

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/184631

Panach, JI.; Dieste, Ó.; Marín, B.; España, S.; Vegas, S.; Pastor López, O.; Juristo, N.
(2021). Evaluating Model-Driven Development Claims with Respect to Quality: A Family of
Experiments. IEEE Transactions on Software Engineering. 47(1):130-145.
https://doi.org/10.1109/TSE.2018.2884706

https://doi.org/10.1109/TSE.2018.2884706

Institute of Electrical and Electronics Engineers

© 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

AUTHOR: TITLE 1

Evaluating Model-Driven Development
Claims with respect to Quality:

A Family of Experiments
Jose Ignacio Panach, Óscar Dieste, Beatriz Marín, Sergio España, Sira Vegas, Óscar Pastor,

Natalia Juristo

Abstract—Context: There is a lack of empirical evidence on the differences between model-driven development (MDD),
where code is automatically derived from conceptual models, and traditional software development method, where code is
manually written. In our previous work, we compared both methods in a baseline experiment concluding that quality of the
software developed following MDD was significantly better only for more complex problems (with more function points). Qual-
ity was measured through test cases run on a functional system. Objective: This paper reports six replications of the base-
line to study the impact of problem complexity on software quality in the context of MDD. Method: We conducted replications
of two types: strict replications and object replications. Strict replications were similar to the baseline, whereas we used more
complex experimental objects (problems) in the object replications. Results: MDD yields better quality independently of prob-
lem complexity with a moderate effect size. This effect is bigger for problems that are more complex. Conclusions: Thanks
to the bigger size of the sample after aggregating replications, we discovered an effect that the baseline had not revealed due
to the small sample size. The baseline results hold, which suggests that MDD yields better quality for more complex prob-
lems.

Index Terms— D.1.2 Automatic Programming; D.2.1.e Methodologies; D.2.1.i Validation

——————————  ——————————

1. INTRODUCTION
 odel-driven development (MDD) [14] claims that
conceptual models can represent systems abstract-
ly. These models can then be transformed into

code through model-to-code transformations. As a result,
the analyst (person that builds the system) can focus on
conceptual models (the problem space), relegating the
implementation (solution space) to highly automated
transformations. There are several degrees of code gen-
eration from conceptual models; from stubs based on
UML class diagrams to fully functional systems that do
not require writing a single line of code. MDD aims at
generating as much code as possible from conceptual
models. So, when we talk in this paper about MDD, we
refer only to such methods that generate a holistic system
from models.

Since the early days of MDD, several researchers have

highlighted the benefits of developing software using this
method. According to literature, MDD has several bene-
fits such as improving code quality [35], reducing devel-
oper effort [23], improving productivity [6] and enhanc-
ing developer satisfaction [34], among others. But there
are few empirical validations of these claims. Most em-
pirical studies on MDD focus on effort and use small
chunks of code generated from a conceptual model. In
order to extend empirical evidence to other less analyzed
software characteristics, such as software quality, we
conducted an experiment in 2012 [38] to study quality,
developer effort, developer productivity and developer
satisfaction. The goal of that baseline experiment was to
compare MDD versus a traditional software development
method, where code is implemented manually. MDD was
operationalized using INTEGRANOVA [26], a MDD tool
that generates fully functional systems from conceptual
models without writing any code (see details in Appendix
C). Experimental objects were two textual descriptions of
software systems to develop from scratch. Results
showed that even though differences between MDD and
traditional development were observed for quality, they
were significant only for more complex problems (with
more function points). Differences between MDD and
traditional methods for developer efficiency, developer
productivity and developer satisfaction were not signifi-
cant even for complex problems. The contribution of this
paper is to mature results from the baseline experiment
through a family of experiments. Of all the response vari-
ables used in the baseline experiment, we focus here on
quality since it got the most promising results. By quality

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
 J.I. Panach is with Escola Tècnica Superior d'Enginyeria, Departament

d’Informàtica, Universitat de València, Avinguda de la Universitat, s/n
46100 Burjassot, València, Spain. E-mail: joigpana@uv.es

 O. Dieste, S. Vegas and N. Juristo, are with Escuela Técnica Superior de
Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de
Montegancedo, 28660 Boadilla del Monte, E-mail:{odieste, svegas, nata-
lia}@fi.upm.es

 B. Marín is with Escuela de Informática y Telecomunicaciones, Facultad de
Ingeniería, Universidad Diego Portales, Ejército 441, Santiago, Chile. E-
mail: beatriz.marin@mail.udp.cl

 S. España is with Utrecht University, the Netherlands. E-mail:
s.espana@uu.nl

 O. Pastor is with Centro de Investigación en Métodos de Producción de
Software,Universitat Politècnica de València, Camino de Vera s/n, Edificio
1F, 46022 Valencia, Spain. E-mail: opastor@pros.upv.es

M

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

we mean the percentage of passed test cases. Our replica-
tions aim to check and build upon the results of the base-
line experiment:
 We conducted three identical replications at Universi-

dad Diego Portales in Chile. These replications were
as similar as possible to the baseline. Strict replications
increase sample size and thus the statistical power.
The power of any statistical test is defined as the
probability of rejecting a false null hypothesis. The
baseline experiment had 13 experimental units (by ex-
perimental unit we mean a pair of subjects, since stu-
dents worked in groups). This posed a threat to con-
clusion validity. Experiments with low power (usually
due to small sample sizes) have an increased risk of
type II error (failure to detect a difference between
treatments when there is one).

 We conducted three differentiated replications at the
Universidad Politécnica de Valencia in Spain in which
problem complexity was increased (with more func-
tion points). The aim was to increase the external va-
lidity of results in the problem space. Therefore, we
conducted replications using different (and more
complex) experimental objects than were used in the
baseline experiment.
In order to aggregate the data from the family of ex-

periments, we pool raw data from the six replications,
adding new factors that represent the differences in set-
tings (like time pressure and problem difficulty). We re-
analyze the new data set using traditional inferential
statistics to identify the impact of such moderator vari-
ables (variables considered as fixed effects to aggregate
the data of several replications). This approach to experi-
ment synthesis (pooling together individual participant
data) is used in more mature experimental disciplines like
medicine [40]. In software engineering (SE), experiments
are very often synthesized using aggregated data from
replications (mean and standard deviation) rather than
using individual participant data [1, 21-22, 43, 46]. Pool-
ing together individual participant data from several
replications is more powerful than using group-level
statistics, in particular, effect sizes, especially for identify-
ing moderator variables [10]. Even though, there are pa-
pers such as the work of Shepperd [47], that question the
benefits of pooling data.

Results from our family of experiments show that: (1)
there are significant differences in quality between MDD
and traditional methods irrespective of problem complex-
ity; (2) we observed significant differences in quality for
easy problems only when we pooled together data from
all replications and the baseline experiment to get 52 ex-
perimental units. (3) Differences between treatments are
clearer as problem complexity increases, where MDD
yields better values for quality than traditional methods.

The paper is structured as follows. Section 2 analyzes
the design of other families of experiments in the area of
SE. Section 3 describes the research methodology. Section
4 defines the design of the replications, Section 5 shows
the statistical results after analyzing the data extracted
from each replication individually. Section 6 analyzes the
aggregation of the results from several replications. Fi-

nally, Section 7 presents some relevant conclusions.

2. RELATED WORK
In a previous work [38], we reported empirical studies on
the use of MDD. The variables studied were: quality [3,
7], effort [5, 9, 27, 35, 39, 46], productivity [3, 31], devel-
oper satisfaction [34]; model characteristics [4, 27], reuse
[7], and compatibility [34]. Our baseline experiment fo-
cused on quality, developer effort, developer productivity
and developer satisfaction. All these variables were pre-
viously studied in experiments of the literature except for
productivity, which was analyzed in a case study.

As Basili et al. [4] stated, replications contribute to
building a body of knowledge combining and generaliz-
ing results. In the following, we report a number of repli-
cations performed in SE. For each replication, we ana-
lyzed a set of characteristics extracted from the research
questions of two mapping studies ([33] and [12]) that
reviewed replications in SE. Note that our search was not
confined to the papers reported in the mapping studies
since existing literature reviews were conducted many
years ago and do not capture the details about each repli-
cation that was reviewed separately . We merely used the
mapping studies to identify the set of characteristics re-
ported in each paper. Of all these, we selected the charac-
teristics related to the design and results of the replica-
tions. These characteristics, shown in Appendix A-Table
12, are:

 Goal of the experiment.
 Type of replication (internal: the original research-

ers performed the replication; or external: inde-
pendent researchers performed the replication).

 Number of replications and number of subjects.
 Confirmation or rejection of the baseline results.
Additionally, we added two new characteristics to

help to understand the changes made in each design: the
purpose of the replication (opportunistic-replications
without a specific goal- or goal-driven) and the changes
made to the baseline experiment in the replications (sixth
and seventh column in Appendix A-Table 12). By oppor-
tunistic we mean experiments that are not looking for
specific results, for example, experiments that do not
validate a new proposal but compare existing ones.

We conducted a limited informal literature search to
look for recent related work and also to provide more
details about previous replications. The goal to look for
related works was: What are the characteristics of experiment
replications in software engineering? The search string used
to search for literature on Scopus was “software engineer-
ing" AND ("family of experiments” OR “experiment rep-
lication” OR “series of experiments”). The inclusion cri-
teria were: (IC1) papers that compare a baseline experi-
ment versus n replications; (IC2) papers that compare
replications in a family of experiments. The exclusion
criteria were: (EC1) papers that do not describe the re-
sults of the comparison; (EC2) papers that do not describe
the design of each replication; (EC3) papers that do not
deal with modeling or coding to develop software; (EC4)
papers that report experiments not conducted with hu-
mans. The search was run in March 2017 on Scopus. The

AUTHOR: TITLE 3

primary studies selected from the set of papers retrieved
by the search were classified depending on the type of
aggregation used in the family of experiments:

 Narrative synthesis: aggregating the results quali-
tatively [30]. This approach is flexible and easy to
apply, but it is also unsystematic, unreliable, and
does not scale up [11, 44].

