This paper has been published in *Journal of Algebra*, 251(2):727–738 (2002).

The final publication is available at www.sciencedirect.com.

http://dx.doi.org/10.1006/jabr.2001.9138
Sylow permutable subnormal subgroups of finite groups

A. Ballester-Bolinches
Departament d’Àlgebra
Universitat de València
Dr. Moliner, 50
E-46100 Burjassot (València)
Spain
e-mail: Adolfo.Ballester@uv.es

R. Esteban-Romero
Departament de Matemàtica Aplicada
Universitat Politècnica de València
Camí de Vera, s/n
E-46022 València
Spain
e-mail: resteban@mat.upv.es

Dedicated to John Cossey on the occasion of his sixtieth birthday

Abstract

An extension of the well-known Frobenius’ criterion of p-nilpotence in groups with modular Sylow p-subgroups is proved in the paper. This result is useful to get information about the classes of groups in which every subnormal subgroup is permutable and Sylow permutable.

*Supported by Proyecto PB97-0674 and Proyecto PB97-0604-C02-02 from DGICYT, Ministerio de Educación y Ciencia
1 Introduction and statements of results

Throughout the paper, the word group means finite group.

A celebrated theorem of Frobenius ([9, Satz IV.5.8]) asserts that if \(p \) is a prime and \(G \) is a group such that \(N_G(H) \) is \(p \)-nilpotent for every \(p \)-subgroup \(H \) of \(G \), then \(G \) is \(p \)-nilpotent.

Our first main result can be considered as an extension of Frobenius’ theorem in groups with modular Sylow \(p \)-subgroups.

Theorem 1. Let \(p \) be a prime and let \(G \) be a group with a modular Sylow \(p \)-subgroup \(P \). Then \(G \) is \(p \)-nilpotent if and only if \(N_G(P) \) is \(p \)-nilpotent.

This result turns out to be useful to study the classes of PST-groups and PT-groups.

Recall that a subgroup \(H \) of a group \(G \) is said to be S-permutable (or S-quasinormal, or \(\pi \)-quasinormal) in \(G \) if \(HP = PH \) for all Sylow subgroups \(P \) of \(G \). It is clear that S-permutability is weaker than permutability and normality. According to a theorem of Kegel [10, Satz 1], every S-permutable subgroup is subnormal. S-permutability, like normality and permutability, is not a transitive relation.

We say that a group \(G \) is a PST-group if S-permutability is transitive in \(G \), that is, if \(A \) is an S-permutable subgroup of \(B \) and \(B \) is an S-permutable subgroup of \(G \), then \(A \) is S-permutable in \(G \). Applying Kegel’s theorem, PST-groups are exactly the groups in which every subnormal subgroup is S-permutable. This class contains the class of all groups in which normality is transitive (\(T \)-groups) and the class of all groups in which permutability is transitive (PT-groups). The last two classes have been widely studied ([1, 4, 6, 7, 10, 11, 15]).

The structure of soluble PST-groups was obtained by Agrawal in [1]. It is proved there that a group \(G \) is a soluble PST-group if and only if \(G \) has an abelian normal Hall subgroup of odd order \(N \) such that \(G/N \) is nilpotent and the elements of \(G \) induce power automorphisms in \(N \). In that result, if we force \(G/N \) to be a Dedekind group, we find Gaschütz’s characterisation of soluble \(T \)-groups ([7]), and if we impose that \(G/N \) is a nilpotent modular group, then we obtain Zacher’s characterisation of soluble PT-groups ([15]).

The above results show that, in the soluble universe, the difference between these three classes is simply the Sylow structure. Our second result supports that claim and provides a unified viewpoint for the classes of PST, PT and \(T \)-groups in the general finite case.

Theorem 2. Let \(G \) be a group.
1. Suppose that p is a prime number and that H is an S-permutable p-subgroup of G. If the Sylow p-subgroups of G are modular (respectively, Dedekind), then H is permutable (respectively, normal) in G.

