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Universitat de València
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1 Introduction and statements of results

Throughout the paper, the word group means finite group.
A celebrated theorem of Frobenius ([9, Satz IV.5.8]) asserts that if p is a

prime and G is a group such that NG(H) is p-nilpotent for every p-subgroup
H of G, then G is p-nilpotent.

Our first main result can be considered as an extension of Frobenius’
theorem in groups with modular Sylow p-subgroups.

Theorem 1. Let p be a prime and let G be a group with a modular Sylow
p-subgroup P . Then G is p-nilpotent if and only if NG(P ) is p-nilpotent.

This result turns out to be useful to study the classes of PST -groups and
PT -groups.

Recall that a subgroup H of a group G is said to be S-permutable (or
S-quasinormal, or π-quasinormal) in G if HP = PH for all Sylow subgroups
P of G. It is clear that S-permutability is weaker than permutability and
normality. According to a theorem of Kegel [10, Satz 1], every S-permutable
subgroup is subnormal. S-permutability, like normality and permutability, is
not a transitive relation.

We say that a group G is a PST -group if S-permutability is transitive in
G, that is, if A is an S-permutable subgroup of B and B is an S-permutable
subgroup of G, then A is S-permutable in G. Applying Kegel’s theorem,
PST -groups are exactly the groups in which every subnormal subgroup is
S-permutable. This class contains the class of all groups in which normality
is transitive (T -groups) and the class of all groups in which permutability
is transitive (PT -groups). The last two classes have been widely studied
([1, 4, 6, 7, 10, 11, 15]).

The structure of soluble PST -groups was obtained by Agrawal in [1]. It
is proved there that a group G is a soluble PST -group if and only if G has
an abelian normal Hall subgroup of odd order N such that G/N is nilpotent
and the elements of G induce power automorphisms in N . In that result, if
we force G/N to be a Dedekind group, we find Gaschütz’s characterisation
of soluble T -groups ([7]), and if we impose that G/N is a nilpotent modular
group, then we obtain Zacher’s characterisation of soluble PT -groups ([15]).

The above results show that, in the soluble universe, the difference between
these three classes is simply the Sylow structure. Our second result supports
that claim and provides a unified viewpoint for the classes of PST , PT and
T -groups in the general finite case.

Theorem 2. Let G be a group.
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1. Suppose that p is a prime number and that H is an S-permutable p-
subgroup of G. If the Sylow p-subgroups of G are modular (respectively,
Dedekind), then H is permutable (respectively, normal) in G.

2. Assume that H is an S-permutable subgroup of G. If the Sylow sub-
groups of G are modular (respectively, Dedekind), then H is permutable
(respectively, normal) in G.

Taking this result into account, it seems natural to look for characterisa-
tions of the above classes in terms of the Sylow structure. This was done by
Robinson ([11]) for the class of T -groups and by Beidleman, Brewster and
Robinson ([4]) for the class of PT -groups.

One of the purposes of this paper is to provide necessary and sufficient
conditions on the Sylow structure for a group to be a soluble PST -group.

As in the PT and T -cases, the procedure of defining local versions in
order to simplify the study of the global properties has revealed itself as
considerably useful.

Since our approach depends heavily on a previous analysis of the classes
of PT -groups and T -groups, the following definition needs to be stated.

Definition 1. Let G be a group and p a prime. We say that G:

1. Enjoys property Cp (see [11]) if each subgroup of a Sylow p-subgroup
P of G is normal in the normaliser NG(P ).

2. Satisfies property Xp (as in [4]) if each subgroup of a Sylow p-subgroup
P of G is permutable in the normaliser NG(P ).

Robinson ([11]) proved that a group G is a soluble T -group if and only if
G satisfies property Cp for all primes p and, thirty-one years later, Beidleman,
Brewster and Robinson proved that G is a soluble PT -group if and only if
G satisfies property Xp for all primes p.

