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Abstract—Early warning systems (EWSs) have proven to be
useful in identifying students at risk of failing both online
and conventional courses. Although some general systems have
reported acceptable ability to work in modules with different
characteristics, those designed from a course-specific perspective
have recently provided better outcomes. Hence, the main goal of
this work is to design a tailored EWS for a conventional course
in power electronic circuits. For that purpose, effectiveness of
some common classifiers in predicting at-risk students has been
analyzed. Although slight differences in their performance have
only been noticed, an ensemble classifier combining outputs from
several of them has provided to be the best performer. As a major
contribution, a novel weighted voting combination strategy has
been proposed to exploit global information about how basic
prediction algorithms perform on several time points during
the semester and diverse subsets of student-related features.
Predictions at five critical points have been analyzed, revealing
that the end of the fourth week is the optimal time to identify
students at risk of failing the course. At that moment, accuracies
about 85–90% have been reached. Moreover, several scenarios
with different subsets of student-related attributes have been
considered in every time point. Besides common parameters
from student’s background and continuous assessment, novel
features estimating student’s performance progression on weekly
assignments have been introduced. The proposal of this set of
new input variables is another key contribution, because they
have allowed to improve more than 5% predictions of at-risk
students at every time point.

Index Terms—Early warning system, at-risk students, per-
formance prediction, educational data mining, power electronic
systems.

I. INTRODUCTION

NOWADAYS, academic processes generate a huge amount
of data, mainly pertaining to the interaction between

students and teachers, as well as between students and their
learning environment [1]. This information is being thoroughly
explored to gain novel knowledge about how students learn
in a variety of scenarios, and then in the improvement of
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the quality of educative systems by providing timely support
to learners, instructors and administrators [2]. In fact, the
application of well-known data mining techniques to educa-
tional data is an emerging research field, which is referred
to as Educational Data Mining (EDM) [1]. More precisely,
the International Educational Data Mining Society defines
EDM as “an emerging discipline, concerned with developing
methods for exploring the unique types of data that come
from educational settings, and using those methods to better
understand students, and the settings which they learn in.” [3].

Although many application areas can be found within this
research field, one of the most important is to predict stu-
dent’s academic performance [4]. This kind of prediction has
been developed at different levels of granularity [5]. Whereas
student’s score on a specific activity or test is predicted at
task level, student’s success/failure or end-of-semester grade
are forecasted at course level [4]. Additionally, prediction of
student’s dropout in a degree program has also been widely
addressed [4]. In all cases, an early forecast is desired to enable
proactive teaching actions aimed at providing students with
sufficient support to improve their performance and avoid their
attrition [6], [7]. To this respect, some recent experiments have
proven that tools such as intelligent tutoring systems, early
warning systems (EWSs), and recommender systems can be
very useful in higher education [8].

Given the large dropout rates exhibited by online courses,
EWSs have been mostly established in this kind of teach-
ing [9]. In fact, detailed parametrization of the student’s access
pattern to e-learning platforms has allowed to successfully
identify learners at risk of quitting [10] and, then implement
instructional interventions for their retention [11]. However,
the systems based on this approach cannot be directly ex-
trapolated to face-to-face teaching, because in this case most
activities are developed outside an e-learning platform [7].
Hence, in the last years great efforts have been made to design
effective EWSs for conventional courses, and particularly for
disciplines traditionally presenting high failure rates, such
as programming [12], maths [13], [14], physics [15], and
engineering [7]. In this context, learning of low-performance
students can still be improved through proper instructional
interventions, including one-on-one tutoring and review of key
concepts after class, assignment of extra homework, provision
of remedial lessons, or supervised revision of previously
learned concepts in prerequisite courses [15].

Within the area of engineering, courses dealing with the
bases of power electronic systems are daunting for many
students, since they often struggle with understanding the
complex physical phenomena involved in the operation of
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many circuits [16]. Indeed, many learners are not sufficiently
familiar with the high level of abstractness required to handle
non-visible phenomena, like electrostatic, magnetic, electro-
magnetic, or thermal fields, as well as non-visible quantities,
such as magnetic flux [16], [17]. Hence, they usually need to
dedicate a huge amount of time and effort to understand the
key concepts of the course, and this extra work leads many
students to quit at an early stage or not be able to acquire
sufficient knowledge to pass. As an example, the course
under study in the present work, entitled Power Electronic
Systems, has presented failure rates between 45–60% in the
last offerings, such as Table I shows. Therefore, this and other
similar courses could strongly benefit from the use of an EWS
to prevent most low-performance students from failing.

So far, a few EWSs have proven a high level of generaliza-
tion to reliably predict at-risk students in courses of different
disciplines and with diverse learning settings [18]–[20]. How-
ever, in the last years many works have reported that EWSs de-
signed from a course-specific perspective achieve significantly
higher accuracy in student’s performance predictions [7], [21]–
[23]. To this respect, the differences among courses in terms
of structure, intended learning objectives, planned activities,
and grading schemes have been suggested to have a high
impact on the selection of the most predictive input variables
for each particular case [23], [24]. In view of this context
and considering that no tailored EWS has been still presented
in the field of power electronics, the present work explores
how effective some common machine learning algorithms are
in predicting student’s performance in a face-to-face course
dealing with basic notions of power systems. Moreover, an
ensemble classifier combining outputs from several of them
through a novel weighted voting strategy is also proposed.
This method has reported the best performance, overcoming
basic classification techniques, as well as homogeneous and
heterogeneous ensemble classifiers.

A key point in the design of every EWS is its ability to
operate at an early stage, when students have still not quitted
the course [18]. Although some works have reported accurate
predictions at the end of the semester, they are of very limited
use when it comes to establish an EWS [13]. At the opposite
extreme, some authors have tried to predict at-risk students
before the course starts [15], [25], [26]. In this case, only
personal information and student’s academic performance in
past modules can be used to make predictions. However, the
fact that every information about how students learn during
the course is discarded could explain the limited predictive
ability about 60–70% reported by previous works [7]. Con-
sequently, a trade-off between accuracy and early prediction
has been recommended for a successful implementation of
every EWS [13]. Hence, to attain this compromise, several
predictions have been conducted in five critical times along
the semester.

Adequate selection of student-related features also plays
a main role in reaching accurate predictions [27]. To this
respect, student’s performance data available during the course
have been recently identified as the factors able to provide
the earliest and most accurate predictions of learners at risk
of failing conventional modules [7]. In fact, cumulative and

average grades on quizzes, homework assignments, hands-
on experiments, and mid-term exams have provided high
predictive abilities in the first weeks of the semester [12],
[13], [15], [28], [29]. However, it has still not been explored
whether progression of the student’s grades on successive
assessment tasks can improve predictions. The temporal trend
exhibited by these scores could be associated with student’s
engagement and progressive learning, both aspects being par-
ticularly relevant in courses where cumulative knowledge is
essential. This is the case of Power Electronic Systems, since
the basic concepts covered at the beginning of the course are
definitely required to later understand how most power circuits
work [16]. Hence, another major contribution of the present
study is that a set of novel features are proposed to quantify
student’s performance progression on weekly assignments.
The role of these new input variables in predicting at-risk
learners is also assessed in all the time points tested during
the semester.

As a summary, the present study focuses on the following
three research questions:
• How effective are common machine learning techniques

to identify students at risk of failing a conventional course
in power electronic systems?

• What is the optimal time point to predict at-risk students
along the course?

• Can student’s performance progression on weekly assign-
ments provide useful predictive information?

