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A B S T R A C T   

Digital technologies are transforming the industrial landscape and disrupting traditional business models. New 
business opportunities related to Industry 4.0 are emerging, so companies must adapt to the new environment. 
This work puts forward a multi-objective optimization algorithm to improve productivity and reduce the costs 
and energy consumption of autonomous industrial processes with the aim of achieving sustainable growth. The 
processes analyzed encompass an assembly line production with robotic cells and the subsequent material 
handling systems (MHS) using autonomous guided vehicles (AGVs) for indoor transport. An efficient algorithm 
has been implemented to integrate and minimize industrial robot arm working times, AGVs travel times and their 
trajectory, and the energy consumed in industrial processes while maximizing global business profits when 
manufacturing different products in an indoor industrial environment. Furthermore, this is carried out by 
considering the kinematics and dynamics of autonomous industrial processes and sustainable strategies to ensure 
compliance with government policies on environmental issues. These objectives are in line with the European 
Union (EU) guidelines on reducing greenhouse gas (GHG) emissions, renewable energy share, and improvements 
in energy efficiency for climate change mitigation and adaptation policies. Based on the difference in energy 
consumption between optimized and unoptimized industrial processes, the economic benefits can be quantified 
in terms of GHG emission quotas, volume of fuel consumed, and the indirect benefits with respect to improving 
corporate brand image. The methodology presented here has been successfully applied to several real case 
studies covering different manufacturing processes, robotic operations, and products. The results show that 
higher profits and sustainable growth are achieved when this methodology is used. It helps design Flexible 
Manufacturing Systems (FMS) and leads to shorter working times and higher energy efficiency and annual 
profits. In addition, Pareto frontiers show the trade-off between profits and product manufacturing times for 
different case studies.   

1. Introduction 

Digital technologies are transforming the industrial landscape and 
disrupting traditional business models (Llopis-Albert et al., 2021a). In 
this sense, typical autonomous industrial processes encompass industrial 
robot arms and AGVs, which are programmable, self-driven vehicles 
used to transfer loads from one location in the facility to another 
depending on the given task and within a certain time window. AGVs 
can be considered as multiple systems that can operate independently as 
well as in cooperation with each other. They are increasingly attracting 
attention and are being rapidly adopted in many industrial and service 
applications. For instance, they are widely used in indoor transport tasks 
for Material Handling Systems (MHS) and multitask production 

planning. 
This is due to the significant profits that companies gain from 

adequate deployment of automated technologies. These profits include 
an increase in the system’s efficiency, a reduction in operational costs, 
and an increase in the precision of the work. They also help to design 
Flexible Manufacturing Systems (FMS) because of the ease with which 
the AGV network flow can be redesigned to accommodate frequent 
changes. In addition, the use of AGVs considerably reduces the number 
of work accidents related to transport and warehouse activities if 
compared with human operators. Note that occupational health and 
safety is a major concern nowadays. Furthermore, AGVs and industrial 
robot arms perform the production tasks at a lower cost than conveyors, 
chains, etc. 
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Designing an AGV network flow entails efficient scheduling of 
operational tasks and routing schemes, traffic control schemes, and a 
proper definition of the allocation of stacking areas (Llopis-Albert et al., 
2019). An AGV network flow is defined by open aisles between ma
chines, workstations, allocation of stacking areas, departments, and 
fixed structures in the facility. A lane connecting a pair of nodes in the 
network can be classified as unidirectional, bidirectional, multi-lane, 
and mixed, and more than one lane can be defined in the same aisle if 
the traffic requirement is heavy. An appropriate AGV route must avoid 
collisions and minimize transportation times so that more tasks can be 
handled within a given time. 

AGVs are usually battery powered and navigate along predefined 
guide-paths. This is carried out using different guidance technologies, 
which cover physical guide-paths such as tracking buried cables or 
guide-paths painted on the floor, optical sensors, laser navigation sys
tems based on fixed reflectors located in the workplace, and magnetic 
and gyroscope-based inertial systems. These guidance technologies 
facilitate the re-routing process in response to changes made to the fa
cility in order to provide FMS and scalable MHS. 

An efficient design of an AGV system should take into account 
problems such as route design, traffic, battery management, determi
nation of the fleet size, number and location of load/unload points, and 
number and location of idle points while considering possible fluctua
tions in demand and restrictions of machines integrated into AGV 
scheduling. 