These results would follow easily if one could prove that Cp and Xp are
subgroup-closed. The subgroup-closed character of Cp follows from the abnor-
mality of the Sylow normalisers. Nevertheless, in the Beidleman, Brewster
and Robinson approach, the subgroup-closed character of Xp follows after an
intensive study of the property Xp and its consequences for the group struc-
ture (see [4, Corollary 3]). In the following, we show that the subgroup-closed
character of the property Xp follows as a natural consequence of Theorem 1
and a new property called Yp, which can be considered as the “PST -version”
of the properties Cp and Xp.

Definition 2. Let p be a prime number. A group G is said to be a Yp-group
when for all p-subgroups H and S of G such that H ≤ S, H is S-permutable
in NG(S).
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The above property can be compared to property Sp introduced by Beidle-
man and Heineken in [5].

Theorem 3. A group G satisfies Xp (respectively, Cp) if and only if G satis-
fies Yp and the Sylow p-subgroups of G are modular (respectively, Dedekind).

Since Yp is subgroup-closed, this result has the virtue of showing that the
subgroup-closed character of Xp depends exclusively on the modularity of the
Sylow p-subgroups. It also shows that, in order to get a global characterisa-
tion of the soluble PST -groups, it is necessary to impose the subgroup-closed
character in the definition Yp, as in the PST -case there are no restrictions
on the Sylow p-subgroups.

Assume that G is a solubpe PST -group. If H and S are p-subgroups of
G such that H ≤ S, then H is subnormal in NG(S). Now, by Agrawal’s
Theorem, NG(S) is a PST -group. Therefore H is S-permutable in NG(S).
Consequently every soluble PST -group has property Yp. Our next result
confirms that the converse is also true.

Theorem 4. A group G is a soluble PST -group if and only if G satisfies Yp

for all primes p.

Note that Theorem A of [4] is a consequence of Theorems 3 and 4.
One of the main results of [4] is that a group G satisfies Xp if and only

if G has modular Sylow p-subgroups and either G is p-nilpotent or a Sylow
p-subgroup P of G is abelian and G satisfies Cp.

This result is a consequence of Theorem 3 and the following:

Theorem 5. A group G is a Yp-group if and only if G is either p-nilpotent,
or G has abelian Sylow p-subgroups and G satisfies Cp.

Theorem C of [4] follows from Theorem 3 and

Corollary 1. If p is the smallest prime divisor of the order of G, then G is
a Yp-group if and only if G is p-nilpotent.

Theorem 5 has revealed itself to be useful to prove some interesting res-
ults on PST -groups. For instance, it is proved in [5, Theorem H] that a
soluble group G is a PST -group if and only if every subnormal subgroup
permutes with every Carter subgroup of G and the subnormal subgroups are
hypercentrally embedded in G. As an application of Theorem 5, we prove
in [3, Corollary 2] that the permutability with the Carter subgroups can be
removed.

Theorem 6 ([3]). A soluble group G is a PST -group if and only if every
subnormal subgroup of G is hypercentrally embedded in G.
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Another application of Theorem 5 is the following structure theorem for
p-soluble groups with property Yp.

Theorem 7 ([3]). A p-soluble group has property Yp if and only if

1. either G is p-nilpotent, or

2. G(p)/Op′
(
G(p)

)
is an abelian normal Sylow p-subgroup of G/Op′

(
G(p)

)
such that the elements of G/Op′

(
G(p)

)
induce power automorphisms in

G(p)/Op′
(
G(p)

)
.

Here, G(p) denotes the p-nilpotent residual of G, that is, the smallest normal
subgroup of G such that G/G(p) is p-nilpotent.

The paper is organised as follows. In Section 2 we study property Yp and
its relation with the properties Cp and Xp. The local approach to the class
of soluble PST -groups developed in [2] plays an important role. The proofs
of the main results appear in Section 3. Finally, we give some non-soluble
examples of groups with property Yp and a remark to show that any hope
of creating a similar landscape out of the soluble universe which leads to a
characterisation of PST , PT and T -groups is soon dispelled.

