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Resumen 
El glioma de alto grado es un tumor del sistema nervioso central no resuelto 
hasta el momento. El seguimiento de los pacientes que sufren este tumor tras 
su resección requiere un seguimiento basado en imágenes por resonancia 
magnética. Para realizar este seguimiento es esencial la información clínica e 
histológica obtenida de los pacientes, aquella información sobre la estructura 
y características de los tejidos que permite adquirir conocimiento sobre el 
estado del paciente.  

Aunque la segmentación de imágenes de resonancia magnética antes de 
cirugía se considera resuelta en el ámbito de la investigación mediante redes 
neuronales convolucionales, no ocurre los mismo para imágenes posteriores 
a la cirugía. Es necesario facilitar a los radiólogos una herramienta anotadora 
que permita generar imágenes de seguimiento segmentadas y anotadas 
clínica e histológicamente. Además, estas imágenes segmentadas pueden ser 
usadas para entrenar y adaptar futuros modelos automáticos de 
segmentación y hacer más eficiente este proceso.  

En este proyecto diseñaremos un software de anotación de secuencias de 
seguimiento de imágenes de resonancia magnética. La segmentación 
ofrecida estará asistida por redes neuronales convolucionales o 
segmentaciones previas, permitiendo al radiólogo modificar la máscara de 
segmentación y añadir nuevos hallazgos según su criterio experto, con lo que 
se podrá adaptar los modelos de segmentación automática. En el presente 
estudio se han logrado desarrollar modelos de segmentación con resultados 
aceptables en estudios clínicos específicos, así como una mejora del error del 
10% en los resultados obtenidos por modelos que han sido adaptados frente a 
los que no.  

Así pues, el software permitirá al usuario de forma interactiva la anotación de 
segmentaciones semánticas y hallazgos en las imágenes, así como asociarlos 
a información clínica e histológica relevante.  

Palabras clave: Reconocimiento de formas, Reconocimiento de imágenes, 
Aprendizaje automático, Biomedicina, Anotador semántico, Imagen médica, 
Gliomas, Redes neuronales convolucionales 
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Abstract 
High-grade glioma is an unresolved tumor of the central nervous system. The 
follow-up of patients with this tumor after its resection requires a monitoring 
based on magnetic resonance imaging. Clinical and histological information 
obtained from patients is essential for this follow-up, that is, information about 
the structure and characteristics of the tissues that allows acquiring 
knowledge about the patient's condition. 

Although the segmentation of pre-surgical magnetic resonance imaging is 
considered solved in the field of research using convolutional neural networks, 
the same is not true for post-surgery images. There is a need to provide 
radiologists with an annotator tool to generate segmented, clinically, and 
histologically annotated tracking images. Furthermore, these segmented 
images can be used to train and adapt future automatic segmentation 
models and make this process more efficient. 

In this project we will design an annotation software for magnetic resonance 
imaging tracking sequences. The segmentation offered will be assisted by 
convolutional neural networks or segmentation priors, allowing the 
radiologist to modify the segmentation mask and add new findings according 
to their expert criteria, thus allowing the automatic segmentation models to 
be adapted. In the present study, it has been possible to develop 
segmentation models with acceptable results in specific clinical studies, as 
well as a 10% error improvement in the results obtained by models that have 
been adapted compared to those that have not. 

Therefore, the software will allow the user to interactively annotate semantic 
segmentations and findings in the images, as well as to associate them with 
relevant clinical and histological information.  

Keywords: Pattern recognition, Image recognition, Machine learning, 
Biomedicine, Semantic annotator, Medical imaging, Gliomas, Convolutional 
Neural Networks 
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Resum 
El glioma d'alt grau és un tumor del sistema nerviós central no resolt fins al 
moment. El seguiment dels pacients que pateixen aquest tumor després de 
la seua resecció requereix un seguiment basat en imatges per ressonància 
magnètica. Per a realitzar aquest seguiment és essencial la informació clínica 
i histològica obtinguda dels pacients, aquella informació sobre l'estructura i 
característiques dels teixits que permet adquirir coneixement sobre l'estat del 
pacient.  

Encara que la segmentació d'imatges de ressonància magnètica abans de 
cirurgia es considera resolta en l'àmbit de la investigació mitjançant xarxes 
neuronals convolucionals, no ocorre els mateix per a imatges posteriors a la 
cirurgia. És necessari facilitar als radiòlegs una eina anotadora que permeta 
generar imatges de seguiment segmentades i anotades clínica i 
histològicament. A més, aquestes imatges segmentades poden ser usades 
per a entrenar i adaptar futurs models automàtics de segmentació i fer més 
eficient aquest procés. 

En aquest projecte dissenyarem un programari d'anotació de seqüències de 
seguiment d'imatges de ressonància magnètica. La segmentació oferida 
estarà assistida per xarxes neuronals convolucionals o segmentacions prèvies, 
permetent al radiòleg modificar la màscara de segmentació i afegir noves 
troballes segons el seu criteri expert, amb el que es podrà adaptar els models 
de segmentació automàtica. En el present estudi s'han aconseguit 
desenvolupar models de segmentació amb resultats acceptables en estudis 
clínics específics, així com una millora de l'error del 10% en els resultats 
obtinguts per models que han sigut adaptats enfront dels que no. 

Així doncs, el programari permetrà a l'usuari de manera interactiva l'anotació 
de segmentacions semàntiques i troballes en les imatges, així com associar-
los a informació clínica i histològica rellevant.  

Paraules clau: Reconeixement de formes, Reconeixement d'imatges, 
Aprenentatge automàtic, Biomedicina, Anotador semàntic, Imatge mèdica, 
Gliomes, Xarxes neuronals convolucionals  
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1. Introduction 
 

With the growing technological revolution, the use of artificial intelligence 
and machine learning techniques is becoming a macrotrend. In this way, their 
use has come to permeate a large part of the different sectors, being 
healthcare the one with the greatest expectations for human well-being. It is 
in this area, the health sector, where the current work is focused. 

The healthcare sector benefits from the AI techniques, from automatic writing 
of cases and clinical reports through speech recognition, to helping 
healthcare professionals to detect diseases given certain clinical findings or 
symptoms.  

In this case, the area of knowledge to be addressed will revolve around the 
automatic detection of pathological signs in medical imaging, field in which 
the future of medical imaging is already linked to artificial intelligence. The 
main applications currently being carried out in this area are the classification 
and semantic segmentation of tissues and organs, generally through the use 
of convolutional neural networks, standard within the field of computer vision. 
The current work will mainly deal with the segmentation of gliomas, a tumor 
located in the brain area.  

The segmentation of this type of tumors will consider the different tissue 
states belonging to the tumor and its surrounding areas, i.e., it is a multi-class 
segmentation task. 

In the present work we will try to develop models to perform this 
segmentation in an automatic way. In addition, these models will be 
incorporated directly into the annotation software and will allow their 
adaptation and specialization according to the user's needs. 

 

1.1 Motivation 
 
During the management of glioma tumors there are a multitude of critical 
steps such as surgical treatment planning, image-guided interventions, or 
tumor growth monitoring. These steps may benefit from accurate 
identification of the boundaries of brain tumor regions on minimally invasive 
to non-invasive medical imaging.  
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However, manual segmentation of lesions and their associated pathological 
tissues is an arduous and error-prone task. Due to the time required for this 
task even the most experienced professional is not exempt from making 
mistakes. This problem increases if we take into account that, in the case of 
gliomas, for a correct interpretation, several magnetic resonance imaging 
sequences must be analyzed in parallel. Moreover, in this topic it is common 
to generate longitudinal series of images for patient follow-up, so that each 
patient will be studied at different time points. Taken together, these facts 
make manual segmentation and volumetric studies of glioma an expensive, 
laborious, and often inaccessible task for humans that could take up to hours. 
This highlights the need for automated segmentation tools that can help 
facilitate this process. 

Currently, the task of automatic glioma segmentation has already been 
addressed with machine learning techniques by creating automatic 
segmentation models. However, most of these models are not integrated into 
annotation platforms, so they are mostly not accessible to radiologists. 

On the other hand, almost all of these models, in turn, have been developed 
to segment pre-surgical images, so their performance when applied to  
post-surgical cases drop considerably. This is mainly due to the fact that in the 
post-surgical context there is a great variation of the tumor over time. For this 
reason, it is necessary to study longitudinal series of medical images, i.e., it is 
necessary to analyze images of the patient at different time stages. 

Moreover, even in those limited cases where models are included in 
annotation platforms, they are static models that do not take advantage of 
the radiologists' expert knowledge to improve. 

Taking into account the aforementioned problems, we will seek to develop 
software that automates this segmentation process, in addition to working on 
a system with which the target user is already familiar and allows progressive 
learning with the feedback provided by the user. 

 

1.2 Objectives 
 

The main objective of the study is to provide an effective and usable 
framework for healthcare professionals, and more specifically radiologists, to 
simplify and streamline their tasks of medical image segmentation of post-
surgical cases of high-grade gliomas. 

From this objective, the following sub-objectives can be highlighted: 
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1. To create automatic segmentation models that streamline the 
segmentation process of the high-grade glioma pathological 
tissues, offering acceptable results for healthcare professionals. 

2. Develop a system capable of adapting the segmentation models to 
post-surgical cases based on the radiologists' expert knowledge, 
taking advantage of previous segmentations for continuous 
improvement of the models. 

3. To provide the research radiologist with a familiar and usable 
interactive environment that allows easy segmentation of  
post-surgical images. 

 

1.3 Structure 
 

After this introductory chapter, section 2 will provide the necessary 
information for a correct understanding of the work. For this purpose, a brief 
description of gliomas and Magnetic Resonance Imaging (MRI) will be given. 
It will also emphasize the state of the art of semantic segmentation and 
contextualize the project that is being performed with the current machine 
learning technologies used in this field. 

In section 3 a survey of semantic image segmentation platforms will be made 
including their comparison and evaluation to find the one that best suits the 
requirements of our application. In addition, it will be explained with which 
technology the proposed solution will be integrated in the finally chosen 
platform. 

