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Summary

Automating chart pattern recognition is a relevant issue addressed by researchers and prac-

titioners when designing a system that considers technical analysis for trading purposes.
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tern recognition. A fast version of dynamic time warping, the University College Riverside
subsequence search suite (called the UCR suite), is employed for the pattern recognition
task in an effort to produce trading signals in realistic timescales. This paper evaluates the
significance of the relation between the system’s profitability and (i) the pattern length,
(ii) the take-profit and stop-loss levels and (iii) the performance consensus of past pat-
terns. The trading system is assessed under the mean-variance perspective by using 560
NYSE stocks. The results obtained by the different parameter configurations are reported,
controlling for both data-snooping and transaction costs. On average the proposed system
dominates the market index in the mean-variance sense. Although transaction costs reduce
the profitability of the proposed trading system, 92.5% of the experiments are profitable if

the analysis is reduced to the parameter values aligned with the technical analysis.
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1 | INTRODUCTION

Automating trading decisions, submission and management of trading orders through the use of computer algorithms is a common definition of
algorithmic trading (Hendershott, Jones, & Menkveld 2011). Many algorithmic trading systems have been proposed, particularly aimed at achieving
the automation of trading decisions (e.g. Feuerriegel & Prendinger 2016; Geva & Zahavi 2014; Leigh, Modani, & Hightower 2004; Leigh, Purvis,
& Ragusa 2002). The trading rules embedded in these systems generate trading signals, such as long, short and out-of-the-market (Baia & Torgo
2017), by considering various inputs, including market sentiment and technical factors (e.g. Feuerriegel & Prendinger 2016; Nguyen, Shirai, &
Velcin 2015).

Regarding the latter, a rich assortment of technical tools can be found in the voluminous literature on Technical Analysis (TA). The celebrated
classes of these TA tools are technical indicators (Kim & Han 2001; Metghalchi, Marcucci, & Chang 2012; Patari & Vilska 2014), candlesticks
formations (Lu & Shiu 2012 2016) and chart patterns (Tsinaslanidis 2018; Zapranis & Tsinaslanidis 2012a). However, considering chart patterns
in an automated trading system is a challenging task. Although technical indicators such as moving averages, MACD and RSI are easily expressed

in mathematical form, the identification and interpretation of technical patterns such as 'Head-and-shoulders’ and 'Flags’ may embed a high level
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of subjectivity (Tsinaslanidis 2018). Perhaps this is one of the main reasons why early research in TA was mainly focused on technical indicators
instead of technical patterns. A similar statement in support of this view can be found in Park and Irwin (2007), which provides a comprehensive
literature review on TA profitability: ‘Academic research on technical analysis generally is limited to techniques that can be expressed in mathematical
form, namely technical trading systems, although some recent studies attempt to test visual chart patterns using pattern recognition algorithms’. Despite
this barrier, over the years extensive efforts have been made to automate the identification of technical patterns and several methods have been
proposed. Among them are rule-based techniques (e.g. Dawson & Steeley 2003; Lo, Mamaysky, & Wang 2000; Savin, Weller, & Zvingelis 2007;
Tsinaslanidis & Zapranis 2016; Zapranis & Tsinaslanidis 2012b), template matching (e.g. Arévalo, Garcia, Guijarro, & Peris 2017; Cervell6-Royo,
Guijarro, & Michniuk 2015; Leigh, Frohlich, Hornik, Purvis, & Roberts 2008; Leigh et al. 2004; Leigh, Modani, Purvis, & Roberts 2002; J. L. Wang
& Chan 2007 2009) and machine learning techniques (e.g. Leigh, Paz, & Purvis 2002; Leigh, Purvis, & Ragusa 2002).

Regardless of the type of method adopted, the aforementioned works focus on the identification of specific well-known technical patterns.
In a recent empirical work (Tsinaslanidis 2018) charting was assessed from a more generic perspective; an algorithmic method, based on the
subsequence Dynamic Time Warping (DTW) was proposed in which bullish and bearish classes were assigned to a set of query patterns based on
the price behaviour of similar historical subsequences to these queries (in terms of price and volume). The proposed algorithm captured common,
generic technical principles and was free of technical specifications of particular technical patterns. However, a common drawback when adopting
DTW and its variations is its heavy computational burden (Miiller 2007; Tsinaslanidis & Kugiumtzis 2014), especially on large datasets, although
various modifications have been proposed to speed up DTW computations (see Miiller 2007, and references therein). Speed is a major factor that
should be considered when designing an algorithmic trading system. For example, Scholtus, van Dijk, and Frijns (2014) maintains that speed is
crucially important in high-frequency trading strategies, although the strategies they investigated were based on macroeconomic news releases.

The contribution of this paper is twofold; first, an algorithmic framework embedding a fast version of the DTW, the UCR Suite (Rakthanmanon et
al. 2012) is proposed. To the best of our knowledge, this is the first time that the UCR Suite has been used to design a trading system. The proposed
algorithm provides a trading recommendation (long, short or out-of-the-market) for any present realisation of the pattern, by considering both the
frequency of its appearance and the consistency of its successful performance in the past. This means the design of the proposed system is aligned
with the fundamental principle of TA: that history tends to repeat itself, whilst it is free of specific descriptions of technical patterns. Secondly, the
set of factors that technicians consider in practice is evaluated. The results include statistically significant evidence that higher values of the 'take-
profit’ and the 'length of query’ parameters and lower values of the 'stop-loss’ and 'number of references’ parameters increase the logarithmic odds
of a profitable system configuration. The results are shown to be significant after controlling for data-snooping bias and the proposed system is
shown to be profitable after considering transaction costs, but only for those parameter configurations which are aligned with TA principles.

