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ABSOLUTELY (q, 1)-SUMMING OPERATORS ACTING IN
C(K)-SPACES AND THE WEIGHTED ORLICZ PROPERTY

FOR BANACH SPACES

J. M. CALABUIG AND E. A. SÁNCHEZ PÉREZ

Abstract. We provide a new separation-based proof of the domination
theorem for (q, 1)-summing operators. This result gives the celebrated
factorization theorem of Pisier for (q, 1)-summing operators acting in
C(K)-spaces. As far as we know, none of the known versions of the
proof uses the separation argument presented here, which is essentially
the same that proves Pietsch Domination Theorem for p-summing op-
erators. Based on this proof, we propose an equivalent formulation of
the main summability properties for operators, which allows to consider
a broad class of summability properties in Banach spaces. As a conse-
quence, we are able to show new versions of the Dvoretzky-Rogers Theo-
rem involving other notions of summability, and analyze some weighted
extensions of the q-Orlicz property.
Dedicated to our esteemed Professor Andreas Defant, who long ago
posed the problem that originated this work as a question to the second
author.

Summability and Orlicz property and factorization space 46E30 and
47B38 and 46B42

1. Introduction

The property of infinite dimensional Banach spaces containing weakly
p-sumable series that are not norm p-sumable is one of the most relevant
facts in functional analysis. The so called Dvoretzky-Rogers Theorem gives
the strict limits of this result, establishing that actually this property is an
exclusive feature of infinite dimensional spaces. Although this is a classical
theorem, modern functional analysis provides a simple and elegant proof
using the Pietsch’s Factorization Theorem for p-summing operators: the
identity map in a Banach space is p-summing if and only if it is finite di-
mensional. However, this is not true if we consider (q, p)-summing operators
instead; we write Πq,p for this class. Recall that an operator T : G → E
is (q, p)-summing (1 ≤ p, q < ∞), that is, T ∈ Πq,p(G,E), if there is a
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2 J. M. CALABUIG AND E. A. SÁNCHEZ PÉREZ

constant Q such that( n∑
i=1

‖T (xi)‖q
)1/q

≤ Q sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|p
)1/p

,

for every finite set x1, ..., xn ∈ G. As usual, we write πq,p(T ) for the norm
of T in the Banach space Πq,p(G,E), which coincides with the infimum of
all the constants Q in the inequality above. If q = p we have the ideal of
p-summing operators. A direct computation shows that, in the case that
the domain is a C(K) space, the right hand side of the inequality above can
be substituted by the simpler expression Q‖(

∑n
i=1 |xi|p)1/p‖C(K).

There are a lot of examples of relevant (q, p)-summing operators. For
instance, there are infinite dimensional Banach spaces —e.g. Hilbert spaces
and in general cotype q-spaces— satisfying the q-Orlicz property, that is,
the identity map is (q, 1)-summing (see the papers [18, 19] by Talagrand,
see also [3, Chs.8,31,32] and [6, Ch.11]). The case q = 2 gives the so called
Orlicz property, that is satisfied for all cotype 2 spaces (see [19], [3, 32.11]
and the references therein).

A more general version of the Dvoretzky-Rogers Theorem can be found
in [6, Th.10.5]. It states that for 1 ≤ p ≤ q < ∞ such that 1/p − 1/q <
1/2, every infinite dimensional Banach space contains a weakly p-summable
sequence that fails to be norm q-summable, and the relation among the
indices is optimal. The present paper is an attempt of giving a more general
point of view by introducing homogeneous weights in the definition of weak
summability. Our ideas are inspired by the characterization of the class
of (q, 1)-summing operators acting in C(K)-spaces that provides Pisier’s
Factorization Theorem through Lorentz spaces Lq,1(λ) (see [16]). Pisier’s
result can be presented as follows: an operator T : C(K) → E is (q, 1)-
summing if and only if there are a constant Q > 0 and a probability measure
λ ∈ M(K) —the space of all Borel regular measures on K— such that for
every f ∈ C(K), ‖T (f)‖ ≤ Q (

∫
K
|f | dλ)1/q ‖f‖1/q′ . An easy calculation and

the standard separation argument that proves the Pietsch’s Domination
Theorem for p-summing operators show that this is also equivalent to the
inequality( n∑

i=1

∥∥T (fi)
∥∥q)1/q

≤ Q sup
η∈BM(K)

( n∑
i=1

∣∣〈fi, η〉∣∣ ∥∥fi∥∥q−1
)1/q

, (1)

to hold for all finite sets f1, ..., fn ∈ C(K); this will be shown in the Prelim-
inaries section of the present paper. However, this equivalence is not true
anymore if we consider a general Banach space instead of C(K).