II. MATERIALS AND METHODS

A. Main Features of the Course

Power Electronic Systems is a compulsory second-year
course in the Telecommunications Engineering Degree Pro-
gram at Technical School of Cuenca, University of Castilla-
La Mancha (UCLM), Spain. It exposes students for the first
time to fundamental concepts of three-phase voltages and
powers, transformers, single-phase and three-phase rectifiers,
isolated and non-isolated dc-dc converters, single-phase and
three-phase inverters, and photovoltaic installations.

The course consists of 4 theory European Credit Transfer
System (ECTS) credits and 2 practice ECTS credits, thus
requiring 40 lecture hours and 20 laboratory (lab) hours,
structured over 15 weeks. Students are therefore required to
attend three 90 min sessions per week, two for theory lectures
and one for hands-on experiments. Regarding assessment,
50% of the end-of-semester mark is distributed throughout the
course to foster student’s engagement [13], [30], [31]. Thus,
the grading scheme awards 5% of the end-of-semester mark
for in-class activities (ICAs), 5% for homework assignments
(HAs), 20% for lab activities (LAs), 20% for a mid-term exam
(MTE), and 50% for the final exam. The MTE is held in
week 9, thus covering the topics addressed from the beginning
of the course to week 8. Similarly, the final exam is always
scheduled for two weeks after the course finishes.

The student’s continuous assessment is planned on a weekly
basis. Thus, each week starts with two lectures, where the
instructor teaches theory concepts using PowerPoint presenta-
tions and solves some illustrative problems on a blackboard.
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TABLE I
NUMBER OF STUDENTS ENROLLED IN THE EXPERIMENT, AND PASS AND

FAILURE RATES FOR EACH OFFERING OF THE COURSE

Offering # Students Failure Rate Pass Rate
2010/11 44 61.36% 38.64%
2011/12 50 58.00% 42.00%
2012/13 48 45.84% 54.16%
2013/14 44 56.82% 43.18%
2014/15 46 47.82% 52.18%
2015/16 40 47.50% 52.50%
2016/17 46 43.48% 56.52%
2017/18 44 59.10% 40.90%

In the last 45 minutes of the second class period, students
are asked to solve a problem on their own. Although they
do not work in group, they can share and discuss possible
solutions with peers. This ICA gives students the opportunity
to apply the gained knowledge, as well as to resolve their
particular doubts. In fact, the instructor will walk around the
classroom during the activity to monitor learners’ progress and
provide individual feedback. On the other hand, to encourage
learners to continue studying the covered materials, they are
also required to solve a HA (consisting in another problem)
outside class and within a period of two days. It should be
noted that these ICAs and HAs were designed by the same
instructor for all weeks with an homogenous level of difficulty.

For each week, a LA is also scheduled, where students
are required to simulate via Matlab/Simulink and build on a
breadboard some circuits for their analysis and testing. The
instructor will provide learners with sufficient guidance, in
form of direct instructions, to complete the intended tasks.
Moreover, students will work in permanent groups of two,
and will have to submit their simulations and measurements,
along with their conclusions about the operation of the tested
circuits, before the end of the session. All these weekly tasks
(i.e., ICAs, HAs and LAs), as well as the mid-term and final
exams, will be corrected by the instructor within the same
week of submission, and scores will be assigned on a scale of
0 to 10. These grades will then be used to make predictions of
at-risk students at the end of some weeks (see Section II-E).

B. Participants and Their Pass/Fail Classification

A total of 362 students were enrolled in the experiment
from eight consecutive offerings of the course, such as Table I
shows. No significant differences were noticed in the number
of students registered for each offering, as well as in pass
and failure rates. Moreover, it is worth noting that the course
was always taught the same three days a week, in the same
time-slots, and by the same instructor. Also, the covered
content remained unaltered, and the topics were introduced in
the same order. Likewise, the same e-learning platform (i.e.
Moodle) was used to create similar learning environments,
where students could download teaching material and upload
their results for HAs and LAs.

To pass the course, students had to satisfy two requirements:
(i) an end-of-semseter score equal or greater than five points,
and (ii) a grade on the final exam equal or greater than four
points. No minimum marks were required for ICAs, HAs
and LAs, because UCLM regulation constrains compulsory

attendance in undergraduate courses. No requisite was also set
to pass the MTE, because it was considered as a good learning
opportunity, where students received valuable feedback about
their progress. Accordingly, 172 students passed the course
and the remaining 190 failed it. This binary classification (i.e.,
pass/fail) was used as output variable to train and test the
predictive models obtained from the classifiers described in
the next two subsections.

C. Common Prediction Methods
In the last years a broad variety of classification algorithms

have been used to predict student’s performance in higher
education [4], [32]. However, no method able to successfully
work on every scenario has still been found, thus compelling
to look for the optimal technique in each particular case [5].
Accordingly, several basic and advanced classifiers widely
used in EDM contexts have been tested in the present work.
For that purpose, statistics and machine learning functionalities
offered by Matlab R2019a (The MathWorks Inc., Natick,
Massachusetts, United States) were used.

Briefly, Logistic Regression (LR) is a statistical technique
estimating an output variable as a linear combination of several
input attributes [33]. Its goal is to predict the probability of
occurrence of an event by fitting data into a logistic function.
Thus, in the training stage a coefficient regression, representing
its degree of contribution to the output, is computed for each
input variable. Given its relative simplicity and reliability, this
method has been broadly used to predict student’s perfor-
mance [7], [15], [29], [34]. As in these previous works, the
algorithm was trained without any kind of regularization.

Another simple algorithm commonly employed in EDM ap-
plications is Naive Bayes Classifier (NBC) [35]. This method
is based on well-known Bayes’ Theorem, thus classifying
data according to the highest probability of belonging to a
particular category [33]. It assumes independence among input
variables, but this condition is often infringed, including the
scenario of student’s performance prediction considered here.
Nonetheless, even in that case, the algorithm is usually able
to provide predictions with similar accuracy to more complex
classifiers [36]. Continuous input variables were modeled as
gaussian distributions, because a Kolmogorov-Smirnov test
proved that most of them were normally distributed. For cate-
gorical predictors, a multinomial distribution was considered.

The combination of a set of rules in a tree form has also
proven to be an effective and easily interpreted classifier in
many situations, including EDM [34]. The basic idea behind
this Decision Tree (DT) is to split the data based on one
variable until every node only presents objects from a category,
or all input variables have been used [33]. To pick the feature
that best separates the data at each level, a score function
must be selected to estimate the impurity of all possible nodes.
Although there exist several approaches for that purpose, the
common Gini’s index was used, such as in other previous
works [7], [34]. Moreover, to control the tree growth, the
maximum number of splits and the minimum number of
instances per leaf were set to 10 and 2, respectively [34].

A more complex algorithm is Support Vector Machine
(SVM), which classifies data from two categories by finding
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the linear decision boundary (i.e., the hyperplane) that best
discerns between them [33]. This method hence turns classifi-
cation into an optimization problem, where the best hyperplane
is the one providing the largest margin between two categories.
If data are not linearly separable, a kernel function can then
be used to provide dissociation between categories in a higher
dimension. However, because simple kernels can increase
generalizability of the predictive models [37], a linear kernel
with a box constraint parameter of 1 was used in this study [7].