The remainder of this paper is structured as follows: Section 2 describes the dataset considered, reviews the automatic pattern recognition
through DTW and the UCR Suite, and describes the proposed algorithmic trading system. Section 3 presents and discusses the results, while

Section 4 summarizes the main findings.

2 | MATERIALS AND METHODS

This section describes the dataset used for the experimental evaluation (section 2.1), discusses the DTW approach for pattern recognition and how

the UCR Suite speeds the pattern search process (section 2.2) and presents the stepwise design of the proposed trading system (section 2.3).

2.1 | Data

Adjusted daily open, high, low and close (OHLC) prices for 1,920 NYSE stocks were downloaded from Bloomberg for the period 3-Jan-2006 until
31-Dec-2015. The initial dataset was filtered to exclude stocks with insufficient trading activity and avoid biases that arise when using unduly
high or low prices. The filtering process closely resembled Marshall, Qian, and Young (2009) and Tsinaslanidis (2018) and removed stock series
priced at less than $5 or more than $500, those demonstrating at least one year with a proportion of non-trades greater than 5%, and those with
four or more consecutive days of missing values. Linear interpolation was used to fill the remaining missing values. The filtered dataset contained
T = 2,517 daily prices of N = 560 stocks.

2.2 | DTW and UCR Suite for pattern recognition

The DTW algorithmic technique is based on dynamic programming and aims to find the optimal alignment between two sequences (that may

differ in length) by dynamically stretching and compressing their time axis. Although it initially became popular in speech recognition applications
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FIGURE 1 Time series {P} and {S} before normalization. Dashed lines represent the optimal alignment.

(Gomez-Donoso, Cazorla, Garcia-Garcia, & Garcia-Rodriguez 2016; Sakoe & Chiba 1978), it was later applied to other research areas (Yao et al.
2018), including finance (e.g. G.-J. Wang, Xie, Han, & Sun 2012).

Considering two previously normalized price sequences {P} and {S}, the method can be outlined in three steps:

1. Distance matrix (D) calculation. Every entry in the D matrix is computed as the euclidean distance D(i, ) = (x; — y;)2, wherei € [1,n] and
j € [t,m].

2. DTW (or else accumulated distance) matrix calculation. The distance matrix D is used for the calculation of DTW, following the expression
DTW(i,j) = D(i,j) + min {DTW(i — 1,j), DTW(i,j — 1),DTW(i — 1,j — 1)}.

3. The alignment (or else warping) cost between {P} and {S} is then defined as DTW(n, m).

The DTW matrix is then used to construct the warping (or alignment) path, which determines the pairs of points from {P} and {S} that have
been considered for the optimal alignment. Obviously, there are many possible alignments for a given pair of sequences, in which each alignment
warps the time axis differently, whilst each warping is associated with a different total cost. The term ‘optimal’ refers to the alignment having the
minimal warping cost among all possible alignments. It can be argued that the greater the optimal warping cost for a pair of sequences, the less
similar they are. In an extreme case, if two series are identical, their warping cost would be zero.

Let {Qt}thl be a given query of length L and {S;;j = 1,...,J;t = 1,...,M;} be a set of J sequences, where V; is the length of the jth
sequence. In the context of pattern recognition, the DTW can be used to identify the J sequence with an optimal alignment with the query that has
the minimum optimal warping cost. Fig. 1 depicts an example of two price series, {P} and {S}. Once normalized, the distance matrix is calculated
(Fig. 2) and the optimal alignment is computed (Fig. 3) (shown by the dashed lines in Fig. 1). Note that the distance matrix is calculated by computing
the euclidean distance among the points in price sequences. The term cost is the one used to express the optimal warping path that establishes
the similarity between the price sequences, according to the above-mentioned steps.

An important drawback found by researchers is that running DTW on a large dataset is computationally intensive (Rakthanmanon et al. 2012),
mainly when identifying the optimal warping path, which can reduce the method’s suitability in practical terms. In order to overcome this limita-
tion, several alternative procedures have been proposed to speed up the DTW calculations (see Miiller 2007, and references therein), including
the highly promising UCR Suite proposed by Rakthanmanon et al. (2012). Instead of speeding up the computation time by implementing an
approximate search, the UCR Suite obtains the exact solution by abandoning unpromising candidates sooner. The authors propose computing the
Z-normalization and the Euclidean distance of each datapoint incrementally, which means pruning not just distance but also normalization cal-
culations each time an unpromising candidate is abandoned. As stated by Rakthanmanon et al. (2012), the UCR Suite can search and mine truly
massive time series faster than any other previous approach. A recent application of the UCR Suite in financial markets can be found in Gong, Si,
Fong, and Biuk-Aghai (2016).
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2.3 | Trading system framework