2 The property Yp
In the sequel p will be a fixed prime.

Our first result confirms the subgroup-closed character of the property
Cp. This is a consequence of the abnormality of the normalisers of the Sylow
subgroups.

Lemma 1. Cp is inherited by subgroups.

Proof. Assume that G has the property Cp and let B a subgroup of G. If C is
a Sylow p-subgroup of B and D is contained in C, then D is normal in NG(P )
for every Sylow p-subgroup P of G containing C. Therefore if g ∈ NG(C),
then D is normal in 〈NG(P ), NG(P g−1

)〉. Since NG(P ) is abnormal, it follows
that g−1 ∈ 〈NG(P ), NG(P g−1

)〉 and so g ∈ NG(D). Therefore D is normal in
NG(C) and B has property Cp.

Bryce and Cossey ([6]) established local versions of some results of sol-
uble T -groups. In particular, they characterised the soluble groups with the
property Cp as the groups G in which every p′-perfect subnormal subgroup
of G is normal in G.
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Following Bryce and Cossey’s approach, it is proved in [2] that the soluble
groups with property Xp are those whose p′-perfect subnormal subgroups
are permutable with the Hall p′-subgroups and the Sylow p-subgroups are
modular (see [2, Theorems 6 and 7]). Then the following definition arose:

Definition 3 ([2]). We say that a group G is a PST p-group if G is p-soluble
and every p′-perfect subnormal subgroup is permutable with the Hall p′-
subgroups of G.

According to [2, Theorem 8], a soluble group G is a PST -group if and
only if G is a PST p-group for all primes p.

We say that a group G ∈ U∗p if it is p-soluble, and the p-chief factors
of G are cyclic groups and are G-isomorphic when regarded as G-groups by
conjugation.

In [2, Theorem 6] it is proved that a soluble group G belongs to PST p

if and only if G ∈ U∗p . The arguments used there still hold in the p-soluble
universe. Therefore we have:

Theorem 8. PST p = U∗p .

In [2, Lemma 2] it is proved that the class of the PST p-groups is quotient-
closed. Theorem 8 shows that this class is also subgroup-closed.

The characterisation of soluble PST -groups in terms of the Sylow struc-
ture follows from the following:

Theorem 9. A p-soluble group is a PST p-group if and only if it satisfies Yp.

We need the following elementary lemma.

Lemma 2. Let G be a group.

1. If G has property Yp and A is a normal p-subgroup of G, then G/A has
property Yp.

2. If G has property Yp and N is a normal p′-subgroup of G, then G/N
has property Yp.

Proof. 1. This follows immediately from the definition.

2. Assume that G has property Yp and let H/N ≤ S/N be p-subgroups
of G/N . Then there exist Sylow p-subgroups H1 and S1 of H and
S, respectively, such that H1 is contained in S1 and H = H1N and
S = S1N . Since G has Yp, it follows that H1 is S-permutable in
NG(S1). Therefore H/N = H1N/N is S-permutable in NG(S1)N/N =
NG/N(S/N). This implies that G/N has Yp.
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Proof of Theorem 9. Assume that G satisfies Yp. We prove that G is a PST p-
group by induction on |G|. Denote Op′(G) by A and suppose that A 6= 1. Let
H be a p′-perfect subnormal subgroup of G and let B be a Hall p′-subgroup
of G. Then A ≤ B and B/A is a Hall p′-subgroup of G/A. Since G/A is
a PST p-group, it follows that HA/A permutes with B/A. Consequently H
permutes with B and hence G is a PST p-group. Therefore we may assume
that A = Op′(G) = 1.

Let N be a minimal normal subgroup of G. Then N is a p-group because
G is p-soluble. If N0 is a subgroup of N , then N0 is S-permutable in NG(N) =
G. This means that if Q is a Sylow q-subgroup of G for q 6= p, then N0 is a
Sylow p-subgroup of N0Q and so Q normalises N0.

