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Abstract

High-throughput long-read transcriptome sequencing technologies have facilitated the
discovery of novel transcripts. Nevertheless, these technologies have a much higher error
rate than those based on short reads and therefore specific tools are required to characterise
these novel variants and filter out false positives.

SQANTI3 (Structural and Quality Annotation of Novel Transcript Isoforms), a software
for analysing long read-based transcriptomes, was born out of this need. SQANTI3 takes a
transcriptome, together with genome annotation and, if available, other orthogonal data
(expression, validation of the 3’ and 5’ ends, etc.) to return a characterised transcriptome.
The tool also provides a wide set of descriptors of the isoforms and their splice junctions,
which are further analysed in several diagnostic plots.

SQANTI3 includes an artificial intelligence-based classifier (MLfilter) that automatically
discriminates transcripts that can be considered true isoforms from potential artifacts.
This filter is based on a random forest algorithm, which brings multiple advantages to
transcriptomic analysis, such as avoiding the use of manually set thresholds for each
descriptor variable. However, like any machine learning model, it is a black box meaning
that what happens between the input data and the predicted output is unknown.

By comparing different parameter set ups, we have characterised the MLfilter’s perfor-
mance for two transcriptome datasets and established guidelines to optimise the choice of
training data according to the input data type. Specifically, we have evaluated the adequacy
of the set of transcripts taken as true positives by the classifier, as well as the most relevant
variables to obtain a good artifact-isoform classification. We have also detected avoidable
biases such as overfitting. Ultimately, this work will help define best practices for the large
community of researchers who use SQANTI3 to refine their transcriptomes and will allow
further research to improve the MLfilter.

KEY WORDS: Transcriptomics, long-reads, isoforms
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Resumen

Las tecnologías de secuenciación de alto rendimiento de transcriptomas mediante lecturas
largas han facilitado el descubrimiento de nuevos transcritos. No obstante, dichas tecnologías
tienen una tasa de error muy superior a las basadas en lecturas cortas, por lo que requieren
herramientas que permitan caracterizar estas variantes noveles y filtrar las que son falsos
positivos.

De esta necesidad nace SQANTI3 (Structural and Quality Annotation of Novel Tran-
script Isoforms), un software para el análisis de transcriptomas construidos a partir de
lecturas largas. SQANTI3 toma un conjunto de datos de transcritos, junto con la anotación
del genoma y, si están disponibles, otros datos ortogonales (expresión, validación de los
extremos 3’ y 5’, etc.), para devolver un transcriptoma corregido. Asimismo, la herramienta
proporciona un amplio conjunto de descriptores de las isoformas y sus sitios de splicing,
que se analizan más a fondo en varias gráficas de diagnóstico.

SQANTI3 incorpora un clasificador basado en inteligencia artificial (MLfilter) que
discrimina, de manera automatizada, los transcritos que pueden considerarse verdaderas
isoformas de los potenciales artefactos. Dicho filtro se basa en un algoritmo de random
forest, que aporta múltiples ventajas al análisis transcriptómico, entre ellas evita el uso
de umbrales establecidos manualmente para cada variable descriptora. Sin embargo, como
todo modelo de machine learning, se trata de una caja negra, es decir, se desconoce lo que
pasa entre la entrada de datos y la salida de una predicción.

Comparando distintas combinaciones de parámetros de entrenamiento del MLfilter,
hemos caracterizado su funcionamiento y hemos establecido una serie de guías para opti-
mizar la definición de los datos de entrenamiento en función del tipo de datos de partida.
Concretamente, se ha evaluado la adecuación del set de transcritos tomados como ver-
daderos positivos por el clasificador, así como las variables más relevantes para obtener una
buena clasificación artefacto-isoforma. Además, hemos detectado errores evitables, como el
’overfitting’ o sobreajuste. Todo esto, contribuirá a unas mejores prácticas por parte de
la gran comunidad de usuarios que emplean SQANTI3 para refinar sus transcriptomas y
abrirá la puerta a futuras investigaciones para mejorar el MLfilter.

PALABRAS CLAVE: Transcriptómica, lecturas largas, isoformas
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Chapter I

Introduction

I.I mRNA maturation

The maturation of messenger ribonucleic acid precursors (pre-mRNAs) is a crucial step
in transcription before they are exported from the nucleus as mature messenger ribonucleic
acid (mRNA) in eukaryotic organisms (Figure I.I). This process involves the addition of
the 5´ cap (Ramanathan et al. (2016)) and the polynucleotide chain composed entirely of
adenosine monophosphates (poly(A)) tail at the 3’ end (Kumar et al. (2019)), which play
a key role in protecting the pre-mRNAs from enzymatic degradation and regulating the
translation process. Furthermore, introns are removed by the spliceosome, a protein-RNA
complex that recognizes splicing regulatory sequences (Newman (1998)). These sequences
include donor (5´) and acceptor (3´) splice sites, which together are known as splice
junctions (SJ).

Alternative splicing AS and alternative polyadenylation (APA) of pre-mRNAs enable
the regulated generation of multiple mRNAs products or isoforms from a single gene, each
of which may perform a different function (Figure I.II). AS and APA are major mechanism
of transcriptome and proteome diversification in higher organisms (J. L. Chen (2009),
Frankish et al. (2012), Mudge et al. (2011)).

AS occurs through different mechanisms, such as intron retention, exon skipping or
extension (Frankish et al. (2012)) as illustrated in Figure I.II. These post-transcriptional
modifications not only contribute to the establishment of the complexity of organisms
(L. Chen et al. (2014)), but also play an important role in differentiation and speciation
(Chapman et al. (2013), Nilsen and Graveley (2010), Park et al. (2020), Song et al.
(2020), Teichroeb et al. (2016)). Besides, dysregulation of AS affects the onset and
development of numerous diseases (Feng and Xie (2013), Rodríguez et al. (2016),
Shkreta et al. (2013)) and therefore provides a target for potential therapies (Bergsma
et al. (2018), Frankiw et al. (2019), P. Ren et al. (2021)).

On the other hand, polyadenylation consists in the endonucleolytic cleavage of pre-
mRNAs and the addition of a series of adenosine monophosphates -the so-called poly(A)
tail- at the cleavage site. APA produces several mRNAs isoforms by adding the poly(A) tail
at different sites (Figure I.II). Consequently, those isoforms contain different 3’ untranslated
regions and coding sequences (F. Ren et al. (2020)). Although there is still much to be

1



CHAPTER I . INTRODUCTION 2

studied about APA, it has been reported to be a crucial post-transcriptional regulation
mechanism (Yeh and Yong (2016)) and to be related to disease progression and drug
sensitivity (Zhang et al. (2021)). Furthermore, being a simpler mechanism than AS, it
also represents a potential biomarker (Zhang et al. (2022)) and a potential therapeutic
target (F. Ren et al. (2020), Y. Wang et al. (2022)).

Figure I.I: Maturation process of pre-mRNA to mature mRNA. After DNA transcription to
pre-mRNA, this molecule suffers from capping (addition of 5’ cap), polyadenilation (addition of
poly(A) tail at 3’ end) and finally splicing by the spliceosome. After all these mechanisms a mature
mRNA is obtained. Figure created with BioRender.com.
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Figure I.II: Alternative splicing and alternative polyadenylation mechanisms and results. Al-
ternative splicing mechanisms include intron retention, alternative 3’ end or exon extension and
exon skipping. Constitutive splicing is also shown. Polyadenylation consists in the addition of the
poly(A) chain to a different site from the 3’ end; two examples are illustrated. Figure created with
BioRender.com.

I.II Novel transcript discovery

The transcriptome is the set of all transcripts or mRNA molecules produced in cells at
a specific moment (Z. Wang et al. (2009)). It can be applied to the specific transcripts
present in a single cell, a tissue or a whole organism. In addition, the transcriptome changes
depending on external factors, different developmental stages or physiological conditions.

RNA sequencing (RNA-seq) is a useful technique to identify and quantify the RNA in
a sample using next-generation sequencing (NGS) technologies (Z. Wang et al. (2009)).
That is to say, RNA-seq is a technique to analyse the transcriptome "at a glance", i.e.
without the need to target specific genes. Thus, the capacity to unravel the transcriptome
is key to understanding gene expression and function more deeply. In addition, RNA-seq
can identify post-transcriptional modifications such as APA or AS and the transcriptional
structure of genes.

