificant results for the method*problem interaction. This 
may be due to the smaller sample size than OR1.  

OR2 does not conclude significant differences between 
treatments. This could be caused by the low statistical 
power of the samples in OR2. A low power may involve 
accepting null hypothesis when they are false. Even 
though OR1 and OR3 have a low power, we identified 
significant differences, which lead us to think that differ-
ences in OR2 could appear with a higher power. Other 
reason that could justify the absence of significant differ-

ences in OR2 is the subjects’ profile, that could be a con-
founding factor. Subjects of OR2 have more experience in 
the application of a traditional development method in 
industry than subjects of other replications.  

So there are significant differences for accuracy in 
OR1 and OR3, where MDD is better than a traditional 
method. This result confirms the finding from the baseline 
experiment that there appeared to be differences in accuracy in 
complex systems (i.e., in the object replications) that did not 
occur for simpler systems (i.e., in the baseline). Effect sizes 
are bigger for OR1 and OR3 than for baseline experi-
ment. Hence, we reject H01 for OR1 and OR3.  

5.3. Object replications with original problems 
This analysis studies each object replication considering 
only the part of the problems used in the baseline (OIP 
and OPP). The goal is to study whether or not time pres-
sure affects the results. In object replications, subjects had 
more time pressure since they had 4 hours to solve EIP 
and EPP. Those 4 hours are the same time that subjects in 
the baseline had to solve OIP and OPP.  

Table 5 shows the p-value, and mean of both treat-
ments for the accuracy of the part of the problems shared 
by the baseline experiment and the replications. There are 
no significant results for any replication, even though 
descriptive data (Appendix H-Fig. 20 and Appendix H-
Fig. 21) show MDD to be slightly better.  

 

Table 5. P-values for object replications analyzing problem parts 

shared with the baseline experiment 

Rep. E.U. Factor Value 

OR1 10 Method p-value 0.12 
meanTraditional 81.7 
meanMDD 97.1 

Method*Problem p-value 0.5 
OR2 6 Method p-value 0.15 

meanTraditional 66.5 
meanMDD 85 

Method*Problem p-value 0.8 
OR3 6 Method p-value 0.29 

meanTraditional 75.6 
meanMDD 87.8 

Method*Problem p-value 0.44 
 
We conclude that, even though accuracy varies for 

each treatment, these differences are not significant. 
This result matches the results of the baseline experiment: easy 
problems (OIP and OPP) do not reveal significant differences 
between MDD and a traditional method for accuracy.  Hence, 
we cannot reject H01. Note that the results for replications 
with small sample sizes are not significant most likely 
because bigger samples sizes are needed to detect very 
small differences between treatments. Aggregations 
should address this issue. 

6. AGGREGATED RESULTS 
In order to improve the power of the statistical test, we 
aggregated the results of the different replications [13], 
again applying the mixed model.  
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6.1. Aggregation of strict replications 
By aggregating the three strict replications, we get 17 
experimental units (7 units SR1, 3 units SR2 and 7 units 
SR3). Fig. 4 shows the box-and-whisker plot for accuracy 
(histogram is in Appendix H-Fig. 26). There is an overlap 
between both treatments, although the median of MDD 
yields better accuracy.  

 

 
Fig. 4. Box-and-whisker plot for accuracy of SR1+SR2+SR3  

Table 6 shows the p-values and means of both treat-
ments for this aggregation. There are no significant re-
sults since all p-values are greater than 0.05.  

 
Table 6. P-values for the aggregation of strict replications 

Rep. E.U. Factor Value 
SR1+ 
SR2+ 
SR3 

17 Method p-value 0.54 
meanTraditional 79.7 
meanMDD 83.8 

Method*Problem p-value 0.09 
 
The results of the aggregation of strict replications con-

clude that accuracy is slightly better for MDD than for a 
traditional method even though these differences are 
not significant. These results match the findings from the 
individual analysis of each strict replication, as well as of the 
baseline experiment. Results hold even with a sample size 
greater than for the baseline experiment (13 units versus 
17).  