Therefore Op(G) normalises every subgroup of N . Let P be a Sylow p-
subgroup of G and let N1 be a minimal normal subgroup of P contained in
N . Then POp(G) = G normalises N1 and so N1 = N . This means that N is
cyclic of order p. By Lemma 2, we know that G/N has Yp. Therefore G/N
is a PST p-group by induction.

Applying Theorem 8, we have that G/N is a U∗p -group. In particular,
G/N is p-supersoluble. Since N is cyclic, it follows that G is p-supersoluble.
Then G has a normal Sylow p-subgroup P containing the derived subgroup
G′ by [2, Lemma 1]. Let H be a p′-perfect subnormal subgroup of G. Then
P ∩ H is a normal Sylow p-subgroup of H and so P ∩ H = H since H is
p′-perfect. Hence H is a p-group and H ≤ P . Therefore H is S-permutable
in NG(P ) = G. In particular, H permutes with the Hall p′-subgroups of G.
Therefore G is a PST p-group.

Conversely, suppose that G is a PST p-group. Suppose that H and S
are p-subgroups of G such that H ≤ S. Then H is a subnormal subgroup
of NG(S), H is p′-perfect and NG(S) is a PST p-group because the class
of PST p-groups is subgroup-closed. Thus H permutes with every Hall p′-
subgroup Q of NG(S) and X = HQ is a subgroup of G. Then H ≤ Op(X)
and Op(X) = H

(
Op(X) ∩ Q

)
= H. Therefore H is normalised by Q. Con-

sequently, Op
(
NG(S)

)
normalises H and G has Yp.

Note that every p-nilpotent group is U∗p -group. Therefore by Theorem 8
and 9 we have:

Corollary 2. If G is p-nilpotent, then G has Yp.

Another relevant property of groups with Yp is:

Lemma 3. If G has Yp and if P is a non-abelian Sylow p-subgroup of G,
then NG(P ) is p-nilpotent.
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Proof. Let H be a subgroup of P . If Q is a Sylow q-subgroup of NG(P )
for a prime p 6= q, then HQ is a subgroup of G. This implies that H is a
subnormal Sylow p-subgroup of HQ and then Q normalises H. Therefore
every p′-element of NG(P ) normalises every subgroup of P . Since P is non-
abelian, we can apply [8, Hilfssatz 5] to conclude that every p′-element of
NG(P ) actually centralises P . Consequently, NG(P ) is p-nilpotent.

Our proof of Theorem 5 depends on the relation between Yp and p-
normality.

Recall that if p is a prime, a group G is said to be p-normal if it satisfies
the following property:

If P is a Sylow p-subgroup of G and Z(P ) is contained in P g for
some g ∈ G, then Z(P ) = Z(P g).

This property is closely related to property Yp. In fact, we have:

Lemma 4. If G satisfies Yp, then G is p-normal.

Proof. Suppose that G satisfies Yp. Let P be a Sylow p-subgroup of G and
let g be an element of G such that Z = Z(P ) ≤ P g. Suppose that Z is not
a normal subgroup of P g. Then (see Burnside’s Theorem, [9, Satz IV.5.1])
there exists an element g ∈ G of order qb for a prime q 6= p such that

g /∈ NG(Z), J = ZZg · · ·Zgq
b−1 is a p-group and g ∈ NG(J)\CG(J). But g is

a p′-element of NG(J) and G is a Yp-group. Consequently g induces a power
automorphism on J . In particular, we get the contradiction g ∈ NG(Z).

Therefore Z(P ) is a normal subgroup of P g. Then Z(P g−1
) =

(
Z(P )

)g−1

is a normal subgroup of P . By [9, Hilfssatz IV.5.2], since Z(P ) is a charac-
teristic subgroup of P , we have that Z(P ) = Z(P g−1

) and Z(P ) = Z(P g).
That proves that G is p-normal.

