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Abstract
We present a bi-objective parallel machine scheduling problem with machine
and job sequence dependent setup times, with the additional consideration
of resources needed during setups. The availability of such resources is
limited. This models many practical situations where setup times imply, for
example, cleaning and/or the reconfiguration of productive equipment. These
setups are performed by personnel, who are of course limited in number.
The objectives considered are the minimization of the makespan and the
minimization of the number of resources. Fewer available resources reduce
production costs but inevitably increase the makespan. On the contrary, a
greater number of resources increase costs but allow for more setups to be done
in parallel and a reduced makespan. An algorithm based on iterated greedy
approaches is proposed to search for the Pareto front of the problem. This
algorithm is compared with state-of-the art methods adapted to the problem.
Computational experiments, supported by statistical analyses, indicate that
the proposed approach outperforms all other tested procedures.
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1. Introduction

Operations research methods are being used more and more in the manage-
ment of a variety of production planning and scheduling problems. Roughly
speaking, scheduling problems consist of deciding which machines should
process which jobs, and when such processing should be done. Out of the
many scheduling problems proposed in the literature (flowshop, job shop,
etc.), in this paper we deal with a generalized version of the unrelated parallel
machine scheduling problem.

Many practical manufacturing settings can be modelled as a parallel ma-
chine scheduling problem. More specifically, multi-stage production systems
frequently have a bottleneck stage that can be adequately solved with parallel
scheduling models. Most of the literature, however, is centered around sim-
plified models that lack many of the features needed for successful practical
application. That is why more realistic models, and suitable algorithms to
solve them, are needed. The basic unrelated parallel machine scheduling
problem (referred to as UPM) deals with the scheduling of a set of jobs that
need to be processed by exactly one of the available machines. Note that in
the UPM, the processing time of a job depends on the machine to which it
is assigned. This is already a generalization of the simpler identical parallel
machine scheduling problem. The interested reader is referred to Fanjul-Peyro
and Ruiz (2010) for a more detailed explanation of this UPM problem.

Machines are not the only resources employed in production shops. Many
manufacturing environments require additional resources, typically machine
operators, but also molds, jigs, fixtures, etc. For example, when workers
are needed to be present during the processing of jobs, a new and more
challenging problem than the UPM appears, called the Unrelated Parallel
Machine scheduling problem with additional Resources in the Processes,
denoted as UPMR-P.

Although Allahverdi (2015) shows that the literature including setup times
is quite extensive, there still is a large portion of the scheduling literature that
assumes that setup times are not sequence dependent, and are included in
the processing times or just ignored. Nevertheless, setup times are ubiquitous
in real settings. Both the UPM and UPMR-P assume that machines are
ready to process a job right after they have finished processing the job
before. This is not always realistic since machines may need reconfiguration,
adjustments, cleaning, etc. between the processing of any two consecutive
jobs. Furthermore, setup times often depend on the machine and on the

2



job sequence. When setups are explicitly considered we have the UPMS
(Unrelated Parallel Machine scheduling problem with Setups). A recent work
is Fanjul-Peyro et al. (2019) which contains a detailed description of the
UPMS and some algorithms to solve it.

When we jointly consider setup times and additional resources for carrying
out the setups on machines we get a much more realistic problem. The number
of the available additional resources is, in general, limited. This problem is
called the Unrelated Parallel Machine scheduling problem with Setup times
and additional Resources in the Setups (UPMSR-S). The UPMSR-S is an
even more realistic extension of the parallel machine scheduling problem. This
problem was first formulated and approached by Yepes-Borrero et al. (2020)
and extended by Fanjul-Peyro (2020), who also consider the need of additional
resources during job processing. The work we present now is an extension
of these two papers, in the sense that we now consider the simultaneous
minimization of both the makespan and the number of additional resources.

The vast majority of studies in the scheduling literature consider one single
optimization objective. However, real world problems are, in general, multi-
objective. In the particular case of the UPMSR-S, two clear and conflicting
objectives arise: the minimization of the makespan (completion time of the
schedule) and the minimization of the number of additional available resources.
In the presence of setup times, increasing the number of available additional
resources allows for a great number of setups to be carried out at the same time
on different machines (as happens in real production shops). The immediate
result is the reduction of the makespan. The contrary is also true, as fewer
additional resources imply that some setup times might get delayed and
machines may be put into idle mode due to a lack of resources (personnel).
Therefore, a bi-objective approach is essential in order to study the best
trade-off between the number of additional of resources and makespan. In this
paper, we formally state a Bi-Objective Unrelated Parallel Machine scheduling
problem with Setups and additional Resources in the Setups (BO-UPMSR-S)
with two objectives: minimization of maximum completion time (makespan)
and the minimization of the number of available additional resources. We
also propose an algorithm to find feasible Pareto fronts for the BO-UPMSR-S.
The Pareto front of a multi-objective optimization problem is the set of all
feasible solutions which are not dominated by other feasible solutions.

Definition 1.1. Given a multi-objective problem, a feasible solution Sa is
said to be dominated by feasible solution Sb, if Sb is not worse than Sa in
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any objective, and Sa 6= Sb. A feasible solution that is not dominated by any
other feasible solution is called non-dominated. The set consisting of all the
non-dominated solutions is called the Pareto front.

Considering that even the simplest specific case of the problem considered
in this paper, i.e., the identical parallel machine scheduling problem without
setups and only makespan minimization (problem denoted as P//Cmax in the
literature) is already NP-Hard even for just two machines (Lenstra et al.,
1977), it follows that the BO-UPMSR-S is also NP-Hard. We therefore
propose algorithms to efficiently find an approximation of the optimal Pareto
front for the BO-UPMSR-S.

In short, the contribution of this paper is twofold:

• We propose a bi-objective unrelated parallel machine scheduling problem
with setups and additional resources in the setups, in which we consider
both the minimization of the makespan and the minimization of the
number of available additional resources.

• We propose an algorithm to find feasible Pareto fronts for this problem,
which is compared with adaptations of the best algorithms found in the
multi-objective literature for related problems.

The rest of the paper is organized as follows. Section 2 reviews related
literature. Section 3 formally states the problem addressed in this paper.
This problem is solved using the algorithm proposed in Section 4. Afterwards,
Section 5 briefly introduces other algorithms adapted from the literature. All
of them are computationally compared in Section 6. Finally, conclusions and
future research directions are given in Section 7.

