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Resumen  
 
La fibrilación auricular (FA) es una de las arritmias más comunes en la 

práctica clínica cuyos mecanismos, hasta ahora, no han sido comprendidos 
en su totalidad. El estudio de dichos mecanismos mediante el estudio de la 
información clínica, la metodología de estudios computacionales y los al-
goritmos de inteligencia artificial (IA) que permiten la identificación de nue-
vos patrones para la personalización de los tratamientos es clave para des-
velar las características de la arritmia.  

Actualmente, el tratamiento de preferencia para los pacientes con FA 
que ha presentado mayores ratios de efectividad ha sido la ablación car-
diaca. Este procedimiento invasivo utiliza un catéter para quemar el área 
del tejido cardiaco que es responsable del mantenimiento de la arritmia. 
Para poder identificar dicha área, es indispensable realizar un estudio elec-
trofisiológico para evaluar las señales eléctricas intracavitarias. 

En el campo de las simulaciones por ordenador, varios estudios han 
presentado abordajes personalizados que intentan establecer una plata-
forma complementaria para la planificación de la ablación. En este ámbito, 
la electrocardiografía por imagen se ha utilizado para la estratificación y 
caracterización previa de pacientes antes del procedimiento de ablación.  

Finalmente, los estudios observacionales clínicos permiten la caracte-
rización de la población de FA, ayudando a recoger, no solo datos electro-
fisiológicos, sino también biomarcadores clínicos directamente relaciona-
dos con la prognosis del paciente.  

Dada toda la información producida durante este tipo de estudios, la IA 
se ha introducido paulatinamente en este tipo de estudios con el objetivo 
de identificar patrones o biomarcadores que permitan caracterizar a estos 
pacientes incluyendo toda la información recogida. Además, los algoritmos 
de predicción, que permiten estimar el éxito del tratamiento y la prognosis 
del paciente, han sido desarrollados. Debido a todas estas razones, estos 
campos han sido estudiados durante el desarrollo de este trabajo.  

En primer lugar, se realizaron simulaciones por ordenador utilizando 
una población de modelos que permitía evaluar la inducibilidad y manteni-
miento de la arritmia en diferentes escenarios. Teniendo en cuenta la gran 
cantidad de datos derivados de las simulaciones, que incluían la variabili-
dad introducida en la población y diferentes fármacos, se implementaron 
algoritmos de IA que extrajeron patrones de los perfiles más proarrítmicos.  
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En segundo lugar, se realizaron simulaciones personalizadas en una 
cohorte de pacientes, incluyendo las anatomías de las aurículas y conside-
rando diferentes escenarios arrítmicos. Estos experimentos se realizaron 
con una carga computacional menor comparado con otros estudios y per-
mitieron identificar un biomarcador obtenido de dichos datos que caracte-
rizaba la actividad en la zona de las venas pulmonares y la comparaba con 
la evolución del paciente 12 meses tras el procedimiento de ablación.  

Finalmente, se analizó el estudio observacional STRATIFY-AF utili-
zando la información obtenida del ECGi y combinándola con datos clínicos. 
Como resultado, se obtuvo un score electrofisiológico que permite predecir 
el tratamiento más exitoso para cada paciente.  

Los resultados presentados en esta tesis ilustran un claro ejemplo de 
combinación de diferentes tecnologías, como las simulaciones in silico, con 
datos clínicos y algoritmos de IA, que pueden ser de gran utilidad para in-
vestigar los mecanismos de la arritmia cardiaca.  
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Resum  
 
La fibril·lació auricular (FA) és una de les arítmies més comunes. En la 

pràctica clínica els mecanismes de la qual, fins ara, no han sigut compresos 
en la seua totalitat. L'estudi dels dits mecanismes per mitjà de l'estudi de la 
informació clínica, la metodologia d'estudis computacionals i els algoritmes 
d'intel·ligència artificial (IA) que permeten la identificació de nous patrons 
per a la personalització dels tractaments és clau per a desvelar les 
característiques de l'arítmia. 

Actualment, el tractament de preferència per als pacients amb FA que 
ha presentat majors ràtios d'efectivitat ha sigut l'ablació cardíaca. Este 
procediment invasiu utilitza un catèter per cremar l'àrea del teixit cardíac 
que és responsable del manteniment de l'arítmia. Per a poder identificar la 
dita àrea, és indispensable realitzar un estudi electrofisiologia per a avaluar 
els senyals elèctrics intracavitarias. 

En el camp de les simulacions per ordinador, diversos estudis han 
presentat abordatges personalitzats que intenten establir una plataforma 
complementària per a la planificació de l'ablació. En este àmbit, 
l'electrocardiografia per imatge s'ha utilitzat per a l'estratificació i 
caracterització prèvia de pacients abans del procediment d'ablació. 

Finalment, els estudis observacionals clínics permeten la 
caracterització de la població de FA, ajudant a arreplegar, no sols dades 
electrofisiològiques, sinó també biomarcadores clínics directament 
relacionats amb la prognosi del pacient. 

Donada tota la informació produïda durant este tipus d'estudis, la IA 
s'ha introduït gradualment en este tipus d'estudis amb l'objectiu d'identificar 
patrons o biomarcadores que permeten caracteritzar estos pacients 
incloent tota la informació arreplegada. A més, els algoritmes de predicció, 
que permeten estimar l'èxit del tractament i la prognosi del pacient, han 
sigut desenrotllats. A causa de totes estes raons, estos camps han sigut 
estudiats durant el desenrotllament d'este treball. 

En primer lloc, es van utilitzar simulacions per ordinador utilitzant una 
població de models que permetia avaluar la inducibilidad i manteniment de 
l'arítmia en diferents escenaris. Donada la variabilitat introduïda en la 
població, en combinació amb diferents fàrmacs, els algoritmes d'IA es van 
utilitzar per a extraure patrons que identificaven els perfils més proarítmics. 

En segon lloc, es van realitzar simulacions personalitzades en una 
cohort de pacients, incloent les anatomies de les aurícules i considerant 
diferents escenaris arítmics. Estos experiments es van realitzar amb una 



 

vii 
 

càrrega computacional menor comparat amb altres estudis i van permetre 
identificar un biomarcador obtingut de les dits dades que caracteritzava 
l'activitat en la zona de les venes pulmonars i la comparava amb l'evolució 
del pacient 12 mesos després del procediment d'ablació. 

Finalment, l'estudi observacional STRATIFY-AF es va analitzar 
utilitzant la informació obtinguda de l'ECGi i combinant-la amb dades 
clíniques. Com resultat, es va obtindre un score electrofisiològic que permet 
predir el tractament més reeixit per a cada pacient. 

Els resultats presentats en esta tesi il·lustren, per tant, que la 
combinació de les tecnologies in silico, junt amb les dades clíniques i el 
processament de dades disponibles gràcies als algoritmes d'IA poden ser 
de gran utilitzar per a investigar els mecanismes de l'arítmia cardíaca. 
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Abstract   
 
Atrial Fibrillation (AF) is one of the most common arrhythmias in clinical 

practice and thus far, the electrophysiological mechanisms underlying its 
initiation and maintenance are not fully understood. The study of such 
mechanism including clinical information, computational models and artifi-
cial intelligence (AI) algorithms that enable the identification of new patterns 
for the personalization of the treatments is key to unveil the characteristics 
of the arrhythmia.  

At the present, the treatment of choice for AF patients with higher effec-
tiveness has proved to be cardiac ablation. This invasive procedure uses a 
catheter to ablate or burn the area of the cardiac tissue that is responsible 
for the maintenance of the arrhythmia. In order to find this specific area, it 
is indispensable to perform an electrophysiological study to evaluate the 
intracavitary electrical signals.  

In the computational field, several studies have presented personalized 
approaches that aim to stablish a complimentary platform for ablation plan-
ning. In this area, electrocardiographic imaging has also been used for the 
stratification and prior characterization of patients before the ablation pro-
cedure.  

Finally, observational studies enable the characterization of the AF pop-
ulation, enabling to collect, not only electrophysiological data but clinical 
biomarkers that can be related with the prognosis of the patients.  

Due to all the information produced during this type of studies, AI has 
been recently incorporated into these studies, with the main objective of 
identifying patterns or biomarkers that are able to characterize these pa-
tients including all the collected information. In addition, prediction algo-
rithms, that allow to estimate the success of the treatment and prognosis of 
the patient have also been developed. For this purpose, these three fields 
of study were explored in this thesis.  

First, computational simulations using a population of models were per-
formed to evaluate arrhythmia inducibility and maintenance under different 
scenarios. Due to the variability introduced in the population of models in 
combination with different drugs, AI algorithms were applied to extract pat-
terns that identified the most proarrhythmic profiles.  

Secondly, personalized simulations were performed in a cohort of pa-
tients including their anatomical cardiac geometries and considering differ-
ent arrhythmic scenarios. These experiments were achieved with a lowered 
computational costs and included the identification of a biomarker extracted 



 

ix 
 

from the simulation analysis that characterized the activity in the pulmonary 
vein area and evaluating it with the 12-month ablation outcome.  

Finally, the STRATIFY-AF observational study was analyzed, using the 
ECGi information from the patients combined with clinical information. As a 
results, a stratification score was obtained to predict the most successful 
treatment for each of the patients.  

The results presented in this thesis illustrate that the combination of in 
silico technologies with clinical data and processing algorithms can be of 
great utility to further investigate the arrhythmic mechanisms.  
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Chapter 1.  
Introduction 

 
 
Digital Health has disrupted the actual panorama by introducing and 

establishing technology as one of the most useful and rapidly developing 
tools in the last decade, including a remarkable influence in health applica-
tions. These technologies, that are based on computing platforms, connec-
tivity, software and sensors for health care related uses, are giving a more 
holistic view of patient health through access to data and allowing patients 
to have more control over their health.   

Modern medicine has, therefore, evolved incorporating more and more 
technologies in analysis, diagnosis and treatment decisions. These incor-
porations include the merging of clinicians with engineers and basic com-
putational experts, improving data access, reducing costs and incrementing 
overall efficacy, that will ultimately increase quality and personalisation at 
medical level.  

In the last years, the outbreak of Artificial Intelligence (AI) has helped to 
include prediction algorithms that assist clinician’s decisions, collecting and 
interpreting relations in digitalized clinical records that can reveal hidden 
information for the clinician.  

Cardiology has been one of the medical fields where digital health ap-
plications are playing a crucial role, not only with the use of wearable tech-
nologies but also in relation to clinical applications. In this field, electrophys-
iology has been on the cutting edge of advanced digital technologies for 
many years (Tarakji et al., 2020). This field has benefited from the use of 
wireless ECG recordings, implantable loop recorders, cardiac implantable 
electronic devices with Bluetooth capability and virtual or mixed reality tools 
at electrophysiology laboratories.  
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Electrophysiological studies analyzed the electrical activity of the heart, 
that when presenting abnormalities or disturbances in propagation, origi-
nates an arrhythmia. Among all the different arrhythmias, Atrial Fibrillation 
(AF) is the most frequent arrhythmia with a high prevalence, around 2% of 
the total adult population. In addition, currently there is no broad consensus 
on the nature of the mechanisms that initiate and sustain this cardiac ar-
rhythmia. Therefore, the available treatments either pharmacological or in-
terventional do not have the expected success considering the magnitude 
of this deleterious arrhythmia.  In this thesis, two different characterization 
workflows are evaluated and AI is applied specifically for characterizing, 
diagnosing and treating AF. 

1.1. Motivations  
In the last five years, AI has been exponentially implemented and used 

at clinical level for data analysis, merging and combining information from 
both clinical records, electrical signals and general characteristics of the 
patients. In addition, other applications have been found to improve autom-
atized processes management (image processing and segmentation, filter-
ing and denoising of signals, etc). 

Since a large amount of data is critical for the accurate performance of 
these algorithms, efforts have been made to include in silico simulations on 
training sets to reduce or resemble their adjustment patterns. 

Moreover, data quality is key for the good performance of these algo-
rithms, therefore different implementations have been tested and limitations 
have been identified to improve their clinical application.  

1.2. Objectives  
The driven goal of the present thesis is to explore the application of 

Artificial Intelligence in Cardiology and, more specifically, in the AF area. 
To achieve this goal, the following specific objectives were designed: 

1. To study and evaluate the evaluation of AF maintenance under 
the effect of different drugs, implementing in silico models in two 
different size planes using an electrophysiological model that in-
cludes ionic level description..  

2. To study and evaluate the pulmonary vein ablation efficacy im-
plementing in silico models in 3D personalized geometries using 
an activation pattern model. 

3. To identify a predictive biomarker or a combination of them from 
the in silico data obtained from the aforementioned objectives that 
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enable to predict AF maintenance or termination and that relate 
to clinical scenarios.  

4. To evaluate the performance of clinical data from the Stratify-AF 
study to train clustering algorithms that allow to identify similar 
groups of patients with similar outcome  

5. To assess and define the biomarkers that describe the sensitivity 
profile by analyzing the overall results of the experiments per-
formed from a translational point of view, that combines in silico 
computational data and clinical data to explore the electrophysi-
ological biomarkers that characterize AF mechanisms.  

1.3. Structure of the thesis  
This thesis is structured attending to three fundamental pillars that will 

guide the reader through the document. These three pillars are the data 
source for the study, the type of trial design and the artificial intelligence 
analysis, that when combined, result in the workflow observed in Figure 1.1. 

 

Figure 1.1. Workflow including the three pillars of the dissertation. Data source ob-

tained from synthetic data and clinical trials, In silico technology and clinical trials devel-
opment and Artificial Intelligence implementation for data analysis and prediction. 

 Corresponding to the aforementioned pillars, the thesis presents the 
state of the art, implementation and overall analysis attending to the corre-
sponding chapters: 

Chapter 2. State of the art.  The three main pillars in which this thesis 
is based are described in this chapter, with a basic understanding of the 
Electrophysiology Cardiac field and, specifically AF, together with the fun-
damental description of artificial intelligence methodology, which are the 
thesis foundations.  

The publication “Artificial intelligence for a personalized diagnosis and 
treatment of atrial fibrillation” is part of this chapter of the thesis  
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Chapter 3. Study 1: In-silico technology and Artificial Intelligence 
on a population of models. The aim of this chapter is to describe the first 
study conducted in this thesis, that covers the implementation of Artificial 
Intelligence analysis for an InSilico Clinical trial based on synthetic data.  

Based on the publication “Artificial Intelligence-Driven Algorithm for 
Drug Effect Prediction on Atrial Fibrillation: An In Silico Population of Mod-
els Approach”, that is part of this chapter of the thesis  

Chapter 4. Study 2:  In-silico technology and Clinical Images Ex-
ploitation. More complex simulations including 3D anatomical data of pa-
tients to study arrhythmia complexity are summarized in this chapter. 

Based on the publication “Personalized Evaluation of Atrial Complexity 
of Patients Undergoing Atrial Fibrillation Ablation: A Clinical Computational 
Study.”, that is part of this chapter of the thesis  

Chapter 5. Study 3:  Stratify-AF: Artificial Intelligence for Treat-
ment Prediction. The Stratify-AF observational study, that aims to charac-
terize and stratify AF patients based on the analysis of the arrhythmia per-
petuation mechanisms (NCT04578275), is evaluated in this chapter. 

Chapter 6.  Discussion and conclusions. The results and main find-
ings introduced in this thesis are discussed and compared with previous 
works. The conclusions are listed and a guideline for future works is pro-
posed. 

Chapter 7. Contributions. The scientific contributions associated to 
this thesis and derived from the present dissertation are listed in this chap-
ter. The scientific framework in which this thesis is involved is also de-
scribed.  
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Chapter 2.  
State of the Art 

 
 
 
 
This chapter reviews the fundamentals on the different research fields that are 

discussed in this thesis. This is a multidisciplinary work that comprises different 
fields such as cardiology, electrophysiology, algorithm development, computer 
simulation and artificial intelligence, so abroad introduction for each topic is pre-
sented in this chapter.  

2.1. Introduction to Cardiac Electrophysiology and Atrial Fibrilla-
tion 

2.1.1. Cardiac Electrophysiology 
The heart is an organ located on the thoracic cavity that pumps blood through-

out the body, providing the nutrients and oxygen for the cellular homeostasis to 
the rest of organs and tissues (How the Heart Pumps Blood).  

This organ is formed by four different chambers, the atria and the ventricles, 
that are divided by different structures: the septum that separates the heart in two 
identical halves and the atrioventricular valves that separate the atrium from the 
ventricle (Figure 2.1). This configuration enables blood flow circulation, acting as 
a pump of the two circulatory circuits present in the system. The complete circuit 
the starts in the right atrium where blood flows to the right ventricle and directly 
communicates with the pulmonary circuit to oxygenate blood. Once the blood is 
oxygenated, it returns to the left side of the heart, entering through the left atrium 
and later to the left ventricle that distributes the oxygenated blood to the rest of 
tissues and organs.  

Cardiac electrophysiology is the science that studies the electrical activity of 
the heart and its abnormalities for its diagnosis and treatment (Macdonald, 2008).  
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Figure 2.1. Electrical conduction system of the heart. Nodes and bundles propagate the 

electrical impulse across the heart to perform the contraction that delivers blood to the body 
(obtained from ECGPedia) 

The functional unit of the heart is the cardiac cell, that presents both electrical 
and contraction forces both at the atrium and the ventricles as shown in the elec-
trical circuit in Figure 2.1. The electrical activity, that is the main topic of this thesis, 
is governed by the action of different ions and its different concentration inside 
and outside of the cell. Depending on the influx of these ions, the activation of 
cardiac cells can be divided into four different phases, that are briefly described 
and represented in Figure 2.2:  

- Phase 0 corresponds to the depolarization of the cells, driven by an influx 
of sodium ions that increase the potential of the membrane. Once a given 
threshold is exceeded, depolarization occurs provoking a sharp upstroke 
on the action potential morphology.  

- During Phase 1, sodium channels start to close and outward potassium 
channels create and early repolarization that tries to bring the cell to its 
resting state.  

- In Phase 2 or Plateau Phase, the repolarization is slowed down by the 
inward flux of calcium ions, that compensate the outward potassium chan-
nels at Phase 1.  

- Finally, in Phase 3 the rapid repolarization returns the membrane poten-
tial to its resting state. 

The interval of time from which the cell is depolarized in Phase 0 until the 
repolarization phase finished is called the refractory period. During this period, the 
cell cannot be depolarized (i.e. return to Phase 0) and this prevent chaotic exci-
tation patterns that would affect the proper functioning of the heart. Finally, after 
repolarization, Phase 4 is achieved in which resting the cell becomes excitable. 
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Figure 2.2. Action Potential Activation of Cardiac Cells  

In order to propagate this electrical impulse through the cardiac electrical cir-
cuit, the sinoatrial node, a specific group of cells, is in charge of initiating the elec-
trical activation and acts as the natural pacemaker of the heart. The normal 
healthy activation will start with the electrical activation of both atria, followed by 
the activation of the atrioventricular node and the activation of the ventricles. The 
consecutive activation of the different areas can be characterized at clinical level 
to evaluate the correct electrical activation and propagation of the heart and to 
evaluate, if present, possible abnormalities.  

 Cardiac Rhythm Disorders 

Whenever alterations of the electrical workflow are present, coordination of 
the electrical propagation is lost. This phenomenon is designated as an arrhyth-
mia (Macfarlane et al., 2011). Depending on the specific characteristics of the 
arrhythmia, different types are referred in the clinical guidelines. For example, ac-
cording to location, patients can suffer from atrial or ventricular arrhythmias and 
according to the rhythm, fast pacing arrhythmias are designated as tachycardia.  

These anomalies can be currently characterized with different techniques in-
cluding wearable technology, conventional electrocardiogram or high-density 
mapping. A detailed description of the state-of-the-art devices is depicted in the 
next section.  

The target arrhythmia in this thesis is AF, that is further explained in Section 
2.1.2.  

Cardiac Rhythm Characterization 

Electrical cardiac characterization can be performed with different tools de-
pending on the objective of the test. Simple analysis includes interpretation of data 
registered by wearable devices, that appear as a simple and affordable option for 
continuous monitoring.  
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One of the most important tools for characterizing heart rhythm at clinical level 
is the electrocardiogram (ECG). An ECG is a test that allows measuring the elec-
trical activity of the heartbeat and the complete transmission of the electrical im-
pulse over the heart is represented using 12 leads (Khorovets, 2000), as specified 
in Figure 2.3. The complete ECG morphology is represented by different waves: 
the P wave that mainly describes the atrial activity, the QRS complex that repre-
sents the ventricular depolarization and the T wave that is associated with the 
ventricular repolarization. Anomalies in this test enable to characterize patient’s 
rhythm disorders. 

Other complementary and more sophisticated techniques could be used to 
map the electrical activity of the heart, such as Noninvasive Electrocardiographic 
Imaging (ECGi). ECGi relies on the combination of electrical data obtained from 
the Body Surface Potential Mapping (BSPM) and imaging techniques that allow 
for the reconstruction of the torso and its alignment with the heart (Salinet et al., 
2021). It makes it possible to detect events and information that could not be ob-
tained in the standard 12-lead ECG. The number of electrodes can vary from 32 
to 256 and most study organization strive to position more electrodes on the front 
of the torso as there are considerably larger potential changes on the front 
(Rodrigo et al., 2017). By using BSPM, several studies have shown an improved 
diagnosis (Lefebvre and Hoekstra, 2007) and to characterize different cardiac ar-
rhythmias (Marques et al., 2020). Other applications include the automatic as-
sessment of Electrogram quality (Costoya-Sánchez et al., 2020).  

Invasive techniques can also be complementary to the aforementioned char-
acterization techniques. This is the case of the electrophysiological studies. In this 

Figure 2.3. Most common electrophysiological characterization techniques present in the 
clinical practice. 
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study, an electrophysiologist inserts a catheter through the vasculature and di-
rects it towards the chamber of the heart to be characterized. This catheter usually 
presents small electrodes that are capable of measuring the electrical activity of 
the tissue that is in contact with it therefore allowing to register intracardiac signals 
and even obtaining voltage maps of the area.  

Finally, all these techniques can be combined with imaging acquisition sys-
tems such as ecochardiography and cardiac magnetic resonance. These two are 
usually performed to evaluate other characteristics that can influence arrhythmia 
maintenance such as fibrotic tissue as it was already characterized in the several 
trials that describe and exemplify the importance of such structural abnormalities 
in arrhythmic disorders such as the DECAAF trial (Marrouche et al., 2014, 2021). 

Body Surface Potential Mapping and ECGi 

As previously mentioned (Atienza et al., 2021), ECGi is a non-invasive elec-
trocardiographic system that enables to record de Body Surface Potential Map-
ping to later estimate the intracardiac electrical activity. To calculate these intra-
cardiac potentials, a transformation matrix is calculated, based on the 3D 
personalized anatomy of the patient’s torso, together with the specific disposition 
of the patches over it. The intracardiac information is then projected into the atrial 
anatomy located inside of the torso. This transformation from the BSPM into the 
intracardiac electrical information is called the inverse problem or ECGi. 