Transcriptome sequencing technologies such as short-read RNA-seq are useful for
discovering post-transcriptional events (W. Chen et al. (2017)). Nevertheless, RNA-seq
platforms -the most common among them being Illumina (Alamancos et al. (2014),
Croucher et al. (2009))- produce reads of small length compared to mRNA transcripts
and interrupt the sequences’ continuity. This results in the inability to resolve assembly
ambiguities at complicated loci and therefore hinder the characterization and quantification
of alternative isoforms (Engström et al. (2013), Goodwin et al. (2016), Steijger et
al. (2013)). Moreover, it is important to obtain full-length reads of transcripts to really
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understand their functional diversity, as it relies in the whole structure, not only in a
single post-transcriptional modification. For all the above, it is only possible to obtain a
full mRNA sequence through alignment to annotated sequences or de novo transcriptome
assembly approaches. Hence both approaches have major limitations for reconstructing the
real expressed transcripts.

Recently, the development of long-read sequencing technologies has allowed the sequenc-
ing of entire molecules of full-length cDNA as single reads (Dijk et al. (2018)). These
distinguishing features contrast with the short-read technologies, in which sequencing is
paused after each base incorporation. Remarkably, most of the limitations of short-read
transcriptome assemblers can be overcome with long-read technologies, as the length of the
sequences does not limit them and the contiguity of the read is not lost (Leung et al. (2021)).
High-throughput RNA-seq using long reads has facilitated the discovery of thousands of
novel transcripts. Currently, Pacific Biosciences (PacBio) ((Eid et al. (2009),Sharon et al.
(2013))) and Oxford Nanopore Technologies (ONT) (Oikonomopoulos et al. (2016)) are
the prevailing long-read sequencing technologies.

ONT sequencing consists in a nanopore protein inserted into a synthetic lipid mem-
brane through which a DNA or RNA molecule can pass. Each base provokes a different
disruption in the membrane’s electric field, hence the sequence is determined. In con-
trast with the PacBio technology, the standard ONT protocol does not allow sequencing
of the same molecule multiple times, however, it is able to sequence longer molecules.
(Oikonomopoulos et al. (2016))

The PacBio Single-Molecule, Real-Time sequencing technology is known as SMRT.
SMRT sequencing is based on the fluorescence emitted by each labelled nucleotide that is
incorporated during DNA synthesis by a polymerase molecule immobilised in the bottom of
a microwell. The acces of the single molecule to the immobilised polymerase limits the length
of the reads (Eid et al. (2009)). In addition, the development of novel library preparation
methods by PacBio has reduced the typically high error rates of long-read technologies.
First, full-length, double-stranded cDNAs are used to construct SMARTbell libraries.
This is done by adding ligating hairpin adapters to both ends of the cDNA molecule,
which allows its circularisation. Then, this circular molecule is repeatedly sequenced using
circular consensus sequencing (CCS) (Travers et al. (2010)) to obtain a consensus read
or read of insert (RoI). RoIs in which both cDNA primers and the poly(A) tail can be
detected are considered Full-Length (FL) reads, while those that miss any of these are
called non-Full-length (non-FL) reads.

Longer reads allow the sequencing of full-length mRNA molecules with single reads,
hence avoiding the biases of short-read sequencing technologies. While the larger read sizes
achieved by ONT have made it a leader in the field of genomics, PacBio’s more precise
CCS technology has been established as a powerful tool for RNA-seq, mainly because the
small size of RNA molecules allows to read them sequentially in the same circular consensus
molecule. For this reason, we have chosen to perform the present study with transcriptome
data generated with the PacBio Sequel II system, which generates so-called highly accurate
long reads (HiFi reads), given that they provide >99,9% accuracy and up to 8 million reads
per sequencing run.
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Nevertheless, the high raw error rate (11%), especially due to insertions and delections,
is one of the most notable limitations of PacBio (Carneiro et al. (2012)). These errors are
intrinsic to single-molecule sequencing, conversely to high-throughput short-read sequencing,
where clusters of the same molecule are sequenced simultaneously, achieving very low error
rates (Minoche et al. (2011)). However, the error rate has been estimated for each pass of
the single molecule and, as explained above, the use of CCS technology has reduced the
error rate. Hence, the exact error rate is highly dependent on the number of sequencing
passes.

It is however essential to understand the sources of error in order to further minimise
them in downstream analyses. Errors can be introduced during sample preparation, RNA
extraction, library construction, sequencing and raw data processing (Shi et al. (2021)).
Here, we will next explain the three mechanisms that have been most widely described
to result in the identification of false isoforms -that is, hinder the identification of novel
transcripts.

First, reverse transcriptase (RT) template switching is an intrinsic property of RTs that
allows them to move the template positions without terminating DNA synthesis. It becomes
troublesome when its activity is enhanced by secondary structures in RNA templates and
generates gaps during cDNA synthesis. These gaps are then interpreted as splicing sites,
leading to the generation of false alternative transcripts (Cocquet et al. (2006)).

A similar consequence is caused by off-priming of the oligo(dT) primer in adenine-rich
regions of the mRNA template, known as intra-priming. In other words, shorter cDNA
molecules are produced when the oligo(dT) primer anneals to a adenine-rich regions found
in pre-mRNAs, that it is not the poly(A) tail. (Nam et al. (2002))

Finally, mRNA is an unstable molecule that tends to suffer degradation, which can
be a source of errors during library preparation (Gallego Romero et al. (2014)). RNA
transcript decay is a highly regulated physiological process that occurs during the cell
cycle and contributes to regulating other cellular mechanisms (Garneau et al. (2007)).
Nevertheless, this degradation process also occurs during the extraction of mRNA, mainly
due to RNase present in the cellular extract or in the environment, but is undesired.
The degradation process begins with the removal of the 3’ tail of poly(A), followed by
the decapping of the 5’ cap structure and the exonucleolytic degradation from 5’ 3’ or
degradation from 3’ to 5’. It must be noted that transcripts with missing 3’ end will
be discarded during cDNA synthesis, as it is done with an oligo(dT) primer, whereas
transcripts with shorter 5’ ends due to degradation will be sequenced.

I.III Long-read transcriptome reconstruction software

Given the mechanisms explained above, which generate a diversity of transcripts that
is not naturally present in the biological sample, errors during RNA-seq present a major
obstacle to generating accurate transcriptomic data. Indeed, the potential of long-read
technologies to generate transcriptomes has raised the need to develop software to efficiently
identify isoforms based on these reads.
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Numerous long-read transcriptome reconstruction pipelines have been developed, most
notably IsoSeq3 and TALON. IsoSeq3 is a pipeline developed by PacBio to generate
transcriptomes using data obtained with this platform (“PacificBiosciences/IsoSeq” (2022)).
This pipeline generates transcripts by clustering and polishing PacBio HiFi reads and,
given that it does not use a reference genome, it is designed to identify novel isoforms.
Conversely, TALON is a platform-independent assembler that relies on reference transcripts
for identifying isoforms (Wyman et al. (2020)). The TALON pipeline is designed to
annotate reads as known or novel transcripts and quantify them simultaneously. First, error
correction is performed by mapping and comparing the raw reads to the reference genome.
After that, the tool analyses quality control information to identify and characterise new
transcript models and finally filter and quantify all of them.

Additionally, downstream quality control and transcript annotation analyses are required
due to the characteristics of the reads obtained using PacBio. Several software tools
have been developed to cover this demand, one of the most widely used among them
being Structural and Quality Annotation of Novel Transcript Isoforms v3 (SQANTI3)
(Tardaguila et al. (2018)) .

I.IV SQANTI3 for quality control of long read-defined tran-
scriptomes

SQANTI (Tardaguila et al. (2018)) was born out of the need to refine and characterise
long read-defined transcriptomes and constitutes the first module of the Functional IsoTran-
scriptomics (FIT) pipeline, including IsoAnnot and tappAS (de la Fuente et al. (2020)).
The SQANTI3 pipeline provides an in-depth characterisation and curation of long-read
transcriptomes, meaning that it performs isoform classification and quality control, but it
also includes a specific module to filter out potential artifacts, i.e. false positive isoforms
generated during library preparation and sequencing.