 Meta-analysis using effect size: aggregating data
using studies of effect sizes by the sample sizes of
the individual studies (although it can also in-
clude other factors) [24]. This analysis is usually
used when there is no access to raw data.

 Meta-analysis by pooling together individual
data: aggregating data from studies using inferen-
tial statistics and adding moderator variables to
the analysis. The experimenter needs to have ac-
cess to the raw data of the studies [18].

2.1. Narrative synthesis
Fucci and Turhan [17] conducted a replication to analyze
the relationship between number of tests generated using
TDD and code quality, as well as programmer productiv-
ity. Biffl et al. [5] conducted a family of three experiments
to investigate the effect of tool support with respect to
defect detection and inspection meetings. Gómez and
Acuña [19] performed a replication to analyze how per-
sonality factors and team climate influence software de-
velopment team effectiveness, product quality and team
member satisfaction. Macedo Santos and Gomes de Men-
donça [28] performed a family of three experiments to
investigate factors affecting the human perception of code
smells. Scanniello and Erra [42] performed a replication to
evaluate a think-pair-square-based method for the dis-
tributed modeling of use case diagrams. Sfetsos et al. [45]
performed a replication to analyze the impact of devel-
oper personalities and temperaments on pair perform-
ance. Albayrak and Carver [2] conducted one replication
of an experiment to investigate the impact of individual
factors on the effectiveness of requirements inspections.
Scanniello et al. [44] conducted a family of four experi-
ments to assess whether the type of documentation for
design patterns affects its comprehensibility.

2.2. Meta-analysis using effect size
González-Huerta et al. [21] performed three replications
to validate QuaDAI, a method for evaluating and improv-
ing model-driven software architectures. Cruz-Lemus et
al. [11] performed a family of experiments to investigate
whether the use of composite states improves the under-
standability of UML statechart diagrams derived from
class diagrams. Abrahao et al. [1] conducted a family of
five experiments (one baseline and four replications) to
investigate whether the comprehension of functional
requirements is influenced by the use of UML sequence
diagrams. Canfora et al. [8] conducted a family of six
experiments (three baselines and three replications) to
validate metrics for software process models. Fernández-
Sáez et al. [16] performed a family of experiments with
two replications to investigate whether using class and
sequence diagrams improves the maintainer’s perform-

ance when modifying source code.

2.3. Meta-analysis by pooling together individual
data

Our search string and search criteria found only one pa-
per by Per Runeson et al. [41]. They conducted a family of
three experiments (one baseline and two replications) to
explore code inspection and structural unit testing.

2.4. Conclusions of the literature review
In sum, we draw attention to the fact that replications in
SE mainly use narrative synthesis ([2, 5, 19, 28, 42, 44-45])
and meta-analysis using effect size ([1, 8, 11, 16, 21])
while the use of meta-analysis pooling data ([41]) is less
frequent. Maybe this imbalance is because pooling data
needs access to the raw data of all replications. This re-
quirement is generally hard to meet (although rather
easier in the case of families of experiments conducted by
the same or related researchers). Although this meta-
analysis by pooling data is relatively uncommon in SE,
we chose this technique to aggregate our replications
because we do have access to the raw data and it is a
powerful technique for identifying moderator variables
[10].

 Another conclusion is that the number of replications
in families of experiments is small (fifth column of Ap-
pendix A-Table 12). Of the studied replications, five pa-
pers report one replication ([2, 17, 19, 42, 45]), six papers
report from two to three replications ([5, 16, 21, 28, 41, 44]
) and three papers report from four to five replications ([1,
8, 11]). Again, this might not be the whole picture but it
definitely defines a trend. Our family (composed of six
replications) merits the consideration of a medium- to
large-sized family.

We found that it is not uncommon for families of ex-
periments to have large numbers of subjects. There are
two papers with fewer than 50 subjects ([17, 42]), six pa-
pers with from 51 to 100 subjects ([1-2, 21, 28, 41, 44]), and
six papers with more than 100 subjects ([5, 8, 11, 16, 19,
45]). Our family has 52 experimental units (104 subjects).
This would appear to be a small number of subjects com-
pared with previous works.

Note that, to the best of our knowledge, no previous
family of experiments has compared MDD against a tra-
ditional software development method (see third column
in Appendix A-Table 12). Of the related work, there is
only one paper addressing MDD ([21]). The goal of that
paper was to validate software architectures, which is
unrelated to our aim.

3. RESEARCH METHOD
For our experiment, we used Design Science [49] as re-
search method. Design Science is the design and investiga-
tion of artefacts in context. According to Design Science,
artefacts are intended to interact with a problem context
in order to improve something in that context. In our
research, the artefact is the software development
method, while the context is the product attributes.

The main research goal of our work is to replicate
studies about the benefit of MDD. The research question

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

is: RQM: How is MDD better than a traditional software de-
velopment method?

Mainly, in the Design Science method, two activities
should be considered: Design and Investigation. In De-
sign, we analyze the main benefits that previous studies
grant to MDD and we design an experiment to check
those benefits. In Investigation, we conduct an experi-
ment, analyze its results and discuss the conclusions.

Fig. 1 shows the steps of the methodology in detail. In
the activity Design we have one task to study the existing
MDD advantages in the literature (T1), then we define the
experiment to contrast such advantages empirically (T2).
In the activity Investigation we have one task to conduct
the baseline experiment (T3) and to analyze the results
(T4). The work and results of these four tasks was already
published [38]. The results of the baseline experiment
gave us feedback to apply small changes in the experi-
ment design in order to check in more detail the conclu-
sions extracted in the baseline (T5). This task is the be-
ginning of the contribution of this paper. Next, we con-
duct a family of experiments in order to improve the
statistical power of the baseline and to analyze the impact
of the changes in the design (T6). Once we have replicated
the experiment through several years in different sites, we
analyze the results of such replications (T7). We can ana-
lyze the replications individually or we can aggregate
them studying moderator variables. Finally, we can con-
trast the results of the family of experiments versus the
results of the baseline. Moreover, we can contrast the
conclusions with the benefits of MDD claimed in the lit-
erature (T8).

Fig. 1. Research Method according to Design Science

The family of experiments is composed of 7 experi-

ments: 3 replications as similar as possible to the baseline;
3 replications with more complex problems, and the base-
line experiment. Next, we describe the 6 replications.

4. CHANGES MADE IN THE REPLICATIONS
The details of the baseline experiment are published in a
previous paper [38] and they can be seen in Appendix B.
The baseline experiment aimed to compare MDD versus a
traditional software development method through the
response variables: quality, developer effort, developer
productivity and developer satisfaction. Quality is a wide
concept [27], we focused on the characteristic functional
suitability and its sub-characteristic accuracy. We meas-
ured accuracy through the percentage of test cases run
successfully. Each test case was defined as a sequence of
steps; we considered each step as an item that the code
must satisfy (see example in Appendix B-Table 13). We
used four aggregation metrics to decide whether or not a
test case was passed: All or Nothing (AN), the test is a
success if every item is passed; Relaxed All or Nothing
(RAN), the test is a success if at least 75% of the items are
passed; Weighted Items (WI), each item has a weight
depending on its importance, the test case is the addition
of the weights of all the passed items; Same Weight (SM),
the same as WI but each item has the same weight as the
others. Developer effort was measured as time spent in
the development; developer productivity as the accuracy
to effort ratio; and developer satisfaction as a 5-point
Likert questionnaire. All these metrics were calculated
manually. The design of the baseline experiment was a
paired design with the development method as factor
with two treatments: MDD and traditional. The problem
was a blocking variable (to avoid the learning effect be-
tween treatments). Subjects already knew a traditional
method but they were trained with MDD before the ex-
periment. From a textual description of the experimental
problems, subjects had to develop a functional system
from scratch (through a traditional method or through
MDD). The MDD tool used in the experiment was INTE-
GRANOVA (Appendix C), while the choice of the tradi-
tional method was free, depending on subject’ prefer-
ences. Raw data are in Appendix D and the problems in
Appendix F. Results of the baseline showed that when
problem complexity increases slightly, the accuracy re-
mains stable only with MDD, obtaining better results
than with a traditional method. There were no significant
differences for developer effort, developer productivity
and developer satisfaction.

Taking the baseline experiment as starting point, we
performed two types of replications: replications that are
as similar as possible to the baseline experiment (strict
replications from now on) and replications changing the
experimental objects (object replications from now on).

Our aim with strict replications is twofold: study
whether results hold for different experimenters and
increase sample size (therefore power). Strict replications
were performed by different experimenters in a different
site, but the original experimenters were involved in their
coordination. Our aim with object replications is to study
whether more complex experimental objects make differ-
ences of quality between treatments bigger. This goal is
inspired by the results of the baseline experiment, where

DESIGN

INVESTIGATION 1: BASELINE
EXPERIMENT

INVESTIGATION 2:
REPLICATIONS

T1. STUDY OF
MDD

ADVANTAGES

T2. EXPERIMENT
DESIGN

T3. CONDUCT THE
EXPERIMENT

T4. ANALYZE
RESULTS

T5. CHANGES IN
THE DESIGN

T6. CONDUCT THE
REPLICATIONS

T7. ANALYZE
RESULTS OF

REPLICATIONS

T8. CONTRAST
RESULTS VERSUS

PREVIOUS STUDIES

AUTHOR: TITLE 5

MDD quality was less sensitive to small variations in the
complexity of experimental objects. This led us to suspect
that there might be significant differences between the
quality of software output using a traditional method and
MDD using more complex problems. The same experi-
menters that performed and analyzed the object replica-
tions conducted the baseline experiment.