2. Assume that H is an S-permutable subgroup of G. If the Sylow subgroups of G are modular (respectively, Dedekind), then H is permutable (respectively, normal) in G.

Taking this result into account, it seems natural to look for characterisations of the above classes in terms of the Sylow structure. This was done by Robinson ([11]) for the class of T-groups and by Beidleman, Brewster and Robinson ([4]) for the class of PT-groups.

One of the purposes of this paper is to provide necessary and sufficient conditions on the Sylow structure for a group to be a soluble PST-group.

As in the PT and T-cases, the procedure of defining local versions in order to simplify the study of the global properties has revealed itself as considerably useful.

Since our approach depends heavily on a previous analysis of the classes of PT-groups and T-groups, the following definition needs to be stated.

Definition 1. Let G be a group and p a prime. We say that G:

1. Enjoys property C_p (see [11]) if each subgroup of a Sylow p-subgroup P of G is normal in the normaliser $N_G(P)$.

2. Satisfies property X_p (as in [4]) if each subgroup of a Sylow p-subgroup P of G is permutable in the normaliser $N_G(P)$.

Robinson ([11]) proved that a group G is a soluble T-group if and only if G satisfies property C_p for all primes p and, thirty-one years later, Beidleman, Brewster and Robinson proved that G is a soluble PT-group if and only if G satisfies property X_p for all primes p.

These results would follow easily if one could prove that C_p and X_p are subgroup-closed. The subgroup-closed character of C_p follows from the abnormality of the Sylow normalisers. Nevertheless, in the Beidleman, Brewster and Robinson approach, the subgroup-closed character of X_p follows after an intensive study of the property X_p and its consequences for the group structure (see [4, Corollary 3]). In the following, we show that the subgroup-closed character of the property X_p follows as a natural consequence of Theorem 1 and a new property called Y_p, which can be considered as the “PST-version” of the properties C_p and X_p.

Definition 2. Let p be a prime number. A group G is said to be a Y_p-$group$ when for all p-subgroups H and S of G such that $H \leq S$, H is S-permutable in $N_G(S)$.
The above property can be compared to property S_p introduced by Beidleman and Heineken in [5].

Theorem 3. A group G satisfies X_p (respectively, C_p) if and only if G satisfies Y_p and the Sylow p-subgroups of G are modular (respectively, Dedekind).

Since Y_p is subgroup-closed, this result has the virtue of showing that the subgroup-closed character of X_p depends exclusively on the modularity of the Sylow p-subgroups. It also shows that, in order to get a global characterisation of the soluble PST-groups, it is necessary to impose the subgroup-closed character in the definition Y_p, as in the PST-case there are no restrictions on the Sylow p-subgroups.

Assume that G is a solubpe PST-group. If H and S are p-subgroups of G such that $H \leq S$, then H is subnormal in $N_G(S)$. Now, by Agrawal’s Theorem, $N_G(S)$ is a PST-group. Therefore H is S-permutable in $N_G(S)$. Consequently every soluble PST-group has property Y_p. Our next result confirms that the converse is also true.

Theorem 4. A group G is a soluble PST-group if and only if G satisfies Y_p for all primes p.

Note that Theorem A of [4] is a consequence of Theorems 3 and 4.

One of the main results of [4] is that a group G satisfies X_p if and only if G has modular Sylow p-subgroups and either G is p-nilpotent or a Sylow p-subgroup P of G is abelian and G satisfies C_p.

This result is a consequence of Theorem 3 and the following:

Theorem 5. A group G is a Y_p-group if and only if G is either p-nilpotent, or G has abelian Sylow p-subgroups and G satisfies C_p.

Theorem C of [4] follows from Theorem 3 and

Corollary 1. If p is the smallest prime divisor of the order of G, then G is a Y_p-group if and only if G is p-nilpotent.