SQANTI3 takes as input a long read-defined transcriptome, together with the corre-
sponding genome sequence and reference transcriptome annotation (and, if available, other
orthogonal data, such as isoform expression, validation of the 3’ and 5’ ends, etc.) to return
a characterised transcriptome. The tool also provides a wide set of transcript-level attributes
and descriptors for each isoform and their SJs, further analysed in several diagnostic plots.
Thus, the SQANTI3 output information allows users to understand their isoform models’
properties and identify potential errors. Here, we have classified the most relevant variables
for this work depending on their characteristics (Table I.I).

On the one hand, it classifies the isoforms into pre-defined categories (Table I.II), (Figure
I.III.a) and subcategories (Figure I.III.b-d) .

I.IV.a SQANTI3 machine learning filter

The term machine learning refers to a branch of artificial intelligence based on construct-
ing a mathematical model that can be trained with existing data to make predictions on any
dataset of the same type (Tarca et al. (2007)). These can be: 1) supervised models, which
accurately predict the classification of new elements based on the features of available data,



CHAPTER I . INTRODUCTION 7

Table I.I: SQANTI3 classified transcript-level variables

CLASSIFICATION NAME MEANING

min_sample_cov
Number of short-read replicates

mapping the SJ least covered by short-reads.

sd_cov
Standard deviation of coverage

between SJs. SJ coverage uniformity.

min_cov Value of coverage of the least covered SJ of the transcript.
Short-read coverage

related variables

ratio_TSS
Coverage ratio between first 100pb upstream

and downstream TSS.

gene_exp Expresion level of the original gen.

Iso_exp Short-read expression for this isoform.

Ratio_exp Ratio of iso_exp to gene_exp.

Expression-related

variables

FL Full-length read count associated to the isoform.

polyA_motif Top ranking polyA motif found up to 50 bp upstream of the transcript end.

polyA_dist
Location of the last base of the hexamer.

Position 0 is the putative poly(A) site.

This distance is hence always negative because it is upstream.

diff_to_TSS
Distance of query isoform 5’ start to reference transcript start site.

Negative value means query starts downstream of reference.

diff_to_TTS
Distance of query isoform 3’ end to reference annotated end site.

Negative value means query ends upstream of reference.

diff_to_gene_TSS
Distance of query isoform 5’ start to the closest start site

of any transcripts of the matching gene, by looking at all

annotated starts of a gene.

End and start

related variables

diff_to_gene_TTS
Distance of query isoform 3’ end to the closest end of any

transcripts of the matching gene.

Bite
TRUE if the transcript contains at least one novel SJ for which a novel intron

overlaps an annotated exon.

Exons Number of exons.

Coding Coding potential capacity according to GeneMarkS-T (Tang et al. (2015)).

Length Isoform length

Structure

related variables

Predicted_NMD
TRUE if there’s a predicted ORF and CDS ends at least

50bp before the last SJ; FALSE otherwise.

and 2) unsupervised models, in which there is no predefined classification and elements
under study are clustered together to discover their natural grouping. Examples of both
supervised and unsupervised machine learning models applied to biological problems can
be found in Tarca et al. (Tarca et al. (2007)).

In this case, we have labelled targets: artifacts or real isoforms, defined as such by
SQANTI3; therefore, a supervised machine learning model is the best option (Chicco
(2017)). The chosen model relies on a random forest method (Breiman (2001)), a supervised
model that is built from a large number of decision trees that work as an ensemble. Decision
trees can be understood as a flowchart where each internal node represents a test on a
variable, each branch constitutes a test result and each terminal node represents a class tag.
Therefore, training random forests involves testing random decision trees in which different
importance is given to each attribute with a set of True Positives (TP) and True Negative
(TN) data provided. Through this process, if accuracy degrades when excluding a certain
variable, its importance value is incremented and ultimately the most accurate model is
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Table I.II: SQANTI3 category description

CATEGORY MEANING

Full Splice Match (FSM)
The reference and query isoform have the same

number of exons and all internal junctions agree.

Incomplite Splice Match (ISM)
The query isoform has fewer 5’ or 3’ exons than

the reference, but all common internal junctions agree.

Novel In Catalog (NIC)
The query isoform does not have a FSM or ISM match,

but is using a combination of known donor/acceptor sites.

Novel Not in Catalog (NNC)
The query isoform does not have a FSM or ISM match,

and has at least one donor or acceptor site that is not annotated.

Antisense
The query isoform does not have overlap a same-strand

reference gene but is anti-sense to an annotated gene.

Genic Intron
The query isoform is completely

contained within an annotated intron.

Genic Genomic The query isoform overlaps with introns and exons.

Intergenic The query isoform is in the intergenic region.

used to classify a provided dataset.

The SQANTI3 machine learning-based filter (MLfilter) is a random forest algorithm
that, starting from the classification file generated by SQANTI3, a TP and a TN set
of 3000 transcripts, filters the transcripts considered as isoforms and discards some as
artifacts (Figure I.IV). This algorithm learns from the properties of the transcripts in
the TP and TN sets regarding the multiple variables (Table I.I) considered to filter the
transcripts. According to their relevance in the classification model, these variables are
given an importance value. Transcripts that have potential to be artifacts should be used
as TN set, whereas transcripts that are most likely to be true should be used as TP set.
Choosing the model training data is crucial for an optimum performance, therefore it is
important to study how they are defined, which is the main objective of this work.
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Figure I.III: Representation of SQANTI3 categories and subcategories compared to a reference
transcript, adapted from “SQANTI3” (2022). a. SQANTI3 main categories. b. Full splice match
(FSM) subcategories. c. Incomplete splice match (ISM) subcategories. d. Novel in catalog (NIC)
and novel not in catalog (NNC) subcategories

Figure I.IV: SQANTI3 machine learning filter (MLfilter) workflow. After running SQANTI3, the
resulting characterized transcriptome is filtered. The MLfilter is trained with a true negative (TN)
set of transcripts (novel not in catalog with non-canonical junctions) and a True Positives (TP) set
of transcripts. The final output is a classification of the transcripts as artifacts or as isoforms.



Chapter II

Objectives

The SQANTI3 MLfilter brings multiple advantages to transcriptomic analysis, however
it is necessary to study its performance and the optimum chose of training data. In this
work, we intend to define best practices for researchers who use SQANTI3 to characterise
transcriptomes and open the door to further studies to improve the SQANTI3 pipeline.

Accordingly, two main objectives of this thesis are: 1) understand how the MLfilter
output varies depending on the parameters established for the model’s training and 2)
establish a list of recommendations for the use of the SQANTI3 MLfilter, in order to optimise
the filtering of artifacts in long read-defined transcriptomes. These recommendations will be
based on two different long-read transcriptomics datasets, but they can be extrapolated to
long-read transcriptomes processed with the same or similar pipelines: one that is reference-
independent and specific for PacBio reads (IsoSeq3) and one that is reference-based and
sequencing platform-independent (TALON). With this in mind, we have performed a
comparative analysis after running the MLfilter with different parameter set ups, in an
attempt to draw conclusions as to which of these configurations is the most suitable for the
study of each dataset.

10



Chapter III

Methods

III.I Long-read RNA-seq data availability

Long-read RNA-seq data generated using the Iso-Seq library preparation method from
PacBio and sequenced using the Sequel II platform was retrieved from the Encyclopedia Of
DNA Elements (ENCODE) project database (Moore et al. (2020)).

The first dataset comes from C2C12, an immortalized mouse myoblast cell line, and
its RNA-seq data was obtained from ENCODE accession ENCSR221XGR. The second
dataset comes from GM12878, an human B cell derived cell line, and its RNA-seq data was
downloaded from ENCODE accession ENCSR838WFC.

III.II Long-read data pre-processing

C2C12 long-read data was processed using TALON (Wyman et al. (2020)), using default
parameters. The full TALON pipeline is available on GitHub through the ENCODE4 Data
Coordinating Center (DCC) at https://github.com/ENCODE-DCC/long-read-rna-pipeline
(“ENCODE Long read RNA-seq pipeline” (2022)) and at https://github.com/mortazavilab/
TALON (“TALON” (2022)).