Chapter 4 will then explain the methodology followed to obtain the 
segmentation models, including, among others, architecture, and training 
strategy, as well as the model adaptation strategy, which aims to fit a model 
to post-surgical cases. 

Subsequently, section 5 will specify how the previous models will be 
integrated into the annotation platform specified in section 3 and will explain 
the workflow to be followed by the user when using our tool. 

Chapter 6 will evaluate the performance of the system created, considering 
the results of the models and the adaptation of these models to other areas. 
In addition, feedback from an expert in the sector is provided for the validation 
of the tool. 
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Finally, chapters 7 and 8 present the conclusions of the project and allude to 
the future lines of development opened up by the work. 

In addition, the reference to a short video with a demonstration of the 
software in operation will be included in the appendices at the end of the 
thesis.    
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2. Preliminaries 
 

This chapter will introduce the basics of the knowledge area covered by this 
work and give the necessary background. 

Chapter 2.1 will explain what a glioma is and its clinical outcomes, chapter 2.2 
will introduce how they are obtained, and which will be the main magnetic 
resonance images to be used. Part 2.3 will briefly explain what machine 
learning is and finally, the current state of the art in semantic segmentation of 
medical images will be presented in section 2.4. 

 

2.1 Brain tumors and gliomas  
 

The human nervous system is anatomically and physiologically divided into 
the central nervous system and the peripheral nervous system. The brain, the 
organ on which we will focus, belongs to the first one [1]. This system is mainly 
composed of glial cells and neurons. Among the glial cells we could highlight 
astrocytes, which are the most abundant type of cells and perform a 
multitude of functions such as maintaining the pH of the central nervous 
system and transporting nutrients to the neurons., or oligodendrocytes, which 
are responsible for the protection of neuronal axons [2]. 

Gliomas are a type of tumor that come from within the central nervous system 
and represent one of the most common types of brain tumors, especially in 
adult patients. Gliomas originate from cells of the glial lineage and have 
varying degrees of severity. 

The clinical classification of tumors has been in continuous evolution, since 
gliomas include a very wide-ranging group of neoplasms. The most accepted 
categorization is based on the classification of the biological behavior and 
histological aspect of the different brain tumors [3]. This grading divides brain 
tumors on a scale of 1 to 4 (I-IV) according to the malignancy, aggressiveness, 
and reproducibility of the tumor. 

Because there are a multitude of biologically and structurally distinct tumors, 
slow-growing tumors, i.e., those labeled as Grade I or II, are commonly referred 
to as low grade gliomas (LGG), while those that are more aggressive (Grade III 
or IV) are considered high-grade gliomas (HGG). 
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High-grade gliomas are the most aggressive primary neoplasms of the central 
nervous system, although due to the heterogeneity of gliomas, some low-
grade tumors, specifically grade II, can be as aggressive as other grade IV 
tumors [4]. 

Because of this heterogeneity, correctly studying both the extent of the tumor 
and the heterogeneity itself is crucial to make a correct diagnosis, analyze the 
response to treatment and monitor disease progression. This is done through 
the study of longitudinal series of the patient, i.e., from different points in time, 
which is the key point where the tool to be developed is focused. 

Among gliomas, grade II and III astrocytic tumors and grade IV glioblastomas 
can be considered, being mainly the type of tumors that populate our dataset. 
Despite the fact that astrocytic tumors have similarities with glioblastomas, 
both have a high degree of heterogeneity in appearance, shape, and histology, 
although glioblastomas are more aggressive.  

Finally, it is important to note the implications that these tumors have on the 
life expectancy of patients. Survival for patients with grade II or III astrocytic 
tumors varies significantly by histopathology. Grade II and III astrocytic tumors 
represent one of the most difficult-to-treat pathologies due to their propensity 
recur after initial treatment. Patients with grade II astrocytic tumors have a 
median survival ranging between 4.6 and 6.5 years, and a median time to 
malignant progression of 5–11.4 years. In turn, grade III astrocytic tumors have 
a 41-month median survival [5]. 

On the other hand, glioblastoma stands out as a lethal cancer that lacks 
satisfactory therapy. Patients with glioblastoma have an overall survival from  
12-14 months [6], in the case of following standard treatment (which includes 
surgical resection followed by radiotherapy and chemotherapy), and 4 
months in the opposite case. Even though efforts have been made in recent 
years to develop new and personalized treatments, no major differences have 
been noted in the course of patients.  

 

2.2 Magnetic Resonance Imaging 
 

Magnetic Resonance Imaging (MRI) has become a standard for the diagnosis 
of many neoplasms since it allows to obtain relevant information that could 
not be obtained in any other way without aggressive interventions on the 
patient. Despite this, interpreting the information these images facilitate may 
be a complicated task. 
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In general, for the purpose of Magnetic Resonance Imaging, the nuclear 
resonance of hydrogen nuclei is commonly used due to their high abundance 
in the human body. To create an MRI signal, energy is transferred by means of 
a radio frequency pulse perpendicular to the magnetic moment of the 
hydrogen nuclei [7]. 

After applying the energy, the nuclei return to the equilibrium position 
causing an event called relaxation, that can be observed in the T1 and T2 forms. 

The first, T1, indicates longitudinal magnetization recovery due to the nuclei 
returning to the lower energy state by transferring energy to the environment. 
On the other hand, T2 concerns the transverse magnetization loss. In this case, 
this occurs because of the interactions between nuclei which results in the 
nuclei being subjected to different local magnetic fields. 

In turn, different precession frequencies can be obtained by applying 
gradients along each orthogonal direction of the scanner. This results in a 
spatial variation of the magnetic field that allows the signal contribution of 
each voxel in the image to be separated. 

In this way, varying both the gradients and the way and time in which radio 
frequency pulse sequences are applied leads to different image sequences. 
Thanks to this, different contrasts between tissues can be produces, for 
example, to tissues such as fat or water, making them appear darker in the 
images [8]. 

Thus, images with T1- or T2-dependent features are called T1-weighted (T1w) 
and T2-weighted (T2w) respectively, although in this work, we will be referred 
to them as T1 and T2 for simplicity. 

In addition to these two types of images, the images used in this work also 
include two other magnetic resonance images used in the field of glioma 
detection: The fluid-attenuated inversion recovery (FLAIR) can be used in 
brain imaging to suppress the effects of cerebrospinal fluid and minimizes 
contrast between gray and white matter. This procedure produces strong T2-
weighted images that highlight periventricular hyperintense lesions [9]. 

The other images, being the last type of image to be addressed in this work, is 
called gadolinium-enhanced T1-weighted (T1gd), which, as its name indicates, 
are essentially T1 images extracted from a patient who has been administered 
a contrast substance (i.e., Gadolinium) that concentrates mainly in the regions 
of the active tumor. 
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Figure 1 shows the visual differences between the types of images mentioned 
above, where the three main images that will be used for the purpose of 
segmenting gliomas are shown: T1gd, T2 and FLAIR. 

 
Figure 1 - Types of magnetic resonance imaging. Source: [10] 

 

2.3 Machine learning 
 

Machine learning is the discipline of artificial intelligence that involves the 
development of systems or applications capable of approaching solutions to 
specific tasks based on data or past experience [11].  

Depending on the type of data used to train the model, machine learning can 
be divided mainly into: 

• Supervised learning: Supervised learning is the most common 
technique and is based on a set of data 𝑥 ∈ 𝒳, which are the inputs, and 
a set of data 𝑦 ∈ 𝒴, which are the outputs, also called labels or targets. 
Together they form what is called training set 𝒟 = {(𝑥𝑛 , 𝑦𝑛)}𝑛=1

𝑁  and the 
performance is measured as a function of the output 𝑦 that is predicted 
from the input 𝑥. 

• Unsupervised learning: In the case of unsupervised learning there is 
only a set of inputs 𝒟 = {𝑥𝑛: 𝑛 = 1: 𝑁}  without any observed output, 
therefore the model will estimate the unconditional distribution 𝑝(𝑥). 
Due to the absence of output, it avoids the need to label the data, which 
is usually a costly task. 

• Reinforcement learning: In reinforcement learning, the system (also 
called agent) has to learn how to interact with a complex environment 
according to a defined policy, which describes the actions to take in 
response to each possible input. In this way, the policy will be modified 
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by the reward or punishment received as a function of the actions 
taken. 

In this work we will focus on segmentation of medical images. Segmentation 
tasks are mainly of the supervised type, and more specifically, they are 
classification tasks. A classification problem consists of predicting the class or 
label given an input from among a set of mutually exclusive classes 
 𝒴 = {1,2 … , 𝐶}. Due to the nature of the segmentation proposed in this work, 
which is semantic segmentation, this classification will be done at the pixel 
level, or at the voxel level transferred to the three-dimensional domain. 

At this point, it is worth to mention transfer learning, a type of learning that is 
characterized by being based on re-training with little data. Transfer learning 
consists of taking advantage of the structural similarities of data-rich tasks to 
extend the learning to similar data-poor tasks. In this way, a model can be 
adapted with a fine-tuning process, or domain adaptation if the data are not 
sufficiently similar. 

In this case, transfer learning will be carried out to adapt generic models 
trained with cases of many patients to a specific one of a patient in order to 
be used in longitudinal sequences of the same patient.  

 

2.4 State of the art in semantic segmentation 
 

2.4.1 Semantic segmentation 
 

In recent years, the use of machine learning has become a cross-cutting 
practice across all industries and tasks in complex data-related scenarios. This 
is mainly due to the rise of deep learning, which will be discussed in more 
detail in the next section. Deep learning is a category of machine learning that 
is achieving greater results with respect to classical methods in a wide variety 
of areas, including the healthcare sector, solving computer vision, natural 
language processing and speech recognition tasks, etc. In this context, 
semantic segmentation is no exception; in fact, deep learning almost entirely 
covers the state of the art for this task today. 

As already mentioned, semantic segmentation consists, in essence, in trying 
to classify each of the pixels or voxels of an image according to its semantic 
information from a set of classes. The goal of this task is to distinguish different 
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areas or regions of interest in an image in order to make it more 
understandable for further analysis [12] [13].  