Theorem 5 has revealed itself to be useful to prove some interesting results on PST-groups. For instance, it is proved in [5, Theorem H] that a soluble group G is a PST-group if and only if every subnormal subgroup permutes with every Carter subgroup of G and the subnormal subgroups are hypercentrally embedded in G. As an application of Theorem 5, we prove in [3, Corollary 2] that the permutability with the Carter subgroups can be removed.

Theorem 6 ([3]). A soluble group G is a PST-group if and only if every subnormal subgroup of G is hypercentrally embedded in G.
Another application of Theorem 5 is the following structure theorem for p-soluble groups with property \mathcal{Y}_p.

Theorem 7 ([3]). A p-soluble group has property \mathcal{Y}_p if and only if

1. either G is p-nilpotent, or

2. $G(p)/O_{p'}(G(p))$ is an abelian normal Sylow p-subgroup of $G/O_{p'}(G(p))$ such that the elements of $G/O_{p'}(G(p))$ induce power automorphisms in $G(p)/O_{p'}(G(p))$.

Here, $G(p)$ denotes the p-nilpotent residual of G, that is, the smallest normal subgroup of G such that $G/G(p)$ is p-nilpotent.

The paper is organised as follows. In Section 2 we study property \mathcal{Y}_p and its relation with the properties \mathcal{C}_p and \mathcal{X}_p. The local approach to the class of soluble PST-groups developed in [2] plays an important role. The proofs of the main results appear in Section 3. Finally, we give some non-soluble examples of groups with property \mathcal{Y}_p and a remark to show that any hope of creating a similar landscape out of the soluble universe which leads to a characterisation of PST, PT and T-groups is soon dispelled.

2 The property \mathcal{Y}_p

In the sequel p will be a fixed prime.

Our first result confirms the subgroup-closed character of the property \mathcal{C}_p. This is a consequence of the abnormality of the normalisers of the Sylow subgroups.

Lemma 1. \mathcal{C}_p is inherited by subgroups.

Proof. Assume that G has the property \mathcal{C}_p and let B a subgroup of G. If C is a Sylow p-subgroup of B and D is contained in C, then D is normal in $N_G(P)$ for every Sylow p-subgroup P of G containing C. Therefore if $g \in N_G(C)$, then D is normal in $\langle N_G(P), N_G(P^{g^{-1}}) \rangle$. Since $N_G(P)$ is abnormal, it follows that $g^{-1} \in \langle N_G(P), N_G(P^{g^{-1}}) \rangle$ and so $g \in N_G(D)$. Therefore D is normal in $N_G(C)$ and B has property \mathcal{C}_p. \(\blacksquare\)

Bryce and Cossey ([6]) established local versions of some results of soluble T-groups. In particular, they characterised the soluble groups with the property \mathcal{C}_p as the groups G in which every p'-perfect subnormal subgroup of G is normal in G.

5
Following Bryce and Cossey’s approach, it is proved in [2] that the soluble groups with property X_p are those whose p'-perfect subnormal subgroups are permutable with the Hall p'-subgroups and the Sylow p-subgroups are modular (see [2, Theorems 6 and 7]). Then the following definition arose:

Definition 3 ([2]). We say that a group G is a PST_p-group if G is p-soluble and every p'-perfect subnormal subgroup is permutable with the Hall p'-subgroups of G.

According to [2, Theorem 8], a soluble group G is a PST-group if and only if G is a PST_p-group for all primes p.

We say that a group $G \in U^*_p$ if it is p-soluble, and the p-chief factors of G are cyclic groups and are G-isomorphic when regarded as G-groups by conjugation.

In [2, Theorem 6] it is proved that a soluble group G belongs to PST_p if and only if $G \in U^*_p$. The arguments used there still hold in the p-soluble universe. Therefore we have:

Theorem 8. $PST_p = U^*_p$.