GM12878 data was processed using the IsoSeq3 software and default parameters. The full
IsoSeq3 pipeline is available on GitHub at https://github.com/PacificBiosciences/IsoSeq
(“PacificBiosciences/IsoSeq” (2022)). In addition, we mapped these fasta reads to the
genome reference and then run cDNA Cupcake (Tseng (2022)) to collapse these transcripts
models and remove redundancy, using default parameters and [–dun-merge-5-shorter],
to avoid collapsing shorter 5’ transcripts.

III.III Running SQANTI3

In order to characterise and evaluate the quality of both long read-generated tran-
scriptomes, the quality control module of the SQANTI3 toolkit (SQANTI3 QC, v5.0) was
used. The SQANTI3 software can be found at https://github.com/ConesaLab/SQANTI3
(“SQANTI3” (2022)).

11
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III.III.a C2C12 data

For C2C12 data, we run SQANTI3 using the mouse reference genome (GRCm39) and
the Gencode vM27 transcriptome. Moreover, other sources of supporting data were supplied
to SQANTI3 to perform the quality control. First, in accordance with previous studies
stating that human and mouse poly(A) motif sequences show high levels of conservation
(Tian et al. (2005), R. Wang et al. (2018)), a ranked list of common human poly(A)
motif sequences (included in SQANTI3) was used to curate Transcription Termination
Sites (TTS) for our isoforms. In addition, mouse Cap Analysis of Gene Expression (CAGE)
peak data was obtained from the FANTOM5 database and used to validate Transcription
Start Sites (TSS) across the transcriptome (Forrest et al. (2014)). Finally, one Illumina
short-read dataset (ENCODE accession: ENCSR000AHY) was supplied to account for
short-read coverage and isoform/gene expression information during quality control.

III.III.b GM12878 data

For GM12878 data quality control, we run SQANTI3 using the human reference genome
(GRCh38.p13) and the Gencode v37 transcriptome. Similarly to what was described above
for C2C12, several sources of supporting data were used to expand and refine transcriptome
quality control, i.e. human CAGE peak data from the FANTOM5 database (Forrest et al.
(2014)), the list of common poly(A) motif sequences included in SQANTI3 (see section
above) and an Illumina short-read dataset including two replicates (ENCODE accession:
ENCSR000AEH).

III.IV Running SQANTI3’s machine learning-based filter

In this work, the MLfilter (SQANTI3 ML filter, v5.0) was run using different sets of TP
transcripts and excluding/including several variables during random forest model training
via the –remove_columns or -r flag in the SQANTI3 filter script. Of note, the remaining
parameters were left as default.

The exact combinations of TP set and excluded variables used to apply the MLfilter
are shown in Table III.I. On the one hand, a random sample of 3000 Reference Match
(RM) or Full-splice Match (FSM) isoforms was used as TP set. In turn, two MLfilter runs
were performed using each of these TP sets, i.e. including and not including the SQANTI3
attributes related to the genomic distance to the start/end of the associated reference
transcript and to the associated gene. These attributes reflect the similarity between the
long read-defined isoform’s TSS/TTS and those included in the reference, and are hereafter
referred to as distance variables.

III.V Generation of diagnostic plots for the comparative
analysis

The SQANTI3 filter module outputs a classification table including transcripts as rows
and all SQANTI3 descriptors, together with filter result variables (i.e. random forest
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Table III.I: Parameter combinations for running the MLfilter

TRUE POSITIVE SET DISTANCE PARAMETERS ABBREVIATION

Reference Match Included RM_dist

Reference Match Not included RM

Full Splice Match Included FSM_dist

Full Splice Match Not included FSM

classifier probabilities and final filter result), as columns. Using the data output by the
different MLfilter runs, we generated a group of diagnostic plots that will be discussed in
the Results section. Those plots were generated using R programming language (R Core
Team (2020)) and the set of packages included in the ’tidyverse’ (Wickham et al. (2019)).
A sample of the scripts used to generate the figures reported in this thesis is included in
the Appendix section A.



Chapter IV

Results and discussion

IV.I General description of the analysis

As explained before, the aim of this study is to establish a list of recommendations
to get the most out of the machine learning-based filter (MLfilter) of SQANTI3. These
recommendations are based on two different long-read transcriptomics datasets, but they can
be extrapolated to long-read transcriptomes with similar properties. For this purpose, the
particularities of each dataset are hereby described and a comparative analysis performed
after running the MLfilter with different parameters (see Methods section II.IV, III.I), in
an attempt to draw conclusions as to which of these set ups is the most suitable for the
study of a dataset with similar characteristics.

Both transriptomics datasets were generated with the PacBio sequencing technology and
then processed with two different pipelines: IsoSeq3 and cDNA Cupcake for the GM12878
cell line dataset and TALON for data from the C2C12 cell line (see Methods, section II.I).
Then, we run SQANTI3 and its machine learning filter with four different parameter set
ups (see Methods section II.IV, table III.I).

In past SQANTI versions, the pipeline did not include orthogonal data -such as CAGE
peak and polyA motif/peak data- to validate the transcripts’ ends, therefore, the MLfilter
algorithm was not applied to FSM and ISM categories. Both of these categories include
isoforms that share all their junctions with a reference transcript, and therefore mainly
present variability at their 3’ and 5’ ends. Hence, without information related to the
transcripts’ ends, FSM and ISM transcripts could not be filtered. As it is now possible to
include this type of information, it is indeed possible to filter these SQANTI categories. The
variability in the ends of FSM and ISM transcripts also makes it difficult to know whether
they are novel isoforms or come from errors during library preparation, such as 5’ end RNA
degradation or intra-priming, or during raw data processing, e.g. the inability to correct
long read sequencing errors. With this in mind, we have tested two aspects of MLfilter
set up: first, how to create the true positive (TP) set; and second, how the selection of
variables for classifier training influences the filter output. Ultimately, we intend to discern
which set up leads to a better performance.

To define the TP set, we have used transcripts that match the reference exactly (reference
match subcategory, RM) and transcripts that match only their SJs (full-splice match, FSM)

14
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as seen in Figure I.III.b. On the one hand, RM is a FSM subcategory and transcripts
included in it are the most likely ones to be true, as they are fully consistent with the
reference. Nevertheless, we cannot know if training the algorithm with this type of transcript
results in discarding novel isoforms, since they do not resemble the RMs. On the other
hand, FSMs include other subcategories that are shorter in one or both of the ends (Figure
I.III.b). Hence, training the algorithm with a more diverse set of transcripts may allow the
detection of novel isoforms.

However, when using only RMs as TP, and not the rest of FSM subcategories, an
overfitting effect is likely to occur. In machine learning, overfitting can be defined as the
optimization of the learning algorithm such that it perfectly fits the training data, but its
performance decays on other similar datasets (Chicco (2017)). It is sometimes explained
because, instead of learning from the dataset provided, the algorithm "memorises" its
characteristics and loses the ability to be flexible when other data is supplied. In the
case of this study, when training the algorithm with RM as TP, the filter is learning from
transcripts that have a minimum distance to the beginning and end of the gene and of the
associated reference isoform. In consequence, we anticipate the filter to be very demanding
when it comes to determining whether a transcript is an isoform or not, as it will do it
mainly in terms of reference transcriptome similarity. Therefore, by including variables
related to TSS/TTS distance in the filter and using a TP set of transcripts with minimum
values of these variables, we anticipate this overfitting effect to be produced. Overfitting
would lead to a more demanding filtering proccess, in which the contribution of other
variables would be minimized. For this reason, in order to study the overfitting effect, we
have also tested the inclusion or exclusion of variables related to TSS/TTS distance from
classifier training, hereby called distance variables.

We therefore run the machine learning filter with four different parameter set ups, which
we will refer to with the following nomenclature:

• RM_dist: RM as TP set and including diff_to_gene_TTS and diff_to_gene_TSS
columns.

• RM: RM as TP set and excluding diff_to_gene_TTS and diff_to_gene_TSS columns.

• FSM_dist: FSM as TP set and including diff_to_gene_TTS and diff_to_gene_TSS
columns.

• FSM: FSM as TP set and excluding diff_to_gene_TTS and diff_to_gene_TSS columns.

