

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/184697

Campbell, JF.; Corberán, Á.; Plana, I.; Sanchís Llopis, JM.; Segura-Martínez, P. (2021).
Solving the length constrained K-drones rural postman problem. European Journal of
Operational Research. 292(1):60-72. https://doi.org/10.1016/j.ejor.2020.10.035

https://doi.org/10.1016/j.ejor.2020.10.035

Elsevier

Solving the length constrained K–drones rural postman

problem

James F. Campbella, Ángel Corberánb, Isaac Planac∗,
José M. Sanchisd, Paula Segurae

aSupply Chain and Analytics Dept., University of Missouri-St. Louis

St. Louis, MO 63121-4499 (USA) campbell@umsl.edu

bDept. d’Estad́ıstica i Investigació Operativa, Universitat de València

Avda. Dr. Moliner 50, 46100 Burjassot (Valencia, Spain) angel.corberan@uv.es

cDept. de Matemáticas para la Economı́a y la Empresa, Universitat de València

Avda. Tarongers s/n, 46022 Valencia (Valencia, Spain) isaac.plana@uv.es

dDept. de Matemática Aplicada, Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia (Valencia, Spain) jmsanchis@mat.upv.es

eDept. de Matemática Aplicada, Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia (Valencia, Spain) psegmar@upvnet.upv.es

Abstract

In this paper we address the Length Constrained K-Drones Rural Postman Problem
(LC K-DRPP). This is a continuous optimization problem where a fleet of homogeneous
drones have to jointly service (traverse) a set of (curved or straight) lines of a network.
Unlike the vehicles in classical arc routing problems, a drone can enter a line through
any of its points, service a portion of that line, exit through another of its points, then
travel directly to any point on another line, and so on. Moreover, since the range of the
drones is restricted, the length of each route is limited by a maximum distance. Some
applications for drone arc routing problems include inspection of pipelines, railway or
power transmission lines and traffic monitoring.

To deal with this problem, LC K-DRPP instances are digitized by approximating
each line by a polygonal chain with a finite number of points and allowing drones to enter
and exit each line only at these points. In this way we obtain an instance of the Length
Constrained K-vehicles Rural Postman Problem (LC K-RPP). If the number of points
used to discretize the lines is large, the LC K-RPP instance can be extremely large and,
hence, very difficult to solve optimally. Even heuristic algorithms can fail in providing
feasible solutions in reasonable computing times. An alternative is to generate smaller
LC K-RPP instances by approximating each line with few but “significant” segments.

We present a formulation and some valid inequalities for the LC K-RPP. Based on
this, we have designed and implemented a branch-and-cut algorithm for its solution.
Moreover, in order to be capable of providing good solutions for large LC K-RPP
instances, we propose a matheuristic algorithm that begins by finding good solutions
for the LC K-RPP instance obtained by approximating each line by a single segment.

∗corresponding author: isaac.plana@uv.es

1

Then, to find better solutions, some promising intermediate points are sequentially
incorporated. Extensive computational experiments to assess the performance of both
algorithms are performed on several sets of instances from the literature.

Keywords: Logistics, drones, arc routing, length constraints, matheuristic.

1 Introduction

Classical arc routing problems (ARPs) consist of finding a tour, or a set of tours, with total
minimum cost traversing (servicing) a set of links (arc or edges), called required links, of a
graph (see [9], [24], and [10]). Well-known ARPs are the Chinese postman problem (CPP)
and the rural postman problem (RPP), where a single vehicle has to traverse all or some
of the links of the graph, respectively, and the capacitated arc routing problem (CARP),
where there is a fleet of vehicles with limited capacity to jointly service the required links. In
classical ARPs, the streets to be cleaned, roads where snow must be removed, or pipelines
to be inspected, for example, are represented by edges or arcs of a network that ignore the
line shape (although not its true cost or distance) since the vehicles have to traverse an arc
from one endpoint to the other one. Further, the vehicles in these classical ARPs are not
permitted to travel off the network. In the following, we call these Postman ARPs, and we
use Drone ARPs to refer to arc routing problems where aerial drones are used to optimize
the service of the required links of a graph, and these drones have the capability to travel off
the network. Aerial drones may be used to replace ground vehicles because of their reduced
costs, higher speeds and/or safety improvements.

As pointed out in Campbell et al. [4], the use of drones to perform the service in ARPs
involves significant changes in the traditional way of modeling and solving these problems.
These changes are mainly due to the ability of drones to travel directly between two points,
not necessarily between vertices of the graph. Hence, drones do not need to follow the edges
of the graph and may start the service of an edge at any point along the edge. On the one
hand, this means it is important to take into account the shape of the lines to service, as
the example in Figure 1 illustrates. Figure 1b shows the optimal solution of the Drone RPP
instance depicted in Figure 1a, where dotted edges represent the movement of the drone
outside the graph, and its cost is the sum of the costs of the required lines (a fixed value)
plus the deadheading cost, which is the one to minimize in the Drone RPP). On the other
hand, an important consequence of taking the shape of the lines into consideration is that
the problem becomes a continuous optimization problem with an infinite and non-countable
number of feasible solutions. In [4] this drawback is overcome by modeling the curved lines
by means of polygonal chains and then allowing the drones to enter and leave each curve
only at the points of the polygonal chain. In particular, a curve can be approximated by its
endpoints and a set of intermediate points defining segments with an associated service cost
so that the sum of the costs associated with all the segments of the polygonal chain equals
the service cost of the original curve. Hence, the segments define the set of required edges
of the transformed graph and, since the drones can travel directly between any two points,
the set of (non-required) edges form a complete graph with (deadheading) costs given by the
Euclidean distances.

Although there are a large number of articles in the academic literature that address
node routing problems with drones (see [28], [18], [7] [23], and [30]), there are only a few

2

(a) Required lines (b) Route of a single drone

Figure 1: The shape of the lines is important when using drones

papers dealing with the use of aerial drones for ARPs. Oh et al. [27] and [26] consider
a search problem using drones on an unconnected portion of a road network, and present
a greedy insertion heuristic algorithm. Dille and Singh [13] consider a related road (edge)
covering problem for a drone carrying sensor with a given radius of coverage. They convert
this to a TSP by discretizing the road network into a set of points where each point covers
a certain part of the road network based on the sensor range of a drone. Results were
compared to those in Oh et al. [26] for several simulated networks. Chow [6] considers the
use of drones to monitor road traffic and presents deterministic and stochastic multi-period
arc-inventory routing problems (AIRP). Li et al. [20] also consider inventory routing with a
capacitated ARP (CARP) for monitoring road traffic, where over-monitoring of an edge is
treated as inventory and is penalized. A mixed integer programing model is used to solve
small problems with up to 40 links, and a local branching algorithm is used to solve larger
problems with up to 50 links. A cooperative system of a ground vehicle and a drone for
the inspection of powerlines is presented in Liu et al. [21]. The ground vehicle is used
as a mobile base station that can drive to several locations near the powerline in the road
network to launch the drone and recharge its battery. Several heuristics are proposed to
design the routing planning for the vehicle and the drone to minimize the completion time or
the cost for inspecting all the powerlines. The performance of the heuristics is illustrated in
three practical instances based on the powerline and road network of Jián (China). Another
combined problem of a ground vehicle and a drone is studied by Luo et al. [22]. It concerns
the road traffic patrolling problem in an urban road system, where the vehicle transports the
drone and performs traffic patrols through the release and recovery of the drone, while the
vehicle also performs mission visits. The authors present two heuristics for this problem and
a case study on the relevant roads in Hefei (China).

Applications for drone arc routing problems include inspection of railroad and energy
infrastructure, and detection or surveillance of borders. While early drone use has often been
limited to short drone flights due to line-of-sight regulations and small battery capacities for
electric drones, regulatory changes and newer drones allow long flights and BVLOS (beyond
visual line-of-sight) flight. For example, the major US railroad BNSF has flown BVLOS
flights (with an exemption from FAA regulations) since 2016, with the first flight being for
a 132-mile stretch of track [14]. Other major railroads around the world now operate drone
fleets for infrastructure and asset inspection, vegetation monitoring, etc. [34]. Drones used

3

for long range (or long endurance) applications (as for BNSF) are typically large aircraft
(e.g., wingspans of 12-15 feet), often with both electric and gas motors (electric motors allow
VTOL (vertical take-off and landing) and gas engines allow efficient forward flight) (e.g., [3],
[14]). For example, BNSF reports flights of up to 16 hours [3]. Reports of drones used for the
energy industry include BVLOS applications for inspection of power transmission lines (e.g.,
90 km in Sweden [31]), up to 150 miles of lines in the US ([15], [35]), and for gas and electricity
lines in the UK [25]. Other applications with drone flights covering linear features include
surveillance along borders [12] and surveillance to prevent marine ingress near nuclear power
plants [5]. Drones have been used for asset inspection, in which case the area to be inspected
can be represented as a network of linear features (providing sensor coverage of the desired
areas). These applications cover a diverse set of assets in a wide range of environments,
including bridges, oil rigs (above and below the sea surface), and cargo ships (both the inside
and outside of the hull, including inspection below the sea surface) ([2], [19], [32]).

