
Annales Fennici Mathematici
Volumen 46, 2021, 667–681

A CLASS OF SUMMING OPERATORS

ACTING IN SPACES OF OPERATORS

José Rodríguez and Enrique A. Sánchez-Pérez

Universidad de Murcia, Dpto. de Ingeniería y Tecnología de Computadores
30100 Espinardo (Murcia), Spain; joserr@um.es

Universitat Politècnica de València, Instituto Universitario de Matemática Pura y Aplicada
Camino de Vera s/n, 46022 Valencia, Spain; easancpe@mat.upv.es

Abstract. Let X , Y and Z be Banach spaces and let U be a subspace of L(X∗, Y ), the Banach
space of all operators from X∗ to Y . An operator S : U → Z is said to be (ℓsp, ℓp)-summing (where
1 ≤ p < ∞) if there is a constant K ≥ 0 such that

(

n
∑

i=1

‖S(Ti)‖
p
Z

)1/p

≤ K sup
x∗∈BX∗

(

n
∑

i=1

‖Ti(x
∗)‖pY

)1/p

for every n ∈ N and all T1, . . . , Tn ∈ U . In this paper we study this class of operators, introduced

by Blasco and Signes as a natural generalization of the (p, Y )-summing operators of Kislyakov. On

the one hand, we discuss Pietsch-type domination results for (ℓsp, ℓp)-summing operators. In this

direction, we provide a negative answer to a question raised by Blasco and Signes, and we also give

new insight on a result by Botelho and Santos. On the other hand, we extend to this setting the

classical theorem of Kwapień characterizing those operators which factor as S1 ◦ S2, where S2 is

absolutely p-summing and S∗

1
is absolutely q-summing (1 < p, q < ∞ and 1/p+ 1/q ≤ 1).

1. Introduction

Summability of series in Banach spaces is a classical central topic in the field
of mathematical analysis. This study is faced from an abstract point of view as a
part of the general analysis of the summability properties of operators, using some
remarkable results of the theory of operator ideals. Pietsch’s Factorization Theorem
is nowadays the central tool in this topic, and different versions of this result adapted
to other contexts are currently known. This theorem establishes that operators that
transform weakly p-summable sequences into absolutely p-summable ones can always
be dominated by an integral, and factored through a subspace of an Lp-space. Some
related relevant results can also be formulated in terms of integral domination and
factorization of operators. For example, recall that an operator between Banach
spaces S : X → Y is said to be (p, q)-dominated (where 1 < p, q <∞ and 1/p+1/q =
1/r ≤ 1) if for every couple of finite sequences (xi)

n
i=1 in X and (y∗i )

n
i=1 in Y ∗, the

strong ℓr-norm of the sequence (〈S(xi), y
∗
i 〉)

n
i=1 is bounded above by the product of

the weak ℓp-norm of (xi)
n
i=1 and the weak ℓq-norm of (y∗i )

n
i=1 (up to a multiplying

constant independent of both sequences and their length). Kwapień’s Factorization
Theorem [18] states that an operator is (p, q)-dominated if and only if it can be
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written as the composition S1 ◦S2 of operators such that S2 is absolutely p-summing
and the adjoint S∗

1 is absolutely q-summing (cf. [9, §19]).
The aim of this paper is to continue with the specific study of the summability

properties of operators defined on spaces of operators. Throughout this paper X, Y
and Z are Banach spaces.

Definition 1.1. [3, Blasco–Signes] Let 1 ≤ p < ∞ and let U be a subspace of
L(X∗, Y ). An operator S : U → Z is said to be (ℓsp, ℓp)-summing if there is a constant
K ≥ 0 such that

(1.1)

(

n
∑

i=1

‖S(Ti)‖
p
Z

)1/p

≤ K sup
x∗∈BX∗

(

n
∑

i=1

‖Ti(x
∗)‖pY

)1/p

for every n ∈ N and all T1, . . . , Tn ∈ U .

Some fundamental properties of this type of operators are already known, as
well as the main picture of their summability properties. The works of Blasco and
Signes [3] and Botelho and Santos [5] fixed the framework and solved a great part
of the natural problems appearing in this context. In the particular case when U is
the injective tensor product X⊗̂εY (naturally identified as a subspace of L(X∗, Y )),
(ℓsp, ℓp)-summing operators had been studied earlier by Kislyakov [17] as “(p, Y )-
summing” operators. In particular, he gave a Pietsch-type domination theorem for
(ℓsp, ℓp)-summing operators defined on X⊗̂εY (see [17, Theorem 1.1.6]). This led to
the natural question of whether a Pietsch-type domination theorem holds for arbi-
trary (ℓsp, ℓp)-summing operators, see [3, Question 5.2]. Botelho and Santos extended
Kislyakov’s result by showing that this is the case when U is Schwartz’s ε-product
XεY , i.e. the subspace of all operators from X∗ to Y which are (w∗-to-norm) con-
tinuous when restricted to BX∗ (see [5, Theorem 3.1]).

This paper is organized as follows. In Section 2 we give new insight on the
Botelho-Santos theorem and we provide a negative answer to the aforementioned
question, see Example 2.10. To this end, we characterize those (ℓsp, ℓp)-summing oper-
ators admitting a Pietsch-type domination by means of the strong operator topology
(Theorem 2.9). All of this is naturally connected with a discussion on measurability
properties of operators which might be of independent interest.

In Section 3 we start a general analysis of the summability properties of operators
defined on spaces of operators that imply similar properties for the adjoint maps.
Our main result along this way is a Kwapień-type theorem involving the special
summation that arises in this setting related to the strong operator topology, see
Theorem 3.2.