In [2, Lemma 2] it is proved that the class of the PST_p-groups is quotient-closed. Theorem 8 shows that this class is also subgroup-closed.

The characterisation of soluble PST-groups in terms of the Sylow structure follows from the following:

Theorem 9. A p-soluble group is a PST_p-group if and only if it satisfies Y_p.

We need the following elementary lemma.

Lemma 2. Let G be a group.

1. If G has property Y_p and A is a normal p-subgroup of G, then G/A has property Y_p.

2. If G has property Y_p and N is a normal p'-subgroup of G, then G/N has property Y_p.

Proof. 1. This follows immediately from the definition.

2. Assume that G has property Y_p and let $H/N \leq S/N$ be p-subgroups of G/N. Then there exist Sylow p-subgroups H_1 and S_1 of H and S, respectively, such that H_1 is contained in S_1 and $H = H_1 N$ and $S = S_1 N$. Since G has Y_p, it follows that H_1 is S-permutable in $N_G(S_1)$. Therefore $H/N = H_1 N/N$ is S-permutable in $N_G(S_1) N/N = N_{G/N}(S/N)$. This implies that G/N has Y_p. \square
Proof of Theorem 9. Assume that G satisfies \mathcal{Y}_p. We prove that G is a PST_{p^r}-group by induction on $|G|$. Denote $O_{p^r}(G)$ by A and suppose that $A \neq 1$. Let H be a p'-perfect subnormal subgroup of G and let B be a Hall p'-subgroup of G. Then $A \leq B$ and B/A is a Hall p'-subgroup of G/A. Since G/A is a PST_{p^r}-group, it follows that HA/A permutes with B/A. Consequently H permutes with B and hence G is a PST_{p^r}-group. Therefore we may assume that $A = O_{p^r}(G) = 1$.

Let N be a minimal normal subgroup of G. Then N is a p-group because G is p-soluble. If N_0 is a subgroup of N, then N_0 is S-permutable in $N_G(N) = G$. This means that if Q is a Sylow q-subgroup of G for $q \neq p$, then N_0 is a Sylow p-subgroup of N_0Q and so Q normalises N_0.

Therefore $O^p(G)$ normalises every subgroup of N. Let P be a Sylow p-subgroup of G and let N_1 be a minimal normal subgroup of P contained in N. Then $PO^p(G) = G$ normalises N_1 and so $N_1 = N$. This means that N is cyclic of order p. By Lemma 2, we know that G/N has \mathcal{Y}_p. Therefore G/N is a PST_{p^r}-group by induction.

Applying Theorem 8, we have that G/N is a \mathcal{U}_p^*-group. In particular, G/N is p-supersoluble. Since N is cyclic, it follows that G is p-supersoluble. Then G has a normal Sylow p-subgroup P containing the derived subgroup G' by [2, Lemma 1]. Let H be a p'-perfect subnormal subgroup of G. Then $P \cap H$ is a normal Sylow p-subgroup of H and so $P \cap H = H$ since H is p'-perfect. Hence H is a p-group and $H \leq P$. Therefore H is S-permutable in $N_G(P) = G$. In particular, H permutes with the Hall p'-subgroups of G. Therefore G is a PST_{p^r}-group.

Conversely, suppose that G is a PST_{p^r}-group. Suppose that H and S are p-subgroups of G such that $H \leq S$. Then H is a subnormal subgroup of $N_G(S)$, H is p'-perfect and $N_G(S)$ is a PST_{p^r}-group because the class of PST_{p^r}-groups is subgroup-closed. Thus H permutes with every Hall p'-subgroup Q of $N_G(S)$ and $X = HQ$ is a subgroup of G. Then $H \leq O_p(X)$ and $O_p(X) = H(O_p(X) \cap Q) = H$. Therefore H is normalised by Q. Consequently, $O^p(N_G(S))$ normalises H and G has \mathcal{Y}_p. \hfill \Box

Note that every p-nilpotent group is \mathcal{U}_p^*-group. Therefore by Theorem 8 and 9 we have:

Corollary 2. If G is p-nilpotent, then G has \mathcal{Y}_p.

