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Abstract

The methods presented in this paper solve the Simplified Spherical Harmon-
ics approximation to the multidimensional neutron transport equation. 1D, 2D
and 3D systems were modeled with Cartesian geometry using the finite differ-
ence method to discretize the spatial variables. The method is able to simulate
any energy group discretization, including up-scattering terms. The Krylov
Shur method was used to calculate the solution of the steady-state equation
by solving a generalized eigenvalue problem. This methodology has the capa-
bility to calculate any number of eigenfunctions. A formulation review of the
Simplified Spherical Harmonics is explained in this work, as well as, a study of
the boundary conditions for different approaches of the finite difference method.
The results calculated by this methodology are compared with the discrete ordi-
nates and diffusion approximation methods, all of them, using the same spatial
discretization in order to show the different accuracy of each method without
influence of the method used for discretizing the spatial variable. The results
show the validity of each method for different benchmark problems.

Keywords: Simplified Spherical Harmonics, SP3, Multigroup, Finite
Difference Method, Multiple Eigenvalues, Boundary Conditions, lambda modes

1. Introduction

The diffusion equation is widely used in the analysis and design of nuclear
reactors, which allows core calculations with reasonable computational time and
accuracy. However, the diffusion approximation is valid only under 4 assump-
tions. The first is the assumption that the neutron current is proportional to the5
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1. INTRODUCTION

neutron flux gradient. Second the medium is considered to have much less neu-
tron absorption than scattering. Third, the angular dependence of the neutron
flux is assumed to be linear. Fourth, the scattering is assumed isotropic.

For calculations in which the reactor core is characterized as an homoge-
neous, isotropic and diffusive medium, the diffusion approximation provides an10

accurate solution. Nevertheless, more detailed solutions, such as pin level cal-
culations, are desired for improved accuracy. In cases where a control rod is
considered, the highly absorbent material limits the applicability of the diffu-
sion approximation. Therefore, more rigorous approximations for the neutron
transport equation are required.15

A more precise approach is to solve the neutron transport equation directly
assuming a set of discrete angular directions. This method is called the dis-
crete ordinates method (SN ). A review of this method was published by Bengt
Carlson and Kaye Lathrop in 1964 [1]. At that time, the capabilities to solve
complex problems with this methodology were limited, by the available comput-20

ing power. Nowadays, the rapid progress of processors speed and the increase
of the computer memory make possible the development of the SN codes ca-
pable of simulating more complex and realistic problems. However, even with
the current computers and improved algorithms, realistic problem can only be
solved on the largest computers which require large amounts of memory and25

long calculations. Moreover, it is limited also by the finite number of digits in
floating point calculations.

Another solution methodology uses the spherical harmonics (PN ) approxi-
mation to the neutron transport equation. This approximation is developed by
using an expansion of the angular dependence of the flux into a set of spher-30

ical harmonic functions, which can be combined naturally with the Legendre
functions to have an appropriate handle of the anisotropic scattering laws. Al-
though, it is necessary to use an infinite order of the spherical harmonics to have
an exact solution, only spherical harmonics up to order N are manageable for
realistic analysis. The increase of the number of unknowns when multidimen-35

sional problems are considered have to be taken into account. One dimensional
planar geometry use only N + 1 equations for the PN approximation. However,
three-dimensional geometry needs (N +1)2 number of equations making it rela-
tively expensive to deal with. PN equations can be reformulated as second order
ones by defining even and odd parity fluxes: in such a way the number of un-40

knowns remains significant and angular moments, as well as, spatial derivatives
are present in the coupling.

For this reason the simplified spherical harmonics approximation (SPN ) ap-
peared. This approximation was proposed by Gelbard in 1960 [2]. The idea is
to replace the second derivatives in the one-dimensional planar geometry PN45

equations with a general three-dimensional Laplacian operator [3]. In this way,
the number of the required equations by SPN approximation is fewer than PN

equations and the resulting system of equations can be solved by most of the
standard diffusion solvers. Another advantage of the SPN equations is that the
problem which affects SN equations known as the ”ray effect” is not present50

when the SPN equations are used.
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2. METHODS

However, the theoretical basis of the SPN equations is continuously being
discussed because its solution does not normally converge to the transport so-
lution when N →∞.

The SP3 and SP5 are commonly used and their results present much bet-55

ter accuracy with respect to the diffusion approximation in most cases, giving
results similar to transport solution.

In this work we show the discrepancies between three approximations to
the resolution of the neutron transport equation. These approximations are
diffusion, discrete ordinates method (SN ) and simplified spherical harmonics60

when N = 3 (SP3). In order to perform a consistent comparison of the methods,
all of them are formulated using finite difference method for the same spatial
discretization.

The outline of the paper is as follows. Section 2 is devoted to define the
formulation used to implement the SP3 equations. Section 3 is focused on the65

method verification describing several benchmarks and showing their results.
Finally, the last section, Section 4 summarize few comments and conclusions
about the results.

2. Methods

This section shows a review of the simplified spherical harmonics (SPN )70

equations, in particular when N = 3. Two different approaches of the finite dif-
ference method are explained and the way to implement the Marshak boundary
conditions are studied in both cases.

Some different formulations to implement the simplified PN equations have
been published in several works. However, most of these do not include the75

details of the finite difference approximation of the boundary conditions. One
of the most numerically and computationally efficient nomenclature is the one
presented by Evans and Hamilton in [4]. However this work is based on the
formulation developed by Brantley and Larsen [3] which presents more under-
standable nomenclature with better physical interpretation.80

The SP3 steady state equations can be classically written as [5]:

−∇(Dg∇[φ0g+2φ2g])+Σr,g[φ0g+2φ2g] =
χg

Keff

∑
g′

νΣf,g′φ
0
g′+

∑
g′ 6=g

Σs,g′→gφ
0
g′+2Σr,gφ

2
g,

(1)

−27

35
∇(Dg∇φ2g)+Σt,gφ

2
g =

2

5

{
Σr,gφ

0
g−

(
χg

Keff

∑
g′

νΣf,g′φ
0
g′+

∑
g′ 6=g

Σs,g′→gφ
0
g′

)}
.

(2)
In particular, for the one-dimensional case the eqs.1 and 2 can be expressed

as:
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∂

∂x
(−Dg(x)

∂

∂x
Φg(x)) + Σr,g(x)Φg(x) =

χg(x)

Keff

∑
g′

νΣf,g′(x)φ0g′(x) +
∑
g′ 6=g

Σs,g′→g(x)φ0g′(x) + 2Σr,g(x)φ2g(x), (3)

27

35

∂

∂x
(−Dg(x)

∂

∂x
φ2g(x)) + Σt,g(x)φ2g(x) =

2

5

{
Σr,g(x)φ0g(x)−

(
χg(x)

Keff

∑
g′

νΣf,g′(x)φ0g′(x) +
∑
g′ 6=g

Σs,g′→g(x)φ0g′(x)

)}
.

(4)

Where

Φg =φ0g + 2φ2g

Dg : diffusion coefficient of group g

Σr,g : removal cross section of group g defined by

the sumation of absorption and out-scatter cross section.