Notation and terminology. All our Banach spaces are real and all our topo-
logical spaces are Hausdorff. By a subspace of a Banach space we mean a norm-closed
linear subspace. By an operator we mean a continuous linear map between Banach
spaces. The norm of a Banach space X is denoted by ‖ · ‖X or simply ‖ · ‖. We write
BX = {x ∈ X : ‖x‖ ≤ 1} (the closed unit ball of X). The topological dual of X is
denoted by X∗ and we write w∗ for its weak∗-topology. The evaluation of a functional
x∗ ∈ X∗ at x ∈ X is denoted by either 〈x, x∗〉 or 〈x∗, x〉. We write X 6⊇ ℓ1 to say
that X does not contain subspaces isomorphic to ℓ1. We denote by L(X∗, Y ) the
Banach space of all operators from X∗ to Y , equipped with the operator norm. The
strong operator topology (SOT for short) on L(X∗, Y ) is the locally convex topology
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for which the sets

{T ∈ L(X∗, Y ) : ‖T (x∗)‖Y < ε}, x∗ ∈ X∗, ε > 0,

are a subbasis of open neighborhoods of 0. That is, a net (Tα) in L(X∗, Y ) is SOT-
convergent to 0 if and only if ‖Tα(x

∗)‖Y → 0 for every x∗ ∈ X∗. Given a compact
topological space L, we denote by C(L) the Banach space of all real-valued continuous
functions on L, equipped with the supremum norm. Thanks to Riesz’s representation
theorem, the elements of C(L)∗ are identified with regular Borel signed measures
on L. We denote by P (L) ⊆ C(L)∗ the convex w∗-compact set of all regular Borel
probability measures on L. For each t ∈ L, we write δt ∈ P (L) to denote the
evaluation functional at t, i.e. δt(h) := h(t) for all h ∈ C(L). A function defined on L
with values in a Banach space is said to be universally strongly measurable if it is
strongly µ-measurable for all µ ∈ P (L). We will mostly consider the case when L is
the dual closed unit ball BX∗ equipped with the weak∗-topology.

2. Pietsch-type domination of (ℓs
p
, ℓp)-summing operators

Throughout this section we fix 1 ≤ p < ∞. The aforementioned Pietsch-type
domination theorem for (ℓsp, ℓp)-summing operators proved in [5, Theorem 3.1] reads
as follows:

Theorem 2.1. (Botelho–Santos) Let U be a subspace of XεY and let S : U → Z
be an (ℓsp, ℓp)-summing operator. Then there exist a constant K ≥ 0 and µ ∈ P (BX∗)
such that

(2.1) ‖S(T )‖Z ≤ K

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

for every T ∈ U .

A first comment is that the integral of inequality (2.1) is always well-defined for
any T ∈ XεY and µ ∈ P (BX∗). Indeed, the restriction T |BX∗

is (w∗-to-norm) con-
tinuous, so it is universally strongly measurable. Since in addition T |BX∗

is bounded,
it belongs to the Lebesgue–Bochner space Lp(µ, Y ).

Remark 2.2. Actually, Theorem 2.1 is proved in [5, Theorem 3.1] for operators S
defined on a subspace U contained in

Lw∗,‖·‖(X
∗, Y ) = {T ∈ L(X∗, Y ) : T is (w∗-to-norm) continuous}.

The proof given there is based on the abstract Pietsch-type domination theorem of
Botelho, Pellegrino and Rueda [4], and the argument works for subspaces of XεY as
well. We stress that Lw∗,‖·‖(X

∗, Y ) consists of finite rank operators, one has

Lw∗,‖·‖(X∗, Y )
‖·‖

= X⊗̂εY ⊆ XεY

and, in general, Lw∗,‖·‖(X
∗, Y ) 6= XεY .

We next provide a more direct proof of Theorem 2.1. While the underlying idea
is similar, we include the details for the reader’s convenience. Yet another approach
will be presented at the end of this section.

Proof of Theorem 2.1. For any n ∈ N and T̄ = (T1, . . . , Tn) ∈ Un, we define

∆T̄ : P (BX∗) → R, ∆T̄ (µ) :=

n
∑

i=1

‖S(Ti)‖
p
Z −Kp

ˆ

BX∗

n
∑

i=1

‖Ti(·)‖
p
Y dµ,
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where K ≥ 0 is a constant as in Definition 1.1. Clearly, ∆T̄ is convex and w∗-
continuous, because the real-valued function

x∗ 7→

n
∑

i=1

‖Ti(x
∗)‖pY

is w∗-continuous on BX∗ . This function attains its supremum at some x∗
T̄
∈ BX∗ .

Bearing in mind that S is (ℓsp, ℓp)-summing, we get ∆T̄ (δx∗

T̄
) ≤ 0.

Note also that the collection of all functions of the form ∆T̄ is a convex cone
in RP (BX∗). Indeed, given T̄ = (T1, . . . , Tn) ∈ Un, R̄ = (R1, . . . , Rm) ∈ Um, α ≥ 0
and β ≥ 0, we have α∆T̄ + β∆R̄ = ∆H̄ , where

H̄ = (α1/pT1, . . . , α
1/pTn, β

1/pR1, . . . , β
1/pRm).

Therefore, by Ky Fan’s Lemma (see e.g. [11, Lemma 9.10]), there is µ ∈ P (BX∗) such
that ∆T̄ (µ) ≤ 0 for all functions of the form ∆T̄ . In particular, inequality (2.1) holds
for all T ∈ U . �

Clearly, in order to extend the statement of Theorem 2.1 to other subspaces U of
L(X∗, Y ), the real-valued map ‖T (·)‖Y needs to be µ-measurable for every T ∈ U .
This holds automatically if U is a subspace of

UM(X∗, Y ) := {T ∈ L(X∗, Y ) : T |BX∗
is universally strongly measurable}.

Note that UM(X∗, Y ) is a SOT-sequentially closed subspace of L(X∗, Y ).

Example 2.3. (i) We have XεY ⊆ UM(X∗, Y ) according to the comment
preceding Remark 2.2.

