

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/184692

Corberán, Á.; Plana, I.; Reula, M.; Sanchís Llopis, JM. (2021). On the Distance-Constrained
Close Enough Arc Routing Problem. European Journal of Operational Research. 291(1):32-
51. https://doi.org/10.1016/j.ejor.2020.09.012

https://doi.org/10.1016/j.ejor.2020.09.012

Elsevier

On the Distance-constrained Close Enough Arc

Routing Problem

Ángel Corberán
Dept. d’Estad́ıstica i Investigació Operativa, Universitat de València

Avda. Dr. Moliner 50, 46100 Burjassot (Valencia, Spain) angel.corberan@uv.es

Isaac Plana
Dept. de Matemáticas para la Economı́a y la Empresa, Universitat de València

Avda. Tarongers s/n, 46022 Valencia (Valencia, Spain) isaac.plana@uv.es

Miguel Reula
Dept. d’Estad́ıstica i Investigació Operativa, Universitat de València

Avda. Dr. Moliner 50, 46100 Burjassot (Valencia, Spain) miguel.reula@uv.es

José M. Sanchis∗

Dept. de Matemática Aplicada, Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia (Valencia, Spain) jmsanchis@mat.upv.es

Abstract

Arc routing problems consist basically of finding one or several routes traversing a given
set of arcs and/or edges that must be serviced. The Close-Enough Arc Routing Problem, or
Generalized Directed Rural Postman Problem, does not assume that customers are located at
specific arcs, but can be serviced by traversing any arc of a given subset. Real-life applications
include routing for meter reading, in which a vehicle equipped with a receiver travels a street
network. If the vehicle gets within a certain distance of a meter, the receiver collects its data.
Therefore, only a few streets which are close enough to the meters need to be traversed. In
this paper we study the generalization of this problem to the case in which a fleet of vehicles
is available. This problem, the Distance-Constrained Close Enough Arc Routing Problem,
consists of finding a set of routes with minimum total cost such that their length does not
exceed a maximum distance.

In this article, we propose a new formulation for the Distance-Constrained Close Enough
Arc Routing Problem and present some families of valid inequalities that we use in a
branch-and-cut algorithm for its solution. Extensive computational experiments have been
performed on a set of benchmark instances and the results are compared with those obtained
with other heuristic and exact methods.

Keywords: Routing, Distance constraints, Close-Enough, Rural Postman, branch and
cut.

∗corresponding author: jmsanchis@mat.upv.es

1

1 Introduction

Some real-world logistic problems, such as meter reading, waste collection or postal delivery, re-
quire that a service is performed while traversing a street or road. Recent technological advances
allow some of these tasks to be performed in an easier and less expensive way. Particularly, radio
frequency technology (RFID) permits collecting the consumption data from electricity, gas or
water meters remotely ([30]).

Until recently, the collection of this data had to be performed door to door and thus the
vehicles or workers had to traverse all the streets where the meters where located. Using RFID,
the service providers do not need to visit all their customers. The meter sends the data con-
sumption and, if the receiver is closer than a certain distance, this data is collected. Therefore,
the operator only needs to enter the meter covering zone to perform the service. An interesting
summary of the models and methods proposed since the late 1970s in meter reading is the paper
by Eglese et al. [19].

The first description of this application for a single vehicle was provided by Gulczynski et
al. [22]. They consider the problem where each customer is modeled as a point in the plane
and the salesman must travel within a required radius r of each customer. They assume that
the salesman “is not restricted to a road network”, that is, it can move between any pair of
points in the plane following a straight line whose cost is the Euclidean distance. The objective
is to minimize the total distance traveled. Since then, this problem, the Close Enough Traveling
Salesman Problem (CETSP), and variants where the radius associated with each customer may
be different or the shape of the area around the customer is not a circle have been studied by
several authors: Dong et al. [16], Mennell [26], Shuttleworth et al. [29], Behdani and Smith [4],
Coutinho et al. [14], and Carrabs et al. [5]. Another closely related problem is the Covering Tour
Problem (CTP) studied by Gendreau et al. [21]. The CTP is defined on a graph G = (V ∪W,E),
where W is a set of vertices that must be covered, and consists of determining a minimum length
Hamiltonian cycle on a subset of V such that every vertex of W is within a prespecified distance
from the cycle. For this problem, the authors present an ILP formulation and several valid
inequalities and propose a heuristic and a branch-and-cut algorithm.

Hà et al. [23] and [24] consider the meter reading application in the context of a street
network, where, although the customers (meters) do not need to be nodes of the network, they
can be serviced by traversing a street that is close enough. Hà et al.’s approach to the problem
is clearly that of an arc routing problem. Unlike the previous articles, where the service has to
be done in all or some of the vertices of a network (node or vehicle routing problems), in arc
routing problems (ARPs) the service has to be done in some or all the arcs or/and edges of a
network. See the book [7], the annotated bibliography by Mourão and Pinto [27], and [8] for a
comprehensive treatment of this area. Hà et al. call this problem the Close-Enough Arc Routing
Problem (CEARP) and propose a formulation and a branch-and-cut algorithm that exhibits a
very good performance on large instances. In a more general context, Drexl [17] and [18] studies
this problem and calls it the Generalized Directed Rural Postman Problem (GDRPP). In the
GDRPP each customer has an associated subset of arcs, of which at least one has to be traversed
in order to service the customer, and the goal is to find a minimum cost route servicing all the
customers. Drexl proves that the problem is NP-hard because it contains the Directed Rural
Postman Problem as a special case and proposes a formulation and a branch-and-cut algorithm

2

producing good computational results.

Ávila et al. [2] introduce two new formulations for the CEARP, present a polyhedral study
and propose a branch-and-cut algorithm using several families of new inequalities, comparing
the obtained results with those from Hà et al. [24]. In Cerrone et al. [6] a new flow-based
formulation is given, as well as some techniques to reduce the size of the graph. The results
obtained on one of the set of instances proposed in [23] using this new formulation improve
those of Hà et al., but are slightly worse than those in [2]. A stochastic version of the CEARP
has been studied by Renaud et al. [28]. In that paper, the authors point out that the remote
reading of a meter may fail and therefore there is an uncertainty in the collection of the data.
They introduce the probability of reading a meter as a function of the distance of the customer
from the vehicle route, and propose a mathematical formulation and a cutting-plane algorithm
and several heuristics for its solution.

The Generalized Arc Routing Problem is an undirected version of the CEARP where the
clusters of edges associated with the customers are pairwise-disjoint connected subgraphs. This
problem, which can be seen as the arc routing counterpart of the Generalized Traveling Salesman
Problem, is studied by Aráoz et al. [1], who describe some facets and valid inequalities for the
problem and present a branch-and-cut algorithm for its solution.

Other applications of the CETSP and the CEARP arise in the robot monitoring of wireless
sensor networks ([31] and [4]). As Yuan et al. [31] point out, “in a wireless sensor network,
where sensors are geographically distant from each other, it may not be practical to require
sensors to directly coordinate with each other to form a communication network due to the
energy restriction. One possible solution is to employ a mobile robot, which can travel to all
sensors, to download the data and finally return to its base station (starting position)”. Like in
meter reading, “the robot must be physically within its effective range”. Aráoz et al. [1] also
note that another area of application is in quality control for networks maintenance, where only
a small subset of the edges of a network has to be traversed. The same authors argue that the
CEARP is the most appropriate problem for modeling location/arc routing problems in which
facilities have to be located at some given areas and connected among them by means of a route.

The CEARP is defined for a single vehicle, but in practical applications where the number
of customers is very high the service must be carried out by a fleet of vehicles (or one vehicle
performing several routes). Ávila et al. [3] introduce the problem of finding a set of routes with
total minimum cost, that start and end at a depot, service all the customers, and such that the
length of each route does not exceed a certain limit. For this problem, the Distance Constrained
CEARP (DC-CEARP), the authors introduce four different formulations and, based on them,
they propose four branch-and-cut algorithms for its solution. Recently, a matheuristic algorithm
for the DC-CEARP has been described in Corberán et al. [10].

In this paper we deepen the study of the DC-CEARP. The contribution of this work is three-
fold. First, we propose a new formulation for the DC-CEARP that combines the best features
of the previously existing ones. For this formulation, an exhaustive study of its associated poly-
hedron is performed, and several different families of valid inequalities are proposed. Secondly,
many of the new inequalities presented here can be used, directly or easily adapted, in other arc
routing problems, and the ideas in which some of the algorithms designed for the separation of
these inequalities are based (or the algorithms themselves), can be used for similar inequalities
in other problems. Finally, the designed branch-and-cut algorithm is an efficient exact method

3

that is able to solve instances with up to 140 customers, 196 vertices, 544 arcs, and 5 vehicles
to optimality within two hours computing time.

The paper is organized as follows. In Section 2 we describe the problem formally and present
the new formulation. Several families of valid inequalities are shown in Section 3, while the
corresponding separation methods and the branch-and-cut algorithm are presented in Section
4. Computational experiments are reported in Section 5, and some conclusions and future lines
of research are given in Section 6.

2 Problem definition and formulations

The Distance-Constrained Close Enough Arc Routing Problem, DC-CEARP, is defined as fol-
lows. Consider a strongly connected and directed graph G = (V,A), where V is the set of
vertices, A is the set of arcs, and, for each arc (i, j) ∈ A, there is a distance dij associated with
its traversal. Vertex 1 represents the depot. There is a fleet of K identical vehicles based at
the depot and a set of L customers. Each customer c ∈ {1, . . . , L} has an associated set of arcs
Hc ⊆ A from which it can be serviced. We consider that a customer c is serviced if there is a
vehicle k that traverses at least one arc in Hc. The length of the routes of the vehicles must not
exceed a maximum travel distance denoted by Dmax. The aim of the DC-CEARP is to find a
set of K routes, starting and ending at the depot, with minimum total distance and such that
each customer c = 1, . . . , L, is serviced and the length of each route does not exceed Dmax.

In what follows, K = {1, . . . ,K} will represent the set of vehicles, H = {1, . . . , L} the set
of customers, and AR = H1 ∪ H2 ∪ . . . ∪ HL the set of required arcs. The arcs in the set
ANR = A \ AR are called non-required arcs. Given two sets S, T ⊂ V , we define (S : T) =
{(i, j) ∈ A : i ∈ S, j ∈ T} and (S, T) = (S : T) ∪ (T : S). In particular, δ+(S) = (S : V \S),
δ−(S) = (V \S : S) and δ(S) = (S, V \S). Finally, A(S) = {(i, j) ∈ A : i, j ∈ S} and, given a set
of variables xij indexed on the arcs, and given a set F of arcs, x(F) =

∑
(i,j)∈F xij .

In Ávila et al. [3] four formulations for the DC-CEARP using different types of variables are
presented. In these formulations, there are two types of variables. Some variables are associated
with the number of times a vehicle traverses an arc, while other variables indicate if the vehicle
traversing a required arc services an associated customer or not.

The formulation we propose here, Fxyz, is based on the Fxy+ and Fxz formulations presented
in [3]. This new formulation has more variables than Fxy+ and Fxz but, as it will be seen in
Section 5, they are useful in the exact solution of the DC-CEARP. The formulation Fxyz uses
the following variables:

xkij = number of times that the vehicle k traverses arc (i, j) ∈ A,

ykcij =

{
1, if the customer c is serviced by vehicle k while traversing arc (i, j) ∈ AR
0, otherwise.

zkc =

{
1, if the customer c is serviced by vehicle k
0, otherwise.