The recent paper devoted to Drone ARPs [4] discuses the relationship between Drone and
Postman ARPs. In particular, it is shown that the worst-case ratio of the costs of Postman
ARPs with respect to that of Drone ARPs is infinite. The authors define a Drone ARP
for a single vehicle, the Drone RPP, for which they propose an algorithm that iteratively
solves RPP instances with an increasing number of intermediate points. This procedure is
capable of solving medium size instances of this very hard problem. In addition, the length
constrained K-drones rural postman problem (LC K-DRPP) is introduced and some of its
characteristics are described.

This paper is organized as follows. In Section 2 we present the LC K-DRPP and in Section
3 we propose a formulation with binary variables and some families of valid inequalities for
the LC K-RPP. The general scheme of the matheuristic we propose for this problem is
described in Section 4, while Section 5 presents a branch-and-cut algorithm (B&C) based
on the proposed formulation. The computational results obtained with the B&C and the
matheuristic on a large set of instances are shown and commented in Section 6. Finally, some
conclusions are drawn in Section 7.

2 The Length Constrained K–Drones Rural Postman Prob-
lem

The Length Constrained K-Drones Rural Postman Problem (LC K-DRPP) was introduced
in [4] and defined as follows: Given a set of lines, each one with an associated service cost,
and a point called the depot, assuming that the cost of deadheading between any two points
is the Euclidean distance, and given a constant L, find a set of drone routes starting and
ending at the depot and with lengths no greater than L such that they jointly traverse all the
given lines completely with minimum total cost. This problem envisions a set of K drones,
each with route length limit L, that start and end at a common (given) depot and need to
be routed to cover a set of lines at minimum cost, where the drones can travel in a straight
line between any two points.

Unlike the vehicles in classical ARPs, which have to follow the links of a given graph,
drones can fly directly between any two points. Thus, a drone can enter a line that requires
service through any of its (infinite) points, traverse and service part of it, exit the line through
another of its points, then travel directly to any point on another required line, and so on. In

4

this way, shorter solutions can be obtained using drones than with ground vehicles. The price
to pay is that the problem is much more difficult. In fact, it is a continuous optimization
problem, with an uncountable number of feasible solutions.

To deal with this problem, each specific instance can be digitized, defining each curved line
by a (usually) large set of points, each one with its corresponding coordinates. In other words,
each line is approximated by a polygonal chain and drones are allowed to enter and leave
each line only at the points of the polygonal chain, thus obtaining a discrete optimization
problem. Obviously, the greater the number of points, the closer the discrete problem is to
the continuous problem.

When an LC K-DRPP instance is discretized, we obtain an instance of a Postman ARP,
the Length Constrained K-vehicles Rural Postman Problem (LC K-RPP). These last in-
stances are defined on an undirected graph G = (V,E), where the set of vertices V is formed
by all the points of the polygonal chains plus the depot, the set of required edges, ER ⊂ E,
is formed by all the segments of the polygonal chains, and the non-required edges, ENR ⊂ E,
define a complete graph over the vertex set V . The cost of traversing and servicing each
required edge (a segment) e ∈ ER, cse ≥ 0, is equal to the proportional part of the total
cost of servicing the corresponding original line (assuming that the cost rate of servicing a
line is the same in all its parts), while the (deadheading) cost, ce ≥ 0, associated with the
traversal of a non-required edge e = (i, j) ∈ ENR is given by the Euclidean distance from i to
j. Note that, for each required edge e ∈ ER, there is a non-required parallel edge e′ ∈ ENR.
We assume cse ≥ ce′ . The goal of the LC K-RPP is to find K routes (tours) starting and
ending at the depot that jointly traverse all the required edges and such that the total cost,
or length, of each route does not exceed a maximum value L, with minimum total cost.

Note that, if the number of points used to discretize the lines of an LC K-DRPP instance
is large, the corresponding LC K-RPP instance can be extremely large and therefore very
difficult to solve optimally, and even heuristic algorithms can fail to provide feasible solutions
in reasonable computing times. For example, an instance with 84 polygonal chains with
20 intermediate points per chain has 1763 vertices, 1764 required edges, and 1553203 non-
required edges. Moreover, unlike in the (single) Drone RPP, we cannot remove some non-
required edges without losing some optimal solutions. An alternative is to generate smaller
LC K-RPP instances by approximating each line with very few segments, provided that the
intermediate points are significant points.

The smallest LC K-RPP instance, and the least tight approximation to the corresponding
LC K-DRPP instance, is the one obtained by approximating each line of the LC K-DRPP
instance by a single edge (a polygonal chain with a single segment, without intermediate
points). Let us call these instances LC K-RPP(0). They can be meaningful in real situations
where it is mandatory, or recommended, that each line is fully serviced by the same drone,
from one endpoint to the other. We want to point out that since drones can fly directly
between any two endpoints, in these instances the non-required edges form a complete graph,
whereas in Postman ARPs the graph often corresponds to a sparse network.

3 A formulation for the LC K-RPP

5

We are going to formulate the LC K-RPP on the graph G = (V,E) described in Section
2. This is an undirected multigraph with a non-required edge parallel to each required edge,
with different costs ce and cse. Given that G is undirected, we note that the single tour
associated with any drone traverses each edge in G at most twice (if a tour traverses an
edge e three or more times, we can remove two traversals of e and obtain another tour with
lower cost). Furthermore, it can be seen that, for each tour that traverses an edge e twice
in the same direction, we can build an equivalent tour (with the same cost) that traverses e
once in each direction. Therefore, we can assume that the tours associated with each drone
traverse each edge at most once in each direction. We can formulate the LC K-RPP with
the following binary variables.

For each edge e = (i, j) ∈ E and for each drone k ∈ {1, . . . ,K} we define two binary
variables xkij , x

k
ji. If e is required, variables xkij , x

k
ji take the value 1 if, and only if, e is

serviced and traversed by drone k from i to j or from j to i, respectively. If e is non-required,
variables xkij , x

k
ji take the value 1 if, and only if, e is deadheaded (traversed without service)

by drone k from i to j or from j to i, respectively.

We use the following notation. Given a subset S ⊆ V , δ(S) denotes the edge set with
one endpoint in S and the other one in V \S, and E(S) denotes the set of edges with both
endpoints in S. We denote δR(S) = δ(S) ∩ ER and ER(S) = E(S) ∩ ER. Finally, for any
subset F ⊆ E, we denote xk(F) =

∑
e=(i,j)∈F (xkij + xkji). The LC K-RPP can be formulated

as follows:

Minimize
K∑
k=1

∑
e=(i,j)∈ENR

ce(x
k
ij + xkji) +

K∑
k=1

∑
e=(i,j)∈ER

cse(x
k
ij + xkji) (1)

s.t.: ∑
(i,j)∈δ(i)

(xkij − xkji) = 0, ∀i∈V, ∀k ∈ {1, . . . ,K} (2)

xk(δ(S)) ≥ 2(xkij + xkji), ∀S⊂V \{1}, ∀(i, j)∈ER(S), ∀k (3)

K∑
k=1

(xkij + xkji) = 1, ∀(i, j)∈ER (4)∑
e=(i,j)∈ENR

ce(x
k
ij + xkji) +

∑
e=(i,j)∈ER

cse(x
k
ij + xkji) ≤ L, ∀k ∈ {1, . . . ,K} (5)

xkij , x
k
ji ∈ {0, 1}, ∀(i, j) ∈ E, ∀k ∈ {1, . . . ,K} (6)

The objective function (1) minimizes the total cost of the routes. The first term represents
the “deadheading cost” while the second represents the cost of the required edges that, due
to constraints (4), is a constant and therefore can be removed:

K∑
k=1

∑
e=(i,j)∈ER

cse(x
k
ij + xkji) =

∑
e=(i,j)∈ER

cse

(
K∑
k=1

(xkij + xkji)

)
=

∑
e=(i,j)∈ER

cse.

Symmetry constraints (2) force each drone k to exit a vertex i as many times as it enters
it. Connectivity inequalities (3) ensure each single route is connected and connected to the
depot, while constraints (5) guarantee that the length or cost of each route does not exceed L.

6

The traversal of all the required edges exactly once is ensured by equations (4). Constraints
(6) are the binary conditions for the variables.