(ii) More generally, every (w∗-to-weak) continuous operator from X∗ to Y be-
longs to UM(X∗, Y ). Indeed, just bear in mind that any weakly continuous
function from a compact topological space to a Banach space is universally
strongly measurable, see [1, Proposition 4]. We stress that, by the Banach–
Dieudonné theorem, an operator T : X∗ → Y is (w∗-to-weak) continuous if
and only if the restriction T |BX∗

is (w∗-to-weak) continuous.
(iii) In particular, if X is reflexive, then L(X∗, Y ) = UM(X∗, Y ).

Example 2.4. If X 6⊇ ℓ1, then every T ∈ L(X∗, Y ) with separable range belongs
to UM(X∗, Y ). Indeed, a result of Haydon [15] (cf. [23, Theorem 6.9]) states that
X∗∗ = UM(X∗,R) if and only if X 6⊇ ℓ1. The conclusion now follows from Pettis’
measurability theorem applied to T |BX∗

and each µ ∈ P (BX∗), see e.g. [12, p. 42,
Theorem 2].

So, we will look for conditions ensuring that an (ℓsp, ℓp)-summing operator defined
on a subspace of UM(X∗, Y ) is (ℓsp, ℓp)-controlled, according to the following:

Definition 2.5. Let U be a subspace of UM(X∗, Y ). An operator S : U → Z
is said to be (ℓsp, ℓp)-controlled if there exist a constant K ≥ 0 and µ ∈ P (BX∗) such
that

(2.2) ‖S(T )‖Z ≤ K

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

for every T ∈ U .

The next characterization is straightforward.

Proposition 2.6. Let U be a subspace of UM(X∗, Y ) and let S : U → Z be
an operator. Then S is (ℓsp, ℓp)-controlled if and only if there exist µ ∈ P (BX∗), a
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subspace W ⊆ Lp(µ, Y ) and an operator S̃ : W → Y such that S factors as

U
S //

iµ|U

��

Z

W

S̃

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

where iµ : UM(X∗, Y ) → Lp(µ, Y ) is the operator that maps each T ∈ UM(X∗, Y )
to the equivalence class of T |BX∗

in Lp(µ, Y ).

Proof. It is clear that such factorization implies that S is (ℓsp, ℓp)-controlled.
Conversely, inequality (2.2) in Definition 2.5 allows us to define a linear continuous

map S̃0 : iµ(U) → Z by declaring S̃0(iµ(T )) := S(T ) for all T ∈ U . Now, we can

extend S̃0 to an operator S̃ from W := iµ(U) to Z. Clearly, we have S̃ ◦ iµ|U = S. �

We next give a couple of applications of Proposition 2.6 related to topological
properties of (ℓsp, ℓp)-controlled operators.

The class of Banach spaces X such that L1(µ) is separable for every µ ∈ P (BX∗)
is rather wide. It contains, for instance, all weakly compactly generated Banach
spaces (cf. [13, Theorem 13.20 and Corollary 14.6]) as well as all Banach spaces not
containing subspaces isomorphic to ℓ1 (see [2, Proposition B.1]). For such spaces we
have:

Corollary 2.7. Suppose that L1(µ) is separable for every µ ∈ P (BX∗) and that
Y is separable. Let U be a subspace of UM(X∗, Y ) and let S : U → Z be an (ℓsp, ℓp)-
controlled operator. Then S has separable range.

Proof. Under such assumptions, Lp(µ, Y ) is separable for any µ ∈ P (BX∗). The
result now follows from Proposition 2.6. �

A subset of a Banach space is said to be weakly precompact if every sequence
in it admits a weakly Cauchy subsequence. Rosenthal’s ℓ1-theorem [22] (cf. [13,
Theorem 5.37]) characterizes weakly precompact sets as those which are bounded and
contain no sequence equivalent to the unit basis of ℓ1. An operator between Banach
spaces is said to be weakly precompact if it maps bounded sets to weakly precompact
sets; this is equivalent to saying that it factors through a Banach space not containing
subspaces isomorphic to ℓ1. For more information on weakly precompact operators
we refer the reader to [14].

Corollary 2.8. Let U be a subspace of UM(X∗, Y ) and let S : U → Z be an
(ℓsp, ℓp)-controlled operator. Then:

(i) S is weakly compact whenever Y is reflexive.
(iii) S is weakly precompact whenever Y 6⊇ ℓ1.

Proof. We consider a factorization of S as in Proposition 2.6 and we distinguish
two cases:

Case 1 < p < ∞. If Y is reflexive, then so is Lp(µ, Y ) (see e.g. [12, p. 100,
Corollary 2]) and the same holds for W , hence S is weakly compact. On the other
hand, if Y 6⊇ ℓ1, then Lp(µ, Y ) 6⊇ ℓ1 (see e.g. [7, Theorem 2.2.2]) and so W 6⊇ ℓ1,
hence S is weakly precompact.

Case p = 1. Let j : L2(µ, Y ) → L1(µ, Y ) be the identity operator. Since

iµ(BU) ⊆ j(BL2(µ,Y )),
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we deduce that iµ(BU) is relatively weakly compact (resp. weakly precompact) when-

ever Y is reflexive (resp. Y 6⊇ ℓ1), and the same holds for S(BU) = S̃(iµ(BU)). �

The following result shows the link between (ℓsp, ℓp)-controlled and (ℓsp, ℓp)-summing
operators.

Theorem 2.9. Let U be a subspace of UM(X∗, Y ) and let S : U → Z be an
operator. Let us consider the following statements:

(i) S is (ℓsp, ℓp)-controlled.
(ii) S is (ℓsp, ℓp)-summing and (SOT-to-norm) sequentially continuous.

Then (i) ⇒ (ii). Moreover, both statements are equivalent whenever U ∩ XεY is
SOT-sequentially dense in U .