2. Literature review

For many years, machine scheduling problems with setup times have
been widely studied. Allahverdi (2015) surveyed problems with setup times.
However, machine scheduling problems with additional resources have been
the focus of far fewer studies. More specifically, as far as the authors know,
multi-objective scheduling problems with setup times and additional resources
assigned to the setups have yet to be studied. In this section, we summarize
the most recent works on machine scheduling with setup times and some
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consideration of additional resources as well as other works on multi-objective
machine scheduling.

Ruiz and Andrés-Romano (2011) propose a problem of unrelated parallel
machine with setups whose duration depends on the assignment of resources.
They do not consider limits on the available additional resources. Ruiz-Torres
et al. (2007) study a uniform parallel machine problem without setup times
where the processing times on the machines depend on the resources assigned
(also without limits). Edis and Oguz (2012) use integer programming models
to solve a parallel machine flexible resources problem where the resources
may also speed up the processing times on machines. Edis and Ozkarahan
(2012) propose solutions for a real-life resource-constrained parallel machine
scheduling problem with integer programming and constraint programming
models. Edis et al. (2013) present a complete review of parallel machine
scheduling problems with additional resources. More recently, Bitar et al.
(2016) propose a metaheuristic to solve an original unrelated parallel machine
scheduling problem with auxiliary resources. Fanjul-Peyro et al. (2017)
propose mathematical models and metaheuristics for the unrelated parallel
machine problem without setup times, and with additional limited resources
during the processing of jobs as a constraint. For the same problem, Villa et al.
(2018) propose different heuristics, Vallada et al. (2019) propose metaheuristics
methods and Fleszar and Hindi (2018) and Arbaoui and Yalaoui (2018) use
constraint programming. Fanjul-Peyro (2020) study mathematical models
and exact algorithms for unrelated parallel machine scheduling problems
where resources might be needed for processing times, setup times or both
and in all cases the objective is the minimization of the makespan. Finally,
Yepes-Borrero et al. (2020) propose a GRASP algorithm to solve the problem
with setup times and additional limited resources assigned to the setups, but
only considering makespan as the optimization objective.

Multi-objective parallel machine scheduling problems are much less studied
than the single objective variants. Hoogeveen (2005) presents a comprehensive
review of multi-objective scheduling in which the most important results of
different variations of scheduling problems are studied. Cochran et al. (2003)
propose a genetic algorithm to solve a parallel machine scheduling problem
with makespan and total weighted tardiness objectives. Bandyopadhyay and
Bhattacharya (2013) modify the well-known NSGA-II algorithm of Deb et al.
(2002) to solve a parallel machine scheduling problem with three objectives:
minimization of total tardiness, minimization of the deterioration cost and
minimization of makespan. Torabi et al. (2013) studied a multi-objective
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parallel machine problem with setup times and additional resources assigned
to the processing times, seeking to minimize the total weighted flowtime, the
total weighted tardiness and total machine load variation. Wang and Liu
(2015) adapt the NSGA-II algorithm to solve a parallel machine scheduling
problem with preventive maintenance planning over two resources (machines
and molds) in order to minimize the unavailability of those resources. Rostami
et al. (2015) use a mathematical model based on fuzzy chance-constrained
programming to solve a multi-objective parallel machine scheduling problem
with job deterioration and learning effect to minimize the makespan and
the total earliness/tardiness. More recently, Zhou et al. (2018) propose
a mathematical model and a differential evolution algorithm for a multi-
objective parallel batch processing machine scheduling problem considering
electricity consumption costs with the objective of minimizing the makespan
and the total electricity cost.

There are other related studies considering different scheduling problems
such as, the flowshop problem. Daniels and Chambers (1990) present heuristic
procedures for a multi-objective flowshop problem in order to minimize the
makespan and the total tardiness. Armentano and Arroyo (2004) propose a
tabu search algorithm in order to minimize the makespan and the maximum
tardiness in a flowshop scheduling problem. Framinan and Leisten (2008) pro-
pose a multi-objective iterated greedy search (MOIGS) for flowshop scheduling
with minimization of makespan and flowtime. Minella et al. (2008) present
a review of multi-objective algorithms for the flowshop scheduling problem.
Minella et al. (2011) present a new algorithm called the Restarted Iterated
Pareto Greedy (RIPG) to solve two multi-objective flowshop problems. The
first problem consists of minimizing the makespan and total tardiness, and the
second problem consists of minimizing the makespan and total flowtime. That
research shows that the RIPG algorithm yields better results than the existing
algorithms previously proposed for the flowshop scheduling problem. Dalfard
and Mohammadi (2012) use two metaheuristics to solve a multi-objective
flexible job shop problem with parallel machines and maintenance constraints.
In addition, the authors propose a new mathematical model for the problem.

Although parallel machine scheduling problems have been extensively
studied over many years, there are few works that deal with multi-objective
parallel machine scheduling problems. Actually, to the best of our knowledge,
there are no studies that consider setups and additional resources in multi-
objective parallel machine scheduling problems. Considering that most real
world scheduling problems are multi-objective and many industrial environ-
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ments need both machines setups and additional resources, we believe that
this paper studies a problem that could model real life scheduling problems.

3. Problem description

We now formally introduce the bi-objective unrelated parallel machine
scheduling problem with resources in the setups (BO-UPMSR-S). In this
problem we have the following sets:

• N = {1, ..., n} is the set of jobs that must be processed. Jobs are
indexed by j, k and l.

• M = {1, ...,m} is the set of unrelated parallel machines available.
Machines are indexed by i.

• T = {1, . . . , tmax} is the set of time units. Time units are indexed by t.
tmax is an upper bound for the makespan.
Each machine can process one job at a time and if the processing of a
job on a machine begins, that job must be finished without interruptions
(i.e., no preemption exists). Jobs must be processed by exactly one out
of the m available machines.

Additionally, we also have the following input data:

• pij ≥ 0 is the processing time of job j on machine i. Machines are
unrelated, meaning that the processing time of a job j may differ
depending on the machine on which this job is processed.

• sijk ≥ 0 is the setup time needed to prepare machine i between the
processing of jobs j and k.

• rijk ≥ 0 is the number of resources needed to do the setups between
jobs j and k on machine i. Note that setup times and resource needs
depend both on the machine and on the job processing sequence.

We note that the processing times, setup times, and the number of
resources needed are deterministic. As mentioned in Section 1, in the BO-
UPMSR-S there are two objectives: the minimization of the makespan (called
Cmax) and the minimization of the maximum number of resources needed at
any time during the processing sequence. Because in this problem minimizing
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one of the objectives might increase the other one, a multi-objective approach
is necessary and a major question arises: which type of solution should we
look for? Out of the several approaches that are valid in multi-objective
optimization, in this paper we look for the Pareto front, consisting of non-
dominated solutions defined in Section 1.