The above formulation can be strengthened with the following inequalities. Given e =
(i, j) ∈ ER and its corresponding parallel edge e′ = (i, j)′ ∈ ENR, and given that the tour
performed by a vehicle k travels at most once from i to j, the following single-traversal
inequalities are satisfied:

xkij + xk(ij)′ ≤ 1. (7)

Moreover, parity inequalities are also valid and very useful to cut many fractional “solutions”:

xk(δ(S)\F) ≥ xk(F)−|F |+1, ∀S⊂V, ∀F ⊆δ(S) with |F | odd, ∀k ∈ {1, . . . ,K} (8)

These inequalities are based on the fact that all vehicles have to traverse any edge cutset an
even, or zero, number of times, and it is easy to see that they are valid for the K-RPP on G.
Since |F | is odd, the tours xk for which xk(F) = |F | holds, should satisfy xk(δ(S)\F) ≥ 1.
Tours xk for which xk(F) < |F |, obviously satisfy xk(δ(S)\F) ≥ 0. Inequalities (8) are
referred to as cocircuit inequalities by Barahona and Grötschel [1] and were proposed for the
RPP by Ghiani and Laporte [16].

4 A matheuristic for the LC K-DRPP

In this section we present a matheuristic algorithm for the LC K-DRPP. It begins by finding
good solutions for the LC K-RPP(0) instances. Then we sequentially incorporate some
promising intermediate points to find better solutions. Eventually, the matheuristic provides
feasible solutions for the LC K-DRPP with the characteristic, typical of drones, that some
lines are serviced in different parts by different drones or, equivalently, that some drones only
service part of some lines. The procedure developed here has three phases.

• In phase 1, we consider the LC K-RPP(0) instance in which each original line is ap-
proximated by only one (required) edge without intermediate points. The algorithm
first computes a “giant tour” traversing all the required edges by optimally solving an
RPP on the corresponding graph G. This giant tour is then partitioned into K routes,
one for each drone, to obtain an LC K-RPP solution. The process of forming a giant
route and partitioning it into K routes is repeated several times to obtain different LC
K-RPP solutions. This is described in Section 4.1. Three local search procedures are
then applied to each of these solutions to improve the routes (described in Section 4.2),
and then each of the single routes of the resulting solutions are optimized (described in
Section 4.3).

• In phase 2, we consider the n best solutions obtained in phase 1. For each of these solu-
tions, we add an intermediate vertex to each required edge, thus obtaining n solutions
of the LC K-RPP instance where each original line is approximated by a polygonal
chain with two segments (edges). We then apply the local search and the single route
optimization procedures to each of these solutions to possibly improve them. We call
this procedure “1-splitting” and it is described in Section 4.4.

• In phase 3, the most “promising” segments of each solution obtained in phase 2 are split
again by adding one new intermediate vertex to them, while some unused intermediate

7

vertices are removed. This procedure is called “3-splitting” because some of the original
lines are approximated by a polygonal chain with three intermediate vertices (four
edges). Again, the local search and the single route optimization procedures are applied
to improve each solution. In a second step of this phase, called “7-splitting”, we add
once again new intermediate vertices on the “promising” segments and remove some
unused vertices of each improved solution. After applying the local search and the single
route optimization procedures to the resulting solutions, we keep the best of them. This
is described in Section 4.5.

Before describing in detail the different procedures that compose the matheuristic algo-
rithm, let us introduce some notation. A solution S is a set of K drone routes, with each route
starting and ending at the depot and of length no greater than L, such that each required
edge is serviced (traversed) in exactly one route. A route T is represented by a sequence
{(i, j), (k, l), . . . , (u, v)} of required edges, which will be denoted ET . A route T is called
feasible if its length is not greater than L. It is assumed that route T services the required
edges on ET in the same order as they appear in the sequence. It is also assumed that the
deadheading from the depot to vertex i, from the end of a required edge to the beginning of
the following edge in the sequence, and from vertex v back to the depot, is done by travers-
ing the corresponding non-required edge. Note that the length of a route T is the sum of
the costs of the required edges on ET and the deadheading costs of the non-required edges.
Throughout this section we will denote by Ti the i−th route in S, with i ∈ {1, 2, . . . ,K}.

4.1 Initial LC K-DRPP solutions

In the first step of the algorithm, a giant tour TG on G = (V,E) (the graph corresponding to
the LC K-RPP(0) instance) traversing all the required edges is found by solving this RPP
instance optimally with the branch-and-cut algorithm proposed by Corberán et al. [8]. This
giant tour (see Figure 2a) is then partitioned into K routes of length no greater than L (see
Figure 2b) by means of the procedure proposed by Ulusoy [33] for the CARP. This procedure
works on an auxiliary directed graph G∗ constructed from TG as follows:

i) G∗ is a directed graph with |ER| + 1 nodes that admits a rectilinear representation
(see Figure 3). The first node of G∗, denoted by v1, corresponds to the depot of G.
Associated with each required edge (i, j) of G we add a node vij on G∗. The nodes are
arranged from left to right following the order in which their associated required edges
are traversed in the giant tour TG. Recall that each required edge is traversed only
once in the optimal giant tour since drones can travel between any pair of vertices of
G through a non-required edge with equal or lower cost due to the completeness of the
graph (V,ENR).

ii) Each arc on graph G∗ represents a feasible drone route on G. An arc from node vij to
node vk` is added to G∗ if the required edge (i, j) is the last one serviced before the
edge (k, `) in the giant tour TG. This arc represents the route starting at the depot,
deadheading to vertex k, servicing edge (k, `), and deadheading back to the depot, that
is, the route {(k, `)}. The cost (length) of arc (vij , vk`) in G∗ is equal to the cost of its
associated route. Furthermore, an arc from node v1 to the first node vij is added to G∗

with cost that of the route {(i, j)} in G (see Figure 3).

8

(depot)

i

j

k

`

m
n

p

q

1

(a) Giant tour TG on G

(depot)

i

j

k

`

m
n

p

q

1

(b) Resulting K routes

Figure 2: Splitting an optimal giant tour TG into K feasible routes

iii) There are additional arcs included in graph G∗ associated with feasible drone routes
that service more than one required edge. An arc (vrs, vtw) is added to the auxiliary
graph if the route from the first required edge after (r, s) to edge (t, w) is feasible.
Furthermore, there is an arc in G∗ from node v1 to the node vtw if the route from the
first required edge of the giant tour to edge (t, w) is feasible. The length of these arcs
is the cost associated with the corresponding route. In Figure 3, arc (vij , vnp) in G∗

implies that the route {(k, `), (`,m), (n, p)} has a length no greater than L. However,
arc (v1, vnp) is not included in G∗ because the route {(i, j), (k, `), (`,m), (n, p)} is not
feasible.

v1 vij

vk`

v`m vq1vnp

Figure 3: The auxiliary graph G∗ generated from TG = {(i, j), (k, `), (`,m), (n, p), (q, 1)}

In graph G∗ we compute a shortest path from node v1 to node vq1 using the topological
ordering, a technique that calculates shortest paths from a single source in O(|V |+ |E|) time
for directed acyclic graphs (see [11]). In Ulusoy [33] it is proved that the set of arcs in this
shortest path defines a partition of the giant tour TG into K feasible tours, and this partition
is optimal regarding the ordering of the traversal of the required edges in TG. For example,
the shortest path in the graph G∗ in Figure 3, represented in bold lines, corresponds to the K
feasible routes depicted in Figure 2b. These K routes define a solution S of the LC K-RPP(0)
to which we will apply the local search phase.

In order to obtain a larger set of initial solutions, we repeat the above algorithm with
other giant tours on G defined by other Eulerian circuits obtained from the optimal RPP
solution. Note that an RPP solution is an Eulerian graph that can be traversed in different
ways. We try to generate different Eulerian circuits by applying the Hierholzer algorithm
[17] |ER| times, starting each time with a different required edge. We thus obtain a set S̄ of
different initial LC K-RPP(0) solutions, with |S̄| ≤ |ER|.

9

4.2 Local Search Procedures

Three local search procedures are used in the matheuristic to attempt to improve a set of
drone routes. They are based on the exchange of edges between different routes in order to
minimize the total cost. The first two procedures explained below are applied by following
a first improvement strategy. These procedures are applied to the initial solutions for the
LC K-RPP(0) in S̄. They will also be applied later to the set of solutions in the 1-splitting,
3-splitting and 7-splitting procedures.

4.2.1 0 to ` - Exchange

In this procedure, a move consists of removing ` consecutive required edges from the route
servicing them and inserting all of them between two consecutive required edges of another
route. The algorithm uses the following strategy. We consider the removal of all the possible
sets of ` consecutive required edges and their insertion in all the possible positions of other
routes such that the total cost is smaller than the original and the length of the new route
does not exceed L. The procedure starts with ` = 1. If no exchange that improves the current
solution is found, we increment ` by 1, otherwise ` is reset to 1. The procedure stops when
` = `max and there are no moves (insertions) that improve the total cost, where `max is a
given parameter.

4.2.2 `1 to `2 - Exchange

This procedure is similar to the one described above but now a move consists of interchanging
`1 consecutive required edges from a route Ti with `2 consecutive required edges from another
route Tj , with `1 ≤ `2 and i, j ∈ {1, 2, . . . ,K}. The algorithm starts with `1 = 1 and
`2 = 1, and tries to interchange the required edges between the two routes in order to find
an improving move. If there are no exchanges that reduce the total cost, then `2 increases
by one unit and the process is repeated. If `2 reaches `max and no improving exchanges are
found, then `1 increases by one unit and `2 is set equal to `1. If an improving exchange is
discovered, it is executed and `1, `2 are reset to 1. The algorithm ends when `1 = `2 = `max
and there are no exchanges that improve the total cost.