Conversely, the calculation of the electrical potentials of the torso (ECG) from 
the intracardiac recordings of the atria (EGM) is defined as the forward problem 
(Jalife et al., 2009). The aforementioned forward problem implies a mathematical 
formulation defined by the biophysical equations and the torso, conductor volume, 
and this information can be inverted to obtain the epicardial electrical activity from 
the rest of the known variables (Horáček and Clements, 1997). The ECGi meth-
odology has been experimentally validated under pathological conditions in ani-
mal models and human studies (Oster et al., 1997; Ghanem et al., 2005). 

ECGi has been widely used in the field of AF that has enabled to identify po-
tential DF areas governing the arrhythmic episodes  and, as a consequence, per-
sonalized ablation strategies (Haissaguerre et al., 2014; Rodrigo et al., 2014; 
Pedrón-Torrecilla et al., 2016; Salinet et al., 2021).  

2.1.2. Atrial Fibrillation 
Atrial fibrillation (AF) is the most common arrhythmia worldwide that is char-

acterized by the rapid and irregular beating of the atrial chambers of the heart. 
With a prevalence of 2% of the total adult population, AF is associated with an 
increased risk of stroke, heart failure, and death (Chugh et al., 2014). Diagnostic 
and treatment strategies for patients with AF are still suboptimal. Current clinical-
practice guidelines are based on relatively unspecific clinical criteria, with little 
room for a personalized approach for managing AF (Hindricks et al., 2020).  
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Mechanisms underlying Atrial Fibrillation  

The mechanisms underlying the initiation and maintenance of AF are complex 
and still under study. These mechanisms have been analyzed since the first ap-
pearance of characterization methods in the twentieth century, giving rise to the 
theories to explain AF mechanisms: the theory of multiple random sources dis-
tributed around the atrium or the existence of propagation in a closed circuit took 
place (Ref Atienza REC 2006).  

This address of the problem remained for this period of time (Rosenblueth 
and Ramos, 1947; Scherf et al., 1948) and was only updated in the modern age 
of research by Moe and Abildskoy (Moe and Abildskov, 1959) which contradicted 
these theories. Moe et al proved that fibrillatory conduction present in AF episodes 
could be caused by the presence of random wave propagation in inhomogeneous 
tissue, using computational simulations (Moe et al., 1964). Proposing this new 
theory, AF was now defined as a self-sustaining process structure independent 
from ectopic focus that initiated the episode or specific atrial structures that main-
tained the reentry. This theory was only confirmed with the development of re-
cording techniques that allowed capturing the electrical activity in a sufficiently 
large number of electrodes simultaneously, 20 years later.  

In 1985, the electrical activity of dog hearts was recorded during AF episodes 
after high frequency stimulation (Morin et al., 2016), obtaining the first in vivo 
demonstration of multiple wave propagation during AF maintenance.  

In parallel, other theories arise such as the focal trigger theory developed by 
Dr, Hasaguerre. Haisaguerre demonstrated that AF episodes could be initiated 
by local focal triggers that predominated on the pulmonary vein area and that 
presented rapid activations (Haïssaguerre et al., 1998).   

The mechanisms responsible for AF were evaluated by Jalife et al (Berenfeld 
et al., 2001; Wellner et al., 2002; Jalife and Berenfeld, 2004)  showing that AF 
maintenance could be identified with rotatory patterns where a single electrical 
wave turns over a refractory region in a high activation rate, provoking fibrillatory 
conduction in their surroundings. This theory was based on the occurrence of a 
functional reentry that is responsible of the maintenance of the fibrillatory activity, 
due to the presence of a set of abnormal electrophysiological characteristics that 
are associated with a reduction of the refractory period or a decrease in the con-
duction velocity (Akar et al., 2000; Wellner et al., 2002). 
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Figure 2.4. AF mechanisms from [Guillem et al Cardiovasc Res]. A) Ectopic focus on the 

pulmonary veins. B) Rotor in the posterior wall of the left atria. C) Multiple wavelets. D) Rotor 
formation by an ectopic focus in the pulmonary veins. E) Transmural rotor. F) Multiple epicardial 

wavelets provoked by transmural drifting rotors. 

 Therefore, there are two main theories that can be identified to explain 
fibrillatory patterns:  

1) Focal theory  
This theory suggests that AF is caused by the irregularity present on the 
interaction between the high frequency wavefronts produced by a primary 
generator (ectopic focus or functional microreentry) and the variable re-
fractoriness properties present in the atrial tissue (Leef et al., 2019). Sev-
eral studies indicate that the pulmonary veins are the most common areas 
that act as primary generators (Chen et al., 1999), although these have 
also been found in the superior vena cava, ligament of Marshall, left pos-
terior wall, crista terminalis and coronary sinus (Tsai et al., 2000; Lin et 
al., 2003).   

2) Multiple wave hypothesis  
This theory proposes that the irregular atrial activity is a consequence of 
a primary arrhythmogenic mechanism (Moe and Abildskov, 1959), 
wherein the fractionation of the wave fronts propagating through the right 
atrium results in the self-maintenance of the chaotic activity. Tissue het-
erogeneity is vital in the explanation of this hypothesis, as it is responsible 
for the fractionation and perpetuation of the wavefronts. According to this 
theory, an atrial tissue with wide variability in their refractory period (being 
quite short) as well as delayed conduction properties has an increased 
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probability of developing sustained AF. This theory is nowadays defended 
by the existence of transmural conduction that explains the endocardial 
electrical breakthroughs that otherwise are attributed to focal activity 
(Eckstein et al., 2013). 

 
Although the two main theories about the maintenance of AF seem to be mu-

tually exclusive, they are closely linked and must be interpreted together. At the 
case of focal theories, atrial rotors can be initiated by a focal discharge due to a 
wavefront break (Figure 2.4D), so the focal triggered activity could be acting as 
an AF initiation mechanism. Moreover, the existence of intramural rotors can be 
reflected as breakthroughs in the atrial wall and they can be interpreted as endo 
or epicardial focal sources (Figure 2.4E), thus focal and rotor hyphothesis are not 
mutually exclusive. Finally, the existence of transmural and drifting rotors can cre-
ate also multiple epicardial wavelets (Figure 2.4F), so focal and multiple wavelets 
theories could be compatible. 

Atrial Fibrillation Types  

From the clinical point of view, there are four main AF types: paroxysmal, per-
sistent, long-term persistent and permanent AF(Atrial fibrillation: Overview, 2017; 
Hindricks et al., 2020). The type of AF that each patient presents can be classified 
according to how often AF episodes are present and how it responds to a given 
treatment. 

During Paroxysmal AF, episodes that terminate spontaneously or with inter-
vention within 7 days of onset. This type of arrhythmia can happen repeatedly and 
pharmacological or interventional treatments may be necessary to stop it. In ad-
dition, this arrhythmia can be alternated with a heartbeat that is slower than nor-
mal, it is called brady-tachy syndrome.  

Persistent AF is a condition in which the abnormal heart rhythm lasts for more 
than a week and where treatment is usually needed to stop it. When this condition 
lasts for more than a year without disappearing the arrhythmia is called long-term 
Persistent AF. 

If the restoring of normal rhythm is not achieved after several attempts nor 
electrical cardioversion is effective, the arrhythmia is categorized as Permanent 
AF.  

2.1.3. Clinical Treatment  
AF clinical treatment includes different approaches with pharmacological 

compounds or with interventional techniques, that are not exclusive, i.e. that can 
be combined.  

Current clinical guidelines discern among two types of strategies depending 
on the patient current situation and answer that can be subdivided in rate and 
rhythm control strategies (Figure 2.5 and Figure 2.6) (Hindricks et al., 2020).  
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Figure 2.5. Choice of rate control drugs. AF = atrial fibrillation; AFL = atrial flutter; COPD 

= Chronic obstructive pulmonary disease; CRT-D = cardiac resynchronization therapy defibril-

lator; CRT-P = cardiac resynchronization therapy pacemaker; HFpEF = heart failure with pre-

served ejection fraction; HFrEF = heart failure with reduced ejection fraction; NDCC = Non-
dihydropyridine calcium channel blocker. aClinical reassessment should be focused on evalua-

tion of resting heart rate, AF/AFL-related symptoms and quality of life. In case suboptimal rate 
control (resting heart rate >110 bpm), worsening of symptoms or quality of life consider 2nd line 

and, if necessary, 3rd line treatment options. bCareful institution of beta-blocker and NDCC, 24-

hour Holter to check for bradycardia. Obtained from (Hindricks et al., 2020). 

Rate control is the approach of choice for the first attempt in which pharma-
cological compounds are used to maintain sinus rhythm (Kirchhof et al., 2020). 
These compounds include beta blockers such as atenolol and bisoprolol, calcium 
channel blockers such as amlodipine and verapamil and sodium channel blocker 
such as flecainide.  

If rate control is not possible for a specific patient, the type of arrhythmia  is 
key for further treatment. In case of paroxysmal patients, the strategy of “pill in the 
pocket” or interventional procedures including catheter ablation are the therapies 
of choice.  

For persistent AF patients, cardioversion is recommended, and posterior cath-
eter ablation or rate control are indicated depending if the patient is in sinus 
rhythm or in AF.  
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Figure 2.6. Rhythm control strategy. AAD = antiarrhythmic drug; AF = atrial fibrillation; 

CMP = cardiomyopathy; CV = cardioversion; LAVI = left atrial volume index; PAF = paroxysmal 
atrial fibrillation; PVI = pulmonary vein isolation; QoL = quality of life; SR = sinus rhythm. aCon-

sider cardioversion to confirm that the absence of symptoms Is not due to unconscious adap-

tation to reduced physical and/or mental capacity. Obtained from (Hindricks et al., 2020). 

Interventional treatments: Catheter ablation 
Catheter ablation is the main interventional treatment used to treat AF. In this 

procedure, a catheter is inserted through the blood vessels and directed towards 
the heart. Once the catheter is in the heart, an electrophysiological study is per-
formed in some of the cases in order to obtain more information about the cause 
of the maintenance of the arrhythmia.  

Current approaches include the electrical burning or isolation of the pulmo-
nary veins, as these structures have been identified as ectopic foci in this arrhyth-
mia (Figure 2.7) (Althoff and Mont, 2021). In addition, other areas of the left atrium 
can also be ablated and current studies point out to the areas with the fastest 
activation or highest dominant frequency as the objective to be ablated.  

Two different strategies can be followed depending on the burning technique: 
while cryoablation relies on freezing temperatures to eliminate the tissue, radiof-
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requency uses high voltage to carry out the task. Each approach presents ad-
vantages: cryoablation is anatomical and a fast procedure, while radiofrequency 
enables a prior electrophysiological study and specific ablation of other atrial sites 
following pulmonary vein isolation. In the radiofrequency case, several configura-
tions of the catheter can be found in the market depending on the disposition and 
number of electrodes present in the acquisition part of the catheter. This approach 
has demonstrated a change in the electrophysiological activity of the atria, that 
has been extensively quantified (Chua et al., 2021).  

 

 

Figure 2.7. A. Cryoablation procedure. B. Radiofrenquency ablation. Image obtained 

from (Kuck et al., 2016) 

Finally, pharmacological treatments are usually combined with interventional 
procedures the enable long-term sinus rhythm maintenance.  

2.2. Atrial Fibrillation Characterization Studies: In-silico trials vs. 
Clinical trials  

As shown in Figure 2.8, the process for developing new drugs, testing new 
treatments, or certifying new devices is constituted by different phases.  

The first phase includes the pre-clinical stage, that is principally developed in 
wet laboratories, mainly consisting of in vitro testing. These experiments are fo-
cused on establishing the plausibility for the efficacy of the treatment.  

The next stage is focused on in vivo animal models to provide guidance and 
efficacy on the safety of the product for humans. Depending on the field of appli-
cation of the product or treatment, animal species can vary.  

Once the in vitro and in vivo phases have been successfully completed, the 
product or treatment can be proposed for certification in human use in a clinical 
trial (Tenti et al., 2018; Kashoki et al., 2020). A brief description of the clinical trials 
can be found in Section 2.2.2.  secondary effects in human subjects cannot be 
explored until clinical trial stages are reached, therefore, exponentially limiting the 
identification of secondary effects in the target population. These late identification 
of secondary effects can cause the immediate stop of the trial, with the resulting 
economical and ethical conditions that it implies. Not only secondary effects have 
been identified at this stages but also lack of efficacy for the general population, 



State of the Art 

16 

as current approaches are looking for a solution that is both safe and effective in 
the overall population, rather than considering personalized approaches for each 
patient.  

As stated in previous publications (Ávila et al., 2021; Winters et al., 2021), 
each patient presents a particular condition based on characteristics such as 
physiology, pathologies present, lifestyle and presence of comorbidities. Other 
factors that play an important role are therapeutic adherence, and the variability 
in surgeons’ experience and technique during surgical interventions.   

2.2.1. In-Silico trials  
In-Silico trials are based on computer simulations that contain specific infor-

mation from the patient, enabling personalization of the models (Engineering, 
2011; Corral-Acero et al., 2020). The term in-silico indicates any use of computers 
in clinical trials, even if limited to management of clinical information in a database.  

This type of computations can be used in the development or regulatory eval-
uation of a medicinal product (Li et al., 2017; Passini et al., 2017; Patel et al., 
2019; Vicente et al., 2019), device or intervention or to characterize and model 
different diseases (Liberos et al.; Vigmond et al., 2009; Arevalo et al., 2016; 
Rivera-Juárez et al., 2019). Although this approach presents major limitations that 
is commented in this chapter (Carro et al., 2017), the combination of the infor-
mation extracted from the simulations with clinical information can increase the 
understanding of biological mechanisms (Vicente et al., 2016). Nowadays, these 
types of trials are currently being validated at in vitro and in vivo levels, as they 
are expected to have major benefits over current animal trials (Figure 2.9).  

In Silico trials soften these biases by using accurate computer models for a 
specific treatment and its development, including patient characteristics to 

Figure 2.8 Preclinical and Clinical trial description including number of participants 
and phases  
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broaden the testing scenario to different patient groups and more information. In 
this sense, the idea of in silico trials is to create a virtual twin in the computer that 
can test all possible treatment, enabling observation through a computer simula-
tion of how the candidate biomedical product performs and whether it produces 
the intended effect, without inducing adverse effects. Such in silico clinical trials 
could help to apply the 3Rs fundamentals (reduce, refine, and partially replace 
real clinical trials) by: 

1) Reducing size or studying specific groups at clinical level that are identified 
as risk groups at in silico level  

2) Adding more detailed information obtained from this type of trials, better 
understanding interactions, with different groups and long-term effects that clinical 
trials cannot provide  

3) Replacing the pre-clinical phase and preserving the clinical trial for legal 
requirements 

4) Improving unsuccessful treatments or products by providing extra infor-
mation. Increases innovation, decreases economical costs and exponentially in-
creases understanding of biological processes 

5) Avoiding the use of animal models by directly including clinical data and 
personalized information from the patients.  This significantly decreases the over-
all costs associated to the development of treatments and have proven to be more 
effective at predicting the behavior of the drug or treatment in large-scale trials 
and identifying secondary effects, therefore better screening the treatments that 
progress to Phase III clinical trials.  

Modelling Atrial Fibrillation  

Computer models include different approaches to describe cardiac electrical 
activation, propagation and fibrillatory dynamics (Musuamba et al., 2021). A num-
ber of models are described in the literature for different cardiac areas such as 
the atria and the ventricles, and even for different cellular types in the same area, 
such as the endocardium and the epicardium. 

Action Potential Modelling  

Action potential modeling started in the 50s when Hodgkin and Huxley first 
developed a mathematical model that simulated the electrical activity of a cell 
(Hodgkin and Huxley, 1952). This early model was calibrated with experimental 
data obtained by patch clamp measurements in the axons of a giant squid. This 
formulation stated the base for further models and has constituted the initial base 
for the rest of the models. 
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Figure 2.9. Complexity of simulations  

This model corresponds to the cell membrane that separates the intracellular 
and extracellular spaces that are communicated by the ionic channels, as it can 
be observed in Figure 2.10. For this specific model, internal and external media 
were characterized as ideal conductors and the cell membrane was characterized 
as a capacitor (Cm). In total, four ionic channels were modeled, corresponding to 
sodium, potassium, chloride, and leak currents, as a variable resistance and a 
resting potential. Once all these elements are particularized, electrical laws can 
be applied in order to calculate the membrane potential values along time.  

 

 

Figure 2.10 Electric circuit from Hodgkin and Huxley for the modeling of the electrical ac-

tivity. 
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The development of accurate models implied the need of electrophysiological 
experiments that enabled to further characterized ionic currents. A high number 
of patch clamp experiments for the characterization of this currents was needed, 
performed in isolated cells.  

The first mathematical model of cardiac myocytes was done by Denis Noble 
by implementing and modifying Hodgkin and Huxley’s model (Noble, 1962) 
(Noble, 1962), that combined with posterior experimental data allowed the im-
provement of the basic cardiac cell model with different currents included 
(McAllister et al., 1975; DiFrancesco and Noble, 1985). Luo and Rudy continued 
improving this model to present the first mammalian ventricular myocyte model 
(Luo and Rudy, 1991), that was later improved by Iyer and ten Tusscher (Iyer et 
al., 2004; ten Tusscher et al., 2004). 

Once the mammalian model was established, human atrial myocyte models 
started to be developed including several models developed in parallel in the late 
90’s: Courtemanche’s model (Courtemanche et al., 1998) and Nygren’s model 
(Nygren et al., 1998).  

 Courtemanche and Nygren’s models presented some differences in the ac-
tion potential shape, although both were based in the same experimental data. 
Posteriorly, Maleckar et al. improved the formulation of some repolarizing currents 
(Maleckar et al., 2008), Koivumäki et al. included a detailed formulation for the 
sarcoplasmic reticulum and Ca2+ dynamics (Koivumäki et al., 2011) and Grandi 
et al. also improved the Ca2+ management (Grandi et al., 2011). 

Maleckar and Koivumäki models have been useful for evaluating the effect of 
electrical and structural remodeling provoked by different arrhythmias, including 
AF. More specifically, this remodeling has been correlated with a reduction in the 
action potential duration that is associated with some specific ionic currents 
(Brundel et al., 2001; Skasa et al., 2001; Workman, 2001; Dössel et al., 2012).  

In addition, reduced calcium handling has been associated with reduced in-
tracellular calcium transients that highly affect cell contractility (Schotten et al., 
2001). Finally, the electrophysiological effect of the structural remodeling has 
been mathematically modelled as atrial myocytes electrically linked to cardiac fi-
broblasts (Maleckar et al., 2009), and by the dilation of atrial cells which results in 
an increase in the membrane capacitance (Schotten, 2002; Corradi et al., 2012; 
Koivumäki et al., 2014).  

The formulations of the cardiac cell models including remodeling in different 
ionic channels have enabled the development of specific research lines to study 
relationships and interactions between different ionic currents and their effect on 
the electrophysiological behavior of atrial cells and AF progression.  

Tissue Modelling  

Although cell models have demonstrated important advantages in the study 
of arrhythmogenic properties, conduction properties of the tissue play a major role 
in the initiation and maintenance of atrial arrhythmias. To study these properties, 
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mathematical models that include the connection of cells mimicking the cardiac 
muscle have been implemented.  

 Electrical propagation is provoked by differences in electrical potential be-
tween neighboring cardiomyocytes, which cause an ionic current through the pro-
teins linking cardiac cells, called gap junctions, and such ionic currents promote 
the depolarization of the neighboring cells. The behavior of this excitable medium 
can be modeled by a reaction-diffusion model, which allows computing the cur-
rents supplied or received by each atrial myocyte from each of its neighbors. 
These currents are also modulated by the cardiac media anisotropy, since there 
is much more electrical connectivity in the direction in which the cells are aligned. 

Following this implementation, cardiac propagation can be described as a 
monodomain or bidomain model. Monodomain models apply the reaction-diffu-
sion equations only to the potential membrane (Clayton and Panfilov, 2008; 
Dössel et al., 2012) whereas bidomain models include variation of ionic concen-
trations and electric potentials separately for intracellular and extracellular media 
(Trayanova, 2006), therefore increasing the complexity of the equations and the 
computational cost. Monodomain models can reproduce most of the phenomena 
related with electrical propagation and, therefore, are widely used because of their 
simplicity (Dössel et al., 2012). Nevertheless, other phenomena like current injec-
tions provoked by electrical cardioversion have to be addressed by bidomain 
models (Trayanova, 2006).  

As previously mentioned for cellular simulations, tissue models also present 
a great advantage for research lines involved in AF initiation and maintenance 
and the remodeling behind arrhythmia mechanisms 

 In this respect, several approaches have implemented tissue simulations to 
characterize the effect of the electrical remodeling on cardiac propagation 
(Kharche et al., 2008), and the presence of fibrosis (Ashihara et al., 2012) or 
stretching forces (Yamazaki et al., 2009) in the tissue. These models have been 
also used to emulate and mimic rotational activity (Wellner et al., 2002; Jalife and 
Berenfeld, 2004; Clayton et al., 2006) and its evolution in the presence of electro-
physiological remodeling (Felipe Atienza et al., 2006; Atienza 2011; Calvo, Deo, 
Zlochiver, Millet, & Berenfeld, 2014), and 2D plane simulations have played a 
major role to set the basis for rotor theory (Jalife, 2011, Pandit 2011). Finally, in 
silico models have also contributed to develop new mapping techniques for (Iyer 
and Gray, 2001; Narayan et al., 2012) or ablation (Rappel et al., 2015). 

Atria Modelling  

The development of tissue models that connect the cells allows for further the 
scaling to complex structures such as the complete atrial anatomical geometry. 
These simulations enable to realistically reproduce the propagation patterns that 
have been characterized during arrhythmic episodes. In order to facilitate the de-
scription of the atrial geometry, as the atrial wall tends to be slim, the models are 
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usually represented as single surfaced composed of triangular meshes (van Dam 
and van Oosterom, 2003; Jacquemet et al., 2006).  

Nevertheless, more complex structures including thickness composed by tet-
rahedrons or cubes have also been applied (Aslanidi et al., 2011; Krueger et al., 
2011, 2013). All the information and data comprising the atrial anatomy is usually 
extracted from imaging characterization techniques such as computer axial to-
mography (Burdumy et al., 2012) or magnetic resonance (Virag et al., 2002), and 
they can implement also anisotropic conduction properties (Dössel et al., 2012). 
Moreover, they can include several atrial regions in which the cellular model takes 
different electrophysiological properties (Tobón et al., 2010). 