 Strict replications were conducted at Universidad
Diego Portales (UDP) in Chile, while object replications
were conducted at the same site as the baseline, namely
the Universidad Politécnica de Valencia (UPV) in Spain.
Each type of replication was run three times over three
consecutive years. Table 1 shows the replications of each
type by year. Raw data can be found in Appendix D.

Table 1. Experiments that form the family

Year Baseline Strict
Replications

Object
Replications

2012 Baseline SR1 -
2013 - SR2 OR1
2014 - SR3 OR2
2015 - - OR3

Both types of replications share the essentials of the

baseline experiment but we purposely made small
changes. Table 2 shows the changes. To discuss these
changes in the following sections, we classify experiment
elements using the term dimension following the work of
Gómez et al. [20]. A dimension is a configurable element
that can be changed in a replication. The replication can,
however, still be considered to be the same experiment as
the baseline. We work with the four dimensions defined
by Gómez et al.:
 Operationalization: Instantiation of constructs (MDD,

traditional, and the quality effect) into variables (IN-
TEGRANOVA, a traditional method based on a pro-
gramming language, and accuracy).

 Population: Subjects and objects.
 Protocol: Apparatus, materials, forms and proce-

dures.
 Experimenters: Researchers involved in conducting

the experiment.

4.1. Strict replications
These three replications should be as similar as possible
to the baseline experiment in order to be able to aggregate
data and improve statistical power by increasing sample
size. Next, we describe the characteristics of strict replica-
tions according to the four dimensions and the changes
regarding the baseline experiment. Table 2 shows a sum-
mary.

Operationalization. Factors, treatment definition, treat-
ment transmission, treatment instructions, treatment re-
sources, response variables, measurement procedure and met-
rics are the same as for the baseline experiment
(Appendix B). Note that even though we have the same
response variables as for the baseline experiment, we only
report quality here. We leave out developer effort, devel-
oper productivity and developer satisfaction for space
reasons. We chose quality since the baseline experiment

showed that there might be significant differences be-
tween treatments when problem complexity increases,
while the other three variables did not show such trend.
The sub-characteristic of quality we study is accuracy. Of
the four metrics used to measure quality in the baseline
(AN, RAN, WI and SW), we focused replications on SW
because a comparative study of metrics is beyond the
scope of this paper. We chose SW since it is the least de-
manding metric. For each test case, we considered the
percentage of passed items (test case accuracy). System
accuracy is the mean accuracy regarding the items of each
test case. The treatment application procedure differs from
the baseline experiment in that each session is 10 minutes
shorter due to class schedule restrictions. This reduction
in time is so small that it should not affect the results of
the experiment.

Population. Properties of experimental objects and subjects
were unchanged with respect to the baseline experiment.
SR1 used 14 subjects, SR2 recruited 6 subjects and SR3
had 14 subjects. According to the information extracted
from the demographic questionnaire, subjects had the
same profile as in the baseline experiment, all of them had
a background in Computer Science. Note that there are
slight differences between SR2 and SR1 versus SR3; and
between SR2 versus the baseline. These differences arise
because SR2 is composed of only 3 experimental units, a
very small number compared with the other replications.
Small variations with a small sample may produce big
changes in the average. Most of the subjects were novice
programmers with a little experience in industry or stu-
dents with no work experience at all. Most subjects had
not used MDD often, even though most were acquainted
with the technique. Therefore, we can conclude that all
strict replications include different sample sizes of the
same population used in the baseline experiment. Ap-
pendix E shows the details of subjects' previous experi-
ence with MDD and traditional development methods.

Protocol. Experimental objects, experimental design, guides
and measurement instruments are the same as in the base-
line experiment. The only change affects data analysis
technique, where we used mixed model instead of General
Linear Model (GLM). We purposely changed the statisti-
cal test used to analyze the data (data analysis technique,
protocol dimension). The main reason behind this change
is that, using a mixed model, we can deal with moderator
variables. Besides, GLM only provides for one variable
with repeated measures. In our design we have two vari-
ables with repeated measures: the development method
and the problem. Note that all subjects apply both devel-
opment methods to both problems. In the baseline ex-
periment, we analyzed the variable problem as a covari-
able. Now we have decided to include such variable as a
fixed variable in order to study possible significant inter-
actions between the method and the problem. Hence,
even though this change could affect the results, the ad-
vantages of using a mixed model makes the change
worthwhile. We re-analyzed the results of the baseline
using the mixed model to check that results were the
same as for GLM and made them comparable with repli-
cations results.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

Table 2. Summary of differences across experiment designs. Replications and changes are described following [20]

 Baseline Experiment Strict Replications Object Replications

 SR1 SR2 SR3 OR1 OR2 OR3

O
p

er
at

io
n

al
iz

at
io

n

Factor Development method
Treatment Definition Traditional development method and MDD
Treatment Transmission Transport/Videoclub

Videoclub/
Transport

Transport/
Videoclub

Videoclub/
Transport

Treatment Instructions Free application of a traditional method vs 18h (theory classes (12 hours) and practical classes (6 hours)) of MDD
Treatment Application Pro-
cedure

Each treatment is applied in 2 2-
hour sessions (2x2h)

Two sessions of 1:50 hours each treatment
(2x1:50h)

2x2h

Treatment Resources Free in a traditional method vs INTEGRANOVA in MDD

Metrics Percentage of passed test cases,
time, percentage of passed test
cases/time, level of satisfaction

Percentage of passed test cases

Response Variables Accuracy, developer effort, developer productivity, developer satisfaction

Measurement Procedure Test cases, time and satisfaction questionnaire

P
op

u
la

-
ti

on
 Subjects 13 units 7 units 3 units 7 units 10 units 6 units 6 units

Properties of Experimental
Objects

Requirements specified according to IEEE standard 830-1998

P
ro

to
co

l

Experimental Objects OIP and OPP EIP and EPP
Experimental design Paired-blocked
Guides INTEGRANOVA guide
Measurement Instruments Test Cases/Web application/Satifaction Questionnaire

Data analysis techniques GLM repeated measures Mixed model

E
xp

er
i-

m
en

te
rs

 Designer Teachers from UPV-UPM
Trainer Teachers from UPV Teachers from UDP Teachers from UPV
Monitor Teachers from UPV Teachers from UDP Teachers from UPV
Measurer Teachers from UPV Teachers from UDP Teachers from UPV
Analyst Teachers from UPV

AUTHOR: TITLE 7

Experimenters. Designers and analysts were unchanged
with respect to the baseline experiment. There was a dif-
ferent trainer, monitor and measurer from the baseline ex-
periment. The original experimenters were in contact
with the replicating experimenters, and the design and
instruments were the same as in the baseline. Moreover,
the new experimenters were perfectly well acquainted
with the MDD method and the INTEGRANOVA tool
since they had been collaborating with the original ex-
perimenters for the last six years. Therefore, results
should not be affected by this change.

4.2. Object replications
Since we concluded that MDD is more robust to small
variations in object complexity in the baseline experiment,
these three replications aim to study whether an increase
in problem complexity affects results. According to this
goal, we purposely made some changes with respect to
the baseline experiment. Table 2 shows a summary of
these changes by dimension.

Operationalization. The treatments transmissions are
treatments to train the subjects but not useful to analyze
data. Treatment transmission change affects only replica-
tions OR1 and OR3. We swapped the training problems
in such a manner as “Transport” (a system to manage
routes of public buses) and “Videoclub” (a system to
manage films renting) were the training for MDD and for
the traditional method, respectively. This change was
done in order to prevent training problems from affecting
the results of the experiment. OR2 follows the same order
as the baseline experiment.

Population. OR1 used 20 subjects, OR2 recruited 12
subjects and OR3 had 12 subjects. There are slight differ-
ences between OR2 versus OR1 and OR3; and between
OR2 versus the baseline. Subjects of OR2 had a more
professional profile. Most of the subjects were novice
programmers or students that had not yet developed a
real system. We can conclude that object replications have
the same population as the baseline experiment and strict
replications. Appendix E shows the details of the subjects.

Protocol. We changed the experimental objects and data
analysis technique (as in strict replications). Experimental
objects (problems) were extended in the object replica-
tions, although the context of both problems is the same
as in the baseline experiment: Invoice Problem and Pho-
tography Problem. In the baseline, Invoice Problem aims
to manage a company of electrical appliance. Once repa-
ration is finished, the system must create the invoice.
Photography Problem aims to manage a company that
works with freelance photographers. The system must
register who is the owner of each photo and the amount
of money to pay to each photographer. From now on, we
refer problems of the baseline as Original Invoice Prob-
lem (OIP) and Original Photography Problem (OPP) re-
spectively. Problems are described in Appendix F.

The extension in the object replications was designed
to check experimentally our hypothesis (based on the
findings of the baseline experiment): when object com-
plexity increases, there are bigger differences between
traditional development methods and MDD. Problems

were divided into three parts in such a way that the first
part is OIP and OPP. Other two parts were extensions.
Subjects were not allowed to start the second part until
they had completed the first (and the same applies for the
second and third parts). Problems can be found in Ap-
pendix F.