4.2.3 Destroy and Repair

In each iteration of the destroy and repair algorithm, we randomly choose r required edges,
where r is a random value between 2 and 8, and these edges are removed from the routes
servicing them. This strategy randomly shortens some of the routes of the solution in order
to possibly complete them again differently with lower total cost. Then, we try to relocate
these required edges one by one in the same order they were removed. Each required edge is
inserted in the route and the position that minimizes the total cost, only if the length of the
resulting route does not exceed L. Note that it is possible that a required edge can not be
placed in its original position because another edge has been previously added to its route. If
an edge cannot be inserted in any route, a new route servicing it is created. If the obtained
solution does not improve the starting one, the changes made in this iteration are discarded.

10

This procedure is repeated until rmax consecutive iterations without any improvement are
performed, where rmax is a given parameter.

4.3 Optimization of the Routes

The route optimization phase is applied to a solution S once the local search procedures are
terminated. It is aimed at optimizing each drone route in S by solving an RPP instance with
the branch-and-cut algorithm proposed in [8]. Thus, for each route Ti in the solution S we
define an RPP instance on graph G with set of required edges ETi formed by the required
edges that are traversed and serviced in route Ti. This RPP instance is then solved optimally.
Each obtained route is feasible and has a cost less than or equal to that of the original route.

4.4 1-splitting procedure

The best solutions obtained after applying the local search and the route optimization pro-
cedures to all the initial solutions in S̄ are stored and define the set S̄b. In order to improve
them, we first apply the 1-splitting procedure to each S ∈ S̄b as follows. An intermediate
vertex (equi-distant from both endpoints) is added to each required edge to obtain a solution
S′ of the LC K-RPP with twice the number of original required edges. Thus, a required edge
(i, j) of S is transformed in two required edges (i, i1), (i1, j), where i1 denotes the interme-
diate point added, that will be traversed consecutively in the “new” solution S′. We then
apply the local search and the route optimization procedures to S′ to try to obtain a better
solution. Note that with this splitting procedure we are allowing the drone to enter and leave
any edge through its middle point, making it possible to obtain a solution better than the
starting one (prior to the 1-splitting).

For a better understanding of this phase, Figure 4 shows an example of the behavior of a
solution before (Figure 4a) and after (Figure 4b) the 1-splitting procedure. For this instance,
the deadheading cost is reduced by 6.12% due to drones entering and leaving three of the
original required edges through their middle point.

4.5 3-splitting and 7-splitting procedures

The last phase of the matheuristic focuses on improving the intensification of the search for
good solutions. The idea is to generate a new set of intermediate vertices for each solution
considered (vertices that a drone can use to enter and leave an edge) based on the behavior
of the drones on each route of the solution. Let S̄′b denote the set of solutions obtained after
applying the 1-splitting phase to each solution in S̄b. The K routes of any solution S′ ∈ S̄′b
service 2|ER| required edges. The idea now is to split again these required edges to give
more options to the drones in order to possibly shorten their routes. However, splitting all
2|ER| required edges would lead to apply the local search and route optimizing algorithms to
a solution with 3|ER|+|V | vertices, 4|ER| required edges and (3|ER|+|V |)×(3|ER|+|V |−1)/2
non-required edges, which would be an excessive computational effort, more so if we consider
that most of the non-required edges have a very low probability of being used by the drones.

Hence, instead of splitting all the 2|ER| required edges, in each solution we split only
those required edges incident to a non-required edge, as this creates new promising locations

11

(a) Deadheading cost: 1808.24 (b) Deadheading cost: 1697.51

Figure 4: Two solutions of a DroneRPP68 instance before and after the 1-splitting procedure

for the drone to enter or leave a required edge. Thereby, for each solution S′ ∈ S̄′b, the
required edges of S′ that are incident with a non-required edge used by any of the routes
are split by introducing a new intermediate vertex on it. Furthermore, in order to reduce
the computational effort of this phase, we remove the intermediate vertices added in the 1-
splitting procedure that are not incident with non-required edges in the solution (as these may
be unlikely to be used in a near-optimal solution). We call this “3-splitting” because some
of the original lines have been approximated by a polygonal chain with three intermediate
vertices (see edge (i, j) in Figure 5b).

Figures 5a and 5b illustrate how the 3-splitting works in a part of a solution where
two routes, T1 and T2, are involved. On these figures, white nodes i, j, and k represent
original vertices, whereas black nodes are intermediate vertices added on the required edges
(in 1-splitting). Dashed lines represent (incomplete) non-required edges. The 3-splitting
procedure (Figure 5b) adds vertices i′1 and i′2 in the middle of the edges (i, i1) and (i1, j),
respectively, because vertex i1 (added in the 1-splitting phase) is incident with non-required
edges. Moreover, vertex k′1 is added to edge (j1, k) and vertex j1 (added in the 1-splitting
phase) is removed. Then we apply the local search and the route optimization procedures.
The result is shown in Figure 5c, where the drone entry/exit of edge (i, j) shifts from i1 to
i′1.

The 7-splitting phase is the last part of the algorithm and it works similarly to the 3-
splitting. Again the idea is to add new intermediate vertices “near” to those that are incident
with non-required edges in the solution and remove the intermediate vertices previously added
that are not incident with non-required edges in the solution. The intermediate vertices added

12

i

j

k

i1

j1

T1

T2

(a) A solution before 3-splitting

i

j

k

i1

Ti

Tj

k′
1

i′2

i′1

(b) Vertices added and removed in 3-splitting

i

j

k

i1

T1

T2

k′
1

i′2

i′1

(c) A solution before 7-splitting

i

j

k

T1

T2

i′1

k′′
1

i′′1
i′′2

(d) Vertices added and removed in 7-splitting

Figure 5: Illustration of 3- and 7-splitting

are selected among the seven vertices obtained when the original line is partitioned in eight
segments of similar length. Figures 5c and 5d show how the 7-splitting works. Figure 5d
is created by adding two 7-splitting nodes i′′1, i′′2 and removing two nodes i1 (added in 1-
splitting) and i′2 (added in 3-splitting); and also adding k′′1 and removing k′1. Local search
and the route optimization algorithms are applied and the best solution among the |S̄b| ones
obtained is selected as the final solution of the matheuristic.

5 A branch-and-cut algorithm for the LC K-RPP

We have implemented a branch-and-cut algorithm for the LC K-RPP based on the for-
mulation presented in Section 3. The initial LP is defined by all inequalities (2), (5), (7),
and equations (4), while connectivity inequalities (3) and parity inequalities (8), which are
exponential in number, are separated at each iteration of the cutting-plane algorithm and
added to the LP. Let x̄k, k = 1, . . . ,K be the fractional solution obtained at an iteration of
the cutting-plane algorithm. We use the following separation algorithms:

Separation of connectivity inequalities (3)

For each drone k, we compute the connected components of the graph induced by the edges
e ∈ E such that x̄kij + x̄kji ≥ 1− ε, where ε is a given parameter, and the depot, if necessary.

13

For each connected component with node set S not including the depot, we select the edge
e = (i, j) ∈ ER(S) with maximum value for x̄kij + x̄kji and check the corresponding inequality

xk(δ(S)) ≥ 2(xkij + xkji) for violation. We start with ε = 0 and, while the algorithm fails in
finding a violated inequality, we successively try ε = 0.25, 0.5, and 0.75.

Connectivity inequalities can be exactly separated with the following polynomial time
algorithm. In the graph induced by the depot and the edges e = (i, j) ∈ E such that
x̄kij + x̄kji > 0, we compute, for each edge e = (i, j) ∈ ER, the minimum cut separating edge

e from the depot. If the weight of this cut is less than 2(x̄kij + x̄kji), then the corresponding
inequality (3) is violated.

Separation of parity inequalities (8)

Parity inequalities can also be separated in polynomial time by means of a procedure similar to
the one proposed by Padberg and Rao [29]. However, since the procedure is time consuming,
we do not use it in the cutting-plane algorithm. Instead, we use the following heuristic.

First, note that parity inequalities can be written as∑
(i,j)∈δ(S)\F

(xkij + xkji) +
∑

(i,j)∈F

(1− xkij − xkji) ≥ 1. (9)

For each vehicle k, we compute the connected components of the graph induced by the edges
e = (i, j) ∈ E such that x̄kij + x̄kji ≥ 1 − ε, where ε is a given parameter, and the depot, if
necessary. For each connected component with node set S we check the edges in δ(S). For
each e = (i, j) ∈ δ(S), if x̄kij + x̄kji > 0, 5, we put e in F . If |F | is odd, we are done. Otherwise,
it is easy to determine the edge to be removed from or added to F , in such a way that the
resulting set F minimizes the LHS of (9). If the LHS is less than 1, the inequality (9) is then
violated. Otherwise there is no set F ⊆ δ(S) for which (9) is violated for the given set S. We
start with ε = 0 and, while the algorithm fails in finding a violated inequality, we successively
try ε = 0.25, 0.5, and 0.75.