Proof. Suppose first that S is (ℓsp, ℓp)-controlled and consider a factorization of S
as in Proposition 2.6. We will deduce that S is (ℓsp, ℓp)-summing and (SOT-to-norm)
sequentially continuous by checking that so is iµ. On the one hand, iµ is (ℓsp, ℓp)-
summing, because for every n ∈ N and T1, . . . , Tn ∈ UM(X∗, Y ) we have

n
∑

i=1

‖iµ(Ti)‖
p
Lp(µ,Y ) =

ˆ

BX∗

n
∑

i=1

‖Ti(·)‖
p
Y dµ ≤ sup

x∗∈BX∗

n
∑

i=1

‖Ti(x
∗)‖pY .

On the other hand, iµ is (SOT-to-norm) sequentially continuous. Indeed, let (Tn)
be a sequence in UM(X∗, Y ) which SOT-converges to 0, i.e. ‖Tn(x

∗)‖Y → 0 for
every x∗ ∈ X∗. By the Banach–Steinhaus theorem, sup{‖Tn‖ : n ∈ N} < ∞. From
Lebesgue’s dominated convergence theorem it follows that (iµ(Tn)) converges to 0 in
the norm topology of Lp(µ, Y ).

Suppose now that (ii) holds and that U ∩XεY is SOT-sequentially dense in U .
The restriction S|U∩XεY is (ℓsp, ℓp)-summing and so Theorem 2.1 and Proposition 2.6
ensure the existence of µ ∈ P (BX∗), a subspace W ⊆ Lp(µ, Y ) and an operator

S̃ : W → Z such that iµ(U ∩XεY ) ⊆W and

S̃ ◦ iµ|U∩XεY = S|U∩XεY .

Then we have iµ(U) ⊆ W and S̃ ◦ iµ|U = S, because S and iµ are (SOT-to-norm)
sequentially continuous and U ∩XεY is SOT-sequentially dense in U . Therefore, S
is (ℓsp, ℓp)-controlled. �

We are now ready to present a negative answer to [3, Question 5.2]:

Example 2.10. Suppose that X is not reflexive and X∗ is separable (e.g. X =
c0). Then X∗∗ = UM(X∗,R), every S ∈ X∗∗∗ is (ℓsp, ℓp)-summing, but no S ∈
X∗∗∗ \X∗ is (ℓsp, ℓp)-controlled (as operators from X∗∗ to R).

Proof. The equality X∗∗ = UM(X∗,R) follows from the fact that X 6⊇ ℓ1,
according to Haydon’s result which we already mentioned in Example 2.4. Every
S ∈ X∗∗∗ is easily seen to be (ℓsp, ℓp)-summing as an operator from X∗∗ to R (use
that BX∗ is w∗-dense in BX∗∗∗ , by Goldstine’s theorem). On the other hand, if
S ∈ X∗∗∗ is (ℓsp, ℓp)-controlled, then it is w∗-sequentially continuous by Theorem 2.9
(bear in mind that SOT= w∗ on X∗∗). Since (BX∗∗ , w∗) is metrizable (because X∗ is
separable), the restriction S|BX∗∗

is w∗-continuous and so, by the Banach–Dieudonné
theorem, S is w∗-continuous, i.e. S ∈ X∗. �

In order to apply Theorem 2.9, there are many examples of subspaces U of
UM(X∗, Y ) for which U ∩ XεY is SOT-sequentially dense in U . An operator
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T : X∗ → Y is said to be affine Baire-1 (we write T ∈ AB(X∗, Y ) for short) if
there is a sequence in XεY which SOT-converges to T . Affine Baire-1 operators
were studied by Mercourakis and Stamati [20] and Kalenda and Spurný [16]. We
present below some examples. Recall first that a Banach space Y has the approxi-

mation property (AP) if for each norm-compact set C ⊆ Y and each ε > 0 there is a
finite rank operator R : Y → Y such that ‖R(y)−y‖Y ≤ ε for all y ∈ C. If in addition
R can be chosen in such a way that ‖R‖ ≤ λ for some constant λ ≥ 1 (independent
of C and ε), then Y is said to have the λ-bounded approximation property (λ-BAP).
A Banach space is said to have the bounded approximation property (BAP) if it has
the λ-BAP for some λ ≥ 1. For instance, every Banach space with a Schauder basis
has the BAP. In general, the AP and the BAP are different. However, a separable
dual Banach space has the AP if and only if it has the 1-BAP. For more information
on these properties we refer the reader to [6].

Example 2.11. Suppose that Y has the BAP. If T ∈ L(X∗, Y ) is (w∗-to-weak)
continuous and has separable range, then T ∈ AB(X∗, Y ).

Proof. Let λ ≥ 1 be a constant such that Y has the λ-BAP. Given any countable
set D ⊆ Y , there is a sequence (Rn) of finite rank operators on Y such that ‖Rn‖ ≤ λ
for all n ∈ N and ‖Rn(y)− y‖Y → 0 for every y ∈ D. Therefore, ‖Rn(y)− y‖Y → 0
for every y ∈ D (the norm-closure of D). In particular, if this argument is applied to
any countable set D such that D ⊆ T (X∗) ⊆ D, we get that the sequence (Rn ◦T ) is
SOT-convergent to T in L(X∗, Y ). Note that each Rn ◦T is (w∗-to-weak) continuous
(because so is T ) and has finite rank, hence it belongs to Lw∗,‖·‖(X

∗, Y ) ⊆ XεY . �

Example 2.12. Suppose that X∗ is separable and that either X∗ or Y has the
BAP. Then

L(X∗, Y ) = AB(X∗, Y ),

see [20, Theorems 2.18 and 2.19]. The proofs of these results contain a gap which was
commented and corrected in [16, Remark 4.4]. Note that the separability assumption
on Y that appears in the statement of [20, Theorem 2.19] can be removed by using
the arguments of [16].