An Artificial Neural Network is a classifier inspired by the
human brain. Indeed, it consists of a set of interconnected
nodes or neurons, which relate the inputs to the desired
outputs [33]. Each neuron performs tasks of information pro-
cessing by converting received inputs into processed outputs.
Depending on these tasks and how neurons learn, several
variants can be found. A Multi-Layer Perceptron (MLP) with
two hidden layers and a number of nodes just the half of input
variables, a sigmoid activation function, and a learning rate of
0.1 was used, according to previous studies also dealing with
student’s performance prediction [7].

Unlike the previous techniques, a K–Nearest Neighbor
(KNN) algorithm is a non-parametric classifier. In this case, a
discriminant model is not trained with parameters, but each ob-
ject is classified by majority voting from its K neighbors [33].
This approach assumes that objects near each other are similar,
thus playing a key role in how the distance among them is
computed. Although a variety of distance metrics exist, the
well-known Euclidean distance was employed here. Moreover,
information from the five nearest neighbors, i.e., from the
five students with the most similar scores, was considered to
predict at-risk students, such as in [7].

In addition to these basic classifiers, advanced homogeneous
ensemble algorithms have also been used in EDM applications,
such as Random Forest (RF) and AdaBoost (AB) [32], [38],
[39]. These methods attempt to create a strong classifier
by majority voting from a set of weak learners, which are
differently derived for each case. Precisely, RF is based on
iteratively constructing a set of decision trees by randomly
selecting a portion of the input features, as well as by
resampling the training dataset [37]. In this way, an ensemble
of randomized, independent, and equally weighted trees are
obtained. A similar approach is also used in AB, but in this
case each new classification model is influenced and weighted
by the performance of those built previously. Thus, a tree
is firstly designed from the training data, and then a second
model is created to correct the errors from the first one. Models
are iteratively added until the training set is perfectly predicted,
or a maximum number of models are reached [37]. As for DT,
both RF and AB were trained with a Gini’s index to split data,
a maximum number of splits of 10, and a minimum number of
instances per leaf of 2. Also, according to previous works [34],
[40], the number of trained trees was 10 for both methods.

D. Heterogeneous Ensemble Classifiers Based on Voting

Compared to AB and RF, heterogeneous ensemble algo-
rithms have provided better classification results in a variety
of fields [41], [42]. These classifiers are based on combining

outputs from different base algorithms, thus exploiting diver-
sity in their results and obtaining a strong generalization [43],
[44]. In this case, the combination strategy plays a crucial
role, and several alternatives have been introduced. A popular
option is majority voting, because it is simple and reaches good
results in many contexts [45], including student’s performance
prediction [7]. Thus, by combining the six basic classifiers pre-
viously described, i.e., LR, NBC, DT, SVM, MLP, and KNN,
a majority voting ensemble (MVE) approach was constructed.

A disadvantage of this combination strategy is that all base
classifiers are treated equally, sometimes leading to suboptimal
predictions [44], [45]. To palliate this issue, assignation of spe-
cific weights to each base algorithm has been proposed [44].
Unfortunately, no approach has still been designed to estimate
these weights when predicting student’s performance, and
therefore a well-known weighted voting ensemble (WVE)
algorithm has been studied in the present work. The weights
were computed from the accuracy reported by each basic
algorithm on only one classification task and a defined subset
of input variables, such as described in [44]. This approach
could overtrain the ensemble for the classification context, and
hence a novel combination strategy has also been proposed.
This new scheme is based on the results of a Friedman test,
which compares the performance of the base classifiers on
several time points during the semester and different subsets of
student-related features. More details about this statistical test,
the analyzed time points, and the subsets of student-related
attributes (used as input variables) will be described in the
next three subsections (i.e., in Sections II-E, II-F, and II-G).

Briefly, a Friedman test separately sorts the performance of
each algorithm on all the considered classification tasks and
reports an average rank for each one. Scaling these values
between 0 and 1 through a min-max normalization (which
will be referred to as Ri), the specific weight (wi) for each
base classifier was obtained through an inverse exponential
rule, i.e., wi = A · e−Ri , where A was computed to meet
the condition that

∑6
i=1 wi = 1. Note that i ranges from 1

to 6, because the six basic algorithms previously described,
i.e., LR, NBC, DT, SVM, MLP, and KNN, were combined.
Finally, the weights wi were rounded to the nearest multiple of
five, and a final decision was then adopted by majority voting.
This approach will henceforth be referred to as the proposed
ensemble classifier (PEC).

E. Control Points

To determine how early at-risk students could be identified,
several predictive models were trained and tested at different
critical times during the course, which will hereafter be
referred to as control points (CPs). Thus, because predictions
as early as possible are desired to enable teaching actions
aimed at preventing low-performance students from prema-
ture quitting [34], the first CP (CP1) was established just
before the beginning of the semester. The second CP (CP2)
was established at week 4, since the basic concepts about
three-phase circuits and transformers, which are essential to
understand more advanced power systems (e.g., rectifiers and
inverters) [16], are covered within this time period.



5

During the next four weeks, the main notions about non-
controlled and controlled rectifiers, as well as their applica-
tions, are mainly described. Bearing the complex operation of
these circuits in mind [17], the third CP (CP3) was then set
at week 8. The MTE is just held one week later, thus locating
the forth CP (CP4) at this moment. Finally, the last CP (CP5)
was established at week 13, once the main concepts about
dc-dc converters and inverters are covered. The remainder of
the course only presents the application of these circuits in the
design of isolated and grid-connected photovoltaic installations
and, therefore, the more challenging topics have been taught at
that point. Although low-performance students are very close
to fail the course at week 13, extremely accurate predictions
may be expected.

F. Input Variables

The student-related attributes used to feed the prediction
algorithms were selected from two categories. Firstly, some
features were chosen from the student’s background. Thus,
final scores achieved in all the first-year courses, along with
their average, were collected on a continuous scale of 0 to 10.
These courses are Electronic Components and Circuits (ECC),
Electronic Devices and Subsystems (EDS), Fundamentals of
Physics I (FPI), Fundamentals of Physics II (FPII), Funda-
mentals of Mathematics I (FMI), Fundamentals of Mathe-
matics II (FMII), Fundamentals of Mathematics III (FMIII),
Signals and Systems (SS), Computing (COM), and Business
Management (BM). All are compulsory and consist of 6 ECTS
credits (4 theory and 2 practice). Additionally, the number of
these courses that students passed, failed and quitted were also
considered as categorical variables, which took integer values
between 0 and 10.

In CP1, these input variables from the student’s background
could only be explored. Although UCLM regulation restricts
the possibility of establishing prerequisite courses, those intro-
ducing essential notions to understand the operation of most
power electronic circuits received special attention. Indeed,
three different scenarios were analyzed, such as Table II
summarizes. Thus, whereas the student’s scores on the two
and three first-year courses more closely related to Power
Electronic Systems were considered in the two first cases,
respectively (i.e., grades on ECC and EDS in scenario #1,
and on ECC, EDS, and FPII in scenario #2), all features were
analyzed in the last experiment (i.e., scenario #3).

On the other hand, the most predictive variables from the
student’s background were complemented in CP2–CP5 with
three different subsets of features extracted from the student’s
continuous assessment along the semester (see Table II). More
precisely, mean student’s scores on the ICAs, HAs, and LAs
completed until each CP were firstly considered (scenario #1).
According to previous works [7], [14], [15], these attributes
were defined as

ICAW =
1

W

W∑
i=1

ICAi, (1)

HAW =
1

W

W∑
i=1

HAi, and (2)

LAW =
1

W

W∑
i=1

LAi, (3)

where W refers to the week when each CP was established,
i.e., 4, 8, 9, and 13 for CP2, CP3, CP4, and CP5, respectively,
and ICAi, HAi, and LAi to the student’s scores on the
corresponding tasks for i-th week. Note that these parameters
were continuous and ranged from 0 to 10.