Similar to tissue models, atrial models have been used to study the mecha-
nisms that promote and maintain AF episodes. Virag et al. studied the distribution 
of rotors in presence of anatomical obstacles (Virag et al., 2002), and Blanc et al. 
studied how the depolarization alternans could be the mechanism responsible for 
rotor initiation in presence of anatomical obstacles (Blanc et al., 2001). Electrical 
and structural remodeling has been studied also in anatomical models and their 
susceptibility to generate functional reentries (Kharche et al., 2008; McDowell et 
al., 2012; Colman et al., 2013). Finally, detailed anatomical AF models have been 
used to develop therapies based on catheter ablation (Blanc et al., 2001; 
Reumann et al., 2008; Tobón et al., 2010) or to evaluate the effect of gaps in 
ablation lines (Dang et al., 2005; Hwang et al., 2016). 

Computational Cost  

One of the main drawbacks of in silico simulations is the high computational 
cost associated to this type of calculations. As the models used included in this 
field usually imply a high number of differential equations that describe subcellular 
mechanisms, the computations of whole organ structures in personalized anato-
mies can last for days. As specified in (Badano, 2021; Heijman et al., 2021), the 
computational cost has been diminished in the last decade using Graphical Pro-
cessing Units that enable the parallelization of the computational processes.  

2.2.2. Observational Studies and Clinical trials  
Observational studies  

An observational study evaluates the effect of a risk factor, diagnostic test, 
treatment, or other intervention, following approved clinical practice, without trying 
to change who is or is not exposed to it. Cohort studies and case control studies 
are the two types of observational studies.  

 
Clinical Trials 

Clinical trials are research studies performed in patients that are aimed at 
evaluating a medical, surgical or behavioral intervention (Umscheid et al., 2011). 
The clinical trial is aimed to evaluate the safety and efficacy of a new treatment, 
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drug, diet or medical device (for example, a pacemaker) in a patient population 
with a disease. The basis of a clinical trial is to analyze the effectiveness and 
safety of the intervention as compared with the standard treatment.  

Briefly described four phases of clinical trials as shown in Figure 2.11:  
Phase I (20-80 participants) focus on adjusting the safety and dosage of the 

drug. Approximately 70% of drugs move to the next phase.  
Phase II (100-300 participants) focus on evaluating the efficacy and side ef-

fects. Approximately 33% of drugs move to the next phase. 
Phase III (1000-3000 participants) focus on evaluating the efficacy and mon-

itoring of adverse reactions. Approximately <10% of drugs move to the next 
phase.  

Phase IV (1000+ participants) focus on safety and efficacy of the intervention, 
after it has been approved. 

2.3. Artificial Intelligence and Atrial Fibrillation  
It is well recognized that clinically determined patterns of AF are unspecific, 

and they do not correspond to the real epidemiological burden of the disease, rate 
of complications nor treatment indications (Kirchhof et al., 2013). For example, 
screening methods for detecting AF show important limitations, and classical clin-
ical and electrophysiological patterns correlate poorly with treatment outcomes 
(Charitos et al., 2014; Rodrigo et al., 2020; Sanchez de la Nava et al., 2020). 
Nevertheless, classifying AF as paroxysmal or persistent disease is still the main 

Figure 2.11 Clinical trial description including phases. 
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basis for patient management. On the other hand, clinical records, electrical sig-
nals and medical images provide physicians and researchers with massive 
amount of information. This opens an opportunity for identifying specific pheno-
typic, clinical, and outcome patterns that could be useful for tailoring individualized 
strategies for treatment (Atienza et al., 2021). However large and multidimen-
sional big data are extremely difficult to analyze and interpret with conventional 
statistical tools. Instead artificial intelligence (AI) algorithms are particularly well 
suited and are only beginning to be exploited in the field of AF. 

2.3.1. Artificial Intelligence vs. Conventional Statistical Methods  
Conventional statistical methods are based on the inference principle: hypoth-

eses are stated a priori to deduce the properties of an underlying probability dis-
tribution of data (Figure 2.12.A). However, statistical inference requires strict as-
sumptions of data distributions that may limit their applicability and generalization 
(Krittanawong et al., 2019). Alternative data analysis strategies can overcome the 
limitations imposed by the number, distribution, and typology of data. AI is a field 
of computer science that implements algorithms that mimic human behavior 
through processes, such as the ability to discover meaning, generalize, or learn 
from past experience. These methods provide investigators with accurate and ef-
fective algorithms for data analysis and open completely new opportunities for 
disease characterization. The combination of powerful computational tools with 
novel training algorithms increase the accuracy for prediction, pattern identifica-
tion and task automation in large datasets (Makridakis, 2017; Johnson et al., 
2018). AI techniques have been applied in cardiovascular medicine where com-
plex, heterogeneous and multiple rich multimodal datasets (i.e. genome-sequenc-
ing, mobile device biometrics, imaging, etc.) are used for diagnosis and treatment 
(Atienza et al., 2000; Al’Aref et al., 2019; Bello et al., 2019; Krittanawong et al., 
2019; Sampedro-Gómez et al., 2020). 
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Figure 2.12. A. Description of the hierarchy and relationship of traditional statistics, artificial 

intelligence, machine learning and deep learning techniques. B. Supervised, unsupervised and 

reinforcement learning algorithms. Supervised learning presents input of raw data and trains 

the algorithms by stablishing a linear relation between the training data set and the correspond-
ing label. Unsupervised learning inputs the raw input data and extracts hidden relations in data 

with an unknown clustering or grouping of the samples. Reinforcement learning works on a 
system based on reward and punishment towards the objective of finding the cumulative re-
ward.  

 
Machine Learning (ML) is an AI technique based on algorithms that improve 

automatically through an iterative process of learning from data, identifying pat-
terns and making decisions (Mitchel, 1997) (Figure 2.12). Deep Learning (DL) is 
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a family of ML methods based on artificial Neural Network (NNs), a more sophis-
ticated mathematical expression for the learning process, capable of extracting 
higher level features from the raw input (Deng and Yu, 2014). NNs combine a 
collection of connected computational units, called artificial neurons. Neurons are 
grouped in layers which are distributed in the input, intermediate (or hidden) and 
output spaces. As depicted in Figure 2.13, each of these layers, that hold multiple 
neurons or blocks, are sequentially connected to build the NN. Each neuron is a 
processing unit with a specific mathematical operation that, in-turn, can receive 
and feed multiple neurons. The input layer of the NN usually incorporates different 
type of data (scalars, signals or images) into the net. Intermediate or hidden layers 
adjust weights during training based on correct or incorrect decisions. Finally, out-
put layers express the predicted value which may be an estimated value (regres-
sion problems) or a probability of belonging to a given category (classification 
problems). These algorithms can be trained using supervised or unsupervised 
methods (Table 2.1).  

Convolutional neural networks (CNNs) are a specific design of NNs that have 
become the primary choice to make predictions from ECG signals obtained at a 
single point in time (Xiong et al., 2018; Attia et al., 2019; Hannun et al., 2019). 
They typically process raw input data from ECG recordings and are also one of 
the most widely employed architectures for image analysis (Margeta et al., 2017; 
Vesal et al., 2019; Fahmy et al., 2020). These algorithms are built of consecutive 
neurons or operational blocks that transform the input information and identify 
new features for classification. For its correct performance, the number and type 
of blocks can be adjusted depending on both data and computational power. In 
addition, each of these layers can be customized by adjusting their variables (hy-
perparameters), which change and adapt the function or block depending on the 
input dataset. The standard layers are convolutional layers that rely on convolu-
tional operations, detect and construct feature maps. These feature maps are 
then processed by the successive layers, creating hierarchical representations of 
data which are useful for predicting a categorical output. Convolutional layers are 
usually combined with additional blocks such as batch normalization layers, pool-
ing layers for down sampling feature maps, dropout layers for regularization tech-
niques (i.e. preventing overfitting) and dense or connection layers (Figure 2.13).  

Training these algorithms implies two dependent and related processes, de-
fined as forward and backwards propagation (Alpaydin, 2014). During forward 
propagation, the information flows from the input to the output of the network to 
make a prediction. Once the prediction is obtained, it is compared to the original 
label by calculating the difference or loss. This loss is used by the network during 
the backpropagation stage, to adjust the weights of the algorithm in an iterative 
process with the final goal of minimizing the loss. This principle is based on the 
gradient descent method and can encounter some difficulties during the training 
process, especially when a local minimum is found instead of a global minimum  
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Different loss functions can be implemented depending on the type of data 

and network (Deng and Yu, 2014). Root Mean Square Error (RMSE) is one of the 
most popular loss functions used for NN. However, this function is very complex 
and as a result, may lead to converging on local minima. Some solutions have 
been presented to overcome this difficulty such as adding noise to the weights 
while being updated or the use of momentum which gradually increases the 
weight adjustment rate.   

Recurrent neural networks (RNNs) are NN structures designed to analyze the 
temporal sequence of data, particularly identifying patterns in long ECG record-
ings (Faust et al., 2018). This type of architectures is key, for example, for distin-
guishing AF from other rhythms. 

In summary, NNs are associative self-learning algorithms capable of identify-
ing multidimensional relationships in non-linear domains with higher predictive ac-
curacy than linear or traditional regression approaches (6, 42, 61, 76). 

Figure 2.13. Description of a Deep Neural Network for classification including input 
parameters as medical records, electrical signals and medical images, input layers, hid-
den layers and output layers. Each of the layers can be customized depending on the 
mathematical operation that it performs, including convolutional, dropout, pooling and 
batch normalization.  
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2.3.2. AI Learning process: Supervised vs. Unsupervised vs. Reinforcement 
Learning  

AI algorithms are designed to learn from data so, in a second step, prediction 
or diagnosis can be later performed on a new sample. In this context, three differ-
ent approaches can be distinguished, depending on the data available for imple-
mentation and the final goal, whether it is classification, clustering or learning (Fig-
ure 2.12).  The main advantages, disadvantages and applications of these 
algorithms are summarized on Table 2.1. 

Supervised learning is designed to predict a label, whether the label is binary 
(i.e. AF vs. sinus rhythm) or a multidimensional result (i.e. fibrotic tissue presence 
and location on a MRI image) (Feeny et al., 2020). As depicted in Figure 2.12B, 
supervised learning methods enter the information directly in the algorithm which 
is trained adjusting the parameters to match the desired label or prediction. The 
most critical component of the process relies on feature selection from the dataset 
(Novig, 1995), as descriptive and high quality biomarkers are key for the success 
of the algorithm. Moreover, the number classes to predict and the number of sam-
ples in each class is critical for the training process, as the algorithm needs to 
identify enough information to build the patterns required for discriminating differ-
ent labels. Adequate classification of groups is particularly difficult in medical ap-
plications of supervised learning because data is typically imbalanced (each label 
group has a different number of samples). This imbalanced nature may strongly 
affect the performance of the Receiver Operating Characteristic (ROC) curve 
evaluation, which mainly expresses the true and false positive performance, not 
reflecting the minority class (Davis and Goadrich, 2006). For this purpose, regu-
larization techniques (Reychav et al., 2019) and/or training with synthetic data can 
be implemented to overcome this problem (Le et al., 2017). Also, other evalua-
tions such as the Precision-Recall (PR) curves (Davis and Goadrich, 2006) can 
be more informative than ROC in these cases. Some of the most common algo-
rithms used in supervised methods are k-nearest neighbors (k-NN), support vec-
tor machines (SVM), Random Forests (RF), Extra Gradient Boosting (XGBoost), 
Logistic Regression (LR) or NNs (Alpaydin, 2014).  

Unsupervised learning is used when the goal is to identify hidden relations 
and intrinsic structures within the data. Unsupervised learning is based on raw 
input data and does not take into account features design, label or class (Thrun 
and Pratt, 1998). Parameter adjustment in unsupervised methods requires less 
computational power and present results in clusters (i.e. patients with a given set 
of similar characteristics). Major limitations of unsupervised learning methods are 
the difficulties in identifying the initial cluster pattern and the requirements for hand 
coding of some parts of the algorithm. Unsupervised learning is typically used for 
exploratory analyses (identifying patterns in data) and for reducing dimensionality 
for further analyses by eliminating redundant features and increasing model effi-
ciency. Dimensionality reduction algorithms are commonly used to reveal new 
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distribution of samples in space and as noise reduction methods, to apply clus-
tering algorithms based on a second step. Neural networks included in unsuper-
vised learning are mainly represented by autoencoders. Autoencoders (a combi-
nation of encoder and decoder blocks), learn a pattern representation from data, 
distilling the information that better describes the input samples. The final objec-
tive of these algorithms is to copy or produce an output holding a similar amount 
of relevant information than in the input space, but much smaller in terms of di-
mensions and size. 

 

Reinforcement learning algorithms are trained in an iterative system of incen-
tive and punishment, towards the goal of maximizing the cumulative reward. In 
this case, the algorithm presents two key figures: the agent and the environment 
(Figure 2.12). The agent chooses the response or action for a given situation or 
state of the environment, obtaining feedback: a reward in case the response is 
correct and a punishment in case the response is incorrect. After multiple itera-
tions, the algorithm will learn what is the best action for each tested situation. 
Although this approach has been scarcely used for healthcare applications, its 
development in the next years is expected to increase, particularly  in observa-
tional cohorts with sequential treatments or stages (Gottesman et al., 2019), in-
cluding AF clinical trials.   

2.3.3. Calibration process: Training, validation and test sets  
Implementing ML algorithms usually requires calibration based on three dif-

ferent subsets of data: training data, validation data and test data (Alpaydin, 
2014). Training data is used to adjust the algorithm to the population sample, val-
idation data are used to refine the parameters or hyperparameters of the algorithm 
and test data is used as validation to address the performance of the final algo-
rithm on a completely new data set. Typically, the training set usually incudes 60% 

Figure 2.14. Example of automatic and manual segmentation of the atrial cavity 
during end diastolic (AD) and end systolic (ES) with respective processing time, modi-
fied from (Bai et al., 2018). Used with permission.  
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of the available data and validation and test data account for 20% each of, alt-
hough other approaches can be followed depending on the heterogeneity of the 
population, the complexity of the algorithm to be trained and the number of sam-
ples available.  

 

2.3.4. AI application in AF  
AI algorithms are increasingly used in several scenarios related to AF (Feeny 

et al., 2020) such as diagnosis (Xia et al., 2018), prediction of outcomes (34), 
characterization of the disease (Xiong et al., 2020), and the evaluation of treat-
ment efficacy (Helms et al., 2014; Dretzke et al., 2019; Mamoshina et al., 2020). 
These approaches incorporate the advantages described above to process huge 
amounts of data.  

Figure 2.15. Artificial Intelligence in Atrial Fibrillation. Description of the clinical data 
used, and the tasks performed. Common algorithms used for each type of data and 
range of estimated number of samples needed for the implementation of each of them. 



State of the Art 

30 

 

Algorithm Classification 
problems Advantages Disadvantages 

Usually 
applied 

in… 
Applications in AF 

k- Nearest 
Neighbors 

(k-NN) 

Su
pe

rv
is

ed
 

le
ar

ni
ng

 Multiclass 
classifica-

tion 

Intuitive and simple to code 

Low number of hyperparameters to adjust 

Variety of criteria to adjust algorithm 

Slow algorithm for increased number of samples 

Not suitable for large datasets 

Unbalanced data is a problem 

Not good at dealing with missing values 

Features extrac-
ted from signal 

(Venkatesan et al., 2018; Zolotarev et al., 
2020) 

Support Vector 
Machines (SVM) 

U
ns

up
er

vi
se

d 
le

ar
ni

ng
 

Non-linear 
binary 

classifica-
tion 

More effective in high dimensional spaces 

Memory efficient 
Not suitable for large datasets 

Time and fre-
quency domain 

biomarkers 

(Boon et al., 2018; Tkachenko et al., 2019; 
Aparna and Sharma, 2020; Zolotarev et 

al., 2020) 

Random Forest 
(RF) 

Non-linear 
decision 

tree 

Good approach for datasets with low num-
ber of variables with a lot of observations 

Acceptable performance for unbalanced 
datasets 

Overfitting 

Bad generalization 

Low control on model performance 

Clinical history, 
measurements, 

signal bi-
omarkers 

(Li et al., 2011; Hill et al., 2019; 
Tkachenko et al., 2019; Zolotarev et al., 

2020) 

Extra Gradient 
Boosting 

(XGBoost) 

Gradient 
boosted 
decision 

trees 

Increased speed and performance 

Allows training very large models 

Supports parallelization 

Handling of missing values 

Can include new samples after first training 

Training is slower than RF 

Blood bi-
omarkers, abla-
tion procedure 

biomarkers, 
ECG bi-

omarkers 

(Budzianowski et al., 2019; Zolotarev et 
al., 2020) 

Logistic Regres-
sion (LR) 

Categori-
cal or bi-
nary data 

labels 

Intuitive and simple to code 

Efficient to train and fast at classifying 

No assumptions about distribution of clas-
ses 

Overfitting present if number of observations < 
number of classes 

Assumes linearity relation on data 

Prediction of discrete data 

LA dilation, 
age,Heart fail-

ure 
(Qureshi et al., 2014; Patel et al., 2019) 

Principal Com-
ponent Analysis 

(PCA) 

Dimen-
sionality 
reduction 

Removes correlated features 

Improves algorithm performance 

Reduces overfitting 

Improves visualization 

Independent variables become less interpretable 

Data standardization required before use 

Information loss 

Intracardiac re-
cordings (Faes et al., 2001) 
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Table 2.1.  Description of the main algorithms used in supervised and unsupervised learning, including advantages, disadvantages and its application 
in atrial fibrillation and other cardiovascular area

K-means cluster-
ing  

Explora-
tory analy-

sis 

Simple to implement 

Scales to large data sets 

Guarantees convergence 

Easily adapts to new examples 

Hyperparameters to be chosen manually 

Dependent on initial values 

Clustering may fail for different size clusters 

Heart rate varia-
bility (Park et al., 2009) 

Neural Networks 
(NNs) 

Supervised 
and unsu-
pervised 

Different 
configura-
tion de-
pending 
on layers 
or blocks 

Fault tolerance 

Supports parallelization 

Ability to train the machine 

Hardware dependence 

Black-box nature 

Signals 

2D images 

3D images 
(MRI, CT) 

(Alpaydin, 2014; Pourbabaee et al., 2018; 
Yıldırım et al., 2018; Vesal et al., 2019; 

Xiong et al., 2020) 
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Chapter 3.  
Study 1. In silico Trial and 

Artificial Intelligence  
 
Abstract 

Background: Antiarrhythmic drugs are the first-line treatment for atrial 
fibrillation (AF), but their effect is highly dependent on the characteristics of 
the patient. Moreover, anatomical variability, and specifically atrial size, 
have also a strong influence on AF recurrence.  

Objective: To perform a proof of concept study using artificial intelli-
gence (AI) that enables to identify proarrhythmic profiles based on pattern 
identification from in silico simulations.  

Methods: A population of models consisting on 127 electrophysiologi-
cal profiles with variation of nine electrophysiological variables (GNa, INaK, 
GK1, GCaL, GKur, IKCa, [Na]ext,[K]ext and diffusion) was simulated using 
the Koivumaki atrial model on 2D square planes corresponding to a normal 
(16 cm2) and dilated (22.5 cm2) atrium. The simple pore channel equation 
was used for drug implementation including three drugs (isoproterenol, 
flecainide and verapamil). We analyzed the effect of every ionic channel 
combination to evaluate arrhythmia induction. A Random Forest algorithm 
was trained using the population of models and AF inducibility as input and 
output, respectively. The algorithm was trained with 80% of the data (N = 
832) and 20% of the data was used for testing with a k-fold cross validation 
(k = 5).  

Results: We found two electrophysiological patterns derived from the 
AI algorithm that were associated with proarrhythmic behavior in most of 
the profiles, where GK1 was identified as the most important current for 
classifying the proarrhythmicity of a given profile. Additionally, we found dif-
ferent effects of the drugs depending on the electrophysiological profile and 
a higher tendency of the dilated tissue to fibrillate (Small tissue: 80 profiles 
vs Dilated tissue: 87 profiles).   
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Conclusions: AI algorithms appear as a novel tool for electrophysio-
logical pattern identification and analysis of the effect of antiarrhythmic 
drugs on a heterogeneous population of patients with AF. 

3.1. Introduction 
The first-line treatment for AF are antiarrhythmic drugs, although unde-

sirable proarrhythmic effects have been identified in some cases. The re-
sponse to these drugs is highly dependent on the specific baseline electro-
physiological characteristics of the patient. In this framework, safety 
pharmacology has emerged as a new field in cardiac arrhythmias with the 
aim of identifying the drug hazard (Kraushaar et al., 2012; Mirams et al., 
2012; Davies et al., 2019) by detecting the probability of triggering an ar-
rhythmia. Different tests have been designed with the objective of determin-
ing the proarrhythmicity of a given compound (Falk, 1989; Crumb et al., 
2016; Passini et al., 2017). 

Variability is, consequently, an important factor to be studied and ana-
lyzed to understand its dependency between the specific characteristics of 
the patient and the effect of the drug. In this scenario, several studies have 
included and incorporated variability in mathematical approaches by means 
of a population of models (Britton et al., 2013; Liberos et al., 2016; 
Muszkiewicz et al., 2016; Bai et al., 2021) to account for the electrophysio-
logical heterogeneity presented in a real population of patients. Other ap-
proaches have also been implemented in more recent studies such as the 
CiPA initiative, that combines in vitro, in silico and clinical data to build a 
platform that can be used for testing new drugs and their potential harmful 
effects (Stockbridge) in ventricular myocyte models. In addition, studies 
have also explored electrophysiological variability to identify potential cur-
rents involved in AF triggering and maintenance (Ellinwood et al., 2017; Bai 
et al., 2020). However, these approaches usually focus at unicellular level 
or present low variability at electrophysiological level in the field of AF.  

Anatomical complexity has also been incorporated including in silico 
studies using 2D and 3D structures rather than unicellular approaches to 
evaluate the proarrhythmicity of anatomical structures (Varela et al., 2016). 
Within this framework, several studies have identified specific currents or 
biomarkers that can explain or characterize the proarrhythmicity of a com-
pound. New scenarios considered at this stage the use of sophisticated sta-
tistical methods that can, not only identify isolated biomarkers, but groups 
or clusters that better react to a specific treatment. Although the use of a 
population of models for the evaluation of proarrhythmicity usually present 
a broad representation of the electrophysiological characteristics of these 
patients, other variables that highly influence the arrhythmia induction and 
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maintenance should be explored. For example, other factors aside from 
ionic remodeling that can affect AF maintenance can be found in the litera-
ture such as the size of the atria, that has been previously identified as an 
increased probability of triggering an arrhythmia for bigger or dilated tis-
sues. With all these considerations, a new dimension is included in the sim-
ulations, introducing anatomical variability into the important factors under-
lying arrhythmia maintenance (Nattel et al., 2008; Qureshi et al., 2014).  

However, and despite the complexity included in all these studies, the 
identification of new biomarkers or patterns is still challenging and present 
low accuracy metrics. Our hypothesis is that Artificial Intelligence (AI) can 
extract patterns or clusters from in silico simulations that can help to better 
predict the effect and risk of antiarrhythmic therapies.   

