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Abstract

Open and shared manufacturing factories typically dispose of a limited number of industrial
robots and/or other production resources that should be properly allocated to tasks in time for
an effective and efficient system performance. In particular, we deal with the dynamic capac-
itated production planning problem with sequence independent setup costs where quantities
of products to manufacture need to be determined at consecutive periods within a given time
horizon and products can be anticipated or back-ordered related to the demand period. We
consider a decentralised multi-agent variant of this problem in an open factory setting with mul-
tiple owners of robots as well as different owners of the items to be produced, both considered
self-interested and individually rational. Existing solution approaches to the classic constrained
lot-sizing problem are centralised exact methods that require sharing of global knowledge of
all the participants’ private and sensitive information and are not applicable in the described
multi-agent context. Therefore, we propose a computationally efficient decentralised approach
based on the spillover effect that solves this NP-hard problem by distributing decisions in an
intrinsically decentralised multi-agent system environment while protecting private and sensi-
tive information. To the best of our knowledge, this is the first decentralised algorithm for the
solution of the studied problem in intrinsically decentralised environments where production
resources and/or products are owned by multiple stakeholders with possibly conflicting objec-
tives. To show its efficiency, the performance of the Spillover Algorithm is benchmarked against
state-of-the-art commercial solver CPLEX 12.8.

1. Introduction
The smart factory concept (e.g., Shrouf, Ordieres and Miragliotta (2014); Hozdić (2015)) in Industry 4.0 revolution

is opening up new ways of addressing the needs of sustainability and efficiency in the manufacturing industry of
today’s global economy. In particular, we are seeing the emergence of shared factories (e.g., Jiang and Li (2019)) in
which the owners of production resources (robots) do not necessarily produce their own products. Indeed, they may
offer their facilities and available production resources therein to various other manufacturers that manufacture their
products in the same shared facility. Even more, multiple factories could be linked in a more flexible global virtual
facility (e.g., Hao, Helo and Shamsuzzoha (2018)).

In this paper, we consider an (intrinsically decentralised) shared factory scenario that requires decentralised meth-
ods for efficient allocation of robots (production resources) of the same shared manufacturing plant to individually
rational and self-concerned firms (users) that use them to manufacture their products in a given time horizon. We con-
sider open firms that may collaborate at times on common projects based on individual interest such that the factory’s
production capacity may vary from one period to another based on available shared resources. The requisite for shared
factories is that they follow the concept of an open firm, i.e., a common standard for the production of components and
their interfaces is shared by distinct firms and each firm is open to all industry participants (e.g., Farrell, Monroe and
Saloner (1998); Arora and Bokhari (2007)). An important aspect to consider in this context is that the different firms
participating in such manufacturing ecosystems are not willing to share information or business strategy. Therefore,
solutions in which a central coordinator receives all the information regarding resource availabilities and production
demands are not applicable.
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Production planning considers the best use of resources to satisfy the demand in a given planning time horizon.
A production plan must meet conflicting objectives of guaranteeing service quality and minimizing production and
inventory costs. To this end, the Constrained Lot-Sizing Problem (CLSP) answers the question of when and how much
of each product (item) must be produced so that the overall costs are minimised (e.g., Buschkühl, Sahling, Helber and
Tempelmeier (2010); Karimi, Ghomi and Wilson (2003)).

In this paper, we focus on deterministic, dynamic, single-level, multi-item CLSP with back orders and sequence
independent setup costs, which we will refer to as MCLSP-BOSI (e.g., Pochet and Wolsey (2006)). The concept of
dynamic in MCLSP-BOSI means that the production demands vary through time; single-level indicates that the end
product or item is directly manufactured in one step from raw materials with no intermediate sub-assemblies and no
item can be a predecessor of another item; multi-item refers to the existence of multiple product types and capacitated
denotes a scarcity between the available limited manufacturing resources and the production demand. Moreover, the
presence of back orders implies that it is possible to satisfy the demand of the current period in future periods by paying
shortage costs (back-ordering). We consider a lost-sales inventory model where a unit of a back-ordered product that
cannot be produced at the period of its demand is requested nonetheless for when resources become available again
in some later period of the planning time horizon, while a backlogged unit is not produced at all and the demand is
lost resulting in lost sales (e.g., Bijvank and Vis (2011)). The sequence independent setup costs include the setup of
robots and other production resources for producing an item at some period independently of its previous production
dynamics (e.g., Pochet and Wolsey (2006)). Contrary to most of the related work, in our studied MCLSP-BOSI
model, all costs are time-dependent.

The studied MCLSP-BOSI is a variant of the CLSP where production can be anticipated or delayed in relation to
the product demands, resulting in time-dependent holding and back order costs, respectively. The inclusion of back
orders is crucial in the contexts of high demands, since, otherwise, no feasible production plan would exist. Item
back-ordering results in not producing (lost sales) if the overall demand is higher than the production capacity over a
given time horizon. The main challenge in back-ordering is to select lost sales (if any), the items to back-order, the
ones to produce at the time of demand release, and the ones beforehand (Drexl and Kimms (1997); Jans and Degraeve
(2008)). For an overview of the CLSP and its variations, we refer the reader to excellent descriptions in Bitran and
Yanasse (1982); Pochet and Wolsey (2006); Quadt and Kuhn (2008).

The MCLSP-BOSI is an NP-hard problem (Chen and Thizy (1990); Bitran and Yanasse (1982); Dixon and Silver
(1981)) and has been mostly addressed by heuristic approximations that do not guarantee an optimal solution, but find
a reasonably good solution in a moderate amount of computation time. In its classical mathematical form, MCLSP-
BOSI is intrinsically centralised, i.e., a single decision-maker has the information of all the production resources
and all the items at disposal. This formulation and related state-of-the-art solution approaches are not applicable in
intrinsically decentralised contexts, such as open and shared factories.

With the aim of finding a production plan in intrinsically decentralised open and shared factories, in this paper,
we mathematically formulate a decentralised variant of the MCLSP-BOSI problem. As a solution approach to this
problem, we propose the Spillover Algorithm, a decentralised and heuristic production planning method whose ap-
proximation scheme is based on the spillover effect. The spillover effect is defined as a situation that starts in one
place and then begins to expand or has an effect elsewhere. In ecology, this term refers to the case where the avail-
able resources in one habitat cannot support an entire insect population, producing an “overflow”, flooding adjacent
habitats and exploiting their resources (Rand, Tylianakis and Tscharntke (2006)). In economy, it is related to the in-
terconnection of economies of different countries where a slight change in one country’s economy leads to the change
in the economy of others.

We leverage the spillover effect in a multi-agent system considering both the self-concerned owners of production
resources and the self-concerned owners of the items’ demands. For a better explanation of the proposed multi-agent
system, the spillover effect is modelled in a metaphor of a liquid flow network with buffers, where the capacity of
each buffer represents available production capacity at a specific period. Liquid agents assume the role of demand
owners, with liquid volume proportional to the production demand. Buffer agents, on the other hand, act in favour
of resource owners by allocating their production capacities to liquid agents. Liquid demand that cannot be allocated
where requested, spills over through a tube towards other neighbouring buffers based on the rules that dictate how the
spillover proceeds. In the proposed Spillover algorithm, we assume that all agents are truthful (non-strategic), i.e. the
information they provide is obtained from their true internal values and is not strategically modified to obtain better
resource allocation.

To the best of our knowledge, this is the first decentralised heuristic approach that tackles the high computa-



tional complexity of the studied MCLSP-BOSI problem with time-dependent costs and is applicable in intrinsically
decentralised shared and open factories.

This paper is organized as follows. We give an overview of the related work in Section 2. In Section 3, we present
the background of the studied classic and centralised MCLSP-BOSI problem. In Section 4, we present the motivation
and mathematical formulation of the decentralised MCLSP-BOSI problem and discuss our problem decomposition
and decentralisation approach. Our multi-agent architecture together with the Spillover Algorithm is presented in
Section 5. Section 6 presents the evaluation results of simulated experiments whose setup was taken from related
work, while Section 7 concludes the paper and outlines future work.