In order to present a mixed integer linear (MILP) formulation for the
BO-UPMSR-S, we propose a bi-objective adaptation to the model proposed in
Yepes-Borrero et al. (2020). Before defining the model, the following variables
must be defined:

• Yij: Binary variable that takes value 1 if job j is processed on machine
i, 0 otherwise.

• Xijk: Binary variable that takes value 1 if job k is the successor of job
j on machine i, 0 otherwise.

• Hijkt: Binary variable that takes value 1 if the setup between the
successive jobs j and k, on machine i, ends at instant t, 0 otherwise.

• Cmax: Maximum completion time of the schedule (makespan).

• Rmax: Maximum number of resources needed at any time during the
processing sequence.

Additionally, the set N0 = N ∪ {0} must be defined. In this set 0 is a
dummy job and all machines start and end in job 0. We set pi0 = si0k =
sik0 = ri0k = rik0 = 0, ∀ i ∈M ; ∀ k ∈ N0.

A model for the BO-UPMSR-S is:
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min (Cmax, Rmax) (1)
s.t.

∑
k∈N

Xi0k ≤ 1, i ∈M (2)
∑
i∈M

Yij = 1, j ∈ N (3)

Yij =
∑

k∈N0,j 6=k
Xijk, i ∈M, j ∈ N (4)

Yik =
∑

j∈N0,j 6=k
Xijk, i ∈M,k ∈ N (5)

∑
t≤tmax

Hijkt = Xijk,∀i ∈M, j ∈ N0, k ∈ N, k 6= j (6)
∑
t

tHijkt ≥
∑
l∈N0

∑
t≤tmax

Hiljt(t+ sijk + pij)− M̄(1−Xijk),

∀ i ∈M, j ∈ N0, k ∈ N, k 6= j (7)∑
i∈M,j∈N0,k∈N,k 6=j,t′∈{t,...,t+sijk−1}

rijkHijkt′ ≤ Rmax,∀ t ≤ tmax (8)

∑
t≤tmax

tHijkt ≤ Cmax,∀i ∈M, j ∈ N0, k ∈ N0, k 6= j (9)

Xijk ≥ 0, Yij ≥ 0, Hijkt ∈ {0, 1}.

Objective (1) minimizes the makespan and the maximum number of
resources needed in the solution. Constraints (2) ensure that on each machine i,
at most one job is assigned to the first position of the sequence. Constraints (3)
establish that each job j is assigned to one and only one machine. Constraints
(4) enforce that each job j that is processed on machine i has one and only
one successor k. Constraints (5) establish that each job k that is processed
on machine i, has one and only one predecessor j. Constraints (6) set that for
each machine i and for successive jobs j and k on machine i, the setup time
between these jobs has to end in only one moment before tmax. Constraints
(7) enforce that the setup between successive jobs j and k on machine i, must
end at the earliest. Constraints (8) impose that the number of resources
used is lower than Rmax at any instant of time. Constraints (9) ensure that
the Cmax must be greater or equal than instant of time when all the setups
(including the final fictitious setup) have finished.

Since the simplified version of this model that only considers one objective
is solvable only for instances of small size (see Yepes-Borrero et al., 2020), we
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do not test it in the computational results. However, we show this model in
this section because it helps understanding the proposed BO-UPMSR-S.

The reader may note that in the BO-UMPSR-S we address three subprob-
lems simultaneously:

1. Assignment problem: assignment of jobs to machines.
2. Sequencing problem: order of jobs on each machine.
3. Timing problem: the time at which setups between jobs start.

In the next section we propose an efficient algorithm for the BO-UPMSR-S.

4. The Truncated Restarted Iterated Pareto Greedy algorithm

As stated in Section 2, several algorithms have already been proposed
to solve multi-objective scheduling problems. To solve the BO-UPMSR-S
problem studied in this paper, we propose an algorithm based on the Restarted
Iterated Pareto Greedy (RIPG) by Minella et al. (2011). The motivation
behind this choice is the following: The original RIPG is a multi-objective
adaptation of the Iterated Greedy (IG) originally proposed by Ruiz and
Stützle (2007), that consists of iteratively destroying a solution partially,
and reconstructing it using a greedy procedure. Afterwards, the solution
obtained in the reconstruction phase may be improved by a local search
procedure. The original IG has been recognized as a high performing method
for flowshop scheduling and different variants in the literature. Minella et al.
(2011) compared the RIPG against some of the best methods identified in
the review of Minella et al. (2008), where 23 state-of-the-art multi-objective
algorithms were comparatively evaluated. Later, Ciavotta et al. (2013) applied
the RIPG to the multi-objective flowshop scheduling problem with setup
times and compared the RIPG against 17 high performing optimizers. In all
these studies RIPG produced the best observed results and this motivates us
to select this methodology as a basis for the proposed procedure.

In the rest of the section we explain the different phases of the algorithm
we propose, which is referred to as truncated RIPG (T-RIPG), and we also
highlight its differences with respect to the original RIPG. It is important
to note that the original RIPG was proposed for a multi-objective flowshop
problem, seeking to minimize the makespan, flowtime and total tardiness.
However, the problem we address in this paper is not a flowshop but a
parallel machine problem, and the objectives treated are the makespan and
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the maximum number of additional resources needed. Therefore, we need to
adapt T-RIPG significantly with respect to RIPG.

T-RIPG has four main phases: Initialization, greedy, timing/repairing
and local search. Furthermore, there is a selection operator to choose which
solution will be processed by the last three aforementioned phases. Finally, in
order to avoid premature convergence, we repeat all phases with a restarted
phase in which a new set of initial solutions is generated. Therefore, the
T-RIPG consists of six phases in total. It has to be noted that throughout
the process the algorithm keeps an archive of non-dominated solutions that is
updated as new non-dominated solutions are found. Hereinafter this archive
will be called the working set. Figure 1 shows the general outline of the
proposed Truncated-RIPG (T-RIPG) procedure. The main parts of the
algorithm are detailed in the following sections.

Start

Initialization

Greedy Phase

Local Search

Selection
Timing/
repairing

Selection

Timing/
repairing

Yes

Restart?

NoTermination?No

Yes

End

Figure 1: Flowchart of the proposed Truncated-RIPG (T-RIPG).