With the increasing intensification in the use of technologies, more and more 
applications require this segmentation, for example, biometric access 
technologies. In medical image analysis, semantic segmentation has 
positioned itself as a valuable practice for delimiting structures and tissues 
among other possible regions of interest.  

Thanks to deep learning technologies, it has been possible to robustly 
segment images in the biomedical context, and more specifically, in the field 
of semantic segmentation of gliomas [14] [15], it has allowed the development 
of models capable of automatically and accurately classifying glioma tissues. 
Moreover, deep learning has in turn permeated radiology (and medicine in 
general), automating time-consuming tasks such as segmentation in 3D 
images and allowing guided interventions to be carried out. This has made it 
possible to speed up the work of healthcare personnel and reduce their 
intervention, which has led to improved patient monitoring, care, and 
diagnosis [16]. 

 

2.4.2 Deep learning and artificial neural networks 
 

Deep learning is a specialization of machine learning that creates systems 
capable of learning features directly from data that follow an approach in 
which input data is continuously used to extend existing model knowledge 
that does not require hard-coded features or domain expertise. Considering 
the increase in computational power and the amount of data, this paradigm 
is generating models with exceptional performances. In this context, the use 
of this technology has positioned itself as the main solution for different areas 
of medical science, including the task of semantic segmentation. 

Deep learning systems are based on the use of artificial neural networks with 
a multitude of layers bio-inspired in neural operations. These layers will be 
composed of operators called neurons, and the name deep learning is given 
due to the high number of layers used create functions of greater 
representation power. 

The simplest case of these networks is called a multilayer perceptron, a case 
in which the neurons of one layer are all connected to those of the next layer 
and, as its name indicates, form a perceptron stack. In other words, each 
neuron will be an operator which applies a linear transformation to obtain a 
prediction 𝑦 =  𝑋 ⋅ 𝑊 +  𝑏 such that X is the input and W and b the parameters 
to be optimized. 
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During training, the performance of the model should be measured, i.e., how 
well the model has predicted the classes from the training inputs. For this 
purpose, a loss function reflecting this value is used. The most common loss 
function being Cross-Entropy, which measures the distance between the 
predicted labels and the actual labels or ground truth. The Cross-Entropy 
function is defined as 𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑦)𝑦  𝑙𝑜𝑔 𝑞(𝑦)  where 𝑝  is the true class 
distribution and 𝑞 is the predicted class distribution. 

The training objective will be to optimize this loss function by iteratively 
adjusting the network weights by backpropagating a corrective error signal 
through the network [17]. This backpropagation of the error updates the 
network weights and is obtained by applying the chain rule to the network 
outputs against the parameters of each stage to obtain gradients in an 
efficient way.  

During this process, first the ground truth is compared with the classification 
obtained by the network to calculate the gradients. Then the gradient is 
passed to an optimizing algorithm to optimize the training objective, where 
the standard approach is to use maximum likelihood estimation, by 
minimizing the negative log-likelihood. Finally, the weights of the network are 
updated for the next iteration through a parameter called learning ratio that 
determines the variation of the update. 

 
Figure 2 - Example of activation functions. Source: [18] 
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However, the perceptron is a deterministic version of logistic regression 
whose decision boundaries are linear, and therefore, so will be the decision 
boundaries of a neural network as defined above. Because of this linearity, its 
representational capacity is limited. 

To deal with this limitation, so-called activation functions are used in each 
neuron, which produces non-linear transformations to the outputs of the 
neuron. These transformations allow weighting the importance of the input 
of each neuron for the prediction of the model and must be computationally 
efficient since they are computed across millions of neurons and require the 
calculation of the derivative of the function. 

Some cases of these functions are shown in Figure 2. For example, the sigmoid 
activation function, which ranges from 0 to 1, is often suitable for models that 
predict probability as output.  

However, these functions are computationally expensive and suffer from the 
vanishing gradient problem for very high or low input values since the 
derivative of the function in those regimes is close to 0 and therefore any 
gradient signal from higher layers will not be able to propagate back error to 
the previous layers. This vanishing gradient problem makes the network very 
insensitive to inputs in this range, making it difficult to train the model with 
gradient descent. In general, when training very deep models, the gradient 
tends to be very small, because the error signal passes through a series of 
layers that progressively decrease it. Non-saturating activation functions such 
as the ReLu function are used to solve this problem. 

In addition to activation functions, there is another technique called batch 
normalization that improves the training of deep neural networks. Batch 
normalization is a widely adopted technique that allows faster and more 
stable training of deep neural networks. This technique makes the 
optimization landscape significantly smoother. This smoothness induces a 
more predictive and stable behavior of the gradients, allowing faster training 
[19]. 

Broadly speaking, Batch normalization is a mechanism that aims to stabilize 
the distribution (over a mini-batch) of inputs to a given network layer during 
training. This is achieved by augmenting the network with additional layers 
that set the first two moments (mean and variance) of the distribution of each 
activation to be zero and one respectively. Then, the batch normalized inputs 
are also typically scaled and shifted based on trainable parameters to preserve 
model expressivity. This normalization is applied before the non-linearity of 
the previous layer. 
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2.4.3 Convolutional neural networks 
 

Having introduced what a neural network is and how it behaves, it should be 
noted that there are cases in which, due to the nature of the problem, in order 
to obtain adequate performance, it is necessary to take into account the 
contextual information of the values beyond the value itself. This is the case of 
working with images, where to obtain a correct representation, it is necessary 
to consider the spatial information provided by the values near each pixel or 
voxel.  

To achieve this, a new type of operation is added to the network: convolutions, 
which is a fundamental building block and give name to convolutional neural 
networks. In the case of multilayer perceptron, each neuron in one layer is 
connected to all neurons in the following layers, which made the network 
susceptible to parameter overfitting. In contrast, convolutional neural 
networks can account for local connectivity. This alternative to the multilayer 
perceptron has proven effective, especially in computer vision tasks, where 
convolutional layer stacking has proven very efficient. 

Convolution is a linear operation that consists of multiplying the weights with 
the input, similar to a traditional neural network. The convolution is performed 
between the input data and a matrix of weights, called a filter or mask, which 
is smaller than that of the inputs. In this way, an elementwise multiplication is 
performed between the filter and the input part of the filter size, resulting in a 
single value. The essential advantages of this type of network are that the 
filters do not need to be created by hand as their weights can be determined 
automatically by backpropagation training.  

Although convolutional neural networks were originally devised to be applied 
to two-dimensional images, they can also be used on one-dimensional or even 
three-dimensional data. Figure 3 shows visually how the output of a 
convolution would be obtained in a two-dimensional space given an input 
and a mask or filter. 

This operation is repeated systematically throughout the input image, 
resulting in an output matrix called a feature map. These feature maps allow 
the algorithm to discover hidden features and to express complex 
representations by simpler representations. This is because convolutions 
reduce the spatial dimensions of the images while increasing the depth of the 
images, while roughly maintaining the semantic complexity of their 
representation. In other words, convolutional neural networks use the 
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hierarchical pattern of the data and assemble patterns at different special 
scale using smaller, simpler patterns. 

Overall, the deeper layers of the model learn higher-order features, such as 
shapes, while the layers near the input learn low-level features, such as lines 
and edges. 

 

 
Figure 3 - Convolution operator. Source: [18] 

 

2.4.4 U-net convolutional network structures 
 

With what has been presented so far, the base architecture for semantic 
segmentation would be that of a fully convolutional neural network. This type 
of network creates by convolutions a final output in the form of a pixel or voxel 
classification map that corresponds one by one with those of the input, which 
can be seen in Figure 4. This is achieved by applying transposed convolutions 
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or deconvolutions to the final feature map obtained through convolutions, so 
that the dimensions of the output match those of the input. This type of 
network is able to learn global and local features and contextual 
representations that can be used for semantic output prediction [20].  

 

Figure 4 - Fully convolutional neural network. Source: [18] 

 
Fully convolutional neural architectures have been used specifically for 
medical image segmentation, where they have obtained considerably 
satisfactory results. 

Although, the main advantage of these networks is that they provide a 
comprehensive solution for semantic segmentation, they have a number of 
drawbacks that make them unsuitable for all tasks. Despite their success, the 
locality of the convolutional layers in these networks limits the ability to learn 
long-range spatial dependencies, in addition to their high computational cost 
and difficulty in adapting to three-dimensional images. 

For this reason, a wide range of deep network architectures have been 
proposed for medical image segmentation, although it is true that it is the 
aforementioned Fully Convolutional Network and the U-Net that have 
revolutionized the current paradigm and have provided a path for subsequent 
models.  

In the following, we will slightly deepen on the U-Net, networks that are widely 
used in image segmentation. U-Net currently represent the most prominent 
medical image segmentation model, although they are also used in other 
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fields such as natural language processing or machine translation. This type 
of network is the one that has been used to create the models of this work, so 
in its respective section, section 4, this type of architectures is discussed in 
greater detail.  

U-Nets are characterized as a type of model formed by convolutional layers 
with an encoder-decoder structure, i.e., in two stages. In essence, there will be 
in parallel a path or sequence of encoder layers and a sequence of decoder 
layers, as shown in Figure 5. 

 
Figure 5 - U-Net architecture. Source: [21] 

 

The encoding path is a convolution stack in which the input dimensions are 
reduced by the down-sampling operators. This helps to find information by 
exploring advanced features but, at the same time, causes a reduction in the 
size of the feature map with low resolution outputs. 

On the other hand, the symmetric decoding path uses transposed 
convolutions to perform accurate localization. At this point, the concatenation 
of feature maps associated with coding-decoding units of the same level is 
performed, so that it maps the coded state to an output sequence that ends 
up being a feature map with the same dimensions as the input (up-sampling). 
These connections between different sections of a network where the output 
of one layer is concatenated with another later in the network is called residual 
connection and allows to improve the gradient flow avoiding its loss along the 
training. 
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Although it is true that the U-Net provides a number of advantages over fully 
convolutional neural networks, without going any further, which is much 
more suitable for working in the three-dimensional domain, its training is 
usually dependent on the amount of data. Since in the medical field data is 
not usually an abundant resource, it will be important to resort to the artificial 
creation of samples from the available data, i.e., to apply the data 
augmentation technique correctly. 