The Photography Problem was extended with the
functionality to support the management of delivery
notes and scoops. From now on, we refer to this problem
as Extended Photography Problem (EPP). In Appendix F-
Fig. 8.b, the classes that support OPP are highlighted in
grey while the classes that support EPP are highlighted in
white. EPP has 199 function points versus the 94 function
points of OPP, including CRUD operations.

The Invoice Problem was extended with functionality
to manage repair training courses and manage audits.
From now on, we refer to this problem as Extended In-
voice Problem (EIP). Appendix F-Fig. 8.a shows the class
diagram, where classes highlighted grey refer to OIP.
Classes highlighted white refer to EIP. EIP has 272 func-
tion points versus 100 function points of OIP. Experimen-
tal objects description can be seen in Appendix F as they
were shown to the subjects. Note that class diagrams of
Appendix F are part of our solution and they were not
available for subjects. Subjects built their own class dia-
gram from the textual description and their model could
be different from our solution.

Experimenters. There were no changes for this dimen-
sion with respect to the baseline experiment.

4.3. Analysis of replications
The statistical analysis was done applying the mixed
model statistical test [48] with unstructured repeated
covariance. The development method and the problem
were defined as fixed-repeated variables (since we ap-
plied two levels of both variables to all subjects). The
subjects were defined as random variables.

The assumption for applying the mixed model is nor-
mality of residuals. The normality of residuals can be
tested with Saphiro-Wilk test applied to the residuals
automatically calculated during the application of the
mixed model test [36]. We checked the assumption of
normality of residuals for all replications; details of the
normality are shown in Appendix G-Table 20. There are
some residuals whose p-values are lower than 0.05 but
higher than 0.00. We can accept a weak normality for p-
values between 0.001 and 0.05; and a high normality for
p-values higher than 0.05. In the case of Row 13, we ob-
tained a p-value of 0.00. In order to solve this problem,
we applied a monotonous transformation named “reverse
score” [32]. The transformation is log(Subtract Xi from
highest score). After the transformation we get a p-value
of 0.14, indicating that these residuals have a normal dis-
tribution.

We have used Cohen’s d [9] to calculate effect size.
Cohen’s d is defined as the difference between two means
divided by a standard deviation of the data. According to
Cohen [9], the meaning of the effect size is as follows:
more than 0.8 is a large effect; from 0.79 to 0.5 is a moder-
ate effect; from 0.49 to 0.2 is a small effect.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

Using the mixed model, we cannot calculate power
statistically as we did in the baseline experiment (inde-
pendently of the statistical tool used in the analysis). Still
we used G*Power [15], finding that, for a repeated meas-
ures statistical test, we need a sample size of 16 units for
an effect size of 0.8 (large effect) to get a power of 80%.
The sample size of each replication is less than 16 units,
which implies a low power. In order to deal with this
issue, we analyze not only the data for each replication
but also the aggregation of several replications, whose
number of experimental units is greater than 16. From a
practical point of view, small effects are not relevant
since, if the difference between MDD and traditional
methods is small, it is not worth the effort of learning
MDD (which is usually an unknown method).

For each analysis, we report descriptive data using
box-and-whisker plots to illustrate the differences be-
tween the two treatments. We apply a mixed model to
calculate the p-value for method and method*problem
and the mean for each treatment. If the p-value is less or
equal1 to 0.05, we assume that there are significant differ-
ences between treatments, and we calculate the effect size
to analyze the magnitude of the differences. Problem is
included in the analysis only when the method*problem
interaction is significant. Being a blocking variable, the
significance of the problem is not relevant without such
an interaction.

5. INDIVIDUAL REPLICATION RESULTS

5.1. Strict replications
This analysis studies each strict replication separately.
Fig. 2 shows the box-and-whisker plot for accuracy in SR1
(histogram is in Appendix H-Fig. 9). The line between the
two boxes connects the means. The median is better for
MDD, even though the first and third quartile values for
accuracy are better using a traditional method.

Fig. 2. Box-and-whisker plot for accuracy of SR1

1 Traditionally, only p-values lower to 0.05 are considered as signifi-

cant. We are also considering significant values equal to 0.05. This choice
depends on how conservative we want to be with the analysis. We think
that with this choice we are not rejecting significant results very close to
0.05 but lower, since SPSS rounds results.

Results for SR2 and SR3 are similar to SR1. Appendix
H shows the histograms and box-and-whisker plots for
both replications.

The power of each replication is low since all three
have small sample sizes. Table 3 shows the p-values
yielded by the mixed model and the means of both treat-
ments. There are no significant results since all p-values
are greater than 0.05. Moreover, we only have three units
in SR2, which is not enough data to run the test.

Table 3. P-values for strict replications

Rep.2 E.U.3 Factor Value
SR1 7 Method p-value 0.37

meanTraditional 84.5
meanMDD 73.6

Method*Problem p-value 0.13
SR2 3 Method p-value -

meanTraditional 65.9
meanMDD 91.3

Method*Problem p-value -
SR3 7 Method p-value 0.12

meanTrad 80.8
meanMDD 90.8

Method*Problem p-value 0.98

We cannot reject the null hypothesis H01 (The quality of
software built using MDD or a traditional method is similar).
Note that the problem type does not affect the results
since the method*problem interaction is not significant.

Comparing the results of strict replications with the
baseline experiment, we find that SR1, SR2 and SR3 get
similar results to the baseline: there are no significant
differences for accuracy using MDD or a traditional
method for simple problems. Since these replications
were conducted at a different site and by different ex-
perimenters, we can state that the results of the baseline
experiment hold for other sites and experimenters.

5.2. Object replications with extended problems
Fig. 3 shows the box-and-whisker plot for accuracy in
OR1 (histogram is in Appendix H). We find that the me-
dian, and the first and the third quartiles for accuracy are
larger using MDD than a traditional method. This means
that subjects who worked with MDD appear to achieve
better results for accuracy. Note that OR1 is the replica-
tion with the biggest sample size (10 units). Even though
the sample size of the baseline experiment was bigger (13
units), the problems used in OR1 are more complex.
Therefore, we might expect to get significant differences
even with a smaller sample size. Descriptive data for OR2
and OR3 is similar to OR1, plots can be seen in Appendix
H.

The power of each replication is low. Table 4 shows the
p-values, effect size and means. There are significant
results for OR1 and OR3. In OR1 results are significant for
the method factor. MDD has the effect of accuracy being
moderately higher than for the traditional method.

2 Replication
3 Experimental units

AUTHOR: TITLE 9

In OR1 there is also a significant result for the
method*problem interaction. This means that problem is
affecting the method. Appendix H-Fig. 19 shows a profile
plot. Accuracy for MDD is clearly better than for tradi-
tional methods with respect to both problems. However,
the increase in quality for MDD is greater for the Invoice
Problem than for the Photography Problem. As the result
for method*problem was significant, we analyzed the
blocking variable Problem in OR1. Results for Problem
show that there are no significant differences between
treatments.

Fig. 3. Box-and-whisker plot for accuracy of OR1 with EIP and EPP

Table 4. P-values for object replications

Rep. E.U. Factor Value
OR1 10 Method p-value 0.00

effect size 0.61
meanTraditional 31
meanMDD 66.3

Method*Problem p-value 0.01
Problem p-value 0.78

OR2 6 Method p-value 0.94
meanTraditional 30.5
meanMDD 30.7

Method*Problem p-value 0.79
OR3 6 Method p-value 0.05

effect size 0.53
meanTraditional 21.4
meanMDD 47.7

Method*Problem p-value 0.14

In OR3 the significance between both treatments was

still moderate but lower than in OR1. We found no sig-
nificant results for the method*problem interaction. This
may be due to the smaller sample size than OR1.

OR2 does not conclude significant differences between
treatments. This could be caused by the low statistical
power of the samples in OR2. A low power may involve
accepting null hypothesis when they are false. Even
though OR1 and OR3 have a low power, we identified
significant differences, which lead us to think that differ-
ences in OR2 could appear with a higher power. Other
reason that could justify the absence of significant differ-

ences in OR2 is the subjects’ profile, that could be a con-
founding factor. Subjects of OR2 have more experience in
the application of a traditional development method in
industry than subjects of other replications.

So there are significant differences for accuracy in
OR1 and OR3, where MDD is better than a traditional
method. This result confirms the finding from the baseline
experiment that there appeared to be differences in accuracy in
complex systems (i.e., in the object replications) that did not
occur for simpler systems (i.e., in the baseline). Effect sizes
are bigger for OR1 and OR3 than for baseline experi-
ment. Hence, we reject H01 for OR1 and OR3.

5.3. Object replications with original problems
This analysis studies each object replication considering
only the part of the problems used in the baseline (OIP
and OPP). The goal is to study whether or not time pres-
sure affects the results. In object replications, subjects had
more time pressure since they had 4 hours to solve EIP
and EPP. Those 4 hours are the same time that subjects in
the baseline had to solve OIP and OPP.

Table 5 shows the p-value, and mean of both treat-
ments for the accuracy of the part of the problems shared
by the baseline experiment and the replications. There are
no significant results for any replication, even though
descriptive data (Appendix H-Fig. 20 and Appendix H-
Fig. 21) show MDD to be slightly better.