4.1. Initialization
In order to generate good initial solutions, we use the GRASP (Greedy

Randomized Adaptive Search Procedure) algorithm proposed in Yepes-Borrero
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et al. (2020). This algorithm considers balanced solutions for both objec-
tives (makespan and resources) and gives good results for the problem with
makespan minimization considering the number of additional resources as a
constraint. The main idea in this algorithm is to avoid sequences with large
setup times or with a large consumption of resources, by calculating a value
referred to as λi,j,k defined as:

λi,j,k = C ′i+pij+(θs(i,k−1,k)∗θr(i,k−1,k))+(θs(i,k,k+1)∗θr(i,k,k+1))−(γs(i,k)∗γr(i,k))

where C ′i is the partial completion time on machine i before the insertion
of job j; pij is the processing time of job j on machine i; θs(i,k−1,k) (s is for
setup) is the setup time between the job in position k − 1 and job j inserted
in position k on machine i. θr(i,k−1,k) (r is for resources) are the resources
needed to do the setup θs(i,k−1,k). Similarly, θs(i,k,k+1) is the setup between job
j (inserted in position k) and the job in position k+ 1 on machine i. θr(i,k,k+1)
are the resources needed to do the setup θs(i,k,k+1). γs(i,k) is the setup that is
no longer done after the insertion of job j in position k on machine i. γr(i,k))
are the resources needed in the setup γs(i,k).

The GRASP algorithm consists of inserting each non-assigned job into
each position of the partial solution. At each insertion, λi,j,k is calculated.
When all non-assigned jobs are inserted into all possible positions, a job is
chosen at random from a list with the best candidates (those with lower λi,j,k
values) and is assigned to the solution. That list’s size varies depending on a
value α ∈ [0, 1]. The larger α, the larger the size of the list. In other words,
larger α values add more randomness to the algorithm.

Additionally, two solutions are built by allowing for lower makespan
values regardless of the consumption of resources. That is, by replacing
θr(i,k−1,k) = θr(i,k,k+1) = γr(i,k) = 1 in the calculation of λi,j,k. In brief, two
solutions are generated looking for a lower consumption of resources, and two
solutions are generated which look for lower makespan. In order to have a
variety of solutions, every time the algorithm is restarted (see Section 4.6), a
new set of four solutions is generated as explained before, but more randomness
is added to the GRASP algorithm (by increasing α).

4.2. Greedy phase
In this phase, a solution is destroyed and reconstructed generating new

solutions. The first step of this phase consists of removing a group of d
randomly selected jobs, and putting them in a set of pending jobs to be
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assigned called D. As with other parameters, the value of d affects the
performance of the algorithm and will be calibrated later. Once the d jobs
are removed, the second step consists of reconstructing the solution. In this
step, the proposed T-RIPG substantially differs from the original RIPG (or
general IG procedure). The original RIPG reinserts each job of the set D of
pending jobs into all possible positions in the partial solution (the solution
without the removed jobs), and generates a new set of partial solutions where
each insertion of the selected job is a partial solution. Once the selected job is
inserted into all possible positions, the new set of partial solutions is evaluated
to eliminate the dominated partial solutions. This process is repeated until
all removed jobs are reinserted and a set of non-dominated final solutions is
obtained (when the last job is inserted into each position, each solution is
a final solution). However, due to the nature of the problem studied in this
paper, the partial solutions obtained during the reinsertion of the removed
jobs may not provide enough information (this is further explained in the
later Section 4.3). Furthermore, the high number of calculations needed to
re-evaluate the consumption of resources at each insertion at each period of
time from the point where the job is inserted up to when the last setup is
finished, leads us to propose a new greedy process that works as follows: After
removing the d jobs in the solution, instead of inserting only the first job of
the d jobs, we insert each job into all possible positions of all machines in the
partial solution. In order to find the best insertion without doing a complete
(and costly) calculation of makespan and resources, we calculate at each
insertion the same λi,j,k explained in Section 4.1. As explained before, this
value seeks to measure, in a single expression, the consumption of resources,
the setup times and the makespan. After the insertion of all jobs into each
possible position, we assign the best job to the best insertion found, that is,
the insertion with lowest value of λi,j,k. Then, the assigned job is removed
from the list of pending jobs to be assigned and the process is repeated until
d− 1 jobs are assigned.

When there is only one pending job to be assigned, this last job is reinserted
into each possible position of the partial solution. Each job insertion generates
a complete final solution that is added to the working set. All solutions
obtained in this last step are processed in the timing/repairing phase. The
differences between the original greedy phase and the proposed greedy phase
are summarized in the following points:

1. At the end of first iteration (when the first of the d removed jobs is

13



reinserted), the greedy phase of RIPG algorithm generates n− d+m
new partial solutions, while the new greedy phase only generates one
new partial solution.

2. In the greedy phase of the RIPG, the new partial solutions are evaluated
in order to remove all dominated solutions. In the new greedy phase,
as there is only one partial solution, there is no evaluation to do.

3. At any iteration i, the greedy phase of the RIPG generates (n− (d−
i) + m)× ps new partial solutions, where ps is the number of partial
solutions generated in the previous iteration. In the other hand, in the
new greedy phase we only work with one partial solution during the
first d− 1 iterations (until there is only one job in the list of pending
jobs D). Finally, the new greedy generates n− 1 +m new solutions by
inserting the last job at each position of the (unique) partial solution.

As we mentioned before, the idea with this new greedy phase is to save
time by not handling many partial solutions at each iteration. Due to space
considerations, detailed results of the comparison between our greedy phase
and the original greedy phase of RIPG algorithm are available as online
materials.

It is important to note that in the first iteration all the solutions gener-
ated in the initialization phase go through this phase as shown in Figure 1.
In the other iterations of the algorithm, only the solution selected by the
selection operator (explained later in Section 4.4) is processed by this phase.
Algorithm 1 shows a pseudocode of the greedy phase.

Algorithm 1: GreedyPhase
1 Remove at random d jobs from the solution and put them in set D
2 while size(D) > 1 do
3 foreach j ∈ D do
4 Insert the job into each possible position on all machines and

calculate λj = minik λijk;
5 end
6 Assign the job with the lowest λj and remove it from D;
7 end
8 Insert the remaining job from D into each possible position on all

machines and save all complete solutions in the working set;
9 Delete Dominated Solutions from the working set;
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4.3. Timing/repairing phase
Another big difference between the original RIPG and the proposed T-

RIPG is the inclusion of a repairing method. Here the beginning of the setups
may be postponed by adding idle times on the machines, with the objective of
reducing the consumption of resources (even if this increases the makespan).
In order to illustrate, consider an example with m = 2 machines (indexed
by letter i) and n = 4 jobs (indexed by letter j), with the processing times
(pij), setup times (sijk), and resource needs (rijk) as given in Tables 1, 2, 3
respectively.

j1 j2 j3 j4
i1 6 2 3 5
i2 3 4 8 5

Table 1: pij for an example with 4 jobs and 2 machines.