3 Proofs of the main results

The next result is the p-soluble version of Theorem 1.

Lemma 5. Let p be a prime. Assume that G is a p-soluble group with
modular Sylow p-subgroups. If P is a Sylow p-subgroup of G such that NG(P )
is p-nilpotent, then G is p-nilpotent.

Proof. Assume the result is false and let G be a counterexample of least order.
Then for each non-trivial normal subgroup N of G, it follows that G/N is
p-nilpotent. Therefore, since the class of p-nilpotent groups is a saturated
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formation, it follows that G has a unique minimal normal subgroup N such
thatN is an elementary abelian p-group, CG(N) = N andN is complemented
in G by a core-free maximal subgroup M . It is clear that N is contained in
P . Suppose that N is a proper subgroup of P . Then, since G = NM ,
we have that P = N(P ∩ M) and P ∩ M 6= 1. Let x ∈ P ∩ M be an
element of order p. If n ∈ N , then 〈n, x〉 = 〈n〉〈x〉 is an elementary abelian
p-group because P is modular. Therefore x ∈ CG(n). This implies that
1 6= P ∩M ∩ CG(N) = P ∩M ∩ N , a contradiction. Hence P = N and so
G = NG(P ) is p-nilpotent, final contradiction.

Proof of Theorem 1. Let G be a group with modular Sylow p-subgroups
and p-nilpotent Sylow normalisers with least order subject to not being p-
nilpotent. Let P be a Sylow p-subgroup of G. From Burnside’s p-nilpotence
criterion ([9, Hauptsatz IV.2.6]) we have that P is non-abelian. Assume
that P is Dedekind. Then p = 2 and P is a direct product of a quaternion
group and an elementary abelian 2-group. Hence, if Ω1(P ) is the subgroup
generated by the involutions of P , it follows that Ω1(P ) ≤ Z(P ). Suppose
that CG

(
Z(P )

)
is a proper subgroup of G. Then CG

(
Z(P )

)
inherits the

hypotheses of the theorem. By minimality of G, it follows that CG

(
Z(P )

)
is p-nilpotent. The p-nilpotence of G follows now from [16, Theorem 1].
Suppose that CG

(
Z(P )

)
= G. Then 1 6= Z(P ) is central in G. From the

minimality of G, it follows that G/Z(P ) is p-nilpotent and so G is p-nilpotent,
a contradiction.

Suppose now that P is not Dedekind. Then, applying [14, Exercise 4.4.1],
we have that N = Op(G) 6= G. It is clear that NG(P ) ≤ NG(P ∩ N) and
P ∩ N is a modular Sylow p-subgroup of N . Suppose that P ∩ N = 1.
Then N is a normal Hall p′-subgroup of G because G = NP . This implies
that G is p-nilpotent, a contradiction. Therefore P ∩ N 6= 1. Suppose that
NG(P ∩N) = G. Then there exists a minimal normal subgroup A of G such
that A ≤ P ∩N . By minimality of G, it follows that G/A is p-nilpotent. In
particular, G is p-soluble. Applying Lemma 5, we have that G is p-nilpotent,
a contradiction. Consequently NG(P ∩N) is a proper subgroup of G and it
inherits the properties of G. The minimal choice of G implies that NG(P∩N)
is p-nilpotent. Then NN(P ∩ N) is also p-nilpotent and so N satisfies the
hypotheses of the theorem. Since N 6= G, it follows that N is p-nilpotent.
Hence G is p-nilpotent, a contradiction.