Clearly, AB(X∗, Y ) is a linear subspace of L(X∗, Y ). It is norm-closed whenever
Y has the BAP, as we next show. To this end, we use an argument similar to the
usual proof that the uniform limit of a sequence of real-valued Baire-1 functions is
Baire-1 (see e.g. [19, Proposition A.126]). However, some technicalities arise since
we need to approximate with operators instead of arbitrary continuous maps.

Lemma 2.13. If Y has the BAP, then AB(X∗, Y ) is norm-closed in L(X∗, Y ).

Proof. Fix λ ≥ 1 such that Y has the λ-BAP. Let T ∈ AB(X∗, Y )
‖·‖

with
‖T‖ = 1. Let (Uk) be a sequence in AB(X∗, Y ) such that ‖Uk‖ ≤ 2−k+1 for all
k ∈ N and T =

∑

k∈N Uk in the operator norm. Given k ∈ N, we can apply to Uk

the vector-valued version of Mokobodzki’s theorem proved in [16, Theorem 2.2] to
obtain a sequence (Sk,n)n∈N in XεY such that

• (Sk,n)n∈N SOT-converges to Uk;
• ‖Sk,n‖ ≤ λ2−k+1 for all n ∈ N.

Define a sequence (Tn) in XεY by

Tn :=

n
∑

k=1

Sk,n for all n ∈ N.
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It is easy to check that (Tn) SOT-converges to T , hence T ∈ AB(X∗, Y ). �

As usual, we denote by K(X∗, Y ) the subspace of L(X∗, Y ) consisting of all
compact operators from X∗ to Y . Clearly, we have XεY ⊆ K(X∗, Y ).

Example 2.14. Suppose that X is separable and X 6⊇ ℓ1.

(i) Every finite rank operator T : X∗ → Y is affine Baire-1.

(ii) If Y has the BAP, then

K(X∗, Y ) ⊆ AB(X∗, Y ).

Proof. (i) It suffices to check it for rank one operators. Fix x∗∗ ∈ X∗∗ and y ∈ Y
in such a way that T (x∗) = 〈x∗∗, x∗〉y for all x∗ ∈ X∗. Since X is w∗-sequentially
dense in X∗∗ (by the Odell–Rosenthal theorem [21], cf. [23, Theorem 4.1]), there
is a sequence (xn) in X which w∗-converges to x∗∗. For each n ∈ N we define
Tn ∈ Lw∗,‖·‖(X

∗, Y ) ⊆ XεY by declaring Tn(x
∗) := 〈xn, x

∗〉y for all x∗ ∈ X∗. Clearly,
(Tn) is SOT-convergent to T .

(ii) Take any T ∈ K(X∗, Y ). Since Y has the AP, there is a sequence (Tn) of
finite rank operators from X∗ to Y converging to T in the operator norm. Each Tn
is affine Baire-1 by (i). An appeal to Lemma 2.13 ensures that T ∈ AB(X∗, Y ). �

The proof of Theorem 2.1 makes essential use of the w∗-continuity on BX∗ of
the real-valued map ‖T (·)‖Y for T ∈ XεY . We next present an abstract Pietsch-
type domination theorem for (ℓsp, ℓp)-summing operators that does not require that
continuity assumption, at the price of dominating with a finitely additive measure.
As a consequence of this result, we will obtain another proof of Theorem 2.1.

Given a measurable space (Ω,Σ), we denote by B(Σ) the Banach space of all
bounded Σ-measurable real-valued functions on Ω, equipped with the supremum
norm. The dual B(Σ)∗ can be identified with the Banach space ba(Σ) of all bounded
finitely additive real-valued measures on Σ, equipped with the variation norm. The
duality is given by integration, that is, 〈h, ν〉 =

´

Ω
h dν for every h ∈ B(Σ) and

ν ∈ ba(Σ), see e.g. [10, p. 77, Theorem 7].

Theorem 2.15. Let Σ be a σ-algebra on BX∗ and let U be a subspace of
L(X∗, Y ) such that the restriction of ‖T (·)‖Y to BX∗ is Σ-measurable for every
T ∈ U . Let S : U → Z be an (ℓsp, ℓp)-summing operator. Then there exist a constant
K ≥ 0 and a finitely additive probability ν on Σ such that

(2.3) ‖S(T )‖Z ≤ K
(

ˆ

BX∗

‖T (·)‖pY dν
)1/p

for every T ∈ U .

Proof. For each T ∈ U we define ψT ∈ B(Σ) by

ψT (x
∗) := ‖T (x∗)‖pY for all x∗ ∈ BX∗ .

Let L ⊆ ba(Σ) = B(Σ)∗ be the convex w∗-compact set of all finitely additive proba-
bilities on Σ. For any n ∈ N and T̄ = (T1, . . . , Tn) ∈ Un, we define

∆T̄ : L → R, ∆T̄ (ν) :=
n
∑

i=1

‖S(Ti)‖
p
Z −Kp

ˆ

K

n
∑

i=1

ψTi
dν,

where K ≥ 0 is a constant as in Definition 1.1. Clearly, ∆T̄ is convex and w∗-
continuous. Moreover, by the Hahn–Banach theorem there is ηT̄ ∈ ba(Σ) with
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‖ηT̄‖ba(Σ) = 1 such that

〈

n
∑

i=1

ψTi
, ηT̄

〉

=
∥

∥

∥

n
∑

i=1

ψTi

∥

∥

∥

B(Σ)
.

Bearing in mind that
∑n

i=1 ψTi
≥ 0, it follows that the variation |ηT̄ | ∈ L satisfies

〈

n
∑

i=1

ψTi
, |ηT̄ |

〉

= sup
x∗∈BX∗

n
∑

i=1

ψTi
(x∗).

Therefore, inequality (1.1) in Definition 1.1 yields

∆T̄

(

|ηT̄ |
)

=
n
∑

i=1

‖S(Ti)‖
p
Z −Kp

〈

n
∑

i=1

ψTi
, |ηT̄ |

〉

≤ 0.