Machine i1 Machine i2
j1 j2 j3 j4 j1 j2 j3 j4

j1 5 2 3 4 j1 4 3 2 4
j2 5 5 4 7 j2 5 3 5 3
j3 4 4 2 3 j3 3 5 5 4
j4 4 2 4 5 j4 3 4 4 5

Table 2: Setup times (sijk) for an example with 4 jobs and 2 machines.

Machine i1 Machine i2
j1 j2 j3 j4 j1 j2 j3 j4

j1 3 2 3 4 j1 4 4 2 5
j2 5 2 5 4 j2 4 2 5 4
j3 4 4 4 5 j3 4 4 5 3
j4 4 4 4 2 j4 5 5 4 5

Table 3: Consumption of resources (rijk) for an example with 4 jobs and 2 machines.

Figure 2 shows a solution to this example before and after the repairing
process. We observe in Figure 2(a) that 10 resources are needed in this
solution, and the makespan is 11. However, as we observe in Figure 2(b), if
we postpone the beginning of the setup on machine 2, the new makespan
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is 12, but this solution only needs 5 resources. It is important to note that
postponing the beginning of a setup may not increase the makespan if the
postponed setup is not on the makespan machine and the new completion
time on the machine is lower than that of the makespan machine.

The first step of this process consists of deciding if the solution will be
repaired or not. Since this is a costly process, not all solutions obtained in
the greedy phase undergo this procedure. We define a probability p for a
solution to be processed by the repairing algorithm. Of course, p is another
parameter of the algorithm and will be calibrated. The repairing algorithm
is a modification of the one proposed in Yepes-Borrero et al. (2020). The
adaptation proposed consists of assigning the maximum number of resources
Rmax that the solution may need, and repairing the sequence in order to make
it feasible with this number of resources. The maximum number of resources
Rmax is chosen at random from a uniform distribution between rl and ru,
where rl is the maximum rijk in the original solution (the solution before
entering this phase), and ru is the number of resources needed to execute the
original solution without idle times. Once the maximum number of resources
is chosen, the repairing process is the same as the original in Yepes-Borrero
et al. (2020). We evaluate the consumption of resources during all time
periods and if the consumption of resources is greater than the maximum
allowed, we postpone the beginning of the setup on the machine that has the
latest setup start, among the machines that are processing setups during that
time period. The postponement is carried out until another machine ends
a setup and its resources are available. That process is repeated until the
resource consumption does not exceed Rmax during any time period. Finally,
all solutions obtained in this last step are added to the working set and
the dominated ones are removed. Algorithm 2 shows a pseudocode of the
repairing phase.

4.4. Selection phase
In this phase, the solution that will be processed by the remaining phases

of the algorithm is selected from within the current working set. To select
such a solution, we use the selection operator proposed in the original RIPG
of Minella et al. (2011), named Modified Crowding Distance Assignment
(MCDA). This method is based on the Crowding Distance operator proposed
in Deb et al. (2002). We choose this operator because it has been successfully
tested in different studies on related problems (see Minella et al., 2011,
Ciavotta et al., 2013, Zhang et al., 2020). In short, the idea in the MCDA
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Algorithm 2: RepairingPhase
1 Choose the maximum number of resources Rmax
2 for t < Cmax do
3 Evaluate the consumption of resources at time period t;
4 if consumption of resources > Rmax then
5 Postpone the beginning of the setup on the machine with the

latest starting setup;
6 Update Cmax;
7 end
8 end
9 Delete Dominated Solutions from the working set

sijk =4, rijk =5

1 2 3 4 5 6 7 8 9 10 11 12

Rmax = 10; Cmax =11

i 1

i 2

t

0 0 5 5 5 10 5 5 0 0 0 0R

sijk=3, ijk =5rj
4

j
2

j
3

j
1

(a) Before repairing.

i 1

i 2

1 2 3 4 5 6 7 8 9 10 11 12

Rmax = 5; Cmax =12

t

0 0 5 5 5 5 5 5 5 0 0 0R

sijk =4, rijk =5

sijk=3, ijk =5r

j
2

j
3

j
4

j
1

(b) After repairing.

Figure 2: Example of the proposed repairing mechanism.

17



and in the original Crowding Distance operator is to favor the selection of
the most isolated solutions in the same level of dominance, i.e., solutions
that have fewer nearby solutions in the objective space. We select the most
isolated solution and later explore its neighborhood in order to avoid having
large gaps in the resulting Pareto fronts. To avoid the repeated selection
of the same solution at successive iterations, MCDA assigns a fitness value
affected by a selection counter to each solution in the working set. Every
time a solution is selected, the selection counter increases and the probability
of this solution being selected in the next iteration diminishes.

4.5. Local search
Once the repairing phase is finished, the selection operator chooses the

solution that will be processed by the local search among the solutions in
the working set. The local search proposed consists of a very simple and fast
method. We remove, at random, one job from the machine that determines
makespan and we reinsert it into all possible positions on the other machines.
As in the greedy phase, each reinsertion generates a new solution which will
be repaired with the procedure explained in Section 4.3. As in the previous
phases, all solutions obtained in this last step are added to the working set
and the dominated ones are removed. It is important to notice that the
solutions that are processed in the local search must be justified to the left
if the solution has idle times. The local search process is repeated until `
iterations pass without improvements in the working set, ` being another
parameter that will be calibrated. Algorithm 3 shows the general procedure
of the local search.

4.6. Restart
As in the original RIPG, the restart phase consists of restarting the

algorithm from the initialization phase and creating a new set of initial
solutions in order to increase the variability of solutions. Before restarting
the algorithm, the working set is saved and a new set of solutions is generated
with more randomness than the solutions generated in the previous iteration
(by increasing the α value explained in Section 4.1). All new solutions are
processed by the greedy phase and the timing/repairing phase as in the first
iteration of the algorithm. The solutions obtained are added to the working
set and all solutions are evaluated in order to remove the dominated ones.
The process continues with the selection procedure. In order to determine
when the restart must be done, we propose a simple counter of successive
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Algorithm 3: Local search general procedure.
1 LS_iterations_without_improvement = 0;
2 Partial_Working_Set ← Working_Set;
3 while LS_iterations_without_improvement < ` do
4 M∗ ← Makespan machine;
5 Remove at random one job from M∗;
6 Insert the removed job into each possible position on all machines

and save all complete solutions in Partial_Working_Set;
7 Delete Dominated Solutions from Partial_Working_Set;
8 if Partial_Working_Set 6= Working_Set then
9 LS_iterations_without_improvement = 0;

10 Working_Set ← Partial_Working_Set;
11 else
12 LS_iterations_without_improvement+ +;
13 end
14 end

iterations without improvements in the working set. When the counter is
reached, the algorithm is restarted. This parameter is called q and will be
calibrated in Section 6.1.