To improve statistical power, we aggregated strict rep-
lications together with the baseline experiment, resulting 
in a sample size of 30 experimental units. The results of 
this aggregation are the same as for the strict replications, 
that is, there are no significant differences between the 
two methods. Therefore, we have to conclude that power 
is not behind the fact that results are not significant. 

 

6.2. Aggregation of object replications with 
extended problems 

Aggregating the three object replications using complex 
problems (EIP and EPP), we have 22 experimental units 
(10 units in OR1, six units in OR2 and six units in OR3). 
Fig. 5 shows the box-and-whisker plot for accuracy (his-

togram is in Appendix H-Fig. 27). Medians, and the first 
and third quartiles show that MDD yields better results 
than traditional methods. Moreover, only MDD gets an 
important amount of samples with accuracy higher to 
60%. MDD yields better accuracy than traditional meth-
ods.  
 

 
Fig. 5. Box-and-whisker plot for accuracy of OR1+OR2+OR3 study-

ing EIP and EPP 

Table 7 shows the p-values, effect sizes and means of 
both treatments for this aggregation. Since the p-value is 
less than 0.05, differences between treatments are signifi-
cant. The value of 0.42 for effect size means that there are 
moderate differences between the two treatments. Accu-
racy with MDD is moderately higher than for a tradi-
tional method. There are no significant results for the 
method*problem interaction. 

 
Table 7. P-values for the aggregation of object replications with 

EIP and EPP 

Rep. E.U. Factor Value 
OR1+ 
OR2+
OR3 

22 Method p-value 0.00 
Effect size 0.42 

meanTraditional 28.2 
meanMDD 51.5 

Method*Problem p-value 0.66 
 

The results of the aggregation of object replications 
suggest that accuracy for MDD applied to complex prob-
lems is significantly better than for a traditional 
method. This result matches the findings of the analysis 
of each object replication individually. These results also 
confirm the hypothesis that we developed based on base-
line outcomes: differences for accuracy between the two 
treatments are more evident for complex problems. After 
increasing the problem complexity with respect to the 
baseline, there are differences. Therefore, we reject H01. 
Hence, the small scale of the experimental objects used appears 
to be the main reason for not detecting significant results in the 
baseline experiment. 
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6.3. Aggregation of object replications with 
original easy problems 

This analysis pools together all object replications consid-
ering only the part of the problems that they have in 
common with the baseline.  

Box-and-whisker plot and histogram can be found in 
Appendix H-Fig. 29, they are similar to the aggregation 
with extended problems. Table 8 shows the p-values of 
the aggregation of object replications considering the part 
of the problems that they have in common with strict 
replications and the baseline experiment (OIP and OPP). 
We get significant results for method. The effect size 
means that differences between treatments are moderate. 
Therefore, accuracy is better for MDD than for traditional 
methods. 

 
Table 8. P-values for the aggregation of object replications ana-

lyzing OIP and OPP 

Rep. E.U. Factor Value 

OR1+ 
OR2+ 
OR3 

22 Method p-value 0.01 
Effect size 0.73 

meanTraditional 75.9 
meanMDD 91.2 

Method*Problem p-value 0.85 
 
The aggregation of object replications reveals signifi-

cant differences between MDD and traditional methods 
for easy problems (OIP and OPP) developed under time 
pressure. These differences did not show up when we analyzed 
the same easy problems in strict replications or the baseline 
experiment (either individually or after aggregation). Some 
baseline observations led us to suspect that differences 
between traditional methods and MDD occur only for 
complex problems. However, the results of the aggrega-
tion of object replications considering easy problems de-
veloped under time pressure clarify the picture. Notice 
that this is a bigger sample size (22 experimental units). 
However, it is smaller than the size of the aggregated 
sample of strict replications and baseline experiment (30 
experimental units), which did not reveal any significant 
effect. Therefore, the reason for detecting a non-
significant effect could be a moderator variable rather 
than an increase in power. To get a reliable response, we 
aggregated all the experiments studying time pressure. 