Algorithms have been developed to address routing and scheduling 
problems for AGVs. Two broad categories are distinguished: static and 
dynamic algorithms. The route with the static approach is determined in 
advance, which means the algorithms cannot adapt to changes in the 
logistic system and traffic conditions. In dynamic routing, on the other 
hand, the route is based on real-time information and, as a result, 
various routes between locations can be chosen. 

AGV routing has been widely studied during recent decades. A 
literature review about this subject can be found in Bodin (1983), 
Psaraftis (1988; 1995), Laporte (1992), Fisher (1995), Kelly et al. 
(1999), and more recently in Pillac et al. (2013), Fazlollahtabar et al. 
(2015), and Llopis-Albert et al. (2018). Dynamic AGV scheduling and 
routing problems, including traffic conflicts and flexibility, mostly deal 
with optimizing network flow problems with a single objective (mini
mizing or maximizing the flow) or minimizing paths, but they fail to 
consider the kinematics and dynamics of the mobile robot. AGV routing 
has proven to be an NP-complete problem (Nishi et al., 2006), so 
approximate algorithms are used to find an optimal solution. They 
address the optimization problem using a wide range of mathematical 
models, such as heuristic and metaheuristic algorithms and exact solu
tions. Heuristic approaches take advantage of the problem’s properties 
to derive solution strategies, while exact approaches seek global opti
mality but usually fail to provide appropriate solutions on NP-hard 
problems. For instance, Langevin et al. (1996) used a dynamic pro
gramming approach. Cordeau et al. (2002) dealt with the vehicle rout
ing problem using time windows. Nishi et al. (2007) tackled the dynamic 
AGV routing problem using real-time data. Duinkerken et al. (2006) 
analyzed the problem of scheduling and conflict-free route allocation. 
Masae et al. (2020) proposed a Markov Chain (MC) approach to predict 
the probability of collisions and then recalculate the route. A hybrid 
mixed-integer programming approach has also been used (Corréa et al., 
2007; Nishi et al., 2011; Kesen and Baykoç, 2007), tackling the alloca
tion under a Just in Time (JIT) production using a bidirectional route 
flow. Zhang et al. (2008) used a Lagrangian relaxation approach. Nishi 
and Tanaka (2012) used a place/transition (Petri) net approach opti
mized by heuristics and obtained Petri net trajectories with conflict 
rules. Ghasemzadeh et al. (2009) also used a heuristic algorithm to 
tackle conflict-free bidirectional flows in the facility layout. Liu and 
Kulatunga (2007) analyzed the same problem by means of Simulated 
Annealing (SA) and an Ant Colony Optimization (ACO) algorithm. 
Chiew and Qin (2009) overcame traffic conflicts by using a concurrent 

bitonic algorithm. The genetic algorithm (GA) approach has been 
applied to minimize the trajectory time and maximize AGV use 
(Buyurgan et al., 2007; Udhayakumar et al., 2010; Umar et al., 2013). 
The Q-learning approach was applied by Jeon et al. (2011). Fazlollah
tabar and Saidi-Mehrabad (2015) analyzed the uncertainty of produc
tion processes in a GA controlled by a feedback mechanism through 
fuzzy logic. Todosijevic et al. (2017) solved the vehicle routing problem 
using mixed-integer programming. A comprehensive review of the 
existing approaches for optimizing AGV systems can be found in Ramos 
et al. (2015). 

The assessment of the effect of energy consumption on trajectories in 
AGVs and its relationship with sustainable measures for adaptation of 
the automotive industry to government pollutant emission regulations 
has been analyzed in Valero et al. (2019; 2019a), Rubio and Llopi
s-Albert (2019), Zheng et al. (2018), and Llopis-Albert et al. (2021b). 

The importance of improving productivity for welding robots is also 
shown in Abolhassani et al. (2019) and Lin et al. (2019), where the 
authors analyze intelligent path optimization strategies to support 
optimal manufacturing logistics. 

Additionally, an extensive review of optimization approaches for 
industrial robot trajectory planning is presented in Llopis-Albert et al. 
(2018). Furthermore, optimal time trajectories for industrial robots 
taking into account the energy consumed were studied by Rubio et al. 
(2012,2019a) and Llopis-Albert et al. (2015). 

The present paper follows these research lines but goes a step further 
than the current literature by integrating a methodology into the 
framework of a multi-objective optimization algorithm to improve 
productivity and reduce the costs and energy consumption associated 
with autonomous industrial processes to achieve sustainable growth. 