2. Related work
Due to its complexity, the literature on the classic (centralised) MCLSP-BOSI problem is scarce and can be

classified into: (a) period-by-period heuristics, which are special-purpose methods that work in the time horizon from
its first to the last period in a single-pass construction algorithm; (b) item-by-item heuristics, which iteratively schedule
a set of non-scheduled items; and (c) improvement heuristics that are mathematical-programming-based heuristics
that start with an initial (often infeasible) solution for the complete planning horizon usually found by uncapacitated
lot sizing techniques, and then try to enforce feasibility conditions, by shifting lots from period to period at minimal
extra cost. The aim of improvement heuristics is to maximise cost savings as long as no new infeasibilities are incurred
(e.g., Maes and Wassenhove (1998); Buschkühl et al. (2010)). However, these general heuristic approaches in many
cases do not guarantee finding a feasible solution of the MCLSP-BOSI problem even if one exists ( Millar and Yang
(1994)).

Pochet and Wolsey (1988) approach this problem by a shortest-path reformulation solved by integer programming
and by a plant location reformulation for which they propose a cutting plane algorithm. Both approaches produce near
optimal solutions to large problems with a quite significant computational effort. Millar and Yang (1994) present
two Lagrangian-based algorithms to solve the MCLSP-BOSI based on Lagrangian relaxation and Lagrangian decom-
position. However, their MCLSP-BOSI model is limited as it considers setup, holding, and back order costs while
considering production costs fixed and constant throughout the planning horizon. They find a feasible primal solution
at each Lagrangian iteration and guarantee finding a feasible solution if one exists with valid lower bounds, thus,
guaranteeing the quality of the primal solutions.

Karimi, Ghomi and Wilson (2006) present a tabu search heuristic method consisting of four parts that provide an
initial feasible solution: (1) a demand shifting rule, (2) lot size determination rules, (3) checking feasibility conditions
and (4) setup carry over determination. The found feasible solution is improved by adopting the setup and setup carry
over schedule and re-optimising it by solving a minimum-cost network flow problem. The found solution is used as
a starting input to a tabu search algorithm. An overview of metaheuristic approaches to dynamic lot sizing can be
found in, e.g., Jans and Degraeve (2007). Furthermore, there exist heuristic-based algorithms based on local optima
(e.g., Cheng, Madan, Gupta and So (2001)), approaches that examine the Lagrangian relaxation and design heuristics
to generate upper bounds within a subgradient optimisation procedure (e.g., Süral, Denizel and Wassenhove (2009)),
or a genetic algorithm for the multi-level version of this problem that uses fix-and-optimise heuristic and mathematical
programming techniques (e.g., Toledo, de Oliveira and França (2013)).

Zangwill (1966) presents a CLSP model with backlogging where the demand must be satisfied within a given
maximum delay while Pochet and Wolsey (1988) study uncapacitated lot sizing problem with backlogging and present
the shortest path formulation and the cutting plane algorithm for this problem. Furthermore, Quadt and Kuhn (2008)
study a MCLSP-BO with setup times and propose a solution procedure based on a novel aggregate model, which
uses integer instead of binary variables. The model is embedded in a period-by-period heuristic and is solved to
optimality or near-optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine
loads and sequences the products on the parallel machines. Six versions of the heuristic were presented and tested in
an extensive computational study showing that the heuristics outperforms the direct problem implementation as well
as the lot-for-lot method.

Gören and Tunali (2018) integrate several problem-specific heuristics with fix-and-optimise (FOPT) heuristic.
FOPT heuristic is a MIP-based heuristic in which a sequence of MIP models is solved over all real-valued decision
variables and a subset of binary variables. Time and product decomposition schemes are used to decompose the
problem. Eight different heuristic approaches are obtained and their performances are shown to be promising in
simulations.



From the decision distribution perspective, the above mentioned solution approaches solve the MCLSP-BOSI
problem by a single decision-maker having total control over and information of the production process and its ele-
ments. Since the MCLSP-BOSI problem is highly computationally expensive, decomposition techniques may be used
for simplifying difficult constraints. They were applied by Millar and Yang (1994) who used Lagrangian relaxation of
setup constraints, while Thizy and Van Wassenhove (1985) studied the multi-item CLSP problem without back orders
and used Lagrangian relaxation of capacity constraints to decompose the problem into single item uncapacitated lot
sizing sub-problems solvable by the Wagner-Whitin algorithm (see, Wagner and Whitin (1958)) and its improvements
(e.g., Aggarwal and Park (1993); Brahimi, Absi, Dauzère-Pérès and Nordli (2017). Moreover, Lozano, Larraneta and
Onieva (1991), Diaby, Bahl, Karwan and Zionts (1992), and Hindi (1995) are some other works using Lagrangian
relaxation. A broad survey of single-item lot-sizing problems can be found in Brahimi et al. (2017). All these La-
grangian relaxation and decomposition methods focus on solving the CLSP problem centrally by one decision maker
on a single processor. State-of-the-art centralised heuristic solution approaches and related surveys can be found
in, e.g., Karimi et al. (2003), Karimi et al. (2006), Quadt and Kuhn (2009), Gören and Tunali (2018), and Jans and
Degraeve (2008).

While the MCLSP-BOSI state-of-the-art solution approaches improve solution quality in respect to previous work,
they are all centralised approaches that can only be applied for a single decision maker. Giordani, Lujak and Martinelli
(2009) and Giordani, Lujak and Martinelli (2013) deal with distributed multi-agent coordination in the constrained
lot-sizing context. Both works assume the existence of a single robot (production resource) owner agent responsible
for achieving globally efficient robot allocation by interacting with product (item) agents through an auction. The
problem decomposition is done to gain computational efficiency since item agents can compute their bids in parallel.
The allocation of limited production resources is done through the interaction between competing item agents and a
robot owner (a single autonomous agent) having available all the global information. However, these approaches are
not adapted to intrinsically decentralised scenarios as is the case of competing shared and open factories since the
resource allocation decisions are still made by a single decision maker (robot owner) based on the bids of the item
agents that are computed synchronously.

In shared and open factories, both the interests of rational self-concerned owners of the production resources as
well as the interests of self-interested rational owners of the items’ demands must be considered with minimal exposure
of their sensitive private information. Distributed constraint programming approaches are computationally expensive
(e.g., Faltings (2006)) and are, therefore, not applicable in such large systems producing multitudes of items.

Cloud manufacturing is an interesting paradigm that integrates distributed resources and capabilities, encapsulating
them into services that are managed in a centralized way Xu (2012). Important issues with cloud manufacturing are
how to schedule multiple manufacturing tasks to achieve optimal system performance or how to manage the resources
precisely and timely. Workload-based multi-task scheduling methods Liu, Xu, Zhang, Wang and Zhong (2017) or
approaches of resource socialization Qian, Zhang, Sun, Rong and Zhang (2020) have been proposed to address the
limitations inherent of the centralized structure of cloud platforms. Unlike cloud manufacturing approaches, we
advocate for a decentralized approach to the manufacturing planning problem that achieves a good quality solution
while protecting sensitive private information of the stakeholders.

In this paper we present a first solution approach for the decentralised variant of the MCLSP-BOSI problem; a
sketchy outline of this approach can be seen in Lujak, Fernández and Onaindia (2020).

3. Overview of the studied MCLSP-BOSI problem
The objective of the MCLSP-BOSI is to find a production schedule for a set I of different types of items that

minimizes the total back order, holding inventory, production, and setup costs over a given finite time horizon T
subject to demand and capacity constraints. This problem belongs to the class of deterministic dynamic lot-sizing
problems well known in the inventory management literature (e.g., Pochet and Wolsey (2006); Buschkühl et al. (2010);
Jans and Degraeve (2008); Karimi et al. (2003); Millar and Yang (1994); Quadt and Kuhn (2008)). In the following,
we give the formulation of the baseline problem.