From a different point of view, the operator ideal defined by the inequality
(1) for general Banach spaces was analyzed by Matter (see [11, 12]) as a
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consequence of an interpolation procedure developed by Jarchow and Matter
([7]). Using this method, if 0 ≤ σ < 1, the operator ideal Πσ

1 can be
constructed. A linear operator T : G → E belongs to the corresponding
component Πσ

1 (G,E) of the ideal if there is Q > 0 such that for all finite
sequences x1, · · · , xn ∈ G we have

( n∑
i=1

∥∥T (fi)
∥∥ 1

1−σ
)1−σ

≤ Q sup
x′∈BG∗

( n∑
i=1

∣∣〈fi, x′〉∣∣ ∥∥fi∥∥ σ
1−σ
)1−σ

.

The key result that connects the characterization of (q, 1)-summing oper-
ators acting in C(K)-spaces and the operator ideal defined by the interpo-
lation procedure of Jarchow and Matter is the coincidence of Πq,1(C(K), E)
and Πσ

1 (C(K), E) for q = 1/(1−σ). This fact was already noticed by Matter,
and was specifically studied in [10].

There is a third point of view for approaching factorization of (q, 1)-
summing operators which was introduced by Kalton and Montgomery-
Smith in [8]. In this paper, a domination of capacities by measures provides
a technique for proving in an alternate way Pisier’s Factorization Theorem.
The same procedure was the starting point of the results in [5], in which a
unified method for proving a broad class of known factorization theorems
—Pisier’s Theorem, Maurey-Rosenthal Theorem,...—, was given.

In this paper we show that in fact Pisier’s Theorem can be proved us-
ing the same standard separation argument that proves Pietsch’s Theorem
and Maurey-Rosenthal’s Theorem, just by adapting the proof of Pisier’s
Theorem shown in the excellent presentation given in the book of Dies-
tel, Jarchow and Tongue ([6, Ch.10]). This determines our methodolog-
ical approach, that will be applied for showing our generalization of the
Dvoretzky-Rogers Theorem. Our main result is a characterization of the
class of homogeneous weights for which the coincidence of weak weighted
summable and norm summable sequences in a Banach space implies that it
is finite dimensional (Theorem 3.7). In order to do this, we introduce the
notion of weighted (q, φ)-Orlicz property for a Banach space as follows. Con-
sider a Banach space G and a (positive) homogeneous function φ : G→ R+.
The space G has the weighted (q, φ)-Orlicz property (1 ≤ q <∞) if there is
a constant Q such that

( n∑
i=1

‖xi‖q
)1/q

≤ Q sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|φ(xi)
q−1
)1/q

,

for every finite set x1, ..., xn ∈ G.
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2. Preliminaries: A separation argument for proving Pisier’s
theorem on (q, 1)-summing operators

As usual, for 1 ≤ q < ∞ we write q′ for the real number given by
1/q + 1/q′ = 1. If E is a Banach space, we write BE for its unit ball,
SE for its unit sphere, E∗ for its dual space and M(BE∗) for the space of
regular Borel measures on the unit ball BE∗ . We use standard Banach space
definitions and notation.

We will work with (q, p)-summing operators (1 ≤ p, q < ∞); the cor-
responding operator ideal is denoted by Πq,p; we have already given the
definition. The interpolated ideals introduced by Matter in [11] and re-
ferred to in the Introduction are defined as follows. An operator T : G→ E
is (q, σ)-absolutely continuous (0 ≤ σ ≤ 1), that is T ∈ Πσ

1 (G,E), if and
only if there is a constant Q such that( n∑

i=1

‖T (xi)‖
q

1−σ

) 1−σ
q ≤ Q sup

x′∈BG∗

( n∑
i=1

|〈xi, x′〉|q‖xi‖
qσ
1−σ

) 1−σ
q
,

for every finite set x1, ..., xn ∈ G.
The following result is of course well-known —it is Pisier’s Theorem—.

From the point of view of the general techniques of factorization of opera-
tors, it was a bit disappointing that the procedures for proving such results
—at least, three of them, as was explained in the Introduction— did not use
a Hahn-Banach/Ky Fan separation argument, as in the other known fac-
torizations. What is relevant in the following proof is that it is supported
by such an argument.

A family Ψ of real functions defined on a non-empty set is called concave
if, for every convex combination ψc of every finite set {ψ1, ..., ψn} ⊆ Ψ, there
exists ψ ∈ Ψ such that ψc ≤ ψ.

Theorem 2.1. Let T : C(K) → E be a bounded operator and 1 < q < ∞.
The following statements are equivalent.

(i) T is (q, 1)-summing.
(ii) There are a regular Borel probability measure µ0 on K and a constant

Q > 0 such that for every function f ∈ C(K),

‖T (f)‖ ≤ Q
(∫

K

|f | dµ0

)1/q

‖f‖1/q′ .