This section describes the stepwise design of the proposed trading system (Algorithm 1) and the parameters involved in the process which are
denoted with a $ sign. Let P = [p; ;] be a T x N matrix containing the prices of the initial dataset, where p; ; denotes the price on security i at period
t,i=1,...,Nandt = 1,...,T. 1 Matrix P is the first input for Algorithm 1. The second input is the period t;, which separates the training set
from the testing set. The rest of the inputs cover the following parameters: the length of the query ($Q.1length), the number of historical patterns
similar to each query ($N.ref)?, the take-profit ($TP), the stop-loss ($SL) and the degree of consensus ($Consensus). To keep things simple, all
parameters are denoted with a $ sign. We must emphasize that Steps 2 and 3 of Algorithm 1 consider only closing prices, while the rest consider

OHLC prices. Figure 4 summarizes the whole proposal framework, which is explained in the following subsections.
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Algorithm 1 Pseudocode for the trading system. Comments are placed after a hash (#) in italics. Parameters are denoted with a $ sign, e.g.
$Q.length. Functions embedded in this code: UCR, LABELLING, DECISION, RESULTS. Stop-loss and take-profit are provided as a percentage.
: Inputs: P, t1, $Q.length, $N.ref, $TP, $SL and $Consensus

: Output: Trade results for all queries of all stocks
Begin

. # Step 1: Split dataset

¢ Pirain = P[1: t1,1 : N] # Training set

: Prest = P[(t1 + 1) : T, 1: N] # Testing set
cfori=1,..., T —t; — $Q.1length + 1 do
forj=1,...,Ndo

0V O N OV A W N R

# Step 2: Query selection (defining the it" query of jth stock)
Qij = P[(t1 +1) : (t1 +i+ $Q.length — 1), ]]

# Step 3. Reference set search (DTW - UCR Suite)
{Ref.Patterns} = UCR(Q; j, PS.;., $N.ret)

train?

[ e
@ N o

# Step 4: Trade decision (1. Labelling reference patterns)
{Labels.for.references} = LABELLING(Ref.Patterns, Py4in,$TP,$SL)
# Step 4: Trade decision (2. Making a trade decision for each query)
{Position; ;} = DECISION(Q; j,Labels.for.references,$Consensus)
# Step 5: Trade result (keep trade results, if any, for a given query)
{Query.Results} = RESULTS(Q; j, Ptest, Position; j, $TP, $SL)

19: end for

20: end for

21: End begin

e e
© N o vk

2.3.1 | Step 1: Split dataset

Initially the dataset is divided into the training set and the test set, Piaining = [Ptraining,i] aNd Prest = [Prest,i] respectively, with training = 1,...,t;
and test = t; +1,...,T. The test set is used to extract the queries sequentially (Section 2.3.2), while the training set includes the references to be
recognized (Section 2.3.3).

2.3.2 | Step 2: Query selection

The first query to analyse spans from py, 41 t0 py; 1 sq.1engtn, Where the value of $Q.length is user-defined. Once all the steps described in Sections
2.3.3-2.3.5 are applied to the first query of each stock series, the process iterates for the next query as illustrated in Algorithm 1. This procedure
is repeated until the last query has been processed, i.e. the one which spans from pr_gq 1engtnt1 t0 pr-

Consideration of the $qQ. length parameter can test whether its value is positively related to the profitability of the trading system. This relation,
if established, is aligned with the technical principal that ‘the significance of a price formation or pattern is a direct function of its size...’ (Pring 2002).

The length of the query should neither be too long nor too short. The longer the query, the more likely it is to be unique, and if a pattern is
unique, searching for similar historical patterns is meaningless, in the sense that this would contradict the basic TA principle, which states that
history tends to repeat itself. Conversely, we could argue that a very short query (say with two or three price observations) is not large enough
to be considered a complex pattern that captures a regular trend. Searching for patterns similar to such a short query would produce thousands
of reference patterns, and hence complicate the process of inferring trade direction. Some combinations of candlesticks are exceptions to this
assertion. However, candlestick patterns also include open, high and low prices, while the pattern recognition involved in this work only considers
closing prices.

2.3.3 | Step 3: Search for reference sets
The algorithm searches the training set (Pyraining) for $N.ref for similar sequences to the Qi,j queries by the UCR Suite (Boersch-Supan 2016). This

step is the UCR function in Algorithm 1, in which Q; j, Piraining and $N.ref are the necessary input arguments and the output is the set of reference
patterns (Ref.Patterns). Fig. 5 gives an example of a query and its set of 15 most similar references obtained in this way. It should be highlighted
that the search for historical patterns similar to the queries is not restricted to the series they belong to, but includes the entire training set. This
approach is also aligned with the argument in Tsinaslanidis (2018) that technical patterns are expected to be globally valid.
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2.3.4 | Step 4: Trading decision

Given that a query spans from time t until t + $Q. length — 1, the proposed trading system suggests a trading signal for time t + $Q. length, i.e. the
day following the last day of the query. Three different trading signals are considered here: long, short and out-of-the-market. The type of signal
generated for a given query depends on the level of consensus of the price behaviour after the associated reference patterns, i.e. for a given query,
a buy (sell) signal is triggered when there is sufficient consensus in favour of buying (selling). Otherwise, the trading recommendation is neutral, i.e.
out of the market. This means the trade decision step is broken down into two phases described by the LABELLING and DECISION functions in
Algorithm 1.