Σr,g = Σa,g +
∑
g′ 6=g

Σs,g→g′ = Σt,g − Σs,g→g

χg : fission spectrum of group g

keff : multiplication factor

νΣf,g : production cross section of group g

Σs,g′→g : scattering corss section from group g′ to g

Σt,g : total cross section of group g

φmg : neutron flux of the m-th order moment in group g

Two finite difference methods are derived in the following sections. The first
considers the flux in the center of each subdivision or cell. The second one, uses85

a edge-centered approach defining the unknowns on the boundary. The cell
centered approach have more physical sense than the edge-centered approach,
because it considers the cross sections in the middle of the cell while the edge-
centered approach needs to use an average cross section. However, the authors
find interesting to compare both approaches.90

2.1. Method 1: Cell-centered Finite Difference Method

The coupled SP3 equations discretized using cell-centered finite difference
method are:
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− D̃0
i−1,gΦi−1,g + [D̃0

i−1,g + D̃0
i,g + Σr,i,ghi]Φi,g − D̃0

i,gΦi+1,g =
χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ +

∑
g′ 6=g

Σs,i,g′→ghiφ
0
i,g′ + 2Σr,i,ghiφ

2
i,g, (5)

− D̃2
i−1,gφ

2
i−1,g + [D̃2

i−1,g + D̃2
i,g + Σt,i,ghi]φ

2
i,g − D̃2

i,gφ
2
i+1,g =

2

5
Σr,i,ghiφ

0
i,g −

2

5

χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ −

2

5

∑
g′ 6=g

Σs,i,g′→g(x)hiφ
0
i,g′ , (6)

where:

D̃m
i,g =

2Dm
i,gD

m
i+1,g

Dm
i,ghi+1 +Dm

i+1,ghi
, (7)

D̃m
i−1,g =

2Dm
i−1,gD

m
i,g

Dm
i−1,ghi +Dm

i,ghi−1
, (8)

m =0, 2,

Φi,g =φ0i,g + 2φ2i,g,

D0
i,g =Di,g =

1

3Σt,i,g
,

D2
i,g =

27

35
Di,g.

The derivation of these equations is shown in Appendix A.95

2.2. SP3 boundary conditions applied to the cell-centered Scheme

The SP3 vacuum boundary conditions for these equations are given by ([6],
[3], [4]). The Marshak-like boundary conditions for vacuum can be expressed
as:

D0
i,g
−→n · ∇Φi,g +

1

2
φ0i,g +

5

8
φ2i,g = 0, (9)

D2
i,g
−→n · ∇φ2i,g −

3

40
φ0i,g +

3

8
φ2i,g = 0, (10)

Where:

Φi,g =φ0i,g + 2φ2i,g,

D0
i,g =Di,g =

1

3Σt,i,g
,

D2
i,g =

27

35
Di,g =

9

35Σt,i,g
.
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2. METHODS

Marshak boundary conditions are easy to implement in a finite difference100

edge-centered approach or finite element method where some unknowns are the
points considered at the boundary interface. However, considering the finite dif-
ference cell-centered approach it is necessary to relate the flux in the middle of
the cell close to the boundary surface with the flux considered at the boundary
interface. This is not straightforward task and three different approaches are105

considered in the next section.

The SP3 reflective boundary conditions are more straightforward. These
can be obtained:

∇Φi,g = 0, (11)

∇φ2i,g = 0. (12)

Figure 1: Discretization Scheme

110

2.2.1. First vacuum B.C. approach: φ0x0,g = φ01,g and φ2x0,g = φ21,g

In this case we assume that the flux on the left boundary is the same as the
flux in the middle of the first cell. Then, the eqs.13 and 14 can be introduced into
the balance eqs.A.9 and A.24. This approach is not recommended. Depending
on the problem, the solution using this approach could be more different with115

respect to a finely meshed transport. One simple solution to obtain good results
in these cases with this approach is to use a finer mesh close to the boundary.

J0
x0,g = −1

2
φ01,g −

5

8
φ21,g, (13)

J2
x0,g =

3

40
φ01,g −

3

8
φ21,g. (14)
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2.2.2. Second vacuum B.C. approach

This approach provides better results than the previous one. Here the bound-120

ary conditions are defined in a similar way to the diffusion equations but only
for the first moment φ0x0,g. We can obtain the P1 equation starting from SP3

equations by removing the second SP3 equation for the 2nd moment (eq.2) and
by removing φ2g inside the first SP3 equation for the zero moment (eq.1). We
can do the same with the boundary conditions. So, the balance equation is:125

−Dg∇2φ0g + Σr,gφ
0
g =

χg

Keff

∑
g′

νΣf,g′φ
0
g′ +

∑
g′ 6=g

Σs,g′→gφ
0
g′ , (15)

The left boundary condition equation used in the diffusion equation where
α = 1/2 for the vacuum condition is:

Jx0,g = −αL · φx0,g = −D1
φ1,g − φx0,g

h1/2
, (16)

Jx0,g = −2
(D1,g/h1)(αL/2)

[(D1,g/h1) + (αL/2)]
φ1,g = −D̃0,gφ1,g, (17)

with αL = 1/2 we have the Marshak vacuum boundary condition for P1

(Diffusion) equation:

Jx0,g = −1

2

(D1,g/h1)

[(D1,g/h1) + (1/4)]
φ1,g, (18)

Taking this into account, we should do something similar for the SP3 equa-130

tions, but in this case the solution for the boundary condition is not so straigh-
forward, due to the second moment flux. We can see that in the next equation
which corresponds to the eq.16, but for the first SP3 equation:

J0
x0,g = −αL · φ0x0,g − βL · φ

2,L
0,g = −D1,g

φ01,g + 2φ21,g − φ0x0,g − 2φ2x0,g

h1/2
, (19)

For obtaining a more simple solution we can approximate the SP3 boundary
conditions by adding the term of the eq.18 defined for P1 equation into the SP3135

first moment boundary condition equation .

J0
x0,g = −1

2

(D1,g/h1)

[(D1,g/h1) + (1/4)]
φ01,g −

5

8
φ21,g, (20)

J2
x0,g =

3

40
φ01,g −

3

8
φ21,g. (21)

Although this is not the exact solution, the numerical results are significantly
better than those obtained with the previous simplification.
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2.2.3. Third approach: Exact vacuum B.C. for SP3140

In this section the exact boundary conditions for SP3 using the cell-centered
finite difference are defined. Starting from the eqs.9 and 10 and the Fick’s law,
the left boundary equations are:

J0
x0,g = −1

2
φ0x0,g −

5

8
φ2x0,g, (22)

J2
x0,g =

3

40
φ0x0,g −

3

8
φ2x0,g, (23)

In order to have the same number of unknowns and equations we need to
define eqs.22 and 23 in terms of φ01,g and φ21,g. To that, we define:145

J0
x0,g = −

D0
1,g

h1/2
[Φ1,g − Φx0,g] = −

D0
1,g

h1/2
[(φ01,g + 2φ21,g)− (φ0x0,g + 2φ2x0,g)], (24)

J2
x0,g = −27

35
·
D0

1,g

h1/2
[φ21,g − φ2x0,g], (25)

Eqs. 22 and 23 will now be solved for φ0x0,g and φ2x0,g in terms of J0
x0,g and

J2
x0,g. Multiplying eq.23 by 20/3 :

20

3
J2
x0,g −

1

2
φ0x0,g +

5

2
φ2x0,g = 0,

Adding this to eq.22 gives:

J0
x0,g +

20

3
J2
x0,g +

[
5

8
+

5

2

]
φ2x0,g = 0,

So,

φ2x0,g = − 8

25
J0
x0,g −

32

15
J2
x0,g, (26)

Introducing this result into eq.22, we get150

φ0x0,g = −8

5
J0
x0,g +

8

3
J2
x0,g, (27)

Now, we introduce eqs.26 and 27 into eqs.24 and 25 to get:

J0
x0,g = −

2D0
1,g

ah1

[
φ01,g + 2φ21,g +

8

5
J2
x0,g

]
, (28)

J2
x0,g = −27

35
·

2D0
1,g

bh1

[
φ21,g +

8

25
J0
x0,g

]
, (29)

8
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where:

a =

[
1 +

112

25
·
D0

1,g

h1

]
, b =

[
1 +

27

35
· 32

15
·

2D0
1,g

h1

]
,

Introducing eq.29 into eq.28 we get:

J0
x0,g = −

2D0
1,g

ach1
φ01,g −

4D0
1,g

ach1
(1− 216

175
·
D0

1,g

bh1
)φ21,g, (30)

where:

c =

[
1−

2D0
1,g

ah1

(
1728

4375
·

2D0
1,g

bh1

)]
,

Introducing eq.30 into eq.29 we get:

J2
x0,g = −27

35
·

2D0
1,ge

bh1
φ01,g −

27

35
·

2D0
1,gd

bh1
φ21,g, (31)

where:

d =

[
1− 8

25
·

4D0
1,g

ach1

(
1− 216

175
·
D0

1,g

bh1

)]
, e =

[
− 8

25
·
D0

1,g

ach1

]
.

Eqs.30 and 31 can be introduced into the balance eqs.A.9 and A.24 to apply
vacuum boundary condition.155

2.2.4. Reflective and Zero flux boundary condition for SP3

Reflective and zero flux boundary conditions are more straightforward. To
implement reflective boundary condition just we set:

J0
x0,g = 0, and J2

x0,g = 0,

Zero flux boundary condition means that φ0x0,g = 0 and φ2x0,g = 0 into eqs.24160

and 25. So, just we set:

J0
x0,g = −

D0
1,g

h1/2

(
φ01,g + 2φ21,g

)
, and J2

x0,g = −27

35
·
D0

1,g

h1/2
φ21,g.

9
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2.3. Method 2: Edge-centered Finite Difference Method

The coupled SP3 equations discretized using edge-centered finite difference
method are:

[
D0

g,i+1

hi+1
+
D0

g,i

hi
+ Σr,g,i

]
Φg,i −

D0
g,i+1

hi+1
Φg,i+1 −

D0
g,i

hi
Φg,i−1 − 2Σr,g,iφ

2
g,i =

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i +

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i, (32)

[
D2

g,i+1

hi+1
+
D2

g,i

hi
+ Σt,g,i

]
φ2g,i −

D2
g,i+1

hi+1
φ2g,i+1 −

D2
g,i

hi
φ2g,i−1 −

2

5
Σr,g,iφ

0
g,i =

− 2

5

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i −

2

5

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i. (33)

The derivation of these equations can be found in Appendix B.165

2.3.1. Left vacuum boundary condition (i = 0)

Figure 2: Left boundary conditions edge-centered scheme

Considering the Fick’s Law and −→n = −1 on the left boundary, we can write
eq.9 and 10 as:

J0
g,0 = −1

2
φ0g,0 −

5

8
φ2g,0, (34)

10
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J2
g,0 =

3

40
φ0g,0 −

3

8
φ2g,0, (35)

Introducing eqs.34 and B.8 into the balance equation eq.B.6 we have the170

eq.36 when i = 0 :

[
D0

g,i+1

hi+1
+ Σr,g,i

]
Φg,i +

(
1

2
φ0g,i +

5

8
φ2g,i

)
−
D0

g,i+1

hi+1
Φg,i+1 − 2Σr,g,iφ

2
g,i =

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i +

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i, (36)

And introducing eq.35 into the balance equation for the second moment we
have eq.37 when i = 0 :

[
D2

g,i+1

hi+1
+ Σt,g,i

]
φ2g,i +

(
−3

40
φ0g,i +

3

8
φ2g,i

)
−
D2

g,i+1

hi+1
φ2g,i+1 −

2

5
Σr,g,iφ

0
g,i =

− 2

5

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i −

2

5

∑
g′ 6=g

Σs,g′→g,i,φ
0
g′,i. (37)

2.3.2. Right vacuum boundary condition (i = N)

Using the same procedure than left boundary but with −→n = 1 :

J0
g,N =

1

2
φ0g,N +

5

8
φ2g,N , (38)

J2
g,N = − 3

40
φ0g,N +

3

8
φ2g,N , (39)

Introducing eq.38 into the balance eq.B.6 we have the eq.40 when i = N :175

[
D0

g,i

hi
+ Σr,g,i

]
Φg,i +

(
1

2
φ0g,N +

5

8
φ2g,N

)
−
D0

g,i

hi
Φg,i−1 − 2Σr,g,iφ

2
g,i =

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i +

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i, (40)

And introducing eq.39 into the balance equation for the second moment we
have eq.41 when i = N :

11
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[
D2

g,i

hi
+ Σt,g,i

]
φ2g,i +

(
−3

40
φ0g,N +

3

8
φ2g,N

)
−
D2

g,i

hi
φ2g,i−1 −

2

5
Σr,g,iφ

0
g,i =

− 2

5

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i −

2

5

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i. (41)

To derive the multidimensional formulations one can derive it from the one
dimensional formulations stated in this section. These formulations can be
easily extrapolated to two-dimensional and three-dimensional problems. Multi-180

dimensional formulations have not been presented in this work for brevity. The
numerical results in section 3 include multidimensional results.

The authors want to highlight that the presentation of the discretized vac-
uum boundary conditions have not been presented in other works. Prior to
Brantley the correct expression might not have been known. Given the com-185

plexity of the vacuum boundary conditions it is possible early methods were
using approximate vacuum boundary conditions.

2.4. Krylov method

The power iteration method is commonly used for solving the eigenvalue
problem generated from the different approximations of the neutron transport190

equation. Nevertheless, the dominance ratio that determine the degree of con-
vergence is normally close to 1 in the nuclear field, reducing the convergence
speed of the method. For this reason, the use of Krylov methods suppose an
advantage to solve those problems which have a high dominance ratio, allowing
to achieve the solution faster than the power iteration method as can be seen195

in [7] among others. Furthermore, another important advantage of the Krylov
methods is the possibility of calculating several eigenvalues, not only the fun-
damental mode, but also the subcritical ones. In this regard, the nuclear field
is using more and more this kind of methods, particularly the Krylov-Schur is
one of the most used recently, [8].200

The methods developed in this work use the Krylov-Schur algorithm em-
bedded into the SLEPc library to solve the eigenvalue problem. This is a very
commonly used software library specially intended for solving eigenproblems of
large and sparse matrices [9]. SLEPc needs PETSc to be completely functional
and to be able of calculating the solution of eigenvalue problems. PETSc in-205

cludes matrix operations as well as the solution of linear systems [10]. Several
iterative methods to solve the system of linear equations were tested, but fi-
nally the method implemented was the generalized minimal residual method
(GMRES) using as a preconditioner an incomplete LU factorization.
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3. Numerical Results210

The numerical methods explained in the previous section have been imple-
mented in a FORTRAN code called SHE3NA (simplified Spherical Harmonics
Equations sp3 Neutron Aproximation). This code implements the SP3 equa-
tions explained above, as well as a Diffusion code (SP1). Furthermore, SHE3NA
has been compared with other neutron transport approximations exposed and215

validated in the previous work [11] where SN method was introduced. Different
neutron transport codes are used as a reference to compare the results of the de-
veloped SP3 code. Next sections make use of some standard codes as reference
values, such as the Discrete Ordinates based method code DANTSYS, as well
as FEMFUSSION, a finite element SP3 method developed by A. Vidal-Ferrndiz220

[12]. Another code based on the discrete ordinates method mentioned before
is used as a reference, which was validated in [11]. Furthermore, analytical so-
lutions from [13] are compared with the results calculated by the algorithms
implemented in this work.