(iii) There is a constant Q′ > 0 such that for every finite set of functions
f1, ...fn ∈ C(K),( n∑

i=1

∥∥T (fi)
∥∥q)1/q

≤ Q′
∥∥∥ n∑
i=1

‖fi‖q−1|fi|
∥∥∥1/q

.
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Proof. (i) ⇒ (ii) Assume w.l.o.g. that πq,1(T ) = 1. Take 0 < ω < 1, and
consider the concave set of convex functions Ψ : (1 + 2ω)P(K)→ R defined
as

Ψ(ν) :=
n∑
i=1

‖T (fi)‖q − q

∫
K

‖fi‖q−1 |fi| dν,

where (1 + 2ω)P(K) ⊂ (1 + 2ω)B(C(K))∗ is the space of positive measures
with variation less than or equal to (1+2ω) acting on K and considered with
the weak* topology. By definition, all these functions are weak*-continuous.

Let us show that for each function Ψ there is a measure ν ∈ (1+2ω)P(K)
such that Ψ(ν) ≤ 0. The following computations are based on an argument
similar to the one presented in [6, Th.10.8]. The inequality 1−|1−x|q ≤ qx
for 0 ≤ x ≤ 1 is used. Take a finite set f1, ..., fn ∈ C(K). Let w1, ..., wn ∈ K
such that fi(wi) = ‖fi‖, i = 1, ..., n, and δwi the corresponding Dirac’s
deltas. Fix ε > 0, and assume w.l.o.g. that ε < qω/n and ε < ω. Recall
that πq,1(T ) = 1, and let h1, ..., hm ∈ C(K) such that

∑m
k=1 |hk| ≤ (1 + ε)1/q

and
∑m

k=1 ‖T (hk)‖q = 1. Take b∗1, ..., b
∗
m ∈ E∗ such that

∑m
k=1 ‖b∗k‖q

′
= 1

and
∑m

k=1〈T (hk), b
∗
k〉 = 1. The function g 7→ µ(g) :=

∑m
k=1〈T (hk g), b∗k〉,

g ∈ C(K), is clearly an element of C(K)∗ = M(K) of variation |µ| less
than or equal to (1 + ε)1/q, and such that µ(1) = 1. Note that for a fixed i,
taking into account that πq,1(T ) = 1, we have(
‖T (fi)‖q +

m∑
k=1

‖T (hk(‖fi‖ − |fi|))‖q
)1/q

≤
∥∥∥|fi|+ m∑

k=1

|hk(‖fi‖ − |fi|)|
∥∥∥

≤
∥∥∥|fi|+(‖fi‖−|fi|)

m∑
k=1

|hk|
∥∥∥ ≤ ∥∥∥|fi|+(‖fi‖−|fi|)(1+ε)1/q

∥∥∥ ≤ (1+ε)1/q ‖fi‖.

Then, computing the power q in the expression above and summing for
all i we get

n∑
i=1

‖T (fi)‖q ≤
( n∑
i=1

(1 + ε)‖fi‖q
)
−

n∑
i=1

m∑
k=1

‖T (hk(‖fi‖ − |fi|))‖q

≤
n∑
i=1

(
(1 + ε)‖fi‖q −

∣∣∣ m∑
k=1

〈T (hk(‖fi‖ − |fi|)), b∗k〉
∣∣∣q)

≤ ε
( n∑
i=1

‖fi‖q
)

+
n∑
i=1

‖fi‖q
(
1−

∣∣µ(1− |fi|
‖fi‖

)
∣∣q)

≤ ε
( n∑
i=1

‖fi‖q
)

+
n∑
i=1

‖fi‖q
(
1−

∣∣µ(1)− µ(
|fi|
‖fi‖

)
∣∣q)
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≤ n ε
(∫

K

n∑
i=1

|fi|(w)q d

∑n
i=1 δwi
n

(w)
)

+
n∑
i=1

‖fi‖q
(
1−

∣∣1− |µ|( |fi|
‖fi‖

)
∣∣q)

≤ n ε
(∫

K

n∑
i=1

|fi|(w)q dη (w)
)

+ q

n∑
i=1

‖fi‖q|µ|
( |fi|
‖fi‖

)
≤ n ε

(∫
K

n∑
i=1

‖fi‖q−1|fi|(w) dη (w)
)

+ q
(∫

K

n∑
i=1

‖fi‖q−1|fi| d|µ|
)

≤ q

∫
K

n∑
i=1

‖fi‖q−1|fi| d (ω η + |µ|),

where η =
∑n
i=1 δwi
n

is a probability measure, and so (ω η+ |µ|)(K) < 1+ω+
ε < 1 + 2ω. An application of Ky Fan’s Lemma gives a probability measure
µ0 such that for every f ∈ C(K),

‖T (f)‖ ≤
(
(1 + 2ω) q

)1/q
(∫

K

|f | dµ0

)1/q

‖f‖1/q′ ,

which proves (ii). Note that the constant
(
(1 + 2ω) q

)1/q
appearing in the

final inequality tends to q1/q for ω → 0; a sequence can be defined with
the associated measures, and a weak* limit can be found. This provides
the probability measure in the statement and gives the estimate q1/q for the
corresponding constant in the original proof of Pisier.