Table 5. P-values for object replications analyzing problem parts

shared with the baseline experiment

Rep. E.U. Factor Value

OR1 10 Method p-value 0.12
meanTraditional 81.7
meanMDD 97.1

Method*Problem p-value 0.5
OR2 6 Method p-value 0.15

meanTraditional 66.5
meanMDD 85

Method*Problem p-value 0.8
OR3 6 Method p-value 0.29

meanTraditional 75.6
meanMDD 87.8

Method*Problem p-value 0.44

We conclude that, even though accuracy varies for

each treatment, these differences are not significant.
This result matches the results of the baseline experiment: easy
problems (OIP and OPP) do not reveal significant differences
between MDD and a traditional method for accuracy. Hence,
we cannot reject H01. Note that the results for replications
with small sample sizes are not significant most likely
because bigger samples sizes are needed to detect very
small differences between treatments. Aggregations
should address this issue.

6. AGGREGATED RESULTS
In order to improve the power of the statistical test, we
aggregated the results of the different replications [13],
again applying the mixed model.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

6.1. Aggregation of strict replications
By aggregating the three strict replications, we get 17
experimental units (7 units SR1, 3 units SR2 and 7 units
SR3). Fig. 4 shows the box-and-whisker plot for accuracy
(histogram is in Appendix H-Fig. 26). There is an overlap
between both treatments, although the median of MDD
yields better accuracy.

Fig. 4. Box-and-whisker plot for accuracy of SR1+SR2+SR3

Table 6 shows the p-values and means of both treat-
ments for this aggregation. There are no significant re-
sults since all p-values are greater than 0.05.

Table 6. P-values for the aggregation of strict replications

Rep. E.U. Factor Value
SR1+
SR2+
SR3

17 Method p-value 0.54
meanTraditional 79.7
meanMDD 83.8

Method*Problem p-value 0.09

The results of the aggregation of strict replications con-

clude that accuracy is slightly better for MDD than for a
traditional method even though these differences are
not significant. These results match the findings from the
individual analysis of each strict replication, as well as of the
baseline experiment. Results hold even with a sample size
greater than for the baseline experiment (13 units versus
17).

To improve statistical power, we aggregated strict rep-
lications together with the baseline experiment, resulting
in a sample size of 30 experimental units. The results of
this aggregation are the same as for the strict replications,
that is, there are no significant differences between the
two methods. Therefore, we have to conclude that power
is not behind the fact that results are not significant.

6.2. Aggregation of object replications with
extended problems

Aggregating the three object replications using complex
problems (EIP and EPP), we have 22 experimental units
(10 units in OR1, six units in OR2 and six units in OR3).
Fig. 5 shows the box-and-whisker plot for accuracy (his-

togram is in Appendix H-Fig. 27). Medians, and the first
and third quartiles show that MDD yields better results
than traditional methods. Moreover, only MDD gets an
important amount of samples with accuracy higher to
60%. MDD yields better accuracy than traditional meth-
ods.

Fig. 5. Box-and-whisker plot for accuracy of OR1+OR2+OR3 study-

ing EIP and EPP

Table 7 shows the p-values, effect sizes and means of
both treatments for this aggregation. Since the p-value is
less than 0.05, differences between treatments are signifi-
cant. The value of 0.42 for effect size means that there are
moderate differences between the two treatments. Accu-
racy with MDD is moderately higher than for a tradi-
tional method. There are no significant results for the
method*problem interaction.

Table 7. P-values for the aggregation of object replications with

EIP and EPP

Rep. E.U. Factor Value
OR1+
OR2+
OR3

22 Method p-value 0.00
Effect size 0.42

meanTraditional 28.2
meanMDD 51.5

Method*Problem p-value 0.66

The results of the aggregation of object replications
suggest that accuracy for MDD applied to complex prob-
lems is significantly better than for a traditional
method. This result matches the findings of the analysis
of each object replication individually. These results also
confirm the hypothesis that we developed based on base-
line outcomes: differences for accuracy between the two
treatments are more evident for complex problems. After
increasing the problem complexity with respect to the
baseline, there are differences. Therefore, we reject H01.
Hence, the small scale of the experimental objects used appears
to be the main reason for not detecting significant results in the
baseline experiment.

AUTHOR: TITLE 11

6.3. Aggregation of object replications with
original easy problems

This analysis pools together all object replications consid-
ering only the part of the problems that they have in
common with the baseline.

Box-and-whisker plot and histogram can be found in
Appendix H-Fig. 29, they are similar to the aggregation
with extended problems. Table 8 shows the p-values of
the aggregation of object replications considering the part
of the problems that they have in common with strict
replications and the baseline experiment (OIP and OPP).
We get significant results for method. The effect size
means that differences between treatments are moderate.
Therefore, accuracy is better for MDD than for traditional
methods.

Table 8. P-values for the aggregation of object replications ana-

lyzing OIP and OPP

Rep. E.U. Factor Value

OR1+
OR2+
OR3

22 Method p-value 0.01
Effect size 0.73

meanTraditional 75.9
meanMDD 91.2

Method*Problem p-value 0.85

The aggregation of object replications reveals signifi-

cant differences between MDD and traditional methods
for easy problems (OIP and OPP) developed under time
pressure. These differences did not show up when we analyzed
the same easy problems in strict replications or the baseline
experiment (either individually or after aggregation). Some
baseline observations led us to suspect that differences
between traditional methods and MDD occur only for
complex problems. However, the results of the aggrega-
tion of object replications considering easy problems de-
veloped under time pressure clarify the picture. Notice
that this is a bigger sample size (22 experimental units).
However, it is smaller than the size of the aggregated
sample of strict replications and baseline experiment (30
experimental units), which did not reveal any significant
effect. Therefore, the reason for detecting a non-
significant effect could be a moderator variable rather
than an increase in power. To get a reliable response, we
aggregated all the experiments studying time pressure.

6.4. Aggregation of strict replications + object
replications + baseline experiment to study
time pressure

This analysis pools together the data of the whole family
of experiments. The aggregation studies time pressure as
a moderator variable. Subjects in the strict replications
and baseline experiment were subject to less time pres-
sure than subjects in the object replications.

We aggregate the whole family of experiments consid-
ering only the part of the problems common to strict rep-
lications, object replications and the baseline experiment
(OIP and OPP). There are two groups of replications de-
pending on the time pressure for subjects. Subjects of
strict replications and the baseline experiment had four

hours to develop easy problems (OIP and OPP), whereas
subjects of object replications had four hours to develop
problems that were three times more complex (EIP and
EPP had 3 exercises and OIP and OPP had 1 exercise), of
which OIP and OPP are part. We added time pressure as
moderator variable to distinguish between the time pres-
sure that subjects experienced in each replication. This
moderator variable has two levels: high and low.

Fig. 6 shows the box-and-whisker plot for the aggrega-
tion of all the replications with the baseline. The median,
the first and the third quartiles are better for MDD at both
pressure levels. This means that subjects using MDD
achieve better results than subjects working with a tradi-
tional method. Note that the median of MDD is better for
a high time pressure.

Fig. 6. Box-and-whisker plot for accuracy of strict replications+

object replications+baseline experiment for OIP and OPP

Table 9. P-values for replications of strict replication + object replica-
tions + baseline experiment considering the common part of the

problems (OIP and OPP)

Rep. E.U. Factor Value

SR1+
SR2+
SR3+
OR1+
OR2+
OR3+
Base.

52 Method p-value 0.00
Effect size 0.47

meanTraditional 81.7
meanMDD 90.3

Method*Problem p-value 0.31
Pressure p-value 0.73
Method*Pressure p-value 0.62
Pressure*Problem p-value 0.88

Table 9 shows the p-values of the aggregation between

strict replications, object replications and the baseline
experiment considering the common part of the problems
(OIP and OPP). Note that these p-values have been calcu-
lated after applying the transformation log(Subtract Xi
from highest score) since residuals did not followed a
normal distribution. Results show that there are signifi-
cant results for the method factor, with a moderate effect

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

in favour of MDD versus traditional development. Table
9 includes the pressure moderator variable and the
method*pressure interaction. Neither is significant, al-
though the interaction is not far off. Note that the sample
size needed to detect significant interactions is bigger
than what is required to detect main effects. We suspect
that the result might be significant with a bigger sample
size. Therefore, the moderator variable does not affect
accuracy. The method*problem and pressure*problem
interactions do not have significant results. This means
that the blocking variable is not affecting accuracy.

We conclude that even with easy problems (some
solved under time pressure and others not), there is a
small difference between MDD and traditional meth-
ods with a sample size of 52 experimental units. This
outcome contradicts the baseline results. After aggregating all
replications and increasing statistical power, differences
between treatments are bigger, even though problems are
easy. Note that the effect size for method (0.47) is small,
and therefore its detection requires a bigger sample size.
However, we tend to think that the main reason is time
pressure rather than power, although we have been un-
able to confirm this point. It might take a bigger sample
size to appreciate the role played by time pressure. There-
fore, we should expect its effect to be small.

6.5. Aggregation of Strict Replications + Object
Replications + Baseline Experiment to Study
Problem Complexity

This analysis pools together the whole family of experi-
ments adding problem complexity as a moderator vari-
able, since the complexity of problems was not the same
in both types of replications.

We aggregated the replications differentiated by the
problem complexity. We add problem difficulty as mod-
erator variable to the data analysis to differentiate the
complexity of the problem used in each replication. This
moderator variable has two levels: easy and difficult.

Fig. 7 shows the box-and-whisker plot for accuracy.
The median, the first and the third quartiles are different
for MDD and traditional methods. This means that the
accuracy values are better for MDD. While the medians
for accuracy with respect to easy problems are similar in
both MDD and traditional methods, the median with
respect to complex problems is clearly better for MDD.