Before the beginning of the time horizon T , the customer demand arrives for each item i ∈ I and each period t ∈ T
of the time horizon and is received as incoming order. Items i ∈ I , with given resource requirements ri, are produced
at the beginning of each period by robots (manufacturing resources) of a given limited and time-varying production
capacity Rt known in advance for the whole given time horizon T = {1,… |T |}. Open and shared factories may
collaborate at times based on individual interest such that the factory’s production capacity may vary through time



Table 1
List of symbols used in the MCLSP-BOSI problem modelling

Sets and indices

T planning time horizon, set of consecutive periods t ∈ T of equal length
I set of items i ∈ I

Parameters

dit demand for item i at period t
ri resource requirement for production of a unit of item i
cit unitary production cost for item i at period t
ℎit unitary holding cost for item i at period t
bit unitary back order cost for item i at period t
sit fixed setup cost for item i at period t
Rt production capacity at period t

Decision variables

uit number of items i produced at period t
x+it , x

−
it storage and back order inventory level of item i at the end of period t

yit equals 1 if item i is produced at period t, 0 otherwise.

Objective function

z(u) generalized cost objective function of solution uit, i ∈ I , t ∈ T

based on available shared resources. We assume that a time-varying and sequence independent setup cost sit that
includes the setup of the production resources for the production of item i occurs if item i is produced at period t
and a linear production cost cit is added for each unit produced of item i at the same period. Setup costs usually
include the preparation of the robots, e.g., changing or cleaning a tool, expediting, quality acceptance, labour costs,
and opportunity costs since setting up the robot consumes time. Moreover, demand di for each item i ∈ I can be
anticipated or delayed in respect to the period in which it is requested. If anticipated, it is at the expense of a linear
holding cost ℎit for each unit of item i held in inventory per unit period and if delayed, a linear back order cost bit is
accrue for every unit back ordered per unit period. The inventory level and back orders are measured at the end of
each period.

Each item demand di = {di1,… , di,|T |} is associated with inventory level xit at the end of period t ∈ T that can
be positive (if a stock of completed items i is present in the buffer at the end of period t), zero (no stock and no back
order), or negative (if a back order of demands for item i is in the queue at the end of period t). The inventory level is
increased by production quantity uit and reduced by demand dit at each period t.

Using a standard notation, we denote x+it ∶= max{xit, 0} as the stock level, and x−it ∶= max{−xit, 0} as the back
order level at the end of period t. Stock x+it available at the end of period t for product i corresponds to the amount of
product i that is physically stored on stock and is available for the demand fulfilment. Notice that, for each period t
and item i, x+it ⋅ x

−
it = 0, i.e., positive back order value and storage value cannot coexist at the same time since if there

is a back order of demand, it will be first replenished by the items we have in the storage and then, we will produce
the rest of the demand.

The problem is to decide when and how much to produce in each period of time horizon T so that all demand
is satisfied at minimum cost. The mathematical program (P ) of the studied MCLSP-BOSI problem is given in the
following; related sets, indices, parameters, and decision variables are summarised in Table 1.

(P ):

z(u) = min
∑

i∈I,t∈T

(

ℎitx
+
it + bitx

−
it + cituit + sityit

)

+
∑

i∈I

(

bi,|T |+1x
−
i,|T |+1 + ℎi,|T |+1x

+
i,|T |+1

)

(1)



subject to:

x+it − x
−
it = x

+
i,t−1 − x

−
i,t−1 + uit − dit, ∀i ∈ I, ∀t ∈ T (2)

x−i,|T |+1 − x
+
i,|T |+1 = x

−
i,|T | − x

+
i,|T |, ∀i ∈ I (3)

∑

i∈I
uitri ≤ Rt, ∀t ∈ T (4)

uit ≤ yit
∑

k∈T
dik, ∀i ∈ I, ∀ t ∈ T (5)

uit ∈ ℤ≥0, ∀i ∈ I, ∀t ∈ T (6)

yit ∈ {0, 1}, ∀i ∈ I, ∀t ∈ T (7)

x+it , x
−
it ∈ ℤ≥0, ∀i ∈ I, ∀t ∈ {1,… , |T | + 1} (8)

The values of x+i0 and x−i0 represent the initial conditions, i.e., the stock and back order level of item i at the
beginning of the planning time horizon.

For this model to accommodate not only back orders but also lost sales (backlog) and surplus (unsold) stock
after the end of the planning time horizon T , in addition to the sum of the sustained costs in a given time horizon,
in (1), there is also an additional backlog (lost sales) cost i.e.,

∑

i∈I bi,|T |+1x
−
i,|T |+1 and surplus (unsold) stock cost

i.e.,
∑

i∈I ℎi,|T |+1x
+
i,|T |+1. Generally, the decisions on surplus stock x+i,|T |+1 and backlog x−i,|T |+1 (demand that is not

produced in the time horizon) will depend on the value of surplus stock cost ℎi,|T |+1 and backlog cost bi,|T |+1 and their
relation to production cit, holding ℎit, and back order bit costs, as well as the relation between overall demand and the
overall production capacity throughout time horizon T .

Constraints (2) are flow-balance constraints among product demand dit, stock level x+it , back order level x−it , and
production level uit, for each period t ∈ T . Constraints (3) are the flow-balance constraints for the end of the time
horizon |T | + 1, which is the reason why the domain of index t of x−it and x+it in (8) runs in interval {1,… , |T | + 1}.
Without loss of generality and assuming that for each period t and item i, the values of ℎit and bit are non-negative
(zero or positive), the constraint x+it ⋅ x

−
it = 0 is implicitly satisfied by the optimal solution, and, hence, omitted in the

formulation.
Constraints (4) limit the overall resource usage for the production of all the items not to be greater than the

production capacity at period t. Note that production capacity Rt of each period t ∈ T may vary from one period to
another. Contrary to the classic MCLSP-BOSI model, our studied model does not have a strong assumption that the
overall demand in the time horizon is lower than the overall production capacity. Here, the following constraints on
resource requirements for production of a unit of each item i ∈ I hold:

ri ≤ maxt∈T
{Rt}, ∀i ∈ I, (9)

Rt ≥ mini∈I
{ri}, ∀t ∈ T . (10)



Items i that violate assumption (9) and periods t that violate assumption (10) can be removed. By constraints (5),
we model independent setups and the fact that if the production is launched for item i in period t, the quantity
produced should not be larger than the overall demand for item i in a given time horizon. Constraints (6) and (8) are
nonnegativity and integrality constraints on production, back order and storage decision variables, while constraints
(7) limit the setup decision variables to binary values, i.e., the fixed setup cost is accrue if there is (any) production at
a period.

The solution to problem P is a production plan composed of a number of items uit to produce for each item type
i ∈ I in response to demand dit in each period t ∈ T of a given time horizon.

Complexity of the MCLSP-BOSI problem. The single-item capacitated lot-sizing problem is NP-hard even for
many special cases (e.g., Florian, Lenstra and Rinnooy Kan (1980); Bitran and Yanasse (1982). Chen and Thizy
(1990)) proved that multi-item capacitated lot-sizing problem (MCLSP) with setup times is strongly NP-hard. Ad-
ditionally, Bitran and Yanasse (1982) present the multiple items capacitated lot size model with independent setups
without back orders and resource capacities that change through time. Contrary to our model that assumes non-
negative integer values for uit, x+it , and x−it , the model in Bitran and Yanasse (1982) contains no integrality constraints
for these variables. The introduction of an integrality constraint leads to a generally NP-complete integer programming
problem.