Instead of these average grades, student’s performance pro-
gression on the same weekly tasks for each time period was
analyzed in scenario #2 (see Table II). Thus, in this case the
following indices were considered as input variables:

∆ICAW =
1

W − 1

W−1∑
i=1

ICAi+1 − ICAi, (4)

∆HAW =
1

W − 1

W−1∑
i=1

HAi+1 −HAi, and (5)

∆LAW =
1

W − 1

W−1∑
i=1

LAi+1 − LAi. (6)

It should be noted that these indices were continuous and
ranged from −10 to 10.

To compute these six features in each CP, those activities
that were not submitted on time were discarded. Nonetheless,
the number of these unreported ICAs, HAs, and LAs were also
quantified as categorical variables, which took integer values
between 0 and W . As can be seen in Table II, these input
variables were analyzed in scenario #3 of CP2–CP5, along
with the six previously defined attributes from the student’s
continuous assessment and the most predictive ones from the
student’s background. Finally, remark that the student’s score
on the MTE was also considered as an input in the three
scenarios analyzed in CP4 and CP5. As all student’s marks, it
was quantified on a continuous scale of 0 to 10.

G. Assessment of Prediction Outcomes

The performance of all predictive models has been summa-
rized in terms of two metrics. Thus, accuracy (Acc) was firstly
estimated as the fraction of students correctly classified, i.e.,

Acc =
TP + TN

TP + FN + TN + FP
, (7)

where TP (true positives) and FN (false negatives) are the
number of failing students correctly and incorrectly identified,
and TN (true negatives) and FP (false positives) are the
number of passing students properly and improperly classified,
respectively. Although this index provides a global overview
about how a predictive model works, it does not give specific
information about the percentage of students rightly discerned
for each group. However, this information is relevant in the
present study, because the main goal is to identify at-risk
learners. Hence, the rate of failing students correctly identified,
commonly known as sensitivity (Se), was also computed as

Se =
TP

TP + FN
. (8)
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TABLE II
INPUT FEATURES CONSIDERED IN EACH CP AND SCENARIO TO PREDICT

STUDENTS AT RISK OF FAILING THE COURSE

CP Scenario #1 Scenario #2 Scenario #3
1 Grade on ECC Grade on ECC Grade on ECC

Grade on EDS Grade on EDS Grade on EDS
Grade on FPII Grade on FPII

Grade on FPI
Grade on FMI
Grade on FMII
Grade on FMIII
Grade on COM
Grade on SS
Grade on BM
Mean score
# courses passed
# courses failed
# courses quitted

2 Grade on ECC Grade on ECC Grade on ECC
Grade on EDS Grade on EDS Grade on EDS
Grade on FPII Grade on FPII Grade on FPII
ICA4 ∆ICA4 ICA4

HA4 ∆HA4 HA4

LA4 ∆LA4 LA4

∆ICA4

∆HA4

∆LA4

# unreported ICAs
# unreported HAs
# unreported LAs

3 Grade on ECC Grade on ECC Grade on ECC
Grade on EDS Grade on EDS Grade on EDS
Grade on FPII Grade on FPII Grade on FPII
ICA8 ∆ICA8 ICA8

HA8 ∆HA8 HA8

LA8 ∆LA8 LA8

∆ICA8

∆HA8

∆LA8

# unreported ICAs
# unreported HAs
# unreported LAs

4 Grade on ECC Grade on ECC Grade on ECC
Grade on EDS Grade on EDS Grade on EDS
Grade on FPII Grade on FPII Grade on FPII
ICA9 ∆ICA9 ICA9

HA9 ∆HA9 HA9

LA9 ∆LA9 LA9

Grade on MTE Grade on MTE ∆ICA9

∆HA9

∆LA9

# unreported ICAs
# unreported HAs
# unreported LAs
Grade on MTE

5 Grade on ECC Grade on ECC Grade on ECC
Grade on EDS Grade on EDS Grade on EDS
Grade on FPII Grade on FPII Grade on FPII
ICA13 ∆ICA13 ICA13

HA13 ∆HA13 HA13

LA13 ∆LA13 LA13

Grade on MTE Grade on MTE ∆ICA13

∆HA13

∆LA13

# unreported ICAs
# unreported HAs
# unreported LAs
Grade on MTE

On the other hand, although resubstitution validation has
been widely used in EDM contexts, training and testing

with the same data often leads the predictive model to be
overfitted [46]. A well-known procedure to handle this issue
and generalize the performance of every classifier is K-
fold cross-validation [46]. Thus, a 10-fold cross-validation
approach was used, where data were randomly rearranged
to ensure that every subset was sufficiently representative
of the whole [46]. In each one of the 10 iterations, the
basic classifiers and homogeneous ensembles were trained
and tested with separate, non-overlapped subsets of samples.
Moreover, for each iteration, the weights in the MVE and PEC
algorithms were computed from the values of Acc obtained by
the six basic classifiers (i.e., LR, NBC, DT, SVM, MLP, and
KNN) on the training samples, according to the approaches
described in Section II-D. Thus, as a result of this validation,
10 independently trained and validated prediction models
were obtained for every basic, homogeneous ensemble, and
heterogeneous ensemble classifier.

Finally, some statistical tests were also conducted on the
values of Acc obtained by the classifiers. More precisely, to
compare the performance of every classifier in two different
conditions (e.g., two different scenarios within a CP), a
paired Wilcoxon signed rank test was used [47]. Moreover,
a Friedman test was employed for a global comparison of the
performance of the classifiers on all the analyzed CPs and
scenarios [47]. For both tests, a statistical significance p lower
than 0.05 was considered as significant. Also, average ranks
computed by the Friedman test were used to sort out classifiers
from the best performer to the lowest one [48], as well as to
design the PEC (such as previously described in Section II-D).

III. RESULTS

Cross-validated classification outcomes obtained by the
prediction models built in CP1 are shown in Table III. A
significant increase in values of Acc and Se can be noticed
from scenario #1 to #2 for all the prediction algorithms. In-
deed, improvements about 4–5% were reported when student’s
score on FPII (scenario #2) was added to those on ECC
and EDS (scenario #1). Also, a paired Wilcoxon test always
reported values of statistical significance p < 0.05, when the
performance of every classifier was assessed in both scenarios.
On the contrary, compared to scenario #2, no significantly
larger, or even lower, values of Acc and Se were noticed for
all the classifiers in scenario #3, i.e., when all input variables
from the student’s background were considered to predict at-
risk students. In this case, a paired Wilcoxon test provided
values of p > 0.05 for every classifier.