This section shows several numerical results for 1D, 2D and 3D benchmark225

problems, some of them described in the previous work [11]. The results show
eigenvalues comparison for the fundamental and subcritical modes between the
considered neutron transport approximations, as well as neutron flux compari-
son.

3.1. Homogeneous slab reactor230

This problem considers a one-group homogeneous slab 2 cm thick with
Σt = 1.0 cm−1, νΣf = 0.25 cm−1 and Σs = 0.9 cm−1. This problem can
be found in [14] solved by P1, P3, P5 and with transport code ONEDANT. The
multiplication factors are shown in tables 1 and 3 for P1, P3, whose values are
analytic solutions [14],and for the FDM SP3 and diffusion code developed. The235

solution for the FDM SP3 and diffusion code is calculated using a mesh of 2048
cells.

Table 1: First 4 eigenvalues - homogeneous slab reactor.(Dif.C is the SP1 code using cell-
centered sheme.) (Dif.E is the SP1 code using edge-centered Scheme.)

Eig. P1 Analytic Sol. FDM Dif.C FDM Dif.E

1st 0.587489 0.587489 0.587489
2nd 0.149135 0.149135 0.149135
3rd 0.058380 0.058380 0.058380
4th 0.029602 0.029602 0.029602

The compared scalar flux can be seen at fig.3. It was compared with a neu-
tron transport code using S16 and with another SP3 code called FEMFFUSION
which uses the finite element method to discretize the spatial variables [12]. The240

flux curves calculated with FDM SP c
3 and FDM SPE

3 are overlapping in fig.3.
It can be seen that the eigenvalues calculated by the diffusion code and the

SP3 code differ 0 pcm with respect to the analytical solutions. Regarding to

13
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Table 2: First 4 eigenvalues - homogeneous slab reactor. (SPC
3 is the SP3 code using cell-

centered scheme.) (SPE
3 is the SP3 code edge-centered scheme.)

Eig. SP3 Analytical Sol. FDM SPC
3 FDM SPE

3 FDM S16

1st 0.652956 0.652956 0.652956 0.659847
2nd 0.207745 0.207745 0.207745 0.225817
3rd 0.096091 0.096092 0.096091 0.119940
4th 0.053122 0.053122 0.053122 0.075487
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Figure 3: Normalized Scalar Flux for Homogeneous 1D reactor

the flux comparison, fig.3 shows that the SP3 approximation is more accurate
than the diffusion solution, and it is not as accurate as the transport solution245

S16 as expected.

3.1.1. Boundary conditions comparison

This section shows the differences between the three vacuum boundary ap-
proaches explained in sections 2.2.1, 2.2.2 and 2.2.3, for the one-dimensional
homogeneous problem.250

As can be seen in table 3, the exact solution is only achieved with the
third vacuum boundary condition approach (BC3). The second approach (BC2)
differs 1 pcm from the exact solution for the fundamental mode, while the first
approach (BC1) differs 10 pcm for the fundamental mode. All the results were
calculated with the same discretization. Better results can be obtained using255

first and second approaches if the number of points of the discretization is
increased.

These results would indicate, that in 1D evaluations of numerical implemen-
tations, it would be difficult to ascertain that the incorrect boundary conditions

14
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Table 3: First 4 eigenvalues - homogeneous slab reactor. (SPC∗
3 is the SP3 code using cell-

centered scheme and BC refers to each boundary condition approach.)

Eig. SP3 Analytical Sol. FDM SPC
3 BC3 FDM SPC

3 BC2 FDM SPC
3 BC1

1st 0.652956 0.652956 0.652890 0.652493
2nd 0.207745 0.207745 0.207702 0.207621
3rd 0.096091 0.096092 0.096074 0.096052
4th 0.053122 0.053122 0.053115 0.053107

are truly incorrect without careful intensive evaluation. The differences ob-260

served in the eigenvalues could easily be assumed to be the result of a spatial
discretization error. This is further observed in fig.4, where again, the solutions
with the inexact boundary conditions are very close to the correct result.

This effect becomes more pronounced in multidimensional problems which
is discussed later in section 3.6.265

Fig.4 shows the normalized scalar flux calculated with the three different
boundary condition approaches. In this case, the difference between the nor-
malized scalar fluxes calculated with the three approaches can be considered
negligible.

3.2. Heterogeneous slab test problem270

This problem is configured by seven slab regions of fuel and reflector [14].
Table 4 shows the cross section of the each material considering one-energy
group. A scheme of the problem is shown in fig.5. Vacuum conditions are
considered for left and right boundaries. The number of mesh cells for each
region are 500. The four largest eigenvalues are shown in table 5. The reference275

values from [14] were compared with the calculated results. One can see that
the values obtained with the developed code SP3 are in agreement with the
reference values P3. The scalar flux is compared in figs.6-9 for the four modes.
The FDM SP3 scalar flux is also compared with S96 and the FEMFFUSION
code. The S96 codes are DANTSYS and the FDM S96 developed by the author280

in [11]. The accuracy of the SP3 equations is better than the diffusion results
and similar to the S96 values.

Table 4: Cross-Sections for heterogeneous slab problem

νΣf (cm−1) Σs(cm
−1) Σt(cm

−1)

Fuel (U-235) 0.178 0.334 0.416667
Reflector 0.0 0.334 0.370370
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Figure 4: Normalized Scalar Flux for Homogeneous 1D reactor and detail of the boundary

Figure 5: Scheme ot the 7 region problem

Table 5: Heterogeneous slab problem eigenvalues (SPC
3 is the SP3 code using cell-centered

scheme, SPE
3 is the SP3 code using edge-centered scheme.)