Reference labelling is required to assign ‘buy’, ‘sell’ or ‘neutral’ classes, where the first two are non-exclusive. This is performed by the LABELLING
function (Algorithm 2), where Ref.Patterns, Pyaining, $TP and $SL are the input arguments. The $TP, $SL are user-defined parameters and are
expressed as percentages. An x% stop-loss closes the initial position (whether long or short) when the price moves adversely in x%, whilst a y%
take-profit closes the initial position when the price moves favourably.
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Algorithm 2 Pseudocode for the LABELLING function. Parameters are denoted with a $ sign, e.g. $TP. END.TIME gives the time reference ref ends.
TIME determines what time the level price is reached -second parameter-.

1: Inputs: Ref.Patterns, Praining, $TP, $SL

2: Output: Label.for.references
3: Begin
4: refii=1
5: for ref in [Ref.Patterns] do
6: ref t=ENDTIME(ref, Ptraining)+1
7: ref.entry.price=PtCrain[ref.t, ref.i]
8: buy. TP.t=TIME(ref .t, ref.entry.price x (1 4 $TP), Piraining)
9: buy.SL.t=TIME(ref t, ref.entry.price X (1 — $SL), Piraining)
10: sell. TP.t=TIME(ref .t, ref .entry.price x (1 — $TP), Ptraining)
11: sell.SL.t=TIME(ref .t, ref .entry.price x (1 + $SL), Ptraining)
12: recommendation=NULL
13: if buy. TP.t < buy.SL.t then
14: recommendation = recommendation U BUY
15: end if
16: if sel. TP.t < sell.SL.t then
17: recommendation = recommendation U SELL
18: end if
19: Label.for.references[ref.i]J=recommendation
20: refi=refi+1
21: end for
22: End begin

The TIME function embedded in Algorithm 2 is used to calculate the time at which a stop-loss and a take-profit order would have been triggered
after opening a long or a short position on the day after each reference pattern, so that up to four different times are calculated for each reference.
Let buy. TP.t and buy.SL.t be the times (if any) that an initial long position is closed because a theoretical take-profit and stop-loss order had been
triggered, respectively, as in the interpretation for sell. TP.t and sell.SL.t, which are those of an initial short position.

A bullish (bearish) class is assigned to a reference when the price moves upwards (downwards) and reaches the take-profit before the stop-loss
level. 3 We should also point out the algorithm may assign both a ‘bullish’ and a ‘bearish’ class to a given reference according to the values of $TP
and $sL. This can occur when a large $SL value is used in conjunction with a $TP value too close to the open trade price, whereby both take-profit
levels can be reached before stop-loss levels, whatever the direction of the price path after the reference. On the other hand, using a narrow $sL
and a wide $TP value jointly can produce unsuccessful buy and sell trades in the reference, so that the assigned class is 'neutral’. A neutral class is
also assigned in the special and rare case of a price reaching the end of the available dataset without touching either the take-profit or the stop-loss
levels.

Regarding the DECISION function, the classes (labels) assigned to the reference patterns are used to define the degree of consensus of the
pattern. Section 3 explains how the $Consensus parameter is implemented in the trading system.

2.3.5 | Step 5: Trade result

A position is opened at the open price when the system makes a buy or sell recommendation for a given query, and is closed when stop-loss or
take-profit levels are reached. The transaction-related results are kept for further analysis.

2.4 | Logit regression

The trading system framework was evaluated for the data described in Section 2.1 both by analyzing the return on each parameter configuration
and the profitability of the trading system. The latter was considered as a binary outcome:1, when the return is positive (profitable) and O otherwise
(non-profitable). We use a logit regression model to explain profitability with the parameters in Table 1 as independent variables.

The effect of stop-loss and take-profit mechanisms on trading decisions has been analyzed by the area of behavioural finance (Aspara & Hoff-
mann 2015). According to the literature, we expect a positive sign for the $TP (Arévalo et al. 2017; Cervell6-Royo et al. 2015; Wu, Wang, & Chung
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TABLE 1 Parameters values used in the experiments.

Symbol Parameter Values
$Q.length Query length (days) 10, 15, 20, 25
$N.ref Number of references 10, 15, 20, 25
$sL Stop-loss (%) 3,5,7,9,11
$TP Take-profit (%) 8,10, 12, 14, 16
$Consensus Degree of consensus (% of trades) 0.5-10

2017) coefficient. However, the expected sign for the $SL coefficient is unclear according to the reported findings of researchers: negative for
Cervell6-Royo et al. (2015); Wu et al. (2017) and non-significant for Klement (2013). The query length coefficient is also expected to be positive,
as the longer the price pattern, the stronger its significance (Pring 2014). As stated in Appel (2005, p. 132) "the longer the time period that the
pattern takes, the stronger and more important the pattern becomes". Regarding the number of references and the degree of consensus used in
the trading system, we hypothesize a negative sign for the former and a positive sign for the latter. We assume that the more references included
in the analysis, the less overall similarity between the query and the references, because most similar references are prioritized when added to the
reference set. The hypothesized positive sign for the consensus is more apparent: if most references agree about the future trend of the market,
the trade decision can be firmly adopted according to its past behaviour.

3 | RESULTS AND DISCUSSION

This section presents and discusses the results obtained from the proposed trading system (Section 3.1) and assesses whether the system’s
profitability is affected by data snooping (Section 3.2) and transaction costs (Section 3.3).

3.1 | Empirical results

The trading system and the corresponding user-defined parameters were introduced in Section 2. This section presents the results of the trading
system considering a wide range of values for these parameters to test whether there is any significant relation between them and the performance
of the proposed system.