On the other hand, Tables IV–VII display prediction results
achieved by the models built in CP2–CP5, respectively. In
general terms, regardless of the tested scenario, a stepwise
increase in both Acc and Se was observed for all the classifiers
as the semester progressed. Thus, improvements about 10–
12% were noticed from CP1 to CP2, about 3–4% from CP2
to CP3, about 1–2% from CP3 to CP4, and about 0.5–1%
from CP4 to CP5. As a graphical summary, Fig. 1 shows
how Acc and Se evolve over the CPs in scenario #2 for the
common LR approach. Nonetheless, it should be noted that,
when the performance of every classifier was compared in two
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TABLE III
PREDICTION RESULTS OBTAINED BY THE MODELS BUILT IN CP1

Algorithm Scenario #1 Scenario #2 Scenario #3
Acc Se Acc Se Acc Se

LR 0.699 0.711 0.776 0.763 0.765 0.758
NBC 0.704 0.689 0.779 0.753 0.776 0.758
DT 0.718 0.689 0.782 0.747 0.757 0.747
SVM 0.729 0.721 0.773 0.768 0.773 0.763
MLP 0.721 0.705 0.757 0.758 0.768 0.768
KNN 0.715 0.711 0.787 0.768 0.790 0.774
RF 0.737 0.744 0.798 0.806 0.792 0.811
AB 0.742 0.722 0.794 0.789 0.781 0.764
MVE 0.735 0.729 0.780 0.777 0.788 0.799
WVE 0.727 0.736 0.784 0.782 0.786 0.797
PEC 0.761 0.748 0.811 0.827 0.806 0.816

TABLE IV
PREDICTION RESULTS OBTAINED BY THE MODELS BUILT IN CP2

Algorithm Scenario #1 Scenario #2 Scenario #3
Acc Se Acc Se Acc Se

LR 0.820 0.837 0.873 0.900 0.878 0.905
NBC 0.831 0.821 0.867 0.884 0.865 0.879
DT 0.829 0.842 0.873 0.868 0.873 0.874
SVM 0.843 0.858 0.887 0.895 0.892 0.889
MLP 0.826 0.853 0.873 0.884 0.881 0.879
KNN 0.829 0.847 0.890 0.895 0.896 0.889
RF 0.844 0.842 0.894 0.895 0.902 0.925
AB 0.849 0.848 0.891 0.887 0.896 0.908
MVE 0.845 0.832 0.883 0.875 0.896 0.918
WVE 0.843 0.840 0.891 0.873 0.898 0.920
PEC 0.862 0.859 0.904 0.904 0.911 0.918

TABLE V
PREDICTION RESULTS OBTAINED BY THE MODELS BUILT IN CP3

Algorithm Scenario #1 Scenario #2 Scenario #3
Acc Se Acc Se Acc Se

LR 0.878 0.853 0.923 0.932 0.920 0.921
NBC 0.867 0.858 0.925 0.947 0.917 0.942
DT 0.873 0.863 0.920 0.916 0.909 0.916
SVM 0.881 0.874 0.939 0.947 0.931 0.937
MLP 0.876 0.874 0.925 0.932 0.920 0.932
KNN 0.883 0.868 0.936 0.942 0.925 0.937
RF 0.888 0.897 0.930 0.944 0.922 0.932
AB 0.885 0.882 0.933 0.918 0.933 0.925
MVE 0.888 0.890 0.936 0.937 0.929 0.930
WVE 0.888 0.895 0.933 0.939 0.931 0.928
PEC 0.907 0.910 0.950 0.955 0.938 0.942

TABLE VI
PREDICTION RESULTS OBTAINED BY THE MODELS BUILT IN CP4

Algorithm Scenario #1 Scenario #2 Scenario #3
Acc Se Acc Se Acc Se

LR 0.906 0.895 0.953 0.937 0.945 0.921
NBC 0.898 0.884 0.948 0.958 0.942 0.953
DT 0.892 0.863 0.956 0.937 0.950 0.942
SVM 0.903 0.879 0.959 0.954 0.956 0.937
MLP 0.912 0.900 0.936 0.963 0.939 0.958
KNN 0.903 0.895 0.950 0.958 0.945 0.937
RF 0.901 0.900 0.962 0.986 0.952 0.941
AB 0.907 0.893 0.960 0.952 0.950 0.944
MVE 0.911 0.893 0.960 0.973 0.952 0.941
WVE 0.915 0.888 0.957 0.970 0.955 0.946
PEC 0.925 0.923 0.975 0.962 0.968 0.950

successive CPs in the same scenario, statistically significant
differences (p < 0.05) were only noticed from CP1 to CP2
for all the algorithms.

Apart from this increasing trend over time, for CP2–CP5

TABLE VII
PREDICTION RESULTS OBTAINED BY THE MODELS BUILT IN CP5

Algorithm Scenario #1 Scenario #2 Scenario #3
Acc Se Acc Se Acc Se

LR 0.912 0.905 0.956 0.963 0.953 0.947
NBC 0.901 0.895 0.961 0.958 0.959 0.974
DT 0.909 0.889 0.959 0.942 0.953 0.937
SVM 0.914 0.889 0.964 0.974 0.953 0.974
MLP 0.923 0.895 0.961 0.937 0.963 0.953
KNN 0.914 0.921 0.959 0.958 0.948 0.968
RF 0.912 0.909 0.961 0.945 0.959 0.956
AB 0.910 0.909 0.961 0.945 0.956 0.975
MVE 0.922 0.895 0.957 0.949 0.961 0.962
WVE 0.922 0.892 0.959 0.960 0.957 0.964
PEC 0.935 0.958 0.976 0.988 0.970 0.957

0.95

1

CP1 CP2 CP3 CP4 CP5

0.90

0.85

0.80
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Se
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Point
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Fig. 1. Evolution over the CPs of the values of Acc (solid line) and Se
(dotted line) obtained by the common LR method for the scenario #2.

similar variations in values of Acc and Se were also observed
among the three analyzed scenarios. More precisely, the best
prediction outcomes were always reported in scenario #2, i.e.,
when the proposed variables ∆ICAW , ∆HAW , and ∆LAW
were jointly considered with the most predictive features from
the student’s background. In fact, compared to this case, for
every CP a decrease by about 5% was observed both in Acc
and Se when the prediction algorithms were fed with the
attributes ICAW , HAW , and LAW in scenario #1. Moreover,
a paired Wilcoxon test always provided values of statistical
significance p < 0.05, when the performance of every clas-
sifier was assessed in both scenarios. Finally, only negligible
improvements (lower than 1%) were sometimes seen in Acc
and Se from scenario #2 to #3, i.e., when all the attributes from
the student’s continuous assessment were tested. Indeed, the
performance of any classifier was not statistically different for
both scenarios, being always statistical significance p > 0.05.

For every CP and scenario, no great differences were ob-
served among the classifiers in terms of Acc and Se. However,
a Friedman test rejected the null hypothesis, thus pointing out
that some algorithms performed better than others. Then, a
post-hoc analysis with Bonferroni correction was conduced,
and adjusted p-values are shown in Table VIII. As can be
seen, among the basic classifiers, SVM provided a significantly
better performance than LR, NBC, and DT. Moreover, al-
though no significant differences were noticed between SVM,
KNN, and MLP, average ranks computed by the Friedman
test suggest that SVM (rank of 5.67) performed better than
KNN (rank of 6.63), and MLP (rank of 7.57). Regarding
RF and AB, both reported a significantly better performance
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TABLE VIII
ADJUSTED p-VALUES OBTAINED BY A POST HOC ANALYSIS CONDUCTED ON RESULTS OF A FRIEDMAN TEST