Eig. P3 PARTISN S96 FDM S96 FDM SPC
3 FDM SPE

3 FDM Diff.C

1st 1.148740 1.162413 1.162228 1.148745 1.148744 1.113872
2nd 0.735037 0.752258 0.735037 0.735037 0.658651
3rd 0.527647 0.547565 0.527647 0.527646 0.423945
4th - 0.210955 0.165351 0.165350 0.109256
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3.3. MOX benchmark problem
The MOX benchmark problem corresponds to a modification of the MOX

problem, defined in [13] which was adapted from [3]. Two types of fuel (MOX/UO2)285

configuration of 7×7 fuel assemblies composes the complete core as seen in fig.10.
There is a reflector material surrounding the core and each assembly measures
21.42 cm ×21.42 cm. Three different materials with two-energy cross section de-
scribe the problem, as shown in table 6. Vacuum is considered for all boundary
conditions.290

Figure 10: MOX benchmark problem geometry

Four dominant eigenvalues were compared taking as reference the eigenvalues
calculated by Spherical Harmonics Nodal Collocation (SHNC) method in [13].
The comparison is shown in table 7. Both, SP3 and diffusion calculations were
generated with a discretization of 50 cells in x and y axis for each assembly
as well as the calculation by using S8 method. In figs.11 and 12, the neutron295

scalar flux is shown for the first, second, third and fourth modes. In this case,
it can be appreciated that eigenvalues calculated with the SP3 using the cell-
centered scheme shows better accuracy than edge-centered one and diffusion
approximation. However, analogous improvement cannot be seen in the flux
distribution. This could be because the problem is highly diffusive. Moreover,300

the authors want to point out that cross-sections of both fuels are very similar.
With regards to the eigenflux comparison between SP3 and S8, it is important
to highlight that the eigenfluxes corresponding to 2nd and 3rd mode, which
are degenerate due to the fact that they have the same eigenvalue, do not have
exactly the same distribution. This is a normal condition considering symmetric305

problems since both eigenfluxes are a linear combination of the solution, and
any linear combination could be a solution for this kind of problems although,
physically it does not make sense. However, it can be seen that regarding the
4th eigenflux, the shape is similar.
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Table 6: Cross-sections of the MOX benchmark problem. Thermal group is g=2.

Material Group Σt νΣf Σs,1→g Σs,2→g χg

MOX fuel 1 0.550 0.0075 0.520 - 1.000
2 1.060 0.450 0.015 0.760 0.000

UO2 fuel 1 0.570 0.005 0.540 - 1.000
2 1.100 0.125 0.020 1.000 0.000

Reflector 1 0.611 0.000 0.560 - 0.000
2 2.340 0.000 0.050 2.300 0.000

Table 7: First 4 modes - MOX problem. *Spherical Harmonics Nodal Collocation (SHNC).

Eigenv. SHNC* FDM SPC
3 FDM Dif.C FDM SPE

3 FDM Dif.E FDM S8

keff 0.9925 0.992505 0.992876 0.992819 0.993133 0.992608
2nd eigen. 0.9665 0.966475 0.966665 0.966721 0.966868 0.966544
3rd eigen. 0.9665 0.966475 0.966665 0.966721 0.966868 0.966544
4th eigen. 0.9399 0.939879 0.939807 0.940019 0.939926 0.939900

Figure 11: MOX: First energy group scalar flux distribution for 1st eigenvalue

3.4. BWR cell benchmark problem310

The following case corresponds to an homogeneous BWR cell [15, 16]. The
consideration of the upscattering in this case is one of the reasons why it was se-
lected for this work. The problem is composed of water moderator surrounding
a central homogenized fuel region as it can be seen in fig.13. Two materials form
the problem and their cross-sections with two-energy groups are presented in315

table 8. Reflective boundary conditions are considered. The reference multipli-
cation factor calculated with DANTSYS code (which uses the discrete ordinates
method) is 1.212945. FDM SN , SP3 and diffusion results were calculated using
a discretization of 30x30 mesh. Table 9 shows the results for the multiplication
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Figure 12: MOX: Normalized Scalar flux distribution for 2nd, 3rd and 4th modes, FDM SPC
3

on the left, FDM S8 on the right.

factor keff . A flux comparison between S8, SP3 and SP1(Diffusion) can be320

seen in fig.14. Fig.15 shows the first group flux neutron distribution for the
four dominant modes. It is easy to see that the cell-centered scheme SP3 shows
better results for the eigenvalue and for the flux distribution than diffusion or
edge-centered SP3. Another interesting observation is that the accuracy of the
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SP3 solution seems to be approximately the same as the S4 method. Both dif-325

fer considerably with respect to the S8 solution, but it is helpful to understand
intuitively that SP3 solutions have approximately the same accuracy as S4 so-
lutions for at least some problems which are not highly diffusive. An important
conclusion extracted from this sample is that it suggests that the shape of the
lambda modes probably are insensitive to the angular approximation.330

Figure 13: BWR cell problem geometry.

Figure 14: BWR cell test: scalar flux distribution for 1st eigenvalue, 1st energy group
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Figure 15: Four dominant eigenfunctions normalized first group flux distribution for the BWR
cell benchmark problem. FDM SP3 on the left, FDM S8 on the right.
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Table 8: BWR cell cross-sections. Thermal group is g=2.

Material Group Σt νΣf Σs,1→g Σs,2→g χg

Fuel 1 0.196647 0.006203 0.178000 0.001089 1.000
2 0.596159 0.1101 0.010020 0.525500 0.000

Moderator 1 0.222064 0.000 0.199500 0.001558 0.000
2 0.887874 0.000 0.021880 0.878300 0.000

Table 9: BWR cell benchmark Keff results.

Order Keff pcm (∆Keff )

DANTSYS S8 1.212945 -
FDM Sn S8 1.212944 0

FDM SPC
3 - 1.213237 24

FDM Dif.C - 1.220100 589
FDM SPE

3 - 1.214459 124
FDM Dif.E - 1.220886 654

3.5. Two-dimensional C5G7 test problem

PWR C5G7 MOX fuel assembly benchmark corresponds to a quarter sym-
metry core problem [17]. It is composed of water reflector region and 4 fuel
elements surrounded by water, as seen in fig.16. The boundary conditions are335

vacuum and reflective, also shown in fig16. A 17 × 17 square pitch array of
cylindrical fuel pins forms each fuel assembly. Since, in this work, the devel-
oped codes FDM SP3 and FDM SN are limited to the use of Cartesian geometry,
the cylindrical pin is approximated by a square with the same area as the cor-
responding cylinder. Fig.17 corresponds to this approximation. Four different340

meshes are considered for the core, they can be seen in fig.18. The 7 energy
groups cross-sections can be found in the benchmark [17] for the seven cor-
responding materials. To compose the reactor are considered three MOX pin
fuels with different enrichments, UO2 fuels, guide tubes, fission chambers and
moderator. Table 12 summarize the comparison of results obtained by FDM345

Diffusion and FDM SP3 with FEM SP3 [18], FDM S4 [11] and those obtained
by MCNP, which provides the reference solution. Furthermore, keff values have
been compared in the table 10 for all the meshes. Some important aspects can
be extracted from the results: keff values calculated with edge-centered scheme
shows better accuracy than those obtained by cell-centered scheme, although the350

maximum percentage error of the power calculated using cell-centered scheme
shows lower values than those obtained by the edge-centered approach. Another
observation here is that for coarse spatial mesh, the edge-centered scheme has
better error cancellation than the cell-centered scheme. An analysis of the mesh
influence is shown in tables 10 and 11. The increase of the number of cells355

is related with a high accuracy regarding to keff calculated with cell-centered
scheme but no necessarily regarding to the power error. Fig. 19 shows the neu-
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tron flux distribution of the first eigenvalue for energy groups 1 and 7. Power
distribution of C5G7 problem obtained by FDM SP3 is represented in fig.20.
Fig.21 shows eigenfluxes comparison between FDM SP3 and FDM S4. It can360

be appreciated that FDM S4 eigenfluxes show a little ray effect compared with
FDM SP3.

Table 10: keff and Power comparison using cell-centered Scheme.