Table 10 shows the p-values for the aggregation using
the difficulty moderator variable to differentiate the com-
plexity of problems used in each type of replication. Re-
sults for method are significant with an effect size of 0.38,
which is a small effect. The means of both treatments
show that accuracy is better for subjects working with
MDD than with a traditional method. The comparison of
treatments taking into account problems of varying diffi-
culty may be the reason for there being a smaller effect
size than when aggregating object replications. Remem-
ber that by aggregating only complex problems (Table 7),
there was a p-value of 0.00 and a moderate effect size of
0.42 for the method variable. When we mix easy problem
replications with no significant effect and complex prob-
lem replications with a moderate effect in the same ag-

gregation, the impact of MDD on accuracy becomes
fuzzy.

Fig. 7. Box-and-whisker plot for accuracy of strict replications+

object replications+baseline experiment for problems of different
difficulty

Table 10. P-values for strict replication + object replications + base-
line considering the problems as they were shown to subjects

Rep. E.U. Factor Value

SR1+
SR2+
SR3+
OR1+
OR2+
OR3+
Base.

52 Method p-value 0.00
Effect size 0.38

meanTraditional 61.5
meanMDD 73.5

Method*Problem p-value 0.32
Difficulty p-value 0.00

Effect size 2.1
meanEasy 87.7

 meanDifficulty 39.9
Method* Difficulty p-value 0.00
Difficulty*Problem p-value 0.29

In Table 10, we also identified a significant result for

the difficulty moderator variable with a large effect size
(2.1). Looking at means, accuracy is better for easy prob-
lems (OIP and OPP). This makes sense since subjects had
the same amount of time to develop software to solve
both easy problems and complex problems. Therefore, the
quality of the software developed to solve the easy prob-
lems should be much higher. There are also significant
results for the method*difficulty interaction. They show
that the improved accuracy achieved using MDD versus
traditional methods depends on the problem difficulty.
There are bigger differences between MDD and tradi-
tional methods when the problems to be solved are com-
plex. Appendix H-Fig. 30 shows the profile plot for
method*difficulty. The difference in accuracy between
treatments is bigger for difficult problems, where MDD
achieves better results. Therefore, MDD gets better accu-
racy results for difficult problems. This is consistent with

AUTHOR: TITLE 13

the findings for the baseline. This result makes sense since
the analyst tends to make more mistakes using a tradi-
tional method for a more complex problem. The automa-
tion provided by MDD can avoid these mistakes.

Since experimental units are the same in Table 9 and
Table 10, we can compare the roles of time pressure and
difficulty. Note that both moderator variables are interre-
lated in our family of experiments. A low time pressure is
consistent with an easy problem, whereas a high time
pressure is consistent with a difficult problem. According
to these results, time pressure appears to have a smaller
impact than difficulty, since the sample size that detects
method*difficulty does not detect the method*pressure
interaction.

We conclude that there are significant differences in
accuracy between treatments, and the difficulty of the
problem moderates the resulting accuracy. This result is
consistent with the result of the baseline experiment, although
the differences identified in the aggregation of all the
replications are more significant because statistical power
is higher. The small effect size for method (0.38) is similar
to the effect size resulting from the aggregation of object
replications for complex and easy problems.

6.6. Aggregation of Strict Replications + Object
Replications + Baseline Experiment Splitting
by the Traditional Method Used

Following the study of the baseline experiment, this
analysis pools together all the experiments within the
family of experiments filtering the subjects by the tradi-
tional method used in the control treatment: model-based
(subjects that in the traditional method drew any concep-
tual model before coding) and code-centric development
(subjects that in the traditional method wrote the code
without drawing any conceptual model). Each subject
applied model-based or code-centric depending on
her/his preferences.

We did not perform this analysis in each replication
separately in order to preserve statistical power. How-
ever, when we aggregated all replications and the base-
line experiment, we had a large enough sample size to
perform a post-hoc analysis of this variable. There were
22 units that worked with model-based and 30 units that
worked with code-centric development methods. Note
that this is a post-hoc analysis and cannot detect causality
since our study was not designed for this purpose. There-
fore, the type of traditional development was not allo-
cated randomly.

Appendix H-Fig. 31, Fig. 32, Fig. 33, Fig. 34 show his-
tograms and box-and-whisker plots. Table 11 shows the
p-values. There are significant results for the method
factor where there is a small effect size (0.36) for the im-
provement of MDD over model-based development and a
moderate (0.4) effect size if MDD is compared with code-
centric development.

The results for the difficulty moderator variable are
significant with a big effect size (2.79 and 1.68) in favour
of MDD compared with both model-based and code-
centric development. Method*problem and method* dif-
ficulty interactions do not achieve a significant result

when MDD is compared against model-based develop-
ment but the differences are significant if MDD is com-
pared against code-centric development. Accuracy for the
Invoice Problem is better than for the Photography Prob-
lem.

Table 11. P-values for strict replication + object replications + base-

line experiment differentiating between problem complexity and
filtering by model-based and code-centric development methods

Rep. E.U. Factor Value

Model-Based
OR1+
OR2+
OR3+
SR1+
SR2+
SR3+
Base.

22 Method p-value 0.02
effect size 0.36
meanTraditional 54.3
meanMDD 66.9

Method*Problem p-value 0.28
Difficulty p-value 0.00

effect size 2.79
meanEasy 91.4

 meanDifficulty 35
Method*Difficulty p-value 0.35
Difficulty*Problem p-value 0.27

Code-Centric
OR1+
OR2+
OR3+
SR1+
SR2+
SR3+
Base.

30 Method p-value 0.00
effect size 0.4
meanTraditional 66.7
meanMDD 78.2

Method*Problem p-value 0.01
Problem p-value 0.09
Difficulty p-value 0.00

effect size 1.68
meanEasy 85.9

 meanDifficulty 45.7
Method*Difficulty p-value 0.00
Difficulty*Problem p-value 0.62

Appendix H-Fig. 35 shows the profile plot highlighting

the differences between problems that are more evident
for MDD. Accuracy is better for easy problems. Appendix
H-Fig. 36 shows the profile plot. Differences between
difficulties for accuracy are more evident for code-centric
development.

We conclude that for both model-based and code-
centric development the differences are significant
when compared with each other, where MDD yields
better values for accuracy. Another result that model-
based and code-centric development has in common is
that there are significant differences for difficulty and
method*difficulty. This contradicts the result for the baseline
experiment where we did not get significant differences for
either model-based or code-centric development. The baseline
experiment and strict replications yield better values for
accuracy than object replications using MDD. This result
makes sense since it was possible to solve the problems
set in the baseline experiment and strict replications
within the time scheduled for the experiment, whereas
the problems set in the object replications were too large.
The only difference between model-based and code-
centric development is that code-centric development

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

yields significant results for problem and
method*problem. The Invoice Problem is slightly easier
than the Photography Problem since it does not require
inheritance between classes. This difference is more evi-
dent when developers use code-centric development.

6.7. Interpretation of the Results
We can state that MDD obtains better values than a tradi-
tional method, and these differences are more evident
when problem difficulty and time pressure increase.
When we aggregate replications and we increase the
power, differences between treatments appear independ-
ently of the problem difficulty and the time pressure. We
also conclude that the use of a model-based or code-
centric paradigm in the traditional method does not in-
volve changes in the results. A summary of the results is
in Appendix I.

We analyzed time pressure and difficulty as moderator
variables. In our design, the two variables are related to
each other since a low time pressure is consistent with an
easy difficulty and vice versa. Therefore, we were unable
to check all the combinations of both variables to study
their effect on the factor. Even so, MDD appears to work
better when both time pressure and difficulty are high.
Note that the data aggregation results in 52 experimental
units. This is equivalent to a large statistical power ac-
cording to G*Power [15]. According to the results of the
aggregation, we reject the null hypothesis H01 and accept
that there are differences between MDD and traditional
methods in terms of quality.

7. THREATS TO VALIDITY
This section discusses the threats to validity that could
affect the family of experiments. We have focused on the
threats that appear when we replicate the experiment and
when we aggregate results to improve the statistical
power. Threats to the experimental design and how each
experiment replication is run are not discussed in this
paper since they are described in detail in the report on
the baseline experiment [38]. In the following we describe
the threats according to Wohlin’s classification [50]. For
each group of threats, we made a distinction between
threats that we were unable to address, threats whose
effect we managed to minimize, and threats that we
solved.

Conclusion validity. This threat is concerned with is-
sues that affect the ability to draw the correct conclusions
about relations between the treatment and the outcome.
Threats of this type to some replications are:
 Low statistical power: Replications of SR have fewer

units than replications of OR, leading to lower statis-
tical power. Low statistical power might result in null
hypotheses being accepted when they are false.
Moreover, in the case of SR2 (Table 3), the number of
units is so low that the statistical test cannot be run.

 Fishing: This threat materializes when experimenters
are looking for a definite result. The experimenters
used in both replication types were MDD trainers.
This could result in some level of researcher bias.

A threat that we have minimized in the replications is

the Reliability of treatment implementation. This threat
might materialize when treatments are taught (and then
applied by experiment participants) by different experi-
menters. We tried to minimize this threat by using the
same instruments in all replications and organizing meet-
ings among all experimenters.

The threat that we avoided in the replications is Ran-
dom heterogeneity of subjects. This threat materializes when
subjects are heterogeneous. This could mean that differ-
ences between subjects are greater than differences be-
tween treatments. Since replications were run in several
years, subjects might have a different profile in each rep-
lication. We solved this threat by recruiting subjects with
similar profiles in all replications (software developers
that are studying for a master’s degree). Moreover, we
used demographic questionnaires to detect differences
between the profiles of subjects recruited in each replica-
tion. There were no differences with respect to experience
with MDD and in industry.