Here, a population of models with AF, including electrophysiological and 
anatomical variability, was used to study the effect of different drugs on the 
arrhythmia behavior and was then analyzed by means of AI algorithms. Our 
research is built on previous studies using population of models (Liberos et 
al., 2016) showing the importance of specific currents on the drug effect. In 
addition, previous studies have identified one ionic current or a combination 
of them (Pandit et al., 2005; Dobrev et al., 2011; Jiang et al., 2017) but none 
of them have implemented an algorithm that specifies the threshold for each 
variable of the ionic profile. Our algorithm was developed as a proof of con-
cept of AI applied to population of models guiding the identification of the 
effect of drug therapy on a heterogeneous population.  

3.2. Materials and Methods 

3.2.1. Electrophysiological Variation: Description of the Population of 
Models  

To obtain data for the population of models, samples from the right atrial 
appendages from 149 patients diagnosed with chronic AF in which anti-
arrhythmic medication was interrupted before the study were available 
(Wettwer et al., 2013; Sánchez et al., 2014).  

Briefly, patch clamp was performed in all the samples obtaining the val-
ues for different currents. A total of six biomarkers were used to quantify 
variability in action potentials (AP) including AP duration at 20, 50 and 90% 
of repolarization (APD20, APD50, APD90 respectively), AP amplitude 
(APA), resting membrane potential (RMP) and AP plateau potential at 20% 
of APD20 (V20). The maximum and minimum values of these biomarkers 
at a pacing frequency of 1Hz are presented in Supplementary Table 1.  

To build the computational population of human AF models, different 
combinations of ionic currents were generated from the experimental data 
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described earlier. In further detail, Latin Hypercubic Sampling (LHS) 
(McKay et al., 1979) and the baseline AF model developed by Koivumaki 
et al. were used for its generation.  

A total of nine parameters were varied from -50% to +100% of their 
original value: fast Na+ ionic conductance (gNa), Na+- K+ pump (INaK), 
inward rectified K+ current (gK1), L-type calcium ionic conductance (gCaL), 
ultrarapid outward ionic conductance (gKur), Ca2+-dependent K+ current 
(IKCa) and Na+ and K+ extracellular concentration and the diffusion coeffi-
cient of the reaction-diffusion equation (Supplementary Figure 2). LHS pro-
duced 500 different combinations of these nine parameters from the initial 
149 patients. Simulations for these 500 profiles were calculated on 2D 
planes of 8x256 nodes to evaluate the AP metrics. The models were simu-
lated by pacing at 1Hz (using a 3 ms stimulus duration, twice diastolic 
threshold amplitude). The APs of three cells along the plane (cells 500, 620 
and 748) were analyzed following a train of 15 periodic stimuli and the last 
5 periodic stimuli were considered in order to ensure steady state. Only the 
models that fitted into the experimental constraints (Supplementary Table 
1) were considered as representative human electrophysiological models 
for the final population, resulting in 127 final profiles (Simon et al., 2017).  

3.2.2. Chronic Atrial Fibrillation Electrophysiological Cellular Model 
Different atrial models have been described at unicellular level to char-

acterize the electrophysiological response. In this study, we implemented 
the Koivumaki model with Skibsbye modifications (Skibsbye et al., 2016) 
that includes a reformulation in sodium current to characterize sodium chan-
nel inactivation, adjusts transient outward potassium current and L-type 
Ca+ current, and includes the small conductance calcium-activated potas-
sium current (IKCA). In addition, the model used for simulations included  
AF remodeling, achieved  by modifying the following ionic currents: L-type 
Ca2+ (ICaL) decreased by a 55%, transient outward current (Ito) decreased 
by  62%, rapid delayed rectifier potassium channel (IKur) decreased by 
38%, inward-rectifier potassium channel (IK1) increased by 62%, Na/Ca 
exchange current (INCX) increased by 50%, expression of SERCA  de-
creased by 16%, phospholamban to SERCA increased by 18% and sar-
copilin to SERCA decreased by 40% as described in (Koivumäki et al., 
2014). This model was used for both the calibration of the population of 
models previously described and the rest of the experiments in the study.  
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Figure 3.1. Overall methodology description including 1) population of models cal-
ibration as described in (Simon et al.). Samples from 149 patietns were obtained to 
evaluate 500 different ionic combinations that resulted in a final pool of 127 electrophys-
iological profiles that composed the population of models 2) brief description of the Koi-
vumaki electrophysiological model used and the mathematical modelling of the drug as 
described 3) connection between different cells for plane simulations and tissue size 
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used for each for the of the 2D planes used 4) S1-S2 arrhythmia induction protocol sim-
ulation and pharmacological compounds simulated during the experiments 5) Artificial 
Intelligence algorithm training (80% of data) and testing division (20% of data) for the 
identification of proarrhythmic profiles.  

3.2.3. Anatomical Characterization: Monodomain Equation and Tissue 
Size  

Simulations were performed on 2D planes mimicking a sheet of cardiac 
tissue.  Two different tissue sizes were implemented for this study: one 
square plane corresponding to a normal atrium (16 cm2, 400x400 nodes) 
and another square plane corresponding to a dilated atrium (20.25 cm2, 
450x450 nodes) (Kou et al., 2014).  

To connect the cells within the plane, the monodomain reaction-diffu-
sion equation was implemented, assuming that tissue behaves as a func-
tional syncytium where membrane voltage is propagated smoothly (Clayton 
and Panfilov, 2008):  
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Where the & corresponds to the gradient operator and D a diffusion 
coefficient with units distance2 time -1. By using this monodomain simplifi-
cation, the tissue is considered to have an unlimited extracellular medium, 
so the extracellular resistivity can be neglected. The extracellular medium 
is isopotential an equal to cero for simplicity. Consequently, the membrane 
potential is the same as the intracellular potential. Planes were fully con-
nected as shown in Figure 3.1, not including structures such as the pulmo-
nary veins. The value of the diffusion constant, referred as D in the above 
equation, was varied among the different profiles as part of the variability 
included in the population of models.   

3.2.4. Mathematical modelling of the drug  
Both antiarrhythmic and proarrhythmic drugs were evaluated in the 

electrophysiological population of models in order to characterize the effect 
according to tissue size and ionic currents. Three different drugs were stud-
ied presenting different mechanisms and effect: verapamil, flecainide and 
isoproterenol. Briefly, verapamil is an antiarrhythmic drug that acts as a cal-
cium blocker, flecainide is an antiarrhythmic drug that acts as a sodium 
blocker and isoproterenol is a proarrhythmic agent (β receptor agonist)  that 
increases intracellular calcium. All three drugs are currently used in clinical 
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practice and its effect, although established as proarrhythmic or antiarrhyth-
mic, can vary from patient to patient (Bassett et al., 1997). Simple pore 
channel equation was used for drug implementation at computational level 
including three channels for each drug that was modelled according to ex-
perimental IC50 values to calculate the block of the channel (Dempsey et 
al., 2014). The model used is described as follows:  
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Where the G0 represents the initial conductance of the channel for each 

of the profiles in the population of modes, [Di] corresponds to the concen-
tration of the drug and IC50 is the concentration of the drug that reduces by 
50% the channel current. For verapamil and flecainide, values from (Crumb 
et al., 2016) were implemented. Isoproterenol was modelled increasing the 
permeability of the calcium current as stated in (Vescovo et al., 1989). The 
numerical values for each modeled drug can be observed in Table 3.1, in-
cluding the concentration at which the drug was modelled. 

Table 3.1. Parameters for modelling the drug effect including drug concen-
tration, IC50 for the three specific channels modelled. *Corresponds to EC50.  

 Drug Concentration 

(mM) 
Nav1.5-peak hERG Cav1.2 

Flecainide 2.0 e-04 6.7 0.7 20 

Verapamil 5.0 e-04 1.0 0.7 0.1 

Isoproterenol 8.0 e-02 - - 20* 
 

3.2.5.  Simulation protocols  
Simulations were performed implementing differential equations com-

puted with a time step of 1 microsecond for Euler method using in-house 
software written in C++ with CUDA parallelization and solved with a NVIDIA 
TESLA C2057 GPU. Rush Larsen method was developed for cell models 
as it offers stability to the problem by calculating the exact solution for the 
gating variables. Since all the equations governing the gating variables 
have a similar structure, the method uses the following expression to solve 
them:  
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Consequently, all equations for gating variables were solved by the pre-
vious expression whereas the rest of equations were solved by the forward 
Euler Method. 

2D planes were simulated for a total of three impulses (S1) at 1 Hz fol-
lowed by a fourth one (S2) for arrhythmia initiation. S2 was induced in the 
cells of the inferior left section of the plane, producing reentry in part of the 
models. For a given combination of ionic channels in the population of mod-
els, an arrhythmia was induced when >1 complete rotational activity fol-
lowed the S1-S2 induction protocol. In addition, rotor tracking was studied 
for two specific profiles that is discussed in the result section. The method-
ology for rotor tracking has already been described in previous publications 
of the group (Rodrigo et al., 2014). Briefly, phase maps of the simulations 
were calculated by using Hilbert transform from which singularity points 
were calculated. A Singularity Point (SP) is defined as the point in a phase 
map that is surrounded by phases from 0 to 2π. Only those singularity 
points that were present for the duration of at least 1 full rotation were con-
sidered, as described in (Rodrigo et al., 2014). Rotor tracking was defined 
as the connection between SPs across spherical layers at a given time. 
Only filaments that completed at least 1 rotation on the outermost surface 
were considered.  

Random Forest Algorithm for AF maintenance prediction 
A total of 1016 simulations were computed in this study corresponding 

to all different combinations of the population of models (127 profiles) sim-
ulated in different tissue sizes (2 tissue sizes) and four different conditions 
(baseline conditions, two antiarrhythmic drugs and one proarrhythmic drug), 
creating a database with different ionic conductance combinations and tis-
sue size. 

Random Forest, which is a decision algorithm consisting on a multitude 
of decision trees at training time, was implemented to output two possible 
outcomes: induced or non-inducible AF. This algorithm was trained includ-
ing the eight variables of the population of models as an input and the pres-
ence of AF form simulations as an output to evaluate patterns that may lead 
to AF maintenance. The algorithm was trained with 80% of the data (N = 
832) and 20% of the data was used for testing with a 5k fold cross valida-
tion.   



 
Chapter 3 

41 

3.3. Results 

3.3.1. AF induction on the Population of Models  

Table 3.2. Profiles maintaining rotational activity for different drug and tissue 
size. For each tissue size and basal/drug condition, the table specifies the number 
of profiles with A inducibility. Percentage of the profiles with reentry is specified 
in parenthesis for every 127 profiles simulated in each case.  

  Atrial Fibrillation  Sinus Rhythm 

Small 

Basal 80 (63.00%) 47 (37.00%) 

Flecainide 37 (29.13%) 90 (70.87%) 

Verapamil 37 (29.13%) 90 (70.87%) 

Isoproterenol 88 (69.29%) 39 (30.71%) 

Dilated 

Basal 87 (68.50%) 40 (31.50%) 

Flecainide 63 (49.61%) 64 (50.39%) 

Verapamil 64 (50.39%) 63 (49.61%) 

Isoproterenol 94 (74.02%) 33 (25.98%) 

 
From the complete population consisting on 127 different electrophysi-

ological profiles, 80 profiles maintained the reentrant activity at baseline 
conditions in the normal tissue size and 87 in the dilated atrium. Complete 
quantification of the profiles maintaining reentry can be observed in Table 
3.2, including the effect of the three simulated drugs. As shown, dilated tis-
sue increased the number of profiles maintaining reentry in all cases, inde-
pendently of the presence and type of drug.   

 

Figure 3.2. A. Distribution of the population of models with induced and non-induc-
ible AF for the normal tissue (top) and the dilated tissue (bottom). Red color shows the 
proportion of the models with inducible AF during simulation and green color shows the 
proportion fo the models with non-inducible AF. B. Distribution of the population of mod-
els for the normal size tissue under the four studied conditions (no drug, flecainide, ve-
rapamil and isoproterenol) with proportion of inducible AF (red), non-inducible AF 
(green) in each of the cases. Terminated AF (yellow) corresponds to the profiles that, 
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due to the electrophysiological changes induced by the drug, the reentry was not induc-
ible. 

The analysis of the simulations resulted in the identification of profiles 
that responded differently to the arrhythmia induction under the effect of the 
drug, as it can be observed in arrhythmia induction Figure 3.2. Non-induci-
bility of the arrhythmia was observed in the majority of the profiles when the 
antiarrhythmic compounds, verapamil and flecainide were used. However, 
in some of the profiles that did not induce the arrhythmia at baseline, the 
addition of one of those drugs induced rotational activity (Figure 3.2B). Spe-
cifically, the addition of flecainide gave rise to non-inducibility of the arrhyth-
mia in 51 profiles and induced AF in 7 profiles that were non-inducible at 
baseline. For verapamil, 53 and 8 profiles were non-inducible and induced 
the arrhythmia respectively in normal tissue size samples. Interestingly, all 
the profiles that showed proarrhythmic and antiarrhythmic effect in the 
flecainide scenario presented the same behavior in the verapamil scenario. 
Although verapamil and flecainide showed similar results, the overall action 
potential morphology was significantly different for the same profile under 
the effect of these drugs, as it can be observed in Figure 3.3 and Figure 
3.4, where the curvature of the action potential is modified due to the effect 
of the drug at ionic level. Isoproterenol showed a proarrhythmic effect in-
creasing the number of AF maintaining profiles in 8 cases.  

3.3.2. Antagonistic effects can be observed for the same drug among 
the population of models  

Antagonistic effects of both antiarrhythmic and proarrhythmic drugs 
were observed on the population of models.  Figure 3.3 presents a specific 
ionic profile simulated for all four conditions (basal and three drugs) in which 
reentry was maintained over time in the basal scenario. When the simula-
tion was repeated under the effect of verapamil or flecainide, the arrhythmia 
was not induced. With the addition of isoproterenol, the arrhythmia was, not 
only induced but rotational activity presented a higher activation frequency.  

For another specific profile shown on Figure 3.4, antagonistic effects 
were observed: for a profile in which arrhythmia was not induced under ba-
sal conditions, verapamil and flecainide showed a proarrhythmic effect, 
meaning that the arrhythmia was induced, while isoproterenol did not in-
duce the reentry for the complete simulation. Furthermore, for these afore-
mentioned profiles, rotor tracking shows lower area and higher complexity 
on the simulations in which the arrhythmia was maintained over time, ex-
hibiting the stability of the reentry. Flecainide and verapamil terminated AF 
for the majority of the profiles in which AF was maintained under basal con-
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ditions, whereas isoproterenol induced AF in new profiles that were not in-
ducible in basal conditions. Interestingly, a small proportion of models pre-
sented AF induction under the effect of verapamil and flecainide (Figure 
3.2B) despite the absence of AF induction at baseline.  

 

 

Figure 3.3. Specific profile from the population of models showing: A. Inducible AF 
after stimulation protocol B. Inducible AF due to effect of isoproterenol, showing and 
increase on the activation dynamics C. Antiarrhythmic effect of verapamil and D. Anti-
arrhythmic effect of flecainide. As an example, rotor meandering is shown in panel A 
and B, exemplifying the effect of isoproterenol in the arrhythmia stabilization. 
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Figure 3.4. Specific profile from the population of models showing:  A. No AF in-
duction using the stimulation protocol described. B. Induction but not maintenance of AF 
when simulation was repeated under the effect of isoproterenol C. Induction and mainte-
nance of AF under the   effect of verapamil and D. Induction and maintenance under the 
effect of flecainide. As an example, rotor meandering is shown in B, C and D panels 
exemplifying the effect of the drugs in arrhythmia stabilization. 

3.3.3. Machine Learning Algorithms Help Understand and Predicts the 
Ionic Channels Effect  

We generated a final database of 1016 simulations that included the 
basal and drug administration state for both tissue sizes. Therefore, these 
data represented: 1) the variables of the population of models, 2) the elec-
trophysiologic change conferred by the drug administration; and 3) the 
changes between normal and dilated tissue size. Then, the database was 
processed in order to train and calibrate a decision algorithm for drug effect 
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prediction. As a result, the Random Forest algorithm, shown in Figure 3.5, 
was obtained. The algorithm had in total seven different consecutive layers, 
shown in  Figure 3.5A that cluster similar profiles together for prediction of 
AF induction based on the conductance values in the form of a sunburst 
diagram. In this diagram, each level is represented by a concentric circle 
containing one or more variables from the population of models, where each 
level presents threshold values for decision making. To evaluate a specific 
profile, the decision algorithm starts the clustering process from the most 
inner circle, that corresponds to the GK1 variable. For each variable, a 
threshold value has been defined that has to be compared with the value of 
the variable for the specific profile that is being evaluated. Specific values 
for each threshold can be consulted in the Supplementary Material Figure 
1. For example, in the case of GK1 this value corresponded to 9.12%. If the 
value of the profile is higher than 9.12%, the next level to be considered will 
correspond to the right part of the diagram and the next variable (High GK1) 
to continue the characterization, corresponding to the diffusion variable. In 
contrast, if the value of the profile is lower than 9.12% for GK1, the next 
level to be considered will correspond to the left part of the diagram and the 
next variable, identified as K0. This process should be completed until the 
last layer or circle of the diagram, finding the path or cluster to which a given 
profile belongs. Figure 3.5B shows the paths or clusters that have been 
identified as inducible AF by the algorithm.   

 

 

Figure 3.5. A. Decision tree algorithm of the change in conductances based on the 
population of models with the information of the examples presented in Figures 3.1 and 
3.2. The decision tree starts from the center of the circle and continues in an outward 
trend including all the variables described in the population of models. Specific paths of 
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the decision algorithm led to induced AF, that are shown in red (inducible AF) in panel 
B. 

Interestingly, if the paths of clusters from the diagram are analyzed, it 
can be observed that one of the main contributions that lead to AF induci-
bility is the combination of profiles with high conductance of the inward rec-
tifier K+ channel (K1), low diffusion, high concentration of extracellular po-
tassium, high conductance for the sodium channel and low conductance of 
the ultra-rapidly activating delayed rectifier current (IKur). Another combi-
nation that leads to AF was low conductance value for IK1, low concentra-
tion of extracellular potassium, high conductance for the sodium potassium 
pump, high conductance for the slow calcium channel, high conductance 
for the calcium-potassium pump and high conductance for the INa channel.  

Figure 3.6 shows an example of how the change in conductance of spe-
cific channels can affect the final path or cluster to which a specific profile 
belongs, altering the final outcome of the decision tree algorithm. In this 
figure, specific pathways of the decision tree are exemplified in each of the 
panels, highlighting how the change due to the addition of the drug affects 
specific levels that, depending on the final permeability of the channel, may 
be fundamental for the induction and maintenance of the rotational activity. 
Panel A and C highlight changes on calcium channel conductance, that can 
be affected by the addition of verapamil or isoproterenol, as both drugs were 
modeled to respectively decrease or increase the permeability of this chan-
nel. Specifically, Panel A exemplifies how the increase on permeability of 
calcium channel, by the addition of isoproterenol, has a proarrhythmic ef-
fect. Conversely, a profile that presents high conductance of the calcium 
channel can be reduced by adding verapamil and changing to a state of 
non-inducibility of AF. Panel C shows another example in which the de-
crease of calcium permeability results in AF inducibility and the increase of 
calcium permeability increases the probability of AF non-inducibility.  

Examples for flecainide, which affects sodium channel permeability, are 
shown in Panel B and D. Specifically, Panel B shows an antiarrhythmic ef-
fect of the addition of flecainide, by blocking sodium channel. Panel D 
shows a level of the decision tree algorithm at which, by changing sodium 
channel permeability, the probability of AF non-inducibility increases. Thus, 
the probability of inducing AF is higher for those profiles with lower sodium 
permeability, showing a proarrhythmic effect of the drug. 
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Figure 3.6. Examples of change in channel conductivity that lead to a change in 
induced/non-inducible AF. A. Level at which increase of calcium channel conductance 
permeability results in maintenance of AF, example of the proarrhythmicity of isopro-
terenol. B. Level at which decrease of sodium conductance results in AF non-inducibility, 
example of antiarrhythmic effect of flecainide. C. Level at which increase or decrease of 
calcium channel permeability results in AF induction, example of verapamil being anti-
arrhythmic and isoproterenol having a proarrhythmic effect. D. Level at which increase 
of sodium permeability increases the probability of AF inducibility. 

3.4. Discussion 
In this study we present a new algorithm that identified and clustered 

the combination of channel conductivities that promoted arrhythmia initia-
tion. The algorithm was calibrated with in silico data obtained from 2D sim-
ulations in two different size planes simulated on a population of models 
under the effect of three different drug effects (isoproterenol, verapamil and 
flecainide) resulting in 1016 different simulations. The main result of the 
study was the following: first we proved, in a population of models simula-
tion environment, that dilated tissues are more prone to induce AF and that 
the effect of a given drug can differ from one profile to another depending 
on the specific expression of the currents. Finally, we also proved that all 
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this information can be used to train a machine learning algorithm to predict 
AF inducibility of the tissue. 

3.4.1. Variability on AF simulations: Ionic and tissue size variation 
The population of models have been widely used in the cardiac electro-

physiology field for safety pharmacology, providing new platforms for the 
assessment of proarrhythmic effects of drugs (Passini et al., 2017; Kügler, 
2020). In this study, we have analyzed how variations of the electrophysio-
logical and anatomical characteristics can affect AF inducibility at 2D level. 
Electrophysiological variability was introduced by using a population of 
models varying different ionic conductances and extracellular ionic concen-
trations on a cellular model of chronic AF human atria cardiomyocyte and 
the anatomical variability was implemented by using models with two differ-
ent tissue sizes.  

This study revealed that simulated dilated atria presented more profiles 
maintaining reentry, therefore confirming the hypothesis that larger tissues 
are more prone to fibrillate, effect that has already been shown at clinical 
level (Zou et al., 2005; Qureshi et al., 2014).  

3.4.2. Drug Effect on the Population of Models  
The population of models was not only evaluated at basal conditions, 

but also under the effect of three different cardiovascular drugs: flecainide, 
verapamil and isoproterenol. Overall pharmacological effects of the imple-
mented drugs matched their clinical characteristics, mainly exhibiting anti-
arrhythmic effects in the case of flecainide and verapamil (Klein et al., 1979; 
Echt and Ruskin, 2020). It is interesting to point out that, in the case of 
dilated tissue experiments, the proportion of non-inducible AF in simulations 
with flecainide or verapamil was lower than for the smaller tissue size pro-
files. Furthermore, whereas flecainide and verapamil exhibited mainly an 
antiarrhythmic effect, isoproterenol exhibited a proarrhythmic effect (Oral et 
al., 2008). However, some antagonistic effects were observed as exhibited 
on Figure 3.3 and Figure 3.4, following the same behavior observed at clin-
ical level where undesirable effects of antiarrhythmic compounds have 
been identified in a minority of patients (Nogales Asensio et al., 2007). This 
confirms our hypothesis that the effect of the drug can be different depend-
ing on the specific expression of the ionic currents. Antagonistic effects of 
antiarrhythmic drugs have previously been studied (Donnelly, 2004) stating 
the need of identifying the different factors that can lead to this response 
such as genetics or drug dynamics, which are not considered in this study. 
However, none of these approaches analyzed the effects on a population 
of models of the atria. 
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Furthermore, we observed that the profiles that changed its behavior 
when adding a drug were similar in the case of the antiarrhythmic drugs 
simulated in this study. This suggests that specific groups with similar char-
acteristics have analogous responses.  