Another relevant property of groups with \mathcal{Y}_p is:

Lemma 3. If G has \mathcal{Y}_p and if P is a non-abelian Sylow p-subgroup of G, then $N_G(P)$ is p-nilpotent.
Proof. Let H be a subgroup of P. If Q is a Sylow q-subgroup of $N_G(P)$ for a prime $p \neq q$, then HQ is a subgroup of G. This implies that H is a subnormal Sylow p-subgroup of HQ and then Q normalises H. Therefore every p'-element of $N_G(P)$ normalises every subgroup of P. Since P is non-abelian, we can apply [8, Hilfssatz 5] to conclude that every p'-element of $N_G(P)$ actually centralises P. Consequently, $N_G(P)$ is p-nilpotent.

Our proof of Theorem 5 depends on the relation between \mathcal{Y}_p and p-normality.

Recall that if p is a prime, a group G is said to be p-normal if it satisfies the following property:

If P is a Sylow p-subgroup of G and $Z(P)$ is contained in P^g for some $g \in G$, then $Z(P) = Z(P^g)$.

This property is closely related to property \mathcal{Y}_p. In fact, we have:

Lemma 4. If G satisfies \mathcal{Y}_p, then G is p-normal.

Proof. Suppose that G satisfies \mathcal{Y}_p. Let P be a Sylow p-subgroup of G and let g be an element of G such that $Z = Z(P) \leq P^g$. Suppose that Z is not a normal subgroup of P^g. Then (see Burnside's Theorem, [9, Satz IV.5.1]) there exists an element $g \in G$ of order q^b for a prime $q \neq p$ such that $g \notin N_G(Z)$, $J = ZZ^g \cdots Z^{q^b}g^{-1}$ is a p-group and $g \in N_G(J) \setminus C_G(J)$. But g is a p'-element of $N_G(J)$ and G is a \mathcal{Y}_p-group. Consequently g induces a power automorphism on J. In particular, we get the contradiction $g \in N_G(Z)$.

Therefore $Z(P)$ is a normal subgroup of P^g. Then $Z(P^{g^{-1}}) = (Z(P))^g$ is a normal subgroup of P. By [9, Hilfssatz IV.5.2], since $Z(P)$ is a characteristic subgroup of P, we have that $Z(P) = Z(P^{g^{-1}})$ and $Z(P) = Z(P^g)$. That proves that G is p-normal.

3 Proofs of the main results

The next result is the p-soluble version of Theorem 1.

Lemma 5. Let p be a prime. Assume that G is a p-soluble group with modular Sylow p-subgroups. If P is a Sylow p-subgroup of G such that $N_G(P)$ is p-nilpotent, then G is p-nilpotent.

Proof. Assume the result is false and let G be a counterexample of least order. Then for each non-trivial normal subgroup N of G, it follows that G/N is p-nilpotent. Therefore, since the class of p-nilpotent groups is a saturated
formation, it follows that G has a unique minimal normal subgroup N such that N is an elementary abelian p-group, $C_G(N) = N$ and N is complemented in G by a core-free maximal subgroup M. It is clear that N is contained in P. Suppose that N is a proper subgroup of P. Then, since $G = NM$, we have that $P = N(P \cap M)$ and $P \cap M \neq 1$. Let $x \in P \cap M$ be an element of order p. If $n \in N$, then $\langle n, x \rangle = \langle n \rangle \langle x \rangle$ is an elementary abelian p-group because P is modular. Therefore $x \in C_G(n)$. This implies that $1 \neq P \cap M \cap C_G(N) = P \cap M \cap N$, a contradiction. Hence $P = N$ and so $G = N_G(P)$ is p-nilpotent, final contradiction.