Internal validity. This threat is concerned with influ-
ences that may affect the dependent variable with respect
to causality of which researchers are unaware. There are
two threats that we have tried to minimize:
 History: This threat materializes when treatments are

applied at different times. This may lead to the ex-
periment being run in different contexts. Our repli-
cations are open to this threat since each university
ran a different replication every year. We tried to
mitigate this threat using the same experimenters in
each type of replication sharing the same materials
across all replications.

 Interactions with selection: This threat materializes
when there are different groups of subjects, and each
group behaves differently from the others. Depend-
ing on the profile of the subjects recruited for each
replication, subjects in some replications might have
learned MDD better than others or might have more
knowledge of traditional development. Different
levels of expertise with respect to MDD or tradi-
tional methods in each replication may affect the re-
sults of the aggregation. We tried to minimize this
threat by using the same training problems in all the
replications. Even though we can guarantee that all
subjects had a minimum knowledge of MDD and
traditional methods before applying the treatments,
we cannot be sure that the subjects’ skills are the
same across all the replications.

Construct validity. This threat is concerned with gen-
eralizing the results of the experiment to the concept or
theory behind the experiment. The threat posed to the
replications is Mono-operation bias. This threat materializes
when there is only one factor, which may underrepresent
the construct and thus not give the full picture of the
theory. This is a potential threat when we aggregate the
data of the strict replications and object replications using
only easy problems. However, the other aggregations
offset this threat. In this case where the analysis focuses
exclusively on the method factor, there is no moderator
variable to analyze the differences between the replication
type, since we only considered the easy part of the prob-

AUTHOR: TITLE 15

lems. There are some other differences between the repli-
cation type, apart from the data: subjects were exclusively
exposed to easy problems in strict replications and com-
plex problems in object replications. Subjects participat-
ing in both types of replications had the same period of
time to complete the tasks (approximately four hours).
Therefore, subjects of strict replications took approxi-
mately four hours to complete easy problems and subjects
of object replications spent the same amount of time on
complex problems (i.e., the time taken to solve easy prob-
lems in object replications was shorter).

External validity. This threat is concerned with condi-
tions that limit our ability to generalize the results of our
experiments to industrial practice. The threat posed to the
family of experiments is the Interaction of settings and
treatments. Results are applicable only to subjects with
little experience in industry (we conducted the experi-
ment with students) considering toy experimental prob-
lems such as Photography and Invoice. More replications
would have to be conducted with other types of subjects
and problems to study whether the results of our family
hold in other settings. Other threat that may suffer our
family of experiments is Confounding factors. This happens
when it is impossible to distinguish the effects of two
factors from each other. Results may be affected also by
other factors that were not considered in our analysis,
such as, tools, subjects’ profile, the experience of partici-
pants or teacher, among others.

Other threat suffered in all the aggregations is Gener-
alization of results. Experimental objects of the replications
are based on the development of a Web application; there
is no development in other platform. This reduces the
generalization of the results since the effort in a tradi-
tional development method may be different for other
platforms, such as mobile systems. The threat to the ag-
gregation of the replications is Interaction of history and
treatment. This threat materializes when each replication
is conducted on a different day, and the context of that
day is likely to affect the results. Since each replication
was conducted in a different year and each replication
lasted for several weeks, we cannot be sure that the re-
sults would be unaffected by the context of the day on
which the treatments were applied. Issues such as bore-
dom, personal problems, stress, etc., can have a bigger or
smaller impact on the results depending on the day when
the treatment is applied.

8. CONCLUSIONS
This paper presents a family of experiments replicating a
baseline experiment to analyze the quality of systems
developed using MDD against traditional software de-
velopment methods. The goal of the replication is two-
fold: (1) check whether the results of the baseline experi-
ment hold; (2) further elaborate upon the preliminary
finding of the baseline experiment that MDD has a bigger
effect on quality when problem complexity increases. To
do this, we defined two types of replications: strict repli-
cations, which should be as similar as possible to the
baseline experiment, and object replications, in which we
increased problem complexity. We ran three strict replica-

tions at Universidad Diego Portales in Chile and three
object replications at Universidad Politécnica de Valencia
in Spain.

The results of the replications answer our research
question (RQM) confirming the results of the baseline
experiment:
 MDD yields better values for accuracy than tradi-

tional development methods. In the baseline ex-
periment, these differences were observed in the de-
scriptive data, but the sample size was so small that
we were unable to detect significant results. The rep-
lications addressed these shortcomings, and we were
able to analyze 52 units by aggregating the data,
avoiding type II error (failure to detect a difference
when there is one).

 Differences between MDD and the control are big-
ger when the problems to be solved are more com-
plex since results are significant and the effect size
with complex problems is moderate even with low
statistical power. The new results are consistent with
the findings of the baseline experiment insofar as the
differences between treatments are independent of
the traditional development technique (model-based
or code-centric) used.

We can extract two recommendations from the results.
The first is that, to exploit the strengths of MDD, it should
be applied to complex problems. The second is that MDD
is more suitable when developers have previous knowl-
edge of the MDD tool or have enough time to learn the
technique. During the experiment, we found that only a
few subjects knew anything about MDD before they took
the course. In our setting, participants were not novice
users of traditional methods, but they were new to MDD.
Moreover, the teacher spent 12 hours training subjects on
the use of the MDD tool and six hours solving a training
problem. Therefore, the MDD learning period is not neg-
ligible. Note that subjects are knowledgeable enough to
develop a system by the end of the learning period, but
are not yet experts at the technique.

ACKNOWLEDGEMENTS
This work was developed with the support of the Spanish
Ministry of Science and Innovation project DataMe
(TIN2016-80811-P), TIN2014-60490-P and was co-financed
by ERDF. It also has the support of Generalitat Valenci-
ana with GISPRO project (PROMETEO/2018/176).

9. REFERENCES

[1] S. Abrahao, C. Gravino, E. Insfran, G. Scanniello,
and G. Tortora, "Assessing the Effectiveness of
Sequence Diagrams in the Comprehension of
Functional Requirements: Results from a Family of
Five Experiments," Software Engineering, IEEE
Transactions on, vol. 39, pp. 327-342, 2013.

[2] Ö. Albayrak and J. C. Carver, "Investigation of
individual factors impacting the effectiveness of
requirements inspections: a replicated experiment,"
Empirical software engineering, vol. 19, pp. 241-266,
2012.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

[3] P. Baker, S. Loh, and F. Weil, "Model-driven
engineering in a large industrial context - motorola
case study," in 8th International Conference of Model
Driven Engineering Languages and Systems (MoDELS),
Montego Bay, Jamaica, pp. 476–491. 2005

[4] V. R. Basili and F. Lanubile, "Building Knowledge
through Families of Experiments," IEEE Transaction
on Software Engineering, vol. 25, pp. 456-473, 1999.

[5] S. Biffl, P. Grünbacher, and M. Halling, "A family of
experiments to investigate the effects of groupware
for software inspection," Automated Software
Engineering, vol. 13, pp. 373-394, 2006/07/01 2006.

[6] M. Brambilla, J. Cabot, and M. Wimmer, Model-
Driven Software Engineering in Practice (Synthesis
Lectures on Software Engineering), first ed.: Morgan &
Claypool Publishers, 2012.

[7] C. Bunse, H.-G. Gross, and C. Peper, "Embedded
System Construction --- Evaluation of Model-
Driven and Component-Based Development
Approaches," in Models in Software Engineering, R. C.
Michel, Ed., ed: Springer-Verlag, pp. 66-77, 2009.

[8] G. Canfora, F. Garc\, \#237, M. Piattini, F. Ruiz,
and C. A. Visaggio, "A family of experiments to
validate metrics for software process models," J.
Syst. Softw., vol. 77, pp. 113-129, 2005.

[9] L. Cohen, Statistical power analysis for the behavioral
sciences, 2nd. Edition ed.: Lawrence Earlbaum
Associates, 1988.

[10] H. Cooper and E. A. Patall, "The relative benefits of
meta-analysis conducted with individual
participant data versus aggregated data," Psychol
Methods, vol. 14, pp. 165-76, Jun 2009.

[11] J. Cruz-Lemus, M. Genero, M. E. Manso, S.
Morasca, and M. Piattini, "Assessing the
understandability of UML statechart diagrams with
composite states—A family of empirical studies,"
Empirical software engineering, vol. 14, pp. 685-719,
2009/12/01 2009.

[12] F. B. da Silva, M. Suassuna, A. C. França, A. Grubb,
T. Gouveia, C. F. Monteiro, and I. dos Santos,
"Replication of empirical studies in software
engineering research: a systematic mapping study,"
Empirical software engineering, vol. 19, pp. 501-557,
2014/06/01 2014.

[13] O. Dieste, E. Fernández, R. García, and N. Juristo,
"Hidden Evidence Behind Useless Replications," in
1st International Workshop on Replication in Empirical
Software Engineering Research (Workshop in ICSE),
Cape Town (South Africa), pp. 1-8. 2010

[14] D. W. Embley, S. Liddle, and Ó. Pastor,
"Conceptual-Model Programming: A Manifesto," in
Handbook of Conceptual Modeling, ed: Springer, pp. 3-
16, 2011.

[15] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner,
"G*Power 3: A flexible statistical power analysis
program for the social, behavioral, and biomedical
sciences," Behavior Research Methods, vol. 39, pp. 175-
191, 2007/05/01 2007.