A direct computation shows that (ii) implies (iii). Finally, for (iii) implies
(i) just consider the following calculations. If f1, ..., fn ∈ C(K), we have( n∑

i=1

∥∥T (fi)
∥∥q)1/q

≤ Q′
∥∥∥ n∑
i=1

‖fi‖q−1|fi|
∥∥∥1/q

≤ Q′
∥∥∥ n∑
i=1

|fi|
∥∥∥1/q

· max
i=1,...,n

‖fi‖1/q′

≤ Q′
∥∥∥ n∑
i=1

|fi|
∥∥∥1/q ∥∥∥ n∑

i=1

|fi|
∥∥∥1/q′

= Q′
∥∥∥ n∑
i=1

|fi|
∥∥∥.

�

Similar arguments prove also the result for the case of the (q, p)-summing
operators for 1 ≤ p < q, which coincide with the (q, 1)-summing operators
(see Theorem 10.9 in [6]).

For the case of (q, 1)-summing operators defined on a C(K) space it is
well-known that it is enough to consider the inequalities in the definition to
hold for disjoint functions. Both statements —with general sets of functions
or just with sets of disjoint functions— are equivalent, as a consequence of
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Theorem 2.4 and Proposition 2.8 in [16], where the equivalences between (i)
and (ii) and (ii) and (iii) in our Theorem 2.1, respectively, can be found.

Corollary 2.2. For an operator T : C(K) → E the following statements
are equivalent.

(i) There is a constant Q > 0 such that for every finite set of disjoint
functions f1, ...fn ∈ C(K),( n∑

i=1

∥∥T (fi)
∥∥q)1/q

≤ Q
∥∥∥ n∑
i=1

‖fi‖q−1|fi|
∥∥∥1/q

.

(ii) There is a constant Q′ > 0 such that for every finite set of functions
f1, ...fn ∈ C(K),( n∑

i=1

∥∥T (fi)
∥∥q)1/q

≤ Q′
∥∥∥ n∑
i=1

‖fi‖q−1|fi|
∥∥∥1/q

.

Proof. The proof follows easily from Proposition 16.12 of [6], where it is
shown that the inequalities that give that an operator is (q, 1)-summing
hold if and only if they hold for disjoint functions. Indeed, note that for
disjoint functions f1, ..., fn ∈ C(K),∥∥∥ n∑

i=1

|fi|
∥∥∥ ≤ max

i=1,...,n
‖fi‖ ≤

∥∥∥ n∑
i=1

‖fi‖q−1|fi|
∥∥∥1/q

≤
∥∥∥ n∑
i=1

|fi|
∥∥∥1/q

max
i=1,...,n

‖fi‖1/q′ ≤
∥∥∥ n∑
i=1

|fi|
∥∥∥.

�

3. Summability of operators and the weighted (q, φ)-Orlicz
property for general Banach spaces

The equivalence between (i) and (iii) in Theorem 2.1 allows us to consider
two different formulations of the notion of (q, 1)-summability, and opens the
door to a new class of domination closely related to this kind of summability
for operators and spaces. Indeed, statement (i) in Theorem 2.1 when applied
to the identity operator on a Banach space E gives the definition of the q-
Orlicz property for E. However, (iii) gives a different summability property.
Some simple calculations that we write below in Remark 3.3 show that the
identity map on a Banach space G is weighted (q, ‖ · ‖)-summing— that
is, (1, σ)-absolutely continuous for σ = 1/q′— if and only if G is finite
dimensional. It is natural to ask which requirements for a weight function
φ appearing in the summability inequality lead to the same conclusion.
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Therefore, in this section we will analyze which are the properties that
are needed for assuring that the identity map in a Banach space is weighted
(q, φ)-summing. The question that we face is in which sense the Dvoretzky-
Rogers Theorem works for other types of weighted summability. Let us fix
first the main definitions.

Definition 3.1. Let E,G be Banach spaces. Fix a homogeneous function
φ : G → R+. Let 1 ≤ q < ∞. We say that an operator T : G → E is
weighted (q, φ)-summing if and only if there is K > 0 such that for every
finite sequence x1, ..., xn ∈ G,( n∑

i=1

‖T (xi)‖q
)1/q

≤ K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|φ(xi)
q−1
)1/q

.