This paper is organized as follows: Section 2 introduces the optimi
zation algorithm, while in Section 3, the methodology is applied to 
different case studies. In Section 4, the results are discussed. Finally, 
Section 5 presents the conclusions. 

2. Material and methods 

This section presents the multi-objective optimization algorithm 
used to conduct the study. It applies to a robotic cell composed of an 
industrial robot arm, a computer numerical control (CNC) machine tool, 
and an AGV (automatic guided vehicle) for in-plant transport and Ma
terial Handling Systems. 

The framework presented combines several approaches, integrating 
and improving on previous developments by the authors of this paper. 
Firstly, the methodology integrates an algorithm that minimizes the 
working time of an industrial robot arm while taking into account the 
robot’s kinematics and dynamics and the avoidance of collisions (Rubio 
et al., 2012; Llopis-Albert et al., 2015). Secondly, it also integrates tra
jectory planning for AGVs, respecting the dynamic constraints of the 
vehicle, including the characteristics of power delivery by the motor, the 
basic inertial parameters, and the behavior of the tires (Valero et al., 
2019; 2019a). For the sake of conciseness, readers are referred to these 
works for a comprehensive explanation of such approaches; we only 
present a brief overview here. Basically, for the industrial robot, the 
algorithm takes into account the industrial robot kinematics and dy
namics, boundary conditions (position, velocity, and acceleration) for 
initial, intermediate, and final configurations, collision avoidance 
within the robot workspace, physical limitations of the robot system 
(maximum torque, power, and jerk values are considered for each 
actuator), and the energy consumed. 

AGVs are considered to have four wheels arranged symmetrically 
about their central axis, with the driving torque acting on the rear 
wheels, braking on all wheels, and front-wheel steering. Tire behavior is 
critical when determining the dynamic performance of the robot. The 
simplifying assumptions considered are that there are no roll and pitch 
motions and aerodynamic effects, there is no side load transfer, a 
bicycle-type planar model is used with three degrees of freedom, and a 
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restriction is associated with the steering angle. The front and rear 
wheels are simplified and replaced by one that will account for the force 
exerted by both of them. The steering angle is equal for each front wheel 
and corresponds to the steering angle of the bicycle model. With the 
simplified dynamic model, the AGV performs safe, collision-free, 
feasible trajectories. 

However, we detail the methodology for obtaining annual profits by 
a company that manufactures different products in the robotic cell, 
which undergo internal transport during the manufacturing process. 
Specifically, the products will be transported from the CNC machine tool 
to the warehouse. Let B be the function representing the annual profits, 
which is one of the two objectives in the multi-objective optimization 
problem. The intention is to maximize them as follows: 

Max B (1)  

Which can be expressed as in Eq. (2): 

B = Ao⋅BT − CT (2)  

where: 
Ao is the opportunity cost of investing money in the manufacture of 

product m. 
BT is the gross total profit of selling product m manufactured by the 

company. 
CT are the expenses associated with the internal transport of manu

factured products. 
Ao can be expressed as follows: 

Ao =
1

(1 + r)T (3)  

In Eq. (3), r is the annual interest, and T represents the number of years 
the company is productive. The total gross profit is: 

BT =
∑n

m=1
Bm (4)  

Where Bm is the gross profit of manufacturing product m. It can be 
expressed as follows: 

Bm =
∑n

m=1
bm⋅Qm (5)  

Where bm = Pm − Cm is the unit gross profit of manufacturing product m. 
It is obtained as the difference between the unit sale price Pm minus the 
unit cost of its production Cm. 

Qm is the number of each product m manufactured. It depends on the 
manufacturing time of each product. The shorter the time needed to 
manufacture a single unit of product m, the more products can be 
manufactured. It can be modeled as: 

Qm(t) = K1m/twm(Wm)
γ (6)  

Wm represents the set of tasks necessary to manufacture one unit of 
product m, and twm is the time taken to manufacture one unit of product 
m. 

twm(Wm) = to m +
∑

i∈Wm

ti (7)  