6 Computational experiments

In this section, we present the instances used to analyze the behavior of the proposed
matheuristic and branch-and-cut algorithms, as well as the computational study performed.
The algorithms have been implemented in C++ and all the tests have been run on an Intel
Core i7 at 3.4 GHz with 32 GB RAM. The B&C uses CPLEX 12.6 MIP Solver with a single
thread. CPLEX heuristic algorithms were turned off, and CPLEX’s own cuts were activated
in automatic mode. The optimality gap tolerance was set to zero and best bound strategy
was selected. The branch-and-cut algorithm described in [8], used for obtaining the initial
optimal giant tour and for optimizing the routes after the local search phase was also coded
in C++ and uses CPLEX 12.6 MIP Solver too.

6.1 Instances

The two proposed procedures have been tested first on two sets of instances based on the
ones proposed in Campbell et al. [4] for the Drone RPP. The first set consists of 30 randomly

14

generated instances, and the second set consists of 15 instances generated from the first set
by replacing some required edges in order to reduce the number of odd-degree vertices, thus
obtaining harder instances, called even instances. These all have between 22 and 83 original
nodes and between 18 and 92 original lines (for details see Tables 2 and 3 in [4]). Each row of
Table 1 reflects three instances (two randomly generated and one even instance) and shows
the average number of vertices and original lines of the three instances defined on a particular
grid indicated by the digits at the end of the instance name. For example, the three instances
for “DroneRPP710” have been generated on a grid with 7×10 points, and the original graphs
(before any splitting) of these three instances have 58 vertices and 51 lines, 59 vertices and
65 lines, and 58 vertices and 54 lines, respectively.

Instance Original Original
name vertices lines

DroneRPP56 22.3 21.3
DroneRPP66 27.0 23.3
DroneRPP58 34.0 29.6
DroneRPP68 36.6 35.0
DroneRPP77 38.6 41.6
DroneRPP510 41.6 42.0
DroneRPP610 50.0 46.6
DroneRPP79 50.3 53.6
DroneRPP88 56.3 51.0
DroneRPP710 58.3 56.6
DroneRPP89 60.3 56.3
DroneRPP99 66.3 65.3
DroneRPP810 68.6 67.0
DroneRPP910 78.6 74.6
DroneRPP1010 82.0 81.0

Table 1: Characteristics of the Campbell et al. [4] Drone RPP instances

In addition, we have generated 15 new larger instances as in [4], ten of which have been
randomly generated, while the other five have been built trying to obtain few odd-degree
vertices. The characteristics of these new instances are shown in Table 2. The first block,
labeled “R”, corresponds to the random instances and the “E” block to the even instances.
Column 2 shows the name of the instances. The last digit in the name of each random instance
indicates if this is the first or the second instance generated from the same grid. Columns
3 to 5 show the number of vertices and lines of the original instance and the number of
non-required edges. Columns 6 and 7 give the number of vertices and required edges for the
instance generated in the 1-splitting procedure of the matheuristic. The last five columns
show the same data for the instances generated in the 3- and 7-splitting phases, plus the
number of non-required edges in the 7-splitting case. The values in these last columns are
average data, since the size of the 3-splitting (7-splitting) instances depends on the solution
provided by the 1-splitting (3-splitting) procedure. Recall that the 3-splitting and 7-splitting
are done only on a (small) subset of required lines and that the size of the resulting instance
would be much larger if this splitting were made in all the lines. For example, if 7-splitting
were made on all the required edges, instance DroneRPP10122 would have 872 vertices, 880
required edges, and 379756 non-required edges (independently of the number of drones used)

15

O
ri

gi
n

a
l

O
ri

g
in

al
1-

sp
li

tt
in

g
3-

sp
li

tt
in

g
7-

sp
li

tt
in

g

T
y
p

e
In

st
an

ce
ve

rt
ic

es
li

n
es

N
R

ed
ge

s
ve

rt
ic

es
R

ed
ge

s
v
er

ti
ce

s
R

ed
ge

s
ve

rt
ic

es
R

ed
ge

s
N

R
ed

ge
s

D
ro

n
eR

P
P

10
1
11

88
72

38
28

16
0

14
4

21
5.

0
19

9.
0

27
0.

8
25

4.
8

36
54

9.
8

D
ro

n
eR

P
P

10
1
12

93
98

42
78

19
1

19
6

24
3.

0
24

8.
0

29
4.

6
29

9.
6

43
28

9.
2

D
ro

n
eR

P
P

10
1
21

95
80

44
65

17
5

16
0

24
0.

4
22

5.
4

30
8.

6
29

3.
6

47
50

0.
0

D
ro

n
eR

P
P

10
1
22

10
2

11
0

51
51

21
2

22
0

26
6.

2
27

4.
2

31
9.

6
32

7.
6

50
96

0.
8

R
D

ro
n

eR
P

P
11

1
1
1

9
9

82
48

51
18

1
16

4
25

0.
8

23
3.

8
32

2.
4

30
5.

4
51

88
2.

4
D

ro
n

eR
P

P
11

1
12

10
9

11
2

58
86

22
1

22
4

28
0.

8
28

3.
8

34
0.

4
34

3.
4

57
79

8.
6

D
ro

n
eR

P
P

11
1
21

10
0

93
49

50
19

3
18

6
25

8.
6

25
1.

6
32

5.
0

31
8.

0
52

67
5.

6
D

ro
n

eR
P

P
11

1
22

12
4

12
6

76
26

25
0

25
2

32
0.

0
32

2.
0

39
1.

6
39

3.
6

76
48

7.
6

D
ro

n
eR

P
P

12
1
21

10
2

10
1

51
51

20
3

20
2

26
2.

2
26

1.
2

32
2.

4
32

1.
4

51
81

9.
2

D
ro

n
eR

P
P

12
1
22

12
7

13
7

80
01

26
4

27
4

33
7.

2
34

7.
2

40
8.

4
41

8.
4

83
24

3.
2

D
ro

n
eR

P
P

10
1
1

88
7
2

38
28

16
0

14
4

21
4.

8
19

8.
8

27
0.

2
25

4.
2

36
38

1.
8

D
ro

n
eR

P
P

10
1
2

95
9
9

44
65

19
4

19
8

24
4.

0
24

8.
0

29
5.

4
29

9.
4

43
51

1.
0

E
D

ro
n

eR
P

P
1
1
11

99
10

6
48

51
20

5
21

2
25

0.
2

25
7.

2
29

5.
0

30
2.

0
43

39
2.

8
D

ro
n

eR
P

P
11

1
2

10
0

10
9

49
50

20
9

21
8

25
7.

0
26

6.
0

30
6.

0
31

5.
0

46
69

8.
0

D
ro

n
eR

P
P

12
1
2

10
2

11
4

51
51

21
6

22
8

26
2.

0
27

4.
0

30
9.

6
32

1.
6

47
77

5.
0

T
a
b

le
2:

C
h

ar
ac

te
ri

st
ic

s
of

th
e

n
ew

D
ro

n
e

R
P

P
in

st
an

ce
s

16

instead of the 319.6 vertices, 327.6 required edges, and 50960.8 non-required edges on average.

The above are instances for the Drone RPP. In order to obtain instances for the LC K-
DRPP we have to define the limit L for the length of the drone routes. To do so, several runs
have been performed for each instance with different values for L in order to obtain solutions
with a number of drones ranging from 2 to 6. Hence, we have 5 LC K-DRPP instances for
each one of the 60 Drone RPP instances for a total of 300 instances. These instances are
available at http://www.uv.es/corberan/instancias.htm.

6.2 Computational results

In this section we present the results obtained with the branch-and-cut and the matheuristic
algorithms described in Sections 5 and 4, respectively, on the 300 LC K-DRPP instances pre-
sented before. All the results shown in what follows are given with respect to the deadheading
cost of the solutions, which are the only ones that can be minimized.

6.2.1 Results obtained with the branch-and-cut algorithm

Table 3 summarizes the computational results obtained with the exact B&C algorithm for
all the “random” (R) and “even” (E) LC K-RPP(0) instances with a time limit of 3600
seconds. The results for each type of instances are separated in two blocks by a horizontal
line, according to the instance size (with those above the line being for up to 60 original
vertices and those below the line being with 60 or more). Columns 2 to 4 contain the number
of drones, the number of LC K-DRPP instances, and the number of the corresponding LC K-
RPP(0) instances solved to optimality. Columns 5 and 6 show the average gaps in percentage
between the cost of the optimal solution (if known) or that of the solution provided by the
matheuristic before the 1-splitting phase and the lower bound at the end of the root node
(Gap0) and the final lower bound (Gap), respectively. Column 7 reports the average number
of nodes of the branching tree and the last two columns show the average computing time,
in seconds, to reach the best feasible solution and the total time, respectively.