Ultimately, we have performed a comparative analysis of the output obtained from
running the filter with these parameters. All of these by comparing the values of the
variables for each transcript (Table I.I) used by the MLfilter and the filtering output, that
is, the classification of the transcripts as isoforms or artifacts (Figure I.IV). Using this
data, we generated a group of diagnostic plots in an effort to evaluate the different outputs
obtained.
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IV.II GM12878 human cell line transcriptome proccessed
with IsoSeq3

First of all, it is interesting to have an insight of how the FSM TP set is composed, as this
category has five different subcategories, therefore the training will be different depending
on the type of transcripts classified as FSM in the transcriptome under study. For the
GM12878 dataset, we have seen that FSM transcripts are distributed in all subcategories,
with the alternative 3’ end subcategory accumulating 50% of total FSM transcripts (Figure
IV.I.a). This could influence the filtering, because, when training from a set of transcripts
that are mostly shorter at the 3’ end, the algorithm is expected to be more permissive with
transcripts of this type than with the rest. However, as this is a representative sample of
the real transcripts in the data, this should not be a problem -it would only introduce a bias
if these alternative 3’ end transcripts predominate due to an error in library preparation or
raw data processing.

Regarding the relevance of the different variables in the MLfilter, when all four dif-
ferent filtering set ups used were compared, we observed that some distance variables
(diff_to_gene_TTS and diff_to_gene_TSS) are given larger values of importance in those
cases in which these variables are included (Figure IV.I.b). In general, this effect leads to
reducing the importance of some variables in the classification, especially the most highly
contributing ones.

The first comparative analysis of the data consists in seeing the number of artifacts
detected by each filter set up, the number they share and those unique to each one (Figure
IV.I.c). Using the RM_dist configuration, 18455 transcripts are uniquely discarded, meaning
that the rest of filtering set ups do not detect them as artifacts. This suggests that, for
the data processed with IsoSeq3, using a TP of RM and providing distance parameters for
random forest classifier training is more stringent than the rest of parameter combinations
used. It is noteworthy that, while the other filtering sets up discard few unique transcripts,
RM_dist discards a large number of them. Therefore, we have focused on investigating this
phenomenon.
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Figure IV.I: Diagnostic plots for GM12878 cell line transcriptome proccessed with IsoSeq3 and
cDNA Cupcake comparing the four set ups of the machine learning filter of SQANTI3: IsoSeq_RM
(TP=RM, not including the distance variables) IsoSeq_RM_dist (TP=RM, including the distance
variables), IsoSeq_FSM (TP=FSM, not including the distance variables), IsoSeq_FSM_dist
(TP=FSM, including the distance variables). a. Percentage of subcategories of the transcripts
included in the TP set generated with FSM transcripts for each filter set up. b. Variable importance
values of each filter set up used in the machine learning filter of SQANTI3. c. UpSet plot showing
the number of unique and shared artifacts between the different filter set ups used in the machine
learning filter of SQANTI3.

To shed some light on the reason why the RM_dist set up generates such a high number
of unique artifacts, we will discuss the upset plot in Figure IV.I.c in more detail. First,
RM_dist and FSM_dist share 1720 unique artifacts that no other filtering set up discards.
In fact, RM_dist and FSM_dist are the pair of filter set ups that share the highest amount
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of artifacts. As inclusion of distance variables is the only parameter they share, this may
indicate that distance parameters seem to be determinant for the filtering. In contrast,
19300 transcripts are discarded by RM_dist and not by FSM_dist, meaning that, regardless
of the high amount of shared artifacts, there is still a great difference between them. This
is why it would be interesting to compare RM_dist and FSM_dist outputs and learn from
those unique and shared artifacts and their properties. In particular, we will 1) study the
similarities of the shared discarded transcripts to understand the effect of the inclusion of
distance variables and 2) assess the properties of the unique artifacts of each filtering set
up to understand the influence of the choice of TP set.

IV.II.a RM_dist vs FSM_dist: TP set effect

Comparing both filter set ups that include the distance parameters (FSM_dist and
RM_dist) enables us to understand how the selection of the TP set and the inclusion of the
distance variables influences the outcome of the MLfilter.

Regarding the total number of artifacts in each SQANTI3 category(Figure IV.II.a),
FSM, ISM, NIC and NNC show a higher percentage of unique artifacts. This was expected,
as FSM and ISM categories are the most likely to be influenced by the distance to the
TSS/TTS of the transcript. That is because they are characterised by being shorter or
longer at the TSS/TTS, thus including related parameters or not is expected to affect
their classification as isoforms. For this reason, we will focus on FSM, ISM, NNC and
NIC categories to provide a clearer visualisation of the data. In addition, reference match
is the only subcategory in which there is a higher percentage of unique artifacts in the
FSM_dist filtering than in RM_dist (Figure IV.II.b). That is because, when using a TP set
of reference match classified transcripts, there should be less artifacts from this subcategory.
However, the total number of RM artifacts is small compared with the rest of subcategories.
Remarkably, there is a high percentage of unique artifacts from the RM_dist filter set up
in the alternative 3’ end and the alternative 3’ and 5’ end subcategories (Figure IV.II.b),
which may be due the high percentage of alternative 3’ end transcripts in the FSM TP set.

Regarding variable importance in the random forest classifier, we observed that RM_dist
gives more importance to diff_to_gene_TTS and diff_to_gene_TSS than to other variables
that have more importance in FSM_dist (Figure IV.II.a). As discussed in the section above,
this may be due to overfitting: the algorithm is being trained with transcripts with a
minimum distance to the end and start of the associated reference gene and transcript, so
it will be very demanding regarding this variable. In addition, this effect leads to ignoring
variables that are relevant in other set ups, such as min_sample_cov or min_cov (Figure
IV.I).

To verify whether these observations can be attributed to an overfitting effect, we have
examined the distribution of values of the distance variables to see whether there is a
difference between unique and common artifacts. RM_dist’s unique artifacts have greater
diff_to_gene_TTS values than FSM_dist ones and even greater than the common artifacts
in some cases (Figure IV.II.c). Notably, for RM_dist, diff_to_gene_TTS is a far more
important variable. Meanwhile, FSM_dist is not focusing only in this attribute and may be
discarding those artifacts because of other variables, regardless of the little distance to the
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3’ end of the gene. In contrast, there is not such a difference in diff_to_gene_TSS, and
both filtering set ups behave similarly regarding this variable (Figure IV.II.d).

To discuss this issue better, we shall provide some context. During RNA extraction,
the 5’ end of the mRNA molecules is commonly degraded. Many of these fragments are
thus sequenced and can be wrongly detected as novel isoforms, hence it is required to be
able to know which of them are caused by degradation. Transcripts of this origin will
be part of the FSM set, as a result, training the algorithm with these transcripts as true
isoforms will lead to a permissive filtering of transcripts generated by degradation in the 5’
(diff_to_gene_TSS > 0). Nevertheless, we cannot know the exact values of distance to
the TSS corresponding to a transcript generated by degradation problems. What can be
assumed is that filtering with RM as TP set will not tolerate this degradation-generated
transcripts. Therefore, we can conclude that those artifacts with higher distances to the
TSS may have this origin, while those artifacts with little distances filtered by the FSM_dist
set up may have been generated by other causes.

On the other hand, 3’ end degradation is not detected because the resulting chain lacks
on poly(A) tail. 3’ end assortments are most commonly generated by intra-priming, for
which the transcript is truncated due to the detection of a adenine-rich fragment by the
oligo(T) primer. The distance to the TTS of this transcripts cannot be known unless the
adenine-rich fragment is detected. What can be assumed by observing Figure IV.II.f is that
RM_dist considers transcripts with higher distances to the TTS (which may or may not
be originated by intra-priming) to be artifacts; however, those unique artifacts are more
similar to the common ones. Other remark that can be made from Figure IV.II.c is that
FSM_dist is discarding transcripts with distances to the 3’ end close to 0, which suggests
that they may be considered artifacts for other reasons.