 

2.4.5 Metrics 
 

To measure performance in segmentation tasks there are different metrics 
and there is currently some discussion about which ones best reflect 
segmentation results. Despite this, the most widely used and extended metric 
in the field of AI segmentation is the Dice coefficient or Sorensen-Dice index, 
a metric that will be used in this work to measure segmentation performance. 
The Dice is a statistical tool that measures the similarity between two datasets 
[22] and is the one used in BraTS benchmarks, which will be discussed in 
future sections. 

This coefficient has the following formula where A and B are two sets: 

𝐷𝑖𝑐𝑒 =
2 ⋅ |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

In the scope of this work, automatic segmentation based on AI, to measure 
the results of a machine learning model, the ground truth and the output 
obtained by the model, which would be A and B respectively, are usually used 
as the two sets. 
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3. Annotation platforms 
 

Image annotation consists, in essence, of assigning a series of labels to the 
image so that they reflect information displayed in the image. In the case of 
glioma annotation, the type of annotation (or segmentation) is semantic, i.e., 
the annotation is done on each of the pixels in the image. Thus, there will be a 
different label for each of the classes, in this case, the different structures that 
make up the glioma, and an additional one for the background or healthy 
tissue, so that each of the pixels of the final images will be annotated with one 
class or another. 

 

3.1 Tool analysis 
 

There are currently a large number of annotation platforms and tools focused 
in the area of computer vision, ranging from free of charge based on open-
source development to pay-per-use applications. 

There are additionally platforms with a generalist approach and those focused 
on specific fields, including medical imaging. Due to this variety of 
possibilities, there is no single platform that prevails in terms of annotation. 
However, some of these tools do stand out in terms of the number of users 
who use them both from a generalist and specific point of view. 

In this work, a study of the main available platforms has been performed. 
These platforms will be evaluated in order to analyze which one best suit the 
needs of the project and use it as a reference. 

It should be noted that the characteristics sought in the tool are, mainly, the 
following:  

• The possibility of local execution avoiding the use of the cloud or 
external servers for clinical security reasons.  

• Compatibility between different operating systems. 
• Read medical images preferably in NIfTI and DICOM format. 
• Visualize multiple channels simultaneously. 
• Preferably be open-source software.  

In addition, user orientation, flexibility, and the ability to integrate with other 
systems will be positively valued. 
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3.1.1 LabelImg  
 

LabelImg is a native annotation platform compatible with any operating 
system written in Python and easy to install, from pip, docker or from source 
code. It has a simple and intuitive interface even for those less versed in the 
subject, although aesthetically it is outdated. It is open-source, multi-platform 
and works necessarily in local execution. 

Since it is generalist in scope (see figure 6), it initially works only with standard 
image formats, but working locally it will be more efficient and safer than 
browser-based approaches. On the other hand, it is too simple for our needs, 
since it only allows us to open one or several standard images in a directory, 
annotate them, and export the annotations, besides having only two 
annotation formats: PascalVOC and YOLO.  

It does not allow you to create projects or tasks or manage users. In addition, 
it does not have the functionality to segment at pixel level (semantic 
annotation), nor does it have segmentation automation and integration with 
machine learning techniques. In view of the above, although it is one of the 
most popular tools in image annotation, it is the option that is the furthest 
away depending on the project requirements. 

 

 

Figure 6 - LabelImg. Source: [23] 
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3.1.2 Computer Vision Annotation Tool (CVAT) 

  
Computer Vision Annotation Tool is an alternative to LabelImg, also of 
generalist scope, although web-based, would be the natural evolution of 
the previous one in terms of functionalities since it is much more complete. 
Like the previous one, it is open-source, multi-platform and since it works 
on docker, it could be used locally or in a distributed way. 

Like the previous one, it allows to annotate one or several images 
simultaneously and to import and export annotations, although in this 
case it offers many more annotation formats and functionalities, such as 
semantic annotation, creation of projects and subtasks with common 
classes depending on the project or user management. Its installation is 
simple and compatible with any operating system, although it requires 
docker for its operation and the fact that it runs over a browser could lead 
to problems in the medium and long term. 

The interface is one of the most aesthetic found in this study, and although 
it is simple, it might not be very intuitive at the beginning due to the 
functionalities it offers. As in the previous case, it works with classic image 
formats, although it offers a DICOM to PNG format converter to be able to 
work with medical images. 

This software is one step closer to what we are looking for in this work, 
although the absence of multichannel and the fact that the image display 
is so different from the usual one in the medical case renders it not suitable 
for our purpose. 

 

Figure 7 - Computer Vision Annotation Tool. Source: [24] 
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3.1.3 3D-Slicer 
 

3D-Slicer is a tool already focused on the clinical and biomedical field and 
widespread in radiological community, which allows, among other features, 
to annotate medical images in their original format: DICOM and NIfTI.  

The main advantage of this option is that it has a plug-in marketplace that 
would allow only the necessary additional features to be developed as a plugin 
on this already functional tool, although it would be somewhat of an entry 
barrier for some users, since it would require the use of this software. It is  
multi-platform and although it is not open-source, it would not be a problem 
when developing a plugin. Such a plugin could be hosted either distributed 
or local. 

On the other hand, the main disadvantage of this software is that it is not 
exclusively focused on the segmentation task and has a wide variety of 
functionalities. This could be confusing for those users who are not familiar 
with 3D-Slicer, although it is true that, compared to similar alternatives, it has 
a fairly aesthetic interface. 

Despite being an established and popular tool in the field of radiology, it has 
not been considered as a main option in order to find a more flexible one for 
the end user. 

 

 

Figure 8 - 3D-Slicer. Source: [25] 
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3.1.4 ITK-Snap 
 

Possibly, together with 3D-Slicer, the most used option for medical image 
annotation, since it is the main competitor of the previous option, but with 
focus on segmentation or semantic classification of images. 

It is simpler to use for a radiologist than 3D-Slicer as it does not have other 
utilities unrelated to this practice and although its interface may be a bit 
clumsy, it is simple and intuitive. Although the inclusion of plugins is not yet 
implemented, it has a distributed segmentation service based on docker 
developed by third parties. 

Since this is finally the annotation tool that has been chosen for the project, it 
will be discussed in more detail in the following section, where it will be 
explained what its functionalities are and how an automatic segmentation 
system based on deep learning is integrated into this software. 

 

 

Figure 9 - ITK-Snap. Source: [26]  
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3.1.5 Ril-Contour 
 

Native application focused on medical image segmentation compatible with 
NIfTI files. Closer alternative to LabelImg but focused on the scope of the 
current project usable via conda or from source code. This software is multi-
platform and open-source, but its execution is necessarily limited to local. 

However, it is little known, so the documentation is not too abundant 
(although the application is simple) and it seems that several bugs have been 
reported. 

Ril-Contour was initially selected due to the proximity of the software to our 
approach. Written directly in Python and providing integration of automatic 
segmentation models with machine learning, it seemed a promising option 
to say the least, but after thorough evaluation, it had several shortcomings 
that were crucial for the proposed task, such as handling different channels 
simultaneously (i.e., different NIfTI files at the same time or NIfTIs composed 
of several channels). 

 

Figure 10 - Ril-Contour. Source: [27]  
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3.1.6 Summary  
 

There are also other options for medical image segmentation that have not 
been included due to commercial licensing or proprietary code limitations, 
such as MedSeg, or that are under development and not usable today, such 
as MedTagger. Other options have been discarded due to their lack of 
compatibility, for example, Biomedisa; or that they are overshadowed by some 
of those already mentioned, such as MITK or ImageTagger. 

Table 1 summarizes the characteristics of the applications analyzed according 
to the criteria defined at the beginning of this chapter, in addition to licensing, 
usability and functionalities. These characteristics have been color-coded 
according to the job requirements. 

 

Table 1 - Platform summary. Source: Own elaboration. 

 

 

 

3.2 Selected platform 
 

The annotation platform is an important factor for this project since most of 
the end-user interactions with the application will depend entirely on it and 
developing a completely ad-hoc platform is beyond the scope of the work. 

After exploring the different alternatives, the option that has been chosen is 
ITK-Snap, as it is one of the most common applications in the field of medical 
segmentation with which radiologists are familiar.  
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3.2.1 ITK-Snap in detail 
 

ITK-SNAP is a software application for segmenting structures in 3D medical 
images and that is easy to use and learn. ITK-SNAP is free, open source and 
cross-platform. [26] 

For this application there is a service called Distributed Segmentation Service 
that allows encapsulating any operation using docker. Since ITK-Snap allows 
handling multi-channel files or several files at the same project, with this 
service we can carry out segmentations on several channels without 
modifying the application itself, and also on an environment that is friendly to 
the end user. ITK-Snap is multi-platform and open-source, and thanks to 
Distributed Segmentation Service, the segmentation execution could be 
done locally or in a distributed way. 

 

Figure 11 - ITK-Snap manual segmentation. Source: [26] 

ITK-SNAP offers, among other functionalities, semi-automatic segmentation 
using active contour methods, as well as manual delineation and image 
navigation. In addition to these basic functions, ITK-SNAP offers many 
supporting utilities. Some of the main advantages of ITK-SNAP are: 

• Support for many different 3D image formats, including NIfTI and 
DICOM. 
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• Support for concurrent and linked viewing and segmentation of 
multiple images. 

• Support for color, multichannel and time-variant images. 

Compared to other larger, open-source image analysis tools, ITK-SNAP's 
design focuses specifically, as stated above, on the image segmentation 
problem, and external or unrelated features are minimized. The design also 
emphasizes interaction and ease of use, and most of the development effort 
has been devoted to the user interface. 

 

3.2.2 Distributed Segmentation Service 
 

The basic idea of Distributed Segmentation Service is as follows: the system 
receives as input a set of NIfTI files (generally, those that were already open in 
the ITK-Snap workspace) and will give as output another set of files, for 
example, those that were given as input and additionally the performed 
segmentation. The system is indifferent to what happens between the inputs 
and outputs, in other words, it gives us the freedom to employ any framework 
of our choice, which will be discussed in more depth in the next chapter.  