Times ti include several concepts. One is the machining time of the raw 
product, which will depend on the number of operations i it undergoes 
(assuming that i > 1) and the duration of each operation. It also includes 
the time that the robot spends handling the product, which covers pick- 
up of the product from the AGV and drop-off in the machine and pick-up 
from the machine and drop-off again in the AGV once finished. The 
second objective of the multi-objective function is to minimize these 
times. As mentioned above, they are obtained by applying an auxiliary 
optimization algorithm that minimizes the working time (Rubio et al., 
2012). The values of these optimized times are shown in Table 1. These 

times have also been used to carry out an economic study about the 
industrial robot’s efficiency in an assembly line (Llopis-Albert et al., 
2015). In addition: 

to m crepresents the CNC machine’s dead and stop times. 
Constant K1m represents the number of working hours per year 

available to manufacture product m. 
Parameter γ takes into account the economic environment and the 

periods of maximum and minimum annual production. From Eq. (6), it 
follows that the less time spent by the robot and machine in 
manufacturing the product (twm(Wm)), the more products can be 
manufactured. 

The following term is the cost associated with internal transport of 
the products. It can be modeled as follows: 

CT = p + A⋅(tvm)
K2 + ϕ (8)  

Where p represents the internal transport expenses associated with the 
energy consumption and the proportional part of the costs pertaining to 
the AGVs used in the transport (insurance, repairs, maintenance, etc.). It 
can be expressed like this: 

p = p0 + H⋅Ev (9)  

with p0 being the fixed part of the expenses excluding the cost of energy, 
H the cost per unit of energy, and Ev the total energy used in internal 
transport by the vehicles. That is: 

Ev =
∑m

i=1
Evm (10)  

Where Evm is the energy consumed in transporting product m. It depends 
on the number of units n manufactured. As explained, it is obtained by 
applying an auxiliary algorithm to optimize transport times and energy 
consumption of AGVs (Valero et al., 2019; 2019a). Several features have 
been considered to obtain the minimum time to perform a particular 
trajectory: the AGV dynamics, the location of the CNC machine tool and 
target location of the manufactured product, and the avoidance of col
lisions. In addition, the optimization problem is constrained by the dy
namic parameters of the vehicle and its energy consumption. Table 2 
shows the energy consumption for the cases studies analyzed in Section 
3. 

A is the unit value of travel time, which depends on the opportunity 
cost of using the AGV. It is also associated with the amortization value of 
the vehicle based on its useful life. 

Table 1 
Robot working times for several examples.  

Example Robot manipulation time 
(s) 

Example Robot manipulation time 
(s) 

1_1 3.79 4_1 18.28 
1_2 22.55 4_2 14.51 
1_3 19.27 4_3 10.69 
1_4 25.76 4_4 18.28 
2_1 5.14 4_5 14.51 
2_2 5.15 4_6 10.69 
2_3 5.3 4_7 8.49 
2_4 5.62 4_8 6.74 
2_5 6.42 4_9 3.21 
2_6 12.25 4_10 2.41 
2_7 21.08 4_11 18.65 
2_8 23.05 4_12 9.94 
2_9 26.35 5_3 3.08 
3_1 2.27 5_4 9.18 
3_2 7.34 5_5 15.91 
3_3 14.82 5_6 15.93 
3_4 17.94   

**(Each case study has been solved using different physical constraints associ
ated with the robot actuators Nomenclature used. Example: numberex
ample_Number. Numberexample indicates the example solved, and the Number 
position indicates that the example has been solved using different constraints). 
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Parameter K2 considers the periods of inactivity of the AGV due to 
breakdowns, maintenance operations, lack of synchronization with the 
CNC machine tool, and other adverse events. 

tvm is the time taken to transport the n units of product m. If there are 
several routes to travel and each has a fixed distance, the time spent on 
each route is very important. This time spent is also minimized, thus 
reducing the costs associated with transport time. This value, tabulated 
in Table 2 for the examples analyzed, is obtained by applying an 
auxiliary optimization algorithm based on Sequential Quadratic Pro
gramming (SQP). 

tvm = to v +
∑n

k=1
tk (11)  

where tk is the time taken to cover path s to transport one unit (n have 
been manufactured) of product m. For the sake of simplicity, it will be 
considered that each unit of product m only undergoes a single 
transport. 

Note that the times (tvm and twm) are objectives that conflict with the 
other objective (i.e., profits B), because lower times lead to higher 
profits. 

Finally, ϕ is a parameter that depends on qualitative aspects of 

transport. With equal prices and transport times, the factory managers 
can opt for different transport systems, using either an economy of scale 
or other motivations. In this work, its value will be considered negligible 
compared to the other two terms. 