From Table 3 we can observe that the B&C is capable of solving almost all the instances
with 2 drones (52 out of 60) in very short computing times and a good number of instances
(18) with 3 drones. The average final gaps for the instances with 3 drones are quite good if we
consider that in most cases they have been obtained comparing the lower bounds with upper
bounds and not with optimal values. When the number of drones increases, the number of
instances optimally solved decreases rapidly and becomes 0 in those instances with 60 vertices
or more. Furthermore, the average gaps are far from good, which is a consequence of the
great difficulty of this problem and a reason for the development of approximate algorithms
for the LC K-DRPP, such as the one proposed here, capable of finding good solutions in
reasonable times. Finally, as we expected, we can observe that the “even” instances present
a greater difficulty than the “random” ones.

17

Number of
drones inst opt Gap0 (%) Gap (%) Nodes Time UB Time

2 20 19 3.47 0.04 821.5 77.0 258.8
3 20 12 11.96 6.49 3133.5 1219.5 1651.9

R 4 20 4 21.52 16.83 7084.7 1919.9 2980.3
5 20 2 27.68 24.50 5251.2 2441.2 3339.9
6 20 3 28.74 25.40 2759.1 2744.0 3144.1

2 20 18 1.88 0.22 399.6 624.4 1258.1
3 20 1 10.16 9.38 989.1 2357.0 3429.1

R 4 20 0 22.80 22.25 547.6 2997.9 3600.0
5 20 0 30.00 29.84 321.3 3028.5 3600.0
6 20 0 36.06 35.95 182.2 3327.1 3600.0

2 10 10 4.88 0.00 629.4 79.2 192.5
3 10 5 16.95 10.17 5319.4 1858.6 2238.8

E 4 10 2 25.36 19.08 7471.6 1797.6 3183.9
5 10 1 30.49 26.32 6151.0 2136.7 3470.6
6 10 1 30.07 25.99 4034.6 2671.6 3291.6

2 10 5 10.60 7.88 1695.4 1740.1 2663.1
3 10 0 18.82 17.81 1119.1 2762.8 3600.0

E 4 10 0 27.69 27.15 620.8 3091.0 3600.0
5 10 0 33.86 33.68 363.1 3314.9 3600.0
6 10 0 36.77 36.52 216.3 3426.8 3600.0

Table 3: Computational results with the B&C on the LC K-RPP(0) instances

6.2.2 Results obtained with the matheuristic

We present here the computational results obtained with the proposed matheuristic on the
set of LC K-DRPP instances described in Section 6.1.

First, in order to choose a value for the `max parameter (the maximum number of required
edges used in the exchange moves), we tested the matheuristic on a representative subset of
30 LC K-DRPP instances with different sizes and number of drones with `max ∈ {4, 6, 8, 10}
and |S̄b| = 10. Table 4 shows the obtained results. In this table, Column 2 shows the
average computing time, in seconds, used by the algorithm to solve each instance with the
different values of `max, and Column 3 shows the total deadheading cost on average. Column
4 reports the number of instances out of 30 for which the respective value of `max returns
the best cost. In many cases, several values of `max get the same solution. Since the average
time is not excessively larger, we chose `max = 10. A similar test also suggested the value 10
for the parameter rmax (number of iterations without improvement of the destroy and repair
algorithm).

To analyze the performance of the matheuristic, we have compared its results, using
|S̄b| = 10, with those of the branch-and-cut algorithm on the LC K-RPP(0) instances. Note
that the solutions obtained in the first phase of the matheuristic (no splitting has been made
yet) are feasible solutions of the LC K-RPP(0) instances. Therefore, the lower bounds (or

18

`max Time Deadheading cost # Best

4 31.28 3103.74 8
6 34.04 3055.06 17
8 37.46 3039.11 19
10 42.49 3026.44 26

Table 4: Sensitivity of the matheuristic to the parameter `max

optimal values) obtained by the B&C are also lower bounds for the solutions obtained in the
first phase of the matheuristic, and the upper bounds provided can also be compared to the
matheuristic solutions. However, the solutions obtained in phases 2 and 3 of the matheuristic
may be better than those obtained with the branch and cut, as in fact is the case in many
instances.

Tables 5 and 6 show the results obtained for the “random” and “even” instances, respec-
tively. Both tables present the same structure and, like Table 3, each one is separated into
two groups by a horizontal line, according to the size of the instance. Columns 1 to 3 contain
the number of drones used by the solution, the number of LC K-DRPP instances, and the
number of the corresponding LC K-RPP(0) instances for which an optimal solution has been
obtained with the branch and cut. Column 4 (GapLB) shows the percentage average gap
between the cost of the solution provided by the matheuristic in phase 1 (0-splitting) and
the lower bound (maybe the optimal value) given by the branch-and-cut algorithm. Col-
umn 5 (GapUB) provides the average percentage gap between the cost of the solution of
the matheuristic (also before the 1-splitting phase) and that of the best solution found by
the branch and cut in one hour of computing time. A negative value in this column means
that, for that particular subset of instances, the solutions provided by the matheuristic have,
on average, lower costs than the best feasible solutions found by the B&C. Although the
solutions obtained with the matheuristic with the 1-, 3-, and 7-splitting procedures are not
feasible solutions of the LC K-RPP(0) instances, they are also compared with the best feasible
solutions found by the B&C in the time limit. The average gaps for these comparisons are
shown in columns 6-8. The final column reports the average total computing time used by
the matheuristic. The idea behind the last comparisons is to highlight the difference between
the solutions for the original LC K-DRPP instances found by the matheuristic in less than
three minutes on average and those obtained by the B&C in one hour of computing time.

We can observe in Table 5 that the solutions obtained by the matheuristic on the instances
with 2 and 3 drones are very good, showing an average gap before the splitting procedures
of less than 1.30% and 8.08%. With 4, 5 and 6 drones the gaps are high, but our guess is
that these values are due more to the poor quality of the lower bound than to the quality of
the solution produced by the algorithm. Note that only 9 optimal solutions are known for
the random instances using 4 or more drones, and that all the average gaps with respect to
the upper bounds are negative except for the instances with 2 drones, in which the majority
of the upper bounds are optimal or near optimal. The 1-splitting, 3-splitting, and 7-splitting
procedures improve the solutions in all the instances and the impact of each procedure on
the result of the previous procedure is significant. For example, the values in the last row
of Table 5 say that, for the 20 instances with 60 to 127 vertices and 6 drones, the costs of
the solutions provided by the matheuristic in 92.04 seconds on average are, without splitting

19

Number of 0-splitting 1-splitting 3-splitting 7-splitting Total

drones inst opt GapLB GapUB GapUB GapUB GapUB time

2 20 19 0.92 0.88 -0.21 -1.10 -1.60 25.80
3 20 12 6.73 -1.01 -1.42 -3.00 -3.36 23.17
4 20 4 19.31 -2.76 -4.80 -6.34 -7.61 22.69
5 20 2 27.70 -5.61 -7.51 -9.24 -9.90 23.48
6 20 3 32.24 -10.10 -10.95 -13.06 -14.53 26.54

2 20 18 1.30 1.07 0.30 0.01 -0.25 131.45
3 20 1 8.08 -2.71 -4.36 -4.91 -5.16 113.32
4 20 0 16.82 -9.83 -11.35 -12.16 -12.45 98.79
5 20 0 29.46 -9.77 -11.92 -13.30 -13.86 97.16
6 20 0 42.76 -9.27 -10.94 -12.62 -13.49 92.04

Table 5: Results of the matheuristic for the “random” instances

Number of 0-splitting 1-splitting 3-splitting 7-splitting Total

drones inst opt GapLB GapUB GapUB GapUB GapUB time

2 10 10 2.10 2.10 -3.19 -4.81 -5.78 34.1
3 10 5 9.37 -2.94 -6.77 -7.64 -8.57 24.0
4 10 2 21.35 -3.92 -7.46 -9.46 -10.06 25.3
5 10 1 30.10 -6.57 -9.54 -11.04 -11.37 23.0
6 10 1 32.91 -6.49 -9.93 -11.48 -11.76 23.7

2 10 5 6.23 -2.62 -5.68 -6.52 -7.91 199.6
3 10 0 13.36 -7.24 -10.56 -12.45 -12.97 160.2
4 10 0 23.85 -10.63 -12.40 -15.26 -16.67 153.9
5 10 0 34.35 -11.76 -14.79 -16.32 -16.88 144.4
6 10 0 41.97 -10.76 -13.11 -14.46 -15.16 142.1

Table 6: Results of the matheuristic for the “even” instances

the required lines, 9.27% better than those obtained by the branch and cut in one hour,
and 10.94%, 12.62%, and 13.49% better when the 1-splitting, 3-splitting, and 7-splitting
procedures, respectively, are applied. On the other hand, note that the values in columns
GapUB obtained for the larger instances are better than those obtained for the smaller ones.
This could be explained by the poorer behavior of the branch and cut in these larger instances.