Proof of Theorem 1. Let G be a group with modular Sylow p-subgroups and p-nilpotent Sylow normalisers with least order subject to not being p-nilpotent. Let P be a Sylow p-subgroup of G. From Burnside’s p-nilpotence criterion ([9, Hauptsatz IV.2.6]) we have that P is non-abelian. Assume that P is Dedekind. Then $p = 2$ and P is a direct product of a quaternion group and an elementary abelian 2-group. Hence, if $\Omega_1(P)$ is the subgroup generated by the involutions of P, it follows that $\Omega_1(P) \leq Z(P)$. Suppose that $C_G(Z(P))$ is a proper subgroup of G. Then $C_G(Z(P))$ inherits the hypotheses of the theorem. By minimality of G, it follows that $C_G(Z(P))$ is p-nilpotent. The p-nilpotence of G follows now from [16, Theorem 1]. Suppose that $C_G(Z(P)) = G$. Then $1 \neq Z(P)$ is central in G. From the minimality of G, it follows that $G/Z(P)$ is p-nilpotent and so G is p-nilpotent, a contradiction.

Suppose now that P is not Dedekind. Then, applying [14, Exercise 4.4.1], we have that $N = O^p(G) \neq G$. It is clear that $N_G(P) \leq N_G(P \cap N)$ and $P \cap N$ is a modular Sylow p-subgroup of N. Suppose that $P \cap N = 1$. Then N is a normal Hall p'-subgroup of G because $G = NP$. This implies that G is p-nilpotent, a contradiction. Therefore $P \cap N \neq 1$. Suppose that $N_G(P \cap N) = G$. Then there exists a minimal normal subgroup A of G such that $A \leq P \cap N$. By minimality of G, it follows that G/A is p-nilpotent. In particular, G is p-soluble. Applying Lemma 5, we have that G is p-nilpotent, a contradiction. Consequently $N_G(P \cap N)$ is a proper subgroup of G and it inherits the properties of G. The minimal choice of G implies that $N_G(P \cap N)$ is p-nilpotent. Then $N_N(P \cap N)$ is also p-nilpotent and so N satisfies the hypotheses of the theorem. Since $N \neq G$, it follows that N is p-nilpotent. Hence G is p-nilpotent, a contradiction.

Proof of Theorem 2. 1. Let A be a subgroup of G and denote $T = \langle A, H \rangle$. Since H is S-permutable in T, then H is a subnormal subgroup of T and H is contained in $O_p(T)$, which is contained in every Sylow p-subgroup P of T. Therefore $T = \langle H, A \rangle \leq (O_p(T), A) = O_p(T)A \leq T$. Let A_q be a Sylow
\textit{q-subgroup of A} for a prime \(q \neq p \), and let \(G_q \) be a Sylow \(q \)-subgroup of \(G \) containing \(A_q \). We have that \(A_q \) is a Sylow \(q \)-subgroup of \(T \), and \(A_q = G_q \cap T \) because \(A_q \leq G_q \cap T \). Hence \(HA_q = H(G_q \cap T) = HG_q \cap T \) is a subgroup of \(T \). Moreover \(O_p(T) \cap HA_q = H \). Therefore \(H \) is normalised by \(A_q \). On the other hand, since \(P \) is modular (respectively, Dedekind), we have that \(H \) permutes with (respectively, is normalised by) a Sylow \(p \)-subgroup \(A_p \) of \(A \). Therefore \(H \) permutes with (respectively, is normalised by) all Sylow subgroups of \(A \). In particular, \(H \) permutes with \(A \) (respectively, \(H \) is normalised by \(A \)). This implies that \(H \) is a permutable (respectively, normal) subgroup of \(G \).