Next, we have analysed the performance of the artifacts with regard to the values of
the variables related to short-read data (Table I.I). These attributes are indicators of the
short-read coverage, i.e. they are an external proof of validation of the isoform, either in the
SJs or in the TTS (ratio_TTS). Given their high importance values (Figure IV.I.b), we will
discuss two short-read variables: min_cov and min_sample_cov. As can be seen in Figure
IV.II.e and Figure IV.II.f, unique artifacts with lower min_cov and min_sample_cov are
found in FSM_dist, while RM_dist discards transcripts with greater short-read coverage
values than the common ones. In order to understand why these transcripts with strong
coverage support are being considered as artifacts, these were plotted together with the
distance variables. As illustrated in Figure IV.III.a and Figure IV.III.b, for greater values of
min_sample_cov, there are greater values of diff_to_gene_TTS and diff_to_gene_TSS.
This follows the expected behaviour, especially for RM_dist filtering, whereby the filter
discards transcripts with good coverage values only if they have also high distances. In
addition, as discussed above, diff_to_gene_TTS is high for RM_dist in all cases, while
for the FSM_dist set up the values of the distance to the TTS are always low (Figure
IV.III.a). While the difference is not noteworthy for diff_to_gene_TSS , its values are
larger for RM_dist compared to FSM_dist unique artifacts (Figure IV.III.b). This suggests
that RM_dist is filtering based on the distance to the gene TTS value, while FSM_dist must
be filtering due to other attributes.

Regarding the rest of variables, no differences were found except in the case of gene_exp.
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This variable refers to the level of gene expression and high values of gene_exp are considered
to be evidence of the existence of the isoform. As it has been seen in the case of other short-
read related variables, gene_exp is higher for RM_dist unique artifacts than for common
and unique FSM_dist ones (Figure IV.III.c). Nonetheless, if the transcript is generated by
degradation or intra-priming, it would show the expression levels and short-read coverage
of a true isoform. For this reason, they should be discarded even if they have high values of
these variables.

Considering all the above, a set of recommendations to optimally run SQANTI3’s
MLfilter can be formulated:

• Overfitting is not desired, consequently using FSM as TP set is highly recommended
when using the distance variables for random forest classifier training.

• For a more stringent filtering, but with more variability in the training set, FSM
should be used as TP. This option is recommended if the user has a reliable short-read
dataset, as it will mainly learn from short-read coverage.

• For a more lenient filtering that learns from a wider range of variables it is recom-
mended to use RM as TP set and not include the distance variables.

The next question to be answered is whether it is better to use distance variables when
the TP set is generated with FSM or not. For this purpose, a different set of filtering
set ups was next compared: filtering with a TP set componed of FSM transcripts with
(FSM_dist) and without the distance variables (FSM).
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Figure IV.II: Diagnostic plots for GM12878 transcriptome processed with IsoSeq3, comparing
two filtering set ups of the machine learning filter of SQANTI3: RM_dist (TP=RM, including
the distance variables), FSM_dist (TP=FSM, including the distance variables). a. Percentage of
common and unique transcripts labeled as artifacts for each category. b. Percentage of common and
unique transcripts labeled as artifacts for each subcategory. c. Values of log(|diff_to_gene_TTS|+1)
for artifacts of each category. d. Values of log(|diff_to_gene_TSS|+1) for artifacts of each category.
e. Values of log(|min_cov|+1) for artifacts of each category. f. Percentage of common and unique
transcripts labeled as artifacts for each category and value of min_sample_cov.
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Figure IV.III: Diagnostic plots for GM12878 transcriptome processed with IsoSeq3, comparing
two filtering set ups of the machine learning filter of SQANTI3: RM_dist (TP=RM, including
the distance variables), FSM_dist (TP=FSM, including the distance variables).a. Values of
log(|diff_to_gene_TTS|+1) for artifacts of each category and value of min_sample_cov. b. Values
of log(|diff_to_gene_TSS|+1) for artifacts of each category and value of min_sample_cov.. c.
Values of log(|gene_exp|+1) for artifacts of each category.
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IV.II.b FSM_dist vs FSM: distance variables effect

In order to have a deeper understanding of how the distance variables influence the
output, we compared both filterings which TP set was generated with FSM transcripts:
FSM (TP=FSM, not including the distance variables and FSM_dist (TP=FSM, including
the distance variables).

As seen in Figure IV.I.b, there is not as much difference in variable importance between
FSM_dist and FSM as in the previous comparison. Nevertheless, in FSM_dist, the distance
variables have high importance values, downplaying the importance of the rest of variables.
Remarkably, FSM_dist seems to be slightly more stringent, as it discards 2053 transcripts
that FSM filter set up do not discards.

Regarding the percentage of artifacts in each category and subcategory, the same
categories as previously shown appear in the spotlight (Figure IV.IV.a), hence we will
focus again on FSM, ISM, NIC and NNC classified transcripts. In this case, all of FSM
subcategories have greater percentages of unique FSM_dist artifacts than unique FSM ones
(Figure IV.IV.b), in contrast to what we have observed in the previous comparison, in which
the reference match subcategory was different from the rest in this regard. Ultimately,
which may be noted is that these two set ups are more alike than the previous ones, hence
the inclusion of the distance variables might be less critical than the choice of TP set.

To study the origin of the discrepancies between the two set ups, we have analysed the
differences of each attribute between unique and common artifacts for both set ups. First, re-
garding the distance variables, both unique artifacts have lower values of diff_to_gene_TSS
than the common ones (Figure IV.IV.c), whereas FSM_dist unique artifacts have higher
diff_to_gene_TSS than FSM ones (Figure IV.IV.d). This reveals the same pattern as in the
previous comparison: the most stringent set up (FSM_dist in this case) has unique artifacts
with higher diff_to_gene_TTS than the common ones, while the most lenient set up (FSM
in this case) has unique artifacts with lower diff_to_gene_TTS than the common ones. As
hypothesised before, this may be a consequence of the most lenient set up taking the rest
of variables into account. Thus, taking into account that FSM set up does not include the
distance variables in the filtering process, this effect was to be expected.

As discussed above, the set of transcripts classified as FSM is mainly composed by
alternative 3’ end transcripts, that is, those shorter than the reference in the 3’end.
Accordingly, the machine learning algorithm is being trained to recognise this type of
transcripts as the true ones: that is why it is expected to have artifacts with low values of
diff_to_gene_TSS, as alternative 3’ end transcripts have small distances (or no distance
at all) to the 5’ end (TSS) due to degradation. Nevertheless, it was not expected that
transcripts with high diff_to_gene_TTS (distance to the 3’end of the gene) would be
considered artifacts, as alternative 3’ end transcripts - which have been used as true
isoforms to train the model - have high diff_to_gene_TTS values. Therefore, the logical
output is the one accomplished with the FSM set up, while FSM_dist appears to be performing
abnormally in this regard, possibly due to overfitting. In this case, it does not seem to be
as troublesome as in the RM_dist set up, but it should always be avoided.

Moreover, in the same way as before, we have studied the differences with respect
to the short-read related variables. In Figures IV.IV.e-f, it is illustrated that FSM_dist
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discards transcripts with stronger short-read support (min_cov and min_sample_cov)
than the FSM filter set up, thus confirming that those unique FSM_dist artifacts are being
considered artifacts due to distance variables, regardless external proof such as min_cov
and min_sample_cov values.

By all accounts, overfitting might be produced due to the high percentage of alternative
3’ end FSM subcategories, since these represent more than 50% of the FSM transcripts. As
mentioned before, transcripts classified as alternative 3’ end have high diff_to_gene_TTS
values. As a result, including these values could lead to over-training the classifier to only
consider isoforms with these exact characteristics. As overfitting is not desired, it would be
better not to include the diff_to_gene_TTS variable in random forest classifier training.

All things considered, a set of recommendations can be formulated:

• The FSM_dist filtering set up is more demanding than FSM, but not excessively.
Therefore, the decision to include the distance variables when using FSM as TP set
should be based on how permissive the user wants the filter to be.

• It is important to know the subcategory distribution of FSM transcripts of the dataset
before applying the machine learning filter. If the kind of overfitting described here
is expected to occur, it would be better to remove the columns of the problematic
variables.



CHAPTER IV . RESULTS AND DISCUSSION 25

Figure IV.IV: Diagnostic plots for GM12878 transcriptome processed with IsoSeq3, comparing
two filtering set ups of the machine learning filter of SQANTI3: FSM (TP=FSM, not including
the distance variables), FSM_dist (TP=FSM, including the distance variables). a. Percentage of
common and unique transcripts labeled as artifacts for each category. b. Percentage of common and
unique transcripts labeled as artifacts for each subcategory. c. Values of log(|diff_to_gene_TTS|+1)
for artifacts of each category. d. Values of log(|diff_to_gene_TSS|+1) for artifacts of each category.
e. Values of log(|min_cov|+1) for artifacts of each category. f. Percentage of common and unique
transcripts labeled as artifacts for each category and value of min_sample_cov.
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IV.III C2C12 mouse cell line data processed with TALON

Aiming to verify the findings of the previous section, the same filter set ups were studied
for a different dataset: a C2C12 cell line transcriptome processed with the TALON pipeline.