Similar comments can be made for the results shown in Table 6 for the “even” instances.
The values in columns GapLB and the computing times for the larger instances are worse than
for the “random” ones, thus supporting our proposition that, for the matheuristic algorithm,
the “even” instances are harder than the “random” ones, as is also the case for the B&C
algorithm.

Table 7 shows the results obtained by the matheuristic on the 83 instances for which
an optimal solution for the corresponding LC K-RPP(0) instance is known. Columns 1
and 2 contain the instance type (“random” or “even”) and the number of drones. Column

20

Number of GapUB Total

drones opt opt M 0-splitting 1-splitting 3-splitting 7-splitting time

R
2

37 25 0.86 -0.06 -0.53 -0.94 76.20
E 15 6 1.76 -2.99 -4.27 -5.20 55.83

R
3

13 7 1.35 1.07 -0.38 -0.82 22.55
E 5 4 0.86 -5.30 -6.42 -7.68 15.14

R
4

4 3 0.08 -0.23 -0.91 -4.94 14.86
E 2 0 2.55 -2.36 -2.44 -2.78 10.25

R
5

2 1 3.02 2.82 -1.48 -2.67 10.49
E 1 1 0.00 -2.72 -4.04 -4.30 7.84

R
6

3 3 0.00 -0.44 -1.33 -2.72 7.77
E 1 1 0.00 -6.40 -9.11 -9.38 11.45

Table 7: Results for the instances with known optimal solutions

3 shows the number of LC K-RPP(0) instances with known optimal value and Column 4
reports the number among them for which phase 1 of the matheuristic provided the same
solution. For example, among the 40 “random” instances with two drones, 37 have been
solved to optimality by the branch and cut, while the matheuristic found 25 of these optima.
Columns 5 to 8 (GapUB) show the average percentage gap between the cost of the solution
of the corresponding phase of the matheuristic and that of the optimal solution found by the
branch and cut. The last column reports the average computing time in seconds used by
the matheuristic. From these results it can be observed that the gaps are very good for the
instances with known optimal solution. In particular, note that the solutions provided by
the 3- and 7-splitting phases are better than the optimal solutions obtained with the branch
and cut on the LC K-RPP(0) instances.

Table 8 reports the effect of the local search and the exact route optimization procedures
on the performance of the matheuristic in the 0-splitting phase. The first column gives the
name associated with the three instances (two “random” and one “even” instance) generated
in the same grid. Each of these three instances is solved with 2, 3, 4, 5 and 6 drones and,
hence, each row in Table 8 contains the average data of 15 instances. The average number of
vertices and original lines of each group of instances are reported in columns 2 and 3. Column
4 shows the average improvement (in percentage) obtained by the local search procedures
(LS) in the 0-splitting phase with respect to the cost of the initial solutions, and Column 5
reports the average time in seconds. The last two columns show the same data corresponding
to the route optimization procedure (RO) when applied to the solutions provided by the
local search. It can be seen that the improvement obtained with the local search, 22.02%
on average, is significant, and it does not depend on the size of the instance. However, the
results seem to show a slightly increasing improvement for the route optimization procedure
as the size of the instance increases.

Table 9 shows the contribution of the local search and route optimization procedures
when the instances are grouped by number of drones. While the improvement obtained with
the local search is similar for any number of drones, the impact of the route optimization
procedure on the improvement of the solutions clearly decreases as the number of drones

21

LS RO

Name |V | |E| Imp (%) Time (s) Imp (%) Time (s)

DroneRPP56 22.3 21.3 21.57 0.2 1.37 1.2
DroneRPP66 27.0 23.3 23.95 0.7 0.87 2.6
DroneRPP58 34.0 29.6 22.80 2.6 0.89 5.7
DroneRPP68 36.6 35.0 20.65 0.2 1.88 0.9
DroneRPP77 38.6 41.6 22.58 0.9 1.08 1.8
DroneRPP510 41.6 42.0 27.94 3.0 1.06 5.5
DroneRPP610 50.0 46.6 24.08 1.3 1.67 2.6
DroneRPP79 50.3 53.6 22.70 4.4 1.70 6.6
DroneRPP88 56.3 51.0 17.07 5.5 1.57 8.8
DroneRPP710 58.3 56.6 23.86 2.3 1.62 3.4
DroneRPP89 60.3 56.3 22.31 4.7 2.60 6.5
DroneRPP99 66.3 65.3 19.25 7.9 1.59 7.7
DroneRPP810 68.6 67.0 18.68 6.6 1.58 7.6
DroneRPP910 78.6 74.6 20.22 10.1 1.69 11.3
DroneRPP1010 82.0 81.0 22.96 13.3 2.71 12.9
DroneRPP1011 89.6 80.6 23.77 14.8 2.51 12.7
DroneRPP1012 97.3 96.3 25.59 28.4 1.85 19.3
DroneRPP1111 102.3 103.6 21.73 27.2 2.24 19.1
DroneRPP1112 108.0 109.3 16.89 29.3 2.38 19.7
DroneRPP1212 110.3 117.3 21.70 36.8 2.40 24.2

Table 8: Impact of local search and route optimization procedures (instances grouped by
size)

increases. This could be explained by the fact that, when the number of drones increases, the
number of required edges in each route decreases, and there is less room for improvement.

On the other hand, it is interesting to point out that if the route optimization procedure is
removed from the matheuristic, then the number of optima found decreases from 39 to 25 in
the random instances, and from 12 to 8 in the even instances. Hence, the route optimization
procedure plays an important role in our algorithm, both in terms of the improvement of the
solutions and in the number of optima found, with a reasonable computing time.

Number of LS RO

drones instances Imp (%) Time (s) Imp (%) Time (s)

2 60 22.32 9.2 3.40 9.6
3 60 22.71 9.7 1.99 7.9
4 60 22.52 10.6 1.59 8.4
5 60 21.82 10.4 1.01 9.1
6 60 20.71 10.2 0.82 10.0

Table 9: Impact of local search and route optimization procedures (instances grouped by
number of drones)

22

To further analyze the contribution of the different local search components of the
matheuristic, we have tested the algorithm on a subset of 30 instances of different sizes
and number of drones. Each instance is run four times. Three times deactivating each of the
three local search procedures and a fourth in which none is deactivated. Table 10 reports
the results obtained. Column 2 shows the average time the algorithm takes to solve each
instance deactivating the local search procedure indicated in Column 1, and Column 3 shows
the deadheading cost on average for each case. Column 4 reports the number of instances
out of 30 for which the respective solution mode returns the best deadheading cost of the
four obtained. From the table we can see that the “0 to ` exchange” is the most effective
procedure since when it is deactivated the algorithm shows its worst behavior, both in terms
of the quality of the solutions (deadheading cost) and the number of best solutions found.
Also the procedure “`1 to `2 exchange” is important to improve the solutions, while it seems
that “destroy and repair” provides the least benefit in terms of deadheading cost, although
disabling it makes the other methods take longer to find good solutions. Therefore, as con-
firmed by the results obtained when no local search method is deactivated, all procedures
help to improve the solutions, which justifies their use in the proposed matheuristic.

Deactivated procedure Time Deadheading cost # Best

none 51.44 2843.59 15
0 to ` exchange 32.81 2903.04 6

`1 to `2 exchange 36.65 2897.99 8
destroy and repair 86.39 2849.48 9

Table 10: Analysis of the contribution of the different local search procedures

Finally, for illustrative purpose, Figure 6 shows the solution provided by the matheuristic
for the even instance DroneRPP66 with six drones. Solid lines represent the traversal and
service of the required lines, while dashed lines are associated with deadheading traversals.
This solution has a deadheading cost of 3411, while the cost of the solution obtained for the
same instance without splitting is 3751.85. Note that sometimes drones enter some required
lines through intermediate points, and that the service of some lines is shared by two drones.
The drone routes illustrated in Figure 6 show some of the complexity of these problems and
solutions, as well as the benefits the drones gain by being able to fly directly between two
points. Observe that the green route in Figure 6 includes parts of two required lines and all
of two other required lines, which are in two separate components of the network. Note that
these solutions also reflect the strategy of splitting the arcs in equi-distant segments, while
a different set of intermediate points may lead to (likely small) improvements. In practice,
user-driven selection of splitting points (e.g., based on local conditions) may be employed.

7 Conclusions

Drone arc routing problems (Drone ARPs) differ from classical Postman arc routing problems
in that drones can fly directly between any two points without following the edges of the
graph. This enables Drone ARPs to have better solutions than Postman ARPs. Here we
have studied the Length Constrained K-Drones Rural Postman Problem, in which the limited
capacity of the drones makes it impossible to service all the lines requiring service with a

23

Figure 6: Solution of an even DroneRPP66 instance with L = 1300 (6 drones)

single drone. Therefore, we have to find a set of drone routes, each of limited length.