4

The DC-CEARP can be formulated as

Minimize
∑
k∈K

∑
(i,j)∈A

dij x
k
ij

s.t.: ∑
(i,j)∈A

dij x
k
ij ≤ Dmax ∀k ∈ K (1)

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ V, ∀k ∈ K (2)∑
k∈K

∑
(i,j)∈Hc

ykcij = 1 ∀c ∈ H (3)

xkij ≥ ykcij ∀(i, j) ∈ AR, ∀c ∈ H, ∀k ∈ K (4)∑
(i,j)∈Hc

ykcij = zkc ∀c ∈ H, ∀k ∈ K (5)

xk(δ+(S)) ≥ zkc − xk(Hc ∩A(V \ S)) ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K (6)

xkij ≥ 0 and integer ∀(i, j) ∈ A, ∀k ∈ K (7)

zkc ∈ {0, 1} ∀c ∈ H, ∀k ∈ K (8)

ykcij ∈ {0, 1} ∀(i, j) ∈ AR, ∀c ∈ H, ∀k ∈ K (9)

Inequalities (1) limit the maximum length of each vehicle route. Constraints (2) are the well
known symmetry equations. Inequalities (3) force each customer to be serviced exactly from
one arc and with one vehicle, and inequalities (4) say that if a vehicle services a required arc
then it has to traverse it. The relation between the ykcij and zkc variables is given by equations
(5). The connectivity of each route is guaranteed by inequalities (6). They are valid because, if
vehicle k does not service customer c, zkc = 0 and the inequality is trivially satisfied. Otherwise,
if vehicle k services customer c by traversing an arc in Hc ∩ A(V \ S), then it does not need to
traverse the cutset δ(S) and the inequality is also trivially satisfied. Only if vehicle k services
customer c by traversing an arc not in Hc ∩ A(V \ S) (hence, traversing an arc in δ(S) or in
A(S)), the vehicle has to traverse δ(S) and, therefore, the inequality is satisfied. Note that there
is an exponential number of such inequalities. Finally, (7), (8) and (9) are the non-negativity
and integrality constraints.

Note that the coefficients in the objective function and those in inequalities (1) do not
necessarily have to be the same. We have set the same coefficients for the sake of simplicity and
because we think of them as distances associated with a time that the routes should not exceed
because they may correspond, for example, to drivers’ working hours.

3 Valid inequalities

In this section we introduce some inequalities that are valid for the DC-CEARP and that will
strengthen the linear relaxation of the formulation.

5

3.1 More connectivity inequalities

Besides the connectivity inequalities (6) in the formulation, involving variables x and z, other
connectivity inequalities are presented in what follows.

In [3], the following connectivity inequalities were introduced:

xk(δ+(S)) ≥ 1− xk(Hc ∩A(V \ S))−
∑
k′ 6=k

xk
′
(Hc), ∀S ⊂ V \ {1}, ∀c ∈ H, ∀k ∈ K. (10)

These inequalities ensure that, if no vehicle other than k traverses the arcs in Hc (thus it cannot
service customer c), and vehicle k does not traverse any arcs in Hc∩A(V \S), then vehicle k has
to traverse the cutset (V \S, S) in order to service this customer. They are called disaggregate
connectivity inequalities because they refer to a single vehicle. For each subset Ω ⊂ K of |Ω| ≥ 2
vehicles, the following Ω-aggregate connectivity inequalities are valid∑

k∈Ω

xk(δ+(S)) ≥ 1−
∑
k∈Ω

xk(Hc ∩A(V \S))−
∑
k′ /∈Ω

xk
′
(Hc), ∀S ⊂ V \ {1}, ∀c ∈ H. (11)

In the case Ω = K the aggregate connectivity inequalities are:∑
k∈K

xk(δ+(S)) ≥ 1−
∑
k∈K

xk(Hc ∩A(V \S)), (12)

for any subset S ⊆ V \{1} and any customer c ∈ H.

If we consider also ykcij variables, we have a different family of connectivity inequalities (see
[3]):

xk(δ+(S)) ≥
∑

(i,j)∈Hc\A(V \S)

ykcij , ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K (13)

Note that, if vehicle k services customer c using an arc in Hc\A(V \S), then the vehicle has to
traverse δ(S).

Unlike for inequalities (10), the Ω-aggregate and aggregate versions of connectivity inequal-
ities (6) and (13) are just the sum of the corresponding disaggregate inequalities and, therefore,
they are dominated.

3.2 Parity inequalities

Parity inequalities are based on the fact that a vehicle crosses any cutset an even (or zero)
number of times. The parity inequalities for the DC-CEARP described in what follows are
different from those in other arc routing problems because they are related not only to the arcs
in the cutset but also to the sets Hc. Four different families of parity inequalities were presented
in Ávila et al. [3]. From them, the two stronger ones are presented in what follows.

The first family uses only x variables. Given a vehicle k, let S ⊂ V and consider a subset of
customers {c1, c2, ..., cq}, with q ≥ 3 and odd, such that Hci ∩Hcj ∩ δ(S) = ∅ and Hci ∩ δ(S) 6=

6

V \ S S

Hc1

Hc2

...

Hcq

(a) Parity Inequalities (14).

V \ S SHc1

Hc2
...

Hcq

Fc1

Fc2

Fcq

(b) Parity Inequalities (15).

Figure 1: Structure of the parity inequalities for the DC-CEARP

∅,∀ci, i = 1, ..., q (see Figure 1a). In [3], it is proved that the following parity inequalities are
valid for the DC-CEARP:

xk(δ(S)) ≥
q∑
i=1

(
1− 2

∑
k′ 6=k

xk
′
(Hci)− 2xk(Hci \ δ(S))

)
+ 1. (14)

Note that, if no other vehicle k′ 6= k services customer ci (i.e.,
∑
k′ 6=k

xk
′
(Hci) = 0) and vehicle k

does not traverse any edge of customer ci that is not in the cutset (i.e., xk(Hci \δ(S)) = 0), then
k traverses at least an arc in Hci ∩ δ(S). Extending the previous argument to the q customers
in δ(S), vehicle k has to traverse at least q times δ(S) and, since q is an odd number, it has to
go through the cutset one more time.

The second set of inequalities use the xkij and the ykcij variables. Consider now the set
of arc subsets F = {Fc1 , Fc2 , ..., Fcq}, with q ≥ 3 and odd, satisfying Fci ⊆ Hci ∩ δ(S) and
Fci ∩ Fcj = ∅, ∀ci, cj (see Figure 1b). Then, the following parity inequalities are valid for the
DC-CEARP:

xk(δ(S)) ≥
q∑
i=1

(
2ykci(Fci)− 1

)
+ 1. (15)

In this case, note that if vehicle k services each customer ci from an arc in Fci , then it has to
traverse δ(S) at least q times. Again, since q is an odd number, the number of traversals should
be at least q + 1.

Besides the right-hand side of the inequalities, there is a difference between the conditions
satisfied by the customers in the parity inequalities above. As it is depicted in Figure 1, two
customers c1 and c2 satisfying Hc1 ∩ Hc2 ∩ δ(S) 6= ∅ cannot be considered for inequality (14),
but they can for inequality (15) if Fc1 and Fc2 are chosen such that Fc1 ∩Fc2 = ∅. Nevertheless,
we want to point out that the greater the sets Fci , the stronger inequalities (15). In particular,

7

if Fci = Hci ∩ δ(S), for all i = 1, . . . , q, and Fci ∩ Fcj = ∅ for all i 6= j; i, j = 1, . . . q, we obtain
the strongest inequality.

By comparing both kind of inequalities, it can be seen that none of them dominates the
other in all the cases. Hence, in the branch-and-cut algorithm we will use both families of parity
inequalities (14) and (15).

Finally, given a set of vehicles Ω = {k1, .., kP }, 2 ≤ P ≤ K, we have the following Ω-aggregate
parity inequalities:

∑
k∈Ω

xk(δ+(S)) ≥ q + 1− 2

q∑
i=1

(∑
k′ /∈Ω

xk
′
(Hci) +

∑
k∈Ω

xk(Hci \ δ(S))
)
. (16)

∑
k∈Ω

xk(δ+(S)) ≥
q∑
i=1

(∑
k∈Ω

2ykci(Fci)− 1
)

+ 1. (17)

It can be seen that if Ω = K and Fci = Hci , ∀ ci (hence Hci \ δ(S) = ∅ holds), inequalities (16)
and (17) reduce to the following aggregate parity inequality:

∑
k∈K

xk(δ+(S)) ≥ q + 1.

3.3 K-C inequalities

K-C inequalities were introduced in [12] for the undirected Rural Postman Problem. Beyond
the connectivity and parity inequalities described before, the K-C inequalities try to make con-
nectivity and parity conditions satisfied simultaneously on a partition of the vertex set that
is more complex than the two shores of the cutsets (S, V \ S) used in connectivity and parity
inequalities.

The name of this family of inequalities is motivated by the number of sets into which V is
partitioned, which is usually denoted by K. To avoid confusion with the number of vehicles, in
what follows we use the letter Q instead.

All the versions of the K-C inequalities are based on a structure (see Figure 2) defined by
a partition of the set of vertices V into Q + 1 subsets, M0,M1, . . . ,MQ−1,MQ, and a set of
coefficients for the arcs or edges of the graph. For each (i, j) ∈ A, we define

αij =


Q− 2, if (i, j) ∈ (M0,MQ)
|r − s|, if (i, j) ∈ (Mr,Ms), {r, s} 6= {0, Q}
0, otherwise.

(18)

Let us call external arcs those joining two consecutive sets Mr and Mr+1, and internal arcs
to those joining two sets Mr and Ms with |r − s| > 1 and {r, s} 6= {0, Q}. Note that all the
external arcs have coefficient 1, while the coefficient of an internal arc from Mr to Ms (not shown
in Figure 2) is equal to the cost of the shortest path using the coefficients of the external arcs.
Finally, the coefficient of the arcs in (M0,MQ) is Q− 2. It is known (see [12] and [3]) that any

8

Q− 2 Q− 2

M0

MQ

M1

Mi

MQ−1

1
1 1

1

1
1 1

1

Figure 2: Standard K-C basic structure.

vector x ∈ Z|A| representing a tour traversing at least an even number q ≥ 2 of times the arcs
in (M0,MQ), and visiting at least once each node set M0 ∪MQ, M1, . . . , MQ−1, satisfies the
following K-C inequality: ∑

(i,j)∈A

αij xij ≥ (Q− 2)q + 2(Q− 1). (19)

Inequality (19) is valid for any ARP in which all the tours x must traverse q times the arcs in
(M0,MQ) and visit all the node sets M0∪MQ, M1, . . . , MQ−1. As an example, this is the case of
the ARPs with one single vehicle when there are q required arcs in (M0,MQ) and some required
arcs in all the sets M1, . . . ,MQ−1. In an ARP with several vehicles, such as the DC-CEARP
studied here, it is usual that single vehicles are not obliged to traverse all the required arcs (or,
therefore, to visit all the nodes), but only those arcs that are serviced by it. Thus, the K-C
inequalities for the DC-CEARP presented in this section have the same left-hand side (LHS) as
inequality (19), but the right-hand side (RHS) must include variables ykcij that define the service
of a customer by a vehicle from an arc, in such a way that, when the vehicle k satisfies the above
conditions, the RHS of the inequality takes value (Q− 2)q + 2(Q− 1).

3.3.1 Disaggregate K-C inequalities

Consider a partition of the set of vertices V into Q subsets {M0 ∪MQ,M1, . . . ,MQ−1}, with
Q ≥ 3, and the set of coefficients αij given in (18) (see Figure 3). For each (i, j) ∈ A,

Let us consider a family of arc subsets F = {F1, F2, . . . , Fq}, with q ≥ 2 and even, satisfying
(see Figure 3):

• Fi 6= ∅ ∀i ∈ {1, . . . , q},

• ∃ ci ∈ H such that Fi ⊆ Hci ∩ (M0,MQ), ∀i ∈ {1, . . . , q},

• Fi ∩ Fj = ∅, ∀i, j ∈ {1, . . . , q}, i 6= j.

9

Q− 2. . .

F1 Fq
Q− 2

M0

MQ

G1

M1

GiMi

GQ−1

MQ−1

1
1 1

1

1
1 1

1

Figure 3: Standard disaggregate K-C inequality for the DC-CEARP. Depot is represented by a triangle

Furthermore, assume that for each Mj , j = 1, . . . , Q − 1, either 1 ∈ Mj or the set of arcs
Gj = Hcj ∩ (A(Mj) ∪ δ(Mj)) is nonempty, for some cj ∈ H. Note that we cannot assume
Gj1 ∩ Gj2 = ∅ because δ(Mj1) and δ(Mj2) are not necessarily disjoint sets. We define the
disaggregate K-C inequality associated with a vehicle k as:

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1

2ykcj (Gj), (20)

if the depot is in M0 ∪MQ, and

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1
j 6=l.

2ykcj (Gj) + 2, (21)

if 1 ∈Ml with l /∈ {0, Q}.

Note 1 If Q = 2, then inequality (20) is exactly the connectivity constraint (6) associated with
set S = M1.

Theorem 1 For each vehicle k, disaggregate K-C inequalities (20) and (21) are valid for the
DC-CEARP.