3.4.3. Artificial Intelligence Algorithms for Arrhythmia Maintenance 
Prediction 

As the number of simulations reached a significant number of samples 
with an increasing information volume, AI algorithms were applied to reveal 
patterns in the data. AI application on clinical environments is exponentially 
increasing and leading towards new diagnostic and treatment techniques 
(Feeny et al., 2020; Sánchez de la Nava et al., 2021). This trend has also 
been implemented in the electrophysiology field (Muffoletto et al., 2021; 
Siontis and Friedman, 2021), in which the use of algorithms has been used 
for detecting or evaluating proarrhythmicity (Shao et al., 2018; Halfar et al., 
2021), classifying different rhythms (Wasserlauf et al., 2019) or automatiz-
ing tasks as segmentation (Yang et al., 2017). Moreover, its use in safety 
pharmacology could be applied to analyze all the data produced by in silico 
simulations. Particularly, Random Forest algorithm grouped similar profiles 
with the same outcome, therefore implementing an AI-driven algorithm able 
to predict, based on the ionic combinations of each profile, the probability 
of AF inducibility with excellent predictive values (Sánchez de la Nava et 
al., 2021).  

Data interpretability in the AI field has demonstrated to be important, 
especially in the clinical field, where the understanding of the patterns found 
by algorithms is usually described as a black-box that does not allow to 
evaluate the biomarker identification and the decision outcome (Nicholson 
Price, 2018). In this case, the methodology used allowed to analyze high 
amounts of data and to understand the clinical implications of the charac-
teristics of each cluster. For example, the first variable that initiated the clas-
sification on the Random Forest algorithm was found to be the inward rec-
tifier K+ channel that at clinical level has a crucial role in controlling 
frequency and stability of rotors responsible for AF (Pandit et al., 2005). 
Moreover, up-regulation of IK1 increased the ability to sustain faster and 
longer-lasting reentry, predisposing to the development of tachyarrhythmias 
(Noujaim et al., 2007).  

Thus, the identification of this current as the first of the algorithm de-
notes the importance in the arrhythmia induction and maintenance mecha-
nisms, as overexpression of this repolarization current has been associated 
with rotor acceleration as a consequence of a reduction in the action poten-
tial duration (Atienza et al., 2006; Pandit et al., 2011). The identification of 
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this variable by the algorithm shows that the patterns are explainable and 
represent clinical scenarios that can be found in a real-life AF population.  

This variable was followed by a succession of combinations resulting 
as several clusters with similar profiles associated with AF inducibility. In-
terestingly, from the overall implementation of the AI algorithm, two patterns 
were identified showing an increase in AF inducibility related to changes in 
extra and intracellular potassium levels and allowed a clinical interpretability 
of the results that facilitates the understanding of the patterns found by the 
algorithm. A first cluster was found showing increased expression and con-
centration of potassium ions, that can be directly related to hyperkalemia. 
Another different pattern observed in a group with different profiles pre-
sented low values of both ionic expression and ionic concentration of po-
tassium, that can be directly related to hypokalemic conditions (Guo et al., 
2009) .  At clinical level, these two conditions have been associated with 
the induction and triggering of different arrhythmias (Pandit et al., 2011; 
Skogestad and Aronsen, 2018; Rivera-Juárez et al., 2019; Rakisheva et al., 
2020). More in detail, studies have shown that hypokalemia is an independ-
ent predictor of developing AF (Krijthe et al., 2013) and that specific cases 
of AF patients  have been identified in whom hyperkalemia could induce 
malignant arrhythmias (Yan et al., 2018).  

From the two main identified pathways that led to sustained AF reentry, 
the first cluster was associated with increased IK1, decreased diffusion, de-
creased extracellular potassium and overexpression of sodium channels 
(Figure 3.5). The identified decreased diffusion can be directly related to 
lower conduction velocity, that has already been reported as a trigger for 
re-entrant foci and arrhythmia induction (King et al., 2013). Beyond the key 
role of INa determining excitability (Bezzina et al., 2001), the identification 
of this first cluster confirms the strong interaction between the molecular 
correlates of INa and IK1 as part of a common macro-molecular complex, 
where resting membrane potential hyperpolarization indirectly affect rotor 
frequency by modifying INa availability (Milstein et al., 2012; Ponce-
Balbuena et al., 2018). 

In the second cluster, both ionic concentration of potassium and de-
creased potassium conductivity and extracellular concentration were com-
bined with increased calcium dynamics (Current 1 and Current 2). These 
currents have a major role during the plateau phase of the action potential 
and its overexpression contributes to faster repolarization rates, shortening 
the action potential duration and increasing the risk of early afterdepolari-
zations which can give rise to initiation of rotors and fibrillation (Cerrone et 
al., 2007; Nattel and Dobrev, 2012). 
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3.4.4. Limitations 
Results presented in this work were based on a population of models 

of 149 subjects and further samples and variation ranges should be in-
cluded to explore a wider population. Besides, simulations on plane do not 
reflect all proarrhythmic areas present in 3D structures such as pulmonary 
veins or information including fiber orientation. The use of two different 
plane sizes did show that the arrhythmia inducibility was higher in bigger 
tissues but the simplicity of the model presenting constrained borders re-
stricts the overall interpretability of the results, as the real atria contains 
highly complex structures that play important roles in the initiation and 
maintenance of AF. In addition, arrhythmia maintenance was considered 
for 2D planes maintaining rotational activity for more than one cycle, but 
further analysis should be conducted to evaluate if self-termination occurred 
in part of the profiles. Moreover, fibrotic tissue is a relevant condition that 
predispose to AF and should be included in future studies and, if possible, 
the variables that conform the AI algorithm should be transferable to the 
clinical practice using metrics such as conduction velocity or rotor dynamic 
biomarkers. In addition, machine learning algorithms will perform better and 
will show more robustness with higher number of samples and different 
concentrations of each of the drugs. Finally, a greater number of drugs 
could be simulated in order to enlarge the field of application in which the 
algorithm can be used.  

3.4.5. Clinical Implications 
The identification of specific groups or ionic characteristics that present 

proarrhythmic effects can be critical in the understanding of new tools for 
future pharmacological development. At clinical level, this type of analysis 
can help to personalize the pharmacological treatments for each of the pa-
tients, therefore avoiding possible adverse effects. This study presents, as 
a result, a new trained algorithm that includes both anatomical and electro-
physiological data to evaluate arrhythmia inducibility that is presented as a 
proof of concept for drug effect evaluation in AF, identifying similar results 
when compared to the clinic where dilated atria and specific cases of ad-
verse drug effects (Bassett et al., 1997).  However, this study includes the 
implementation of the algorithm based on parameters that are currently dif-
ficult to obtain, therefore limiting its current application at the clinical level. 
New biomarkers describing the ionic characteristics at patient level should 
be obtained in order to apply this algorithm.  
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3.5. Conclusions 
Safety pharmacology has evolved including in silico studies that predict 

and classify drugs attending to the risk of causing arrhythmias. In this study, 
we presented a population of models approach in which arrhythmia induc-
tion was evaluated by modifications in tissue size and drug administration. 
Higher probability of induction was observed in larger tissue and, interest-
ingly, antagonistic effects were observed for some of the profiles, showing 
that for a minority of cases, the drugs may present adverse or non-desired 
effects. In conclusion, we present an AI algorithm as a novel tool for pattern 
identification and analysis of the effect of antiarrhythmic drugs on a hetero-
geneous population of patients with AF. 
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Supplementary Material 

Artificial Intelligence Model 
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Supplementary Figure 1: Complete decision tree showing variables 
and threshold decision parameters.  

 
Population of models calibration 

 
Supplementary Figure 2: Box plot showing the range and mean value 

of the varied parameters. Edges of the box represent the 1st an 3rd quartiles. 
The baseline model value is represented by the green line. A wide range of 
values for the diffusion coefficient, ionic conductances and concentrations 
is covered, being [K+]0 the most restrictive parameter. Imaged obtained from 
(Simon et al., 2017). 

 
 Minimum Value Maximum Value 

APD90 (ms) 140 330 
APD50 (ms) 30 180 
APD20 (ms) 1 75 
APA (mV) 80 130 
RMP (mV) -85 -65 
V20 (mV) -30 20 

Supplementary Table 1: Human Atrial Action Potential biomarker 
ranges in AF.   
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Chapter 4.  
Study 2: In Silico        

Technology and Clinical 
Data Exploitation    

 

Abstract:  
Background: Current clinical guidelines establish Pulmonary Vein (PV) 

isolation as the indicated treatment for Atrial Fibrillation (AF). However, AF 
can also be triggered or sustained due to atrial drivers located elsewhere in 
the atria.  

Objective: To design a new simulation workflow based on personalized 
computer simulations to characterize AF complexity of patients undergoing 
PV ablation, and to validate it with non-invasive electrocardiographic imag-
ing and evaluated at 1-year post after ablation.  

Methods: We included 30 patients using atrial anatomies segmented 
from MRI and simulated an automata model for the electrical modelling, 
consisting on three states (resting, excited and refractory). In total, 100 dif-
ferent scenarios were simulated per anatomy varying rotor number and lo-
cation. The 3 states were calibrated with Koivumaki action potential, en-
tropy maps were obtained from the electrograms and compared with ECGi 
for each patient to analyze PV isolation outcome.  

Results: The completion of the workflow indicated that successful AF 
ablation occurred in patients with rotors mainly located at the PV antrum, 
while unsuccessful procedures presented greater number of driving sites 
outside the PV area. The number of rotors attached to the PV was signifi-
cantly higher in patients with favorable long-term ablation outcome (1-year 
freedom from AF: 1.61±0.21 vs. AF recurrence: 1.40±0.20; p-value=0.018).  

Conclusions: The presented workflow could improve patient stratifica-
tion for PV ablation by screening the complexity of the atria.   



 
Chapter 4 

 

57 

4.1. Introduction 
Atrial Fibrillation (AF) is the most common arrhythmia, affecting a total 

population of 33.5 million worldwide (Chugh et al., 2014). Circumferential 
pulmonary vein isolation (CPVI) is considered the standard therapy for 
symptomatic AF patients (Hindricks et al., 2020). However, non-pulmonary 
vein drivers located at the posterior wall, superior vena cava, the interatrial 
septum sites, the terminal crest or the coronary sinus can be found and are 
responsible in part for the  inefficiency of the ablation procedure, especially 
in persistent AF patients (Lim et al., 2017).  

Ablation planning and evaluation of atrial pro-arrhythmic behavior may 
play a key role toward ablation outcome. For this purpose, the combination 
of personalized atrial models implemented with electrophysiological and an-
atomical biomarkers of abnormal behavior, have been integrated in a sim-
ulation environment to help  identify arrhythmic behavior and improve novel 
diagnostic (Rodrigo et al., 2014) and treatment strategies (Roney et al.; 
Ferrer et al., 2015; Muszkiewicz et al., 2016; Aronis et al., 2019; Kim et al., 
2020). Computational simulations have emerged in this field as a new tool 
that can be used for characterization and prediction in different scenarios, 
from prediction of cardiotoxic compounds (Passini et al., 2017; Yang et al., 
2020), targeted ablation (Boyle et al., 2019) or recurrence after ablation 
(Varela et al., 2017). 

In this field, automata models have been used for electrophysiological 
simulations to achieve simpler approaches with lowered computational time 
as compared to other models that include ionic level description. A lowered 
computational cost is translated into faster simulations with a higher number 
of possibilities to explore (Alonso-Atienza et al., 2005).  

Here, we present a novel methodology to predict the efficacy of AF 
ablation based on computer simulations that included patient anatomy and 
different arrhythmic scenarios (i.e. different rotor location and number). 
These simulations were later compared with the clinical results of patients 
undergoing electrocardiographic imaging (ECGi) maps, CPVI and 1-year 
ablation outcome. 

4.2. Materials and Methods 

4.2.1. 4.2.1. Patient Database  
We included patients undergoing CPVI for drug-refractory paroxysmal 

(N=14, 9 female) and persistent AF (N=16, 8 female). Candidates were pa-
tients >18-years old, history of symptomatic AF, included if sustained AF 
was inducible during the electrophysiological study. Patients included in this 
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study were admitted for ablation of drug-refractory paroxysmal and persis-
tent AF, undergoing circumferential point-by-point ablation (Hindricks et al., 
2020). All patients gave informed consent. The protocol was approved by 
the institutional review board of the Hospital General Universitario Gregorio 
Marañón. 

4.2.2. Atrial Electroanatomical Complexity Evaluation Protocol   
Atrial electroanatomical complexity was evaluated analyzing the num-

ber and distribution of AF reentrant sites in relation to the anatomic charac-
terization of the atrium. To that purpose: 1) MRI imaging from patients were 
obtained; 2) computational simulations of cardiac activity in the recon-
structed atrium were performed; and 3) the results of simulations were com-
pared with patients´ clinical characteristics, ECGi complexity and outcomes 
after ablation. 

The workflow followed for the evaluation of atrial pro-arrhythmic behav-
ior is explained below and is summarized in Figure 4.1. 

4.2.3. Atrial Anatomy 
Magnetic Resonance Imaging (MRI) was performed in all patients be-

fore ablation procedure. MRI images with a spatial resolution of 0.7x0.7x1.5 
mm were acquired 2-3 days prior to the ablation procedure and segmented 
using ITK-SNAP (Yushkevich et al., 2006). Images were segmented to ob-
tain a 3D mesh of both atrial cavities using growing region automatic seg-
mentation for both atria separately. Later, Meshmixer software was used to 
combine both left and right atrium. After obtaining the raw anatomies, 
meshes were resampled to obtain a 200µm resolution for simulations. An 
example of the final mesh used for simulations, that includes the atrial an-
atomical complexity present in patients, can be observed in Figure 4.1.  Left 
atrial area (mm2) was measured in every anatomy for further analysis to-
gether with the electrophysiological variables obtained from the workflow. 

4.2.4. Computational Models of the Atria 
Once the atrial anatomies were segmented, simulations were run un-

der AF conditions where rotational activity could be characterized. Overall, 
for each anatomy, 100 simulations per patient run with different initiation 
protocols using the corresponding individualized anatomical model for 1000 
ms. These simulations had an arbitrary location of rotational activity pat-
terns on the atrial cavity ranging from 1 to 10 rotors simultaneously, ensur-
ing the total coverage of the atria for later evaluation. 
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This protocol was repeated 10 times per geometry to increase the num-

ber of simulations, achieving a final number of 100 simulations per anatom-
ical model. First, rotational activity was distributed over both cavities of the 
atria with different locations each time. After the location of the rotors was 
obtained (Herlin et al., 2013), the automata model was run to evaluate the 
evolution of the scenario and posterior characterization. These models, alt-
hough with simpler formulations, allow the presence of more complex sce-
narios including location of higher number of rotors. The models for rotor 
location and activation model are explained in subsequent sections. A brief 
description of the difference between ionic-level electrophysiological mod-
els and automata models showing examples in 2D planes is further dis-
cussed in Supplementary Material.   

AF Initiation: Automatic Rotor Location  
Jacquemet et al. algorithm (Herlin et al., 2013) was implemented for 

the development of automatic location of the rotational activity. This imple-
mentation, based on an eikonal-diffusion solver, allows obtaining computed 
activation maps similar to those obtained in the mono-domain model, with 
the option of varying the number of rotors in the model from 1 single rota-
tional foci up to 14 (Herlin and Jacquemet, 2011). The location of the rota-
tional activity was arbitrary and only depended on the curvature of the 
model. As Jacquemet’s algorithm is calibrated in phase, a conversion into 
the labels for the automata model (3 discrete states) was performed to con-
tinue with the workflow. 

Figure 4.1 Simulation protocol (from left to right): Biatrial anatomy segmentation from MRI. Rotor 
location with Jacquemet algorithm on atrial anatomy. Simulation with 3-state protocol (Alonso Atienza 
et al. model) with rotor location obtained from Jacquemet et al protocol. Electrophysiological charac-
terization by translation of the activation pattern into APD equivalence and later electrogram calcula-
tion. Evaluation of the simulation by means of new biomarker calculation and validation with rotor 
histogram.  
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Automata Model Simulations  
An automata model based on activation patterns was implemented to 

simulate cardiac activity in the atrial cavity. Alonso-Atienza’s model 
(Alonso-Atienza et al., 2005) was implemented to perform simulations with 
three different states (state 0 or resting, state 1 or activated, and state 2 or 
refractory period) that depended on the probability equation depicted below, 
where E represents the excitability of the unit, A the activation and D the 
distance matrix. 

 

!!"#$ = # ∗ % = # ∗	' (%
)%!&'()

 (4.1) 

  
A more detailed description of this model, including all the equations 

and variables can be found in the Supplementary material. All nodes in the 
mesh were simulated following this model, i.e. no differences were imple-
mented for different regions nor fiber orientation. NVIDIA Titan XP was used 
for all the simulations and posterior analysis of the workflow. Simulations 
were run in Microsoft Visual Studio 2017 and characterization of the simu-
lations was performed in Matlab. The estimated ionic simulated model cost 
was 275 minutes vs. automata model: 42 minutes for 1-second simulation 
during AF, including stabilization and arrhythmia induction for the ionic 
model.  

Electrophysiological Equivalence and Characterization   
The evaluation of the electrophysiological properties of the simulations, 

that included the 3 states of the simulations of the automata, were calibrated 
using Koviumaki Action Potential Duration (Skibsbye et al., 2016) to trans-
late the automata model into measurable atrial electrophysiological signals. 
For this purpose, the square pulses that are identified as activations in the 
automata model, were directly substituted with the atrial APD morphology 
of an AF model used in previous publications of the group(Sanchez De La 
Nava et al., 1AD).  

Once the electrophysiological information was recovered, electro-
grams were calculated for each node. More specifically, from each simula-
tion, a uniform mesh of pseudo-unipolar electrograms was calculated under 
the assumption of a homogeneous, unbounded, and quasi-static medium 
(Rodrigo et al., 2016). The mesh used for the electrogram calculation was 
individualized and corresponded to the same mesh used for the ECGi cal-
culation, allowing a direct comparison between both analyses.  

In addition, the logarithmic energy entropy, which has been extensively 
used for the characterization of signals in other disciplines (Aydın et al.) as 
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well as for cardiac signals (Li and Zhou, 2016), was calculated on the elec-
trograms for each node and normalized for each atrial anatomy. More spe-
cifically, this entropy showed similar performance in prediction algorithms 
in previous studies (Li and Zhou, 2016) as Shannon entropy, widely used 
in the electrophysiological field. Finally, the mean entropy of the electro-
grams from all the simulations for a given patient was calculated and eval-
uated using entropy maps.  

The main output of the workflow was produced by means of Atrial Com-
plexity Maps (ACM) and Atrial Complexity Biomarker (ACB). ACM were ob-
tained from the average entropy values of all the simulations from a given 
patient. ACB was obtained from the quantification of the number of rotors 
attached to the PV in the sustained simulations for each patient, that were 
later averaged. A rotor was considered to be attached if rotational activity 
was maintained around the PV for the complete simulation.     

4.2.5. Clinical Evaluation  

AF Complexity: Atrial Complexity Map vs. ECGi   
We compared the number of AF simulations with maintained reentries 

(ACM) obtained from the simulation workflow with the histogram of rotors 
obtained from the ECGi calculation. As explained in previous sections, the 
entropy maps were calculated with the same anatomies that the ECGi for 
them to be comparable. The specific protocol for obtaining and calculating 
ECGi was previously described (Rodrigo et al., 2014, 2020; Guillem et al., 
2016). Briefly, a minimum of three segments of at least 1 second duration 
were selected to calculate the histogram of rotors from ECGi signals. Rotors 
were obtained by counting the number of rotors in each atrial model node 
from the ECGi calculations for each of the segments. Finally, all three his-
tograms were averaged and compared with the results of the simulations. 
Comparison was performed by dividing the complete anatomy by areas as 
shown in previous studies (McAlpine, 1975) and in Figure 4.2, and evaluat-
ing the presence of rotors and high entropy foci per area. This methodology 
enabled the characterization and evaluation of the complexity of the atria.  

AF Complexity and 1-year Ablation Outcome 
Evaluation of the simulations was performed attending to the number 

of sustained simulated AF episodes per patient, rotors attachment to the 
pulmonary vein (ACB) and left atrial appendage, rotor distribution between 
both cavities, mean conduction velocity, and maintenance of more complex 
scenarios. These parameters were evaluated as predictors of ablation effi-
cacy at 1 year. Additionally, AF type (Paroxysmal vs. Persistent) was also 
compared to reveal possible characterization patterns using the workflow. 
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4.2.6. Statistical Analysis    
The t-test was used to evaluate the statistical significance between 

continuous paired or unpaired variables, and statistical significance was 
considered for P<0.05 for continuous variables. Pearson Chi Independence 
test was used to evaluate categorical or binary variables, and statistical sig-
nificance was considered for P<0.05. All data are reported as mean ± SD.  
In addition, a regression analysis to test the independent predictive value 
has been conducted including the following parameters: AF type, gender, 
simulations results and 1-year outcome. 

4.3. Results 

4.3.1.  Cohort Description 
In total, 30 patients were included in this retrospective study. The char-

acteristics of patients included in the study are shown in Table 4.1. When 
patients were compared according to 1-year post-ablation outcome, there 
were no significant differences in age, height or weight. In contrast, the pro-
portion of persistent AF patients at 1-year was significantly higher on the 
AF group and the same trend was observed for female patients. 

Table 4.1. Patients clinical characteristics and univariate analysis for 1-year out-
come after ablation. 