6.4. Aggregation of strict replications + object 
replications + baseline experiment to study 
time pressure 

This analysis pools together the data of the whole family 
of experiments. The aggregation studies time pressure as 
a moderator variable. Subjects in the strict replications 
and baseline experiment were subject to less time pres-
sure than subjects in the object replications.  

We aggregate the whole family of experiments consid-
ering only the part of the problems common to strict rep-
lications, object replications and the baseline experiment 
(OIP and OPP). There are two groups of replications de-
pending on the time pressure for subjects. Subjects of 
strict replications and the baseline experiment had four 

hours to develop easy problems (OIP and OPP), whereas 
subjects of object replications had four hours to develop 
problems that were three times more complex (EIP and 
EPP had 3 exercises and OIP and OPP had 1 exercise), of 
which OIP and OPP are part. We added time pressure as 
moderator variable to distinguish between the time pres-
sure that subjects experienced in each replication. This 
moderator variable has two levels: high and low. 

Fig. 6 shows the box-and-whisker plot for the aggrega-
tion of all the replications with the baseline. The median, 
the first and the third quartiles are better for MDD at both 
pressure levels. This means that subjects using MDD 
achieve better results than subjects working with a tradi-
tional method. Note that the median of MDD is better for 
a high time pressure. 

 

 
Fig. 6. Box-and-whisker plot for accuracy of strict replications+ 

object replications+baseline experiment for OIP and OPP  

Table 9. P-values for replications of strict replication + object replica-
tions + baseline experiment considering the common part of the 

problems (OIP and OPP) 

Rep. E.U. Factor Value 

SR1+ 
SR2+ 
SR3+ 
OR1+ 
OR2+ 
OR3+ 
Base. 

52 Method p-value 0.00 
Effect size 0.47 

meanTraditional 81.7 
meanMDD 90.3 

Method*Problem p-value 0.31 
Pressure p-value 0.73 
Method*Pressure p-value 0.62 
Pressure*Problem p-value 0.88 

 
Table 9 shows the p-values of the aggregation between 

strict replications, object replications and the baseline 
experiment considering the common part of the problems 
(OIP and OPP). Note that these p-values have been calcu-
lated after applying the transformation log(Subtract Xi 
from highest score) since residuals did not followed a 
normal distribution. Results show that there are signifi-
cant results for the method factor, with a moderate effect 
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in favour of MDD versus traditional development. Table 
9 includes the pressure moderator variable and the 
method*pressure interaction. Neither is significant, al-
though the interaction is not far off. Note that the sample 
size needed to detect significant interactions is bigger 
than what is required to detect main effects. We suspect 
that the result might be significant with a bigger sample 
size. Therefore, the moderator variable does not affect 
accuracy. The method*problem and pressure*problem 
interactions do not have significant results. This means 
that the blocking variable is not affecting accuracy. 

We conclude that even with easy problems (some 
solved under time pressure and others not), there is a 
small difference between MDD and traditional meth-
ods with a sample size of 52 experimental units. This 
outcome contradicts the baseline results. After aggregating all 
replications and increasing statistical power, differences 
between treatments are bigger, even though problems are 
easy. Note that the effect size for method (0.47) is small, 
and therefore its detection requires a bigger sample size. 
However, we tend to think that the main reason is time 
pressure rather than power, although we have been un-
able to confirm this point. It might take a bigger sample 
size to appreciate the role played by time pressure. There-
fore, we should expect its effect to be small.   

6.5. Aggregation of Strict Replications + Object 
Replications + Baseline Experiment to Study 
Problem Complexity 

This analysis pools together the whole family of experi-
ments adding problem complexity as a moderator vari-
able, since the complexity of problems was not the same 
in both types of replications.  

We aggregated the replications differentiated by the 
problem complexity. We add problem difficulty as mod-
erator variable to the data analysis to differentiate the 
complexity of the problem used in each replication. This 
moderator variable has two levels: easy and difficult. 

Fig. 7 shows the box-and-whisker plot for accuracy. 
The median, the first and the third quartiles are different 
for MDD and traditional methods. This means that the 
accuracy values are better for MDD. While the medians 
for accuracy with respect to easy problems are similar in 
both MDD and traditional methods, the median with 
respect to complex problems is clearly better for MDD. 