Thus, DSS allows images to be sent directly from ITK-Snap to external service 
providers in order to apply advanced image processing algorithms to the data, 
with just a few mouse clicks. When using DSS, the client communicates with 
a middleware server, a web-based application whose main server is 
https://dss.itksnap.org, although it also allows local execution of this server, a 
course of action followed by our proposal. 

The DSS architecture is composed of three layers, as illustrated in Figure 12: 

• Client: A command line tool or GUI that communicates with DSS over 
the web. Existing DSS clients are the ITK-Snap GUI and the itksnap-wt 
command line tool, included with ITK-Snap. 

• Middleware: The middleware layer is a Python-based web application 
that orchestrates communication between various service providers 
and clients. 

• Service: Layer where the algorithms provided by the various providers 
are executed as DSS services, mainly using instructions from the 
itksnap-wt command line tool. For the current project, the services 
would be based on ad-hoc algorithms for glioma segmentation. 
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Figure 12 - DSS Architecture. Source: [28] 

 

The DSS system is composed of three docker containers. The first one, the 
service itself, is the one explained in the immediately preceding paragraph, 
while the other two containers correspond to the middleware layer (one for 
the database and web application respectively). The client layer does not 
require a container since, as mentioned above, it is integrated in the ITK-Snap 
application itself. 

Although the middleware layer has administrative functionalities that 
facilitate the registration of demanded services, user management, etc., they 
will not be too relevant for the current project, since it is intended to run these 
services locally and not through an external server that requires user control. 

Figure 13 illustrates the DSS workflow from the time the user requests to use 
a service until the service is completed: 

First, the user must submit a 'ticket' for a particular service with which to 
manage and monitor the image processing task. For this the user will be 
asked to provide the necessary images present in the current ITK-Snap 
workspace or to add external images to it. 
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Figure 13 - DSS operation. Source: [28] 

 

After this DSS will download the workspace with the images indicated by the 
user and will execute the algorithm to finally return the results of the 
algorithm, depending on what the particular service dictates. 

With all the above mentioned in this section, thanks to the final choice of 
using ITK-Snap and Distributed Segmentation Service, therefore, made it 
easier to focus our efforts on modeling and how the models would adapt to 
user interactions. 
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4. Modeling 
 

This chapter discusses the methodology followed to create the initial 
segmentation models from which new models will be adapted with the 
proposed software, as well as their adaptation. Thus, the data used for the 
creation of the models, the network architecture used, the training strategy 
and the technologies, both hardware and software, will be discussed, as well 
as the experimentation that will be performed to obtain these models and 
how they will be adapted. 

 

4.1 Datasets 
 

In the field of segmentation of this type of brain tumor, BraTS (Multimodal 
Brain Tumor Segmentation) Challenge [29][30] represents a reference to train 
glioma segmentation models and to compare the performance between 
different models.. All BraTS MRI scans include native T1 and post-contrast T1-
weighted (T1gd) T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery 
(T2-FLAIR) volumes and were acquired with different clinical protocols and 
various scanners from multiple institutions. 

In these datasets the following pathological tissues beyond healthy tissue are 
defined: "edema", " non-enhancing core", "necrotic core" and "enhancing 
core". These structures can be identified by the use of the different MRI 
sequences cited above. 

"Edema" is mainly obtained from T2 images, where FLAIR is used to check the 
extent of edema and to discriminate it from ventricles or other fluid-filled 
structures. 

For segmentation of the tumor core, where the other three tissue types are 
located, T1 and T1gd images are used. Within the core, the "enhancing core" is 
obtained by intensity thresholding with T1gd images including the 
gadolinium-enhancing tumor rim and excluding the necrotic center and 
vessels. 

On the other hand, the "necrotic core" is composed of the low-intensity 
necrotic structures within the T1gd-visible enhancing rim, and finally the  
"non-enhancing core" structures were defined as the remaining part of the 
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gross tumor core, i.e., after subtracting the "enhancing core" and the "necrotic 
core" structures. In the latest datasets (from year 2021), tissues corresponding 
to “non-enhancing core” are no longer considered, so that those previously 
belonging to this tissue will be reclassified to “necrotic-core” or  
“enhancing-core”. 

Such tumor substructures meet specific radiological criteria and serve as 
identifiers to recognize regions of similar appearance by algorithms that 
process the image information, rather than providing a biological 
interpretation of the annotated image patterns. For example, "non-enhancing 
core" labels may also include normal enhancing vascular structures that are 
close to the tumor core, and "edema" may be the result of cytotoxic or 
vasogenic tumor processes, or previous therapeutic interventions [31]. 

Despite this distinction of structures, the metrics and results will be measured 
on three combinations of these, according to the metrics used in the BraTS 
Challenge, which are: complete or whole tumor, composed of the four 
structures, tumor core formed by the "necrotic core", "enhancing core " and 
"non-enhancing core"; and finally, the enhancing tumor that corresponds to 
the “enhancing core”. In Figure 14 the distinction and segmentation of the 
tumor tissues can be seen visually reflected. 

 

Figure 14 - Tumor Segmentation datasets 2017-2019. Source: [31] 

From left to right: whole tumor visible on FLAIR (a), tumor core visible on T2 (b), enhancing 
tumor structures visible on T1Gd (blue), surrounding cystic/necrotic core components (green) 
(c). The segmentations are combined to generate the final labels of the tumor structures (d): 
edema (yellow), non-enhancing core (red), cystic/necrotic core (green), enhancing core (blue). 

 
Figure 14 still has the distinction of the non-enhancing tumor class as can be 
seen. This classification corresponds to the 2017 and 2019 datasets that have 
been used. On the other hand, Figure 15 is the homonymous image of the 2021 
dataset where this tissue type is no longer taken into account. In view of both 
figures, panels A-C represent the regions considered for the performance 
evaluation, while panel D shows the combined segmentations that produce 
the labels of the tumor subregions. 
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Figure 15 - Tumor Segmentation dataset 2021. Source: [32] 

Table 2 summarizes the tumor structures that will be used to measure the 
results. In the rows are the different classes that are used during 
segmentation, and in the columns the structures that are used to obtain 
results, where it is indicated which of the above belong to that structure. 

Table 2 - Structure summary. Source: own elaboration. 

 

All the imaging datasets have been segmented manually, by one to four 
raters, following the same annotation protocol (which may vary slightly 
between datasets from different years but remains consistent within each 
dataset), and their annotations were approved by experienced board-certified 
neuro-radiologists. Annotations comprise the GD-enhancing tumor (ET), the 
peritumoral edematous/invaded tissue (ED), and the necrotic tumor core (and 
non-enhancing tumor core if it is taken into account in the dataset in 
question) (NCR or NCR/NET).  

The preprocessing steps performed in the BraTS datasets includes voxel 
isotropic resampling to a common resolution (1 mm3), inter-patient 
registration to a common reference space using the same anatomical 
template and skull-tripping for cranium removal. 

Finally, the datasets used to generate different models have been those 
corresponding to the BraTS Challenge of 2017, 2019 and 2021, which have 285, 
335 and more than 1.000 pre-surgical samples respectively in NIfTI format. 
Each dataset has the files of the previous BraTS edition to which new ones are 
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added, with certain modifications and corrections as mentioned above. In 
continuity with what has been commented, the first two datasets distinguish 
between necrotic tumoral tissues and non-enhancing tumoral, while the last 
dataset only contemplates necrotic tissue. 

 

4.2 Architecture 
 

The network architecture used to create the base model for the glioma 
segmentation is the one proposed in [33]. This follows the structure of a U-net 
(widely considered the state of the art for image segmentation), more 
specifically, it is a residual inception U-net. This kind of network is based on 
Residual-Inception blocks with the objective of capturing features at different 
scales. For simplicity, the term simple block is used to denote that a 
convolution followed by an activation function ReLu, and Batch Normalization 
is being used. 

 

Figure 16 - Residual Inception Block. Source: [33] 

These Residual-Inception blocks will be composed, as illustrated in Figure 16, 
with the structure: 

• Simple block with kernel size 1. 
• Simple block with kernel size 3. 
• Two consecutive simple blocks with kernel size 3. 
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• Max Pooling with kernel size 3 (and stride 1) followed by a simple block 
with kernel size 1. 

The output of these four channels will be concatenated and another simple 
block with kernel size 1 is applied after this to reduce the information. Lastly, a 
residual connection joins the input of the Residual-Inception block with the 
output. The number of filters used in each of these blocks will depend on the 
level of the network in which it is located, as described below. 

 
Figure 17 - Network architecture. Source: [33] 

As can be seen in Figure 17, our final design consists of four depth levels, 
where, in the case of the encoder (down-sampling), convolutional blocks of 
kernel size 3 with stride 2, ReLu as activation function and Batch 
Normalization are used, and in the case of the decoder (up-sampling) 
deconvolutional or transposed convolution blocks with the same 
characteristics. 

Each of these levels has, respectively, 24, 48, 96 and 192 filters, where a 
Residual-Inception block will be applied with the number of filters of its 
corresponding level. 

Furthermore, following the U-net structure, long concatenation-skip 
connections between symmetric levels are used to improve the gradient flow 
through the training phase. 
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4.3 Training strategy 
 

With respect to the preprocessing techniques already included in the dataset, 
briefly discussed in section 4.1, the following have been added in order to 
improve the training process. 

Firstly, as specified in the datasets section, four 3D images of a patient at a 
given study are obtained from MRI scans using different radiological MRI 
sequences: T1, T1Gd, T2 and Flair. However, since the information provided by 
T1 may be somewhat redundant with the information provided by T1Gd, T1 will 
not be used to obtain the final models and has only been used to verify that it 
does not really provide significant information and that its inclusion causes 
minimal differences in the results. Thus, the remaining three channels will be 
used as input to the network: T1Gd, T2 and Flair. 

Before stacking the volumes, z-score normalization has been applied to each 
of these channels on those voxels corresponding to the brain, i.e., excluding 
the background from the normalization. In addition, Gaussian noise sampled 
from a normal distribution with random parameters has been applied with a 
probability of 0.5 as data augmentation, and random MRI bias field artifacts 
has been added with the same probability creating intensity variations of very 
low frequency across the whole image. 