Discret. N of el. keff pcm Max.Perc.Error AVG RMS MRE

MCNP - - 1.186550 - - - - -
SP3 1x1 17424 1.180898 476 7.380 2.665 2.923 2.512
Dif. 1x1 17424 1.182095 375 6.480 2.326 2.669 2.105
SP3 4x4 191844 1.182067 377 5.666 2.463 2.654 2.331
Dif. 4x4 191844 1.183066 294 7.385 2.223 2.807 2.015
SP3 6x6 412164 1.182089 375 5.699 2.506 2.691 2.380
Dif. 6x6 412164 1.183032 296 7.748 2.258 2.867 2.050
SP3 8x8 715716 1.183621 247 5.846 2.414 2.642 2.297
Dif. 8x8 715716 1.183935 220 8.280 2.298 2.957 2.080

Table 11: keff and Power comparison using edge-centered scheme.

Discret. N of el. keff pcm Max.Perc.Error AVG RMS MRE

MCNP - - 1.186550 - - - - -
SP3 1x1 17689 1.185380 99 6.537 2.116 2.652 1.983
Dif. 1x1 17689 1.184963 134 11.368 2.560 3.397 2.204
SP3 4x4 192721 1.184884 140 5.685 2.190 2.533 2.217
Dif. 4x4 192721 1.184574 167 10.199 2.356 3.129 2.092
SP3 6x6 413449 1.184468 175 5.655 2.246 2.544 2.193
Dif. 6x6 413449 1.184347 186 9.923 2.345 3.094 2.105
SP3 8x8 717409 1.183928 221 5.746 2.396 2.644 2.334
Dif. 8x8 717409 1.184132 204 9.683 2.381 3.097 2.158

25



3. NUMERICAL RESULTS

Figure 16: Assembly.

Figure 17: Pin cell approximation.
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Figure 18: Detail of 1x1, 4x4, 6x6 and 8x8 meshes.

Figure 19: 1st eigenvalue FDM SP3 flux distibution for 1 and 7 energy groups.
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Figure 20: Power Distribution of C5G7 problem.
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Figure 21: Shape and order of the four dominant eigenvectors for the first energy group are
independent of the angular approximation. FDM SP3 on the left, FDM S4 on the right
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Table 12: C5G7 Test problem results. *Results from [18].
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3.6. 3D Homogeneous Reactor

The 3D homogenized problem consist of a 100 cm x 60 cm x 180 cm in x,y,
and z axis parallelepiped. Only one material is considered for this problem with365

the 2 energy-group cross sections presented in table 13, without up-scattering
and with fission neutrons produced in the first energy group. Two different
meshes are used in the simulation. The first mesh (mesh 1) is 24 x 16 x 38, the
total number of elements is 14592. The second one (mesh 2) is 60 x 36 x 102, the
total number of elements is 220320. Both meshes are shonw in fig.22. Vacuum370

boundary conditions are applied. The reference is PARTISN using a S16 order
for the transport equations and using mesh 2. The multiplication factors are
compared in table 14 and results obtained with FDM diffusion method are also
added. Fig.23 shows the flux distribution of the first group. It is easy to see
that values obtained by using mesh 2 and SP3 solver, shows more accurate keff375

values taking as a reference the S16 solution.

Table 13: Cross-sections of the 3D homogeneous problem. Thermal energy group is g=2.

Group Σt νΣf Σs,1→g Σs,2→g χg

1 5.2096647 · 10−1 7.72686955 · 10−3 4.95171815 · 10−1 - 1.0
2 1.31245720 1.55083969 · 10−1 1.60585809 · 10−2 1.20309806 0.0

Figure 22: Homogeneous reactor meshes.
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Figure 23: Homogeneous reactor flux distribution for eigenvalue 1.

Table 14: Multiplication factors for Homogeneous 3D problem.

Order Keff pcm (∆Keff )

Reference PARTISN mesh2 S16 1.074001 -
FDM SPC

3 mesh1 - 1.074696 64
FDM SPC

3 mesh2 - 1.074141 13
FDM Dif.C mesh 1 - 1.073891 10
FDM Dif.C mesh 2 - 1.073373 58
FDM SPE

3 mesh1 - 1.075042 96
FDM SPE

3 mesh2 - 1.074001 0
FDM Dif.E mesh 1 - 1.074592 55
FDM Dif.E mesh 2 - 1.073342 61

3.6.1. Boundary conditions comparison

This section shows the differences between the three vacuum boundary ap-
proaches explained in section 2.2.1, 2.2.2 and 2.2.3, for the three-dimensional
homogeneous problem.380

As can be seen in table 15, the exact solution is only achieved with the
third vacuum boundary condition approach (BC3). The second approach (BC2)
differs from exact solution only in few decimals, while the first approach (BC1)
differs considerably. All the results were calculated with the same discretization.
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Table 15: First 4 eigenvalues for a 3D homogeneous problem SP3, boundary condition ap-
proaches comparison. (SPC

3 is the SP3 code using cell-centered scheme and BC refers to each
boundary condition approach.)

Eig. FDM SPC
3 BC3 FDM SPC

3 BC2 FDM SPC
3 BC1

1st 1.074696 1.074525 1.067359
2nd 1.049500 1.050803 1.041714
3rd 1.010194 1.013610 1.001778
4th 1.006673 1.006186 0.996885

Figure 24: Normalized Scalar Flux for Homogeneous 3D reactor for a central line in x axis.

Figs.24, 25 and 26 show the normalized scalar flux calculated with the three385

different boundary condition approaches. In this case, the difference between the
normalized scalar fluxes calculated with the three approaches is not negligible.
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Figure 25: Normalized Scalar Flux for Homogeneous 3D reactor for a central line in y axis.
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Figure 26: Normalized Scalar Flux for Homogeneous 3D reactor for a central line in z axis.
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3.7. FBR Takeda Benchmark

The problem considered in this section is a small core model of a Fast Breeder
Reactor (FBR). The model is generated with 4 energy groups, and the cross390

sections are given in [19]. The dimensions of the problem are 140 cm x 140 cm x
150 cm. The problem is composed of a fuel region, radial and axial blankets and
control rod region. In [19] the problem is generated with symmetry conditions,
however in this work the complete problem is considered like in [20]. Vacuum
boundary conditions are applied. Fig.27 shows the mesh used (144 x 112 x395

120). Two cases of the problem are considered. Case 1: control rods out.
Case2: control rods half-inserted. A comparison of the multiplication factors,
where the reference value was obtained with Monte Carlo method, is shown in
table 16. FDM Diffusion result is also added in the comparison table. Figs.28
and 29 show the fluxes distribution of the first energy group for cases 1 and 2.400

Table 16 shows better results for the SP3 cell-centered scheme compared with
edge-centered scheme and Diffusion. Figs.30 and 31 show the fluxes distribution
of the fourth energy group for cases 1 and 2.

Table 16: Multiplication factors for FBR problem.

Keff CASE 1 Keff CASE 2

Reference Monte-Carlo 0.973620 0.959850
FDM SPC

3 0.964604 0.951345
FDM Dif.C 0.959346 0.945454
FDM SPE

3 0.961727 0.947631
FDM Dif.E 0.956340 0.941707
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Figure 27: FBR reactor discretization (interior visualization of the reactor upper part).

Figure 28: Case 1: FBR reactor flux distribution for group 1.
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Figure 29: Case 2: FBR reactor flux distribution for group 1.

Figure 30: Case 1: FBR reactor flux distribution for group 4.