Table 10 shows the p-values for the aggregation using 
the difficulty moderator variable to differentiate the com-
plexity of problems used in each type of replication. Re-
sults for method are significant with an effect size of 0.38, 
which is a small effect. The means of both treatments 
show that accuracy is better for subjects working with 
MDD than with a traditional method. The comparison of 
treatments taking into account problems of varying diffi-
culty may be the reason for there being a smaller effect 
size than when aggregating object replications. Remem-
ber that by aggregating only complex problems (Table 7), 
there was a p-value of 0.00 and a moderate effect size of 
0.42 for the method variable. When we mix easy problem 
replications with no significant effect and complex prob-
lem replications with a moderate effect in the same ag-

gregation, the impact of MDD on accuracy becomes 
fuzzy. 

 

 
Fig. 7. Box-and-whisker plot for accuracy of strict replications+ 

object replications+baseline experiment for problems of different 
difficulty 

Table 10. P-values for strict replication + object replications + base-
line considering the problems as they were shown to subjects 

Rep. E.U. Factor Value 

SR1+ 
SR2+ 
SR3+ 
OR1+ 
OR2+ 
OR3+ 
Base. 

52 Method p-value 0.00 
Effect size 0.38 

meanTraditional 61.5 
meanMDD 73.5 

Method*Problem p-value 0.32 
Difficulty p-value 0.00 

Effect size 2.1 
meanEasy 87.7 

 meanDifficulty 39.9 
Method* Difficulty p-value 0.00 
Difficulty*Problem p-value 0.29 

 
In Table 10, we also identified a significant result for 

the difficulty moderator variable with a large effect size 
(2.1). Looking at means, accuracy is better for easy prob-
lems (OIP and OPP). This makes sense since subjects had 
the same amount of time to develop software to solve 
both easy problems and complex problems. Therefore, the 
quality of the software developed to solve the easy prob-
lems should be much higher. There are also significant 
results for the method*difficulty interaction. They show 
that the improved accuracy achieved using MDD versus 
traditional methods depends on the problem difficulty. 
There are bigger differences between MDD and tradi-
tional methods when the problems to be solved are com-
plex. Appendix H-Fig. 30 shows the profile plot for 
method*difficulty. The difference in accuracy between 
treatments is bigger for difficult problems, where MDD 
achieves better results.  Therefore, MDD gets better accu-
racy results for difficult problems. This is consistent with 
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the findings for the baseline. This result makes sense since 
the analyst tends to make more mistakes using a tradi-
tional method for a more complex problem. The automa-
tion provided by MDD can avoid these mistakes.  

Since experimental units are the same in Table 9 and 
Table 10, we can compare the roles of time pressure and 
difficulty. Note that both moderator variables are interre-
lated in our family of experiments. A low time pressure is 
consistent with an easy problem, whereas a high time 
pressure is consistent with a difficult problem. According 
to these results, time pressure appears to have a smaller 
impact than difficulty, since the sample size that detects 
method*difficulty does not detect the method*pressure 
interaction. 

We conclude that there are significant differences in 
accuracy between treatments, and the difficulty of the 
problem moderates the resulting accuracy. This result is 
consistent with the result of the baseline experiment, although 
the differences identified in the aggregation of all the 
replications are more significant because statistical power 
is higher. The small effect size for method (0.38) is similar 
to the effect size resulting from the aggregation of object 
replications for complex and easy problems. 

6.6. Aggregation of Strict Replications + Object 
Replications + Baseline Experiment Splitting 
by the Traditional Method Used  

Following the study of the baseline experiment, this 
analysis pools together all the experiments within the 
family of experiments filtering the subjects by the tradi-
tional method used in the control treatment: model-based 
(subjects that in the traditional method drew any concep-
tual model before coding) and code-centric development 
(subjects that in the traditional method wrote the code 
without drawing any conceptual model). Each subject 
applied model-based or code-centric depending on 
her/his preferences.  