Proof See Appendix A.1.

10

3.3.2 Ω-aggregate K-C inequalities

Here we present the K-C inequalities associated with any subset of vehicles Ω ⊆ K. Note that,
inequality (20) can be written as

∑
(i,j)∈A

αij x
k
ij − (Q− 2)

q∑
i=1

(
2ykci(Fi)

)
−
Q−1∑
j=1

2ykcj (Gj) ≥ −(Q− 2)q, (22)

where the values for coefficients αij are given in (18).

If we consider a subset of vehicles Ω ⊆ K and we add the |Ω| corresponding disaggregate
K-C inequalities we obtain an inequality that is obviously valid for the DC-CEARP, but it is
not interesting for the problem, since it is dominated:

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij − (Q− 2)

∑
k∈Ω

q∑
i=1

(
2ykci(Fi)

)
−
∑
k∈Ω

Q−1∑
j=1

2ykcj (Gj) ≥ −|Ω|(Q− 2)q

However, by changing the RHS from −|Ω|(Q−2)q to −(Q−2)q, we obtain new and stronger
inequalities (except when RHS=0, i.e., when Q = 3, q = 2 and the depot is not in M0 ∪MQ).
Specifically, given a partition {M0 ∪MQ,M1, . . . ,MQ−1}, Q ≥ 3, with the corresponding set of
coefficients α, a set F = {F1, F2, . . . , Fq} (q ≥ 2 and even) and some sets Gj as above, and given
a subset of vehicles Ω, we define the Ω-aggregate K-C inequality as

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1

∑
k∈Ω

2ykcj (Gj) (23)

if the depot 1 ∈M0 ∪MQ, and

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1
j 6=l.

∑
k∈Ω

2ykcj (Gj) + 2 (24)

if 1 ∈Ml, with l /∈ {0, Q}.

Theorem 2 Given a set of vehicles Ω ⊆ K, the Ω-aggregate K-C inequalities (23) and (24) are
valid for the DC-CEARP.

Proof See Appendix A.2.

3.4 K-C02 inequalities

K-C02 inequalities are a variant of the K-C inequalities that take into account the asymmetry
of the costs associated with the direction of traversal. In some ARPs the K-C02 inequalities
are dominated by the standard K-C inequalities. This is not the case for the DC-CEARP. For
example, consider the fractional DC-CEARP solution (xk, yk) depicted in Figure 4. It can be

11

F1 F2

yk = 0.5 yk = 0.5 yk = 1
xk = 0.5 xk = 0.5 xk = 1.25

M0

M3

G1
yk = 1

M1

G2yk = 1

M2

xk = 1.25

xk = 1.25

xk = 1.25

Figure 4: A fractional solution for vehicle k not cut off by a disaggregate K-C inequality

seen that this solution satisfies all the connectivity inequalities (6) and it also satisfies the K-C
inequality (20) corresponding to this structure:∑

(i,j)∈A

αij x
k
ij = (0.5 + 0.5 + 1.25) + (1.25 + 1.25 + 1.25) = 6, and

(Q−2)

q∑
i=1

(
2ykci(Fi)−1

)
+

q∑
i=1

2ykcj (Gj) =
(

2(0.5 + 0.5)−1
)

+
(

2×1−1
)

+ 2×1 + 2×1 = 6.

We will see that the disaggregate K-C02 inequalities that we describe in what follows do cut off
this solution.

3.4.1 Disaggregate K-C02 inequalities

Consider a partition of the set of vertices V into Q subsets {M0 ∪MQ,M1, . . . ,MQ−1}, with
Q ≥ 2, and the following set of coefficients (see Figure 5). For each (i, j) ∈ A,

βij =


Q− 1, if (i, j) ∈ (M0,MQ)
s− 1, if (i, j) ∈ (M0 : Ms), 1 ≤ s ≤ Q− 1
s+ 1, if (i, j) ∈ (Ms : M0), 1 ≤ s ≤ Q− 1
|r − s|, if (i, j) ∈ (Mr,Ms), 1 ≤ r, s ≤ Q
0, otherwise.

Let us also consider a family of arc subsets F = {F1, F2, . . . , Fq}, and the arc sets Gj satisfying
the same conditions as for the K-C inequalities. Note that now we have Q ≥ 2 (see Note 2
below). We define the disaggregate K-C02 inequalities associated with a vehicle k as:

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1

2ykcj (Gj), (25)

12

if the depot is in M0 ∪MQ, and

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1
j 6=l.

2ykcj (Gj) + 2, (26)

if 1 ∈Ml with l /∈ {0, Q}.

. . .

F1 Fq

Q− 1 Q− 1

M0

MQ

G1

M1

GiMi

GQ−1

MQ−1

2

0 1
1

1
1 1

1

Figure 5: Disaggregate K-C02 inequalities for the DC-CEARP

Theorem 3 For each vehicle k, K-C02 inequalities (25) and (26) are valid for the DC-CEARP.

Proof The proof is similar to that of Theorem 1 and is omitted here for the sake of brevity. �

Let us now check that the K-C02 inequality cuts off the fractional solution (xk, yk) depicted
in Figure 4:∑

(i,j)∈A

βij x
k
ij = 2(0.5 + 0.5 + 1.25) + 0× 1.25 + 1× 1.25 + 1× 1.25 = 7, while

(Q− 1)

q∑
i=1

(
2ykci(Fi)− 1

)
+

q∑
i=1

2ykcj (Gj) = 2
(

2(0.5 + 0.5)− 1 + 2× 1− 1)
)

+ 2× 1 + 2× 1 = 8.

Note 2 Unlike the standard K-C inequalities, the K-C02 inequalities with Q = 2 are not equiv-
alent to any other known inequality.

3.4.2 Ω-aggregate K-C02 inequalities

Given a partition {M0 ∪MQ,M1, . . . ,MQ−1}, Q ≥ 2, with the corresponding set of coefficients
β, a set F = {F1, F2, . . . , Fq} (q ≥ 2 and even), some sets Gj as above, and given a subset of

13

vehicles Ω ⊆ K, we define the Ω-aggregate K-C02 inequality as

∑
k∈Ω

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1

∑
k∈Ω

2ykcj (Gj), (27)

if the depot 1 ∈M0 ∪MQ, and

∑
k∈Ω

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1
j 6=l.

∑
k∈Ω

2ykcj (Gj) + 2, (28)

if 1 ∈Ml, with l /∈ {0, Q}.

Theorem 4 Given a set of vehicles Ω ⊆ K, the Ω-aggregate K-C inequalities (27) and (28) are
valid for the DC-CEARP.

Proof The proof is similar to that of Theorem 2 and is omitted here for the sake of brevity. �

3.5 Path-Bridge inequalities

Path-Bridge inequalities are a generalization of the K-C inequalities introduced in [25] for the
undirected General Routing Problem and are inspired by the path inequalities introduced in
[13] for the Graphical Traveling Salesman Problem.

As K-C, Path-Bridge inequalities try that connectivity and parity conditions are satisfied
simultaneously on a given partition of the vertex set V . They are based on a structure (see Figure
6) with two sets M0,MZ , a number P ≥ 1 of ‘paths’ between M0 and MZ , and a number B ≥ 0
of required arcs in (M0,MZ) forming the ‘bridge’, with P +B ≥ 3 being an odd number. It can
be noted that K-C inequalities described in Section 3.3 are a particular case of the Path-Bridge
inequalities when P = 1 and B ≥ 2 and even.

3.5.1 Disaggregate path-bridge inequalities

Given two integers P ≥ 1, B ≥ 0 such that P +B ≥ 3 is an odd number, consider the partition
of V into the subsets {M0,MZ , {M t

r}
t=1,...,P
r=1,...,nt

}, where n1, n2, . . . , nt are integer numbers, ni ≥ 2,
and consider the following coefficients (see Figure 6). For each (i, j) ∈ A,

αi,j =



1, if (i, j) ∈ (M0,MZ)

|r−s|
nt−1 , if (i, j) ∈ (M t

r ,M
t
s), t ∈ {1, . . . , P}, r, s ∈ {0, 1, . . . , nt + 1}

1
nt−1 + 1

nu−1 +
∣∣∣ r−1
nt−1 −

s−1
nu−1

∣∣∣, if (i, j) ∈ (M t
r ,M

u
s), t 6= u, r ∈ {1, . . . , nt}, s ∈ {1, . . . , nu}

0, otherwise.

Let us consider a family of arc subsets F = {F1, F2, . . . , FB} satisfying:

• Fi 6= ∅ ∀i ∈ {1, . . . , B},

14

M0

MZ

F1

1

1

FB. . .

G1
1

G1
2

G1
n1

M1
1

M1
2

M1
n1

1
n1−1

1
n1−1

1
n1−1

1
n1−1

1
n1−1

G2
1

G2
2

G2
n2

M2
1

M2
2

M2
n2

1
n2−1

1
n2−1

1
n2−1

1
n2−1

1
n2−1

. . .

GP1

GP2

GPnP

MP
1

MP
2

MP
nP

1
nP−1

1
nP−1

1
nP−1

1
nP−1

1
nP−1

Figure 6: Standard Path-Bridge for the DC-CEARP

• ∃ ci ∈ H such that Fi ⊆ Hci ∩ (M0,MZ) ∀i ∈ {1, . . . , B},

• Fi ∩ Fj = ∅, ∀i 6= j ∈ {1, . . . , B}.

Furthermore, assume that for each M t
r , t = 1, . . . , P, r = 1, . . . , nt, either 1 ∈ M t

r or it exists a
set of arcs Gtr such that ∅ 6= Gtr ⊆ Hcj ∩AR(M t

r∪δ(M t
r)) for a cj ∈ H. We define the disaggregate

Path-Bridge inequality associated with vehicle k as:

∑
(i,j)∈A

αij x
k
ij ≥

B∑
i=1

(
2ykci(Fi)− 1

)
+

P∑
t=1

nt∑
r=1

2ykcj (Gtr)

nt − 1
− P + 1, (29)

if the depot 1 ∈M0 ∪MZ , and

∑
(i,j)∈A

αij x
k
ij ≥

B∑
i=1

(
2ykci(Fi)−1

)
+

P∑
t=1
t6=t0

nt∑
r=1

2ykcj (Gtr)

nt − 1
+

nt0∑
r=1
r 6=r0

2ykcj (Gt0r)

nt0 − 1
+

2

(nt0 − 1)
−P+1, (30)

if the depot 1 ∈M t0
r0 (different from M0 and MZ).

15

Theorem 5 For each vehicle k, disaggregate Path-Bridge inequalities (29) and (30) are valid
for the DC-CEARP.

Proof See Appendix A.3.

If we multiply the Path-Bridge inequalities (29) and (30) by
∏P
t=1(nt−1), all the coefficients

become integer. When P = 2 (and, hence, B is an odd number), the inequality is called 2-Path-
Bridge inequality and can be written as:

∑
(i,j)∈A

(n1 − 1)(n2 − 1)αij x
k
ij ≥

B∑
i=1

2(n1 − 1)(n2 − 1)ykci(Fi)+

+

n1∑
j=1

2(n2 − 1)ykcj (G1
j) +

n2∑
j=1

2(n1 − 1)ykcj (G2
j)− (B + 1)(n1 − 1)(n2 − 1), (31)

when the depot 1 ∈ M0 ∪MZ . If the depot is, for example, in a node j0 of the path t = 1
(1 ∈M1

j0
), the resulting inequality is

∑
(i,j)∈A

(n1 − 1)(n2 − 1)αij x
k
ij ≥

B∑
i=1

2(n1 − 1)(n2 − 1)ykci(Fi) + 2(n2 − 1)

+

n1∑
j=1
j 6=j0

2(n2 − 1)ykcj (G1
j) +

n2∑
j=1

2(n1 − 1)ykcj (G2
j)− (B + 1)(n1 − 1)(n2 − 1). (32)

3.5.2 Ω-aggregate Path-Bridge inequalities

Given P,B, a partition {M0,MZ , {M t
r}
t=1,...,P
r=1,...,nt

}, its corresponding set of coefficients αi,j , and
the families of arcs Fi and Gtr, as in the previous section, we define the Ω-aggregate Path-Bridge
inequality associated with a subset Ω ⊆ K of vehicles as:

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥

B∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+
∑
k∈Ω

P∑
s=1

(nt∑
q=1

2ykcj (Gtr)

nt − 1

)
− P + 1, (33)

if the depot 1 ∈M0 ∪MZ , and ∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥

≥
B∑
i=1

(∑
k∈Ω

2ykci(Fi)−1
)

+
∑
k∈Ω

P∑
t=1
t6=t0

nt∑
r=1

2ykcj (Gtr)

nt − 1
+
∑
k∈Ω

nt0∑
r=1
r 6=r0

2ykcj (Gt0r)

nt0 − 1
+

2

(nt0 − 1)
−P+1, (34)

if the depot 1 ∈M t0
r0 (different from M0 and MZ).