2. Suppose that \(G \) is a counterexample of minimal order to the theorem. Then there exists an S-permutable subgroup \(H \) of \(G \) such that \(H \) is not permutable (respectively, normal) in \(G \). We take \(H \) of minimal order. Let \(N \) be a minimal normal subgroup of \(G \). Since \(HN/N \) is S-permutable in \(G/N \), we have that \(HN/N \) is permutable (respectively, normal) in \(G/N \). Assume that \(\text{Core}_G(H) = H \neq 1 \). Then we may suppose that \(N \leq H \) and then \(H \) is permutable (respectively, normal) in \(G \), a contradiction. Therefore we have that \(H \) is a \(p \)-group for some prime \(p \). By 1, we conclude that \(H \) is a permutable (respectively, normal) subgroup of \(G \).

\textbf{Proof of Theorem 3.} Suppose that \(G \) satisfies \(\mathcal{Y}_p \) and a Sylow \(p \)-subgroup \(P \) of \(G \) is modular. By Theorem 2, we have that every subgroup of \(P \) is permutable in \(N_G(P) \).

Conversely, suppose that \(G \) satisfies \(\mathcal{X}_p \). Then it is clear that every Sylow \(p \)-subgroup \(P \) of \(G \) is modular. Moreover, by [4, Lemma 2], every subgroup of \(P \) is normalised by the \(p' \)-elements of \(N_G(P) \). Therefore, if \(P \) is abelian, every subgroup of \(P \) is normal in \(N_G(P) \) and then \(G \) satisfies property \(\mathcal{C}_p \).

Since \(\mathcal{C}_p \) is subgroup closed by Lemma 1, \(G \) satisfies \(\mathcal{Y}_p \).

If \(P \) is non-abelian, then \(N_G(P) \) is \(p \)-nilpotent by [4, Corollary 2]. By Theorem 1, we have that \(G \) itself is \(p \)-nilpotent. Let \(H \leq S \) be \(p \)-subgroups of \(G \). Then \(N_G(S) \) is \(p \)-nilpotent. Therefore \(H \) is centralised by each \(p' \)-element of \(N_G(S) \). This implies that \(H \) is S-permutable in \(N_G(S) \). Consequently \(G \) has \(\mathcal{Y}_p \).

\textbf{Proof of Theorem 4.} Assume that \(G \) is a soluble \(PST \)-group. Then \(G \) is a \(p \)-soluble \(PST_p \)-group for all primes \(p \) by [2, Theorem 8]. By Theorem 9, it follows that \(G \) is a \(\mathcal{Y}_p \)-group for all primes \(p \).
Conversely, suppose that G satisfies \mathcal{Y}_p for all primes p. Then every subgroup of G has the same property. Therefore if G is a group with least order subject to not being a soluble PST-group, then every proper subgroup of G is a soluble PST-group. According to Agrawal’s Theorem, every soluble PST-group is supersoluble. Therefore either G is supersoluble, or G is a minimal non-supersoluble group. In both cases, we have that G is soluble (the solubility of G follows from [9, Satz VI.9.6] in the second case). Since \mathcal{Y}_p coincides with PST_p in the p-soluble universe by Theorem 9, it follows that G is a PST_p-group for all p. Then G is a PST-group by [2, Theorem 8].

Proof of Theorem 5. Suppose that G is p-nilpotent. Then G satisfies \mathcal{Y}_p by Corollary 2. Assume now that G has abelian Sylow p-subgroups and that G satisfies C_p. It follows from Theorem 3 that G satisfies \mathcal{Y}_p.

Assume that the converse is not true and let G be a counterexample of minimal order. If G had an abelian Sylow p-subgroup, then G would satisfy C_p by Theorem 3. Therefore G has a non-abelian Sylow p-subgroup P and G is not p-nilpotent. Suppose that $P_G = \text{Core}_G(P) = 1$. Therefore $N_G(Z(P))$ is a proper subgroup of G. Hence $N_G(Z(P))$ is p-nilpotent by the minimal choice of G. Applying Lemma 4 and [12, Exercise 594], we have that G is p-nilpotent, a contradiction.