The overall Truncated-RIPG (T-RIPG) procedure is shown in Algorithm 4,
where ExecutionT ime is the running time of the algorithm and TimeLimit
is the time limit in which the algorithm stops.

5. Other multi-objective algorithms

In order to evaluate the performance of the proposed T-RIPG algorithm,
we compare it with other multicriteria algorithms in the literature, adapted
to the BO-UPMSR-S studied in this paper. The algorithms adapted and
re-implemented are the well known NSGA-II proposed by Deb et al. (2002),
used in many studies as a baseline in multi-objective optimization, the MOIGS
algorithm proposed by Framinan and Leisten (2008) and the original RIPG
proposed by Minella et al. (2011). These last two methods are known to
produce state-of-the-art results for some hard scheduling problems. We add
to all re-implemented algorithms the timing/repairing phase explained in 4.3
as it greatly improves results and in order to have a fair comparison. We
now briefly describe all these methods. The interested reader is referred to
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Algorithm 4: Truncated-RIPG (T-RIPG) general procedure.
1 while ExecutionT ime < TimeLimit do
2 InitialSet := InitilizationPhase;
3 foreach Solution ∈ InitialSet do
4 GreedyPhase(Solution);
5 Timing/RepairingPhase(Solution);
6 end
7 Delete Dominated Solutions from the working set;
8 SelectedSolution := SelectionPhase;
9 while LS_iterations_without_improvement < ` do

10 LocalSearch(SelectedSolution);
11 end
12 while Iterations_without_improvement < q do
13 SelectedSolution := SelectionPhase;
14 GreedyPhase(SelectedSolution);
15 Timing/RepairingPhase(SelectedSolution);
16 Delete Dominated Solutions from the working set;
17 SelectedSolution := SelectionPhase;
18 while LS_iterations_without_improvement < ` do
19 LocalSearch(SelectedSolution);
20 end
21 end
22 end
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the corresponding references in order to obtain complete details on these
algorithms.

5.1. NSGA-II algorithm
The proposed adaptation of the well known NSGA-II follows the same

idea proposed in Deb et al. (2002). An initial population of s solutions is
generated. The crossover operator for parallel machines proposed in Vallada
and Ruiz (2011) is used to generate new solutions (called offspring). Once all
offspring are generated, the solutions are evaluated and sorted into different
non-domination levels. The first level has all non-dominated solutions, the
second level has all solutions dominated by the solutions in the first level but
not dominated by other solutions. That sorting is repeated until all solutions
are assigned into a level. To generate the next generation of initial solutions,
the best s solutions are taken from the previous step. The first solutions
assigned to the new generation are those that belong to the first level. This
process is repeated with the other non-dominated levels until s solutions are
assigned. If the number of solutions in the level is larger than s minus the
solutions already assigned, a selection operator is used to choose a solution
until the next generation is completed. With this new population, the process
is repeated until the stopping criteria is satisfied.

5.2. MOIGS algorithm
The implemented adaptation of the MOIGS algorithm has some differences

in respect to the original algorithm proposed in Framinan and Leisten (2008).
Similarly to the original method, two initial solutions are generated. For
each solution, d elements are removed and reinserted into each position in
the solution. Each insertion generates a new partial solution. When a job is
reinserted into each position in the solution, all partial solutions are evaluated
and the dominated ones are removed. The next job is assigned to each position
in all new partial solutions. This process is repeated until all jobs are assigned,
the final solutions are evaluated and the dominated solutions are removed,
finishing the first iteration of the algorithm. The original MOIGS algorithm
repeats the same process with the new group of non-dominated solutions.
Since the resource evaluation requires the calculation of the consumption of
resources at each time period, when we have many solutions this process is
very slow. The proposed adaptation consists of, once the first iteration is
finished, using the greedy phase proposed for the T-RIPG in Section 4.2. At
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each iteration the set of non-dominated solutions is updated and the process
is repeated with this new set of solutions.

5.3. RIPG algorithm
In order to evaluate the relevance of the new Greedy phase proposed for the

T-RIPG, we also adapt the original RIPG algorithm presented in Minella et al.
(2011). The difference between the Greedy phase of the RIPG and the Greedy
phase of the T-RIPG is explained in Section 4.2. The other phases in the
RIPG (Initialization, Selection, Local search and Restart) were implemented
as explained in Section 4. Note that this is not the original RIPG, but an
adaptation to the problem at hand. Recall that RIPG was proposed for
the permutation flowshop with multiple objectives, not for parallel machine
scheduling, let alone the addition of resources.

6. Experimental analysis

The comparison of results from different algorithms in a multi-objective
optimization setting is far from trivial. Solutions obtained by an algorithm
for a multi-objective problem are actually a set of non-dominated solutions
and the comparison between two different methods becomes difficult. In this
paper, we adopt the same two performance indicators studied in Minella et al.
(2011) and in Zhang et al. (2020).

The first indicator is the so-called Unary Epsilon Indicator (I1
ε ) presented

in Knowles et al. (2005). This indicator measures the distance between the
Pareto front obtained by a given algorithm and the optimal or reference Pareto
front. The reference Pareto front is the front built with all non-dominated
solutions from all tested methods, that is, the best known Pareto front for a
given instance.

Before calculating I1
ε , the objective values are normalized into values in

the interval (1,2). Lower values of I1
ε indicate that the obtained Pareto front is

close to the optimal or reference Pareto front. The Unary Epsilon indicator is
calculated as follows: I1

ε = Iε(A,P ) = maxp∈P mina∈A max1≤g≤2{f ′g(a)/f ′g(p)}
where:

• A is the Pareto front obtained by a given algorithm.

• P is the optimal or reference Pareto front.

• f ′g(a) is the normalized value in objective g for the solution a ∈ A.
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• f ′g(p) is the normalized value in objective g for the solution p ∈ P .