Algorithm LR NBC DT SVM MLP KNN RF AB MVE WVE PEC
LR — 9.123 9.780 0.054 2.259 0.475 0.001 0.003 0.003 0.002 <0.001
NBC 9.123 — 8.905 0.076 2.709 0.613 0.001 0.004 0.005 0.004 <0.001
DT 9.780 8.905 — 0.050 2.155 0.445 0.001 0.003 0.003 0.002 <0.001
SVM 0.054 0.076 0.050 — 1.167 4.248 2.478 3.935 4.090 3.637 0.001
MLP 2.259 2.709 2.155 1.167 — 4.409 0.064 0.154 0.166 0.132 <0.001
KNN 0.475 0.613 0.445 4.248 4.409 — 0.507 0.987 1.044 0.879 <0.001
RF 0.001 0.001 0.001 2.478 0.064 0.507 — 7.621 7.412 8.044 0.070
AB 0.003 0.004 0.003 3.935 0.154 0.987 7.621 — 9.780 9.561 0.027
MVE 0.003 0.005 0.003 4.090 0.166 1.044 7.412 9.780 — 9.342 0.025
WVE 0.002 0.004 0.002 3.637 0.132 0.879 8.044 9.561 9.342 — 0.032
PEC <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.070 0.027 0.025 0.032 —

than LR, NBC, and DT. Also, both homogeneous ensembles
proved to be better performers than SVM, KNN, and MLP, but
no statistically significant differences were observed. Indeed,
average ranks for RF and AB were 4.27 and 4.67, respectively.
Very similar results to these two classifiers were also reported
by the heterogeneous ensambles MVE and WVE, which ex-
hibited average ranks of 4.63 and 4.57, respectively. Moreover,
no statistically significant differences between heterogeneous
and homogeneous ensembles were noticed. Nonetheless, the
PEC significantly improved the performance of all previous
classifiers, reporting a rank of 1 and statistically significant
differences from most of them.

IV. DISCUSSION

The main findings obtained in the study are next discussed
in response to the raised research questions. Additionally, other
relevant aspects are also covered in the last two subsections.

A. How Effective Are Common Machine Learning Techniques
to Identify Students at Risk of Failing a Conventional Course
of Power Electronic Systems?

All the analyzed classifiers have proven to be rather effective
in identifying students at risk of failing the course. In fact,
values of Acc and Se between 70 and 81% were observed
even when only attributes from the student’s background
were considered (see Table III). According to some previous
works [13], [15], [25], this outcome reinforces the idea that
past achievements can be useful in predicting future student’s
performance. Nonetheless, the predictive abilities observed
in CP1 are considerably higher than those reported in other
previous studies [13], [15], [25], [26]. This contrast could
be explained by the large differences existing among the
works. To this respect, Badr et al. [25] successfully identified
academic performance for 65% of students enrolled in a
programming course, but only grades on previous subjects of
math and english were combined by a naive approach based
on association rules. Similarly, a simple decision tree, built
with several features from the student’s background, reported
values of Acc lower than 68% when predicting student’s
scores on final theory and lab examinations for a course in
basic programming [26]. Also, using cumulative grade point
average and individual scores on four pre-requisites courses for
a subject in engineering dynamics as input variables, Huang
and Fang [15] yielded values of Acc about 60% with several

classifiers. Finally, Howard et al. [13] noticed large values
of mean absolute error when the end-of-semester student’s
score on a blended course in statistic was estimated through
regression techniques.

As expected, student’s grades on the first-year courses
more closely related to Power Electronic Systems reported
more predictive information than those on the remaining
past modules. Thus, only student’s marks on ECC and EDS
achieved values of Acc and Se between 70 and 76% (see
Table III, scenario #1). These two courses introduce learners
to the electrical circuit theory and operation of some basic
components and subsystems, such as resistors, capacitors,
inductors, diodes, transistors, and operational amplifiers. Ad-
ditionally, when student’s score on FPII was considered as
input variable, both Acc and Se significantly increased by
about 5% in scenario #2. This outcome is not surprising, since
this module covers the electromagnetism theory, which plays a
key role in most power electronic circuits [16]. The remaining
features extracted from the student’s background did not make
predictive models more accurate and were hence discarded.

When this set of three attributes (i.e., grades on ECC, EDS,
and FPII) was expanded with variables from the student’s
continuous assessment, values of Acc and Se larger than 85%
were noticed in CP2 (see Table IV, scenario #2). Although
comparison should be carefully established, because course
characteristics, prediction methods, and input variables change
from study to study, this outcome is similar to that reported
by other previous works [7], [12]–[14], [28], [29], as will be
discussed at the end of Section IV-B. Of note is also that, for
every CP, no relevant differences were seen among the per-
formance reported by all the classifiers. However, a Friedman
test has suggested that some algorithms globally performed
better than others, the ranking from the best performer to the
lowest one being PEC, RF, WVE, MVE AB, SVM, KNN,
MLP, NBC, LR, and DT.

These outcomes can be assessed in the light of the well-
known dilemma of bias-variance in machine learning [37].
Whereas bias can be considered as the error provoked by
inaccurate assumptions in the classifier, variance is the al-
gorithm sensitivity to small changes in the training dataset.
Both components determine the classification error for every
algorithm, and are moreover interlinked, such that reducing
one will result in increasing the other [37]. Hence, the limited
differences in values of Acc and Se observed for all the
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classifiers suggest that, in general terms, they reached a good
trade-off between bias and variance. Nonetheless, those with
low bias and high variance (i.e., SVM, KNN, and MLP)
performed slightly better than those with high bias and low
variance (i.e., LR, and NBC). This finding points out that
LR and NBC are too simple to capture all underlying data
patterns, because algorithms presenting a simple structure
often exhibit high bias and low variance [7], [37]. On the
other hand, although DT is also characterized by low bias and
high variance, its performance was slightly worse than the one
reported by SVM, KNN, and MLP. This outcome could be due
to the high variance presented by the classifier, thus requiring a
larger dataset for its optimal training [7], [37]. Indeed, RF and
AB have provided a significantly better performance than DT.
These homogeneous ensembles are characterized by a reduced
variance, since they are based on combining several trees.

Taking advantage of the variance reduction achieved by
combining all the basic classifiers, MVE and WVE also pro-
vided a very similar performance to RF and AB. Nonetheless,
these heterogeneous ensembles also exploit the diversity in the
classification results obtained by the basic algorithms [43],
[44]. To this respect, no relevant differences were observed
among the methods in terms of Se, but slightly higher values
were seen for SVM, MLP, and KNN than for LR, NBC,
and DT. Moreover, LR, NBC, and DT trended to better
work in predicting students passing the course. Hence, this
complementarity between both groups of techniques could
also explain the improvement exhibited by MVE and WVE
to predict at-risk students regarding the basic classifiers.

Despite the highly accurate predictions provided by the four
ensembles, the PEC was the best performer. As Table VIII
shows, its performance was statistically better than most of the
remaining algorithms. Moreover, to the best of our knowledge,
ranks obtained by a Friedman test have not been previously
used in any field to weigh each base model composing a
voting ensemble classifier. This novel combination strategy
is able to exploit information about the performance of each
base classifier on different CPs and diverse subsets of student-
related variables (i.e., scenarios), thus preventing overtraining
for only one classification task [49]. In fact, for every cross-
validation iteration, the basic algorithms were firstly trained on
the learning samples in every CP and scenario, the weights wi

were then computed as described in Section II-D, and finally
the PEC was separately validated on the testing samples in
each one of the 15 cases under analysis (i.e., five CPs and
three scenarios). In so doing, overtraining on a single scenario
was avoided and unbiased classification in every conducted
analysis was achieved. This broad-based combination strategy
could explain the better results obtained by the PEC in every
CP and scenario with regard to the remaining classifiers (see
Tables III–VII). In addition, because no heterogeneous ensem-
ble classifiers based on weighted voting have been previously
proposed for student’s performance prediction, the PEC could
be considered as a relevant contribution of the present work.