Note that for φ(·) ≤ ‖ · ‖ we have that being weighted (q, φ)-summing
implies that the operator is (q, 1)-summing. Indeed, for x1, ..., xn ∈ G,

( n∑
i=1

‖T (xi)‖q
)1/q

≤ K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|φ(xi)
q−1
)1/q

≤ K max
i=1,...,n

‖xi‖1/q′ sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|
)1/q

≤ K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|
)
.

Definition 3.2. Let G be a Banach space. Fix a homogeneous function
φ : G→ R+. Let 1 ≤ q <∞. We say that G has the (weighted) (q, φ)-Orlicz
property if and only if the identity map on G is weighted (q, φ)-summing.

We will say that the space G satisfies the weighted (q, φ)-Orlicz property,
and we will consider it for a general homogeneous function φ. However, due
to the next remark we can restrict our attention to the case of functions φ
which do not satisfy an inequality φ(·) ≤ ‖ · ‖.

Remark 3.3. Let us show that a domination like the one given by the
identity map on G being weighted (q, ‖ · ‖)-summing implies that G is finite
dimensional. Indeed, for x1, ..., xn ∈ G,( n∑

i=1

‖xi‖q
)1/q

≤ K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|‖xi‖q−1
)1/q

≤ K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|q
)1/q2

·
( n∑
i=1

‖xi‖q
′(q−1)

)1/(q′q)

= K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|q
)1/q2

·
( n∑
i=1

‖xi‖q
)1/(q′q)

.
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Thus, ( n∑
i=1

‖xi‖q
)1/q−1/(q′q)

≤ K sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|q
)1/q2

,

that is, ( n∑
i=1

‖xi‖q
)1/q

≤ Kq sup
x′∈BG∗

( n∑
i=1

|〈xi, x′〉|q
)1/q

.

Thus, the identity map is q-summing, and so G is finite dimensional.

Therefore, we have that for weight functions φ that are norm bounded
(functions for which there is a constant K > 0 such that φ(·) ≤ K‖ · ‖),
the space G satisfies the (q, φ)-Orlicz property if and only if it is finite
dimensional. In the rest of this section we will show how far we can extend
this result to spaces having the (q, φ)-Orlicz property. The key argument is
given by the fact that this kind of domination implies that the operator is
completely continuous.

We will write i for the canonical isometric map G ↪→ C(BG∗), x 〈x, ·〉,
x ∈ G. Let η be a probability measure on BG∗ . Let us define the function
Φq,φ,η : G→ R+ as

Φq,φ,η(x) :=
(∫

BG∗

|〈x, ·〉| dη(·)
)1/q

φ(x)1/q′ , x ∈ G.

We also define the space Gq,φ(η) as the closure of the quotient of the space
G defined by the semi-norm

‖x‖Gq,φ(η) := inf
{ n∑

i=1

Φq,φ,η(xi) : x =
n∑
i=1

xi, xi ∈ G
}
, x ∈ G.

This is what we call a factorization space for an operator T ; the formulation
and general results on these spaces can be found in [1]. Indeed, the following
result is an immediate consequence of Theorem 2.4 in [1].

Proposition 3.4. An operator T : G → E is weighted (q, φ)-summing if
and only if there is a probability measure η and a factorization for it as

G
T //

i
��

E

i(G)
[i]Gq,φ(η) // Gq,φ(η).

T0

OO

Proof. The standard separation argument that is used in this kind of results
works also in this case (for example, the one based on Ky Fan’s Lemma
explained in Theorem 2.1). We do not write an explicit proof since it can be
obtained as a direct application of Theorem 2.4 in [1] (see also Propositions
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2.2 and 2.3 in this paper), as can be easily seen just by defining Φ in this
theorem as

Φ(〈x, ·〉) =
(
|〈x, ·〉|φ(x)q−1

)1/q
, x ∈ G.

�

Note that in Proposition 3.4, the operator [i]Gq,φ(η) does not need to be
continuous, although it is clearly well-defined. The following property, to-
gether with Lemma 3.6 provides the requirement for the operator to satisfy
this property.

Definition 3.5. We will say that the function φ is weakly null bounded
if for every weakly null sequence (xi), supi φ(xi) <∞.

Lemma 3.6. Let 1 < q < ∞. Let φ : G → R+ be a positive homogeneous
function. The following statements are equivalent for a sequence (xi) of G.

(i) The sequence (xiφ(xi)
q/q′) is weakly null.

(ii) Φq,φ,η(xi) →i 0 for every probability measure η ∈M(BG∗).

Consequently, if η is a probability measure and the function φ is weakly null
bounded then the map [i]Gq,φ(η) : E ↪→ Gq,φ(η) is (well-defined, continuous
and) completely continuous.