The collection of all functions of the form ∆T̄ is easily seen to be a convex cone
in RL. By Ky Fan’s Lemma (see e.g. [11, Lemma 9.10]), there is ν ∈ L such that
∆T̄ (ν) ≤ 0 for all functions of the form ∆T̄ . In particular, (2.3) holds for every
T ∈ U . �

Another proof of Theorem 2.1. Let Σ := Borel(BX∗ , w∗). Let K and ν be as
in Theorem 2.15. Define ϕ ∈ B(Σ)∗ by 〈h, ϕ〉 :=

´

BX∗

h dν for all h ∈ B(Σ). Let

µ ∈ C(BX∗)∗ be the restriction of ϕ to C(BX∗) (as a subspace of B(Σ)). Then
µ ∈ P (BX∗) and (2.3) now reads as

‖S(T )‖Z ≤ K

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

for every T ∈ U ⊆ XεY . �

3. Kwapień-type theorem for (ℓs
p
, ℓs

q
)-dominated operators

Throughout this section we fix 1 < p, q < ∞ such that 1/p + 1/q ≤ 1. Let
1 ≤ r < ∞ be defined by 1/p + 1/q = 1/r. An operator S : X → Y is said to be
(p, q)-dominated if there is a constant K ≥ 0 such that

(

n
∑

i=1

|〈S(xi), y
∗
i 〉|

r

)1/r

≤ K sup
x∗∈BX∗

(

n
∑

i=1

|〈xi, x
∗〉|p

)1/p

· sup
y∈BY

(

n
∑

i=1

|〈y, y∗i 〉|
q

)1/q

for every n ∈ N, all x1, . . . , xn ∈ X and all y∗1, . . . , y
∗
n ∈ Y ∗. The classical result of

Kwapień [18] mentioned in the introduction says that an operator between Banach
spaces is (p, q)-dominated if and only if it can be written as S1◦S2 for some operators
S1 and S2 such that S2 is absolutely p-summing and S∗

1 is absolutely q-summing (cf.
[9, §19]). Our aim in this section is to extend Kwapień’s result to the framework of
(ℓsp, ℓp)-summing operators, see Theorem 3.2 below.

From now on we assume that Z is such that Z∗ is a subspace of UM(E∗, F ) for
some fixed Banach spaces E and F . Accordingly, the adjoint of any operator taking
values in Z is defined on a subspace of UM(E∗, F ) and we can discuss whether it is
(ℓsq, ℓq)-summing or (ℓsq, ℓq)-controlled.
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Definition 3.1. Let U be a subspace of L(X∗, Y ). An operator S : U → Z is
said to be (ℓsp, ℓ

s
q)-dominated if there is a constant K ≥ 0 such that

(

n
∑

i=1

|〈S(Ti), z
∗
i 〉|

r

)1/r

≤ K sup
x∗∈BX∗

(

n
∑

i=1

‖Ti(x
∗)‖pY

)1/p

· sup
e∗∈BE∗

(

n
∑

i=1

‖z∗i (e
∗)‖qF

)1/q
(3.1)

for every n ∈ N, all T1, . . . , Tn ∈ U and all z∗1 , . . . , z
∗
n ∈ Z∗.

Theorem 3.2. Let U be a subspace of UM(X∗, Y ) and let S : U → Z be an
operator. Consider the following statements:

(i) S is (ℓsp, ℓ
s
q)-dominated.

(ii) There exist a constant K ≥ 0 and measures µ ∈ P (BX∗) and η ∈ P (BE∗)
such that

(3.2) |〈S(T ), z∗〉| ≤ K

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

·

(
ˆ

BE∗

‖z∗(·)‖qF dη

)1/q

for every T ∈ U ∩XεY and every z∗ ∈ Z∗ ∩ EεF .
(iii) There exist a constant K ≥ 0 and measures µ ∈ P (BX∗) and η ∈ P (BE∗)

such that (3.2) holds for every T ∈ U and every z∗ ∈ Z∗.
(iv) There exist a Banach spaceW , an (ℓsp, ℓp)-controlled operator S2 : U →W and

an operator S1 : W → Z with (ℓsq, ℓq)-controlled adjoint such that S factors
as S = S1 ◦ S2.

(v) There exist a Banach space W , an (ℓsp, ℓp)-summing operator S2 : U →W and
an operator S1 : W → Z with (ℓsq, ℓq)-summing adjoint such that S factors
as S = S1 ◦ S2.

Then (iii) =⇒ (iv) =⇒ (v) =⇒ (i) =⇒ (ii). All statements are equivalent if, in
addition, we assume that:

(a) the identity map on Z∗ is (SOT-to-w∗) sequentially continuous;
(b) Z∗ ∩ EεF is SOT-sequentially dense in Z∗;
(c) U ∩XεY is SOT-sequentially dense in U ;
(d) S is (SOT-to-norm) sequentially continuous.

For the sake of brevity it is convenient to introduce the following:

Definition 3.3. We say that the triple (Z,E, F ) is admissible if conditions (a)
and (b) above hold.

Before embarking on the proof of Theorem 3.2 we present some examples of ad-
missible triples. Recall that the weak operator topology (WOT for short) on L(E∗, F )
is the locally convex topology for which the sets

{R ∈ L(E∗, F ) : |〈R(e∗), f ∗〉| < ε}, e∗ ∈ E∗, f ∗ ∈ F ∗, ε > 0,

are a subbasis of open neighborhoods of 0. So, a net (Rα) in L(E∗, F ) is WOT-
convergent to 0 if and only if (Rα(e

∗)) is weakly null in F for every e∗ ∈ E∗.