As discussed above, we have first examined the composition of the FSM TP sets (Figure
IV.V.a). In this case, FSM transcripts mainly belonged to the RM subcategory (75%),
followed by the mono-exon subcategory (almost 25%). The rest of subcategories contain
only 20 transcripts out of the 3000 included in the TP set. As transcripts in the RM
subcategory and in the FSM category will be mainly alike, it is assumed that using either
set of transcripts as the TP set will not make a major difference. Hence, we will hereby
focus on the effect of including the distance variables for the random forest classifier training.

Regarding the variable importance values, there is a much more equal distribution than in
the previous dataset studied (Figure IV.V.b). This means that, in this case, the contribution
of the variables to the learning process of the algorithm is more evenly distributed. As
observed before, min_sample_cov has the highest importance, however, there are other
variables, such as FSM_class and gene_exp, that have a larger weight. However, it is
again observed that distance variables (diff_to_gene_TSS and diff_to_gene_TTS) are
given great values of importance in those cases in which these variables were included,
downplaying the importance of other variables (Figure IV.V.b). Therefore, the effect of the
inclusion of the distance variables in the filtering process will be similar to the one observed
for GM12878 data processed with IsoSeq3.

Another behaviour that differs from the previously studied case is that no filter set
up is distinct in the number of unique artifacts (Figure IV.V.c). Nevertheless, the pair
of RM_dist and FSM_dist shares 62358 unique artifacts that the rest of the filter set ups
do not discard. This was expected, as 75% of FSM transcripts are RMs, hence what it
is interesting is that training the model with distance variables leads to a more stringent
filtering.

As well as before, an overfitting effect is expected when using data that is too similar to
the reference genome in terms of distances to the TSS/TTS and also including that type of
information in the training of the classifier. For that reason, we have studied the behaviour
of the MLfilter of SQANTI3 when including those variables, and compared it to when they
are not included.

IV.III.a Distance variable effect

Assuming that RM and FSM transcripts are equivalent, we have choosen those filter
set ups that use FSM as TP set to study the effect of the distance variables. Comparing
FSM_dist and FSM set ups allows us to understand how including the distance variables in
the filtering process influences the classification of transcripts as isoforms/artifacts in this
type of dataset.

First of all, as discussed in the previous section, FSM_dist is more stringent than FSM.
Particularly, the FSM_dist set up discards 19300 unique transcripts, while the FSM set up
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only discards 596 unique ones and the rest (58671) are shared between both of them. This
reaffirms the demanding nature of the FSM_dist filtering. In the discussion below, we will
consider the values of the different variables for the unique artifacts of each filtering set up,
in order to understand which attributes are being used by the MLflter in each case.

As observed in Figure IV.V.b, the distance variables take high values of importance
when they are used to train the model. This diminishes the importance of the other
variables, hence including or excluding the distance variables will make a difference in
MLfilter performance.

Regarding the total number of artifacts in each SQANTI3 category, FSM, ISM, NIC and
NNC show a higher percentage of unique artifacts (for FSM_dist set up) (Figure IV.IV.a),
as seen in the IsoSeq-processed data (Figure IV.VI.a). For the same reasons, we will from
now on show the data for these four SQANTI3 categories. Furthermore, in regards to
the percentages of unique artifacts for the subcategories, we observed a similar pattern
as in the first comparison (IsoSeq3 FSM_dist vs RM_dist) of IsoSeq3 processed data (
Figure IV.IV.b). In this case, as shown in Figure IV.VI.b, the FSM_dist set up has more
unique artifacts in each subcategory unless in reference match. Remarkably, this effect
cannot be due to the choice of RM transcripts as TP set, since RM_dist discarded more
unique transcripts than FSM_dist in IsoSeq3 processed data (Figure IV.III.b). Conversely,
it must be because of the exclusion of the distance variables. Hence, not providing the
distance variables for MLfilter training leads to a more stringent filtering of reference match
transcripts.

As a discordant note, while the min_cov variable is the second most important one for
the previous dataset, in this case it is not even taken into consideration for the filtering
(Figure IV.V.b). Moreover, the second most important variable in both FSM and FSM_dist
filter set ups is FSM_class (Figure IV.V.b). Primarily, this is a variable that was not
expected to contribute to the classification of transcripts as artifacts. FSM_class is a
transcript attribute in regard to the gene it comes from and it has three classes:

• A: the original gene does not have any other transcript.

• B: the original gene has other transcripts, none of them classified as FSM.

• C: the original gene has other transcripts and at least one is classified as FSM.

In spite of being of great importance in this case, it does not show any differences in most
categories (Figure IV.VI.c). The great percentage of C class artifacts is noteworthy, since it
is difficult to understand why the classifier is filtering out a large number of transcripts that
come from a gene with other isoforms, and at least one FSM. However, when looking at the
values of FSM_class for transcripts classified as isoforms, we observe that they also show
high percentages of C class transcripts. Hence, this predominance of C class transcripts is
not specific to the artifacts, but to the entire transcriptome. Due to all this, the FSM_class
variable seems to highly contribute to the training of the MLfilter, conversely, it does not
seem to be linked to any other characteristic that distinguishes artifacts from true long
read-defined isoforms, this one being an example of how it is often hard to unravel the
inner functioning of the algorithms of machine learning.
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Similarly to what was observed for the data processed with IsoSeq3 (Figure IV.I.b),
the min_sample_cov variable is the most important one when applying the MLfilter
to the TALON C2C12 transcriptome (Figure IV.V.b). Unique artifacts with higher
min_sample_cov values than the common artifacts values are found in FSM_dist, whereas
the FSM set up discards transcripts with lower short-read coverage values than the common
ones (ISM) or more similar to the common ones (FSM, NNC, NIC) (Figure IV.VI.d).
This first filter set up, which is more stringent, discards transcripts with stronger proof of
short-read coverage, but not with low values, as opposed to FSM filter set up.

In order to confirm whether the unique artifacts are filtered out because of the values of
distance variables, we plotted min_sample_cov together with diff_to_gene_TSS (Figure
IV.VI.e) and diff_to_gene_TTS (Figure IV.VI.f). First, it is observed that FSM unique
artifacts have lower values of the distance variables than the common artifacts. These
low values could be evidence to classify those transcripts as isoforms, although they are
considered artifacts. However, the number of FSM unique artifacts is too small, and this
set up also discards many artifacts with potentially bad values of distance variables (the
common artifacts). For the FSM_dist unique artifacts, we have examined if they are
discarded due to the anomalous distance values. These values are indeed high, with similar
values to the common artifacts ones. Therefore, the unique FSM_dist transcripts seem to
be discarded because of the distance variables. In parallel, when not including the distance
variables for training the model (FSM filter set up), those transcripts with high distances to
the TSS/TTS are not discarded because of the short-read coverage proof (high values of
min_sample_cov). All considered, it is difficult to know whether those are real isoforms;
however, they may be considered artifacts due to overfitting.

Additionally, it is important to take into account the distance to the TSS of the gene,
since, as explained before, a larger distance may be due to degradation of the 5’ end of the
mRNA. In Figure IV.VI.e we observe how, when including the distance variables (FSM_dist
set up), transcripts with greater distance are discarded in comparison to those discarded
by both filters, especially in the ISM and novel categories (NNC and NIC). This can be
explained by the fact that degradation of mRNAs occurs at the TSS, hence, there will be
greater variability of distances to the TSS and more transcripts with high distance values
will be discarded. This contrasts with what is observed in the same comparison for the
distance to the gene TTS (Figure IV.VI.f), where only unique FSM_dist artifacts classified
as NNC have higher values of diff_to_gene_TTS than the common ones, while the opposite
is true for the rest of SQANTI categories. NNC transcripts are those least likely to be true
isoforms, as their SJs are completely novel, i.e. not present in the reference transcriptome.
This initially led us to think that NNC transcripts may have longer distances to the ends
of the gene, and would therefore be classified as artifacts. In order to unravel this opposite
behaviour, we have studied the possible relationship between the distance to the TSS and
to the TTS. Nevertheless, no relationship has been found (data not shown), hence the
hypothesis has been discarded. In addtion, the idea that transcripts with short distances to
the TSS are considered artifacts because they have high distances to the TTS is therefore
dismissed.