Proof. (i) ⇒ (ii) is given by a standard integration argument. Consider a
probability measure η. Note that by the Uniform Boundedness Principle,
the weakly null sequence (xiφ(xi)

q/q′) is norm bounded by a real number
r, that is, supi ‖xi‖φ(xi)

q/q′ ≤ r. We have that limi |〈xi, x′〉|φ(xi)
q/q′ =

0 for each x′ ∈ G∗, and the function r ·χBG∗ (x′) is a pointwise bound for

all the functions BG∗ 3 x′ 7→ |〈xi, x′〉|φ(xi)
q/q′ . Thus, an application of the

Dominated Convergence Theorem gives

Φq,φ,η(xi) =
(∫

BG∗

|〈xi, ·〉|φ(xi)
q/q′ dη(·)

)1/q

→i 0.

(ii) ⇒ (i). Take a sequence (xi) and an element x′0 ∈ BG∗ . Suppose that
Φq,φ,η(xi)→i 0 for all probability measures η. In particular, for the Dirac’s
delta δx′0 we have that Φq,φ,δx′0

(xi) equals(∫
BG∗

|〈xi, x′〉|φ(xi)
q/q′ dδx′0(x

′)
)1/q

= |〈xi, x′0〉|1/qφ(xi)
1/q′ →i 0,

which gives (i).
We prove now the final remark. Consider a probability measure η and

a norm convergent sequence (xi) in G. We can assume that it is a null
sequence. Of course, it is also weakly null and norm bounded by a real
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number k. Then, since r := supi φ(xi) is also bounded by hypothesis, we
have that

lim
i
|〈xi, x′〉|φ(xi) = 0 for each x′ ∈ G∗.

Then

‖xi‖Gq,φ(η) ≤
(∫

BG∗

|〈xi, ·〉|dη(·)
)1/q

φ(xi)
1/q′ ≤

(∫
BG∗

|〈xi, ·〉|dη(·)
)1/q

·r1/q′ .

Since for each x′ ∈ BG∗ we have that |〈xi, x′〉| →i 0 and |〈xi, x′〉| ≤
supi ‖xi‖ ≤ k, an application of the Dominated Convergence Theorem gives
that

‖xi‖Gq,φ(η) ≤
(∫

BG∗

|〈xi, ·〉|dη(·)
)1/q

· r1/q′ →i 0.

Consequently, (xi) converges to 0 in the norm, and so the operator [i]Gq,φ(η)

is continuous. Note that the same argument —starting with a weakly null
sequence instead of a norm null sequence— gives that the operator is com-
pletely continuous.

�

Theorem 3.7. Let G be a Banach space. The following statements are
equivalent.

(i) G is a reflexive space with the weighted (q, φ)-Orlicz property for a
weakly null bounded homogeneous function φ : G→ R+.

(ii) G is a reflexive space with the weighted (q, φ)-Orlicz property for
every weakly null bounded homogeneous function φ : G→ R+ satis-
fying that

0 < inf
x∈SG

φ(x) ≤ sup
x∈SG

φ(x) <∞.

(iii) G is finite dimensional.

Proof. (iii) ⇒ (ii). Consider a weakly null bounded homogeneous function
φ. Take a basis of norm one elements {b∗1, ..., b∗n} for the finite dimensional
space G∗, and the measure δ :=

∑n
i=1 δb∗i /n. By assumption there are

positive constants K0, K1 such that for every x ∈ SG,
K0 ≤ φ(x) ≤ K1.

Thus, we have that there are positive constants A and B such that for all
x ∈ G,

A ‖x‖G ≤
(∫

BG∗

|〈x, x′〉|φ(x)q/q
′
dδ(x′)

)1/q

≤ B‖x‖G.

Thus, for each finite set x1, ..., xm ∈ G we have

Aq
m∑
i=1

‖xi‖q ≤
∫
BG∗

m∑
i=1

|〈xi, x′〉|φ(xi)
q/q′ dδ(x′) ≤ sup

x′∈BG∗

m∑
i=1

|〈xi, x′〉|φ(xi)
q/q′ ,



12 J. M. CALABUIG AND E. A. SÁNCHEZ PÉREZ

and so id is weighted (q, φ)-summing.
(ii) ⇒ (i). It is enough to consider φ(·) = ‖ · ‖G, which provides a weakly

null bounded homogeneous function that satisfies the inequality in (ii).
(i) ⇒ (iii) is given by Lemma 3.6. It implies that id is (continuous

and) completely continuous, and so compact by the factorization given in
Proposition 3.4 and the reflexivity of G. Thus we have that G is finite
dimensional.

�

To finish this section, let us show that this result is optimal, in the sense
that all the requirements are needed for the result to hold under the as-
sumption of the corresponding weighted Orlicz property. Let us see what
happens in case we remove the property for φ to be weakly null bounded or
the requirement for G to be reflexive.