Finally, replacing expressions (2) to (11) in (1), the profit can be 
expressed as follows: 

B =
1

(1 + r)T ⋅
∑n

m=1
(Pm − Cm)⋅

K1

twm
(
Wj

)γ −
(
p0 +H⋅Ev +A⋅(tvm)

K2) (12)  

3. Application of the algorithm to different case studies 

The methodology presented here has been applied to a robotic cell 
composed of a Puma 560 industrial robot, a CNC machine (that is 
capable of performing the operations programmed on the raw material 
to manufacture n units of different products m in a given time), and an 
AGV used for transporting both the raw material and the manufactured 
product (Fig. 1). 

The robot picks up the raw material from the AGV and drops it off in 
the CNC machine tool. The machine works on it, performing the cor
responding manufacturing processes that will give rise to 3 different 
products: A, B, and C (m= 3, whose key trait will be their weight and 
size). When the machine has finished, the robot picks up the manufac
tured product and drops it off in the AGV, which transports it to another 
point in the company’s production line for subsequent operations. Fig. 2 
shows the initial and target locations in the company facility. 

The CNC machine tool and the Puma 560 robot are at the initial 
location (Fig. 2). Then the AGV moves the product to the target location 
(a different point of the production line). 

The multi-objective optimization algorithm is applied to different 
case studies, which will be further defined in Section 4. The Pareto 
frontiers will be obtained in those case studies, which will allow us to 
obtain the trade-offs between the company’s profit and production 
times. The production time includes the time taken by the industrial 
robot to manipulate the raw material, the manufacturing time in the 
CNC machine, and the product transportation times inside the facility 
using AGVs. Part of the process of maximizing the profits calculated by 
Eq. (12) is related to the time tvm the robot takes to perform the tasks on 
product m. The shorter the time spent handling the pieces, the more 
pieces can be manufactured by the machine and, therefore, the greater 
the final profit. The different case studies entail three different types of 
products manufactured (m= 3), which spent a minimum working time in 
the robotic cell tvm and a minimum internal transport time tvm for each 
unit of each product. In general, the product working time is the sum of 
all the minimum times tvm of each of the operations that each unit of 
product m undergoes: 

Table 2 
AGV transport times and energy consumed for products A, B, and C between the 
initial and target location.  

Product Travel 
time (s) 

Energy 
consumed (J) 

Product Travel 
time (s) 

Energy 
consumed (J) 

A_1 52.30 3380.11 B_7 39.66 8985.77 
A_2 47.55 3979.47 B_8 39.71 9876.38 
A_3 42.43 4997.35 B_9 38.32 10,164.40 
A_4 37.91 5988.98 B_10 40.26 4494.28 
A_5 43.51 6993.60 B_11 49.45 5494.90 
A_6 35.30 7987.10 B_12 44.92 6475.10 
A_7 35.82 7478.05 C_1 46.32 3389.20 
A_8 35.97 9394.13 C_2 42.87 3974.28 
A_9 35.15 7762.82 C_3 33.44 5000.57 
A_10 40.14 4491.55 C_4 39.23 5911.38 
A_11 35.40 5496.50 C_5 32.24 6730.44 
A_12 49.96 6501.15 C_6 36.82 8008.51 
B_1 57.83 3392.63 C_7 32.43 7226.96 
B_2 44.00 3992.95 C_8 38.80 7500.77 
B_3 45.68 4988.92 C_9 33.35 6391.90 
B_4 40.98 5975.59 C_10 32.00 6506.95 
B_5 42.66 6976.39 C_11 34.35 5479.18 
B_6 36.99 7495.98    

*(Just one displacement for each product). Nomenclature used. Product: Type
ofproduct_Number. Typeofproduct indicates the product analyzed (A, B, or C), 
the Number position indicates that the example has been solved using different 
constraints. 

Fig. 1. Elements working in the robotic cell.  

F. Rubio et al.                                                                                                                                                                                                                                   



Technological Forecasting & Social Change 173 (2021) 121115

5

twm(Wm) = to m +
∑

i∈Wm

ti (13)  

Also, the energy consumed will be considered by the algorithm for all 
the case studies. 

4. Results and discussion 

Table 1 shows the different times that the industrial robot spent 
handling the pieces for each case (under different operating character
istics, that is, different restrictions of the jerk value and energy 
consumed by the robot). 

Similarly, the internal transport time is calculated according to 
expression (11): 

tvm(Wm) = to v +
∑

k=1
tk (14)  

The number of displacements that the products undergo is assumed to be 
one in this paper. 