4. Formulation of the decentralised MCLSP-BOSI problem
Problem P (1)–(8) is a classic and centralised mathematical formulation of the MCLSP-BOSI problem. The

decentralised variant of the MCLSP-BOSI problem should consider that both the providers of capacitated and ho-
mogeneous robots and their customers (the owners of the produced items) are interested in the transformation of
heterogeneous raw materials into heterogeneous final products and thereby both of them should be considered active
participants in the production process; no one is willing to disclose its complete information but will share a part of
it if this facilitates achieving its local objective. Therefore, they must negotiate resource allocation while exchanging
relevant (possibly obsolete) information.

In the following, we propose the formulation of the decentralised MCLSP-BOSI problem.
First, we create a so-called Lagrangian relaxation (e.g., Lemaréchal (2001); Fisher (1981)) of problem (P ), which

we name L(P ,Λ), for which we assume to be tractable. This new modelling allows us to decompose the original
problem P into item-period pair (i, t) subproblems, where i ∈ I and t ∈ T (section 4.1). The decomposition based on
item-period (i, t) pairs allows for the agentification of the demand of product type i at period t and decentralisation of
problem (P ).

The Lagrangian relaxation is achieved by turning the complicating global capacity constraints (4) into constraints
that can be violated at price Λ = {�t|t ∈ T }, while keeping the remaining (easy) constraints for each product i ∈ I
and period t ∈ T . We dualize the complicating constraints (4), i.e., we drop them while adding their slacks to the
objective function with weights Λ (vector of dual variables for constraints (4)-Lagrangian multipliers) and thus create
the Lagrangian relaxation L(P ,Λ) of P .

Here, we let Λ be the (current) set of nonnegative Lagrange multipliers (resource conflict prices).
The solution of the Lagrangian problem provides a lower bound, while the upper bound is obtained by first fixing

the setup variables given by the dual solution and secondly, obtaining the solution from the resulting transportation
problem.

Then the Lagrangian relaxation of the MCLSP-BOSI problem can be mathematically modelled as follows:
(L(P ,Λ)):

z∗(u) = min
∑

i∈I,t∈T

(

ℎitx
+
it+bitx

−
it+cituit+sityit

)

+
∑

i∈I

(

bi,|T |+1x
−
i,|T |+1+ℎi,|T |+1x

+
i,|T |+1

)

+
∑

i∈I,t∈T
�t
(

uitri−Rt
)

(11)

subject to:

x+it − x
−
it = x

+
i,t−1 − x

−
i,t−1 + uit − dit, ∀i ∈ I, ∀t ∈ T (12)



x+i,|T+1| − x
−
i,|T+1| = x

+
i,|T | − x

−
i,|T |, ∀i ∈ I (13)

uit ≤ yit
∑

k∈T
dik, ∀i ∈ I, ∀ t ∈ T (14)

uit ∈ ℤ≥0, ∀i ∈ I, ∀t ∈ T (15)

yit ∈ {0, 1}, ∀i ∈ I, ∀t ∈ T (16)

x+it , x
−
it ∈ ℤ≥0, ∀i ∈ I, ∀t ∈ {1,… , |T | + 1} (17)

where the variable, parameter, and constraint descriptions remain the same as in (P ) except for constraints (4) that are
relaxed in (11).

4.1. Item-period agent modelling
We decompose the overall production planning problem to subproblems solvable by item-period (i, t) pair agents.

Given a vector Λ, we substitute indices a = (i, t). The mathematical program of the problem L(PA,Λ) reformulated
for (i, t) pair agent a ∈ A is given in the following; related sets, indices, parameters, and decision variables are
summarised in Table 2.

(L(PA,Λ)):

z∗(u) = min
∑

a∈A

∑

k∈T

(

ℎakx
+
ak + bakx

−
ak + cau

k
a + sakyak

)

+
∑

a∈A

(

ba,|T |+1x
−
a,|T |+1 + ℎa,|T |+1x

+
a,|T |+1

)

+
∑

k∈T
�k
(
∑

a∈A
ukara − Rk

)

(18)

subject to:

x+ak − x
−
ak = x

+
a,k−1 − x

−
a,k−1 + u

k
a − dak, ∀a ∈ A,∀k ∈ T (19)

x+a,|T+1| − x
−
a,|T+1| = x

+
a,|T | − x

−
a,|T |, ∀a ∈ A (20)

uka ≤ dayak, ∀a ∈ A,∀k ∈ T (21)

uka ∈ ℤ≥0, ∀a ∈ A,∀k ∈ T (22)

yak ∈ {0, 1}, ∀a ∈ A,∀k ∈ T (23)



Table 2
List of symbols used in the item-period pair agent modelling

Sets and indices

T planning time horizon, set of consecutive periods k, t ∈ T of equal length
A set of pairs a = (i, t), where i ∈ I and t ∈ T whose elements a ∈ A have

positive demand value, i.e., dit > 0

Parameters

da demand for pair a = (i, t), i.e., da = dit
dak demand for pair a = (i, t) at period k, where dak = dit when k = t, and dak = 0 otherwise
ra resource requirement for production of a unit of pair a (item i at period t)
ca unitary production cost for pair a
ℎak unitary holding cost for pair a at period k
bak unitary back order cost for pair a at period k
sak fixed setup cost for pair a at period k
Rk production capacity at period k

Decision variables

uka number of items i demanded at time t (a = (i, t)) that are produced at time k.
Note that we use k as superindex to avoid confusion between
uka and uit from (P ), which are not the same; uka = uitk

x+ak, x
−
ak holding and back order buffer content of pair a at the beginning of period k

yak equals 1 if pair a is produced at period k, 0 otherwise.
ua vector {uka|∀a ∈ A, k ∈ T }

Objective function

za(ua) generalized cost objective function of solution ua, a ∈ A

x+ak, x
−
ak ∈ ℤ≥0, ∀a ∈ A, k ∈ T ∪ {|T | + 1}, (24)

where u = {uka|a ∈ A and k ∈ T }, for all a ∈ A. Similarly to problem (P), the values of x+a0 and x−a0 represent the
initial conditions, i.e., the stock and back order level of pair a = (i, t) at the beginning of the planning time horizon.
Constraints (19) are flow-balance constraints among stock level x+ak, back order level x−ak, production level uka , and
product demand dak for each period in time horizon k ∈ T . Note that dak = da when k = t, i.e., at the period at which
demand a is released, and dak = 0 for all other periods k ∈ T ∖{t}.

Constraints (20) model the backlog and surplus stock after the end of a given time horizon, at period |T | + 1.
By constraints (21), we model the fact that if the production is launched in period k, the quantity produced should
not be larger than the demand da for pair a = (i, t). Constraints (22) are nonnegativity and integrality constraints on
production uka decision variables; constraints (23) limit setup variables yak to binary values and constraints (24) model
the domain of storage x+ak and back order x−ak variables to {1,… , |T | + 1}.

Since the formulation L(PA,Λ) is separable for a given set of multipliers, it is possible to extract a local optimisa-
tion subproblem Pa addressed by each (i, t) pair agent a ∈ A that includes its production quantities uka , setup decisions
yak, holding x+ak and back order x−ak levels for each period k ∈ T , as well as backlog x−a,|T |+1 and surplus stock x+a,|T |+1
after the end of planning time horizon T .

In the following, we present the problem Pa to be solved by each (i, t) pair agent a ∈ A.