Characteristics Complete Cohort 
AF-Freedom 

Group 
AF Group 

p-
value 

Anthropometrics 30 patients 18 patients 12 patients  

Figure 4.2. Division of the atria for rotor and entropy maps coincidence evaluation 
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Persistent AF 16 (53.3%) 7 (38.89%) 9 (75%) <0.001 
Age, yrs 59 ± 14 57 ± 15 62 ± 12 0.38 
Female 17 (56.67%) 9 (50%) 8 (66.67%) <0.001 
Height (cm) 164.15 ± 9.38 164.87 ± 8.85 163.25 ± 10.33 0.67 
Weight (kg) 76.03 ± 16.24 77.80 ± 14.51 73.67 ± 18.68 0.52 
Blood samples     
Potassium 4.07 ± 0.40 4.04 ± 0.44 4.12 ± 0.35 0.60 
Creatinine 0.91 ± 0.18 0.91 ± 0.17 0.90 ± 0.20 0.90 
Hemoglobin 13.83 ± 1.67 13.57 ± 1.93 14.21 ± 1.18 0.32 
Leucocytes 7.24 ± 2.29 7.65 ± 2.73 6.65 ± 1.34 0.25 
Platelets 206.83 ± 47.90 212.94 ± 54.50 198.17 ± 37.16 0.42 
INR 1.25 ± 0.55 1.22 ± 0.55 1.28 ± 0.57 0.80 
LVEF 54.42 ± 9.67 53.00 ± 11.21 56.78 ± 6.24 0.37 
Atria Size (cm2) 31.49 ± 7.88 30.71 ± 8.83 32.87 ± 6.05 0.52 
Previous diagnostics      
Mitral insufficiency 11 (36.67%) 6 (33.33%) 5 (41.67%) 0.64 
Tricuspid Insufficiency 11 (36.67%) 8 (44.44%) 3 (25%) 0.28 
Mitral stenosis 6 (20%) 4 (22.22%) 2 (16.67%) 0.71 
Medical therapy     
Beta-blockers 18 (60%) 11 (61.11%) 7 (58.33%) 0.88 
Flecainide 9 (30%) 7 (38.89%) 2 (16.67%) 0.19 
Amiodarone 4 (13.33%) 3 (16.67%) 1 (8.33%) 0.51 

 

4.3.2. Comparison of ACM with ECGi 
In Figure 4.3 we show the coincidence between the histograms of ro-

tors recorded in patients ECGi and high entropy areas obtained from the 
simulation protocol. ACMs were identified as descriptors of the atrial com-
plexity, where the characteristics observed on the histogram of rotors 
showed a direct correlation with 1-year post ablation outcome. This corre-
lation showed 93.33% similarity in the pulmonary vein area and posterior 
wall, 80% coincidence in the floor area, 86.67% in the lateral wall and 
83.33% in the right atrial appendage. An example of a simple ACM is shown 
in Figure 4.4A where the entropy foci is mainly located on the left superior 
PV occurring in a patient that maintained sinus rhythm at 1-year after abla-
tion. Figure 4.4B shows a heterogeneous and complex ACM with multiple 
high entropy foci, i.e. for electrograms that presented entropy values higher 
than 0.8*maximum entropy, distributed on both atria, with low rotor attach-
ment to the PV area, that occurred in a patient with AF recurrence during 
follow-up. 
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4.3.3. AF Complexity and 1-year Ablation Outcome 

Sustained AF Simulation Induction and Rotor Distribution  
There was no difference in the number of induced sustained AF epi-

sodes during the simulations in relation to 1-year ablation outcome (free-
dom of AF: 33.00 ± 17.82 vs. AF: 34.90 ± 17.63 simulations; p-value=0.79) 
(Figure 4.5A). All 30 anatomies presented more than 70% attachment of at 
least one rotor to the PV area in the simulations, independently of the group 
(freedom of AF: 86.20±7.06 vs. AF: 81.33±5.97 simulations; p-value=0.10) 
(Figure 4.5B).  

The percentage of patients that presented high entropy values on the 
pulmonary vein area on the ACM was significantly higher on the freedom of 
AF group (n=18) than of the AF group (n=12) (freedom of AF: 93.75% vs. 
AF: 62.5%; p<0.001), supporting the favorable ablation outcome in the for-
mer group. Moreover, freedom of AF patients presented lower number of 
high entropy areas or simpler ACM on the RA than AF patients (freedom of 
AF: 68.75% vs. AF: 100%; p<0.001).  

Patients with freedom of AF at 1-year presented higher values of the 
ACB (i.e. a higher number of rotors attached to the PV) than patients with 
AF recurrence during follow-up (freedom of AF:1.61±0.21 vs. AF: 
1.40±0.20; p-value=0.018) (Figure 4.4C). Interestingly, the mean number of 
sustained left atrial appendage rotors tended to be higher on the group of 
AF Freedom (freedom of AF: 3.52±3.81%; AF:1.50±2.37%; p-value: 0.14) 
(Figure 4.5E). From the complete set of simulations, the number of rotors 
was higher on the left atrium (LA) than in the right atrium (RA) for both 
groups: AF Freedom patients (LA: 2.96±0.35; RA: 2.22±0.34; p-
value<0.0001) and AF patients (LA: 2.97 ±0.68; RA: 1.97 ±0.40; p-
value<0.0001) (Figure 4.5D).  
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Figure 4.4. Comparison of simulations entropy maps with histogram of rotors in 
simple case. A shows the results for the computational method.  B shows the histogram 
of rotors computed from the ECGi. 

Figure 4.3. Example of normalized entropy maps for (A) Successful and (B) Unsuccessful 
ablation. A shows higher entropy on the pulmonary vein area  while B shows a more diffused 
distribution of high entropy areas. C showed the mean number of rotors in simulations around 
the pulmonary vein area for AF freedom (green) and AF cases (red). *p<0.001. 
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Differences in mean conduction velocity during AF were not signifi-
cantly different between groups (freedom of AF: 85.91±6.18 vs. AF: 
85.73±3.81 cm/s; p-value=0.94) (Figure 4.5C). From all the possible simu-
lated scenarios, some presented more stability in time, that is, a higher per-
centage of simulations sustained AF during 1000 ms. The relationship be-
tween the number of initiated rotors with respect to the number of rotors 
maintained in the simulations is shown in Supplemental Figure 4.3. In this 
case, the average number of sustained AF simulations presented a de-
creasing trend for an increasing number of initiated SP, that is, the arrhyth-
mia was not easily sustained for high number of simulated rotors.  

Figure 4.5. Simulation characterization. A. Percentage of sustained F in both groups., B. Percent-
age of simulations of rotors with pulmonary vein attachment in both groups. C. Conduction velocity of 
simulated scenarios. D. Number of rotors in the LA and RA for both groups. E. Percentage of rotors with 
left atrial appendage attachment in both groups.   
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Furthermore, there were no significant differences between the free-
dom of AF and AF group, except for the case in which the number of initi-
ated rotors was fixed to two, in which the average number of maintained 
simulations of AF patients was higher in the AF group (freedom of AF: 
3.87±2.17 simulations vs. AF: 5.89±2.09 simulations; p-value=0.035). 

Table 4.2. Electrophysiological description of the simulations.  

 Complete Cohort 
AF-Freedom  
Group 

AF Group p-value 

Simulation characterization 30 patients  18 patients 12 patients    
Sustained simulations (%) 33.70 ± 17.73 33.00 ± 17.82 34.90 ± 17.63 0.79 

PV attachment (%) 84.67 ± 6.83 86.20 ± 7.06 81.33 ± 5.97 0.10 
Simulations presenting high 

entropy values in PV (%) 81.25 93.75 62.50 p<0.001 

Rotor distribution     
Right Atrium rotors 2.13 ± 0.38 2.22 ± 0.34 1.97 ± 0.40 0.09 
Left Atrium rotors 2.97 ± 0.48 2.96 ± 0.35 2.97 ± 0.68 0.99 

Left atrial appendage rotors 2.78 ± 3.45 3.52 ± 3.81 1.50 ± 2.37 0.14 
Biomarkers from simula-

tions 
    

ACM presenting high entropy 
areas in RA (%) 81.25 68.75 100 p<0.001 

Atrial Complexity Biomarker 1.53 ± 0.23 1.61 ± 0.21 1.40 ± 0.20 0.018 
 

4.3.4. Comparison with AF Type  
There were significant differences in long-term outcome after ablation 

depending on the duration of AF (i.e. AF type) (Table 4.1). Four biomarkers 
were significantly different when paroxysmal and persistent patients were 
compared. Paroxysmal AF patients presented a higher number of sustained 
rotors (Paroxysmal AF:5.30±0.53; Persistent AF: 4.69±0.56; p-
value:0.012), especially on the LA (Paroxysmal AF: 3.10±0.41; Persistent 
AF: 2.65±0.37; p-value:0.01) and the PV antrum (Paroxysmal 
AF:1.48±0.32; Persistent AF: 1.14±0.18; p-value:0.006), with the number of 
sustained rotor attachment to the PV being higher on the paroxysmal group 
(Paroxysmal AF: 1.61 ±0.18; Persistent AF: 1.42±0.25; p-value:0.02). In ad-
dition, results did not show any correlation with LA area, (Paroxysmal AF: 
31.88 ± 7.20 cm2; Persistent AF: 30.95 ± 7.56 cm2; p-value: 0.74). 
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Regression analysis results show that the ACM biomarker is the only 
variable with a trend for independently predicting 1-year post ablation out-
come (p-value = 0.0752) as compared to other clinical variables such as AF 
type (p-value: 0.2548) and gender (0.3442). 

Table 4.3. Electrophysiological description of the patients attending to AF type. 

 Paroxysmal 
AF 

Persistent AF p-value 

 14 patients 16 patients - 
Sustained rotors 5.30 ± 0.53 4.69 ± 0.56 0.012 
Left Atrium rotors 3.10 ± 0.41 2.65 ± 0.37 0.01 

PV antrum 1.48 ± 0.32 1.14 ± 0.18 0.006 
PV attachment 1.61 ± 0.18 1.42 ± 0.25 0.02 

LA area 31.88 ± 7.20 30.95 ± 7.56 0.74 
 

 

4.3.5. Applicability to Clinical Environment   
This methodology, and specifically, the ACM and ACB obtained from 

the workflow, are presented as an estimator of the complexity of the atrial 
activity. Figure 4.6 shows the rotor maps from three different patients or-
dered for increasing ACB values. As it can be observed, the higher the ACB, 
the lower the complexity of the rotor map with more localized the rotors 
appear on the pulmonary vein area. From left to right, patients with lower 
ACB presented higher number of rotors than patients with higher ACB. In 
addition, rotors in patients with low ACB were mainly located in both atria 
whereas patients with high ACB presented the rotors concentrated on the 
PV area. 

Examples of these cases are present in Figure 4.6, where the left 
panel, corresponding to an ACB with 1.39, represents a patient in which the 
ablation was not successful and both the ECGi rotor histogram and the 
ACM present high activity foci on the right atrium. In contrast, the patient on 
the right panel represents a case in which the ablation was successful and 
both the ECGi rotor histogram and the ACM present high activity foci on the 
right pulmonary veins, accompanied by a higher ACB. Overall, 11 patients 
(AF Freedom: 2 patients vs. AF: 9 patients) corresponded to an ACB lower 
than 1.45 and 19 patients (AF Freedom: 16 patients vs. AF: 3 patients) cor-
responded to an ACB higher than 1.50.  
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4.4. Discussion 
This study presents a new simulation workflow for the personalized 

electrophysiological evaluation of the atria in a simulation environment. This 
is a proof-of-concept study that establishes a noninvasive evaluation of 
atrial electrophysiological complexity by means of two novel biomarkers: 
ACMs and the ACB to evaluate atrial complexity and predict the efficacy of 
the ablation. Our results revealed that long-term successful AF ablation oc-
curred in patients with rotors mainly located in the pulmonary veins, while 
unsuccessful procedures presented greater number of entropy foci outside 
the PV areas. Paroxysmal AF patients presented a significantly higher num-
ber of LA rotors with greater attachment to the PV area and lower density 
of entropy areas in the RA, as compared to persistent AF patients, explain-
ing the improved long-term clinical outcome in the former group. These re-
sults are  

 

Figure 4.6. Rotor map of three different patients included in the study. Rotor maps with 
higher complexity are correlated with lower CAN and more heterogeneous ACM while 
simpler rotor maps are correlated with higher ACB and localized pulmonary foci on the 
ACM. ACM: Atrial Complexity Maps; ACB: Atrial Complexity Biomarker.  
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in agreement with clinical studies that consistently report a better out-

come of the ablation following PV electrical isolation, while AF recurrences 
were most common in patients with multiple drivers distributed at extra-PV 
sites. (Atienza et al., 2009, 2014; Lim et al., 2017; Hindricks et al., 2020; 
Rodrigo et al., 2020).  

4.4.1. Simulation Models  
Detailed ionic models for the evaluation of AF induction at different 

scales include complementary information that may be relevant for the ab-
lation procedure (Arevalo et al., 2016; Passini et al., 2017). These ionic 
models also appear as a good approach for very specific workflows, such 
as pharmacological studies, that analyze the playing role of ionic channels 
and its modification using different drugs. In addition, several studies ex-
plore different strategies for the evaluation of the atrial complexity, including 
specific ablation strategies and targets (Roney et al.), cycle length evalua-
tion (Haissaguerre et al., 2007) and proarrhythmic structures such as the 
left atrial appendage (Gharaviri et al., 2021).  However, they may present 
significant drawbacks, especially for large-scale simulations, due to the high 
computational power needed for such specific models, limiting the overall 
number of scenarios to be studied (Sachetto Oliveira et al., 2018), or the 
number of structures (i.e. only including left atrium). In contrast, simpler 
models, such as the automata model used in this study, can be applied for 
modeling an initiated arrhythmia behavior enabling the analyses of several 
distributions of rotational foci. Moreover, automata models rely on simpler 
activation patterns, can be implemented and used on cardiac modeling to 
obtain similar approaches with a lower computational cost (Alonso-Atienza 
et al., 2005; Clayton et al., 2010). Therefore, the use of simpler models to-
gether with graphical processing units for parallel computation, reduces the 
total computational time, allowing a potential translation and implementa-
tion of this methodology in the clinical environment for patient evaluation. 

These simulations are presented, as a workbench for characterizing 
the proarrhythmicity based on the anatomy and different arrhythmic scenar-
ios. One of the main challenges in computation is the initiation of rotational 
activity on the desired area. Several approaches have been implemented 
and described in previous publications in order to tailor arrhythmia initiation 
by including remodeling such as repolarization alternants, adipose tissue 
modeling, and cardiac ion channel mutations (Aronis et al., 2019). However, 
we gave priority to the analysis of scenarios with different combinations of 
rotational activity that reflect the heterogeneity of the arrhythmias using an 
algorithm that directly deal with different rotors over the atria, comparing 
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their different distributions. The inclusion of such a high number of scenar-
ios or combinations of rotational foci (i.e. 100 simulations per anatomy) en-
ables to include all possible areas at which rotors can be maintained, differ-
ing from other approaches in which a low number of combinations is 
analyzed, restricting the arrhythmic simulations to the pulmonary vein area 
and excluding the arrhythmia initiation on right atrium (Fastl et al., 2018). 

Regarding the characterization of the simulations, all simulated atria 
presented realistic models in which the number of rotors was higher on the 
left atrium than in the right atrium, with a similar number of maintained sim-
ulations per group and high attachment of rotational drivers to the pulmo-
nary vein area, identified as the main proarrhythmic trigger on clinical prac-
tice. These results align with previous studies that reflect the dominance of 
the LA in the rotational activity of AF patients (Atienza et al., 2009, 2014; 
Narayan et al., 2012; Pandit and Jalife, 2013; Rodrigo et al., 2014; Walters 
and Kalman, 2015; Zaman et al., 2017), demonstrating the reproduction of 
a clinical scenario into personalized simulations in a computer.   

4.4.2. Clinical Implications  
The increasing number of potential candidates for ablation therapies is 

much higher than the availability of laboratories to perform procedures, but 
patients are selected based on very simple and unproved selection criteria 
for efficacy. However, current indiscriminate application of ablative thera-
pies to large, unselected cohorts of patients with AF might dilute the in-
tended treatment benefits and significantly increase the cost. Translation of 
the mechanistic insights of computational and basic research into clinical 
management concepts will uncover the full potential of personalized AF 
management (Atienza et al., 2012). The present approach may help appro-
priately select patients undergoing invasive therapies by: 1) integrating the 
workup protocol as shown in Figure 4.7, where anatomical characterization 
and simulations will be performed 2 days prior to the procedure, to later 
correlate high entropy areas location in the simulations protocol with ECGi, 
and help decide the ablation strategy; 2) giving preference for the standard 
ablation procedures to those patients with favorable predictors for ablation 
long-term success (low ACM, high ACB) (Kuck et al., 2016); and 3) select-
ing patients with higher atrial complexity to undergo the elimination of ex-
trapulmonary drivers ablation (Narayan et al., 2012; Haissaguerre et al., 
2014; Rodrigo et al., 2020).  
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This protocol is based on a personalized simulation method that could 
be potentially modified to input other remodeling factors such as fiber ori-
entation to develop more complex fibrotic models, broadening the applica-
tion to models closer to the clinical setting. Therefore, the integration of im-
age-based computational modeling into treatments for heart rhythm 
disorders could thus advance personalized approaches to heart disease. 

4.4.3. Study Limitations   
The main advantage of the model, its simplicity, also constitutes its 

main limitation, as this model is not as tailored as ionic models. Further-
more, other scenarios such as different conduction velocity areas or fiber 
orientation should be implemented on the automata model and considered 
to study a wider population of patients. Second, we were able to demon-
strate that all the areas that presented high-frequency activation on the 
ECGi presented high entropy values, but we were unable to ensure that all 
the high entropy areas were coregistered with high-frequency areas or ro-
tational activity. Further studies should be conducted to evaluate if this mis-
match is due to a lack of more ECGi episodes or if rotors were present only 
in part of the atrial anatomy.  

In addition, other tailored characteristics such as fibrosis distribution 
over the atria and ionic heterogeneity (Calvo et al., 2014; Palacio et al., 
2021; Sánchez et al., 2021) should be considered in further studies to better 
represent the anatomical and electrical remodeling of the cardiac tissue. 
Atrial thickness and blood pressure are two important factors that have 
been demonstrated to affect frequency dynamics and should be further ex-
plored to complement the models (Gosai et al., 2015). 

Figure 4.7. Protocol proposal for the integration of the method in a clinical environment. 
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Finally, higher attachment to the left atrial appendage was observed 
on the AF freedom group, which exclusively underwent PV isolation. Fur-
ther studies should confirm the proarrhythmic behavior of the left atrial ap-
pendage in these models (Di Biase et al., 2018). 

4.5. Conclusions 
This study presents a new method for the evaluation of the pro-arrhyth-

mic areas on atrial anatomies providing ACMs and the ACB as estimators 
of atrial complexity. This approach, validated using ECGi to measure atrial 
complexity, was able to identify the set of patients that presented higher 
atrial complexity. 
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Supplementary Material 

Automata Models: Implementation and Electrophysiological Charac-
teristics  

We applied automata models consisting on probabilistic models in 
which each unit can present different discrete states that change according 
to simple rules as a function of the previous state and the state of the neigh-
boring cells. Once the simulation is completed, each of the discrete states 
can be interpolated with an action potential to calibrate the model at elec-
trophysiological level. A brief example on 2D planes is shown in Supple-
mentary Figures 1 and 2, for both sinus rhythm and AF initiation respec-
tively. As it can be observed, propagation along the plane is depicted in the 
figure along with the electrical activation. Koivumaki et al's model (Skibsbye 
et al., 2016) was simulated in a plane of 2 cm2 side to simulate three coor-
dinated impulses on an AF model, obtaining a conduction velocity of 45.45 
cm/s and Action Potential Duration at 90% repolarization (APD90) of 193.95 
ms. These parameters were later introduced in the automata model used 
for the study (Alonso-Atienza et al., 2005), to compare both simulations. As 
it can be observed, similar results were obtained for the propagation of the 
model and the electrical signal obtained from the automata model is similar 
to the one obtained in the detailed ionic model. 

Automata Model: Alonso-Atienza Model Description  
Alonso-Automata model (Alonso-Atienza et al., 2005) relies on three 

activation states that depend on the following modelling.  
State 0 correspond to the resting phase, in which the tissue is relaxed 

and excitable. The excitation of the tissue, and therefore the depolarization 
phase, is modelled by the following equation: 
 

?@8AB =C∗D=C∗ ΣEF3F@2F ≠@ 
 

Where E stands for excitability, A for activation and D corresponds to 
the distance matrix. Once the state is the activated one, corresponding to a 
cell that can is excited and can excite others, the behavior is modelled by 
the following equation: E?3= E?3GFH+ E?3G<A∗(1−exp(−0.5∗IF))  

Where the APDmin and APDmax correspond to the minimum and max-
imum values of the APD and the di corresponds to the diastolic interval. 
State 1 is modeled for the 10% time of the total APD. After this simulation 
time, State 2, corresponding to the refractory phase in which the tissue is 
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exited but not able to activate the surrounding tissue, is modelled for 90% 
of the APD length (partial repolarization). 

 

Sup. Figure 1. A. 200x200 simulation for Koivumaki ionic model B. 200x200 simu-
lation for Alonso-Atienza automata model. 

Sup Figure 2. Example of models after Jacquemet implementation A. Com-

plete Atria simulation for Koivumaki ionic model. B. Complete atria simula-

tion for Alonso-Atienza automata model  
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Sup. Figure 3. A. Average number of sustained rotor simulations with respect to the 
number of initiated singularity points (SP) B. Percentage of sustained simulations with 
respect to number of rotors in pulmonary veins 
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Chapter 5.                     
Study 3: STRATIFY-AF.    

Artificial Intelligence for 
Treatment Selection  

ABSTRACT  

Background: Atrial Fibrillation (AF) treatment strategies are suboptimal 
and clinical predictors of success are limited. Artificial Intelligence (AI) has 
arisen as a powerful tool for efficacy prediction. 

Objective: To develop an AI-driven platform for the stratification of pa-
tients prior to ablation based on non-invasive Electrocardiographic Imaging 
(ECGi) biomarkers and clinical parameters to evaluate and predict optimal 
patient treatment. 

Methods: We evaluated 204 patients from consultation and ablation 
procedures that were treated according to clinical guidelines and character-
ized at electrophysiological level using Body Surface Potential Mapping re-
cordings during AF. ECGi signals were calculated to obtain frequency and 
rotational biomarkers. Baseline clinical characteristics and the treatment fol-
lowed after inclusion were registered. 80% of the data was used to calibrate 
an algorithm for prognosis 12 month after inclusion in the study and the 
20% remaining was used for testing. 

Results: A clustering algorithm was calibrated identifying 3 main varia-
bles for prediction. The first variable for prediction was the AF type (parox-
ysmal or persistent). Secondly, an electrophysiological risk score obtained 
from the ECGi and formulated using logistic regression including the follow-
ing parameters: highest dominant frequency, median dominant frequency 
and mean rotor time. Finally, the type of treatment identified as rhythm con-
trol (drugs, AF ablation) or rate control. The performance of the algorithm 
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revealed 89.99% of success when predicting the outcome, increasing over-
all performance with respect to conventional persistent and paroxysmal 
classification. 

Conclusions: We were able to predict 12-month prognosis by using AI 
algorithms that combined clinical information with ECGi biomarkers and 
identified the most suitable treatment for each patient, attending to clinical 
guidelines recommendations. 