For this problem we have presented an ILP formulation and two solution methods, a
branch-and-cut algorithm and a matheuristic. The B&C algorithm is based on the proposed
formulation and on the strengthening of its linear relaxation through the separation of a
family of valid inequalities that is exponential in number. The matheuristic consists of several
features, including splitting edges to increase flexibility in servicing, local search to improve
solutions, and an optimization procedure that exactly solves RPP instances associated with
each single drone route. The algorithms have been tested on a large set of Drone RPP
instances from the literature and on a new set of larger instances with up to 137 lines and
with 2 to 6 drones.

Future research includes exploring some post-processing local improvements to selectively
add more intermediate nodes to certain edges. Some interesting nodes to consider could be
the interior points on a required edge that are closest to the endpoints of other required edges,
or/and the points on a required edge that are closest to any point on other required edges.

We are also working on the theoretical study of the problem in order to find new families

24

of valid inequalities that can help to improve the branch-and-cut algorithm. Another line of
future research is the study of a more general problem that combines the visit of vertices and
the traversal of certain lines in order to deliver goods and inspect areas, for example.

Acknowledgments: The work by Ángel Corberán, Isaac Plana, José M. Sanchis, and Paula
Segura was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades
(MICIU) and Fondo Social Europeo (FSE) through project PGC2018-099428-B-I00.

References

[1] Barahona, F. and Grötschel, M. (1986). On the cycle polytope of a binary matroid.
Journal of Combinatorial Theory, 40, 40–62.

[2] Bonnin-Pascuala, F. and Ortiz, A. (2019). On the use of robots and vision technologies for
the inspection of vessels: A survey on recent advances. Ocean Engineering, 190, 106420.

[3] BNSF Railway (2019). It’s a bird, it’s a plane ... it’s BNSF: How we lead the
way in advanced drone operations. August 21, 2019, Accessed September 24, 2020,
http://www.bnsf.com/news-media/railtalk/safety/bnsf-drone.html.

[4] Campbell, J.F., Corberán, Á. , Plana, I., and Sanchis, J.M. (2018). Drone arc routing
problems. Networks, 72, 543–559.

[5] Catapult (n.d.) (2020). UASs (Unmanned Aerial System) to detect marine ingress near
nuclear power stations. Accessed September 24, 2020. https://cp.catapult.org.uk/uass-
unmanned-aerial-system-to-detect-marine-ingress-near-nuclear-power-stations-
pathfinder/

[6] Chow, J.Y.J. (2016). Dynamic UAV-based traffic monitoring as a stochastic arc-inventory
routing policy. International Journal of Transportation Science and Technology, 5, 167–
185.

[7] Chung, S.H., Sah, B., and Lee, J. (2020). Optimization for drone and drone-truck com-
bined operations: A review of the state of the art and future directions. Computers &
Operations Research, 123, 105004. https://doi.org/10.1016/j.cor.2020.105004

[8] Corberán, Á., Plana, I., and Sanchis, J.M. (2007). A Branch & Cut Algorithm for the
Windy General Routing Problem and special cases. Networks, 49, 245–257.

[9] Corberán, Á. and Laporte, G. (editors) (2014). Arc Routing: Problems, Methods, and
Applications. MOS-SIAM Series on Optimization, Philadelphia.

[10] Corberán, Á., Eglese, R., Hasle, G., Plana, I., and Sanchis, J.M. (2020). Arc routing
problems: A review of the past, present, and future. Networks. DOI: 10.1002/net.21965.

[11] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Introduction to Al-
gorithms (3rd ed.). MIT Press and McGraw-Hill.

25

[12] Delair (2020). Delair long range surveillance drones help the French Ministry of
Foreign Affairs to better address counter terrorism in Niger. Accessed September
24, 2020. https://delair.aero/success-stories/delair-long-range-surveillance-drones-help-
the-french-ministry-of-foreign-affairs-to-better-address-counter-terrorism-in-niger/

[13] Dille, M. and Singh S. (2013). Efficient aerial coverage search in road net-
works. AIAA Guidance, Navigation and Control (GNC) Conference, August 2013
(https://doi.org/10.2514/6.2013-5094).

[14] Franz, J. (2018). BNSF takes to the sky with drones to inspect Montana main
line; program may expand in 2019. November 14, 2018. Accessed September
27, 2020. https://trn.trains.com/news/news-wire/2018/11/14-bnsf-takes-to-the-sky-with-
drones-to-inspect-montana-main-line-program-may-expand-in-2019

[15] Garrett-Glaser, B. (2019). Evergy Inspects 150 Miles of Power Lines with
True BVLOS Drone Flights. November 13, 2019. Accessed September 24, 2020.
https://www.aviationtoday.com/2019/11/13/evergy-inspects-150-miles-power-lines-true-
bvlos-drone-flights/

[16] Ghiani, G. and Laporte, G. (2000). A branch-and-cut algorithm for the undirected rural
postman problem. Mathematical Programming, 87, 467–481.

[17] Hierholzer, C. (1873). Über die Möglichkeit, einen Linienzug ohne Wiederholung und
ohneUnterbrechung zu umfahren. Mathematische Annalen, 6, 30–32.

[18] Khoufi, I., Laouiti, A., and Adjih, C. (2019). A Survey of Recent Extended Variants
of the Traveling Salesman and Vehicle Routing Problems for Unmanned Aerial Vehicles.
Drones, 66, 3(3). https://doi.org/10.3390/drones3030066

[19] Knight, R. (2019). UAV Inspection At The Biggest Oil Rig In The World. December
2, 2019. Accessed September 24, 2020, https://www.microdrones.com/en/content/uav-
inspection-at-the-biggest-oil-rig-in-the-world/

[20] Li, M., Zhen, L., Wang, S., Lv, W., and Qu, X. (2018). Unmanned aerial vehicle
scheduling problem for traffic monitoring. Computers & Industrial Engineering, 122, 15-
23. https://doi.org/10.1016/j.cie.2018.05.039.

[21] Liu, Y., Shi, J., Liu, Z., Huang, J., and Zhou, T. (2019). Two-Layer Routing for High-
Voltage Powerline Inspection by Cooperated Ground Vehicle and Drone. Energies, 12(7),
1385. https://doi.org/10.3390/en12071385.

[22] Luo, H., Zhang, P., Wang, J., Wang, G., and Meng, F. (2019). Traffic Pa-
trolling Routing Problem with Drones in an Urban Road System. Sensors, 19, 5164.
https://doi:10.3390/s19235164.

[23] Macrina, G., Di Puglia Pugliese, L., Guerriero, F., and Laporte, G. (2020).
Drone-aided routing: A literature review. Transportation Research Part C. DOI:
10.1016/j.trc.2020.102762.

[24] Mourão, M. C. and Pinto, L. S. (2017). An updated annotated bibliography on arc
routing problems. Networks, 70, 144–194.

26

[25] Networks (2019). Drone project begins flight trials on energy network assets. 16th May
2019. Accessed September 27, 2020- https://networks.online/gas/drone-project-begins-
flight-trials-on-energy-network-assets/

[26] Oh, H., Kim, S., Tsourdos, A., and White, B.A. (2014). Coordinated road-network
search route planning by a team of UAVs. International Journal of Systems Science,
45(5), 825–840.

[27] Oh, H., Shin, H.S., Tsourdos, A., White, B.A., and Silson, P. (2011). Coordinated
road-network search for multiple UAVs using Dubins path. In Advances in Aerospace
Guidance, Navigation and Control, F. Holzapfel and S. Theil (eds), 55–66, Springer,
Berlin Heidelberg.

[28] Otto, A., Agatz, N., Campbell, J., Golden, B., and Pesch, E. (2018). Optimization
approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A
survey. Networks, 72, 411–458.

[29] Padberg, M.W. and Rao, M.R. (1982). Odd minimum cut-sets and b-matchings. Math
Oper Res, 7, 67–80.

[30] Poikonen, S. and Campbell, J.F. (2020). Future directions in drone routing research.
Networks. DOI: 10.1002/net.21982.

[31] Press (2020). BVLOS powerline inspection over a city using VTOL UAVs. 16
July 2020. Accessed September 27, 2020. https://www.suasnews.com/2020/07/bvlos-
powerline-inspection-over-a-city-using-vtol-uavs/

[32] Seo, J., Dudue, L., and Wacker, J. (2018). Drone-enabled bridge inspection methodology
and application. Automation in Construction, 94, 112–126.

[33] Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European
Journal of Operational Research, 22, 329–337.

[34] United Nations ESCAP (Economic and Social Commission for Asia and the Pa-
cific), Working Group on the Trans-Asian Railway Network, (2019). Inspection and
monitoring of railway infrastructure using aerial drones. Note by the secretariat, ES-
CAP/TARN/WG/2019/4.

[35] Zeisee, G. (2019). BVLOS drones improve power line inspections amid increas-
ing fire and storm risks for utilities. May 17, 2019. Accessed September 24, 2020.
https://www.utilitydive.com/news/bvlos-drones-improve-power-line-inspections-amid-
increasing-fire-and-storm/554999/

27