We did not perform this analysis in each replication 
separately in order to preserve statistical power. How-
ever, when we aggregated all replications and the base-
line experiment, we had a large enough sample size to 
perform a post-hoc analysis of this variable. There were 
22 units that worked with model-based and 30 units that 
worked with code-centric development methods. Note 
that this is a post-hoc analysis and cannot detect causality 
since our study was not designed for this purpose. There-
fore, the type of traditional development was not allo-
cated randomly. 

Appendix H-Fig. 31, Fig. 32, Fig. 33, Fig. 34 show his-
tograms and box-and-whisker plots.  Table 11 shows the 
p-values. There are significant results for the method 
factor where there is a small effect size (0.36) for the im-
provement of MDD over model-based development and a 
moderate (0.4) effect size if MDD is compared with code-
centric development.  

The results for the difficulty moderator variable are 
significant with a big effect size (2.79 and 1.68) in favour 
of MDD compared with both model-based and code-
centric development. Method*problem and method* dif-
ficulty interactions do not achieve a significant result 

when MDD is compared against model-based develop-
ment but the differences are significant if MDD is com-
pared against code-centric development. Accuracy for the 
Invoice Problem is better than for the Photography Prob-
lem.  

 
Table 11. P-values for strict replication + object replications + base-

line experiment differentiating between problem complexity and 
filtering by model-based and code-centric development methods 

Rep. E.U. Factor Value 

Model-Based 
OR1+ 
OR2+ 
OR3+ 
SR1+ 
SR2+ 
SR3+ 
Base. 
 

22 Method p-value 0.02 
effect size 0.36 
meanTraditional 54.3 
meanMDD 66.9 

Method*Problem p-value 0.28 
Difficulty p-value 0.00 

effect size 2.79 
meanEasy 91.4 

 meanDifficulty 35 
Method*Difficulty p-value 0.35 
Difficulty*Problem p-value 0.27 

Code-Centric 
OR1+ 
OR2+ 
OR3+ 
SR1+ 
SR2+ 
SR3+ 
Base. 
 

30 Method p-value 0.00 
effect size 0.4 
meanTraditional 66.7 
meanMDD 78.2 

Method*Problem p-value 0.01 
Problem p-value 0.09 
Difficulty p-value 0.00 

effect size 1.68 
meanEasy 85.9 

 meanDifficulty 45.7 
Method*Difficulty p-value 0.00 
Difficulty*Problem p-value 0.62 

 
Appendix H-Fig. 35 shows the profile plot highlighting 

the differences between problems that are more evident 
for MDD. Accuracy is better for easy problems. Appendix 
H-Fig. 36 shows the profile plot. Differences between 
difficulties for accuracy are more evident for code-centric 
development. 

We conclude that for both model-based and code-
centric development the differences are significant 
when compared with each other, where MDD yields 
better values for accuracy. Another result that model-
based and code-centric development has in common is 
that there are significant differences for difficulty and 
method*difficulty. This contradicts the result for the baseline 
experiment where we did not get significant differences for 
either model-based or code-centric development. The baseline 
experiment and strict replications yield better values for 
accuracy than object replications using MDD. This result 
makes sense since it was possible to solve the problems 
set in the baseline experiment and strict replications 
within the time scheduled for the experiment, whereas 
the problems set in the object replications were too large. 
The only difference between model-based and code-
centric development is that code-centric development 
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yields significant results for problem and 
method*problem. The Invoice Problem is slightly easier 
than the Photography Problem since it does not require 
inheritance between classes. This difference is more evi-
dent when developers use code-centric development.  

6.7. Interpretation of the Results 
We can state that MDD obtains better values than a tradi-
tional method, and these differences are more evident 
when problem difficulty and time pressure increase. 
When we aggregate replications and we increase the 
power, differences between treatments appear independ-
ently of the problem difficulty and the time pressure. We 
also conclude that the use of a model-based or code-
centric paradigm in the traditional method does not in-
volve changes in the results. A summary of the results is 
in Appendix I.   