Finally, remark that only variations about 3–4% between
values of Acc and Se can be seen in Tables III–VII for all
the conducted analyses and tested classifiers. The fact that the
dataset was highly balanced, presenting a similar number of

students passing and failing the course, could explain such
minor differences. Although a predictive model maximizing
right identification of at-risk students (i.e., Se) is pursued,
Acc still has to be maintained as high as possible to avoid too
many false alarms [7], [50]. To this respect, misclassification
of passing students is not critical, because they would benefit
from receiving additional teaching support to improve their
performance. However, if this prediction error is too high,
many resources could be wasted on students who do not need
that special attention [34].

B. What Is the Optimal Time Point to Predict At-risk Students
Along the Course?

A key goal of the present study was to determine the optimal
time to implement an EWS able to provide students with
a real chance to improve their performance. As previously
described, values of Acc and Se between 70 and 81% were
reported only making use of attributes extracted from the
student’s background. However, these predictions still misclas-
sified roughly one quarter of students at risk of failing the
course (see Table III). Interestingly, the inclusion of features
from the student’s continuous assessment in the predictive
models increased values of Acc and Se by about 20–25%, thus
reaching rates larger than 93.5% in CP5 (see Table VII). This
good outcome is in line with other previous works [13], [28],
and could be explained by the fact that the end-of-semester
grade is computed as a linear combination of the student’s
scores on the course activities and exams [7]. Nonetheless,
predictions at week 13 could be too late to start effective
instructional measures for low-performance students [13].

Comparing the prediction results obtained in all CPs, it
might be noticed that there is little benefit in waiting beyond
the forth week to predict at-risk students. In fact, whereas a
statistically significant increase in values of Acc and Se by
about 10–12% was observed from CP1 to CP2, only improve-
ments between 0.5 and 4% were seen later (see Tables III–
VII). This small, non-significant rise in values of Acc and Se
for CP3–CP5 could not overcome the additional effort required
to collect data after week 4, as well as the delay in predicting
student’s performance. On the other hand, although results
have not been presented in Section III, a non-statistically
significant increase in values of Acc and Se by about 1–
2% in week 2 and a statistically significant rise by about 3–
5% in week 3 were noticed regarding CP1 (i.e., before the
course starts). However, compared with week 3, statistically
significant improvements about 6–9% were still observed in
CP2 (i.e., in week 4). As a consequence, the end of the
fourth week seems to be the optimal time point to implement
an EWS in the examined course, Power Electronic Systems.
This finding is consistent with the fact that the fundamental
notions used throughout the semester to describe most power
electronic circuits and systems are covered until that moment.
Hence, students presenting difficulties in this stage will be
potential candidates to fail the course.

An outcome in the same line has also been reported by other
previous works. After building several regression models on
a week-by-week cumulative basis, Howard et al. [13] have
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concluded that the optimal time to predict at-risk students in
a blended course in statistics was week 5. Also, making use
of a similar approach, Lu et al. [14] have reported week 6
as the critical point to establish an EWS in a blended course
in calculus. For a conventional module in engineering basis,
Marbouti et al. [7], [28] have also found that about 90%
of low-performance learners can be correctly identified at
week 4. Similarly, Costa et al. [12] have obtained predictive
abilities between 80 and 90% in the fourth week of a face-to-
face course in programming, when data were preprocessed
and classifiers were fine-tuned. Finally, feeding regression
techniques with student’s scores on activities completed in
the first quarter of a course in mechanics of materials, Sadati
and Libre [29] have also shown an accurate estimation of the
student’s end-of-semester grade.

C. Can Student’s Performance Progression on Weekly Assign-
ments Provide Useful Predictive Information?

According to some recent works [7], [13], [15], [28], the
previously described improvement in the prediction results
from CP1 to CP2–CP5 also highlights the relevant role that
continuous assessment plays in predicting at-risk students in
face-to-face courses. This kind of assessment has proven to
be effective in engaging learners over the entire course, thus
limiting the number of those only studying during the weeks
before mid-term or final exams [12], [31]. Hence, even if
weekly assignments are graded with a lower weight than in
the present study (i.e., 50%), they could still contribute to
improve early identification of at-risk students. Nonetheless,
whereas cumulative and average grades on successive tasks
have been traditionally used as input variables [7], [13], [15],
[28], the novel features proposed to quantify the student’s
performance progression on weekly assignments have revealed
more predictive information. In fact, compared to mean marks
on ICAs, HAs, and LAs, the proposed indices ∆ICAW ,
∆HAW , and ∆LAW have revealed statistically significant
improvements about 5% in values of Acc and Se for every
CP and prediction algorithm (see Tables IV–VII).

This outcome might be indicative of a better capability
of these novel attributes to quantify the student’s learning
progression along the semester. To this respect, Figure 2(a)
shows how weekly grades on ICAs, HAs, and LAs for passing
students are maintained or slightly decreased, thus suggesting
strong engagement during the entire course and adequate
understanding of the main concepts. Contrarily, a markedly
decreasing trend is noticed in Figure 2(b) for failing learners,
thus pointing to a loss of interest in the course or a poor
progressive learning. In line with these observations, Sadati
and Libre [29] have also reported that students more involved
in weekly activities become more successful on the final exam.
Moreover, the notable difference in the behavior exhibited by
both groups of students agrees with the nature of the course
under study, where knowledge accumulation plays a key role.
Indeed, if students do not understand the main principles
about three-phase systems and how some basic circuits work
(e.g., transformers), they will probably fail at learning more
advanced systems, such as electrical energy converters [16].

3

4

5

6

7

8

Sc
or

e

3

4

5

6

7

8

Sc
or

e

2 4 6 8 10 12 14 Week

ICA
HA
LA

(a)

(b)

Control PointCP5CP4CP3CP2CP1

Fig. 2. Weekly mean scores on ICAs, HAs, LAs for students (a) passing and
(b) failing the course.

It should also be noted that most predictive student-related
attributes in each CP were manually derived, because previous
works have suggested that student’s performance predictions
can be maximized when domain knowledge is used as support
to select the best performing set of input data [27]. Moreover,
a broad variety of previous works have also made use of this
approach [8], [15], [29], [51]. Nonetheless, automatic selection
of features in each CP was also explored. To this respect,
a sequential forward selection approach was used to choose
the subset of input variables minimizing the prediction error
for each classifier. As expected, the selected features were
always the same as those derived manually. More precisely,
the inputs automatically chosen in CP1 were student’s grades
on ECC, EDS, and FPII. In addition to these variables, the
proposed attributes ∆ICAW , ∆HAW , and ∆LAW , along
with student’s mark on the MTE (if possible), were selected
for the remaining CPs.

D. Other Findings About Input and Output Variables

The features extracted from the student’s continuous assess-
ment were part of the end-of-semester grade, which could have
impacted on the classification results described in previous
sections. Hence, all the conducted analyses were also repeated
using student’s grade on the final exam as output variable. The
obtained outcomes in this case are presented in the Appendix.