5.1. Introduction 
Atrial Fibrillation (AF) is the most common clinical arrhythmia associ-

ated with significant complications and impaired quality of life. Clinical 
guidelines mainly describe two approaches for AF treatment: medical ther-
apy, that presents limited efficacy, and cardiac ablation, with  an associated 
risks and arrhythmia recurrence in 50% of cases (Hindricks et al., 2020). 
Multiple observational studies have identified predictors of arrhythmia re-
currence.  

ECGi studies have already identified potential biomarkers (i.e. activa-
tion patterns, atrial frequency) that improve the decision process for treat-
ment selection and potentially help in the design of the ablation procedure, 
among others (Rodrigo et al., 2014; Cheniti et al., 2019; Molero et al., 2021; 
Salinet et al., 2021). This technology, in combination with advanced com-
putational calculations such as neural networks and score prediction in 
combination with clinical baseline characteristics of the patients, enforce the 
identification of new biomarkers to evaluate AF prognosis (Sánchez de la 
Nava et al., 2021).  

Our hypothesis is that the electrophysiological complexity is determi-
nant for the characterization of AF patients and is helpful to predict treat-
ment success (either pharmacological or interventional). We aimed to eval-
uate AF complexity using ECGi and to develop a new stratification score to 
identify and predict which treatment is more suitable for each patient. 

5.2. Methods 

5.2.1. Data and Study Population  

Patients from our center were included in the study from two different 
cohorts: outpatients who were treated in ambulatory care settings, and pa-
tients that were submitted for ablation procedures. Both groups were 
treated according to the ESC guidelines. 

Ablation group patients were classified in two subgroups depending, 
depending on the ablation strategy performed: Pulmonary Vein Isolation 
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(PVI) (cryoablation or circumferential radiofrequency ablation), and PVI 
combined with driver ablation using radiofrequency ablation. In the last 
case, rotors or high frequency areas were identified by the ECGi technology 
and the final decision of performing ablation on these sites was decided by 
the responsible electrophysiologist. 

In addition to the ECGi-based electrical characterization of patients, 
clinical and imaging data was also collected including age, gender, type of 
treatment and concomitant pathologies of all patients. The protocol was ap-
proved by the Institutional Ethics Committee of the institution and all pa-
tients gave informed consent. 

5.2.2. BSPM recordings  

The ECGi methodology used in this study has been previously de-
scribed in other publications from our group (Rodrigo et al., 2014, 2020; 
Atienza et al., 2021). Briefly, BSPM signals were recorded from patients 
during AF episodes including a total of 63 electrodes homogeneously dis-
tributed over the torso of the patient (Figure 5.1.). Signals were recorded in 
resting state in case of the outpatient group or under anesthesia in case of 
ablation procedure at a sampling frequency of 1kHz. The geometry of the 
torso was reconstructed from a video to identify the electrode patch location 
and processed (Atienza et al., 2021; Rodrigo et al., 2014, 2020). 

 

Figure 5.1. Body Surface Electrode configuration including 63 electrodes for the 
electrical activity registration  

5.2.3. Data processing and cleaning  

QRS complex was removed from the recorded signals as described in 
(Rodrigo et al., 2016). After removing QRS, signals from the body surface 
were filtered eliminating baseline and with a high pass filter (Fc = 20 Hz) 
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and low pass filter (Fc = 2Hz). Segments of, at least, 4 seconds were se-
lected to calculate the frequency maps and 1 second segments were used 
to calculate rotor maps. This process was repeated three times per patient 
and results were averaged. More specifically, for patients belonging to the 
ablation group, a segment of at least 20 seconds was recorded prior to the 
ablation and consecutive episodes were obtained thereafter. For the outpa-
tient group, a complete segment of ≥60 seconds was obtained. ECGi was 
calculated using preselected atrial anatomical models as described in 
(Rodrigo et al., 2018). 

The parameters evaluated from the ECGi were obtained from signals 
acquired at the moment of inclusion and patients were clinically followed for 
12-month after the outpatient visit and/or postablation (Table 5.1). For each 
recorded segment we obtained two maps, Dominant Frequency (DF) and 
rotor histogram maps (Figure 5.2). Briefly, DF was defined as the frequency 
that presented the highest power calculated with a Welch’s periodogram to 
determine the local DFs with a spectral resolution of 0.01Hz (Guillem et al., 
2013). Rotor location was carried out by identification of SP (SP) in the 
phase map obtained with the Hilbert Transform as described in previous 
publications of the group (Marques et al., 2020). Phase values were ob-
tained along 3 different circles surrounding each evaluated point, and six to 
twelve points per circle were used for the phase analysis in which the signal 
was interpolated by a weighted average of the neighboring nodes, being d2 
the weight for each node and d the distance between the nodes.  

An evaluated point was defined as a SP only when the phases of at 
least two of these three circles was monotonically increasing or decreasing 
for a total of 2π. A rotor was defined as the connection between SPs across 
time. The distance between SPs at consecutive time instants should be less 
than 1, (electrogram and inverse computed electrogram) or 5 (ECG) to be 
related and maintain a continuity of rotation. Finally, only long lasting rotors, 
defined as those that complete at least one rotation were considered as 
rotors and other SPs were discarded.  
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Figure 5.2. A. Patient showing simple and homogeneous distribution of activation 
frequency associated with low values of the complexity score with localized rotors in the 
pulmonary vein (panel C) and B. Patient showing a heterogeneous distribution of acti-
vation frequency associated with high values of the complexity score showing rotational 
activity in the right atrium. 

The complete list of calculated biomarkers can be consulted in Table 
5.1, including all the frequency and rotor biomarkers extracted from the 
ECGi maps.  

 

Table 5.1. Evaluation metrics obtained from the ECGi 

 Outcome Measure Description 

Frequency 
Biomar-
kers 

Dominant Frequency (Hz) Power spectral density of the ECGi signals 

Highest Dominant Frequency (Hz) Highest value of the calculated Dominant Fre-
quencies 

Highest Dominant Frequency Ex-
tension (%) 

Extension of the Highest Dominant Frequency 

Median Dominant Frequency (Hz) Median value of the Dominant Frequencies 
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Median Dominant Frequency Ex-
tension (%) 

Extension of the median Dominant Frequency 

Minimum Dominant Frequency (Hz) Minimum value of the Dominant Frequencies 

Rotor 
Biomarkers 

Rotor per second Number of identified rotors per second 

Mean simultaneous rotor Number of identified rotors simultaneously  

Mean rotor duration Mean rotor duration in percentage for the calcu-
lated segment 

SP at Highest Dominant Frequency Singularity points that present the highest domi-
nant frequency 

SP per second Number of singularity points per second 
Mean rotor time (%) Percentage of time with rotors 

 Entropy Value of the entropy 

 Calculated score Score for the evaluation of the electrophysiolog-
ical complexity  

 

5.2.4. Studied cohort  

Only patients that met the eligibility criteria were included in the study 
and were followed for a 12-month period to evaluate rhythm outcome and 
clinical evolution including changes in treatment. We included ambulatory 
patients with AF attending the outpatient clinic and/or patients submitted for 
AF ablation following the ESC guidelines clinical indication. We excluded 
patients enrolled in another investigational study, patients with implanted 
pacemaker or Implantable Cardioverter Defibrillator and those with contra-
indications for AF ablation. Clinical follow-up included Holter recording at 6, 
9 and 12 months after the outpatient visit and/or ablation, treatment strate-
gies and drugs doses were also recorded. These changes included redo 
ablation procedures and/or electrical cardioversion and pharmacological 
changes, including dose changes and number of antiarrhythmic drugs. 

5.2.5. Data analysis  

Neural Network for processing BSPM signals  
To evaluate and alternative method that enables to extract the bi-

omarkers calculated from the ECGi, a neural network was trained to evalu-
ate the performance of the algorithm. More specifically, filtered BSPM sig-
nals as described in Section 5.2.3 were used as input of the neural network, 
calibrated to output the values of the frequency and rotor biomarkers spec-
ified in Table 5.1.  

As neural network present complex structures, the amount of data 
needed for its testing and training process is very demanding. In order to 
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overcome this limitation, several segments from each patient were used to 
calibrate and train the network. Specifically, 892 BSMP recordings from 150 
patients undergoing ablation were used for the calibration and testing of the 
net.  

For its calibration, 2 second signals during AF episodes were recorded 
prior to ablation and calculated in 4 second episodes as explained in previ-
ous publications of the group (Nava et al., 2021).  

The structure of the net included a convolutional layer, followed by a 
dropout layer, a convolutional layer, a flatten layer and three dense layers 
as depicted in Figure 5.3. Training was performed with 85% of the data and 
evaluated by means of mean absolute error. All layers were fully connected.  

Due to lack of validation and low number of samples to train this algo-
rithm, the subsequent steps were directly evaluated with the metrics ob-
tained from the ECGi computation.  

 

Score identification 
The new score was built as follows: First, an electrophysiological score 

was developed using only the parameters obtained from the ECGi. To de-
velop this score, the 12 variables obtained from the ECGi were evaluated 
using feature extraction to identify the most important variables for 12-
month rhythm outcome evaluation. Three different signal segments were 
selected for each patient and ECGi was calculated. The average of the re-
sults obtained from these three different segments were used to obtain a 
single measurement for each biomarker per patient. Once the variables 
were identified, the score was built and trained using 80% of the data and 
the remaining 20% was used to test its performance. After the score was 
tested, clinical data was incorporated into the algorithm to evaluate if the 
addition of clinical variables (AF type and type of treatment) were comple-
mentary to this score. We assessed if the proposed method tested in com-
bination with classical clinical guidelines parameters was able to improve 

Figure 5.3. Neural Network configuration including four different types of layers.  
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overall performance. For this purpose, a clustering algorithm was built to 
identify profiles that presented similar profiles. Briefly, clustering algorithms 
enable to identify patterns in data with similar basal characteristics (such as 
AF type or electrophysiological profile) and similar outcome (in this case 
identified by AF or AF Freedom at 1-year after the inclusion in the study).  

5.2.6. Statistical Methods   

The Student’s t-test was used to evaluate the statistical significance be-
tween continuous paired or unpaired variables, and Z score was used to 
calculate p-values of prevalence (percentages) in the population. One-way 
multivariate analysis of variance was used for multivariate analysis. Statis-
tical significance was considered for P<0.05 for continuous or percentage 
variables. Pearson Chi Independence test was used to evaluate categorical 
or binary variables, and statistical significance was considered for P<0.05. 
All data are reported as mean ± SD. All ECGi calculations were performed 
in Matlab and the training of both the neural network and the regression 
algorithm were programmed in Python.  

5.3. Results  

5.3.1. Patient Cohort Clinical Description  

A total of 204 patients were included in the study from the outpatient 
clinic (N=84) and ablation (N=120) groups according to their consecutive 
referral to each group, between June 2018 to December 2019.  

Table 5.2 and Table 5.3 show the baseline characteristics of the cohort, 
including gender, age, type of AF and most important comorbidities studied.  

Regarding the outpatient group, no differences were found when gen-
der, AF type or comorbidities when AF Freedom and AF patients were com-
pared. AF patients were significantly older when compared to AF Freedom 
patients. 

Ablation group did not show any clinical differences among AF and AF 
Freedom patients. Additional information can be found in the supplemen-
tary material including all the measured variables and their corresponding 
significance.  

When both subgroups, outpatient and ablation groups were compared, 
female AF freedom patients was significantly higher on the consultation 
group (outpatient group: 54.54%; ablation group: 33.75; p-value: 0.04). 
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Table 5.2. Description of outpatients included in the study. 

 All patients AF Freedom AF p-value 
 84 33 51  
Gender 32 female 18 female 14 female 0.99 
Age (yrs) 65.37 ± 11.00 64.72 ± 12.51 65.80 ± 

10.01 0.67 

Comorbidities  
Arterial 
Hypertension  

40 (47.62%) 17 (34.34%) 23 
(45.10%) 0.79 

Obesity  9 (10.71%) 1 (3.03%) 8 
(15.69%) 0.07 

Ischemic Car-
diac Condition  2 (2.38%) 2 (6.06%) 0 (0.0%) 1.00 

Cardiac  
Insufficiency  

3 (3.57%) 1 (3.03%) 2 (3.92%) 0.66 

Mitral  
Insufficiency 

3 (3.57%) 2 (6.06%) 1 (1.96%) 0.94 

Atrial/Ventricular 
Dilation  2 (2.38%) 1 (3.03%) 1 (1.96%) 0.85 

 AF Type 
Flutter  6 4 2 

0.40 Paroxysmal 24 9 15 
Persistent  53 20 33 

 

Table 5.3. Distribution of patients undergoing ablation. 

 All patients AF Freedom AF p-value 
 120 80 40  
Gender 42 female 27 female 15 female 0.417 
Age 60.90 ± 9.27 59.13 ± 9.50 64.45 ± 

7.77 0.003 

Comorbidities 
Arterial  
Hypertension  

34 (28.57%) 24 (30.00%) 10 (25%) 0.78 

Obesity  15 (12.5%) 12 (10%) 3 (0.75%) 0.93 
Ischemic Car-
diac Condition  1 (0.84%) 1 (1.25%) 0 (0.0%) 1.00 
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Cardiac  
Insufficiency  

2 (1.68%) 2 (2.5%) 0 (0.0%) 1.00 

Mitral  
Insufficiency 

2 (1.68%) 1 (1.25%) 1 (2.5%) 0.56 

Atrial/Ventricular 
Dilation  2 (1.68%) 2 (2.5%) 0 (0.0%) 1.00 

AF Type 
Flutter 12 8 4 

0.20 Paroxysmal 33 26 7 
Persistent 72 44 28 

 
 
Interestingly, dyslipidemia was more frequent in outpatient group than 

in ablation group (Outpatient group: 39.29%; Ablation group: 1.67%; p-
value<0.001) and obese patients presented better outcomes in the ablation 
group than in the outpatient group (Obese AF Freedom in outpatient group: 
1.19%; Obese AF Freedom in ablation group: 10%; p-value: 0.01108).  

Multivariate analysis revealed that both the AF type and the ablation 
strategy were significantly associated with the endpoint (AF Freedom/AF) 
(p<0.001), suggesting that these variables should be included in the final 
model. Regarding the strategy, ablation strategy did not show statistically 
significant differences between patients in which PVI was performed com-
pared to the PVI + driver ablation strategy in the overall cohort (PVI AF-
Freedom group: 75.51%; PVI + drivers AF-Freedom group: 59.70%; p-
value: 0.075) (Figure 5.4). Interestingly, patients in whom a pharmacologi-
cal change was indicated after the ablation significantly presented better 
outcomes with respect to patients in whom a second ablation was per-
formed (Pharmacological changes AF-Freedom group:77.8%; Interven-
tional changes AF-Freedom group: 30%; p-value: 0.00014).  
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Figure 5.4. A. AF and AF freedom proportion depending on ablation strategy. B. 
AF and AF freedom proportion depending on ablation type. C. AF and AF freedom pro-
portion depending on the strategy followed after ablation.  
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5.3.2. Patient Cohort ECGi description 

As it can be observed from the graphs (Figure 5.5 and Figure 5.6), there 
was no significant difference when the ECGi biomarkers were inde-
pendently used to predict AF outcome. Thus, we decided to evaluate the 
ability of an outcome score using a composite measure of these biomarkers 
to predict treatment success. 

 

 

Figure 5.5. Frequency biomarkers and entropy for AF and AF Freedom groups in-
cluding A. Highest Dominant Frequency, B: Highest Dominant Frequency extension, C. 
Median Dominant Frequency, D. Median Dominant Frequency Extension, E. Minimum 
DF and F. Entropy.  
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Figure 5.6. Rotor biomarkers obtained from the ECGi for AF and AF Freedom 
groups including A. rotors per second, B. mean rotor duration, C. mean simultaneous 
rotors, C. SP at highest dominant frequency, E. SP per second, F mean rotor time.  

5.3.3. Neural Network performance  

Results from the Neural Network showed that the calculated parame-
ters were calculated with a low error value, as shown in the table below.  

Table 5.4. Description of the performance of the neural network for the evaluation 
of electrophysiological variables. 

Biomarker Mean Absolute Error 
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Highest Dominant Frequency 0.12 
Minimum Dominant Frequency 0.08 

Mean Simultaneous rotors 0.01 
Mean rotor time (%) 1.04 

Median Dominant Frequency 0.11 
  
 However, this methodology did not enable to evaluate the location or 

distribution of the biomarkers, therefore losing the spatial information of the 
maps.  

In addition, the low number of patients and lack of validation revealed 
the need to include new patients for the electrophysiological estimation and 
characterization.  

5.3.4. ECGi biomarker evaluation for prediction  

The calibration of the electrophysiological score resulted in a logistic 
regression equation that used three parameters for the decision. These 
three parameters were the Highest Dominant Frequency, the Median DF 
and the Mean rotor time. 

 

? =	
1

1 +	85(5+.///7.+.89:8∗<=>5+.89?9∗@AB*0C	=>5+.+8E:∗@A0C	FGHGI	J*KA)
 (5.1) 

 
 
 
Following this mathematical formulation, the behavior of the chosen 

electrophysiological variables can be described in as follows: first, for higher 
values of the Highest Dominant Frequency, the score will present higher 
values, meaning that the complexity is also higher. In addition, when con-
sidering the Median Dominant Frequency, the score will present lower val-
ues, meaning that the complexity is lower. Finally, if the rotor time is studied, 
the same trend is observed for lower values of the score when higher values 
of the rotor time are observed.  

5.3.5. Effect of clinical variables on global model  

The values obtained from the score were directly implemented in the 
clustering algorithm that revealed five different groups as shown in Figure 
5.7.  
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Three different variables were identified as relevant to predict the out-
come of the patients, in the following order: AF type (persistent or paroxys-
mal AF), ECGi electrophysiological complexity variables and type of treat-
ment.  

Type of treatment was classified in four different categories: ablation, 
ablation with drivers, drug treatment or rate control. 

This clustering technique revealed five different groups based on the 
test set that can be described as follows: 

The first group, corresponding to paroxysmal patients with low score 
values, present better outcomes when ablation is performed, independently 
of the type of ablation. The second group, corresponding to paroxysmal 
patients with values of the score between 0.4 and 0.6, presented good out-
comes independently of the treatment used (pharmacological or interven-
tional). The third group, corresponding to paroxysmal patients with high val-
ues of the score, presented bad outcome (AF) independently of the 
treatment strategy used. 

In the case of persistent patients, those with a low score value, pre-
sented better outcomes when rotor ablation combined with PVI was per-
formed. Finally, the fifth group, corresponding to persistent patients with 
high score values, had poor outcome regardless the type of treatment.  

Figure 5.7. Results obtained from the clustering algorithm identifying 5 different groups in three levels. 
From left to right, the first variable represents AF type (Paroxysmal on top, Persistent on the bottom), score 
value divided in three subgroups for the paroxysmal patients and in two groups for the persistent patients 
and type of treatment in the last part of the diagram. Green and red colors represent AF Freedom and AF 
respectively.   
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Table 5.5. Distribution of patients in clusters attending to the developed algorithm 
divided into cluster treatment and other treatments. Blank spaces correspond to clusters 
in which a successful treatment was not found. 

 Selected and Predicted 
Treatment 

Predicted treatment 
mismatch 

 AF Freedom AF AF Freedom AF 

Cluster #1 14 1 3 6 

Cluster #2 18 5 5 3 

Cluster #3   1 5 

Cluster #4 22 8 10 10 

Cluster #5   28 39 

 
For each of the identified clusters, the algorithm identified the most suit-

able treatment for each case, as shown in Figure 5.7. For example, for par-
oxysmal patients with low electrophysiological complexity, the pattern iden-
tification revealed that the most promising treatment was ablation, without 
any relevant different among the strategy used (cryoablation, radiofre-
quency ablation nor driver ablation). Therefore, this diagram depicts the 
most suitable treatment for each of the five clusters. More in detail, Table 
5.5 shows the AF freedom prevalence in each of the clusters attending to 
the proposed treatment on the test set. Successful treatments are shown in 
green in Figure 5.7. while the groups showing red color correspond to un-
successful treatments, also associated with higher electrophysiological 
complexity.  

Figure 5.9 shows one example for each of the clusters and the calcu-
lated metrics for each of them. Interestingly, this clustering analysis demon-
strates the importance of identifying the AF type for patient outcome. This 
is specifically important for patients with score between 0.4 and 0.6, as in 
the case of being paroxysmal patients, suggested treatments can be effec-
tive, while in the case of the same patient being persistent, the outcome is 
not very favorable. Finally, this algorithm was tested on the 20% test set, 
obtaining 89.99% of success, showing better performance than the conven-
tional paroxysmal vs. persistent classification (Figure 5.8).  
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Figure 5.8. ROC curve for the performance of the conventional classification and 
score classification based on electrophysiological parameters 
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Figure 5.9. Examples of patients belonging to each of the five clusters. Panel describes the AF type, treatment, dominant frequency map, 
biomarkers for each specific patient, calculated score and clinical outcome. 
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5.4. Discussion 
The present work aimed to identify AF predictive biomarkers by using 

the parameters obtained from the ECGi during AF episodes. From the com-
plete patient cohort, we determined a predictive model or risk score that 
enable to estimate 12-month outcome prognosis based on the treatment 
selected according ESC guidelines. Interestingly, the use of electrophysio-
logical information obtained from the ECGi, combined with the clinical infor-
mation allowed the identification of 5 different clusters or groups that in-
creased the performance of traditional clinical guidelines for treatment 
selection.  

AI algorithms are being applied in multiple clinical scenarios for the au-
tomation and diagnosis (Sánchez de la Nava et al., 2021). Several scores 
have been previously presented for these purposes, such as the APPLE 
(Kornej et al., 2015), ATLAS (Mesquita et al., 2018), BASE-AF , CAAP-AF 
(Winkle et al., 2016), LAGO (Bisbal et al., 2018) and MB-LATER 
(Budzianowski et al., 2019). Although the sizes of these studies were, in 
some cases, larger than in this study, none of them considered different 
treatment approaches for the cohort in different clusters. In addition, the 
parameters included in the different scores or studies differ from one an-
other due to the heterogeneity of the samples. However, all these scores 
recall the importance of the electrophysiological information of the heart by 
including data from electrophysiological tests such as the ECG or independ-
ent predictors associated with AF.  

In contrast, the present study used AI technology to predict prognosis 
of AF patients based on electrophysiological parameters obtained from the 
ECGi. We developed a risk score that includes several parameters that 
have been already related to AF prediction, such as the highest dominant 
frequency and the rotor time, that is directly related to the stability of the 
rotor (Guillem et al., 2013; Narayan et al., 2013). In particular, HDF has 
been previously identified as one of the biomarkers for efficacy evaluation 
of patients undergoing ablation, as previously described (Rodrigo et al., 
2014; Marques et al., 2020), including studies of this group using the ECGi 
technology. This study is in accordance with previous results obtained by 
the group in smaller cohorts, where we obtained a complexity algorithm in 
patients undergoing AF ablation where we proved that the use of paroxys-
mal and persistent classification in combination with electrophysiological 
parameters presents better prediction outcomes that standard clinical 
guidelines (Sanchez de la Nava et al., 2020). 