Example 3.4. If Z∗ ⊆ EεF , then (Z,E, F ) is admissible. Indeed, (b) holds
trivially, while (a) follows from the fact that a sequence in EεF is WOT-convergent
to 0 if and only if it is weakly null in EεF ⊆ L(E∗, F ) (see e.g. [8, Theorem 1.3]).
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Example 3.5. Suppose that E 6⊇ ℓ1. Take Z := E∗ and F := R. Then
we have Z∗ = E∗∗ = UM(E∗, F ) (see Example 2.4) and, of course, SOT = w∗

on Z∗, so that (a) holds. If in addition E is separable, then (b) also holds, i.e.
EεF = E is w∗-sequentially dense in E∗∗, by the Odell–Rosenthal theorem [21] (cf.
[23, Theorem 4.1]).

Example 3.6. Suppose that F := X∗
0 for a Banach space X0. Take Z :=

E∗⊗̂πX0 (the projective tensor product of E∗ and X0). Then:

(i) Z∗ = L(E∗, F ) in the natural way (see e.g. [12, p. 230, Corollary 2]).
(ii) The identity map on Z∗ is (WOT-to-w∗) sequentially continuous.
(iii) If E∗ is separable and either E∗ or F has the BAP, then Z∗ = UM(E∗, F )

and (Z,E, F ) is admissible.

Proof. (ii) Let (ϕn) be a sequence in Z∗ = L(E∗, F ) which WOT-converges to 0.
Then it is bounded (by the Banach–Steinhaus theorem) and

〈e∗ ⊗ x0, ϕn〉 = 〈x0, ϕn(e
∗)〉 → 0 for all e∗ ∈ E∗ and x0 ∈ X0,

hence (ϕn) is w∗-null.
(iii) Under such assumptions EεF is SOT-sequentially dense in L(E∗, F ) (see

Example 2.12). In particular, we have L(E∗, F ) = UM(E∗, F ). Bearing in mind (ii)
it follows that (Z,E, F ) is admissible. �

Proof of Theorem 3.2. (iii) ⇒ (iv) By assumption we have

|〈S(T ), z∗〉| ≤ K‖iµ(T )‖Lp(µ,Y )‖z
∗‖Z∗ for every T ∈ U and z∗ ∈ Z∗,

hence
‖S(T )‖Z ≤ K‖iµ(T )‖Lp(µ,Y ) for every T ∈ U.

Write W := iµ(U). By the previous inequality, there is an operator S1 : W → Z
such that S1 ◦ iµ|U = S (cf. the proof of Proposition 2.6). Of course, S2 := iµ|U
is (ℓsp, ℓp)-controlled. We claim that S∗

1 : Z
∗ → W ∗ is (ℓsq, ℓq)-controlled. Indeed,

inequality (3.2) reads as

|〈iµ(T ), S
∗
1(z

∗)〉| ≤ K ‖iµ(T )‖Lp(µ,Y ) ‖iη(z
∗)‖Lq(η,F )

for every T ∈ U and z∗ ∈ Z∗. Thus, ‖S∗
1(z

∗)‖W ∗ ≤ K‖iη(z
∗)‖Lq(η,F ) for every z∗ ∈ Z∗,

so that S∗
1 is (ℓsq, ℓq)-controlled.

(iv) ⇒ (v) This follows from Theorem 2.9.
(v) ⇒ (i) Fix n ∈ N and take T1, . . . , Tn ∈ U and z∗1 , . . . , z

∗
n ∈ Z∗. Then Hölder’s

inequality and the fact that S2 (resp. S∗
1) is (ℓsp, ℓp)-summing (resp. (ℓsq, ℓq)-summing)

yield
(

n
∑

i=1

|〈S(Ti), z
∗
i 〉|

r

)1/r

=

(

n
∑

i=1

|〈S2(Ti), S
∗
1(z

∗
i )〉|

r

)1/r

≤

(

n
∑

i=1

‖S2(Ti)‖
r
W · ‖S∗

1(z
∗
i )‖

r
W ∗

)1/r

≤

(

n
∑

i=1

‖S2(Ti)‖
p
W

)1/p

·

(

n
∑

i=1

‖S∗
1(z

∗
i )‖

q
W ∗

)1/q

≤ K sup
x∗∈BX∗

(

n
∑

i=1

‖Ti(x
∗)‖pY

)1/p

· sup
e∗∈BE∗

(

n
∑

i=1

‖z∗i (e
∗)‖qF

)1/q
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for some constant K ≥ 0 independent of the Ti’s and z∗i ’s. This shows that S is
(ℓsp, ℓ

s
q)-dominated.

(i) ⇒ (ii) Observe that L := P (BX∗) × P (BE∗) is a compact convex set of the
locally convex space C(BX∗)∗ × C(BE∗)∗, equipped with the product of the corre-
sponding w∗-topologies. Fix n ∈ N,

T̄ = (T1, . . . , Tn) ∈ (U ∩XεY )n and z̄∗ = (z∗1 , . . . , z
∗
n) ∈ (Z∗ ∩ EεF )n.

Consider the function ∆T̄ ,z̄∗ : L→ R given by

∆T̄ ,z̄∗(µ, η) :=

n
∑

i=1

|〈S(Ti), z
∗
i 〉|

r −Kr r

p

ˆ

BX∗

n
∑

i=1

‖Ti(·)‖
p
Y dµ

−Kr r

q

ˆ

BE∗

n
∑

i=1

‖z∗i (·)‖
q
F dη,

where K ≥ 0 is a constant as in Definition 3.1. Clearly, ∆T̄ ,z̄∗ is convex and con-
tinuous, because Ti ∈ XεY and z∗i ∈ EεF for every i = 1, . . . , n. We claim that
∆T̄ ,z̄∗(µ, η) ≤ 0 for some (µ, η) ∈ L. Indeed, since the functions

x∗ 7→

n
∑

i=1

‖Ti(x
∗)‖pY and e∗ 7→

n
∑

i=1

‖z∗i (e
∗)‖qF

are w∗-continuous on BX∗ and BE∗ , they attain their suprema at some x∗
T̄
∈ BX∗

and e∗z̄∗ ∈ BE∗ , respectively. By taking into account Young’s inequality, we have

n
∑

i=1

|〈S(Ti), z
∗
i 〉|

r
(3.1)

≤ Kr

(

n
∑

i=1

‖Ti(x
∗
T̄ )‖

p
Y

)r/p

·

(

n
∑

i=1

‖z∗i (e
∗
z̄∗)‖

q
F

)r/q

≤ Kr r

p

n
∑

i=1

‖Ti(x
∗
T̄ )‖

p
Y +Kr r

q

n
∑

i=1

‖z∗i (e
∗
z̄∗)‖

q
F .