Briefly, regarding the use of the end-of-semester grade
as output variable, a decrease by about 5% was noticed
in the values of Acc and Se for every scenario, CP, and
classifier. In fact, a paired Wilcoxon signed rank test provided
statistically significant differences in all the analyses, when the
performance of every classifier was compared for both output
variables. Nonetheless, the main findings seen in each CP still
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remained. Indeed, student’s grades on ECC, EDS, and FPII
showed to be more predictive than the remaining variables
extracted from the student’s background (see Table IX). Sim-
ilarly, the proposed features ∆ICAW , ∆HAW , and ∆LAW
also reported a better performance than the remaining ones
used to quantify how student’s learning progressed in CP2–
CP5 (see Tables X–XIII). Moreover, a Friedman test also
provided that the ranking from the best performer to the lowest
one continued to be the PEC, RF, WVE, MVE, AB, SVM,
KNN, MLP, NBC, LR, and DT. Finally, a post-hoc analysis
with Bonferrini correction also yielded a similar distribution
of adjusted p-values for every pairwise comparison of the
classification algorithms (see Table XIV).

These outcomes are not completely surprising, because the
final exam contributes 50% to the end-of-semester grade.
Moreover, it is reasonable to think that most students obtain-
ing a good performance in weekly tasks (i.e., ICAs, HWs,
and LAs) will have no difficulty in passing the final exam.
Nonetheless, considering data from the student’s continuous
assessment both in input and output variables seems to intro-
duce a bias of about 5% in classification rates, regardless of
the used prediction model.

E. Limitations and Future Research

The course-specific perspective used to design the pursued
EWS for Power Electronic Systems has allowed to reach
accurate predictions of at-risk students, but it hampers the
resulting system extrapolation to other education scenarios.
Nonetheless, the most relevant contributions presented in this
work may still be of interest for many researchers. Thus,
because this is the first study proposing an EWS for a course
dealing with power electronic circuits and systems, other
instructors teaching similar subjects would have a reference
about how accurate and early predictions of at-risk students
can be achieved. Additionally, the set of new features proposed
to quantify the weekly progression of the student’s learning,
i.e., ∆ICAW , ∆HAW , and ∆LAW , could also be useful to
early predict at-risk students in other STEM and non-STEM
courses, especially in those where knowledge accumulation
is key to reach the intended learning objectives. Although
students in many courses are not required to complete weekly
assignments, variation between consecutive grades on regular
activities could still be informative of how student’s learning
progresses along the semester.

Likewise, the PEC could also be useful in other STEM and
non-STEM courses, since it exploits global information about
how several basic algorithms perform on a variety of scenarios,
thus reducing overfitting and reaching strong generalizations.
In this case, the analysis of several CPs along the semester
and diverse subsets of student-related variables must firstly be
analyzed in one or several offerings of the specific course to
train the algorithm. However, because this initial analysis is
required to design whatever EWS from scratch, it does not
involve any limitation for the successful performance of the
PEC in other educational contexts.

An important point to emphasize is that all students reg-
istered in the course Power Electronic Systems from its first

offering back in 2010 have been included in the present study.
Although a sample size larger than 362 students could be
desired to obtain more robust conclusions from a statistical
point of view, the analyzed database could still be consid-
ered as representative. Indeed, students were collected from
several consecutive offerings, but the learning setting always
remained approximately constant, as described in Section II-B.
Moreover, the dataset seems to be sufficiently large to study
the multivariate effect of the small set of features studied
here. To this respect, a too small dataset, which could prevent
an acceptable performance from a statistical technique, has
been defined by a ratio of sample size to number of variables
lower than 20 [52], [53]. However, Table II shows that in the
present study the greatest number of input variables analyzed
in scenarios #1, #2, and #3 for every CP were 7, 7, and
14, respectively, thus that ratio being always notably larger
than 20. Nonetheless, students registered in future offerings
of the course will be used to validate the PEC in an upcoming
work. For this study, the algorithm will be prospectively used
without additional training. Although 10 prediction models
were obtained during cross-validation, in all iterations the
weights wi obtained for the base classifiers were very similar,
and those with the highest repetition frequency will be used
to make prospective predictions in future offerings. These
weights were 35, 20, 15, 10, 10, and 10% for SVM, KNN,
MLP, DT, NBC, and LR, respectively.

On the other hand, all classifiers were trained with hyper-
parameters manually selected from previous works. However,
because their fine-tuning could slightly improve student’s per-
formance predictions [12], automatic optimization approaches
will be used for that purpose in the future. Additionally,
regression techniques have also been used for identifying at-
risk students in a variety of courses [13]–[15], [51]. In this
case, a continuous variable has to be considered as output,
thus final exam or end-of-semester marks being commonly
predicted. However, this approach presents an inherent dif-
ficulty to discern between two groups of students, because
estimation error in the final grade could have a notable
impact on classification [54]. Nonetheless, given the promising
results obtained by previous works [13], [15], [51], some
techniques, including principal component regression, support
vector regression, gaussian regression, and regression trees,
will be eventually analyzed.

Regarding the input variables used to feed the classifiers,
only academic features have been considered in every CP.
They are the most common variables in previous works, but in
the last years some student’s demographic and socio-economic
factors are receiving particular attention [4]. Similarly, be-
cause learning is a complex process involving a variety of
psychological factors, such as self-efficacy, emotional state,
motivation, and interest (among others), these have been
recently suggested to improve identification of at-risk students
in some courses [4], [55]. Hence, although most of these non-
academic factors are not collected in daily teaching practice
and time-consuming surveys are required [12], [56], some will
be analyzed in future offerings of the course. Moreover, data
from student’s interaction with the used e-learning platform
will also be included in these further studies.
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Finally, note that identification of at-risk students is only
the first step to implement an EWS, and further research is
required about what kind of support should be provided to low-
performance students. To this respect, some experiments will
be promptly conducted with instructional interventions, such
as review of key concepts after class via interactive readings,
and one-on-one tutoring attendance for 15 minutes per week.

V. CONCLUSIONS

With the goal of establishing a tailored EWS, the ability of
some common classifiers to predict students at risk of failing
a conventional course in power electronic systems has been
analyzed. Although no remarkable differences in the perfor-
mance of all algorithms have been observed, homogeneous
and heterogeneous ensemble classifiers have reported statis-
tically better predictions than other more basic techniques.
Nonetheless, a heterogeneous ensemble classifier based on
a novel combination strategy of several basic classifiers by
weighted majority voting has shown to be the best performer,
reaching classification results comparable to previous works
dealing with courses from other fields. Additionally, the end
of the forth week has been identified as the optimal time
in the semester to make predictions, thus leaving sufficient
time to support low-performance students with instructional
measures. At that moment, values of accuracy about 87–90%
and 81–85% have been obtained when the end-of-semester
and final exam marks have been used as output variables,
respectively. To reach these outcomes, a set of novel features
quantifying student’s performance progression on weekly as-
signments have played a key role. In fact, they have revealed
more predictive information than student’s average grades
typically used in continuous assessment. The time-dependent
information estimated by these novel input variables could also
be useful in other STEM and non-STEM courses, because
they seem to be able to closely estimate student’s learning
progression along the course.

APPENDIX
RESULTS FOR FINAL EXAM SCORE AS OUTPUT VARIABLE

As described in Section II-B of the paper, students passed
the course if they reached an end-of-semester grade equal or
higher than 5 points, and a score on the final exam equal or
greater than 4 points. Hence, this last value was considered to
generate labels when student’s grade on the final exam was
used as output variable. Accordingly, 188 students passed the
final exam and the remaining 174 failed it.

The prediction outcomes obtained by the models built in
CP1–CP5 are shown in Tables IX–XIII, respectively. More-
over, because a Friedman test rejected the null hypothesis, a
post-hoc analysis with Bonferroni correction was conducted
and adjusted values of statistical significance are presented in
Table XIV.
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