One of the most important points to highlight about the strategy followed 
during training is that the process is based on patches instead of complete 
images, i.e., the images are divided into several fragments or patches that will 
be the input of the network instead of the complete images. This is done due 
to hardware limitations, because although powerful machines are available 
for training, the ultimate goal is that the models are portable and can be run 
on conventional machines. In this way, patches of size 64x64x64 will be 
extracted from the complete 3D images and considering the number of 
channels to be used (T1Gd, T2 and Flair), the input of the network will be 
64x64x64x3. 

The two main strategies followed to obtain these patches were: obtaining 
patches randomly from the complete images, i.e., with a uniform probability 
throughout the volume; and obtaining balanced patches by making the 
different classes equally likely to be the center of the extracted patch. 

The loss function used for training is mainly Dice loss, but the weighted sum 
of Dice loss and cross entropy loss has also been used in certain cases to study 
whether it improved the results obtained with dice alone. As for the 
optimizing algorithm, Adam has been used with an initial learning rate of 1e-
3 and learning rate scheduler with patience 10 and multiplicative factor 0.5. 
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Due to memory restrictions, a batch size of 24 has been used, where it must 
be considered that 12 patches are extracted per volume to increase the 
variability in each batch, i.e., each batch will contain patches extracted from 
two different volumes or samples.  

 

4.4 Technology used 
 

Among the technologies used to develop the models, three main ones have 
been used: PyTorch as a base, Monai and TorchIO. 

The first one, which serves as a support for the following two, PyTorch [34], is 
a Python package that provides tensor computation with strong GPU 
acceleration and deep neural networks built on a tape-based autograd 
system.  It is characterized by the fact that backpropagation uses dynamically 
created graphs on the fly, which allows the user to change the way the 
network behaves arbitrarily. 

Monai [35] is an open-source framework written in Python and based on 
PyTorch and specialized in the field of deep learning in healthcare imaging, 
both in classification and segmentation tasks. It provides domain-optimized 
foundational capabilities for developing medical imaging training workflow in 
a native PyTorch paradigm. Monai has been used in this work to create the 
entire network architecture from scratch. 

On the other hand, TorchIO [36] also is an open-source Python framework 
centered in deep learning for medical imaging that follows the design of 
PyTorch, but this one focuses on efficient loading, preprocessing, data 
augmentation (including intensity and spatial transforms) and patch-based 
sampling of 3D medical images. This last feature is the one that has been 
exploited from TorchIO, since it has been used mainly to extract patches from 
the images, although some data augmentation mechanisms have also been 
used. 

Furthermore, the training process has been entirely run on Nvidia-docker. 
Nvidia-docker [37] is a container toolkit that allows users to build and run GPU 
accelerated docker containers running on Nvidia GPU equipped machines. 
The use of Nvidia-docker  

The container has been run on an Ubuntu 18.04 machine and has been 
allocated 240 GB of RAM and a Tesla V100 SXM2 32GB GPU. 
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4.5 Experimentation 
 

Once the network architecture to be used and the strategy to be followed for 
training the models have been defined, it is important to note that in no case 
is it a process that is already implemented in any of the libraries used. In other 
words, the network has been created manually according to the explained 
structure and the processes have been developed ad-hoc. 

Based on the training strategy, different experiments have been performed 
using the three datasets discussed above and the results have been measured 
using the Dice coefficient. The results obtained for the described experiments 
will be presented in section 6. As mentioned in the datasets section, this 
metric will not be obtained from the classes resulting from the segmentation 
but will be made on combinations of those: enhancing tumor (which does 
match the class with the same name), tumor core (sum of enhancing tumor 
and necrotic/non-enhancing tumor) and whole tumor (sum of all classes, 
enhancing tumor, necrotic/non-enhancing tumor, and edema). 

Furthermore, it is important to note that the tests designed are not intended 
to improve the state of the art, but rather the main objective of this stage is to 
obtain a suitable base model with which to start adapting new models, as will 
be described in the next subsection. 

The first experiment proposed is to use the full images for training. It should 
be noted that this test is carried out in order to corroborate that the 
architecture used is suitable for this task and to contrast the results with some 
frame of reference (since they usually work with the full images). After this 
control experiment that will be performed on the three datasets, the 
experiments that will actually produce the models we will use, those based on 
images divided into patches, will begin. 

As a test, it is proposed to use only labeled patches, i.e., patches that 
necessarily contain some class label, and thus not to train with patches that 
were 100% healthy tissue. It is also proposed to train with patches obtained 
sequentially from the images, i.e., each complete image is divided into as 
many patches as possible and passed sequentially to the network. These two 
alternatives are expected to be the worst performers as they are the furthest 
from the proposals used in the state of the art. If so, they will only be used in 
the first dataset. 

The most relevant strategies for obtaining patches, random patches and 
balanced patches are proposed below. These strategies are described in the 
training strategy section. If the two previous ones produce worse results as 
expected, these tests will be replaced in the remaining datasets with random 
patches and balanced patches but applying a slight fine-tuning. 
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It is worth noting that, for the generation of patches, a distinction has been 
made between two approaches, multi-label, and multi-class. This is because 
initially the multilabel approach was followed since it is the one proposed by 
Monai, but obtaining balanced patches is not implemented in TorchIO for this 
approach, so we resorted to use the other one.  

Figures 18 and 19 illustrate the difference between these two perspectives on 
the same sample. While the first, multi-label, obtains as output from the 
network a mask with three binary channels (one for each structure to be 
evaluated: enhancing tumor, tumor core and whole tumor), the multi-class 
obtains as output a mask with a single channel containing all the classes to 
be distinguished from which these structures (enhancing tumor, tumor core 
and whole tumor) can be obtained. 

 

 

Figure 18 - Multi-label approach. Source: Own elaboration. 

 

It should be noted that the purpose of considering and exploring different 
alternatives for extracting patches from the source volumes is to minimize the 
impact of working on the patched space instead of the original one. 
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Figure 19 - Multi-class approach. Source: Own elaboration. 

 

In order to check that the results are consistent and that the change of 
approach does not significantly affect the results, a test was repeated, namely 
the one based on random patches. This repetition has only been performed 
on the experiments of the first dataset, and the rest of the experiments have 
been performed directly from the multi-class approach, since with this 
approach both random and balanced patch extraction strategies can be 
obtained. 

 

4.6 Model adaptation 
 

It is important to remember that one of the objectives of the work is to achieve 
models capable of correctly segmenting postsurgical cases. This will require 
adapting the models trained with pre-surgical cases to provide better results 
when used to segment the longitudinal series of post-surgical stages of a 
patient. In other words, the models trained with the datasets described will be 
the basis with which to achieve this adaptation. 

The retraining process is the one that can generate a great value for the end 
user, since at present, due to the fact that the models are trained with  
pre-surgical cases, there is a great variability in the results that these models 
give when applied to post-surgical cases. This process of fine-tuning the 
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models would be within the domain of transfer learning, since we are 
adapting a model trained in one domain, that of pre-surgical cases, to work in 
another, that of post-surgical cases. 

To retrain the model, a pre-trained model will be loaded, and data provided by 
the user radiologist will be used, either post-surgical cases segmented with 
our models or manually segmented by professionals. In case of having been 
segmented by our models, the user should correct the mask with the possible 
imperfections for the adaptation to be effective. 

The parameterization of the adaptation should be carried out as accurately as 
possible since inadequate parameterization could lead to a worsening of the 
models. Thus, the strategy followed has been rather conservative in order to 
avoid model deterioration. Therefore, for retraining, the weights of the entire 
network are frozen except for those of the last layer and retrained by applying 
the same learning factor with which the network was trained to generate the 
model. 

However, in order to test the improvement of adapting a model with respect 
to a base model, we have experimented with adapting a model to the cases 
of a specific center. That is, a model that has been trained with the samples 
from one center will be used to predict the segmentation masks of cases from 
a different center. This is due to the lack of availability of post-surgical cases. It 
is important to note that the differences present in the images from different 
centers can become significant, due to, among other things, the use of 
different machinery. Therefore, this adaptation task is not trivial. As in the case 
of the base models, the results of this test will be shown in the evaluation 
section. 
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5. Integration with ITK-Snap 
 

This chapter will explain how the software developed allows the user to 
perform segmentations automatically and adapt the models created in 
section 4 to longitudinal series cases of a specific patient. For this purpose, the 
workflow to be followed by the radiologist using the Distributed 
Segmentation Service in ITK-Snap as explained in section 3.2 and how the 
models have been integrated within this service will be explained in detail. 

 

5.1 Services creation 
 

The developed models have been integrated into the chosen annotation 
platform (i.e., ITK-SNAP), thus allowing the user to perform automatic glioma 
segmentations directly within the annotator. 

As mentioned in its respective section, this annotation platform includes 
Distributed Segmentation Service, a system that allows developers to publish 
different services in the cloud. However, our work will be based on the local 
execution of this service rather than in the cloud, being its inclusion to the 
cloud a future line of work. 

As far as Distributed Segmentation Service (DSS) is concerned, none of its base 
components such as the administrative web application or the request 
database will be modified. Only the services proposed in the work will be 
added: automatic glioma segmentation from a given model and adaptation 
of a model to a patient. 

The first thing to do to create a service is to generate a project in GitHub with 
a JSON file containing the information of that service. This information 
includes the title, description, or images needed to carry out the service. The 
git-hash code of that project will be used inside Distributed Segmentation 
Service so that the system generates the service according to what is 
established in the JSON file. 

After creating the service, the system waits for a service to be called from the 
ITK-Snap interface. The way this happens has been modified from the original 
so that the system, once it is up and running, waits indefinitely until a call is 
made to any of the services created. 

When requesting any of the services the user will be prompted for those 
images that were defined in the JSON file and the images will be sent to the 
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docker where the Distributed Segmentation Service is running. Here, through 
Linux commands and itksnap-wt command line a series of actions will be 
executed and one result or another will be returned to the user. It is here 
where the bulk of the implementation of the services is located. 