The values considered for these parameters are tabulated in Table 1. The values of $Q.1length span from two to five trading weeks and the

reference sets are composed of 10 to 25 references.

On average, take-profit values should be greater than stop-loss values (Arévalo et al. 2017; Cervell6-Royo et al. 2015). Thus, five equidistant
values are considered for $SL ranging between 3% and 11%, while for $TP the corresponding range is between 8% and 16%. In all our experiments
we used t; = 1,000, and hence the training set is composed of 1,000 trading days and the test set of 1,517 trading days.

For the last parameter, $Consensus, we linked the degree of consensus in the references’ recommendations with the percentage of trades
triggered by the trading system. We defined the $Consensus as the ratio between the number of trades actually executed and the number of
'potential’ trades. For the latter, we presumed that the system can trade any stock every day in the test set. As stated in Cervell6-Royo et al. (2015),
it is reasonable to think that the market does not always offer investment opportunities and that these only occur from time to time. As can be seen
in Table 1, we assumed that the $Consensus parameter can fluctuate within the range of 0.5% - 10%, which implies a high degree of consensus
between the references, as explained below.

The trading decision is made by following the majority voting method, and is only triggered when there exists a consensus among the references
on the future direction on price and the trade decision: buy, sell or out-of-the-market. But the majority is not determined by the simple consensus
of at least half plus one of the references. Considering the demanding values of the degree of consensus in Table 1, we restrict the majority concept
to the quasi-unanimity case. Let us suppose that the size of the reference set is 10, and we require full consensus between references before
triggering the trade, so that all 10 references must agree on buying or on selling. In any other case, the recommendation is out-of-the-market. Such
a highly demanding approach limits the number of trades actually executed. The less demanding the degree of consensus, the larger the number

of trades triggered.
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TABLE 2 Labelling procedure and consensus degree computation. This example assumes $N.ref=10 and $Q.1ength=10.

# Trade ‘ References Buy Out Sell ‘ Recommendation
1 +1 +1 -1 0 -1 0 {+1,-1} +1 -1 -1 4 2 5 Out
+1 +1 +1 0 +1 +1 +1 +1 +1 -1 8 1 1 Buy
3 -1 -1 -1 -1 -1 -1 {+1,-1} -1 +1 -1 2 0 9 Sell
1,687,840 {+1,-1} -1 0 -1 +1 +1 {+1-1} -1 -1 +1 5 1 6 Out

Note: # Trade corresponds to the number of the potential trade, +1 to buy, -1 to sell, {+1,-1} both to buy and sell, and O to out-of-the-market. The
example uses $N.ref=10. The total number of potential trades (1,687,840) is obtained by multiplying the number of stocks (560), by 2 (long and
short trades), and by the length of the training period (1,517) minus the length of the query $Q.1length=10: 560 x 2 x (1,517 — 10) = 1,687, 840

potential trades. This example assumes that a buy or sell recommendation is made if at least 8 references agree about the trade.

An example of the proposed approach in given in Table 2, which illustrates the case in which $N.ref=10 and $Q.1ength=10. We consider
that the testing period spans fromt; +1 = 1,001 tot, = T = 2,517. Considering that $Q.1ength=10, the number of potential trading days
is 2,517 — 1,001 — 10 + 1 = 1,507. Since we can launch either buy or sell signals and the database is composed of 560 stocks, the number of
potential trades rises to 1,507 x 2 x 560 = 1,687, 840.

Each reference may recommend a buy (+1), a sell (-1), a buy and a sell (+1, -1) or an out-of-the-market (0) position. For example, the first potential
trade in the first row in Table 2 gives 3 buy, 4 sell, 1 buy and sell, and 2 out-of-the-market recommendations. One of the references recommends
both the buy and sell positions, so that we get 4 buy (3 buy and one more from the buy and sell), 2 out-of-the-market, and 5 sell recommendations
(4 sell and one more from the buy and sell). Let's suppose that we require at least 9 coincident values to accept the recommendation. In that case,
only trade number 3 would be triggered (sell order). Following this requirement and after covering the full table, the number of trades triggered
could vary between 0.5% x 1,687,840 = 8,439 and 10% x 1,687,840 = 168, 784, after fitting the degree of consensus limits in Table 1. If the
number of trades is out of this range, the case with 9 coincident values is discarded.

The algorithm continues this procedure with 8 coincident values in the references’ recommendations. In that case, trade number 2, recom-
mending a buy, should be added to trade number 3, recommending a sell. Again, the total number of trades triggered must be in the range
[8,439 — 168, 784] , otherwise the case is discarded.

By following this procedure, which is repeated for all possible combinations, a single combination of the first 4 parameters in Table 1 can involve
more than one experiment. The only constraint is the minimum and maximum number of trades considered by the $Consensus parameter. Overall,

the combination of the degree of consensus with the other parameters has given a total of 1,126 experiments.

The system generated a positively-skewed distribution average daily returns with a mean value of 0.12% for all 1,126 experiments. It should
be noted that 91.03% of all the experiments generated a positive average daily return, although some parameter values were not aligned with
TA principles and were only considered for comparative purposes. 4 Table 3 gives information on six experiments that involved six equidistant
percentiles regarding the average return. The number of trades in these experiments gives an insight into the relationship between the degree
of consensus and the actual number of trades triggered. For example, the first experiment, which reported the minimum average return with
parameters $Q.length=10, $N.ref=20, $SL=0.11 and $TP=0.08, did trigger 11,084 trades between long and short positions. This figure represents
0.66% (%) of the maximum number of trades that could have been potentially opened. This percentage gives the degree of consensus among
the references regarding the signals issued and appears as "Trades %" in Tables 3, 5 and 6. The higher the percentage, the higher the number of
references which agree on the signal provided to the trading system.