We analyzed time pressure and difficulty as moderator 
variables. In our design, the two variables are related to 
each other since a low time pressure is consistent with an 
easy difficulty and vice versa. Therefore, we were unable 
to check all the combinations of both variables to study 
their effect on the factor. Even so, MDD appears to work 
better when both time pressure and difficulty are high. 
Note that the data aggregation results in 52 experimental 
units. This is equivalent to a large statistical power ac-
cording to G*Power [15]. According to the results of the 
aggregation, we reject the null hypothesis H01 and accept 
that there are differences between MDD and traditional 
methods in terms of quality.  

7. THREATS TO VALIDITY 
This section discusses the threats to validity that could 
affect the family of experiments. We have focused on the 
threats that appear when we replicate the experiment and 
when we aggregate results to improve the statistical 
power. Threats to the experimental design and how each 
experiment replication is run are not discussed in this 
paper since they are described in detail in the report on 
the baseline experiment [38]. In the following we describe 
the threats according to Wohlin’s classification [50]. For 
each group of threats, we made a distinction between 
threats that we were unable to address, threats whose 
effect we managed to minimize, and threats that we 
solved. 

Conclusion validity. This threat is concerned with is-
sues that affect the ability to draw the correct conclusions 
about relations between the treatment and the outcome. 
Threats of this type to some replications are: 
 Low statistical power: Replications of SR have fewer 

units than replications of OR, leading to lower statis-
tical power. Low statistical power might result in null 
hypotheses being accepted when they are false. 
Moreover, in the case of SR2 (Table 3), the number of 
units is so low that the statistical test cannot be run. 

 Fishing: This threat materializes when experimenters 
are looking for a definite result. The experimenters 
used in both replication types were MDD trainers. 
This could result in some level of researcher bias.  

A threat that we have minimized in the replications is 

the Reliability of treatment implementation. This threat 
might materialize when treatments are taught (and then 
applied by experiment participants) by different experi-
menters. We tried to minimize this threat by using the 
same instruments in all replications and organizing meet-
ings among all experimenters.  

The threat that we avoided in the replications is Ran-
dom heterogeneity of subjects. This threat materializes when 
subjects are heterogeneous. This could mean that differ-
ences between subjects are greater than differences be-
tween treatments. Since replications were run in several 
years, subjects might have a different profile in each rep-
lication. We solved this threat by recruiting subjects with 
similar profiles in all replications (software developers 
that are studying for a master’s degree). Moreover, we 
used demographic questionnaires to detect differences 
between the profiles of subjects recruited in each replica-
tion. There were no differences with respect to experience 
with MDD and in industry.  

Internal validity. This threat is concerned with influ-
ences that may affect the dependent variable with respect 
to causality of which researchers are unaware. There are 
two threats that we have tried to minimize:  
 History: This threat materializes when treatments are 

applied at different times. This may lead to the ex-
periment being run in different contexts. Our repli-
cations are open to this threat since each university 
ran a different replication every year. We tried to 
mitigate this threat using the same experimenters in 
each type of replication sharing the same materials 
across all replications. 

 Interactions with selection: This threat materializes 
when there are different groups of subjects, and each 
group behaves differently from the others.  Depend-
ing on the profile of the subjects recruited for each 
replication, subjects in some replications might have 
learned MDD better than others or might have more 
knowledge of traditional development. Different 
levels of expertise with respect to MDD or tradi-
tional methods in each replication may affect the re-
sults of the aggregation. We tried to minimize this 
threat by using the same training problems in all the 
replications. Even though we can guarantee that all 
subjects had a minimum knowledge of MDD and 
traditional methods before applying the treatments, 
we cannot be sure that the subjects’ skills are the 
same across all the replications. 

Construct validity. This threat is concerned with gen-
eralizing the results of the experiment to the concept or 
theory behind the experiment. The threat posed to the 
replications is Mono-operation bias. This threat materializes 
when there is only one factor, which may underrepresent 
the construct and thus not give the full picture of the 
theory. This is a potential threat when we aggregate the 
data of the strict replications and object replications using 
only easy problems. However, the other aggregations 
offset this threat. In this case where the analysis focuses 
exclusively on the method factor, there is no moderator 
variable to analyze the differences between the replication 
type, since we only considered the easy part of the prob-
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lems. There are some other differences between the repli-
cation type, apart from the data: subjects were exclusively 
exposed to easy problems in strict replications and com-
plex problems in object replications. Subjects participat-
ing in both types of replications had the same period of 
time to complete the tasks (approximately four hours). 
Therefore, subjects of strict replications took approxi-
mately four hours to complete easy problems and subjects 
of object replications spent the same amount of time on 
complex problems (i.e., the time taken to solve easy prob-
lems in object replications was shorter). 