The second indicator is the unary version of the Hypervolume indicator
(IH) proposed in Zitzler et al. (2003). This indicator measures the hypervolume
(the area in the case of two objectives) of the space dominated by a Pareto
front. To calculate this indicator, the objective values are normalized into
values in the interval (0,1), and the reference point necessary to close the
area is set to 1.2. Therefore, the maximum IH value that can be obtained
by 1.2× 1.2 = 1.44. As suggested by Minella et al. (2011), we employ both
indicators as when one indicator contradicts the other when comparing two
algorithms, it means that there is no strong dominance of either algorithm
over the other.

To evaluate the algorithms, we carry out an extensive computational
and statistical study and we compare the algorithms proposed in previous
sections. First, all algorithms are calibrated on a calibration set of instances.
Afterwards, all algorithms are compared on an evaluation set of instances.
The benchmark consists of a set instances with different sizes. We use as a
base, the large instances (without resources) of Vallada and Ruiz (2011). This
set of instances was generated by varying the number of jobs (n), number of
machines (m), the setup times (sijk) and the consumption of resources (rijk),
as follows:

• n varies among {50, 100, 150, 200, 250}.

• m varies among {10, 15, 20, 25, 30}.

• The setup times sijk are generated by four different uniform random
distributions across the ranges {1−9}, {1−49}, {1−99} and {1−124}.
We have chosen these intervals since they model different realistic
settings and have been previously used in studies of parallel machine
scheduling with setup times (see Vallada and Ruiz, 2011, Diana et al.,
2015, Yepes-Borrero et al., 2020).

• The consumption of resources rijk is generated by two different uniform
random distributions in the ranges {1−m} and {1− 5m}.

• The processing times pij are generated by a uniform random distribution
between 1 and 99. Despite that this interval of variation implies a great
difference between processing times, we use it as they have been used
in other scheduling research articles before.
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All combinations of the previous instance factors result in a total of 5× 5×
4× 2 = 200 possibilities. We generate 5 instance replicates for each possible
combination, yielding a total of 1,000 instances for the evaluation set, and
one additional replicate of each possible combination for the calibration set
(for a total of 200 calibration instances).

The methods are coded in Microsoft Visual Studio 2019 using C#. All
algorithms share common codes and functions. The experiments are run on
virtual machines with 2 virtual processors and 8GBytes of RAM memory
each under Windows 10 Enterprise 64 Bits. Machines are virtualized in
an OpenStack virtualization framework supported by 12 blades, each one
with four 12-core AMD Opteron Abu Dhabi 6344 processors running at 2.6
gigahertzs and 256 gigabytes of RAM, for a total of 576 cores and 3 terabytes
of RAM. Note that no parallel computing is carried out and virtual machines
are used to distribute the testing load.

6.1. Calibration of the T-RIPG algorithm
The proposed T-RIPG algorithm depends on the following four parameters:
• Parameter d refers to the number of jobs to remove in the greedy phase
(Section 4.2). We have tested this parameter at four levels: d = 0.05×n,
d = 0.1 × n, d = 4 and d = 5. The fixed levels d = 4 and d = 5
were chosen because of the results obtained in different works that
use Iterated Greedy algorithms (Ruiz et al., 2019, Zhang et al., 2020,
Minella et al., 2011).

• Parameter p denotes the probability with which a solution is repaired
in the repairing/timing phase (Section 4.3). We have tested five levels:
p = 0, p = 0.25, p = 0.5, p = 0.75 and p = 1. Note that p = 0 means
that there is no repairing phase, which will be used as a witness level,
to check the contribution of such a phase to the complete algorithm.
Note also that p = 1 means that all solutions obtained in the greedy
phase are repaired.

• Parameter ` is the number of iterations without improvements in the
Pareto front before stopping the local search (Section 4.5). We have
tested four levels: ` = 0, ` = 50, ` = n and ` = 2× n. Again, ` = 0 is a
witness level in which there is no local search.

• Parameter q is the number iterations without improvements in the
Pareto front before restarting the algorithm (Section 4.6). We have
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tested this parameter at four levels: q = 0, q = 50, q = n and q = 2× n.
The level q = 0 is again a witness indicating no restarting phase.

We propose a full factorial design of experiments (DOE), with all com-
binations of factors and levels in order to evaluate the different algorithm
configurations. That gives a total of 4×5×4×4 = 320 possible configurations.
Each configuration is tested in the 200-instance calibration set. A total of
64,000 approximations of the Pareto front are obtained as a result. Each
configuration has the same stopping criterion that depends on the number of
jobs in the instance: t = n seconds. In total each one of the 320 configurations
needs 30,000 seconds to run all instances, for a total of 9,600,000 seconds, or
a bit more than 111 days of CPU time to complete the calibration. In order
to statistically compare all configurations, an analysis of variance (ANOVA)
is applied (Montgomery (2012)). Note that all necessary hypotheses are
checked, with no problems in the residuals found. The response variables
of the ANOVA are the Unary Epsilon (I1

ε ) and the Hypervolume indicators
(IH). The results indicate that all factors are statistically significant. Detailed
ANOVA results are available as online materials.

Figures 3 and 4 show the means plot of IH and I1
ε with Tukey’s Honest

Significant Difference (HSD) 95% confidence intervals for the different cali-
brated parameters. When HSD intervals do not overlap there are significant
differences between the groups (observed means in our case). We can easily
see the relevance of the timing/repairing phase, the local search and the
restart as p = 0, ` = 0 and q = 0 are significantly worse than the other
levels. Following the results of the experiment, the parameters were set to
the combination yielding the best average and statistically significant results:
d = 4, p = 1, ` = 50 and q = 50.

In order to have a fair comparison, the other algorithms were also calibrated
with similar comprehensive and CPU-intensive calibrations. Due to space
considerations, detailed results are not shown here, although they are available
as online materials.

6.2. Computational comparisons among algorithms
We now compare the proposed T-RIPG with the other algorithms in the

1,000-instance evaluation set. As in the calibration, all algorithms have the
same stopping criteria with a CPU time limit of t = n seconds. Table 4 shows
the average values of the Hypervolume (IH) and Unary epsilon indicators
(I1
ε ). We observe that on average, the proposed T-RIPG yields better results
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Figure 3: Unary epsilon (I1
ε ) Means plots with Tukey’s Honest Significant Difference (HSD)

95% confidence intervals for all factors in T-RIPG calibration.
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for both indicators. We also observe that the second best algorithm in both
indicators is the original RIPG. It is interesting that for the MOIGS algorithm
the results in instances with few jobs are worse than the other algorithms
for both indicators. However, when the size of the instances increases, this
algorithm yields better results than the RIPG and the NSGA-II algorithms
for IH . That may be due to the restarting phase, because in small instances,
the algorithms converge prematurely, while in large instances, the space of
solutions is larger.