After the results that we have shown, it seems natural to consider ho-
mogeneous functions φ : G → R+ satisfying the following requirements to
know whether or not a Dvoretzky-Rogers Theorem still holds. For a certain
measure η such that i(G) can be “injectively” included in L1(η), we consider
functions φ satisfying

A ‖x‖ ≤ φ(x) ≤ B
‖x‖2∫

BG∗
|〈x, x′〉| dη(x′)

, x ∈ G, (2)

for positive constants A and B. Next examples show what happens when a
function φ is defined as the right hand bound of these inequalities.

Remark 3.8. A reflexive infinite dimensional space with a weighted Orlicz
property for a function φ that is not weakly null bounded. Suppose that E
is an infinite dimensional Banach space with separable dual and fix just for
the aim of simplicity q = 2. Then we can easily define a measure η0 in
M(BE∗) as

η0 : BE∗ → R+, η0 =
∞∑
i=1

1

2i
δx′i ,

where {x′i : i ∈ N} is a countable set that is dense in BE∗ . Clearly, in this
case we have that the inclusion map i : E → L1(η0) is injective. We can
consider now the (positively) homogeneous function defined by

φ0(x) :=
‖x‖2∫

BE∗
|〈x, x′〉| dη0

.

Then we have that for every x ∈ E,

‖x‖ =
(∫

BE∗

|〈x, x′〉| dη0

)1/2

φ0(x)1/2.
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Note that for every finite set x1, ..., xn ∈ E,( n∑
i=1

∥∥xi‖2
)1/2

=
( n∑
i=1

(( ∫
BE∗

|〈x, x′〉| dη0

)1/2 ( ‖x‖2∫
BE∗
|〈x, x′〉| dη0

)1/2
)2)1/2

≤ sup
x′∈BE∗

( n∑
i=1

|〈xi, x′〉|φ0(xi)
)1/2

.

The identity map is then weighted (2, φ0)-summing. If we fix for example E
to be E := L2[0, 1], we have that the identity map in this space is weighted
(2, φ0)-summing, the space is reflexive but the function φ0 does not satisfy
the requirement on the weak null boundedness property. Indeed, taking
a weakly null sequence (xi) in L2[0, 1] defined by norm one elements, the
Dominated Convergence Theorem gives that

∫
BE∗
|〈x, x′〉| dη0 converges to

0, and so we have that φ0(xi)→i ∞.

We have shown that the requirement on φ to be weakly null bounded is
the key property that allows to prove that the factorization map —and so
the identity map for spaces with the (q, φ)-Orlicz property—, is completely
continuous. Next example shows that, even if the identity map is completely
continuous and the space satisfies a weighted (q, φ)-Orlicz property, the
space may be infinite dimensional if it is not reflexive.

Example 3.9. A non-reflexive Banach space with a weighted (2, φ)-Orlicz
property and a completely continuous identity map. Fix again q = 2. Due
to the Schur’s property of `1, the identity map id : `1 → `1 is completely
continuous. A construction similar to the one given in Remark 3.8 provides
an example of completely continuous map associated to a space that is not
finite dimensional. Indeed, define the measure ν : 2N → R+ by

ν =
∞∑
i=1

1

2i
δei ,

where {ei : i ∈ N} are the canonical functionals in (`1)∗ = `∞. The inclusion
map i : `1 → L1(ν) is obviously continuous and injective. A function φ1

defined as φ0 in Remark 3.8 gives again the equality

‖ · ‖`1 = (

∫
B`∞

|〈·, x′〉| dν)1/2 φ1(·)1/2

`1 .

Therefore, the identity map is weighted (2, φ1)-summing and it is completely
continuous.
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4. Applications: weakly weighted absolutely summable
Banach spaces

Let E and F be a pair of Banach spaces such that E is included con-
tinuously in F . In this section we will consider the weight homogeneous
function

φ(x) =
‖x‖2

E

‖x‖F
, x ∈ E.

It allows to define a new version of summability of sequences in Banach
spaces, that we call weakly weighted absolute summability. Our aim is
to show an example of how our arguments can extend the techniques for
proving summability results in Banach spaces, allowing to analyze more
general versions of summation of series.

Definition 4.1. Let E and F be a couple of Banach spaces such that the
inclusion E ↪→ F is continuous. Let us say that E is weakly weighted
absolutely summable with respect to F if there is a constant K > 0 such
that for every x1, ..., xn ∈ E,

n∑
i=1

‖xi‖E ≤ K sup
x′∈BE∗

n∑
i=1

|〈 xi
‖xi‖F

, x′〉| ‖xi‖E.

Corollary 4.2. Let E be a reflexive Banach space that is weakly weighted
absolutely summable with respect to F. Suppose that φ(·) := ‖ · ‖2

E/‖ · ‖F is
weakly null bounded. Then E is finite dimensional.