16

Theorem 6 Given a set of vehicles Ω ⊆ K, the Ω-aggregate Path-Bridge inequalities (33) and
(34) are valid for the DC-CEARP.

Proof The proof is similar to that of Theorem 2 and is omitted here for the sake of brevity. �

Note 3 (Path-Bridge02 inequalities) An asymmetric version of Path-Bridge inequalities,
called Path-Bridge02 inequalities, is proposed in [11] for the Mixed General Routing Problem.
Inequalities based on the same idea can also be proposed for the DC-CEARP. However, not all
their coefficients can be easily determined, since the coefficients of the variables associated with
arcs between nodes of different paths must be computed by sequential lifting for each particu-
lar Path-Bridge structure. This process is involved and, in addition, the obtained coefficients
depend on the ordering in which arcs are considered. For this reason, its separation has never
been implemented and, therefore, these inequalities are not studied here.

3.6 Max-distance constraints

In the DC-CEARP, the length of each route cannot exceed the maximum distance Dmax. Based
on this constraint, in this section we present several sets of inequalities that we call max-distance
inequalities.

Let FH ⊆ H be a subset of customers. Consider the Close Enough Arc Routing Problem
(which considers only one vehicle), defined on graph G and with set of customers FH. Let
cearp(FH) be its optimal value (or a lower bound of it). If cearp(FH)> Dmax, then the
inequalities

zkc (FH) ≤ |FH| − 1, ∀k ∈ K (35)

are valid for the DC-CEARP, because a single vehicle cannot service all the customers in FH.

On the other hand, if S is the set of vertices incident with the arcs in ∪c∈FHHc and 1 /∈ S,
then at least two different vehicles have to enter S, and the following inequality is also valid for
the DC-CEARP ∑

k∈K
xk(δ−(S)) ≥ 2. (36)

However, a DC-CEARP solution in which a vehicle enters S twice, but no other vehicle does,
satisfies (36). In order to force two different vehicles to enter S, the following valid inequalities
can be used ∑

k 6=k′
xk(δ−(S)) ≥ 1, ∀k′ ∈ K. (37)

The above inequalities, which were proposed in [3], can be generalized as follows. For a given
set of customers FH, let v(FH) be a lower bound on the minimum number of vehicles needed
to service FH. Then, a number of vehicles less than v(FH) cannot service all the customers in
FH. Hence, if v(FH) ≥ 2, the following inequalities are satisfied by each feasible solution of the
DC-CEARP:

∑
k∈Ω

zkc (FH) ≤ |FH| − (v(FH)− |Ω|), ∀ Ω ⊆ K, 1 ≤ |Ω| ≤ v(FH)− 1, (38)

17

∑
k∈K\Ω

xk(δ−(S)) ≥ v(FH)− |Ω|, ∀ Ω ⊆ K, 0 ≤ |Ω| ≤ v(FH)− 1. (39)

Note that, for v(FH) = 2, inequalities (38) and (39) are exactly (35) and (36)+(37) above,
respectively. For v(FH) = 3, we have two sets of inequalities (38):

zkc (FH) ≤ |FH| − 2, ∀k ∈ K, and (40)

zkc (FH) + zk
′
c (FH) ≤ |FH| − 1, ∀k, k′ ∈ K. (41)

3.7 Symmetry breaking inequalities

Let {c1, ..., cL} be any ordering of the set of customers (for example, according to the distances
between them and the depot). The following symmetry breaking inequalities (see [20]) are
introduced to avoid equivalent solutions:

z1
c1 = 1 (42)

zkci ≤
i−1∑
j=1

zk−1
cj k=3, . . . ,K, i ≥ 2 (43)

zkci = 0 k= i+ 1, . . . ,K, i=1, . . . , L− 1 (44)

Inequality (42) forces vehicle 1 to service customer c1. Then, vehicle 2 services the first
customer in the ordering not serviced by vehicle 1, and so on. Inequalities (43) state that if a
customer ci is serviced by vehicle k, then at least one ‘previous’ customer cj , j = 1, . . . , i − 1,
has to be serviced by the vehicle k − 1. Equations (44) prevents customers ci, i = 1, . . . , L − 1
from being serviced by vehicles with indices larger than i.

4 The Branch-and-Cut Algorithm

In this section, we present a branch-and-cut algorithm for the DC-CEARP. This new algorithm
uses some separation procedures from the methods described in [3] and incorporates new ones
for some of the inequalities described in [3] and for the new inequalities presented in this article.
Moreover, an upper bound obtained by the matheuristic algorithm proposed in [10] is used.

4.1 Separation algorithms

In what follows we describe the separation algorithms that have been used to identify the
following types of inequalities that are violated by the current LP solution at any iteration of
the cutting plane algorithm: connectivity and parity inequalities, disaggregate and Ω−aggregate
K-C and K-C02, Path-Bridge inequalities, and max-distance constraints. Section 4.1.5 provides
a synopsis of the cutting planes and characteristics of their separation procedures.

18

4.1.1 Connectivity inequalities

Several separation procedures have been used to separate connectivity inequalities. The first
algorithm, A1, separates aggregate connectivity inequalities (12). It is based on computing
the connected components of the graph induced by the arcs a such that

∑
k∈K x

k
a ≥ ε, where

ε is a given parameter. For each weakly connected component, its corresponding aggregate
connectivity inequality is checked for violation. We try ε = 0, 0.25, 0.5, 0.75, but a given value
is tried only when the previous one did not succeed in finding a violated inequality.

The second heuristic, A2, is based on the Gomory-Hu algorithm. It also works on the
aggregate graph induced by the sum of the variables corresponding to all the vehicles. If there
is a violated (aggregate) connectivity inequality in this graph, it means that there will be a
violated (disaggregate) connectivity inequality (6) for at least one vehicle.

Two more separation procedures for connectivity inequalities (13) have been implemented.
The first one, A3, works like the first algorithm described in this section, but using the graph
induced by the arcs of each single vehicle.

The last algorithm, A4, is based on the computation, for each vehicle k and each customer
c, of the maximum flow on a network containing the arcs for which xkij > 0 plus an artificial sink
and some artificial arcs from the end vertices of the arcs in Hc serviced by vehicle k (i.e. those
arcs a such that ykca > 0) to the sink. The capacity of the arcs is defined as xkij for the arcs in
the original graph, and as infinity for the artificial ones. The maximum flow from the depot to
the sink defines a minimum cutset (S, V \ S), with 1 ∈ V \ S, and the associated connectivity
inequality (13) is checked for violation.

4.1.2 Parity inequalities

We have developed several heuristic algorithms to identify violated parity inequalities. They
work as follows.

Given a fractional solution, let (xk, yk, zk) be its part corresponding to vehicle k. We build
the graph induced by the arcs satisfying xka − ȳka ≥ ε, if a is required, and xka ≥ ε otherwise,
where ȳka = max

c∈H
{ykca : a ∈ Hc}, i.e. the maximum value of ykca among the customers serviced by

arc a. Let S1, . . . , Sr be the sets of vertices of the weakly connected components of the induced
graph. For each cutset δ(Si), we now try to select the set of customers FH = {c1, . . . , cq} and the
corresponding sets of arcs F = {Fc1 , . . . , Fcq}. Two different strategies have been implemented
in order to find these sets.

In strategy 1 (algorithm A5), we create a list of pairs of required arcs and customers (a, c)
such that a ∈ δ(Si) ∩Hc. We order this list according to the value of ykca in a decreasing order.
Starting from the first pair (a, c) of the list, we iteratively add c to FH and a to Fc if neither arc
a nor customer c have been previously selected. Once the set of customers has been built, we
try to enlarge sets Fc by including each unselected arc a of the list in the set Fc with maximum
ykca .

Now, for each vehicle k, we calculate xk(δ(S))−
∑q

i=1 2ykci(Fci). If this value is less than 0,
we add k to the set of chosen vehicles Ω.

19

If
∑

k∈Ω

∑
e∈Fc

ykce < 0.5 for some customer c ∈ FH, this customer is removed from FH. If

|FH| is even, we add or remove one more customer according to the value of
∑

k∈Ω

∑
e∈Fc

ykce in

order to make |FH| odd. For each removed customer c, the arcs that belonged to Fc are studied
to see if they can be included in another arc subset of F .

Finally, we check if the corresponding Ω-aggregate parity inequality (17) is violated.

Strategy 2 (algorithm A6) considers only the cutsets δ(Si) for which xk(δ(Si)∩AR) is close
to an odd number, i.e. 2n + 0.75 ≤ xk(δ(Si) ∩ AR) ≤ 2n + 1.25 for some n ∈ {1, 2, . . . }. Let
us call ASi = {a ∈ δ(Si) ∩ AR :

∑
c:a∈Hc

ykca > 0} and HSi = {c ∈ H :
∑

a∈δ(Si)∩AR

ykca > 0}, which

denote the set of required arcs in cutset δ(Si) servicing some customer and the set of customers
that are serviced by some arc in the cutset, respectively.

We calculate
∑

a∈ASi
ykca for all the customers in HSi and select the customer c that maximizes

this value. This customer is added to FH and Fc = Hc ∩ ASi . Now we update ASi by ASi \ Fc
and HSi by HSi \ {c} and repeat the procedure for choosing the following customers until
|FH| = 2n+ 1.

As in strategy 1, we include in Ω all the vehicles k for which xk(δ(S))−
∑q

i=1 2ykci(Fci) < 0
and check if the corresponding Ω-aggregate parity inequality (17) is violated.

In order to separate parity inequalities (16) when |Ω| = K, algorithm A7 uses a similar
procedure with strategy 2 adapted to the graph induced by the arcs satisfying

∑
k∈K x

k
a−1 ≥ ε,

if a is required, and
∑

k∈K x
k
a ≥ ε otherwise.

We have also tried an alternative method for selecting the set of customers FH based on
the solution of the following integer program. As before, we define HSi as the set of customers
that are serviced by some arc in the cutset δ(Si). For each customer c ∈ HSi , we define a
binary variable µc that takes value 1 if c is included in FH and 0 otherwise. Let us define
wc =

∑
a∈δ(Si)

ykca for each customer c ∈ HSi and consider two customers cr, cs as incompatible

if there is an arc a ∈ δR(Si) such that ykcra > 0 and ykcsa > 0. Then, we solve the following IP:

Maximize
∑
c∈HSi

wc µc

s.t.: ∑
c∈HSi

µc ≡ odd (45)

µcr + µcs ≤ 1 ∀ cr, cs incompatible (46)

µc ∈ {0, 1} ∀c ∈ HSi (47)

In order to study the performance of the above method, we have compared it with the
heuristic procedure for selecting FH. On a sample of 27 randomly selected instances, the IP-
based method used, on average, 123.53 seconds per instance to find, on average, 0.22 violated
parity inequalities per call, while the heuristic method found, on average, 0.13 parity cuts in
0.46 seconds of computing time. Based on these results, we have decided not to use the IP-based
method.

20

4.1.3 K-C, K-C02 and Path-Bridge inequalities

Algorithm A8 looks first for the graph structure associated with the disaggregate K-C inequalities
(20) and (21). Again, let (xk, yk, zk) be the part corresponding to vehicle k of a given fractional
solution. Let Gk be the graph induced by the arcs a with xka > 0 and label the depot and the
arcs a ∈ AR such that xka ≥ ε and yka ≥ xka/2 as ‘required’, where ε is a given parameter. We
compute the connected components induced by these arcs and the depot. Let us call Ci to these
components. We then apply a procedure based on that described in [9] for the undirected GRP
to obtain the sets M0,M1,M2, . . . ,MQ, which consists of, given a component Ci, checking if it
is connected to two different components by arcs with xka > 0. For such a component, we try to
split it in two parts such that each part is connected to a different component. These two parts
will be the “seeds” for defining sets M0 and MQ. Now we shrink these seeds and the remaining
components into a single vertex each and compute a spanning tree by iteratively adding the arc
of maximum weight not forming a cycle (and not connecting the seeds). This tree is transformed
into a path linking the seeds by (iteratively) shrinking each non-seed vertex with degree one into
its (unique) adjacent vertex. If the length of the path is at least 3, the vertices of the path define
the seeds for sets M0,M1, . . . ,MQ. All the vertices of G that do not belong to a set Mi yet are
iteratively assigned to a set Mi to which they are adjacent.