In the same trend, other biomarkers have been explored presenting in-
creased performance for long-term evolution prediction when compared 
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with the standard clinical guidelines. For example, Rodrigo et al. showed 
that lower complexity, quantified in terms of stable AF reentrant sites, was 
found in patients in whom AF terminated after ablation (Rodrigo et al., 
2020). In addition, other studies also established a direct relation among 
shorter duration between time of first AF diagnosis and AF ablation proce-
dure with better outcome results (Chew et al., 2020). Arrhythmia complexity 
has not only been characterized using electrophysiological parameters as 
in the aforementioned studies. Lankveld et al. (Lankveld et al., 2016) iden-
tified the AF termination index procedure and the mean fibrillation-wave am-
plitude as independent predictors, in combination with clinical information, 
of AF prognosis. Other studies such as the observational study presented 
by Meo et al (Meo et al., 2018)  described complex arrhythmias as short 
cycle lengths and higher nondipolar component index.  

Finally, the use of clinical biomarkers such as the AF type and the type 
of treatment, that have been present in the AF management clinical guide-
lines, also describe persistent patients as more complex. Interestingly, our 
developed score associated persistent patients with more complex scenar-
ios, as the threshold for the score that indicated a successful ablation was 
lower in this case than in the case of paroxysmal patients. However, this is 
in agreement with previous studies that documented worse ablation results 
in patients with persistent AF (Rottner et al., 2020).  

5.4.1. Limitations 
The present work has several limitations. The cohort was recruited in a 

single hospital and a wider sample from different hospitals will ensure ro-
bustness of the risk score. In addition, the cohort presented imbalanced 
datasets, with the ablation subgroup including more patients. As the differ-
ence was not significantly high, we assumed that balancing group methods 
were not necessary for the development of the score but further studies 
should confirm this. AF complexity could only be analyzed in patients pre-
senting AF during the outpatient visit or during the electrophysiologic pro-
cedure, potentially excluding patients with lower AF burden. However, we 
are currently aiming to analyze these features during sinus rhythm in ongo-
ing protocols.  

5.4.2. Conclusions 
Patient evaluation and stratification prior to treatment decision is key to 

improve success rate of current AF patient management. With this study, 
we were able to predict 12-month prognosis by using AI algorithms that 
combined clinical information with ECGi biomarkers and identified the most 
suitable treatment for each patient, attending to clinical guidelines recom-
mendations. 
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Supplementary Tables  
 
Supplementary information depicts the information, by groups, of the 

clinical baseline characteristics of both groups included in the observational 
study. As it can be observed, no significant differences were found at clinical 
level between the AF Freedom and AF group in any case except for the age 
in the ablation group. The rest of the differences have been already dis-
cussed in the main body of the article. 

Outpatient group baseline characteristics  
 
 All patients AF Freedom AF p-value 
 84 33 51  
Gender 32 female 18 female 14 female 0.99 
Age (yrs) 65.37 ± 11.00 64.72 ± 12.51 65.80 ± 10.01 0.67 
Table 5.6. Description of patients included in the study attending to sex (Fe-
male/Male) and age.  
 

 Complete cohort   AF Freedom AF p-value  
Pathology * 84 33 51  

Arterial Hypertension  40 (47.62%) 17 (34.34%) 23 (45.10%) 0.79 
Obesity  9 (10.71%) 1 (3.03%) 8 (15.69%) 0.07 
Ischemic Cardiac Condition  2 (2.38%) 2 (6.06%) 0 (0.0%) 1.00 
Cardiac Insufficiency  3 (3.57%) 1 (3.03%) 2 (3.92%) 0.66 
Mitral Insufficiency 3 (3.57%) 2 (6.06%) 1 (1.96%) 0.94 
Atrial/Ventricular Dilation  2 (2.38%) 1 (3.03%) 1 (1.96%) 0.85 
Previous Valvuloplasty 3 (3.57%) 0 (0.0%) 3 (5.88%) 0.22 
Infarct 3 (3.57%) 2 (6.06%) 1 (1.96%) 0.94 
Ictus 5 (5.95%) 3 (6.06%) 2 (3.92%) 0.92 
Diabetes 13 (15.48%) 5 (10.10%) 8 (15.67%) 0.60 
Alcohol  2 (2.38%) 2 (4.04%) 0 (0.0%) 1.00 
Smoking 24 (28.57%) 10 (20.20%) 14 (27.45%) 0.70 
Dyslipidemia  33 (39.29%) 17 (34.34%) 16 (31.37%) 0.98 
Hypothyroidism  4 (4.76%) 1 (3.03%) 3 (5.88%) 0.49 
Renal Transplant 1 (1.19%) 1 (3.03%) 0 (0.0%) 1.00 
Gout 1 (1.19%) 0 (0.0%) 1 (1.96%) 0.61 
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Psoriasis  1 (1.19%) 1 (3.03%) 0 (0.0%) 1.00 
Osteoporosis 1 (1.19%) 0 (0.0%) 1 (1.96%) 0.61 
Rhinitis 1 (1.19%) 0 (0.0%) 1 (1.96%) 0.61 
Oncological treatment  2 (2.38%) 2 (6.06%) 0 (0.0%) 1.00 

Table 5.7. Description of concomitant pathologies of the consultation group.  
 

Table 5.8. Cohort classification depending on AF type.  
 

As it can be observed, no significant differences were found among 
AF Freedom and AF patients in the consultation group, except for obesity, 
that presented a significantly higher rate in the AF group. 

Ablation group baseline characteristics  
 All patients AF Freedom AF p-value 
 120 80 40  
Gender 42 female 27 female 15 female 0.417 
Age 60.90 ± 9.27 59.13 ± 9.50 64.45 ± 7.77 0.003 

Table 5.9. Description of patients included in the study attending to sex (Fe-
male/Male) and age.  
 

Table 5.10. Cohort classification depending on AF type. 
 

 Complete cohort  AF Freedom  AF  p-value  
AF Type  84 33 51   
Flutter  6 4 2 

0.40 Paroxysmal 24 9 15 
Persistent  53 20 33 

 Complete cohort AF Freedom AF p-value 
AF Type 120 80 40  

Flutter 12 8 4 
0.20 Paroxysmal 33 26 7 

Persistent 72 44 28 
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Table 5.11. Description of concomitant pathologies of the consultation 
group.  

 Complete cohort AF Freedom AF p-value 
Ablation strategy 120 80 40  

PVI 49 37 12 
0.11 PVI + rotors 67 40 27 

Valvuloplasty 3 3 0 
 

Table 5.12. Cohort classification depending on ablation strategy. P-value 
obtained from two-tailed Fisher exact test. 

 Complete cohort  AF Freedom  AF  p-value  
Pathology * 120 80 40  

Arterial Hypertension  34 (28.57%) 24 (30.00%) 10 (25%) 0.78 
Obesity  15 (12.5%) 12 (10%) 3 (0.75%) 0.93 
Ischemic Cardiac Condition  1 (0.84%) 1 (1.25%) 0 (0.0%) 1.00 
DAI 1 (0.84%) 1 (1.25%) 0 (0.0%) 1.00 
Cardiac Insufficiency  2 (1.68%) 2 (2.5%) 0 (0.0%) 1.00 
Mitral Insufficiency 2 (1.68%) 1 (1.25%) 1 (2.5%) 0.56 
Atrial/Ventricular Dilation  2 (1.68%) 2 (2.5%) 0 (0.0%) 1.00 
Infarct 2 (1.68%) 0 (0.0%) 2 (5.0%) 0.11 
Angina 1 (0.84%) 1 (1.25%) 0 (0.0%) 1.00 
Ictus 1 (0.84%) 0 (0.0%) 1 (2.5%) 0.33 
Long QT 1 (0.84%) 0 (0.0%) 1 (2.5%) 0.33 
Diabetes 11 (9.16%) 10 (12.5%) 1 (2.5%) 0.99 
Smoking 11 (9.16%) 8 (10%) 3 (7.5%) 0.78 
Asthma 2 (1.68%) 1 (1.25%) 1 (2.5%) 0.56 
EPOC 1 (0.84%) 0 (0.0%) 1 (2.5%) 0.33 
Bradycardia 1 (0.84%) 0 (0.0%) 1 (2.5%) 0.33 
Pulmonary Emphysema 1 (0.84%) 1 (1.25%) 0 (0.0%) 1.00 
Dyslipidemia  2 (1.68%) 1 (1.25%) 1 (2.5%) 0.56 
Hypothyroidism  6 (5.00%) 5 (6.25%) 1 (2.5%) 0.92 
Depression 2 (1.68%) 1 (1.25%) 1 (2.5%) 0.56 
Epilepsy 2 (1.68%) 1 (1.25%) 1 (2.5%) 0.56 
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 Complete cohort AF Freedom AF p-value 
Ablation type 120 80 40  

Radiofrequency ablation 97 60 37 
0.02 

Cryoablation 23 20 3 
Table 5.13. Cohort classification depending on ablation type. P-value ob-

tained from two-tailed Fisher exact test. 
 

Pharmacological changes after ablation 
 

 Complete cohort AF Freedom AF p-value 
Ablation type 120 80 40  

Changes in strategy after abla-
tion 73 48 25 

0.48 
No changes in strategy 47 32 15 

Table 5.14. Changes registered after the ablation procedure on the patient 
cohort. P-value obtained from two-tailed exact test. 

 

 Complete cohort AF Freedom AF p-value 
Ablation type 120 80 40  

Changes in strategy after 
ablation 73 48 25  

Pharmacological changes 54 42 12 1.00 
Adding/Increase 32 30 2 

0.99 
Eliminate/decrease 22 12 10 

Interventional changes 20 6 14  

Ablation/CVE 18 4 14 
0.08 

Pacemaker 2 2 0 
Table 5.15. Pharmacological and interventional changes registered after 
the ablation procedure on the patient cohort. P-value obtained from two-
tailed exact test. 
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Chapter 6. Conclusions 
and Discussion  

 
 

 In this chapter, a global conclusion of the results given in this dis-
sertation is presented. First, the main conclusions of this thesis are listed 
by assessing the resolution of the objectives. The chapter is closed with a 
guideline for future work, highlighting aspects of this thesis that can be im-
proved and the range of future lines of this research.  

6.1. Main Findings  
Although the most common treatment for AF patients is the pharmaco-

logical therapy, ablation has acquired more relevance due to its ability to 
eradicate the arrhythmia in many patients, especially when the ablation is 
conducted at its earliest stage (Hindricks et al., 2020). In addition, it has 
been reported that ablative therapies present higher rates of efficacy when 
a patient-tailored approach based on the characterization of the fibrillatory 
process in each patient is used (Seitz et al., 2017; Jungen et al., 2020). 
Therefore, different methods to locate the atrial drivers maintaining the ar-
rhythmia have been used in the clinical practice, mainly based on the anal-
ysis of the intracavitary signal recorded with catheters (Ramirez et al., 
2017). However, these characterization methods are only available for pa-
tients already in the laboratory and thus this analysis does not allow to se-
lect patients nor to plan the ablation procedure. In order to solve such prob-
lems, non-invasive methods for atrial driver identification have been 
developed, such as BSPM or ECGi. Nevertheless, the novelty of these sys-
tems together with the controversy regarding the underlying mechanisms in 
which they rely on are delaying their introduction into the clinical practice. 
This thesis broadens the scientific and technical knowledge about the non-
invasive identification and localization of atrial drivers.  
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This Doctoral Thesis describes the multidisplinary research project 
aimed at deciphering one of the most critical macromolecular ion channel 
interactions in the normal and the diseased heart.  

 
All this information has been included in Figure 6.1, where the overall 

contributions of the thesis are illustrated. As it can be observed, the disser-
tation covers three different key areas that have been explored throughout 
the thesis. These key areas are identified as:  type of study (divided into in 
silico trial or clinical trial), data source (identified as synthetic scenarios or 
clinical scenarios) and artificial intelligence (including simple algorithm, a 
neural network approach and the development of a new score).  

The first study presented in this thesis (Chapter 3) is framed in the con-
text of in silico trials using synthetic data and simple algorithms. In particu-
lar, we showed that the use of processing algorithms that enable the iden-
tification of patterns from a large database can be useful for AF screening 
and understanding. In this first study, we proved, using data from simula-
tions calibrated with a real AF population, that the patterns identified at clin-
ical level can also be identified with low cost computational trained algo-
rithms.  

In silico simulations were combined with clinical information using atrial 
anatomies from 30 patients in the second study of this thesis (Chapter 4). 
At simulation level, simple algorithms were implemented to lower the com-
putational cost of the experiments and to identify a biomarker that could 
describe atrial complexity.  

Figure 6.1. Main discussion and contributions of the thesis 
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Finally, the last study of the thesis (Chapter 5) includes the Stratify-AF 
observational study in which AF recordings from 204 patients were charac-
terized using complex algorithmic ECGi calculation in a clinical scenario to 
identify prognosis of patients depending on the treatment.  

6.2. Comparison with Previous Studies 
The analysis of arrhythmia complexity has been key for the identification 

of new biomarkers and treatment of the arrhythmia. More specifically, sev-
eral studies have presented different biomarkers to evaluate and predict the 
effect of the ablation, including rotational driver characterization, DF abla-
tion or eliminating the frequency gradients that promote sinus rhythm 
maintenance(Atienza et al., 2009; Kocyigit et al., 2015; Alarcón et al., 2020).  

Clinical data from patients that presented AF episodes recorded with 
the ECGi system developed by the group in collaboration with other institu-
tions was evaluated, as reflected in Chapter 4 and Chapter 5. ECGi tech-
nology has been used in the last years to non-invasively characterize atrial 
(Graham et al., 2020; Salinet et al., 2021) and ventricular activity during 
irregular both regular and irregular rhythms (Betancourt et al., 2019; 
Graham et al., 2020; Rehorn et al., 2020).  At the atrial level, this technology 
enables to estimate the dominant frequencies that have been identified as 
a potential trigger for the arrhythmia maintenance.  

In silico scenarios have also been important in the study of AF and more 
recently, in the process of characterization at clinical level for ablation strat-
egy and complexity evaluation (Hwang et al., 2016; Lim et al., 2020). Sev-
eral approaches have been tested to design the ablation strategy (Arevalo 
et al., 2016; Kim et al., 2020) demonstrating its translational approach. In 
addition, the latest studies demonstrate the importance of incorporating 
clinical relevant information in the simulations, such as population of models 
calibrated with patch clamp data from human biopsies (Britton et al., 2013; 
Liberos et al., 2016; Bai et al., 2021) and personalized anatomy models 
(Fastl et al., 2018; Heijman et al., 2021). In line with these studies, the pre-
sent thesis has included simulations using population of models in Chapter 
3 and personalized anatomies in Chapter 4, using different approaches that 
enabled the characterization of atrial complexity. More specifically, the 
study shown in Chapter 4 presents a workflow with direct translation into 
the clinical scenario, although prior validation of the methodology is needed.  

Digital Health, and specifically Artificial Intelligence, have been applied 
the cardiology field in the last years, obtaining impressive results. Record-
ings from electronic devices such as smartwatch have enabled the identifi-
cation of arrhythmic episodes in patients (Wasserlauf et al., 2019; Dagher 
et al., 2020), With new powerful equipment that are able to process longer 
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and more complex signals, studies including all the ECG derivations have 
also been published, with the main objective of predicting patient prognosis 
and evolution (Dretzke et al., 2019; Sanz-García et al., 2021).  The work 
described in Chapter 5 belongs, therefore, to this new field that has arisen 
in which complex algorithmic equations are combined with clinical and dig-
ital information to evaluate patients and personalize their treatments. 

Finally, one of the most important contributions of this thesis is the over-
all technology developed at different scales to evaluate complexity, that al-
lows, from different perspectives, to study and categorize specific charac-
teristics of the patients in each of the studies, demonstrating its translational 
approach. 

6.3. Limitations 
As usually occurs in most scientific studies, there are several limitations 

that were present during the development of this thesis. Although the cur-
rent limitations have been already commented in the individual chapters 
concerning each study, there are some additional key points that should be 
commented.  
As depicted in Figure 6.1., from the three different scenarios considered, a 
total of three different studies were performed. However, we were unable 
to perform a clinical trial in which only synthetic scenarios were evaluated 
with complex algorithms. This was motivated due to previous studies that 
present in silico scenarios with poor translation into the clinical scenario 
(Peirlinck et al., 2021). As it is already known, in silico scenarios usually 
present controlled environments that do not correspond to clinical complex 
scenarios and that, in the absence of personalized data from the patients, 
the results of these studies lack of translational approaches but rather sci-
entific explanations of patterns or behaviors. Therefore, we considered that 
the best option in this case was to focus on the fields that enabled a direct 
translation into the clinical practice as the translational approach is key in a 
clinical environment.  

In addition to those clinical applications of the developed technology, 
technological advances are required to increase the quality of research 
models and to continue improving the efficacy of characterization tech-
niques. Those efforts are only being possible thanks to the multidisciplinary 
collaboration between clinicians, engineers, biologists, etc. that the team of 
the Laboratory for Research on Translational Cardiology of Hospital Gre-
gorio Marañón in Madrid has been able to set-up.  
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6.4. Conclusions  
The main objective of this thesis was to explore the application of Arti-

ficial Intelligence in the Cardiology Field, in particular in AF. Along the dif-
ferent chapters of this thesis, this objective has been achieved through the 
study of diverse approaches in non-invasive electrocardiography. This ob-
jective was broken down in the following points:  

 
1. To study and evaluate AF maintenance under the effect of different 

drugs, implementing in silico models in two different plane sizes using 
an electrophysiological model that includes ionic level description.   
We presented a population of models approach in which arrhythmia in-
duction was evaluated by modifications in tissue size and drug admin-
istration. Higher probability of induction was observed in larger tissue 
and, interestingly antagonistic effects were observed for some of the 
profiles, showing that for a minority of cases, the drugs may present 
adverse or non-desired effects.  
 

2. To study and evaluate the pulmonary vein ablation efficacy implement-
ing in silico models in 3D personalized geometries using an activation 
pattern model. 
We presented personalized in silico simulations in a cohort of 30 pa-
tients that underwent pulmonary vein ablation and in which different ar-
rhythmia scenarios were evaluated at computational level. From these 
experiments, we concluded that ablation success was associated with 
patients that, at computational level, presented low number of high en-
tropy foci located in the pulmonary vein area whereas patients with mul-
tiple high entropy foci outside of this area were associate to unsuccess-
ful ablations.  
 

3. To identify a predictive biomarker or a combination of them from the in 
silico data obtained in the aforementioned objectives that enable to pre-
dict AF maintenance or termination and that relate to clinical scenarios.  
From the data obtained in the aforementioned objectives, we identified 
multiple variables as potential predictive biomarkers of AF mainte-
nance.  
First, two important patterns associated with AF maintenance at clinical 
level were identified as a result of the calibration of the algorithm in 
Chapter 3: the first one directly related to hyperkalemia and the second 
one directly related to hypokalemic scenarios. 
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Secondly, the ACB was identified in Chapter 4 as a descriptor of the 
rotational activity on the pulmonary vein area and as a potential predic-
tor of ablation efficacy, showing that patients with higher rotational ac-
tivity in this area presented also better outcomes after the ablation.  

 
4. To evaluate the performance of clinical data from the Stratify AF study 

to train clustering algorithms that allow to identify similar groups of pa-
tients with similar outcome. 

Clinical and electrophysiological data were analyzed in the Stratify ob-
servational study. The electrophysiological characterization obtained 
from the ECGi was used to build a score for AF complexity estimation 
that identified highest dominant frequency, median dominant frequency 
and mean rotor time as predictors of treatment efficacy. Later, this score 
was combined with clinical data in a clustering algorithm to evaluate 
individual prognosis in a cohort of AF patients. This algorithm presented 
higher accuracy than the conventional guideline approaches in the 
same patient set, showing that the personalized electrophysiological 
data analysis from patients can be critical to evaluate the complexity of 
the arrhythmia.  

 
5. To asses and define the biomarkers that describe the sensitivity profile 

by analyzing the overall results of the experiments performed from a 
translational point of view, that combines in silico computational data 
and clinical data to explore the electrophysiological biomarkers that 
characterize AF maintenance.   

Finally, the three studies combined together aim to present a transla-
tional platform that characterizes and evaluates AF complexity at differ-
ent levels including 2D and 3D in silico scenarios that contemplate phar-
macological and ablation therapies (Chapter 3 and Chapter 4) and 
clinical scenarios including the Stratify AF observational study (Chapter 
5). The identification of all the biomarkers at different levels aim to de-
fine and characterize the sensitivity profile in AF management. 
 
Everything above discussed has facilitated a better understanding of 

the physical and technical mechanisms involved in AF complexity evalua-
tion. The better understanding of arrhythmia complexity can help to person-
alize patient’s treatment using technologies as non-invasive systems for 
atrial driver location, as described in Chapter 5.  

The combination of personalized in silico simulations with clinical rele-
vant biomarkers can be used to benefit both patients and health systems, 
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that has been growing and gaining applicability at practical level and whose 
use is expected to increase as Digital Health enters the healthcare systems 
(Heijman et al., 2021).  

6.5. Guidelines for future works 
The methodological aspects and results presented in this thesis have 

concluded with three different methods for identifying and characterizing 
arrhythmia complexity: first, in Chapter 3 using a population of models, sec-
ond in Chapter 4 using specific atrial anatomies from patients and lastly in 
Chapter 5 using BSPM recordings and the posterior ECGi calculation to 
evaluate AF prognosis depending on the treatment. Although, this charac-
terization at three different levels have allowed an extensive evaluation of 
different methodologies, there are some further experiments that would 
help to validate all the methodology.  

Future studies should include more patients to validate and character-
ize the already presented results. For example, the study in Chapter 3 in-
cludes a calibrated population of models that contained 127 profiles. In or-
der to test intersubject variability, the population could be expanded to 
consider new profiles and to study arrhythmia inducibility in them. In addi-
tion, it would also be interesting to include simulation of more complex struc-
tures associated with proarrhythmicity such as pulmonary veins or the atrial 
appendage.  

Regarding the simulations performed in Chapter 4, a wider range of 
atrial anatomies could be segmented from AF patients to validate ACB de-
veloped during the simulation study. Currently, our group at Hospital Gen-
eral Universitario Gregorio Marañón is carrying new observational studies 
(Paper-AF Study) that will enable to enlarge the anatomical database and 
to validate the biomarker. 

Finally, the study in Chapter 5 would highly benefit from a larger patient 
cohort in which more parameters and algorithms could be tested and vali-
dated. In addition, other processing techniques could be explored such as 
evaluating AF prognosis directly from the BSPM recordings and comparing 
its performance with the algorithms developed from the ECGi technology. 
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