It is important to remind that the values of each objective was normalized
before calculating IH and I1

ε . Therefore, the differences among algorithms
may not be appreciated by comparing final values of each indicator. In order
to validate if the observed differences in IH and I1

ε are statistically significant
(significance level 0.05), an ANOVA is applied with both IH and I1

ε as response
variables and the algorithm as single factor. Figure 5 shows the means plot
of IH and I1

ε with Tukey’s HSD 95% confidence intervals for the different
algorithms. In terms of Hypervolume indicator, we can easily note that our
T-RIPG is significantly better than the other algorithms. Moreover, for the
Unary epsilon indicator, even if the difference between T-RIPG and RIPG is
not as big as in the Hypervolume, the HSD intervals do not overlap (RIPG
HSD interval = [1.03218; 1.02339], T-RIPG HSD interval = [1.02320; 1.01449]),
that is, the difference between these algorithms is statistically significant.
The difference, considering that both indicators are normalized, is not only
statistically significant but big as well.

Figures 6 and 7 show the average values of Hypervolume (IH) and Unary
epsilon indicators (I1

ε ) as a function of the instance size. From these graphs
and Table 4, we draw the following conclusions:

• The proposed T-RIPG algorithm performs better than all the other
algorithms for all groups of instances with the Hypervolume indicator.

• The proposed T-RIPG performs better than MOIGS and NSGA-II
for all groups of instances with the Unary epsilon indicator. However,
RIPG yields slightly better results in a few groups. In these cases, we
often observe conflictive IH and I1

ε values as per Table 4, indicating
that for these cases no algorithm strongly dominates the other.
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T-RIPG RIPG MOIGS NSGA-II
IH I1

ε IH I1
ε IH I1

ε IH I1
ε

50 x 10 1.2251 1.0291 1.1056 1.0376 0.8479 1.2178 1.0678 1.1327
50 x 15 1.2446 1.0230 1.1050 1.0361 0.9096 1.1868 1.1176 1.0792
50 x 20 1.2774 1.0226 1.1818 1.0317 0.9678 1.1738 1.1711 1.0808
50 x 25 1.2733 1.0271 1.1539 1.0338 0.9149 1.1894 1.1618 1.0788
50 x 30 1.2914 1.0325 1.1693 1.0376 0.9444 1.2206 1.1993 1.0616
100 x 10 1.2000 1.0405 0.9812 1.0432 0.9765 1.1514 0.8938 1.1142
100 x 15 1.2651 1.0266 1.1095 1.0361 1.0319 1.1393 1.0727 1.0800
100 x 20 1.2595 1.0206 1.1388 1.0263 1.0820 1.0972 1.1019 1.0775
100 x 25 1.2731 1.0192 1.1355 1.0234 1.0667 1.0903 1.1316 1.0652
100 x 30 1.2702 1.0151 1.1113 1.0277 1.0467 1.1011 1.1200 1.0610
150 x 10 1.2473 1.0251 1.0163 1.0415 1.0703 1.1094 0.7789 1.1389
150 x 15 1.2660 1.0139 1.0352 1.0352 1.1133 1.1059 0.8600 1.1052
150 x 20 1.2911 1.0214 1.1360 1.0119 1.1312 1.0786 1.0175 1.0728
150 x 25 1.3125 1.0105 1.1578 1.0264 1.1864 1.0763 1.0915 1.0628
150 x 30 1.2775 1.0121 1.1074 1.0155 1.1285 1.0741 1.0270 1.0670
200 x 10 1.3039 1.0121 1.0429 1.0438 1.1305 1.1189 0.6771 1.2097
200 x 15 1.3247 1.0167 1.1410 1.0210 1.1816 1.0895 0.8482 1.1403
200 x 20 1.3105 1.0103 1.1070 1.0227 1.1728 1.0787 0.8531 1.1352
200 x 25 1.3083 1.0133 1.1501 1.0142 1.1842 1.0640 0.9275 1.0880
200 x 30 1.3226 1.0091 1.1338 1.0173 1.2035 1.0580 0.9521 1.0946
250 x 10 1.3044 1.0162 1.0216 1.0419 1.1819 1.1144 0.5984 1.2562
250 x 15 1.3191 1.0157 1.1191 1.0235 1.2097 1.0837 0.7590 1.1796
250 x 20 1.2959 1.0167 1.1250 1.0204 1.1842 1.0827 0.8059 1.1481
250 x 25 1.3196 1.0136 1.1707 1.0122 1.2546 1.0528 0.9227 1.1041
250 x 30 1.3448 1.0103 1.1722 1.0127 1.2249 1.0742 0.9404 1.1073
Average 1.2851 1.0189 1.1131 1.0277 1.0938 1.1132 0.9639 1.1096

Table 4: Computational results for all algorithms.
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Figure 5: Hypervolume and Unary epsilon Means plots with Tukey’s Honest Significant
Difference (HSD) 95% confidence intervals for all tested algorithms.
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Figure 7: Unary epsilon for the tested algorithms as a function of the instance size.

7. Conclusions and future work

In this paper we have presented an efficient algorithm to solve the Bi-
Objective Unrelated Parallel Machine scheduling problem with Setups and
additional Resources in the Setups (BO-UPMSR-S). This problem is a gener-
alized setting that incorporates many practical situations easily encountered
in real production shops. A comprehensive computational campaign together
with a detailed statistical analysis, based on the results obtained over a large
benchmark, is presented to compare the proposed algorithm, called Truncate
Restarted Iterated Pareto Greedy algorithm (T-RIPG), with other state-of-
the-art adapted multi-objective algorithms. All algorithms were calibrated,
and their parameters were set to those levels that produced the best results.
That calibration shows the relevance of each phase of the algorithm. Of
particular relevance is the repairing mechanism, a novel procedure aimed at
greatly reducing resource consumption in constructed schedules by insert-
ing idle times into machines before setups start, to avoid resource overload.
This, together with fine tuned operators taken from the literature, results
in a state-of-the-art approach. The proposed algorithm yields better results
than the other algorithms for both performance indicators studied in this
paper. Among the other algorithms adapted in this paper, in small instances,
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the RIPG algorithm outperforms the MOIGS algorithm. However, in large
instances, the MOIGS algorithm performs better than RIPG. Future research
on this topic will focus on adapting these algorithms to other multi-objective
scheduling problems.
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