Set F is formed by some sets of ‘required’ arcs inM0∪MQ associated with different customers.
For each set Mj , j = 1, . . . , Q − 1, non containing the depot, we define Gj as the set of arcs
Gj = Hcj ∩ (A(Mj) ∪ δ(Mj)). If the corresponding K-C inequality for vehicle k is not violated,
we try to improve the inequality by shrinking some consecutive sets Mj . Several values for ε
have been tried and, after some computational testing, we finally decided to set ε = 0.2.

At this point, a K-C structure has been found, and its corresponding disaggregate K-C
inequality for vehicle k can, or not, be violated. Since inequality (20) (if the depot belongs to
M0 ∪MQ, otherwise it would be similar) can be written as (22), we evaluate its left hand side
for each vehicle k′ = 1, . . . ,K. Then we include in Ω all the vehicles k′ for which this expression
is less than 0 and check if the resulting Ω-aggregate K-C inequality (23) or (24) is violated.

Any K-C structure found by algorithm A8 is used to look for violated K-C02 inequalities
(algorithm A9). As before, the inequality for each single vehicle k′ is checked and those vehicles
for which the left hand side is negative are included into Ω. The separation of 2 Path-Bridge
inequalities is done with a similar procedure, algorithm A10, that is not described here for the
sake of brevity.

4.1.4 Max-distance inequalities

Two heuristic algorithms are used to separate max-distance inequalities. The first heuristic,
A11, is the one described in [3] for separating inequalities (36). If a violated max-distance
constraint (36) is found, at least one of the inequalities (37) is also violated and it is added.
Furthermore, the corresponding inequality (38) is also added.

The second heuristic, A12, looks for violated inequalities (38). It is designed to cut fractional
solutions in which, for a vehicle k, several zkc variables take values close to 1 and another one
takes a value close to 0.5. It works as follows.

21

Given a fractional solution associated with vehicle k, (xk, yk, zk), let {c1, c2, . . . , cq} be the
set of customers such that zkc1 ≥ zkc2 ≥ . . . ≥ zkcq ≥ 0.5. We define FH = {c1, c2, . . . , cf},
where f is the maximal number such that zkc (FH) > |FH| − 1 + ε (initially we set ε = 0.5),
and we call ‘potential customers’ to the remaining {cf+1, cf+2, . . . , cq}. We check if v(FH) is
greater than one and, therefore, the corresponding inequality (38) is violated. Otherwise, for

each potential customer c ∈ {cf+1, cf+2, . . . , cq}, we iteratively consider the set F
H

= FH ∪ {c}
and check if v(F

H
) is greater than one. Finally, if no violated inequality has been found for any

set F
H

, we set ε = 0 and define the set FH as above (f is now the maximal number such that

zkc (FH) > |FH| − 1) and check if v(FH) is greater than one. If a subset FH (or F
H

) for which
the corresponding inequality (38) is violated is found, this inequality is added. Then, we look
for the cutset of minimum weight between the depot and the arcs of the customer in FH and
the corresponding max-distance inequalities (36) and (37) are checked for violation.

Given a set of customers FH, the value of v(FH) (either the number of vehicles needed to
service FH or a lower bound) is computed by solving the corresponding CEARP using the
branch-and-cut algorithm in [2]. Since solving the CEARP instances to optimality can be time
consuming, we have limited the execution time of the CEARP solver to 10 seconds.

4.1.5 Inequalities and separation procedures: a summary

Table 1 summarizes the separation procedures described before and provides information on
their computational complexity and the references where they were proposed or used. In par-
ticular, the first column shows the inequalities class, while column two gives the exact family
of inequalities being separated. Column “Separ. Proc.” provides the name of the separation
procedure used and column “Type” indicates if the procedure is heuristic (“H”) or almost ex-
act (“AE”). This last type means that the algorithm is an adaptation of an exact procedure
for identifying a violated inequality with similar characteristics. For example, algorithm A4 is
based on the exact separation of inequalities

xk(δ+(S)) ≥
∑

(i,j)∈Hc

ykcij , ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K.

However, note that the sum in this inequality is done for all the arcs (i, j) ∈ Hc, while in
inequalities (13) the sum is for all (i, j) ∈ Hc \ A(V \ S). The computational complexity of
the algorithms is given in Column 5. An asterisk (*) means that the reported value is the
computational complexity of the corresponding separation algorithm if no call to the B&C
algorithm described in [2] is done. If the B&C is executed to compute the minimum number
of vehicles needed to service a given subset of customers, the resulting computational effort is
non-polynomial (but each call is limited to 10 seconds). The last two columns indicate if the
procedure has already been used in other works and report the corresponding references. A
“No/Yes” entry indicates that some new parts have been added in this work to the existing
procedures and “[TP]” is used to refer to this paper.

22

Class Inequalities Separ. Proc. Type Complexity New? Reference

Connectivity

(12) A1 H O(|A||H|) No [9]
(6) A2 AE O(|V |3|A|) No [3]
(13) A3 H O(K|A||H|) No/Yes [3], [TP]
(13) A4 AE O(K|H||V |2|A|) No/Yes [3], [TP]

Parity
(17) A5 H O(K|H||V ||A|) Yes [TP]
(17) A6 H O(K|H||V ||A|) Yes [TP]
(16) A7 H O(|V ||A||H|) Yes [TP]

K-C (20), (21), (23), (24) A8 H O(K|V |2|A|) No/Yes [9], [TP]
K-C02 (25), (26), (27), (28) A9 H O(K|V |2|A|) No/Yes [11], [TP]

2 Path-Bridge (29), (30), (33), (34) A10 H O(K|V |2|A|) No/Yes [9], [TP]

Max-distance
(36), (37), (38) A11 H O(|H|)∗ No [3]
(36), (37), (38) A12 H O(K)∗ Yes [TP]

Table 1: Inequalities and separation procedures

4.2 Comparison of separation strategies and cutting-plane algorithms

To analyze the contribution of the valid inequalities and the separation algorithms presented
in the previous sections, we compare the gaps in the root node and the performance profiles
(Dolan and Moré [15]) of the different versions of our branch-and-cut procedure using different
combinations of separation algorithms.

Let S be the set of versions of our algorithm and P the set of instances selected for
this comparison. Then, for each version s ∈ S, we calculate GAP0s = 1

|P|
∑

p∈P(BKSp −
LB0p,s)/LB0p,s ∗ 100, where BKSp denotes the value of the optimal or best known solution
obtained by any version for instance p and LB0p,s the lower bound obtained by s at the root
node. We also compute the performance ratio rp,s = tp,s/min{tp,s : s ∈ S}, where tp,s is the
computing time required by algorithm s to solve instance p. If algorithm s is not able to solve
the instance p within the time limit, we set rp,s = ∞. Thus, the performance profile of each
version s,

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P|
,

describes the percentage of instances that can be solved by s within a factor τ ≥ 1 compared
to the fastest algorithm. Note, for example, that ρs(1) is the percentage of instances for which
algorithm s is the fastest and that ρs(∞) is the percentage of instances that are solved by
algorithm s within the time limit.

We started with a “full version” of the branch and cut, denoted by V 1234, with the following
characteristics. The initial LP relaxation contains all the inequalities in the formulation, except
for the connectivity inequalities (6) that are exponential in number and, hence, only the following
subset of them are included:

xk(δ−(Sc)) ≥ zkc , ∀k ∈ K, ∀c ∈ H,

where Sc is the set of vertices incident with the arcs in Hc.

Furthermore, the symmetry breaking inequalities (42)-(44), some max-distance inequalities
(38) and (39) associated with some subsets of customers that cannot be serviced with a single

23

vehicle, and inequalities xk(δ+(1)) ≥ 1, ∀k ∈ K, which force each vehicle to leave the depot,
are included. At each iteration of the cutting-plane algorithm in the root node, the separation
procedures described above are applied using the following general scheme and the violated
inequalities found are added to the LP relaxation:

1 All the heuristic separation algorithms for connectivity inequalities (A1-A4) are applied.
The algorithm based on flow computations (A4) is used only if the other ones fail to find
violated inequalities.

2 Heuristic parity separation algorithms (A5-A7).

3 Algorithms for separating K-C, K-C02, and Path-Bridge inequalities (A8-A10) are applied
for each vehicle k only if no violated connectivity inequalities have been found for this
vehicle.

4 Heuristic algorithms A11 and A12 for separating max-distance inequalities.

Only the fastest separation algorithm for disaggregate connectivity inequalities (A3) is applied
in the nodes of the branch-and-cut tree.

The above cutting-plane procedure is applied until no new violated inequalities are found.
When this happens, we branch using the Strong Branching strategy implemented in CPLEX
with higher priority given to the zkc and ykcij variables.

All other B&C versions are based on different cutting-plane algorithms associated with dif-
ferent separation strategies. The B&C algorithms were tested on a subset of 48 instances taken
from the four sets of DC-CEARP instances proposed in [3] and whose characteristics are de-
scribed in Section 5.1. Twelve instances, three for each value of k ∈ {2, 3, 4, 5}, were chosen at
random from each subset. The experiments were performed on a desktop PC with an Intel(R)
Core(TM) i7 at 3.4GHz CPU with 32GB RAM running Windows 10 Enterprise 64 bits using
a single thread. The algorithms were coded in C++ combined with CPLEX 12.10 and all the
experiments were carried out with a time limit of 7200 seconds.

We first studied the impact of connectivity inequalities and their separation procedures. To
do this, we compared the V1234 B&C with three new versions. In the first version, called
V234, we remove all the separation algorithms for connectivity inequalities (A1-A4), except for
algorithm A1 when the obtained solution is integer. The second version, V1(a)+234, uses all
the separation algorithms except for A2, while the last one, V1(b)+234, uses all the separation
algorithms except for A4. Note that A2 and A4 are the most time-consuming procedures.

24

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

τ

ρ s
(τ

)

V1234
V234
V1(a)+234
V1(b)+234

Figure 7: Impact of the connectivity inequalities: Performance profile

Figure 7 shows the performance profile of the four compared versions and Table 2 reports for
each version the number of optima obtained (out of 48 instances), the average gap in the root
node, and the average computing time spent at the root node and the average total computing
time in seconds. V1234, as expected, and surprisingly V1(a)+234, are the best versions in terms
of gap, although this last version shows a worse performance profile and worse behavior in terms
of averages and number of optima. The other two versions, V234 and V1(b)+234, are clearly
dominated by V 1234. Therefore, we decided to include all separation procedures for connectivity
in the final version of the B&C.

opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 234 41 11.560 198.83 1654.31
V 1(a) + 234 44 5.824 265.86 1209.48
V 1(b) + 234 41 8.693 192.62 1491.66

Table 2: Results on the subset of 48 instances - connectivity

Then, we studied the effect of parity inequalities and their separation by comparing the full
version V1234 with two versions obtained from it by removing all the separation algorithms for
parity inequalities (A5-A7), version V134, and removing algorithms A5 and A7 (V1+2(a)+34).
The results obtained are summarized in Figure 8 and Table 3.

25

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

τ

ρ s
(τ

)

V1234
V134
V1+2(a)+34

Figure 8: Impact of the parity inequalities: Performance profile

opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 134 44 6.065 258.00 1069.87
V 1 + 2(a) + 34 45 6.034 268.13 1165.09

Table 3: Results on the subset of 48 instances - parity

As Figure 8 shows, all three versions compared have similar performance profiles. However,
the gaps in the root node and other measures reported in Table 3 for V134 and V1+2(a)+34
are worse than those of the full version, and therefore none of the latter versions is considered
interesting.

We also considered different options regarding the max-distance inequalities. Here, three new
versions were implemented. In the first one, V123+4(a), we removed the separation algorithm
A11, while algorithm A12 was removed in the second one V123+4(b). The third version, V123,
did not include any separation algorithm for max-distance inequalities. These three versions are
compared again with version V1234. Performance profiles, average gaps in the root node, and
other measures are presented in Figure 9 and Table 4.