(Pa):

za(ua) = min
∑

k∈T

(

ℎakx
+
ak + bakx

−
ak + sakyak + cau

k
a

)

+ ba,|T |+1x−a,|T |+1 + ℎa,|T |+1x
+
a,|T |+1 +

∑

k∈T
�krau

k
a (25)



subject to:

x+ak − x
−
ak = x

+
a,k−1 − x

−
a,k−1 + u

k
a − dak, ∀k ∈ T (26)

x+a,|T+1| − x
−
a,|T+1| = x

+
a,|T | − x

−
a,|T | (27)

ukara ≤ Rk, ∀k ∈ T (28)

uka ≤ dayak, ∀k ∈ T (29)

uka ∈ ℤ≥0, ∀k ∈ T (30)

yak ∈ {0, 1}, ∀k ∈ T , (31)

x+ak, x
−
ak ∈ ℤ≥0, ∀a ∈ A, k ∈ T ∪ {|T | + 1}, (32)

where ua = {uka|k ∈ T } and �k is Lagrangian multiplier (conflict price) for resources available at period k. Here,
except for the constraints already explained previously, additional constraints (28) limit the overall resource usage for
the production of agent a to be not greater than the amount of resources available at each period k. In this way, each
(i, t) pair agent resolves its local optimisation problem having available only its local variables and without the need
to communicate with other agents to know their demands or production decisions.

The decentralised MCLSP-BOSI problem allows for multiple robot owner agents and multiple competing item-
period pair agents requesting the production of the same item type at different periods, and asynchrony in decision
making. For each (i, t) pair agent a ∈ A, the solution of problem Pa is a local production plan ua = {uka|k = 1,… , |T |}
(in response to production demand da and the (current) set of nonnegative Lagrange multipliers i.e., resource conflict
prices �k) with related setup yak, storage x+ak, and back order x−ak decisions in each period k ∈ T ∪ {|T | + 1}. Plan
ua = {uka|k = 1,… , |T |} might not be globally feasible (i.e., not complying with constraints (4)) and thus should
be negotiated with other agents a ∈ A. Therefore, item-period pair agents must negotiate resource allocation while
exchanging relevant (possibly obsolete) information. Resource allocation here should be achieved by the means of a
decentralised protocol where fairness plays a major role.

5. Liquid flow network model and the Spillover Algorithm
In this section, we propose a decentralised multi-agent based coordination model and the Spillover Algorithm for

the MCLSP-BOSI problem. In Table 3, we present symbols used in the Spillover Algorithm in addition to the ones
already presented in Table 2. We describe these symbols in the following.

We model each pair (i, t), where i ∈ I and t ∈ T as a rational self-concerned agent a ∈ A responsible for finding
a production plan ua = {uak|k = 1,… , |T |} for the demand da = dit, where A is a set of pairs (i, t) of cardinality
|A| = |I| ⋅ |T |. Since the heuristics that will be proposed in the following imitates the behaviour of liquid flows in
tube networks (pipelines) with buffers, we call each agent a ∈ A a liquid agent.

We model each period k ∈ T as a limited resource allocation agent that we call a buffer agent, responsible for the
allocation of its production capacity Rk that is proportional to the volume of the buffer (inventory level), Figure 1. We



Table 3
Additional symbols in the Spillover Algorithm

A set of liquid agents a ∈ A, where a = (i, t), i ∈ I and t ∈ T
�+ak �

−
ak valves controlling flow of liquid agent a to posterior and anterior periods

�ak number of resources requested by liquid agent a from buffer agent k ∈ T
uk vector {uka|∀a ∈ A} of production accommodated by buffer k
Za(ua) approximated cost found by Spillover Algorithm solution ua, a ∈ A

Figure 1: Liquid flow network model with |T | buffers, one per each period; each buffer with |A| impermeable chambers
of interdependent volumes, one chamber per each liquid agent a = (i, t)

assume that available shared resources in period k ∈ T are owned by a single resource owner.
Initially, each liquid agent a releases liquid volume proportional to its demand da into the horizontal tube above

buffer t, Figure 1. This volume, while in the horizontal tube, is awaiting allocation (transfer) to one or more buffers.
A liquid agent a negotiates producing in time, postponing or advancing the production of its demand with the buffers
representing present, later or earlier periods with respect to buffer t by means of two types of horizontal tube valves:
valves �+ak, that control the flow of liquid (demand) of agent a in the horizontal tube to the posterior periods k ∈ [t +
1,… , |T |] and valves �−ak, k ∈ [t−1,… , 1], that control the flow of liquid (i, t) to the previous periods k ∈ [t−1,… , 1]
with respect to period t, as seen in Figure 2.

The volume of each buffer k ∈ T is composed of |I| ⋅ |T | (initially empty) impermeable chambers, one chamber
per each liquid agent a = (i, t). Each chamber is attached from above to a horizontal tube exclusively dedicated to
liquid (i, t) through a valve controlled by the buffer agent, Figure 2. Buffer k is modelled as a rational collaborative
agent that controls the valves regulating the flow between the horizontal tube of each liquid agent a ∈ A that requests
allocation at period k and buffer k. So even if liquid a is present above buffer k, it does not flow into the buffer if
the valve of chamber ka of buffer k does not open. The valve will open to let the inflow to chamber ka of the liquid
volume corresponding to production uka . Initially, all buffers’ valves and all liquids’ horizontal tube valves are closed.
The volume of liquid a = (i, t) equal to demand da enters into the tube network above buffer k = t (t being the period
at which the demand is released). Valves �+ak and �−ak for every k ∈ T are all closed and do not allow the liquid flow in
the horizontal tube, all liquid volume being concentrated between the valves �+a,t+1 and �−a,t−1, Figure 2. The order of
openings of these valves will control the direction of the flow of the unallocated liquid demand in the horizontal tube.
This order is influenced by the relation between accumulated back order and holding costs for the liquid and follows
linear increase in their values as will be further explained. Liquid agent a = (i, t) can direct the flow of its demand



Figure 2: Side view of a generic tube a with related buffers’ chambers in Figure 1

from its dedicated tube (i, t) into the chamber ka of buffer k ∈ T if and only if all the control valves of liquid agent
a from period t towards period k are open and the valve of chamber ka of buffer k is open, Figure 2. The volume
of flow from tube (i, t) into buffer k is equal to the production uka . This value is inversely proportional to the liquid
volumes of other chambers in the same buffer since their overall sum is limited from above by the buffer capacity,
i.e.,

∑

a∈A u
k
a ≤ Rk. When two or more liquid agents demand more resources than the production capacity Rk, they

compete for them. Since no central resource allocation entity exists, each liquid agent needs to negotiate its production
with buffer agents through a negotiation mechanism.

Next, we present the auction-based mechanism for the allocation of the demand requested by liquid agents to be
produced by buffer agents that we name the Spillover Algorithm. In each iteration, liquid and buffer agents negotiate
for the allocation of the liquid demands in the buffers through multiple auctions (one auction per each buffer) in which
each buffer agent announces its available resources and liquid agents bid for available buffers with locally lowest cost.
Then, each buffer agent allocates liquid agents’ demand that locally maximizes its social welfare.

5.1. Spillover Algorithm: Liquid Agent
We propose next a decentralised anytime algorithm for liquid agents. Note that an anytime algorithm should be

stoppable at any time, providing a feasible solution to the problem (as an approximation to the optimal solution).
Also, the provided solution should monotonically improve with the runtime, contrary to Lagrangian relaxation that
may oscillate between two points. This is why we explore a heuristic approach that follows given rules in iteratively
allocating liquid agent demands to buffers based on the spillover effect. The basic idea here is that the liquid demand
that cannot be allocated in a buffer where it appears due to its limited capacity, spills over through its dedicated tube
towards other neighbouring buffers. The direction and quantity of spillage will depend on the accumulated values of
the production, setup, holding and back order cost throughout the planning time horizon and the backlog cost after the
end of the time horizon and their relative values in respect to other concerned liquids.

We introduce the definitions that are the building blocks of the algorithm.