Proof of Theorem 2. 1. Let A be a subgroup of G and denote T = 〈A,H〉.
Since H is S-permutable in T , then H is a subnormal subgroup of T and H
is contained in Op(T ), which is contained in every Sylow p-subgroup P of
T . Therefore T = 〈H,A〉 ≤ 〈Op(T ), A〉 = Op(T )A ≤ T . Let Aq be a Sylow
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q-subgroup of A for a prime q 6= p, and let Gq be a Sylow q-subgroup of G
containing Aq. We have that Aq is a Sylow q-subgroup of T , and Aq = Gq∩T
because Aq ≤ Gq∩T . Hence HAq = H(Gq∩T ) = HGq∩T is a subgroup of T .
Moreover Op(T )∩HAq = H. Therefore H is normalised by Aq. On the other
hand, since P is modular (respectively, Dedekind), we have that H permutes
with (respectively, is normalised by) a Sylow p-subgroup Ap of A. Therefore
H permutes with (respectively, is normalised by) all Sylow subgroups of A.
In particular, H permutes with A (respectively, H is normalised by A). This
implies that H is a permutable (respectively, normal) subgroup of G.

2. Suppose that G is a counterexample of minimal order to the theorem.
Then there exists an S-permutable subgroup H of G such that H is not
permutable (respectively, normal) in G. We take H of minimal order. Let N
be a minimal normal subgroup of G. Since HN/N is S-permutable in G/N ,
we have that HN/N is permutable (respectively, normal) in G/N . Assume
that CoreG(H) = HG 6= 1. Then we may suppose that N ≤ H and then H is
permutable (respectively, normal) in G, a contradiction. Therefore we have
that HG = 1. According to [13, Proposition A], we have that H is a nilpotent
group. By [13, Proposition B], every Sylow subgroup of H is S-permutable in
G. From the minimality of H, we can suppose that H is a p-group for some
prime p; otherwise, if all Sylow subgroups of H are permutable (respectively,
normal) in G, H would be permutable (respectively, normal) in G. We
conclude then that H is a p-group for some prime p. By 1, we conclude that
H is permutable (respectively, normal) in G.

Proof of Theorem 3. Suppose that G satisfies Yp and a Sylow p-subgroup
P of G is modular. By Theorem 2, we have that every subgroup of P is
permutable in NG(P ).

Conversely, suppose that G satisfies Xp. Then it is clear that every Sylow
p-subgroup P of G is modular. Moreover, by [4, Lemma 2], every subgroup
of P is normalised by the p′-elements of NG(P ). Therefore, if P is abelian,
every subgroup of P is normal in NG(P ) and then G satisfies property Cp.
Since Cp is subgroup closed by Lemma 1, G satisfies Yp.

If P is non-abelian, then NG(P ) is p-nilpotent by [4, Corollary 2]. By
Theorem 1, we have that G itself is p-nilpotent. Let H ≤ S be p-subgroups of
G. Then NG(S) is p-nilpotent. Therefore H is centralised by each p′-element
of NG(S). This implies that H is S-permutable in NG(S). Consequently G
has Yp.

Proof of Theorem 4. Assume that G is a soluble PST -group. Then G is a
p-soluble PST p-group for all primes p by [2, Theorem 8]. By Theorem 9, it
follows that G is a Yp-group for all primes p.
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Conversely, suppose that G satisfies Yp for all primes p. Then every
subgroup of G has the same property. Therefore if G is a group with least
order subject to not being a soluble PST -group, then every proper subgroup
of G is a soluble PST -group. According to Agrawal’s Theorem, every soluble
PST -group is supersoluble. Therefore either G is supersoluble, or G is a
minimal non-supersoluble group. In both cases, we have that G is soluble
(the solubility of G follows from [9, Satz VI.9.6] in the second case). Since Yp

coincides with PST p in the p-soluble universe by Theorem 9, it follows that
G is a PST p-group for all p. Then G is a PST -group by [2, Theorem 8].

Proof of Theorem 5. Suppose that G is p-nilpotent. Then G satisfies Yp by
Corollary 2. Assume now that G has abelian Sylow p-subgroups and that G
satisfies Cp. It follows from Theorem 3 that G satisfies Yp.