26

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

τ

ρ s
(τ

)

V1234
V123
V123+4(a)
V123+4(b)

Figure 9: Impact of the max-distance inequalities: Performance profile

opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 123 46 9.835 114.34 902.39
V 123 + 4(a) 46 7.738 136.99 1036.11
V 123 + 4(b) 46 6.655 241.18 1054.21

Table 4: Results on the subset of 48 instances - max-distance

From Figure 9 we can see that V123 is the fastest version in 60% of the instances, followed
by V123+4(a), although they are the two versions with the worst gaps. V123+4(b) is not an
interesting option because its performance profile is similar to that of V1234 but it shows worse
gaps. The V123+4(a) version has a better performance profile than the full version but a worse
average gap, and it is clearly dominated in terms of computing time and performance profile
by V123. Therefore, we selected V123 as the most interesting option among the three tested
versions.

Finally, we compared a new version V124 resulting from removing the separation algorithms
A8-A10 for K-C, K-C02, and Path-Bridge inequalities, with the most promising versions obtained
from the previous experiments, V1234 and V123. Note that separation algorithms A8, A9, and
A10 have many parts in common, and thus removing only some of them would produce no
benefit in terms of the overall algorithm efficiency.

Figure 10 shows the performance profiles for the three versions. Version V123 is the fastest
one to reach the optimal solution in more than 80% of the instances and can optimally solve
all 46 instances in less that 2 times the time of the fastest version. The performance profile of
the other two versions is similar and it can be seen that they reach the 46 optimal solutions

27

only with factors τ = 20 and τ = 21. As for the average gaps in the root node, V124 does not
improve the results obtained by V1234 either. Looking at the Table 5, we can see that V124
has no advantage over V1234 and is therefore not considered an interesting alternative. Overall,
version V123, although produces greater gaps at the root node, is considerably faster and has a
better performance profile than V1234. Therefore, we decided to use version V123 for our final
computational experiments.

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

τ

ρ s
(τ

)

V1234
V123
V124

Figure 10: Impact of the K-C, K-C02 and Path-Bridge inequalities: Performance profile

opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 123 46 9.835 114.34 902.39
V 124 46 6.064 228.98 1127.72

Table 5: Results on the subset of 48 instances - final

5 Computational experience

In this section we study the performance of the final version (V123) of the branch-and-cut
algorithm, Algorithm 1 in what follows. As in the previous analysis, the experiments were
performed on a desktop PC with an Intel(R) Core(TM) i7 at 3.4GHz CPU with 32GB RAM
running Windows 10 Enterprise 64 bits. Again, we used CPLEX 12.10 with a single thread.
The performance of Algorithm 1 has been compared with that of the best of four branch-and-cut
procedures described in [3], Algorithm 2 in what follows, and, for illustrative purposes, with the
full version V1234, denoted as Algorithm 0. Algorithm 2 has been executed on the same machine
and using the same version of CPLEX.

28

All the experiments were carried out with a time limit of two hours. CPLEX heuristic
algorithms were turned off, and CPLEX own cuts, including zero-half cuts, were activated in
automatic mode. The optimality gap tolerance was set to zero, best bound strategy was selected
and CPLEX presolve phase was reapplied at the end of the root node. The instances used and
the computational results obtained are described in what follows.

5.1 Instances

We have tested our branch-and-cut algorithm on the four sets of DC-CEARP instances proposed
in [3]. The graphs of the two first sets of instances, Random50 and Random75, were generated
randomly and have 50 and 75 vertices respectively. Sets Albaida and Madrigueras are based
on the street networks of these two Spanish towns. As pointed out in [3], generating the value
of Dmax for each instance is a hard task, because depending on this value, the instance can
be infeasible or trivial (some of the vehicles are not needed). A detailed description of how
these values have been generated can be found in that paper. The characteristics of these 251
instances are summarized in Table 6. The complete data, including the values of Dmax and
the number of vehicles with the corresponding best solutions found, can be downloaded from
http://www.uv.es/corberan/instancias.htm in the class “Distance-Constrained GDRPP”.

|A| |AR| |ANR| |H|
|V | Min Max Min Max Min Max Min Max

Random50 50 296 300 105 292 7 193 10 97
Random75 75 448 450 143 438 10 305 15 140
Albaida 116 259 305 124 172 109 162 18 33
Madrigueras 196 453 544 224 305 197 281 22 47

Table 6: Characteristics of the instances

5.2 Computational Results

The computational results obtained with Algorithm 0, Algorithm 1, and Algorithm 2, are shown
in Table 7, where instances have been grouped by number of vehicles and number of customers,
which are shown in columns 1 and 2. Column 3 reports the number of instances of each subset.
For both algorithms, the columns labeled ‘# opt’, ‘Gap0 (%)’, and ‘Time’ report the number
of optimal solutions found, the average gap in the root node, and the average computing time
in seconds, respectively. The bold rows at each group of instances with the same number of
vehicles show the total number of instances, in the case of the ‘inst’ and ‘# opt’ columns, and
the average values for the remaining columns. The last row of the table summarizes the results
for all the instances.

As can be seen in Table 7, the number of optima obtained with Algorithm 1 is very good (234
out of 251 instances) and is a bit better than those obtained with Algorithm 0 (231 optima) and
Algorithm 2 (229 optima), although the average gap in the root node is slightly higher than that
of Algorithm 2 (8.94% versus 8.42%), and, as expected, higher than the one obtained using all the
separation procedures described in Section 4.1 (6.5%). However, it is in the computing times
where we can appreciate the main differences. The average computing time is 976.3 seconds

29

with Algorithm 1 versus 1080.1 seconds obtained with Algorithm 2 and 1300.9 of Algorithm 0.
Although for 2 and 3 vehicles the times for Algorithm 2 are better on average, when the number
of vehicles increases, the times of Algorithm 1 are significantly lower. The same computational
results organized by sets of instances are shown in Tables 10 to 13 in the Appendix A.4.

Algorithm 2 (Ávila et al.[3]) Algorithm 1 Algorithm 0

Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

[10,21] 18 18 1.80 19.2 18 2.4 8.8 18 0.74 36.5
[12,30] 21 21 1.62 111.6 21 2.6 75.2 21 1.19 240.5
[31,46] 16 16 1.19 109.3 16 1.9 86.9 16 1.12 256.5
[47,140] 17 17 1.64 365.1 16 1.6 712.5 16 1.74 1030.8

72 72 1.57 147.8 71 2.14 211.7 71 1.19 379.7

3

[10,21] 17 17 7.75 40.4 17 8.5 21.0 17 4.67 55.5
[12,30] 21 21 7.07 238.7 21 7.7 140.4 21 5.70 324.9
[31,46] 16 16 4.74 696.8 16 5.3 578.7 16 4.32 775.0
[47,140] 17 16 5.23 1218.9 16 4.6 1477.1 16 5.17 1718.2

71 70 6.27 529.2 70 6.61 530.7 70 5.02 695.5

4

[10,21] 12 12 14.53 49.6 12 15.8 27.3 12 6.88 71.9
[12,30] 19 19 14.33 766.9 19 15.6 344.2 19 11.20 1236.5
[31,46] 16 13 11.65 2253.8 16 11.0 908.1 14 10.05 1790.2
[47,140] 17 11 9.45 3178.5 13 8.6 3454.6 13 9.02 3862.8

64 55 12.40 1644.7 60 12.66 1251.9 58 9.52 1854.2

5

[10,21] 9 9 19.35 73.9 9 24.0 60.6 9 6.39 100.7
[12,30] 10 10 19.63 956.8 10 22.5 589.0 10 17.04 983.1
[31,46] 10 5 15.64 3963.6 8 15.2 2858.8 7 14.01 3684.5
[47,140] 15 8 15.61 4516.9 6 14.5 5132.1 6 14.13 5571.8

44 32 17.29 2673.3 33 18.45 2545.6 32 13.18 2980.9

TOTAL 251 229 8.42 1080.1 234 8.94 976.3 231 6.50 1300.9

Table 7: Computational results for all the instances grouped by number of vehicles and customers

To study the running times in more detail, we compare the performance profiles of the three
branch-and-cut algorithms (see Figure 11). Comparing the performance ratios of the three
methods at τ = 1, we observe that Algorithm 1 is the fastest one in almost 80% of the instances,
while Algorithm 0 is the slowest one. As τ increases, the difference between Algorithm 1 and
Algorithm 2 decreases, but note that five more instances can be solved using Algorithm 1.

30

2 4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

τ

ρ s
(τ

)

Algorithm 0
Algorithm 1
Algorithm 2

Figure 11: Performance profile

Table 7 does not report the average final gaps since most instances are optimally solved by
all algorithms. Instead, Table 8 compares the average gaps in the root node and the average
final gaps obtained by the three procedures in the 11 instances that are not solved by any of the
algorithms, while Table 9 provides the same information but in the 27 instances that have not
been optimally solved by at least one of the algorithms. Note that in these harder instances,
Algorithm 1 obtains better gaps at the root node, as well as final gaps. Table 9 also reports the
number of instances solved optimally by each algorithm.

Gap0(%) Final Gap(%)

Algorithm 0 14.20 8.98
Algorithm 1 14.36 7.80
Algorithm 2 15.35 9.23

Table 8: Results on the 11 instances not solved by any algorithm

opt Gap(%) Final Gap(%)

Algorithm 0 7 12.07 4.98
Algorithm 1 10 11.86 3.68
Algorithm 2 5 12.94 5.27

Table 9: Results on the 27 instances not solved by at least one algorithm

Looking at the computational results disaggregated by sets of instances, Tables 10 to 13 in
the Appendix A.4, we note that the performance of Algorithm 1 is better than that of Algorithm
2 in those instances that are based on real street networks like the Albaida and Madrigueras sets.
Another particularity of these two sets of instances is that their number of customers is not too

31

large, from 19 to 34 and from 23 to 48 in the Albaida and Madrigueras instances, respectively,
because they are defined following “geographical” criteria, as it was assumed that it can occur
in real-life problems. Algorithm 2, on the other hand, performs better on the Random 50 and
75 sets, which were randomly generated and have a larger number of customers (many of them
defined by larger subsets of arcs).

6 Conclusions

In this paper we study the Distance-Constrained Close Enough Arc Routing Problem, which
generalizes the Close Enough Arc Routing Problem to the case in which there is a fleet of vehicles
based on a depot that jointly serve a set of customers. Each customer is associated with a set
of arcs which are close enough to it, such that the customer can be served by traversing any of
these arcs. The length of the routes is limited by a given value and the objective is to minimize
the sum of the route distances. The DC-CEARP is inspired by and has application to meter
reading problems.

In this work, we propose a new formulation for the DC-CEARP and study its associated
polyhedron. Several families of valid inequalities are introduced and separation procedures
are devised for them. Extensive computational experiments are carried out to measure the
contribution of each of these separation procedures. A branch-and-cut algorithm is presented,
that is able to solve to optimality instances with up to 140 customers, 196 vertices, 544 arcs,
and 5 vehicles.

In what refers to future work, and taking into account the kind of applications of this problem,
we plan to study the variant in which the routes of the vehicles have to be balanced. One way
of balancing routes consists of minimizing the length of the longest one. For this problem we
are planning to design and implement a branch-and-cut-and-price algorithm capable of solving
instances with a large number of vehicles.

Acknowledgements: This work was supported by the Spanish Ministerio de Ciencia, Inno-
vación y Universidades (MICIU) and Fondo Social Europeo (FSE) through project PGC2018-
099428-B-I00. The authors want to thank the comments and suggestions done by two anonymous
referees that have contributed to improve the content and readability of the article.

References

[1] J. Aráoz, E. Fernández, and C. Franquesa. The generalized arc routing problem. TOP,
25(3):497–525, 2017.

[2] T. Ávila, Á. Corberán, I. Plana, and J. M. Sanchis. A new branch-and-cut algorithm for
the generalized directed rural postman problem. Transportation Science, 50:750–761, 2016.

[3] T. Ávila, Á. Corberán, I. Plana, and J. M. Sanchis. Formulations and exact algorithms for
the distance-constrained generalized directed rural postman problem. EURO Journal on
Computational Optimization, 5:339–365, 2017.