Table 4 includes a summary of the statistics for the variables involved in the experiments. Table 5 shows the Spearman’s rank correlation
matrix between the generated average daily returns and the parameter values used in each experiment. The tabulated results show a monotonic
relationship between all but one parameter value and average returns at a significance level of 1%.

The strongest relationship is found between the take-profit and the average profit: 0.701. As expected, the sign of the associated coefficient is
positive and corroborates the results reported by Arévalo et al. (2017); Cervell6-Royo et al. (2015); Wu et al. (2017). However, the stop-loss is not
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TABLE 3 Parameters’ values used in the experiments.
Perc. Avg. return $Q.length $N.ref $sL $TP Trades % Trades
min -0.00141 10 20 0.11 0.08 0.0066 11,084
20th 0.00033 10 20 0.11 0.12 0.0327 55,276
40th 0.00075 10 20 0.07 0.12 0.0327 55,205
60th 0.00122 25 10 0.03 0.10 0.0344 58,145
goth 0.00194 20 15 0.03 0.16 0.0528 89,118
max 0.00763 25 10 0.11 0.14 0.0083 14,012

Note: All the experiments have been sorted according to their average daily return. The table shows those experiments positioned in the percentiles
displayed in the first column. The "Trades %" column refers to the percentage of trades triggered by the trading system divided by the maximum
number of potential trades.

TABLE 4 Summary statistics of the variables involved in the experiments.

Mean Median Min. Max. Range St. Dev. Skewness Kurtosis
Avg. return 0.001 0.001 -0.001 0.008 0.009 0.001 1.527 3.626
$Q.length 17.540 15 10 25 15 5.573 -0.001 -1.354
$N.ref 18.841 20 10 25 15 5417 -0.323 -1.201
$sL 0.069 0.07 0.03 0.11 0.08 0.028 0.029 -1.304
$TP 0.121 0.12 0.08 0.16 0.08 0.028 -0.039 -1.295
Trades % 0.035 0.027 0.005 0.100 0.095 0.028 0.810 -0.593

TABLE 5 Spearman'’s rank correlation matrix.
Avg. return $Q.length $N.ref $sL $TP Trades %

Avg. return 1.000
$Q.length 0.209** 1.000
$N.ref -0.335** 0.012 1.000
$sL -0.036 -0.010 0.020 1.000
$TP 0.701** 0.003 -0.012 0.031 1.000
Trades % -0.162** 0.009 -0.039 0.040 -0.053 1.000

Note: ** Indicates statistical significance based on Spearman rank correlation test (Harrell 2018) at the 1% significance level.

significantly related to the average return (-0.036). According to the significant correlation with the query length (0.209), our results are aligned
with the TA assertion that the significance of a pattern is positively related to its size.

We also assessed whether the level of similarity between the query and the corresponding references affects the performance of the system.
It should be remembered that in our experiments, when $N.ref = 10, only the most similar 10 patterns to a query are considered. Increasing the
value of this parameter to 15 means that for each query the UCR Suite adds the next five most similar to the existing reference set of 10 patterns.
These are less similar to the query than the 10 pre-identified patterns. Increasing the size of the reference set thus reduces the mean similarity
between each query and its references. In the TA context, we could expect the reduced average similarity to reduce the algorithm’s effectiveness.
The negative and statistically significant coefficient, —0.335, reported in Table 5 supports this expectation.

After analyzing the relationship between the variables involved in the experiment, a logit regression model was built to explain how the param-
eters influence the probability of the trading system being profitable. The dependent binary variable takes the value 1 if the average return of the
trading system is greater than O (profitable), and O otherwise (non-profitable). Table 6 shows that higher values for the take-profit and the length of

the query increase the logarithmic odds of a profitable system configuration. However, these odds are reduced for larger values of stop-loss and
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TABLE 6 Logit model to explain the profitability status of trading system’s configurations.

Estimate Standard error z value Pr(> |z])
(Intercept) -3.22956 0.64372 -5.017 5.25e-07 ***
$Q.length 0.14804 0.01830 8.088 6.05e-16 ***
$N.ref -0.20192 0.02055 -9.825 < 2e-16™**
$sL -33.10133 3.67211 -9.014 < 2e-16***
$TP 73.37401 4.90533 14.958 < 2e-16***
Trades % -5.67677 3.28330 -1.729 0.0838

Note: Signif. codes: ***' 0.01 **' 0.05. Null deviance: 1340.44 on 1125 degrees of freedom. Residual deviance: 734.94 on 1120 degrees of freedom.
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FIGURE 6 Risk-return comparison for each experiment, the composite trading system, and the NYSE index

number of references. The estimated coefficients of all the aforementioned parameters are statistically significant at a level of 1%. The only coef-
ficient which is not statistically significant is the percentage of trades, although the reported p-value is relatively low. According to these results,
investors trying to optimize their investment strategies should constrain these parameters to the most suitable values in Table 1. Note that some
parameter values were specifically introduced to analyze the impact of these variables on the trading system performance. After verifying its influ-
ence on profitability, trading systems should be designed by considering the values intended to enhance the results of the strategy, which are
aligned with the leading TA principles.