Definition 5.1. Accumulated unit production cost UPCak of liquid agent a = (i, t) ∈ A for each k ∈ T ∪ {|T | + 1}:

UPCak =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cik + sik +
∑t−1
m=k ℎim, ∀k ∈ T |k < t

cik + sik, for k = t
cik + sik +

∑k
m=t+1 bim, ∀k ∈ T |k > t

M ⋅
∑k
m=t+1 bim, for k = |T | + 1

(33)

That is, UPCak for period k is composed of a setup (sik) and production cost (cik) and the accumulated holding and



back order costs (if any) depending on the relation of period k with the demand period t and with the time horizon T .
Even though ca (agent production cost) and sak (agent’s set-up cost) enter the objective function (18) very differently
(one is multiplied with uka , the other with yak), to achieve a straight-forward computation of UPC and avoid iterative
convergence issues, we model it as the overall cost of a unitary item production in period k for agent a.

Assuming non-negative cost parameters, surplus (unsold) stock x+i,|T |+1 at period |T | + 1 in problem P (1)–(8)
will be zero. Since we want to avoid backlog at period |T | + 1, accumulated unit production costs for period |T | + 1
in the proposed Spillover Algorithm are found by summing back order costs through a given time horizon multiplied
by a very high number M . M is a design parameter, whose value is given by the owner of a liquid agent a ∈ A. If its
value is relatively low, an optimal solution may contain some unmet demand in a given time horizon.

Definition 5.2. Estimated accumulated cost EACa of liquid agent a = (i, t) is accumulated unitary cost made of
unitary production, setup, holding, and back order costs estimated over available periods k ∈ Γa ∪ {|T | + 1}, where
Γa ⊂ T is the set of available buffers that have capacity to produce at least one unit of its product:

EACa =
∑

k∈Γa∪{|T |+1}
UPCak (34)

The decision-making procedure for each liquid agent a ∈ A is presented in Algorithm 1. The algorithm initiates

Algorithm 1: Spillover Algorithm: liquid agents a = (i, t) ∈ A
1 compute UPCak for all k ∈ T ∪ {T + 1}
2 transmit da, ri to all k ∈ T
3 receive Rk from all k ∈ T
4 while da ≥ 1 and

{

⌊(maxk∈T Rk)∕ri⌋
}

≥ 1 do
5 create set Γa ⊂ T of available buffers such that k ∈ Γa iff ⌊(maxk∈T Rk)∕ri⌋ ≥ 1
6 sort Γa based on non-decreasing UPCak value
7 compute estimated accumulated cost EACa
8 foreach k ∈ Γa do

9 �ak =

{

min(⌊Rk∕ri⌋ ⋅ ri, da ⋅ ri) if k = t,
min

(

⌊Rk∕ri⌋ ⋅ ri, da ⋅ ri −
∑Γa,k−1
m=Γa1

�am
)

, otℎerwise;
10 transmit bid Bak = (�ak, EACa) to k
11 end
12 receive uka for all k ∈ Γa
13 da = da −

∑

k∈Γa u
k
a

14 transmit da to all k ∈ T
15 receive Rk from all k ∈ T
16 end
17 x−a,|T |+1 = da;
18 compute Za(ua);
19 return Za(ua) and x−a,|T |+1

with transmitting unaccommodated demand da and resource requirement per product (ri) to buffer agents k ∈ T , and
receiving buffers’ capacities Rk. If none of the buffers has available capacity (line 4), the procedure terminates after
computing and returning its unmet demand x−a,|T |+1 and heuristic approximate cost Za(ua), where ua = {uka|k ∈ T },
given by:

Za(ua) =
∑

k∈T
UPCak ⋅ u

k
a + UPCa,|T |+1 ⋅ x

−
a,|T |+1 (35)

By summing heuristic costs Za(ua) in (35) over all liquid agents a ∈ A, we can easily obtain the overall system
approximate heuristic cost made of the heuristic costs of the allocation of the demands of all items over all periods.



Otherwise, liquid agent with positive demand (da ≥ 1) creates a set of available buffers Γa (line 5). Then, it computes
UPCak for each buffer k ∈ Γa and orders the buffers with available capacity in Γa ⊂ T based on the non-decreasing
UPCak value (line 6). EACa is computed on line 7 and is used as a part of bid Bak sent to each of the buffer agents
k ∈ Γa considering resource demand �ak and available capacity ⌊Rk∕ri⌋ until the extinction of the unaccommodated
demand da or the available capacity (line 9), while Γa1 and Γa,k−1 are the 1st and (k−1)st element of Γa. Liquid agent
sends this information as a part of bid Bak = (�ak, EACa) to each buffer k ∈ Γa (line 10). The direction and quantity
of spillage will depend on EACa.

By communicating its bid in terms of resource demand �ak for each one of the elements k ∈ Γa and the value
of EACa, a liquid agent does not have to disclose its sensitive private information regarding the values of unitary
production, holding, setup and back order cost in each time period of the planning time horizon as well as the unitary
cost of backlog after the end of the planning time horizon nor reasons for its decision-making. We choose this greedy
strategy of producing as much as possible starting with the first buffer agent in set Γa since we aim to minimize agent’s
estimated accumulated cost EACa for the rest of available periods in the horizon. Then, on receiving production
response uka (line 12) from buffers k ∈ Γa, liquid agent a updates its unaccommodated demand (line 13) and transmits
it to all buffers k ∈ Γa (line 14). After receiving available production capacities Rk from all k ∈ T (line 15), if there
still remains an unaccommodated demand da and available capacities ⌊Rk∕ri⌋, new iteration starts; otherwise, the
algorithm terminates.

5.2. Spillover Algorithm: Buffer Agent
Each buffer agent k ∈ T knows its capacity and acts as an auctioneer for accommodation of liquid agent bidders’

demand for period k. It orders all liquid agents bids in a non-increasing order and greedily accommodates for produc-
tion uk = {uka|a ∈ A} allocating as much production resources as possible to the liquid agent bidder with the highest
EACa value up to the depletion of its available production capacity Rk.

Algorithm 2: Spillover Algorithm: buffer agents k ∈ T
1 transmit Rk to all a ∈ A;
2 receive da, ri for all a ∈ A
3 Au = {a ∈ A|da > 0}
4 while |Au| ≥ 1 and

{

⌊Rk∕mina∈Au ri⌋
}

≥ 1 do
5 receive Bak = (�ak, EACa) for all a ∈ Au
6 create ordered set BAk = {(a, �ak)|a ∈ Au} based on non-increasing EACa value
7 // allocate liquid agents in BAk for production
8 foreach a ∈ BAk do
9 uka = min(�ak∕ri, ⌊Rk∕ri⌋)

10 Rk = Rk − uka ⋅ ri
11 end
12 transmit uka and Rk to all a ∈ Au
13 receive da from all a ∈ Au
14 Au = {a ∈ A|da > 0}
15 end
16 return uka , ∀a ∈ A

The decision-making of each buffer agent runs in iterations (Algorithm 2). Initially, it transmits its available
capacity Rk (line 1) and receives demands da and resource requirements per product ri of all liquid agents a = (i, t) ∈
A (line 2). Then, it obtains the set Au of liquid agents with unmet demand (line 3). If there is unmet demand and
sufficient production capacity (line 4), after receiving bids from bidding liquid agents (line 5), it creates an ordered
tuple of bidding agents BAk based on non-increasing EACa value (line 6). This policy minimizes the maximum cost
of the liquid agents bidding for a buffer and can be seen as a fairness measure to increase egalitarian social welfare
among liquid agents. Then, it allocates the highest possible production level to liquid agents in BAk considering
resource demand �ak and remaining capacity (line 9) and transmits the production values and remaining capacity to
concerned agents a ∈ Au (line 12). On receiving unaccommodated demand da from a ∈ Au (line 13), the buffer



updates Au and checks whether the termination conditions on unaccommodated demand or its remaining capacity are
fulfilled (line 4). If so, it terminates; otherwise, it repeats.

5.3. Spillover Algorithm analysis
This section analyses the algorithm’s termination, optimality, complexity and the protection of sensitive private

information.