External validity. This threat is concerned with condi-
tions that limit our ability to generalize the results of our 
experiments to industrial practice. The threat posed to the 
family of experiments is the Interaction of settings and 
treatments. Results are applicable only to subjects with 
little experience in industry (we conducted the experi-
ment with students) considering toy experimental prob-
lems such as Photography and Invoice. More replications 
would have to be conducted with other types of subjects 
and problems to study whether the results of our family 
hold in other settings. Other threat that may suffer our 
family of experiments is Confounding factors. This happens 
when it is impossible to distinguish the effects of two 
factors from each other. Results may be affected also by 
other factors that were not considered in our analysis, 
such as, tools, subjects’ profile, the experience of partici-
pants or teacher, among others.  

Other threat suffered in all the aggregations is Gener-
alization of results. Experimental objects of the replications 
are based on the development of a Web application; there 
is no development in other platform. This reduces the 
generalization of the results since the effort in a tradi-
tional development method may be different for other 
platforms, such as mobile systems. The threat to the ag-
gregation of the replications is Interaction of history and 
treatment. This threat materializes when each replication 
is conducted on a different day, and the context of that 
day is likely to affect the results. Since each replication 
was conducted in a different year and each replication 
lasted for several weeks, we cannot be sure that the re-
sults would be unaffected by the context of the day on 
which the treatments were applied. Issues such as bore-
dom, personal problems, stress, etc., can have a bigger or 
smaller impact on the results depending on the day when 
the treatment is applied.   

8.  CONCLUSIONS 
This paper presents a family of experiments replicating a 
baseline experiment to analyze the quality of systems 
developed using MDD against traditional software de-
velopment methods. The goal of the replication is two-
fold: (1) check whether the results of the baseline experi-
ment hold; (2) further elaborate upon the preliminary 
finding of the baseline experiment that MDD has a bigger 
effect on quality when problem complexity increases. To 
do this, we defined two types of replications: strict repli-
cations, which should be as similar as possible to the 
baseline experiment, and object replications, in which we 
increased problem complexity. We ran three strict replica-

tions at Universidad Diego Portales in Chile and three 
object replications at Universidad Politécnica de Valencia 
in Spain.  

The results of the replications answer our research 
question (RQM) confirming the results of the baseline 
experiment:  
 MDD yields better values for accuracy than tradi-

tional development methods. In the baseline ex-
periment, these differences were observed in the de-
scriptive data, but the sample size was so small that 
we were unable to detect significant results. The rep-
lications addressed these shortcomings, and we were 
able to analyze 52 units by aggregating the data, 
avoiding type II error (failure to detect a difference 
when there is one).  

 Differences between MDD and the control are big-
ger when the problems to be solved are more com-
plex since results are significant and the effect size 
with complex problems is moderate even with low 
statistical power. The new results are consistent with 
the findings of the baseline experiment insofar as the 
differences between treatments are independent of 
the traditional development technique (model-based 
or code-centric) used. 

We can extract two recommendations from the results. 
The first is that, to exploit the strengths of MDD, it should 
be applied to complex problems. The second is that MDD 
is more suitable when developers have previous knowl-
edge of the MDD tool or have enough time to learn the 
technique. During the experiment, we found that only a 
few subjects knew anything about MDD before they took 
the course. In our setting, participants were not novice 
users of traditional methods, but they were new to MDD. 
Moreover, the teacher spent 12 hours training subjects on 
the use of the MDD tool and six hours solving a training 
problem. Therefore, the MDD learning period is not neg-
ligible. Note that subjects are knowledgeable enough to 
develop a system by the end of the learning period, but 
are not yet experts at the technique.  
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