Consequently $P_G \neq 1$. Let N be a minimal normal subgroup of G contained in P. Since G has minimal order and G/N is a \mathcal{Y}_p-group, it follows that either G/N is p-nilpotent or P/N is abelian.

Suppose that P/N is abelian. Since P is non-abelian, then $N_G(P)$ is p-nilpotent by Lemma 3, and so $N_G(P)/N = P/N \times O_p(N_G(P))/N$ and P/N lies in the center of $N_{G/N}(P/N)$. From Burnside’s p-nilpotence criterion (see [9, Hauptsatz IV.2.6]), we have that G/N is p-nilpotent. But if G/N is p-nilpotent, bearing in mind that G is a \mathcal{Y}_p-group and hence a U^*_p-group by Theorems 8 and 9, we have that $|N| = p$ and p divides $|G/N|$ (otherwise, G would have an abelian Sylow p-subgroup $N = P$). It follows that G is p-nilpotent, because G acts centrally on the chief p-factors of G/N and hence G must act centrally on N. This contradiction proves the theorem.

Proof of Corollary 1. Suppose that G is a non-p-nilpotent \mathcal{Y}_p-group of minimal order. Since all proper subgroups of G satisfy \mathcal{Y}_p, from the minimality it follows that all the proper subgroups of G are p-nilpotent. From Itô’s Theorem (see [9, Satz IV.5.4]), we have that G has a normal Sylow p-subgroup P. But from Lemma 3, we have that $G = N_G(P)$ is p-nilpotent, a contradiction.
4 Examples and remarks

1. Property \mathcal{Y}_p does not imply property PST_p in general. The alternating group $G = A_5$ of degree 5 has Sylow 3-subgroups of order 3 and Sylow 5-subgroups of order 5. Hence it satisfies \mathcal{C}_3 and \mathcal{C}_5. By Theorem 5, G satisfies \mathcal{Y}_3 and \mathcal{Y}_5. But G is not 3-soluble nor 5-soluble. Hence it is clear that G is not a PST_3-group nor a PST_5-group.

2. Theorem 5 indicates the way for constructing non-soluble examples of groups with property \mathcal{Y}_p which are not p-nilpotent.

Let A be an abelian p-group and let B be a p'-group of power automorphisms of A. Denote by $H = [A]B$, the corresponding semidirect product. Suppose that H is not p-nilpotent. If S is any non-abelian simple group such that p does not divide S, then the regular wreath product G of S by H is a non-soluble group with property \mathcal{Y}_p which is not p-nilpotent.

3. One might think that the most natural candidate for the “PST-version” of properties \mathcal{C}_p and \mathcal{X}_p could be:

A group G satisfies \mathcal{Y}_p^* if every subgroup of a Sylow p-subgroup P is S-permutable in $N_G(P)$.

In $G = \Sigma_4$, the symmetric group of degree 4, the Sylow 2-subgroups are self-normalising, hence every subgroup of a Sylow 2-subgroup P of G is S-permutable in $N_G(P)$, and the subgroups of a Sylow 3-subgroup Q of G are S-permutable in $N_G(Q)$. Consequently G satisfies \mathcal{Y}_p^* for every p, but G is not a PST-group, because the cyclic subgroups of the Klein 4-group are not permutable with the Sylow 3-subgroups of G. Note that the above example shows that \mathcal{Y}_p^* is not subgroup-closed.

4. Any hope of creating a similar landscape outside of the soluble universe is soon dispelled. As soon as we have a local property \mathcal{J}_p which is subgroup-closed and such that a finite group G is a PST-group if and only if G satisfies \mathcal{J}_p for every prime p, then $\bigcap_{p \in P} \mathcal{J}_p$ is contained in the class of soluble groups. Therefore a group satisfying \mathcal{J}_p for all p should be soluble.

Acknowledgement

The authors thank the referee for the careful reading of the paper and the suggestions which have helped to improve our exposition.
References