Termination. The Spillover Algorithm terminates in at most |I| ⋅ |T |2 iterations since it iterates through |I| ⋅ |T |
liquid agents and each of them does at most |T | iterations. It stops for a liquid agent a ∈ A in the worst case when
all the periods of the time horizon T have been bid for. This is guaranteed to occur in |T | steps, if the time horizon
is bounded. If agent set is bounded, in the worst case when applied serially, this will happen in |A| ⋅ |T | steps for
all agents. If the overall demand through the given time horizon may be eventually allocated for production, i.e., if
∑

a∈A da ≤
∑

k∈T ⌊Rk∕ri⌋, no unmet demand (big M) cost will be accrued.

Optimality. Whether the complete allocation obtained upon termination of the auction process is optimal depends
strongly on the method for choosing the bidding value. The heuristic of ordering local EACa values does not have
a guarantee of a global optimum solution but guarantees local optimum. Thus, in case of an unpredicted setback or
change in capacities or demands, instead of updating the plan for the whole system, as is the case in the centralised
control, it is sufficient to modify only the plans of the directly involved agents.

Complexity of Algorithm 1 (Liquid agent). A liquid agent does at most |T | iterations in the worst case (line 4)
with the aim to accommodate its demand in any of the buffer agents. A bid from liquid agent a is either (i) completely
satisfied, (ii) partially satisfied or (iii) completely unsatisfied. In case (i), it may be possible that a liquid agent with still
remaining unallocated demand bids again for the same buffer (if its demand allocation request was refused in other
buffers). The buffer may i) allocate all the liquid agent’s demand up to the buffer’s capacity or up to the extinction of
the liquid agent’s demand or ii) reject the allocation since it is already full. Thus, although liquid agent a may bid at
most two times for each buffer, in each iteration, at least one buffer is filled up and thus discarded for the next round
of bids of the same liquid agent. The calculation of EACa (line 7) requires |T | iterations in the worst case as well as
sending bids to buffer agents (foreach loop in line 8). Thus, in each loop in line 4, liquid agents send 2 ⋅ |T | messages
to and receive 2 ⋅ |T | messages from buffer agents (lines 12 and 15); exchanged messages O(|T 2|).

Complexity of Algorithm 2 (Buffer agent). The main loop (line 4) of a buffer agent is repeated 2 ⋅ |A| times in the
worst case, since in every iteration a new bid (different from a previous one) from a liquid agent could be received.

In each iteration, a buffer agent sends (lines 12) and receives 2 ⋅ |A| messages (lines 5 and 13) in the worst case,
respectively. Thus, the complexity in number of messages exchanged is O(|A|). Note that sorting the received bids
BAk (line 6) can be done inO(|A| ⋅ log|A|). However, this is done locally, not being as complex as exchangingO(|A|)
messages. In total, the complexity of the decision-making algorithm of each buffer agent is O(|A|2).

Protection of sensitive private information. In the Spillover Algorithm, the most sensitive private information
includes the values of unitary production cit, holding ℎit, setup sit and back order cost bit in each time period t of
the planning time horizon T as well as the unitary cost of backlog bi,|T |+1 after the end of the planning time horizon.
None of this information is shared among liquid agents representing users of production resources. To be able to learn
deterministically the cost values of a liquid agent by a buffer agent from the Estimated Accumulated Cost EACa,
at least (4|T | + 1) linearly independent EACa values must be available (a solution to n unknowns can be found
deterministically by solving n linearly independent equations). Here, 4|T | refers to the number of cost parameters
(cit, ℎit, bit, sit) over |T | time periods and we need 1 additional equation for finding the value of M . Note that there
are at most |T | possible bids in each iteration and at most 2 bids per buffer made by a liquid agent. Since deterministic
inference of the cost parameter values and a very large number M in the Spillover Algorithm is possible only if
4|T |+1 linearly independent EACa values are available, it is impossible to obtain the sensitive private cost parameter
values of liquid agents by buffer agents in the Spillover Algorithm.



6. Simulation experiments
In this section, we compare the performance of the proposed Spillover Algorithm and the centralised and optimal

CPLEX solution considering randomly generated and diversified problem set for large-scale capacitated lot-sizing.
To the best of our knowledge, there are no other decentralised solutions to the MCLSP-BOSI problem to compare
with. We tested a general DCOP ADOPT-n (Modi, Shen, Tambe and Yokoo (2005)) but due to its modelling for n-ary
constraints and the presence of mostly global constraints in MCLSP-BOSI, with only 4 periods and 4 liquid agents, it
didn’t find a solution in a reasonable time.

6.1. Experiment setup
The experiment setup was performed following the principles in Diaby et al. (1992) and Giordani et al. (2013). We

consider the case of Wagner-Within costs, i.e., the costs that prohibit speculative motives for early and late production
resulting in speculative inventory holding and back-ordering, respectively. Considering constant production costs ca
for all a = (i, t) ∈ A, setup, holding, and back order costs comply with the assumption of Wagner-Within costs, i.e.,

−bik < si,k+1 − sik < ℎik, ∀k ∈ T (36)

The value of si1 for each item i ∈ I is chosen randomly from the uniform distribution in the range [50, 100],
i.e. si1 ∼ U (50, 100), and the value of the setup cost of every following period {si2,… , si,|T |} is computed by the
following formula si,k+1 = sik +X, where X ∼ U (−1, 1).

For simplicity, holding costs ℎik are assumed constant in time, i.e., ℎik = ℎi, and are generated randomly from
U (20, 100) for each item i ∈ I . Backorder costs are computed from the holding costs considering a multiplication
factor of 10, 2, 0.5, and 0.1 (the obtained values are rounded to have all integer values). When considering backlog
costs in (33), to produce as much as possible during the time horizon, we model M as a very large number whose
value is 10000. We assume unitary production cost cit for each item i ∈ I to be constant in time, i.e. cit = ci, and
ci ∼ U (1000, 10000).

In the experiments, we consider a large production system scenario producing from 50 to 150 items with increase
10, over a time horizon composed of 100 periods with the value of mean item demand per period d̄i ∼ U (100, 1000).
This sums up to overall demand from 2.75 to 8.25 million units on average in the given time horizon.

For each item i ∈ I , demand dit is generated from the normal distribution with mean d̄i and standard deviation
� = d̄i∕�, with � > 1, i.e. (dit ∼ N[d̄i, (d̄i∕�)2]). Standard deviation of the distribution of the item-period demands
controls the demand variability. We experiment two levels of demand variability: high level whose � = d̄it∕2 (� = 2)
and low level with � = d̄it∕4 (� = 4). The larger the value of �, the more “lumpy” the demand, i.e., the greater the
differences between each period’s demand and the greater the number of periods with zero or fixed base level demand
(e.g., Wemmerlöv and Whybark (1984)). For simplicity, but w.l.o.g, the values of x+i0, x

−
i0, and yi0 are assumed to

be equal to zero. Resource requirement ri for production of a unit of i ∈ I is generated from U (1, 3). We consider
variable production capacities generated from (Rk ∼ N[110000, (110000∕4)2]). This value is chosen to satisfy the
overall demand of |I| = 100 items with average demand d̄i = 550 units with average resource requirements r̄i = 2
for all i ∈ I over 100 periods.

As the key performance indicators, we consider average computational time and optimality gap compared between
the solution of the Spillover Algorithm implemented in Matlab and the optimal solution computed with IBM ILOG
CPLEX Studio 12.8 with CPLEX solver, both run on an Intel Core i5 with 2.4 GHz and 16 GB RAM. We tested
scenarios, from very decongested ones with the overall demand representing 50% of the available production resources
in the horizon, to very congested scenarios where this percentage increases to 150%. We combine the 11 cases of
demand varying from 50 to 150 items with increment of 10 over 100 periods with 2 cases of variability and 4 cases of
back order costs related to the holding costs, resulting in a total of 88 experiment setups.