32

[4] B. Behdani and J.C. Smith. An integer-programming-based approach to the close-enough
traveling salesman problem. INFORMS J Comput, 26:415 – 432, 2014.

[5] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso. A novel discretization scheme for the
close enough traveling salesman problem. Computers & Operations Research, 78:163 – 171,
2017.

[6] C. Cerrone, R. Cerulli, B. Golden, and R. Pentangelo. A flow formulation for the close-
enough arc routing problem. In Sforza A. and Sterle C., editors, Optimization and Decision
Science: Methodologies and Applications. ODS 2017., volume 217 of Springer Proceedings
in Mathematics & Statistics, pages 539–546. Springer, 2017.

[7] Á. Corberán and G. Laporte (editors). Arc Routing: Problems, Methods, and Applications.
MOS-SIAM Series on Optimization, Philadelphia, 2014.

[8] Á. Corberán, R. Eglese, G. Hasle, I. Plana, and J.M. Sanchis. Arc routing problems: A
review of the past, present, and future. Networks, DOI: 10.1002/net.21965, 2020.

[9] Á. Corberán, A.N. Letchford, and J.M. Sanchis. A cutting plane algorithm for the general
routing problem. Mathematical Programming, 90:291–316, 2001.

[10] Á. Corberán, I. Plana, M. Reula, and J.M. Sanchis. A matheuristic for the distance-
constrained close-enough arc routing problem. TOP, 27:312–326, 2019.

[11] Á. Corberán, A. Romero, and J.M. Sanchis. The mixed general routing problem polyhedron.
Mathematical Programming, 96:103–137, 2003.

[12] Á. Corberán and J.M. Sanchis. A polyhedral approach to the rural postman problem.
European Journal of Operational Research, 79:95–114, 1994.

[13] G. Cornuèjols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a graph and
some related inequalities. Mathematical Programming, 33:1–27, 1985.

[14] W.P. Coutinho, A. Subramanian, R.Q. do Nascimento, and A.A. Pessoa. A branch-and-
bound algorithm for the close enough traveling salesman problem. INFORMS J Comput,
28:752 – 765, 2016.

[15] E.D. Dolan and J.J. More. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[16] J. Dong, N. Yang, and M. Chen. Heuristic approaches for a tsp variant: The automatic
meter reading shortest tour problem. In Extending the Horizons: Advances in Computing,
Optimization, and Decision Technologies, pages 145–163. Springer, 2007.

[17] M. Drexl. On some generalized routing problems. PhD thesis, Rheinisch-Westfälische Tech-
nische Hochschule, Aachen University, 2007.

[18] M. Drexl. On the generalized directed rural postman problem. Journal of the Operational
Research Society, 65:1143–1154, 2014.

[19] R. Eglese, B.L. Golden, and E.A. Wasil. Route optimization for meter reading and salt
spreading. In Á. Corberán and G. Laporte, editors, Arc Routing: Problems, Methods and
Applications, pages 303–320. MOS-SIAM Series on Optimization, Philadelphia, 2014.

33

[20] M. Fischetti, J. J. Salazar-González, and P. Toth. Experiments with a multi-commodity
formulation for the symmetric capacitated vehicle routing problem. In Proceedings of the
3rd meeting of the EURO working group on transportation, pages 169–173. 1995.

[21] M. Gendreau, G. Laporte, and F. Semet. The covering tour problem. Operations Research,
45(4):568–576, 1997.

[22] D.J. Gulczynski, J.W. Heath, and C.C. Price. The close enough traveling salesman problem:
A discussion of several heuristics. In Perspectives in Operations Research, volume 36 of
Operations Research/Computer Science Interfaces Series, pages 217–283. Springer, 2006.

[23] M-H. Hà, N. Bostel, A. Langevin, and L-M. Rousseau. An exact algorithm for close enough
traveling salesman problem. In Proceedings of the 1st International Conference on Opera-
tions Research and Enterprise Systems, pages 233–238, 2012.

[24] M-H. Hà, N. Bostel, A. Langevin, and L.-M. Rousseau. Solving the close enough arc routing
problem. Networks, 63:107–118, 2014.

[25] A.N. Letchford. New inequalities for the general routing problem. European Journal of
Operational Research, 96:317–322, 1997.

[26] W.K. Mennell. Heuristics for solving three routing problems: Close-enough traveling sales-
man problem, close-enough vehicle routing problem, sequence-dependent team orienteering
problem. PhD thesis, University of Maryland, College Park, 2009.

[27] M. C. Mourão and L. S. Pinto. An updated annotated bibliography on arc routing problems.
Networks, 70:144–194, 2017.

[28] A. Renaud, N. Absi, and D. Feillet. The stochastic close-enough arc routing problem.
Networks, 69:205–221, 2017.

[29] R. Shuttleworth, B.L. Golden, S. Smith, and E.A. Wasil. Advances in meter reading:
Heuristic solution of the close enough traveling salesman problem over a street network. In
B.L. Golden, S. Raghavan, and E.A. Wasil, editors, The Vehicle Routing Problem: Lastest
Advances and New Challenges, pages 487–501. Springer, 2008.

[30] N. Uribe-Pérez, L. Hernández, D. De la Vega, and I. Angulo. State of the art and trends
review of smart metering in electricity grids. Applied Sciences, 6(68):1–24, 2016.

[31] B. Yuan, M. Orlowska, and S. Sadiq. On the optimal robot routing problem in wireless
sensor networks. IEEE Transactions on Knowledge and Data Engineering, 19(9):1252–1261,
2007.

34

A Appendix

A.1 Proof of Theorem 1

Theorem 1 For each vehicle k, disaggregate K-C inequalities (20) and (21) are valid for the
DC-CEARP.

Proof Let us suppose that 1 ∈M0 ∪MQ (the proof for the case 1 /∈M0 ∪MQ is similar). We
have to prove that all the routes (xk, yk) for vehicle k corresponding to DC-CEARP solutions
satisfy inequality (20). We consider the following cases:

(a) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , q, and
servicing each customer cj from a required arc in Gj , j = 1, . . . , Q− 1. On the one hand, these
tours xk traverse at least q times the arcs in (M0,MQ), and visit at least once each node set
M0 ∪MQ, M1, . . . , MQ−1, and, hence, they satisfy (19):∑

(i,j)∈A

αijxij ≥ (Q− 2)q + 2(Q− 1).

Additionally, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q, and ykcj (Gj) = 1, for each
j = 1, . . . , Q− 1. Substituting them in the RHS of (20), we obtain

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj (Gj) = (Q− 2)q + 2(Q− 1).

Hence,
∑

(i,j)∈A

αijxij ≥ (Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj (Gj) holds and routes (xk, yk)

satisfy inequality (20).

(b) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , q, and each
customer cj from a required arc in Gj , j = 1, . . . , Q − 1, except one of them, say cl. These
tours xk traverse q required arcs between M0 and MQ and visit all but one the subgraphs
G(M1), . . . , G(MQ−1). Note that, regarding a K-C structure (see Figure 2), this cannot be done
at an α-cost lower than (Q−2)q+2(Q−1)−2 (otherwise, by adding two arcs connecting Ml with
Ml−1 we would obtain a tour satisfying (a) and (b) with α-cost less than (Q− 2)q + 2(Q− 1),
which is impossible) and, hence, these tours satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)q + 2(Q− 1)− 2.

On the other hand, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q, and ykcj (Gj) = 1, for
all j = 1, . . . , Q − 1, except one of them, for which ykcl(Gl) = 0. Thus, if we substitute these
values in the RHS of (20),

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj (Gj) = (Q− 2)q + 2(Q− 2) = (Q− 2)q + 2(Q− 1)− 2,

35

is obtained and, thus, (xk, yk) satisfies (20).

(c) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , q, and each
customer cj from a required arc in Gj , j = 1, . . . , Q−1, except a number b of them (b = 2, 3, . . .).
As before, it can be seen that these tours xk satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)q + 2(Q− 1)− 2b,

and the RHS of inequality (20) takes the value

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj (Gj) = (Q− 2)q+ 2(Q− 1− b) = (Q− 2)q+ 2(Q− 1)− 2b.

(d) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i = 1, . . . , q
except one of them, say cl, and each customer cj from a required arc in Gj , j = 1, . . . , Q − 1.
These tours xk traverse q − 1 (an odd number) required arcs between M0 and MQ and visit
all the subgraphs G(M1), . . . , G(MQ−1). Regarding a K-C structure, this cannot be done at an
α-cost lower than (Q− 2)(q− 2) + 2(Q− 1) (otherwise, by adding two arcs connecting M0 with
MQ, with α-cost Q− 2 each, we would obtain a tour satisfying (a) and (b) with α-cost less than
(Q− 2)q + 2(Q− 1), which is impossible) and, hence, these tours satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)(q − 2) + 2(Q− 1).

Moreover, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q except one of them, for which
ykcl(Fl) = 0, and ykcj (Gj) = 1, for all j = 1, . . . , Q− 1. Thus, after substituting these values in
the RHS of (20) we obtain

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj (Gj) = (Q− 2)(q − 1− 1) + 2(Q− 1),

and (xk, yk) satisfies (20).

(e) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i = 1, . . . , q except
two of them, and each customer cj from a required arc in Gj , j = 1, . . . , Q− 1. These tours xk

traverse q − 2 (an even number) required arcs between M0 and MQ and visit all the subgraphs
G(M1), . . . , G(MQ−1), so they satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)(q − 2) + 2(Q− 1).

Variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q except two of them, for which ykcl(Fl) = 0,
and ykcj (Gj) = 1, for all j = 1, . . . , Q− 1, and the RHS of inequalities (20) takes the value

(Q−2)

q∑
i=1

(2ykci(Fi)−1)+

Q−1∑
j=1

2 ykcj (Gj) = (Q−2)(q−2−1−1)+2(Q−1) < (Q−2)(q−2)+2(Q−1),

36

and (xk, yk) satisfies (20).

(f) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i = 1, . . . , q except
three, four, . . . of them, and each customer cj from a required arc in Gj , j = 1, . . . , Q − 1. By
using a similar reasoning, it can be proved that they satisfy inequality (20).

(g) Routes (xk, yk) similar to those in the cases (d), (e) and (f) but where each customer cj is
serviced from a required arc in Gj , j = 1, . . . , Q− 1, except a number b of them (b = 1, 2, . . .).
It can be seen that both the term

∑
αijxij and the RHS of inequality (20) decrease in 2b units,

thus satisfying inequality (20). �

A.2 Proof of Theorem 2

Theorem 2 Given a set of vehicles Ω ⊆ K, the Ω-aggregate K-C inequalities (23) and (24) are
valid for the DC-CEARP.

Proof Again, let us suppose that 1 ∈ M0 ∪ MQ (the proof for the case 1 /∈ M0 ∪ MQ is
similar). We have to prove that every DC-CEARP solution satisfies inequality (23). Let
(x1, y1, . . . , xK , yK) be a DC-CEARP solution. Then,

∑
k∈Ω x

k is a tour on the arcs of G
since it represents a connected and even graph. On the other hand, for each i = 1, . . . , q, the
sum

∑
k∈Ω y

kci(Fi), is a binary value indicating if any of the vehicles in Ω services the customer
ci from an arc in Fi (see inequalities (3)). In the same way, for each j = 1, . . . , Q− 1, the sum∑

k∈Ω y
kcj (Gj) is a binary value indicating if any of the vehicles in Ω services the customer cj

from an arc in Gj . Hence, a similar reasoning to that of the proof of Theorem 1, but replacing
(xk, yk) by (

∑
k∈Ω x

k,
∑

k∈Ω y
k), concludes that the following inequality, which can be rewritten

as inequality (23), is satisfied:∑
(i,j)∈A

αij
∑
k∈Ω

xkij ≥ (Q− 2)

q∑
i=1

(
2
∑
k∈Ω

ykci(Fi)− 1
)

+

Q−1∑
j=1

2
∑
k∈Ω

ykcj (Gj).

�

A.3 Proof of Theorem 5

Theorem 5 For each vehicle k, disaggregate Path-Bridge inequalities (29) and (30) are valid
for the DC-CEARP.