Fig. 6 gives the performance of all the experiments considered in the variance and average daily return space. The NYSE Composite index was
selected as the benchmark to compare the trading system with the market. The composite performance of the trading system is also depicted as
representing the average performance of the full set of experiments. Returns on the composite trading system were calculated by averaging the
daily return on the experiments. This figure confirms that the trading system is capable of beating the market in the mean-variance sense before
considering transaction costs.

Unlike previous studies, (Arévalo et al. 2017; Cervell6-Royo et al. 2015; Wu et al. 2017), which reported only the performance of each con-
figuration of the trading system, we believe that it is of interest to present the different configurations in a unique composite trading rule. This
firstly gives the average behaviour of all the configurations by using a single point, and secondly we can benefit from the diversification effect. The
combined experiments can improve the variance of the returns.
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3.2 | Controlling for data snooping

Trading system profitability is often questioned due to the data snooping problem, which occurs when the same data is used more than once for
model selection (White 2000). The problem arises when the trading system is designed through an extensive search for specifications around the
parameters. In such a case, it is likely that reported profitability could be the result of chance rather than due to the system’s ability to make a real
profit. For instance, we could question whether the proposed trading system is profitable because of the stocks and time span selected, or the
parameter values chosen such as $SL, $TP, $Consensus, etc. or whether it is able to deal with a wide and sensible range of specifications.
Although data snooping cannot be completely eliminated, several statistical tests have been designed to detect its presence. A noteworthy
statistical test was developed by White (2000), which deals with data snooping biases and can objectively determine whether a trading system can
be considered profitable from a statistical perspective. White’s Reality Check primarily generates the empirical distribution of a complete set of
trading system parameterizations that lead to the best trading system configuration and then decide if the last significantly outperforms the rest.

The Reality Check test starts by calculating the | x 1 performance statistic:

t2
f=n""3" 1 (1)
t=t1+1
where | is the number of different trading system configurations to be evaluated, n is the number of prediction periods from t; + 1 through t; so

that t; = t; + n, and f; is the return for period t + 1.
We define f ; as the return on the k-th trading system configuration for period t.

fre,e =log(1 4+ iy ) —log(l + relo¢) (2)
where r is the return on day t defined as ry = (pt — pt—1) /pt, and Iy ¢ and lg  are the market position indications obtained from the k-th trading
system configuration and the benchmark, respectively; i.e., +1 (buy), -1 (short), or O (out of the market). In our case, we assume the out of the
market strategy as a benchmark, lo; = 0 Vt, whereas f, ; can only get the specific values of stop-loss and take-profit values used in the trading
system configuration.

The null hypothesis to test, Eq. (3), is that the performance of the best trading system configuration is no better than the performance of the
benchmark.

Ho = nax 1{E(fk)} <0 3)
If the null hypothesis is rejected, then we can conclude that the best trading rule is superior to the benchmark. White (2000) evaluates the null
hypothesis by applying the Politis and Romano (1994)’ stationary bootstrap to the observed values of fy ;, and obtains B bootstrapped values of
i by resampling the returns from the | trading rules, denoted as ?:i where i refers to the index of the B bootstrap sample. The last step consists
of calculating Egs. (4) and (5).

Vi= max {vi (7))} @

Vii= Pty {\/ﬁ (fZZ B ?’“)} )
The Reality Check p-value is obtained by comparing the V, to the quantiles of VH, and the null hypothesis can be tested.

We applied the steps proposed in White (2000) to detect any data snooping bias in the results reported in Section 3.1. Fig. 8 shows the result of
the Reality Check test in the same way to those reported in White (2000). The points represent the average return on the different trading system
configurations. It can be seen that most of them are positive. The 887-th configuration ($Q.1ength=10, $N.refs=25, $TP=14%, $SL=11%) was
the best, with an average return of 0.763%. The configuration was very selective with the degree of consensus and only 0.83% of the potential
trades were triggered, although this percentage actually represents a considerable number of trades (14,012). Figure 7 shows the accumulated
return on this configuration (Experiment 1), in which total return is maximized, along with another experiment which maximizes the return per
trade (Experiment 2). The latter was obtained by setting $Q.1length=25, $N.refs=10, $TP=16% and $SL=7%.

Fig. 8 also shows the evolution of the best up to the moment trading rule configuration (dashed line) and the evolution of the p-value (solid line).
The test rejected the null hypothesis and so it can be concluded that the profitability of the trading system is significant after controlling for data
snooping bias. This is a reasonable result, considering that the best configuration of our proposed trading system reached 0.763% average return
per trade, which is higher than the average return reported in previous studies. For instance, in Sullivan, Timmermann, and White (1999) the best
trading rule reported 0.29%, while in Hsu and Kuan (2005) the best result was 0.186% average return, 0.18% in Cervell6-Royo et al. (2015) and
0.25% in Arévalo et al. (2017). The significance of our results was reinforced by executing a larger number of trades than previous studies.
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FIGURE 8 Performance of the best model chosen from the full universe according to the average return. Models are indexed in the x-axis, the
scattered points plot the average return for each model, the dashed line represents the highest average return obtained up to that model, and the

thin line measures the associated data-snooping adjusted p-value.