6.2. Results
The simulation results of the Spillover Algorithm with the approximation scheme are shown in Table 4. The table

contains the optimality gap (average of 8 experiments each, as described previously) in relation to the solution found
in CPLEX together with their computational times. The optimality gap is the one used by CPLEX and is obtained as
(zx − zo)∕zo, where zx is the cost of the solution found by the Spillover Algorithm and zo is the cost of the CPLEX
optimal solution. The mean gap value is 25% and the individual gap value throughout the instances is rather constant
and independent of the item number. This gap value, for such a heuristic approximation approach, is a very good result



Table 4
Summary of the computational results

# items 50 60 70 80 90 100 110 120 130 140 150

Avg. Gap (%) 28 28 30 16 16 28 27 28 27 27 27
Spillover (ms) 11 12 18 16 18 19 23 24 27 28 30
Min CPLEX (s) 0.05 0.56 1.1 1.53 1.92 2.49 3.1 2.83 3.35 3.2 3.75
Max CPLEX (s) 0.69 1.07 1.39 11 47 74 157 391 451 571 869

Figure 3: Average computational time of the Spillover Algorithm for different numbers of items

considering that heuristic approaches generally do not have quality of solution guarantees. The computational time of
CPLEX has high variability for the same problem size. Thus, Table 4 shows the minimum and maximum execution
times (in seconds) for each number of items. The Spillover Algorithm execution time is less than 0.1 sec for all the
experiments and grows lineally with the number of items (see Figure 3). This confirms its good performance in relation
to CPLEX, whose computational time increases exponentially with the increase of the item set size and thus scales
poorly. Figure 4 shows graphically, using a logarithmic scale, the minimum and maximum times taken by CPLEX
for different problem sizes (number of items) and the average Spillover Algorithm time. However, the emphasis here
is not on proposing an optimal method in a centralised environment, but to decentralise the coordination decisions of
production planning in environments where the exposure of private and sensitive information is desirably minimized
while still having a reasonably good global solution away from the control of a centralised decision maker.

7. Discussion and conclusions
Open and shared factories are becoming popular in Industry 4.0 as another component of today’s global economy.

In such facilities, production resources and product owners coexist in a shared environment. One of the main issues
faced by product (item) owners that compete for limited production resources held by multiple resource owners in
such factories is the exposure of their private and sensitive information including the values of unitary production,
holding, setup and back order cost in each time period of the planning time horizon as well as the unitary cost of
backlog after the end of the planning time horizon.

The scope of this paper was not to propose a more computationally efficient heuristic for centralised MCLSP-
BOSI problem, but to study a decentralised version of the MCLSP-BOSI problem and develop a heuristic approach
applicable to intrinsically decentralised shared and open factories. Centralised state-of-the-art heuristics cannot be



Figure 4: Comparison of the average computational time (in logarithmic scale) of the Spillover Algorithm with the
minimum and maximum computational times of CPLEX solver

applied to this problem with self-concerned and individually rational resource and item owners since these heuristics
require complete exposure of everyone’s private and sensitive information.

Therefore, in this paper, we presented a decentralised and dynamic variant of the classic MCLSP-BOSI problem
with time-dependent costs. To reach a decentralised variant of the problem and to control locally the linear increase
of product owners’ costs, we decomposed the problem based on item-period pairs.

As a solution approach to the decentralised and dynamic MCLSP-BOSI problem, we proposed the Spillover
Algorithm, to the best of our knowledge, the first heuristic decentralised algorithm for this problem that complies with
the intrinsically decentralised nature of large and shared open factories. A heuristic solution was needed to cope with
the NP-hard nature of the (decentralised) MCLSP-BOSI problem. The spillover heuristic is formulated as a multi-
agent algorithm in a liquid flow network model with buffers: each item-period pair is represented by a liquid agent
responsible for obtaining production resources (robots) to manufacture its demand, i.e., product of type i requested
to be produced by the means of bidding for resource allocation at time t. Likewise, production capacity (number of
available robots) in each period is represented by a buffer agent responsible for allocating the capacity to bidding
liquid agents.

An auction-based algorithm leveraging spillover effect has been designed for a one-on-one negotiation between
the liquid agents requesting item production and their buffer agents of interest. Each liquid agent sends greedy bids
(consisting of the amount of the item to be produced, and the agent’s estimated accumulated cost for available buffers)
to the buffer agents in order of non-decreasing accumulated unit production cost, and each buffer agent greedily
accepts bids in order of the bidding liquid agents’ non-increasing estimated accumulated cost for all buffers. This is
repeated until all demands are allocated for production throughout the planning time horizon.

The proposed multi-agent auction-based approach has the advantage that agents do not need to reveal all their
private and sensitive information (i.e., unitary costs of production, setup, back order, and holding) and that the ap-
proach is decentralised. Distributed problem solving here includes sharing of estimated accumulated costs for each
item-period pair, i.e., a heuristic unitary demand cost accumulated over time periods that are still available for resource
allocation. The latter can be interpreted as an approximate “resource conflict price” paid if a unit of demand is not
allocated for production in the requested period.

Note that the state-of-the-art heuristics are centralised solution approaches that are not applicable in intrinsically
decentralised open and shared factories with self-interested and individually rational resource and product owners.
Thus, the comparison of the performance of the Spillover Algorithm with these solution approaches is meaningless.

Since all agents in the Spillover Algorithm have only a local view of the system, a disadvantage is that global
optima are not necessarily achieved with such a decentralised control.

We presented an experimental evaluation with randomly generated instances that nonetheless shows that the so-
lutions obtained using the spillover effect heuristic are only about 25% more expensive than the optimal solutions



calculated with CPLEX. The average optimality gap values are between 16% and 30% for the 11 tested item type
numbers (from 50 to 150 different items (products)), where the average has been taken over 8 randomly generated
instances for each choice of the number of item types. However, the Spillover Algorithm gives an anytime feasible
solution running in close-to real time, under 30 milliseconds, while CPLEX requires between 4 and 869 seconds for
the largest tested instances.

The low computational complexity of the Spillover Algorithm facilitates the implementation in shared and open
factories with competitive stakeholders who want to minimize their sensitive and private information exposure.

The Spillover algorithm can be applicable, with no substantial changes, to other domains where multiple in-
dependent self-concerned agents compete for limited shared resources distributed over a time horizon of a limited
length. This is the case, for example, in flight arrival/departure scheduling to maximize runway utilization and the
allocation of electric vehicles to a charging station. In the former, flight scheduling case, liquid agents (representing
flights) compete for runway time slots, which are managed by buffer (runway) agents responsible for allocating their
landing/take-off capacity in each time period. At peak hours, sometimes it is inevitable that some flights change their
schedules because of the limited capacities of the runways. Thus, dynamic (re-)allocation is required. In the applica-
tion of the Spillover algorithm to this case, the production cost is the time slot cost for an aircraft, back order costs
reflect the consequences of flight delays (e.g. compensations to clients, damage of reputation, etc.), and holding costs
represent the monetary effect of early departures/arrivals. Setup costs are the operational costs and other charges for
an aircraft using the runway at certain time period.

The Spillover Algorithm is resilient to crashes as the buffer agents continue to assign their resources as long as
there is at least one liquid agent bidding for them. This topic will be treated in future work. In future work, we
will also study more accurate spillover rules that iteratively approximate estimated accumulated costs as the bidding
progresses while guaranteeing convergence and the protection of sensitive private information. Furthermore, in the
Spillover algorithm, buffer agents prioritize bids from liquid agents based on their estimated accumulated cost EAC
value included in each bid. The higher the value, the higher the priority for resource allocation of a liquid agent. Thus,
a strategic liquid agent may want to report a falsely high EAC value to get the production resources at requested
time periods. Open issues of strategic agents, trust and incentives not to lie about production demand, estimated cost
parameters, and production capacities will also be studied in future work. Examples of lines to explore are game
theory and mechanism design (e.g. Vickrey-Clarke-Groves mechanism).
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