In short, the production of different products with different 

manufacturing times and internal transport times will give rise to 
different profits. The maximization of profits will largely depend on the 
optimization of manufacturing and transport times as well as the energy 
consumed. 

Table 2 shows the transport times and the energy consumed for the 
three different products. 

Fig. 3 depicts the optimized routes for three products (A_1, B_1, and 
C_1) and the facility layout. This result can help define the best facility 
layout to minimize AGV travel times. 

Note that the values in Table 2 have been obtained by integrating a 
second auxiliary optimization algorithm based on previous works by the 
authors of this paper (Valero et al., 2019; 2019a) into the methodo
logical framework presented here. 

Next, the annual profit will be quantified using time optimization. To 
do this, the time difference between optimized and non-optimized 
processes will be assessed. Then, the profits (or losses) will be ob
tained using Pareto fronts. 

Let us consider the time taken to manufacture products A_1, B_1, and 
C_1. The parameter values used in the multi-objective optimization al
gorithm are shown in Table 3. Considering that the market conditions do 

Fig. 2. Product Locations: Initial and Target locations.  

Fig. 3. Optimal trajectories for products A_1, B_1, and C_1.  
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not change and no optimization algorithm is used, there is a loss of profit 
because of the longer working times of the industrial robot arm and 
travel times of the AGVs. 

Fig. 4 presents the Pareto frontier representing the trade-off between 
the decision variables, i.e., the profits and manufacturing times for 
different examples. Note that the optimization procedure leads to 
shorter working times and, therefore, greater annual profits. 

The results for the three products clearly show that shorter times lead 
to greater profits since more products are produced within a particular 
shift. Moreover, the algorithm allows us to assess the loss of profits for 
longer times than those reported by the algorithm. This also shows the 
value of using the developed algorithm and the opportunity cost of not 
doing so. 

Pareto optimality also depicts the opportunity cost of using longer 
than minimum manufacturing and transportation times. Additionally, it 
shows the trade-offs expressing the opportunity cost of one potential 
choice regarding which product to manufacture. Therefore, for a specific 
production time, the algorithm presented allows us to obtain the loss of 
profits if compared with the best alternative for manufacturing other 
products. For instance, for manufacturing times of around 60 s, it is 
better to manufacture product C than product A or product B. 

This means that the Pareto front of Product C dominates the front of 
Products A and B, so higher profits are expected to be achieved for 
Product C. The difference in economic terms can reach a value of around 
€0.5 M. However, for longer times than 90 s, it is better to manufacture 
first product B, second product C, and third product A. 

In this case, the difference regarding the decision to manufacture 

product B or C is negligible, but important if compared with product A. 
Note that for each product the algorithm can also take into account 
considerations such as its demand, the availability of raw materials, the 
transportation costs out the facility, the personnel on duty at each shift, 
etc. using a calibration process of the equation parameters presented in 
Section 2. Hence, the algorithm can deal with different economic envi
ronments, thus helping in the decision-making process for designing 
optimal production plans, adapting quickly to changes in the market, 
and assessing the financial suitability of each production alternative. 

Fig. 5 presents the company’s profits versus different product prices 
for product B and case 2 obtained by simulating a price fluctuation based 
on a normal distribution (with mean equal to the current price and 
standard deviation equal to one-tenth of the current price) due to 
different company strategies, economic environments, or market 
seasonality. 

Likewise, Fig. 6 depicts the company’s profits versus different 
product costs for product B and case 2 obtained by simulating a cost 
fluctuation based on a normal distribution (with mean equal to the 
current fixed cost and standard deviation equal to one-tenth of the 
current cost) due to changes in the market, costs of supplies, workforce, 
etc. These figures show how the algorithm allows us to determine the 
higher profits achievable by the company due to changes in the prices or 
costs of the products. This is because the algorithm returns the minimum 
times for both the executable times of the robot arm and the trans
portation time of the AGVs inside the facility. 

Fig. 7 presents the annual profits for product A and several cases 
based on the current demand. It presents a wide range of company 
profits since they strongly depend on the particular variables that 
characterize each case. For example, case 1, which has no constraints in 
the jerk and the energy consumed by the robot arm, presents the highest 

Table 3 
Parameters, industrial robot working times, and total times considering both 
manufacturing and transportation tasks.   