(3.3)

If we write µ := δx∗

T̄
∈ P (BX∗) and η := δe∗

z̄∗
∈ P (BE∗), then (3.3) yields ∆T̄ ,z̄∗(µ, η) ≤

0, as required.
The collection C of all functions ∆T̄ ,z̄∗ as above is a convex cone in RL. Indeed,

C is obviously closed under sums and we have

α∆T̄ ,z̄∗ = ∆(α1/pT1,...,α1/pTn),(α1/qz∗
1
,...,α1/qz∗n)

for all α ≥ 0.
By Ky Fan’s Lemma (see e.g. [11, Lemma 9.10]), there is (µ, η) ∈ L such that

∆T̄ ,z̄∗(µ, η) ≤ 0 for every ∆T̄ ,z̄∗ ∈ C. In particular,

(3.4) |〈S(T ), z∗〉|r ≤ Kr r

p

ˆ

BX∗

‖T (·)‖pY dµ+Kr r

q

ˆ

BE∗

‖z∗(·)‖qF dη

for all T ∈ U ∩XεY and z∗ ∈ Z∗ ∩ EεF .
Fix T ∈ U ∩XεY and z∗ ∈ Z∗ ∩ EεF . We will check that (3.2) holds. Write

a :=

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

and b :=

(
ˆ

BE∗

‖z∗(·)‖qF dη

)1/q

.

If either a = 0 or b = 0, then 〈S(T ), z∗〉 = 0. Indeed, if a = 0, then for each n ∈ N
inequality (3.4) applied to the pair (nT, z∗) yields

|〈S(T ), z∗〉|r =
1

nr
· |〈S(nT ), z∗〉|r ≤

1

nr
·
Krrbq

q
,
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hence 〈S(T ), z∗〉 = 0. A similar argument works for the case b = 0. On the other
hand, if a 6= 0 and b 6= 0, then inequality (3.4) applied to the pair ( 1

a
T, 1

b
z∗) yields

|〈S(T ), z∗〉|r = ar br
∣

∣

∣

∣

〈

S

(

1

a
T

)

,
1

b
z∗
〉
∣

∣

∣

∣

r

≤ Kr ar br
(

r

p ap

ˆ

BX∗

‖T (·)‖pY dµ+
r

q bq

ˆ

BE∗

‖z∗(·)‖qF dη

)

= Kr ar b.r

This proves (3.2) when T ∈ U ∩XεY and z∗ ∈ Z∗ ∩ EεF .
Finally, we prove the implication (ii) ⇒ (iii) under the additional assumptions.

Fix T ∈ U and z∗ ∈ Z∗. By (c) (resp. (b)), we can take a sequence (Tn) (resp. (z∗n))
in U ∩XεY (resp. Z∗ ∩EεF ) which SOT-converges to T (resp. z∗). For each n ∈ N
we have

(3.5) |〈S(Tn), z
∗
n〉| ≤ K

(
ˆ

BX∗

‖Tn(·)‖
p
Y dµ

)1/p

·

(
ˆ

BE∗

‖z∗n(·)‖
q
F dη

)1/q

.

Since the operators iµ and iη are (SOT-to-norm) sequentially continuous (see the
proof of Theorem 2.9), we have

lim
n→∞

(
ˆ

BX∗

‖Tn(·)‖
p
Y dµ

)1/p

=

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

and

lim
n→∞

(
ˆ

BE∗

‖z∗n(·)‖
q
F dη

)1/q

=

(
ˆ

BE∗

‖z∗(·)‖qF dη

)1/q

.

Moreover, S is (SOT-to-norm) sequentially continuous by assumption (d), so the
sequence (S(Tn)) converges to S(T ) in the norm topology. Since (z∗n) is w∗-convergent
to z∗ (by (a)), we conclude that

|〈S(T ), z∗〉| = lim
n→∞

|〈S(Tn), z
∗
n〉|

(3.5)

≤ K

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

·

(
ˆ

BE∗

‖z∗(·)‖qF dη

)1/q

,

as we wanted. The proof is finished. �

Remark 3.7. Statement (iv) in Theorem 3.2 implies that S2 is (SOT-to-norm)
sequentially continuous (by Theorem 2.9) and so is S.

Corollary 3.8. Suppose that Z∗ ⊆ EεF . Let U be a subspace of XεY and let
S : U → Z be an operator. Then the following statements are equivalent:

(i) S is (ℓsp, ℓ
s
q)-dominated.

(ii) There exist a constant K ≥ 0 and measures µ ∈ P (BX∗) and η ∈ P (BE∗)
such that

|〈S(T ), z∗〉| ≤ K

(
ˆ

BX∗

‖T (·)‖pY dµ

)1/p

·

(
ˆ

BE∗

‖z∗(·)‖qF dη

)1/q

for every T ∈ U and every z∗ ∈ Z∗.
(iii) There exist a Banach space W , an (ℓsp, ℓp)-summing operator S2 : U →W and

an operator S1 : W → Z with (ℓsq, ℓq)-summing adjoint such that S factors
as S = S1 ◦ S2.
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Since E⊗̂εF ⊆ EεF , one can apply Corollary 3.8 whenever Z∗ ⊆ E⊗̂εF (in
particular, it works when E := Z∗ and F := R or vice versa).
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