Proof Let us suppose that 1 ∈M0 ∪MZ (the proof for the case 1 /∈M0 ∪MZ is similar). We
have to prove that all the single routes (xk, yk) for vehicle k ∈ K corresponding to DC-CEARP
solutions satisfy inequality (29). We consider the following cases:

(a) Routes (xk, yk) servicing each customer ci from an arc in Fi, i = 1, . . . , B, and servicing each
customer cj from an arc in Gtr, t = 1, . . . , P and r = 1, . . . , nt. On the one hand, these tours xk

traverse at least B times the arcs in (M0,MZ), and visit at least once all the node sets M0∪MZ

and M t
r . It can be seen (see [9]) that these tours satisfy:∑

(i,j)∈A

αijx
k
ij ≥ B +

P∑
t=1

2nt
nt − 1

− P + 1.

37

On the other hand, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , B, and ykcj (Gtr) = 1,
for each t = 1, . . . , P and r = 1, . . . , nt. Substituting these values in the RHS of (29) we obtain

B∑
i=1

(
2ykci(Fi)− 1

)
+

P∑
t=1

nt∑
j=1

2ykcj (Gtj)

nt − 1
− P + 1 = B +

P∑
t=1

2nt
nt − 1

− P + 1.

Hence,
∑

(i,j)∈A

αijx
k
ij ≥

B∑
i=1

(
2ykci(Fi)−1

)
+

P∑
t=1

nt∑
j=1

2ykcj (Gtj)

nt − 1
−P+1 holds, and routes (xk, yk)

satisfy inequality (29).

(b) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , B, and
servicing each customer cj , except one of them (Hcl ∈ Gt0r0), from a required arc in Gtr, t =
1, . . . , P, r = 1, . . . , nt. These tours xk traverse B times some required arcs between M0 and MZ

and visit all the sets M t
r except the set M t0

r0 . Note that this cannot be done with an α-cost lower

than B+
∑P

t=1
2nt
nt−1−P +1− 2

nt0−1 . Otherwise, by adding two arcs connecting M t0
r0 with M t0

r0−1,

with α−cost 2
nt0−1 , we would obtain a tour, traversing at least B times the arcs in (M0,MZ)

and visiting all the node sets M0 ∪MZ and M t
r , with α-cost less than B +

∑P
t=1

2nt
nt−1 − P + 1,

which is impossible. Hence, these tours xk satisfy

∑
(i,j)∈A

αijx
k
ij ≥ B +

P∑
t=1

2nt
nt − 1

− P + 1− 2

nt0 − 1
.

Moreover, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , B, and ykcj (Gtr) = 1, for all
t = 1, . . . , P and r = 1, . . . , nt, except one of them, for which ykcl(Gt0r0) = 0. Thus, the RHS of
inequalities (29) takes the value

(2B −B) +

P∑
t=1
t6=t0

2nt
nt − 1

+
2(nt0 − 1)

nt0 − 1
− P + 1 = B +

P∑
t=1

2nt
nt − 1

− P + 1− 2

nt0 − 1

and, hence, the routes (xk, yk) satisfy (29).

(c) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i = 1, . . . , B
except one of them, say cl, and each customer cj from a required arc in Gtr, t = 1, . . . , P ,
r = 1, . . . , nt.

Tours xk traverse B − 1 required arcs between M0 and MZ and visit all the sets M t
r . Con-

sidering that P + B − 1 is an even number, this cannot be done with a α-cost lower than
B+

∑P
t=1

2nt
nt−1 −P + 1−2. Otherwise, by adding two arcs connecting M0 with MZ , with α-cost

1 each, we would obtain a tour, traversing at least B times the arcs in (M0,MZ) and visiting
all the node sets M0 ∪MZ and M t

r , with α-cost less than B +
∑P

t=1
2nt
nt−1 − P + 1, which is

impossible. Hence, these tours xk satisfy

∑
(i,j)∈A

αijxij ≥= B +

P∑
t=1

2nt
nt − 1

− P + 1− 2.

38

Additionally, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , B except one of them, for
which ykcl(Fl) = 0, and ykcj (Gtr) = 1, for all t = 1, . . . , P , r = 1, . . . , nt. Thus, after substituting
them in the RHS of (29), we obtain

2(B − 1)−B +
P∑
t=1

2nt
nt − 1

− P + 1 = B +
P∑
t=1

2nt
nt − 1

− P + 1− 2,

and the routes (xk, yk) satisfy (29).

(d) In a similar way, it can be seen that inequalities (29) are satisfied by all the routes (xk, yk)
servicing any other number of customers ci and cj . �

A.4 Computational results per set of instances

In this appendix we show, for each set of instances, the computational results obtained with the
proposed branch and cut and their comparison with those obtained with the exact algorithm
described in [3] and with the version using all the separation procedures. Tables 10, 11, 12, and
13 report the results for the sets Random50, Random75, Albaida, and Madrigueras, respectively.

Algorithm 2 (Ávila et al.[3]) Algorithm 1 Algorithm 0

Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

10 3 3 1.286 4.15 3 1.654 2.42 3 0.000 4.05
[24,25] 3 3 0.485 12.96 3 0.064 8.82 3 0.203 23.32
[45,50] 3 3 0.641 42.42 3 1.717 33.85 3 0.877 90.87
[92,97] 3 3 2.317 124.04 3 2.242 282.22 3 2.382 333.59

12 12 1.182 45.89 12 1.419 81.83 12 0.865 112.96

3

10 2 2 4.894 4.58 2 4.950 3.53 2 0.832 5.43
[24,25] 3 3 2.945 17.06 3 7.099 14.34 3 2.572 25.19
[45,50] 3 3 4.135 41.79 3 4.167 47.30 3 3.958 102.06
[92,97] 3 3 7.362 204.18 3 6.629 546.30 3 7.448 665.87

11 11 4.829 72.57 11 5.780 166.45 11 3.963 217.29

4

[24,25] 3 3 10.132 21.05 3 11.284 19.08 3 8.870 43.11
[45,50] 3 3 11.697 61.31 3 10.745 91.27 3 9.593 225.55
[92,97] 3 3 9.457 296.30 3 8.818 897.77 3 9.405 1286.17

9 9 10.429 126.22 9 10.282 336.04 9 9.290 518.28

5
[45,50] 1 1 23.557 177.30 1 23.713 362.52 1 16.785 247.67
[92,97] 2 2 15.064 1257.17 1 14.388 3838.74 2 12.212 3652.98

3 3 17.895 897.21 2 17.496 2680.00 3 13.736 2517.87

TOTAL 35 35 6.138 147.90 34 6.447 396.49 35 5.108 456.11

Table 10: Results for the Random50 instances

39

Algorithm 2 (Ávila et al.[3]) Algorithm 1 Algorithm 0

Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

15 3 3 0.000 8.65 3 0.428 5.91 3 0.000 15.18
[36,37] 3 3 1.341 38.57 3 1.657 25.69 3 1.022 74.42
[70,75] 3 3 1.754 117.15 3 1.397 165.33 3 1.796 568.20

[138,140] 3 3 2.417 1301.58 2 1.927 3224.57 2 2.482 3727.94
12 12 1.378 366.49 11 1.352 855.38 11 1.325 1096.44

3

15 3 3 9.063 17.45 3 10.801 11.70 3 3.483 29.04
[36,37] 3 3 4.843 46.26 3 6.286 56.64 3 3.970 97.40
[70,75] 3 3 6.122 251.25 3 5.843 331.01 3 6.231 1057.64

[138,140] 3 3 4.516 1469.63 2 3.340 3927.21 2 4.207 4156.80
12 12 6.136 446.15 11 6.567 1081.64 11 4.473 1335.22

4

15 3 3 11.781 31.76 3 16.834 24.41 3 4.454 68.39
[36,37] 3 3 15.312 158.04 3 16.322 205.91 3 12.860 371.22
[70,75] 3 3 10.046 1392.74 3 9.670 2157.84 3 9.146 3341.02

[138,140] 3 1 6.741 5481.51 1 6.267 6669.73 2 6.645 5945.34
12 10 10.970 1766.01 10 12.273 2264.47 11 8.276 2431.49

5

15 1 1 13.345 66.69 1 26.376 55.98 1 7.505 102.25
[36,37] 1 1 32.737 542.60 1 30.940 427.73 1 23.325 855.11
[70,75] 3 3 14.646 2265.34 2 13.820 4881.76 1 13.076 5785.79

[138,140] 3 0 16.209 7200.00 0 15.359 7200.00 0 15.960 7200.00
8 5 17.331 3625.66 4 18.106 4591.13 3 14.742 4989.34

TOTAL 44 39 8.192 1362.48 36 8.799 1980.61 36 6.519 2233.47

Table 11: Results for the Random75 instances

Algorithm 2 (Ávila et al.[3]) Algorithm 1 Algorithm 0

Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

18 6 6 3.538 34.25 6 4.034 15.20 6 1.763 58.01
21 6 6 1.219 16.83 6 2.015 7.12 6 0.457 41.95
28 6 6 1.970 32.24 6 2.641 18.76 6 1.385 152.69
33 6 6 1.154 36.06 6 2.575 47.90 6 1.243 114.10

24 24 1.970 29.85 24 2.816 22.24 24 1.212 91.69

3

18 6 6 8.455 61.72 6 8.943 25.13 6 5.488 73.85
21 6 6 7.351 42.59 6 8.022 27.41 6 5.735 67.13
28 6 6 2.997 90.50 6 2.514 44.05 6 2.462 145.30
33 6 6 4.751 170.06 6 4.609 78.64 6 4.126 270.38

24 24 5.889 91.22 24 6.022 43.81 24 4.453 139.17

4

18 4 4 12.813 73.04 4 13.200 30.87 4 9.794 78.07
21 5 5 17.543 41.55 5 17.172 26.10 5 5.995 68.98
28 6 6 12.621 336.71 6 13.281 177.52 6 12.903 1790.16
33 6 6 11.328 307.19 6 10.677 135.02 6 10.536 861.09

21 21 13.460 207.78 21 13.448 101.39 21 9.990 788.79

5

18 3 3 12.669 85.19 3 18.844 47.46 3 4.144 123.25
21 5 5 24.553 68.58 5 26.648 69.39 5 7.522 86.78
28 6 6 18.300 557.79 6 23.032 357.12 6 16.521 647.22
33 3 3 15.245 411.98 3 14.827 404.20 3 13.235 398.89

17 17 18.606 304.77 17 21.908 226.16 17 11.110 346.09

TOTAL 86 86 9.158 144.77 86 10.081 87.90 86 6.216 325.45

Table 12: Results for the Albaida instances

40

Algorithm 2 (Ávila et al.[3]) Algorithm 1 Algorithm 0

Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

22 6 6 1.546 130.35 6 2.930 93.79 6 0.678 253.73
28 6 6 1.900 221.49 6 3.508 146.33 6 2.011 423.49
42 6 6 1.229 229.38 6 1.288 166.10 6 1.097 519.50
47 6 6 1.204 248.47 6 1.161 170.64 6 1.280 573.65

24 24 1.470 207.42 24 2.222 144.22 24 1.267 442.59

3

22 6 6 10.609 337.95 6 11.965 182.74 6 8.103 421.24
28 6 6 9.670 398.32 6 8.916 257.54 6 8.103 558.15
42 6 6 4.608 1659.23 6 5.422 1429.00 6 4.552 1736.76
47 6 5 4.600 2476.03 6 4.044 1766.47 6 4.588 1887.95

24 23 7.372 1217.88 24 7.587 908.94 24 6.337 1151.03

4

22 5 5 22.932 1389.99 5 26.800 492.66 5 13.243 1467.63
28 5 5 10.310 1107.49 5 9.979 590.93 5 8.524 1057.10
42 6 3 9.993 5616.06 6 8.653 2167.21 4 8.505 3709.02
47 6 2 9.893 5397.74 4 8.655 4896.17 3 9.493 5563.51

22 15 12.978 3571.37 20 13.079 2172.65 17 9.855 3102.67

5

22 2 2 21.667 1216.51 2 22.989 1139.78 2 20.618 1974.83
28 2 2 21.565 1894.25 2 20.549 733.89 2 15.022 998.91
42 6 1 12.981 6309.60 4 12.805 4491.22 3 12.841 5798.89
47 6 2 14.655 6110.96 2 12.979 5449.31 2 13.931 6177.68

16 7 15.768 5046.55 10 15.111 3961.91 9 14.494 4862.93

TOTAL 86 69 8.721 2250.26 78 8.894 1586.80 74 7.340 2143.17

Table 13: Results for the Madrigueras instances

41