Thus, a Python script has been developed for each of the two services that will 
run Distributed Segmentation Service depending on the chosen service. The 
first, for glioma segmentation, will build the network proposed in section 4 
and load a pre-trained model. It will then load the images requested by the 
service to perform the segmentation and the inference of the segmentation 
mask will be performed. The second script, for the model adaptation service, 
will also load the network structure and a pre-trained model. In this case, in 
addition to the input images for the network, the corresponding ground-truth 
will be requested to re-train the model and what will be created in this script 
is a new model through this process. 

 

5.2 Segmentation service 
 

This subsection discusses the first of the services, the automatic glioma 
segmentation service, and the workflow for using the system created before 
starting to adapt the models, which will be discussed in the next section. 

First, once the service is running, the user must connect to the Distributed 
Segmentation Service from the ITK-Snap interface. In this case, the default 
server is modified since it is running locally. If the system is working correctly, 
it will be available to obtain a token to login and access the services, as 
illustrated in Figure 20. 

Once the connection has been successfully established, the services tab will 
display, in this case, both the proposed segmentation and model adaptation 
services. As can be seen in Figure 21, the multichannel segmentation service 
is selected, as it is worth remembering that for the correct segmentation of 
gliomas several channels are necessary.  

These channels are FLAIR, T1gd and T2, explained in section 2.1 and their 
usefulness for this task is specified in section 4.1. These three images are the 
ones requested to the user and can be loaded in an ITK-Snap workspace prior 
to the connection with Distributed Segmentation Service or loaded later.  
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Figure 20 - Connection to DSS. Source: Own elaboration. 

 

 

Figure 21 - Services in DSS. Source: Own elaboration. 
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It is important that these images are loaded correctly as requested by the 
system, since the order in which they are processed by the network will 
depend on this. Below, Figure 22 shows an example of an ITK-Snap workspace 
with these three images loaded, i.e., ready to run the automatic segmentation 
service. 

 

Figure 22 - ITK-Snap workspace. Source: Own elaboration. 

After uploading the images and submitting the task, the user will be 
automatically taken to the results tab where the status of the task can be 
viewed in real time. 

This is where the user will be notified of any possible warnings that may occur 
during the execution of the task, as well as the percentage of execution 
remaining (determined by the developer of the service). Distributed 
Segmentation Service gives the developer freedom to make all kinds of 
communications to the user through this tab, if deemed necessary. 

Following the execution trace shown in the figures of this section, Figure 23 
shows the results tab after the automatic segmentation service has been 
completed. 
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Figure 23 - Results of the service. Source: Own elaboration. 

What this service has done is, under the Distributed Segmentation Service 
system, run the Python script using the convolutional neural network created 
in section 4, with a pre-trained mode. The model used in this case is the one 
that has obtained the best results in the evaluation phase, although the use 
of one model or another is easily configurable, as will be discussed in the 
following section.   

The three channels used for glioma segmentation mask inference will be 
obtained directly from the ITK-Snap workspace above. It should be recalled 
that the network is patch-based, so the final volume composed of the three 
channels will be divided into 64x64x64 patches. Since the input images need 
not be of such a size that a perfect patch division is made, overlapping patches 
will most likely occur. In other words, two consecutive patches would contain 
voxels corresponding to the same area of the original image. In case such an 
overlap exists, the average of the overlapping sections of the network output 
will be calculated in order to obtain the most probable label for those voxels 
in question. 

When the segmentation task is finished, the user can download the new  
ITK-Snap workspace including the three images (FLAIR, T1gd and T2) and the 
glioma segmentation mask. Figure 24 shows the example for this run trace. 



Design of a medical image semantic annotator for gliomas assisted by 
convolutional neural networks 
 

 

54 
 

 

 

Figure 24 - Segmentation completed. Source: Own elaboration. 

 

5.3 Model adaptation service 
 

The main idea of this service is that the radiologist performs an automatic 
segmentation of a case, for example, the one shown in Figure 24 above, and 
corrects the segmentation mask to retrain the model and improve its 
performance for future cases of longitudinal post-surgical series.  

As can be seen in Figure 25, in this case the model adaptation service will 
request, once again, the three images corresponding to FLAIR, T1gd and T2, 
plus the segmentation mask for that case that may be an automatic or 
corrected mask. As with the automatic segmentation service, the user will be 
progressively notified of the status of the task. 
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Figure 25 - Update model service. Source: Own elaboration. 

The model adaptation service, like the segmentation service, will run a Python 
script under Distributed Segmentation Service. Thus, any base model will be 
retrained considering the latter case corrected by the radiologist. The 
retrained or adapted models can be subjected to this process again with other 
cases so that the model learns progressively and suits the radiologist's needs. 
This implies that a model could be adapted to only one patient, or to a set of 
patients if desired by the user. 

The way the user can manage the models is a simple directory system. A 
directory called 'current' will contain the model with which the segmentation 
service is being performed, so there must be only one model in this directory 
(otherwise the user will be notified through the application). Once the model 
adaptation service is executed, the new model created will appear in another 
directory called 'adapted'.  

The user is free to rename these models (e.g., to identify different patients) and 
apply the segmentation with the desired model by simply placing it in the 
'current' folder. Figure 26 shows these directories after having executed the 
previous trace, where it can be seen how the model 'base_model' (which was 
used for the segmentation in the previous section) has generated a new 
model 'base_model_adapted' after finishing the adaptation service. 
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Figure 26 - Model directory. Source: Own elaboration. 

It should be noted that the case presented as an example for model 
adaptation is not representative of the use case for longitudinal series, but 
instead a  pre-surgical case has been segmented in order to visually show how 
the system works. This is mainly because longitudinal post-surgical series of 
patients are not available.  
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6. Evaluation 
 

This chapter will try to evaluate the developed software from its different 
perspectives, considering the different sub-objectives set out at the beginning 
of the study. First, chapter 6.1 will show the results provided by the base 
models created, as outlined in section 4. Next, section 6.2 will show the 
improvement provided by the model adaptation as described in section 4.6. 
Finally, an attempt will be made to evaluate the software from the end-user's 
perspective based on their feedback. 

 

6.1 Base models 
 

This section presents the results obtained from the experiments described in 
section 4.5. All tables measure the results using the Dice coefficient, and in the 
rows will have the different tests or strategies that have been followed for each 
experiment. The columns will have the results for each of the different 
structures taken into account, as well as the overall Dice. 

 

6.1.1 2017 BraTS Dataset 
 

Table 3 presents the results, obtained with the 2017 dataset, where the first 
entry reflects those obtained by Monai as a reference, so the validation set 
used in this dataset is the same as the one used by Monai. These values 
provided by Monai, while not the best in the current literature, are presented 
as some of the highest.  

The first experiments consist of using the whole images without dividing into 
patches, using all channels, and discarding T1 (4C and 3C respectively). This 
method is only used in order to check that the architecture provided results 
that did not depart from the state of the art and to confirm that the variation 
in the results when including the T1 channel was minimal. The models that 
will actually be used, as previously mentioned, will be based on images divided 
into patches, not complete images. 
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Table 3 - 2017 Dataset results. Source: Own elaboration. 

 

As mentioned in section 4.5 where the experimentation to be performed was 
described, this first dataset is the only one that will contain the control 
experiment where 4 images are used instead of 3. It will also be the only one 
that will have the paradigm shift from multi-label and multi-class, since in 
view of these results the difference is not only small, but it is superior for the  
multi-class case. Therefore, all the following tests were carried out from this 
multi-class perspective. 

 

6.1.2 2019 BraTS Dataset 
 

With this second dataset, the 2019 dataset, it is important to note that, as 
mentioned in the section on datasets, there are differences in the criteria for 
performing the segmentation. Therefore, there is an important difference in 
the evaluation metrics of the enhancing tumor structures. 

Table 4 shows the results obtained for this dataset, once again, showing first 
reference values, which in this case correspond to one of the best results 
obtained in the BraTS challenge of that year. For this reason, the validation set 
used in this dataset is the official one published in the BraTS Challenge. In 
continuity with the previous results, the first experiment performed was with 
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the complete volumes without dividing them into patches to check that we 
are within the state of the art (emphasize that in this case, the reference is not 
average values, but the best ones for this task). 

Table 4 - 2019 Dataset results. Source: Own elaboration. 

 

In order to obtain the results of this dataset, the less functional approaches 
used in the previous case have been taken into account, as discussed in 
Section 4.5, so that only the balanced patches and random patches strategies 
(using the multi-class approach) have been experimented with. 

Since, consequently, the number of tests executed with this dataset would be 
smaller, a small fine-tuning has been attempted in the experiments marked 
with “*”, in which the weighted sum of Dice loss and cross entropy loss has 
been used as loss function instead of only using Dice loss, as it was done in the 
rest of the cases. 

As can be seen, for this dataset, better results were obtained with a strategy 
based on random patches than with balanced patches, which may be due to 
these differences in criteria between the datasets when segmenting the 
different classes. In any case, this does not mean that using balanced patches 
is a bad decision, but rather that the way in which the balancing is produced 
(explained in the datasets section) may not be the best for this task. 

 

6.1.3 2021 BraTS Dataset 
 

Finally, Table 5 shows the results obtained for the last dataset used, the one 
corresponding to the BraTS challenge 2021. In this case, only the own results 
without reference frame are provided because the challenge is still in the 
participation phase, so the results have not been published in any case. 
Because of this, a validation set extracted from the training set has been used. 
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Therefore, we will take advantage of the timing of this work with that of the 
challenge to participate with the models created. 

Table 5 - 2021 Dataset results. Source: Own elaboration 

 

As can be seen, the experiments carried out are the same as those performed 
to obtain the results of the 2019 datasets. Once again, those marked with ('*') 
were those in which Dice weighted sum and cross entropy were used as loss 
function instead of only Dice. 

In view of these results, it can be seen that they are substantially better than 
in the cases of the previous datasets. This is mainly due to the large increase 
in the number of samples available in this dataset. Again, the strategy of 
training with randomly obtained patches across volumes has yielded better 
results than training with balanced patches. Considering the amount of data 
that have been used, it could be deduced that indeed the strategy in which 
the patches are balanced is not the best for this task, so for future work we will 
develop a different one that manages to consistently improve the random 
strategy. 