Proof. Note that just changing the set of vectors xi by xi‖xi‖E, we have
that the inequality is equivalent to
n∑
i=1

‖xi‖2
E ≤ K sup

x′∈BE∗

n∑
i=1

|〈 xi
‖xi‖F

, x′〉| ‖xi‖2
E = K sup

x′∈BE∗

n∑
i=1

|〈xi, x′〉|
‖xi‖2

E

‖xi‖F
.

Now, we simply apply (i) ⇒ (iii) of Theorem 3.7 for q = 2 and φ defined as
in the statement above. �

Example 4.3. Let us show a concrete example of how Corollary 4.2 can be
used. We are going to construct explicitly a function φ as the one defined
above. Let 1 < q <∞. Consider E to be Lq(µ) with respect to a probability
measure space (Ω,Σ, µ). If f ∈ Lq(µ), of course the function |f |q belongs
to L1(µ), and so the following definition makes sense.

Let η0 be a regular Borel probability measure inM(B(L1(µ)∗) with support
only in subsets of the positive cone of L1(µ)∗ = L∞(µ). We can define a
function-(semi)norm as

‖f‖q,η0 :=
(∫

B(X(µ)[q])
∗

|〈|f |q, x′〉| dη0(x′)
)1/q

, f ∈ Lq(µ).
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Note that this function satisfies the left hand side inequality in (2). In-
deed, a direct computation using two times Hölder’s inequality shows that
for all f ∈ Lq(µ),(∫

BL∞(µ)

|〈|f |q, x′〉| dη0(x′)
)1/q

≤
∥∥|f |q∥∥1/q

L1(µ)
= ‖f‖Lq(µ).

Thus, assume that ‖f‖q,η0 is a norm and consider the function

φ(f) :=
‖f‖2

Lq(µ)

‖f‖q,η0
, f ∈ Lq(µ).

That is, we consider as F the completion of Lq(µ) with respect to the norm
‖ · ‖q,η0 . For example, this holds if η0 is defined as the Dirac’s delta δh0 for
a function 0 < h0 ∈ L∞(µ), since then∫

BL∞(µ)

|〈|f |q, x′〉| dδh0(x′) =

∫
Ω

|f |q h0 dµ, f ∈ L1(µ).

Let us analyze this case: when is Lq(µ) weakly weighted absolutely sum-
mable with respect to F? We have to consider two situations.

a) If we have a function h0 ∈ L∞(µ) such that 1/h0 ∈ L∞(µ), then
there is a constant ε > 0 such that h0 ≥ ε χΩ µ−a.e. In this case
we have ‖ · ‖q,η0 ≥ ε‖ · ‖Lq(µ), and so the function φ satisfies that
φ(·) ≤ ‖ · ‖Lq(µ)/ε. Therefore, this case is already covered by Re-
mark 3.3. However, let us show how to argue this with Corollary
4.2 to use the same argument in b). We have that φ is weakly null
bounded, and so if Lq(µ) is weakly weighted absolutely summable
with respect to F, Corollary 4.2 gives that it is finite dimensional.
The converse statement is obvious, since two norms in a finite dimen-
sional space are always equivalent and the identity map in a finite
dimensional space is absolutely summing. Thus, Lq(µ) is weakly
weighted absolutely summable with respect to F if and only if it has
finite dimension.

b) In the case that 0 < h0 ∈ L∞(µ) but 1/h0 is not in L∞(µ), we
can also use the same ideas locally. Fix ε > 0. Then we have a
measurable set Aε ∈ Σ, Aε := {w ∈ Ω : 0 < h0 < ε}. Then, under
the assumption that Lq(µ) is weakly weighted absolutely summable
with respect to F, the same argument used above shows that the
Lq-space defined as Lq(µ|Aε) is finite dimensional too. By taking a
countable sequence defined by ε := 1/n, we obtain a sequence of fi-
nite dimensional spaces (Lq(µ|A1/n

))n. It can be easily seen that the

dimension of (a subsequence of) the corresponding spaces is strictly
increasing: just take a new function with support in A1/(n+j) \A1/n

for the first j such that µ(A1/(n+j)\A1/n) 6= 0, and note that for each
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n we always find a j ∈ N fulfilling this requirement. We obtain in
this way an increasing sequence of subspaces of strictly increasing di-
mension inside of Lq(µ), so it cannot has finite dimension. Of course,
by Corollary 4.2 this implies that φ is not weakly null bounded, or
Lq(µ) is not weakly weighted absolutely summable. But more can
be said: if there is any A1/n which is not finite dimensional, then
Lq(µ) cannot be weakly weighted absolutely summable with respect to
F. This happens for example for non-atomic measures: the measure
space defined by Lebesgue measure over [0, 1] is a clear example.

The authors would like to thank the referee for her/his careful reading of
the manuscript and for her/his suggestions.
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