[16] A. M. Fernández-Sáez, M. Genero, M. R. V.
Chaudron, D. Caivano, and I. Ramos, "Are Forward
Designed or Reverse-Engineered UML diagrams
more helpful for code maintenance?: A family of
experiments," Information and Software Technology,
vol. 57, pp. 644-663, 2015.

[17] D. Fucci and B. Turhan, "On the role of tests in test-
driven development: a differentiated and partial
replication," Empirical software engineering, vol. 19,
pp. 277-302, 2014/04/01 2014.

[18] G. V. Glass, "Primary, Secondary, and Meta-
Analysis of Research," Educational Researcher, vol. 5,
pp. 3-8, 1976.

[19] M. Gómez and S. Acuña, "A replicated quasi-
experimental study on the influence of personality
and team climate in software development,"
Empirical software engineering, vol. 19, pp. 343-377,
2014/04/01 2014.

[20] O. S. Gómez, N. Juristo, and S. Vegas,
"Understanding replication of experiments in
software engineering: A classification," Information
and Software Technology, vol. 56, pp. 1033-1048, 2014.

[21] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G.
Scanniello, "Validating a model-driven software
architecture evaluation and improvement method:
A family of experiments," Information and Software
Technology, vol. 57, pp. 405-429, 2015.

[22] I. Hadar, I. Reinhartz-Berger, T. Kuflik, A. Perini, F.
Ricca, and A. Susi, "Comparing the
comprehensibility of requirements models
expressed in Use Case and Tropos: Results from a
family of experiments," Information and Software
Technology, vol. 55, pp. 1823-1843, 2013.

[23] B. Hailpern, Tarr, P., "Model-Driven Development:
the Good, the Bad, and the Ugly," IBM Syst. J., vol.
45, pp. 451-461, 2006.

[24] J. E. Hunter, F. L. Schmidt, and G. B. Jackson, Meta-
analysis: cumulating research findings across studies:
American Psychological Association. Division of
Industrial-Organizational Psychology, 1982.

[25] IEEE, IEEE standard computer dictionary. A
compilation of IEEE standard computer glossaries.
Institute of Electrical and Electronics Engineers.
New York, EE.UU., 1991.

[26] INTEGRANOVA, "INTEGRANOVA Technologies:
http://www.integranova.com," ed.

[27] Iso/iec, "ISO/IEC 25000 - Software engineering -
Software product Quality Requirements and
Evaluation (SQuaRE) - Guide to SQuaRE," 2005.

[28] José, A. M. Santos, and M. G. d. Mendonça,
"Exploring decision drivers on god class detection
in three controlled experiments," presented at the
Proceedings of the 30th Annual ACM Symposium
on Applied Computing, Salamanca, Spain, pp. 1472-
1479, 2015.

[29] N. Juristo and A. Moreno, Basics of Software
Engineering Experimentation: Springer, 2001.

[30] N. Juristo and S. Vegas, "The role of non-exact

AUTHOR: TITLE 17

replications in software engineering experiments,"
Empirical software engineering, vol. 16, pp. 295-324,
2011.

[31] T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houët,
and R. Barendse, "A Comparative Case Study of
Model Driven Development vs Traditional
Development: The Tortoise or the Hare," presented
at the Proc. of 4th European Workshop on From
code centric to model centric software engineering:
Practices, Implications and ROI (C2M), Enschede,
The Netherlands, pp. 22-33, 2009.

[32] R. O. Kuehl., Design of Experiments: Statistical
Principles of Research Design and Analysis: Second
Edition. Brooks/ColeCengage Learning. , 2000.

[33] C. V. C. d. Magalhaes, F. Q. B. d. Silva, and R. E. S.
Santos, "Investigations about replication of
empirical studies in software engineering:
preliminary findings from a mapping study,"
presented at the Proceedings of the 18th
International Conference on Evaluation and
Assessment in Software Engineering, London,
England, United Kingdom, pp. 1-10, 2014.

[34] Y. Martínez, C. Cachero, and S. Meliá, "MDD vs.
traditional software development: A practitioner’s
subjective perspective," Information and Software
Technology, vol. 55, pp. 189-200, 2013.

[35] T. O. Meservy, "Transforming software
development : an MDA road map " IEEE Computer,
vol. 38, 2005.

[36] L. S. Meyers, Applied multivariate research : design and
interpretation / Lawrence S. Meyers, Glenn Gamst, A.J.
Guarino. Thousand Oaks: SAGE Publications, 2006.

[37] D. L. Moody, "The method evaluation model: a
theoretical model for validating information
systems design methods," presented at the
European Conference on Information Systems
(ECIS 03), Naples, Italy pp. 1327-1336, 2003.

[38] J. I. Panach, S. España, Ó. Dieste, Ó. Pastor, and N.
Juristo, "In search of evidence for model-driven
development claims: An experiment on quality,
effort, productivity and satisfaction," Information and
Software Technology, vol. 62, pp. 164-186, 2015.

[39] N. Parkinson, Parkinson's Law and Other Studies in
Administration. Boston: Houghton Mifflin
Cornpony, 1957.

[40] R. D. Riley, P. C. Lambert, and G. Abo-Zaid, "Meta-
analysis of individual participant data: rationale,
conduct, and reporting," BMJ, vol. 340, 2010-02-05
13:38:57 2010.

[41] P. Runeson, A. Stefik, and A. Andrews, "Variation
factors in the design and analysis of replicated
controlled experiments," Empirical software
engineering, vol. 19, pp. 1781-1808, 2013.

[42] G. Scanniello and U. Erra, "Distributed modeling of
use case diagrams with a method based on think-
pair-square: Results from two controlled
experiments," J. Vis. Lang. Comput., vol. 25, pp. 494-
517, 2014.

[43] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-
Lemus, and G. Tortora, "On the impact of UML
analysis models on source-code comprehensibility
and modifiability," ACM Trans. Softw. Eng.
Methodol., vol. 23, pp. 1-26, 2014.

[44] G. Scanniello, C. Gravino, M. Risi, G. Tortora, and
G. Dodero, "Documenting Design-Pattern Instances:
A Family of Experiments on Source-Code
Comprehensibility," ACM Trans. Softw. Eng.
Methodol., vol. 24, pp. 1-35, 2015.

[45] P. Sfetsos, P. Adamidis, L. Angelis, I. Stamelos, and
I. Deligiannis, "Investigating the Impact of
Personality and Temperament Traits on Pair
Programming: A Controlled Experiment
Replication," in Quality of Information and
Communications Technology (QUATIC), 2012 Eighth
International Conference on the, pp. 57-65. 2012

[46] M. Shahin, P. Liang, and Z. Li, "Do architectural
design decisions improve the understanding of
software architecture? two controlled experiments,"
presented at the Proceedings of the 22nd
International Conference on Program
Comprehension, Hyderabad, India, pp. 3-13, 2014.

[47] M. Shepperd, "Replication studies considered
harmful," presented at the ICSE - Track New Ideas
and Emerging Results (NIER 2018), pp. 73-76, 2018.

[48] B. T. West, K. B. Welch, and A. T. Galecki, Linear
mixed models: a practical guide using statistical
software: CRC Press, 2014.

[49] R. Wieringa, Design Science Methodology for
Information Systems and Software Engineering:
Springer, 2014.

[50] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.
Regnell, and A. Wesslén, Experimentation in Software
Engineering: An Introduction: Springer, 2012.

Jose Ignacio Panach is assistant professor at
Universitat de València from 2011 and Assis-
tant Researcher at Centro de Investigacion en
Metodos de Produccion de Software (ProS) at
the Universidad Politécnica de Valencia from
2005. Jose Ignacio holds a PhD in Computer
Science (UPV 2010). His research activities fo-
cus on MDD, usability, and interaction model-
ling.

Oscar Dieste received his PhD from the Uni-
versity of Castilla-La Mancha. He is a re-
searcher with the UPM’s School of Computer
Engineering. He was previously with the Uni-
versity of Colorado, the Complutense Univer-
sity of Madrid, and the Alfonso X el Sabio
University. His research interests include em-
pirical software engineering and requirements
engineering.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 1996

Beatriz Marín is associate professor at Univer-
sidad Diego Portales (UDP) from 2012. She
completed her PhD in Computer Science at
Universitat Politècnica de València (UPV) at
2011. Her main research areas are MDD, quali-
ty of conceptual models, software testing,
functional size measurement, and empirical
software engineering.

Sergio España is assistant professor in Utrecht
University. PhD degree in Computer Science
from Universitat Politècnica de València. Au-
thor of over 70 scientific publications on re-
quirements engineering and conceptu-
al modelling. He works on how enterprise
modelling and ICT can support responsible
enterprises willing to increasingly improve
their socio-environmental impact.

Sira Vegas received the PhD degree from the
Universidad Politécnica de Madrid (UPM) in
2002. She is currently associate professor of
software engineering at UPM. Her main re-
search interests include experimental software
engineering and software testing.

Oscar Pastor is Professor and Director of the
Centro de Investigación en Métodos de Pro-
ducciónde Software –ProS of the Universitat
Politécnica de València. He got his PhD in
1992. Formerly he was a researcher in HP
Labs, Bristol, UK. Research activities focus on
web engineering, requirements engineering,
information systems and MDD.

Natalia Juristo received the PhD degree from
the Universidad Politecnica de Madrid (UPM)
in 1991. She is currently a full professor of
software engineering at UPM. She received a
Finland Distinguished Professor Program
(FiDiPro) professorship, starting in January
2013. Her main research interests include ex-
perimental software engineering, require-
ments, and testing.