Figure 31: Case 2: FBR reactor flux distribution for group 4.
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4. Conclusions

This work presents a method for solving the multidimensional steady-state405

multi-group Simplified Spherical Harmonics Equations using Cartesian geome-
try. Spatial discretization were performed by means of two versions of the Finite
Difference Method. This method is capable of calculating multiple eigenvalues
and eigenvectors with a simple formulation. The algorithms were programmed
in a FORTRAN code called SHE3NA. This program has been validated with410

multiple one-dimensional, two-dimensional and three-dimensional benchmarks.
The methods developed in this work shows that SHE3NA results have a good
agreement with reference values.

A complete review of the SP3 has been explained as well as a boundary con-
dition study for both finite difference approximations used to spatial discretiza-415

tion. We also present the correct derivation of the finite difference vacuum
boundary condition for SP3, that the authors could not find elsewhere in the
literature. We also show, that one may reasonably derive approximate boundary
conditions that lead to solutions very close to those with correct ones. For these
cases it may be difficult to identify the source of the error as it is quite small420

and easily attributable to incorrect sources (such as spatial discretization errors
from a mesh that is not fully refined). Therefore, this work is valuable in pre-
senting the correct finite difference vacuum boundary conditions and evaluation
of some test problems to verify correct vacuum boundary conditions.

It can be appreciated with the results shown in previous sections that there425

exist important neutron flux differences between the three methods implemented:
Diffusion, SP3 and SN . The work shows several numerical results, giving ex-
amples of problems in which Diffusion and SP3 present good results, such us
MOX or C5G7 problems, although SN method is always more accurate. The
results suggest that in small problems where the heterogeneities and the neu-430

tronic gradient are high, the SP3 method gives similar results to discrete or-
dinates method and diffusion approximation is far from the neutron transport
solution. The SP3 method have similar accuracy to the S4 method, and maybe
it would mean that SP5 could be approximately the same accuracy as S8. So,
it is important to know what method is suitable depending on the calculation435

and accuracy desired.
Another important conclusion is that the results suggest that the shape

and order of the dominant eigenvectors are not affected by the chosen angular
approximation.

Future works will be focused on the analysis of the SP3 solver comparing440

different eigenvalue problem solvers and on the development of solutions for
nonmultiplying systems which consider different type of particles (photons) in
fixed source problems, which are could be useful in shielding and radiation
protection.
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Appendix A: Cell-Centered Finite Difference Method445

Using the Fick’s Law the current can be defined as:

J0
g (x) = −Dg(x)0

∂Φg(x)

∂x
, Dg(x)0 = Dg(x). (A.1)

So, eq.3 can be reformulated as:

∂

∂x
J0
g (x) + Σr,g(x)Φg(x) =

χg(x)

Keff

∑
g′

νΣf,g′(x)φ0g′(x) +
∑
g′ 6=g

Σs,g′→g(x)φ0g′(x) + 2Σr,g(x)φ2g(x), (A.2)

Considering the cell-centered finite difference approach:

Figure A.1: Cell-centered Finite Difference

J0
g,i − J0

g,i−1 +

∫ xi

xi−1

Σr,g(x)Φg(x)dx =
χg(x)

Keff

∫ xi

xi−1

∑
g′

νΣf,g′(x)φ0g′(x)dx+

∫ xi

xi−1

∑
g′ 6=g

Σs,g′→g(x)φ0g′(x)dx+ 2

∫ xi

xi−1

Σr,g(x)φ2g(x)dx, (A.3)
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where:

∫ xi

xi−1

Σr,g(x)Φg(x)dx = Σr,g(x)

∫ xi

xi−1

Φg(x)dx = Σr,i,ghiΦi,g, (A.4)

∫ xi

xi−1

∑
g′

νΣf,g′(x)φ0g′(x)dx =
∑
g′

νΣf,i,g′hiφ
0
i,g′ , (A.5)

∫ xi

xi−1

∑
g′ 6=g

Σs,g′→g(x)φ0g′(x)dx =
∑
g′ 6=g

Σs,i,g′→ghiφ
0
i,g′ , (A.6)

∫ xi

xi−1

Σr,g(x)φ2g(x)dx = Σr,i,ghiφ
2
i,g, (A.7)

Φi,g =
1

hi

∫ xi

xi−1

Φg(x)dx, (A.8)

450

This allows eq.A.2 to be written in the form:

J0
i,g − J0

i−1,g + Σr,i,ghiΦi,g =
χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ +

∑
g′ 6=g

Σs,i,g′→ghiφ
0
i,g′ + 2Σr,i,ghiφ

2
i,g, (A.9)

Taking into account the present cell-centered finite difference scheme we can
define:

J0,R
i,g (x) = −D0

i,g(x)
∂Φg(x)

∂x
, (A.10)

J0,R
i,g = −D0

i,g

ΦR
i,g − Φi,g

hi/2
, (A.11)

J0,L
i+1,g = −D0

i+1,g

Φi+1,g − ΦL
i+1,g

hi+1/2
, (A.12)

with the interface conditions:

J0,R
i = J0,L

i+1 = J0
i , (A.13)

ΦR
i = ΦL

i+1 = Φs. (A.14)

Then, from eq.A.13 :

−D0
i,g

Φs,g − Φi,g

hi/2
= −D0

i+1,g

Φi+1,g − Φs,g

hi+1/2
, (A.15)
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Φs,g =
D0

i,g/hi

D0
i,g/hi +D0

i+1,g/hi+1
Φi,g +

D0
i+1,g/hi+1

D0
i,g/hi +D0

i+1,g/hi+1
Φi+1,g =

ω0
i,gΦi,g + (1− ω0

i,g)Φi+1,g. (A.16)

Then, substituting eq.A.16 into eq.A.11 the currents of the eq.A.9 can be
expressed as:

J0
i,g = J0,R

i,g = −D̃0
i,g(Φi+1,g − Φi,g), (A.17)

J0
i−1,g = J0,L

i,g = −D̃0
i−1,g(Φi,g − Φi−1,g), (A.18)

where:

D̃0
i,g =

2D0
i,gD

0
i+1,g

D0
i,ghi+1 +D0

i+1,ghi
, (A.19)

D̃0
i−1,g =

2D0
i−1,gD

0
i,g

D0
i−1,ghi +D0

i,ghi−1
. (A.20)

Finally, eq.A.9 is re-written as a discretized mesh balance equation as follows:455

− D̃0
i−1,gΦi−1,g + [D̃0

i−1,g + D̃0
i,g + Σr,i,ghi]Φi,g − D̃0

i,gΦi+1,g =
χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ +

∑
g′ 6=g

Σs,i,g′→ghiφ
0
i,g′ + 2Σr,i,ghiφ

2
i,g. (A.21)

The same procedure can be followed for the eq.4. Considering the Fick’s
Law:

J2
g (x) = −D2

g(x)
∂φ2g(x)

∂x
, D2

g(x) =
27

35
Dg(x). (A.22)

Eq.4 takes the form:

∂

∂x
J2
g (x) + Σt,g(x)φ2g(x) =

2

5
Σr,g(x)φ0g(x)− 2

5

χg(x)

Keff

∑
g′

νΣf,g′(x)φ0g′(x)− 2

5

∑
g′ 6=g

Σs,g′→g(x)φ0g′(x),

(A.23)

using cell-centered finite difference approximation:

J2
i,g − J2

i−1,g + Σt,i,ghiφ
2
i,g =

2

5
Σr,i,ghiφ

0
i,g −

2

5

χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ −

2

5

∑
g′ 6=g

Σs,i,g′→g(x)hiφ
0
i,g′ . (A.24)
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Then, the currents of the eq.A.24 can be expressed as:

J2
i,g = J2,R

i,g = −D̃2
i,g(φ2i+1,g − φ2i,g), (A.25)

J2
i−1,g = J2,L

i,g = −D̃2
i−1,g(φ2i,g − φ2i−1,g), (A.26)

where:

D̃2
i,g =

2D2
i,gD

2
i+1,g

D2
i,ghi+1 +D2

i+1,ghi
, (A.27)

D̃2
i−1,g =

2D2
i−1,gD

2
i,g

D2
i−1,ghi +D2

i,ghi−1
. (A.28)

Finally, eq.A.24 is re-written as a discretized mesh balance equation as fol-
lows:460

− D̃2
i−1,gφ

2
i−1,g + [D̃2

i−1,g + D̃2
i,g + Σt,i,ghi]φ

2
i,g − D̃2

i,gφ
2
i+1,g =

2

5
Σr,i,ghiφ

0
i,g −

2

5

χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ −

2

5

∑
g′ 6=g

Σs,i,g′→g(x)hiφ
0
i,g′ . (A.29)

The coupled SP3 equations discretized using cell-centered Finite Difference
method are:

− D̃0
i−1,gΦi−1,g + [D̃0

i−1,g + D̃0
i,g + Σr,i,ghi]Φi,g − D̃0

i,gΦi+1,g =
χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ +

∑
g′ 6=g

Σs,i,g′→ghiφ
0
i,g′ + 2Σr,i,ghiφ

2
i,g, (A.30)

− D̃2
i−1,gφ

2
i−1,g + [D̃2

i−1,g + D̃2
i,g + Σt,i,ghi]φ

2
i,g − D̃2

i,gφ
2
i+1,g =

2

5
Σr,i,ghiφ

0
i,g −

2

5

χi,g

Keff

∑
g′

νΣf,i,g′hiφ
0
i,g′ −

2

5

∑
g′ 6=g

Σs,i,g′→g(x)hiφ
0
i,g′ , (A.31)

where:

D̃m
i,g =

2Dm
i,gD

m
i+1,g

Dm
i,ghi+1 +Dm

i+1,ghi
, (A.32)

D̃m
i−1,g =

2Dm
i−1,gD

m
i,g

Dm
i−1,ghi +Dm

i,ghi−1
, (A.33)

m =0, 2,

Φi,g =φ0i,g + 2φ2i,g,

D0
i,g =Di,g =

1

3Σt,i,g
,

D2
i,g =

27

35
Di,g.
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Appendix B: Edge-Centered Finite Difference Method

Starting from the eq.A.2:465

∂

∂x
J0
g (x) + Σr,g(x)Φg(x) =

χg(x)

Keff

∑
g′

νΣf,g′(x)φ0g′(x) +
∑
g′ 6=g

Σs,g′→g(x)φ0g′(x) + 2Σr,g(x)φ2g(x),

and using finite difference edge-centered scheme approximation according to
fig.B.1:

Figure B.1: Finite difference edge-centered scheme

J0,R
g,i −J

0,L
g,i +

∫ xi+hi+1/2

xi−1+hi/2

Σr,g(x)Φg(x)dx =
χg(x)

Keff

∫ xi+hi+1/2

xi−1+hi/2

∑
g′

νΣf,g′(x)φ0g′(x)dx+

∫ xi+hi+1/2

xi−1+hi/2

∑
g′ 6=g

Σs,g′→g(x)φ0g′(x)dx+ 2

∫ xi+hi+1/2

xi−1+hi/2

Σr,g(x)φ2g(x)dx, (B.1)

∫ xi+hi+1/2

xi−1+hi/2

Σr,g(x)Φg(x)dx ≈ Φg(xi)

∫ xi+hi+1/2

xi−1+hi/2

Σr,g(x)dx =
1

2
(hiΣr,g,i+hi+1Σr,g,i+1)Φg,i

= Σr,g,iΦg,i, (B.2)
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∫ xi+hi+1/2

xi−1+hi/2

∑
g′

νΣf,g′(x)φ0g′(x)dx ≈
∑
g′

1

2
(hiνΣf,i,g′ + hi+1νΣf,i+1,g′)φ

0
i,g′

=
∑
g′

νΣf,g,iφ
0
i,g′ , (B.3)

∫ xi+hi+1/2

xi−1+hi/2

∑
g′ 6=g

Σs,g′→g(x)φ0g′(x)dx ≈
∑
g′ 6=g

1

2
(hiΣs,g′→g,i+hi+1Σs,g′→g,i+1)φ0g′,i

=
∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i, (B.4)

∫ xi+hi+1/2

xi−1+hi/2

Σr,g(x)φ2g(x)dx ≈ 1

2
(hiΣr,i,g + hi+1Σr,i+1,g)φ2i,g = Σr,g,iφ

2
g,i.

(B.5)

Eq.A.2 is transformed into eq.B.6

J0,R
g,i − J

0,L
g,i + Σr,g,iΦg,i =

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i +

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i + 2Σr,g,iφ

2
g,i, (B.6)

J0,R
g,i (x) = −D0

g,i(x)
∂Φg(x)

∂x
, (B.7)

J0,R
g,i = −D0

g,i+1

Φg,i+1 − Φg,i

hi+1/2
, (B.8)

J0,L
g,i = −D0

g,i

Φg,i − Φg,i−1

hi/2
. (B.9)

Finally, eq.B.6 is re-written as a discretized mesh balance equation as follows:

[
D0

g,i+1

hi+1
+
D0

g,i

hi
+ Σr,g,i

]
Φg,i −

D0
g,i+1

hi+1
Φg,i+1 −

D0
g,i

hi
Φg,i−1 − 2Σr,g,iφ

2
g,i =

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i +

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i, (B.10)

Using the same procedure eq.A.23 can be expressed in a discretized way as:470
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[
D2

g,i+1

hi+1
+
D2

g,i

hi
+ Σt,g,i

]
φ2g,i −

D2
g,i+1

hi+1
φ2g,i+1 −

D2
g,i

hi
φ2g,i−1 −

2

5
Σr,g,iφ

0
g,i =

− 2

5

χg,i

Keff

∑
g′

νΣf,g′,iφ
0
g′,i −

2

5

∑
g′ 6=g

Σs,g′→g,iφ
0
g′,i. (B.11)

Figure B.2: Edge-centered Scheme
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[7] A. Vidal-Ferràndiz, S. González-Pintor, D. Ginestar, A. Carreño, G. Verdú,
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λ modes of the multi-group neutron transport equation using the discrete
ordinates and finite difference method, Annals of Nuclear Energy 137 (2020)
107077.
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collocation approximation for the multidimensional pl equations to the 3d540

takeda benchmark problems, Annals of Nuclear Energy 40 (1) (2012) 1–13.

47

https://doi.org/10.1080/00207160.2019.1602768
https://doi.org/10.1080/00207160.2019.1602768
https://doi.org/10.1080/00207160.2019.1602768
http://arxiv.org/abs/https://doi.org/10.1080/00207160.2019.1602768
http://arxiv.org/abs/https://doi.org/10.1080/00207160.2019.1602768
http://arxiv.org/abs/https://doi.org/10.1080/00207160.2019.1602768
http://dx.doi.org/10.1080/00207160.2019.1602768
https://doi.org/10.1080/00207160.2019.1602768