Product A Product B Product C 

Execution time (s) 3.79 5.15 6.42 
Fixed cost (€) 80 90 95 
Product price (€) 105.29 112.34 131.47 
Energy consumed by the robot arm 

(J) 
87.5 90 93 

Unitary energy cost of the robot arm 
(€) 

1.6454E-06 1.6924E-06 1.7488E-06 

Time taken by the other tasks (s) 12 14 17 
Cumulative time of the robot arm (s) 15.5 19.15 23.42 
Np (number of items manufactured) 18,940 20,113 13,981 
Transport time, tvm (s) 52.3 57.83 46.32 
Energy consumed by transport (J) 3380.11 3392.63 3389.2 
Energy cost of transport (€) 0.000063562 6.37975E- 

05 
0.000063733 

Fixed cost of transport (€) 0.25 0.27 0.29 
Total cost (€) 89.98719 98.54536 106.88444 
Total time (s) 67.3 76.98 69.74  
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Fig. 4. Pareto fronts showing the trade-offs between the two objectives (i.e., profits and manufacturing time) for three different products.  
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Fig. 5. Profits versus different product prices for product B and case 2 obtained 
by simulating a price fluctuation based on a normal distribution (with mean 
equal to the current price and standard deviation equal to one-tenth of the 
current price) due to different company strategies or economic environments. 
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profits. On the contrary, case 5, with severe physical constraints, shows 
the lowest profits. 

The differences between these three products are presented in 
Table 3, which shows the parameters used in the multi-objective opti
mization procedure, the industrial robot manipulating times, and the 
total times considering both manufacturing and transportation tasks. 

In addition, the proposed algorithm could potentially be useful in 
further optimization studies and operational issues such as the detection 
of potential bottleneck points, deadlocks, idle times, and the possibility 
of collisions of the AGVs; the determination of how many AGVs are 
needed to meet the demand; the best scheduling in shifts, production, 
and maintenance tasks; and the network flow rules to maximize AGV 
utilization. 

5. Conclusions 

A multi-objective optimization algorithm under conflicting objec
tives is presented in order to optimize profits, working times, energy 
consumed, and trajectory followed by AGVs for the efficient ware
housing of raw materials and finished products using a standard robotic 
system consisting of an industrial robot, a manufacturing machine, and 
an AGV under a flexible management environment. The algorithm also 
provides the trade-offs between decision variables using Pareto frontiers 
and a set of Pareto optimality solutions that satisfy the constraints. 

The proposed algorithm can play an important role in factory lo
gistics in terms of production efficiency and energy consumption. 
Furthermore, the algorithm ensures that AGVs operate with the required 
accuracy and provide the best possible performance. 

Based on the manufacturing tasks carried out by the industrial robot 
arm and the manufacturing machine tool, the required transportation 

tasks between two locations in the facility, and the number of AGVs 
needed, the algorithm finds the minimum working and travel times, as 
well as the energy consumed, while taking into account economic issues 
such as the company’s profits. It considers the kinematics and dynamics 
of the robot and AGV and obtains the minimum time to perform the 
robot tasks and the AGV’s trajectories while avoiding collisions. In short, 
it optimizes productivity. 

Several examples serve to assess this algorithm. They show that 
greater profits are achieved when this methodology is used since it leads 
to shorter working times and a higher number of products manufactured 
in a lower number of shifts. Additionally, the multi-objective optimi
zation procedure and Pareto frontiers can help supervisors in the 
decision-making process, considering that product manufacturing, ma
terial handling, and efficient scheduling have a significant influence on 
the system’s overall performance and reliability due to the direct impact 
on working and travel time, installation costs, and the complexity of the 
control system software. Warehousing management and improvements 
in on-time delivery can be enhanced, which are issues of major concern 
in a competitive market. Furthermore, reductions in energy consump
tion in autonomous industrial processes allow companies to design 
environmentally sustainable strategies that ensure compliance with 
governmental greenhouse gas (GHG) emission regulations and climate 
change mitigation and adaptation policies. 

In future work, the limitations and simplifications used in the kine
matic and dynamic model of autonomous industrial processes could be 
improved to make them more realistic. The algorithm could be 
improved by reducing the computational time for both the industrial 
robot and the AGVs when dealing with the obstacle collision avoidance 
system. Since they can be equipped with instrumentation to detect 
moving obstacles, the trajectories must be recalculated according to 
these moving obstacles, so it would be desirable to diminish computa
tional times to work properly in real time. 
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