Assume that the converse is not true and let G be a counterexample of
minimal order. If G had an abelian Sylow p-subgroup, then G would satisfy
Cp by Theorem 3. Therefore G has a non-abelian Sylow p-subgroup P and G
is not p-nilpotent. Suppose that PG = CoreG(P ) = 1. Therefore NG

(
Z(P )

)
is a proper subgroup of G. Hence NG

(
Z(P )

)
is p-nilpotent by the minimal

choice of G. Applying Lemma 4 and [12, Exercise 594], we have that G is
p-nilpotent, a contradiction.

Consequently PG 6= 1. Let N be a minimal normal subgroup of G con-
tained in P . Since G has minimal order and G/N is a Yp-group, it follows
that either G/N is p-nilpotent or P/N is abelian.

Suppose that P/N is abelian. Since P is non-abelian, then NG(P ) is
p-nilpotent by Lemma 3, and so NG(P )/N = P/N × Op′

(
NG(P )

)
N/N and

P/N lies in the center of NG/N(P/N). From Burnside’s p-nilpotence criterion
(see [9, Hauptsatz IV.2.6]), we have that G/N is p-nilpotent. But if G/N is
p-nilpotent, bearing in mind that G is a Yp-group and hence a U∗p -group by
Theorems 8 and 9, we have that |N | = p and p divides |G/N | (otherwise,
G would have an abelian Sylow p-subgroup N = P ). It follows that G is
p-nilpotent, because G acts centrally on the chief p-factors of G/N and hence
G must act centrally on N . This contradiction proves the theorem.

Proof of Corollary 1. Suppose that G is a non-p-nilpotent Yp-group of min-
imal order. Since all proper subgroups of G satisfy Yp, from the minimality
it follows that all the proper subgroups of G are p-nilpotent. From Itô’s The-
orem (see [9, Satz IV.5.4]), we have that G has a normal Sylow p-subgroup
P . But from Lemma 3, we have that G = NG(P ) is p-nilpotent, a contradic-
tion.
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4 Examples and remarks

1. Property Yp does not imply property PST p in general. The alternating
group G = A5 of degree 5 has Sylow 3-subgroups of order 3 and Sylow
5-subgroups of order 5. Hence it satisfies C3 and C5. By Theorem 5, G
satisfies Y3 and Y5. But G is not 3-soluble nor 5-soluble. Hence it is
clear that G is not a PST 3-group nor a PST 5-group.

2. Theorem 5 indicates the way for constructing non-soluble examples of
groups with property Yp which are not p-nilpotent.

Let A be an abelian p-group and let B be a p′-group of power auto-
morphisms of A. Denote by H = [A]B, the corresponding semidirect
product. Suppose that H is not p-nilpotent. If S is any non-abelian
simple group such that p does not divide S, then the regular wreath
product G of S by H is a non-soluble group with property Yp which is
not p-nilpotent.

3. One might think that the most natural candidate for the “PST -version”
of properties Cp and Xp could be:

A group G satisfies Y∗p if every subgroup of a Sylow p-sub-
group P is S-permutable in NG(P ).

In G = Σ4, the symmetric group of degree 4, the Sylow 2-subgroups
are self-normalising, hence every subgroup of a Sylow 2-subgroup P of
G is S-permutable in NG(P ), and the subgroups of a Sylow 3-subgroup
Q of G are S-permutable in NG(Q). Consequently G satisfies Y∗p for
every p, but G is not a PST -group, because the cyclic subgroups of the
Klein 4-group are not permutable with the Sylow 3-subgroups of G.

Note that the above example shows that Y∗p is not subgroup-closed.

4. Any hope of creating a similar landscape outside of the soluble universe
is soon dispelled. As soon as we have a local property Jp which is
subgroup-closed and such that a finite group G is a PST -group if and
only if G satisfies Jp for every prime p, then

⋂
p∈P Jp is contained in

the class of soluble groups. Therefore a group satisfying Jp for all p
should be soluble.
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