3.3 | Transaction costs

Obviously, including the transaction costs has a negative impact on the net profitability. The difference between the performance of two trading
systems may be negligible (or even change its sign) after considering transaction costs. As stated in Guijarro (2018), brokers usually apply a fee
which consists of a fixed component, regardless of the number of shares traded, and a variable component which is proportional to the volume
of transactions, so that the more trades involved in a transaction the lower the broker’s fee. The historic evolution of transaction costs makes it
difficult to consider a single fee for the whole testing period.

Despite the difficulty of considering a universal fee, we cautiously decided to follow the floor trader cost used in Fama and Blume (1966) as the
minimal transaction cost, which is estimated at 0.05% for each one-way trade. As stated in Hsu and Kuan (2005), such a cost rate is applicable to

market makers and may also be possible for large institutional investors.
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It should be remembered that without considering transaction costs, 1,025 configurations out of the original 1,126 (91.03%) generated a positive
average daily return. However, after considering a fee of 0.05% for each one-way trade, only 552 configurations out of the original 1,126 (49%) still
show a positive return. However, we should underline that in our experiments the parameters were configured for testing some TA assumptions,
so that most of these transaction cost’s negative effects should be excluded once the parameters are constrained to values supported by TA and
the evidence ound in this study. For example, we can slightly constrain the values of the parameters. Discarding some of the extreme parameter

values can limit our study to the following parameter configurations:

e 3Q.length € {15,20,25}
e 3N.ref € {10,15,20}

o $SL < $TP

e $Consensus € [0.5,7.5]

The number of configurations thus drops from 1,126 to 429, but the percentage of profitable trading systems rise to 92.5%. This means the trading
system reports a mean return per trade of 0.12% before transactions costs. If we subtract a 0.05% for each one-way trade due to transaction costs,

the mean return drops to 0.02%. However, after removing the extreme parameter configurations the mean return after transaction costs is 0.13%.

4 | CONCLUSIONS

This paper proposes a novel trading system based on generic chart pattern recognition. The method leans on previous studies ascertaining the sig-
nificance of celebrated chart patterns and extends the analysis by including any possible pattern whose past realization yielded a similar successive
price behaviour. This paper assumes that because of the dynamic nature of stock markets, new patterns can emerge and join the classical ones
referred in the context of technical analysis. The proposed algorithmic design embeds the UCR Suite, a fast version of the dynamic time warping
method, which significantly speeds up the pattern recognition phase. Besides evaluating the performance of the proposed system, the paper also
assesses whether there is any relation between the profitability of the trading system and a set of parameters such as the length of the pattern,
take-profit and stop-loss orders.

This study shows that analysts can focus on the search for generic chart patterns without being limited to those appearing in the technical
analysis domain. It also shows a positive relation between the length of the query and the trading system’s performance. Regarding the take-profit
and stop-loss, the former exhibits a significant positive relation with the performance of the trading system, while the latter is not significant.
The results highlight that the composite trading system obtained by averaging the full universe of trading system configurations dominates the
NYSE index in the mean-variance sense. The trading system was evaluated by controlling for data snooping and considering transaction costs.
The results also support that the odds of a profitable system configuration can be improved when higher values for 'take-profit’ and the 'length of
query’ parameters are considered. The odds are also raised when lower values for the ‘stop-loss’ and ‘number of references’ parameters are used. The
average return per trade after a 0.05% transaction fee for each one-way trade is 0.02%. However, if the system is configured with parameter values
supported by a technical analysis, this figure rises to 0.13%. Finally, including the UCR Suite in the pattern recognition phase can have practical
implications, since it can design similar complex trading systems able to analyse large datasets and generate trading signals in realistic timescales.

Although these results are generally promising, we believe that further research is required in this field. It would be useful to completely automate
the trading system so that the parameter values could be dynamically determined and thus would vary as a result of their reported performance.
Optimizing these parameters could be approached by several machine-learning techniques. Due to the large number of parameter combinations a
genetic algorithm (Holland 1992) could be applied to efficiently search for their optimal values. Particle swarm optimization (Kennedy & Eberhart
1995) or ant colony optimization (Dorigo, Maniezzo, & Colorni 1996) are also potential machine-learning alternatives to explore. Although the
dataset is composed of a large number of stocks, there are various issues which could be addressed in the future to overcome some limitations.
The method could be tested in additional markets over a larger period of time with different assets (currencies, commodities) and in different

timeframes (intraday data).
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Notes

1Throughout the rest of the paper, we will collectively denote OHLC prices as P = [pe,i]- Superscripts will be used to refer to a specific type of prices, i.e.
PO, P, Pt and P¢ will be used to refer to open, high, low and close prices respectively.

2Following Tsinaslanidis (2018), in the rest of this paper we interchangeably refer to these patterns as reference patterns, or simply references.

3Stop-loss and take-profit levels have also been used for labelling purposes in Arévalo et al. (2017); Cervellé-Royo et al. (2015); Teixeira and De Oliveira
(2010); Wu et al. (2017). An alternative approach is to use fixed holding periods after each trade and assign a class depending on whether the price at the
end of the holding period is over or under the trade’s opening price (e.g. Leigh et al. 2004; Leigh, Paz, & Purvis 2002).

4For example, some combinations where the stop-loss was larger than the take-profit were considered, although the literature suggests the opposite as
being profitable. We include these combinations to test the assumptions made in previous studies.
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