Considering the results achieved, the model obtained with random patches 
with weighted sum of Dice loss and cross entropy loss as loss function has 
been used as the base model for the annotator. However, as explained in the 
ITK-Snap integration section, it should be noted that the system is flexible 
when using any other model. In addition, it is important to remember that the 
models obtained in this section must be portable in order to be integrated 
into the annotation platform. That is why the division into patches is made 
and why the decrease in results obtained due to not using complete images 
can be assumed. 
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6.2 Adapted models 
 

The results of the test intended to demonstrate the effectiveness of model 
fitting will be shown below. For this purpose, as mentioned in the model 
adaptation section, a model trained with the cases obtained in several centers 
will be adapted to segment cases from a different center. 

For this experiment, the 2019 dataset was used because the distinction of the 
center from which each case comes was simpler than in the rest. Thus, of the 
335 cases contained in the dataset, 100 corresponding to a given center were 
divided into 70 for model retraining and 30 for test evaluation. Of the 
remaining 225 samples belonging to different centers other than the previous 
one, they were also divided into 70 to maintain the same number of retraining 
samples as the previous case and a base model was created with the 
remaining 155. 

Thus, two trials will be performed: retraining the base model trained with the 
155 cases from different centers with the 70 cases, both from the test center 
and the others, which will be progressively added to observe the variation of 
performance with the number of additional samples. In both cases, the same 
test set of 30 cases belonging to the target center of the adaptation will be 
used. 

 
Figure 27 - Adaptation of the model to a center. Source: Own elaboration. 

As expected, if the base model is retrained with more training samples, the 
results will improve regardless of the center from which the images come 
because more cases can be learned. However, this improvement is superior if 
the model is retrained directly with cases from the center from which the 
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segmentations are trying to be predicted. The results of this test can be seen 
in Figure 27. 

In view of these results, and considering as error 1 - Dice, the adaptation of the 
model to the cases of a specific center has had an average error improvement 
of 10%. These results reinforce the hypothesis that the specialization of the 
models to the different areas of use or protocols of each center can help to 
improve the models over time. 

 

6.3 Final user validation 
 

In order to validate the tool created throughout this work, Karoline Skogen, 
PhD senior neuroradiologist in charge of the review and editing of the 
segmentations in the ImPRESS clinical trial (ClinicalTrials.gov Identifier: 
NCT03951142) was consulted.  

Her team already had the possibility of using deep learning to obtain 
segmentation masks of gliomas in postoperative cases, since, as a professional 
in the field, she states that the use of automatic segmentation does indeed 
make the task of segmenting brain tumors easier. However, the models they 
used are in-house models developed at Oslo University Hospital, which have 
not been trained with post-chirurgical samples. Not having post-chirurgical 
samples to train the models is the main reason why substantial errors are 
generated during their segmentation. For this reason, this utility was scored 
with a value of 5 on a Likert scale of 0 to 10. This score is given to the models 
they are currently working with because there is a wide dispersion in the 
results obtained, i.e., there are cases where the results are quite good and 
others where they are not.  

This is one of the areas that the current proposal seeks to reinforce through 
the adaptation of models, allowing the models to learn from the corrections, 
especially in cases where they do not work too well, in order to improve 
progressively. 

As for our tool, Karoline considered that the choice of ITK-Snap as the base 
annotation platform in which to include our segmentation support methods 
is appropriate. Furthermore, she stated that the system proposed in this work 
can be useful for brain tumor segmentation support and that it has a suitable 
approach. 
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The usability of the prototype was rated 7 on the same scale as above. This 
score is due to the possibility that the radiologist may not have used ITK-Snap 
before, and although it is not complicated to learn, it could entail an additional 
effort at the beginning. 

As mentioned before, the tool is executed locally and not in a distributed way. 
Because of this, if the machine on which it is being executed does not have a 
GPU, both the inference of segmentation masks and model adaptation will 
necessarily be performed on the CPU. In this case, the automatic 
segmentation from the original MRI images could take up to minutes. In the 
tests performed, this time ranged from 2 to 7 minutes depending on the case 
and the model being used. For model fitting, this time was slightly longer, 
although it is worth noting that the retraining settings allow the time that 
could be taken to be greatly adjusted. In any case, a time of approximately 5 
minutes was considered reasonable for the task, both for automatic 
segmentation and model fitting. 

On the other hand, the idea of managing the models manually through 
directories, as explained in the previous section, was initially designed as an 
alternative to the functional software, until another alternative could be found 
to automate the process. However, this possibility of self-managing the  
re-trained models seemed to be useful, so it could persist in future versions. 

In addition, the need to implement the system in a secure environment for 
clinical data was stated. Since the current version is a local execution version, 
this will depend directly on the machine on which the user installs the system 
but should be carefully considered for possible future versions in distributed 
environments. 
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7. Conclusions 
 

With all that has been said throughout the study, it could be considered that 
the objective set at the beginning of the study has been achieved.  Based on 
the feedback received, and the results seen in the evaluation, it has been 
possible to create a tool that can be useful for health professionals in the task 
of glioma segmentation. However, the measure to which the sub-objectives 
that were set out at the beginning of the work have been achieved or not 
should be qualified. 

As for the first of the subjective, the creation of automatic glioma 
segmentation models, not one but 3 datasets have been explored for their 
development. In view of the results presented in section 6.1, we have achieved 
models close to the state of the art that, although inferior to these, are within 
an acceptable range for use by healthcare personnel and, above all, are 
portable models that could be used in practically any minimally up-to-date 
machine. 

With regard to the second objective, concerning model adaptation, we have 
managed to develop a system capable of adapting pre-trained models to a 
specific area. The results presented in section 6.2 show how a model can be 
improved by using data from a given context. In addition, it should be noted 
that based on the feedback obtained, this is a utility that is declared of high 
interest for radiologists, since it could be of great use in allowing them to 
automatically segment post-surgical cases and obtain acceptable results. 

In terms of providing a friendly and simple environment for the radiologist, i.e., 
the third and last sub-objective raised, the choice of ITK-Snap as the 
annotation platform seems to have been a success due to its simplicity. Even 
if the radiologist has not used this software before, learning to use it does not 
pose a real problem, as discussed in the section on validation by the end user. 
Furthermore, considering the portability of the tool and that the system runs 
locally, there will be cases where inference and/or retraining is performed on 
the CPU and not on the GPU. In that case the execution could take up to 5-10 
minutes depending on the case, which is within a reasonable range of time 
that the radiologist would be willing to wait. Thus, as discussed in section 6.3, 
it seems that the tool could indeed be useful for healthcare professionals and 
that the approach is correct in respect to its usability. 

In another order of ideas, relating the current work with the Sustainable 
Development Goals (SDGs) proposed by the United Nations, there is an 
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inherent link between the work and SDG number 3, health, and well-being, 
due to the nature of the work. In addition, goal number 9, industry, innovation, 
and infrastructure, would also be present, as the work seeks to bring a novel 
solution to the state of the art by creating something new. 

In short, the developed tool can be useful in the context of specific clinical 
studies where radiologists perform volumetric segmentations, which is our 
target. However, it could even go further, since the improvement of 
segmentation models based on manual correction of masks can provide 
models with margins of error close to those of an experienced radiologist. 
Thus, work such as this may result in models reliable enough to be used in 
regular clinical practice.  
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8. Future works 
 

After completing the work that was proposed to be developed throughout 
this master's thesis, different lines of future work are opened with which the 
tool could be improved. 

For example, the fact that the current proposal is for local execution, as 
mentioned above, could lead to the execution being done on the CPU, taking 
up to minutes. Although this does not necessarily have to happen, since it is 
not uncommon for radiologists to work on a workstation equipped with GPU, 
there is room for improvement. This could be solved by using the same 
solution on the cloud instead of local execution, always being able to take 
advantage of the use of GPUs. This alternative would also remove the 
restriction of using patches (if the hardware resources were sufficient) and 
would allow the use of networks based on more complex architectures, since 
for the current work excessively complex networks could not be used because 
their utilization on CPUs would take too long. Although it should be noted that 
a cloud solution would also open up a series of new problems, especially 
related to data security, since the data is sensitive due to its medical nature, 
as well as making it difficult for the user to manage the models created with 
the tool. 

On the other hand, other network architectures could be explored, for 
example, by including attention models or even experimenting with vision 
transformers. However, as discussed above, it should be noted that if the local 
execution environment is maintained, the network complexity would have to 
be taken into consideration. 

In addition, we could also try to optimize the parameterization used when 
adjusting the pre-trained models with segmentations corrected by the 
radiologist. We could even create a system that dynamically modifies which 
layers are frozen and which are not depending on certain variables in order to 
improve the performance of the models as much as possible. 

Finally, it is important to note that all these proposals will continue to be 
studied beyond this master's thesis in a process of continuous improvement 
of the tool created, considering a possible future doctoral thesis together with 
the BDSLab team of the UPV. 
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Appendices 
 

Below is a link to a video uploaded to YouTube with a practical demo of the 
work performed. 

https://www.youtube.com/watch?v=z3tIEXMclu4 

In the video you can see how, first of all, an ITK-Snap workspace is opened 
where the three images corresponding to Flair, T1gd and T2 are open. 

After this, the ITK-Snap Distributed Segmentation Service is opened and 
connected to the localhost, where our service is running on docker. Then the 
multichannel segmentation task is selected, which will return another 
workspace with the segmentation mask for that particular case. 

Finally, the user selects the model adaptation service, where the corrected 
mask will be added. In this case, this mask has been added to the one that was 
already available a priori in order not to spend more time in the demo 
correcting the mask obtained by the initial model. 

As you can see on the left side, at the end of the script a new model has been 
generated in the 'adapted' directory, as a result of the adaptation of the base 
model to this case. In order to use this new model, it will be enough to drag 
this model to the 'current' folder, and the segmentation service will 
automatically take this model for future segmentations (or even new 
adaptations). 

https://www.youtube.com/watch?v=z3tIEXMclu4
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