On the other hand, the ratio_TSS variable is apparently a good parameter to determine
whether a transcript is a real isoform, because if the ratio_TSS>1, it means that there is
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evidence of short-reads supporting the 5’ end. While the 3’ end is usually more reliable,
the 5’ end of mRNA is more susceptible to degradation, hence, evidence of short-reads at
that end is revealing information for filtering. However, it is not relevant when filtering in
any category (Figure IV.V.b).

As seen throughout the study, distance variables that provide evidence from the reference,
such as diff_to_gene_TSS and diff_to_gene_TTS do have substantial importance for the
filtering. Meanwhile, ratio_TSS is not given importance in the random forest classifier,
although it represents empirical evidence from the sample itself. Therefore, we have
compared ratio_TSS to diff_to_gene_TSS and diff_to_gene_TTS to discover whether
there is any relationship between them, however, nothing significant was found (data not
shown).

Finally, we provide further context on the pipeline used for processing. The transcriptome
processing tool (TALON) works in such a way that the transcripts are extended to match
the reference data. This makes the use of RM as TP with information on gene and transcript
start and end distances somewhat redundant, which, as we have seen, leads to discarding
many more transcripts than the other filtering set ups, as well as to potential overfitting.
Moreover, as we start from a transcriptome where FSM transcripts have a high percentage
of RM (75%), there is not much difference between the two sets of true positives used. For
this reason, in the case of TALON transcriptomes, we do not recommended to include
information of the distance to the TSS/TTS when using FSMs as TP set.

Considering all of the above, we conclude this section by providing a set of recommen-
dations for transcriptome datasets similar to those processed with TALON:

• For this dataset, it is preferable to exclude the classification columns: diff_to_gene_TSS
and diff_to_gene_TTS, as they represent redundant information.

• For a more stringent filtering, diff_to_gene_TSS and diff_to_gene_TTS columns
can be included, but with the potential risk of overfitting.

• For filtering and in this particular case the TP set used is not crucial, as the two
candidates sets: FSM or RM are highly alike (75% of FSM are RM). Therefore, it is
crucial to be aware of the composition of your dataset’s FSM transcripts in order to
decide which TP set to use.

IV.IV Final remarks of the discussion

This thesis has focused on the great opportunity that artificial intelligence brings to
biotechnology and, more specifically, its role in long-read transcriptome analysis applications.
Moreover, it is clear evidence of how bioinformatics tools and programming languages
such as R facilitate processing of high-throughput data such as transcriptome sequencing.
Likewise, their implementation for processing biological data of any kind is crucial. Finally,
bioinformatics is key to integrating the increasingly large amount of available sequencing
information, thereby achieving efficient research and reliable results.



CHAPTER IV . RESULTS AND DISCUSSION 30

Long-read sequencing technologies, such as PacBio, are powerful for sequencing high-
throughput transcriptomes, although they present numerous challenges. In this context,
software tools such as SQANTI3 increase the precision of these RNA-seq datasets, while
implementing artificial intelligence algorithms in such pipelines has the power to improve
its performance. However, it has become clear that it is challenging to fully understand the
inner workings of a machine learning algorithm, which is inherent to artificial intelligence.
Therefore, it is essential to design a proper model and choose the most suitable training
data in order to achieve a true-to-life result and ultimately optimise NGS technologies.
This work has intended to fill this gap by focusing on the SQANTI3 MLfilter and shed
some light on how the training parameters influence the final output.

Firstly, one of the most common complications of machine learning models, overfitting,
has been addressed in the present thesis. It has been demonstrated that it is essential to
test the model to detect this type of anomaly. One of the study’s major limitations is that
the model has been not validated with sequenced data. Validation could be accomplished in
further research by studying how the MLfilter works on control RNA sets, such as Lexogen’s
Spike-In RNA Variants (SIRVs) (Lexogen (2017)). SIRVs are synthetic RNA molecules
that mimic the main aspects of transcriptome complexity, including alternative splicing
and isoform expression. By adding small amounts of these controls to RNA samples before
library construction, SIRVs could be used in downstream analysis as ’ground truth’. In
supervised machine learning models, ’ground truth’ refers to the reality to be modelled
by the algorithm and in this case, the SIRVs could be used to measure the accuracy with
which the MLfilter outputs a transcriptome that resembles the ’ground truth’.

The first version of the SQANTI MLfilter (Tardaguila et al. (2018)) included short-
read information to validate potentially false SJs, mainly found in NIC and NNC transcripts.
This algorithm proved that including this type of supporting data was enough to discard
false novel transcripts, therefore using NNC non-canonical as the default TN set was a choice
based on that evidence. For this reason, only the TP set choice was tested in the current
study. Nevertheless, providing a TN set with more variety, i.e. including other potential
artifacts (such as ISM without TSS/TTS support), could be considered an improvement
and could be studied in further research.

We would also like to underline that this current thesis is part of the SQANTI3 project,
for which the paper is now under preparation. This work therefore constitutes a preliminary
study that has opened the door to understanding and validating the SQANTI3 MLfilter.
Currently, and thanks to the insights obtained during this study, further work is being done
by the research group to validate the random forest method, including testing with a more
complex variety of TP and TN sets and excluding or including other variables. A strategy
that is also being developed by the team is the implementation of a simulator (jmestret
(2022)) to generate as realistic long reads as possible from known transcripts, thus allowing
the identification of false positives transcripts generated by the pre-processing pipelines.
Therefore, the MLfilter performance could be evaluated by examining whether the classifier
discards those false positive transcripts. In this case, reliable simulated transcripts are to
be considered ’ground truth’, which would eliminate the need to include SIRVs in the RNA
sample.
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Figure IV.V: Diagnostic plots for the C2C12 cell line transcriptome proccessed with TALON
comparing the four set ups of the machine learning filter of SQANTI3: TALON_RM (TP=RM, not
including the distance variables) TALON_RM_dist (TP=RM, including the distance variables),
TALON_FSM (TP=FSM, not including the distance variables), TALON_FSM_dist (TP=FSM,
including the distance variables) a. Percentage of subcategories of the transcripts included in the
TP set generated with FSM transcripts. b. Variable importance values of each filtering set up used
in the machine learning filter of SQANTI3. c. Number of unique and shared between the different
filtering set up used in the machine learning filter of SQANTI3.
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Figure IV.VI: Diagnostic plots for C2C12 transcriptome processed with TALON data, comparing
two filtering set up of the machine learning filter of SQANTI3: FSM_dist (TP=FSM, including the
distance variables), FSM (TP=FSM, not including the distance variables). a. Percentage of common
and unique transcripts labeled as artifacts for each category. b. Percentage of common and unique
transcripts labeled as artifacts for each subcategory. c. Values of log(|diff_to_gene_TTS|+1) for
artifacts of each category. d. Values of log(|diff_to_gene_TSS|+1) for artifacts of each category.
e. Values of log(|min_cov|+1) for artifacts of each category. f. Percentage of common and unique
transcripts labeled as artifacts for each category and value of min_sample_cov.



Chapter V

Conclusions

In summary, two clear objectives were achieved: 1) to assess how the performance
changes according to the parameters established for the model’s training and 2) to provide
basic guidelines for using the model based on the available data. In the absence of validation,
guidelines have been proposed based on cautiousness and in the pursuit of a balance between
losing valuable information and trusting false data. Overfitting tends to discard reads that
may be true at the expense of being stringent with the data provided for training. Since
the ML filter is part of a data refinement and quality control tool, it is preferred not to
discard truthful data. Otherwise, the filter would avoid detecting novelty. That is why it is
intended to avoid issues like overfitting.

Taking everything into account, the overall conclusions drawn from the present work
are:

• Overfitting is not desired and it has been observed when combining a TP set generated
with RM transcripts and the inclusion of distance variables for the MLfilter training.
Therefore, this parameter combination should be avoided.

• It is crucial to know the subcategory distribution of FSM transcripts of the dataset
before applying the MLfilter: if a high percentage of FSM are RM, distance variables
should be excluded for the MLfilter training.

• The decision to include the distance variables when using FSM as TP set should also
be based on how permissive the user wants the filter to be: including them for a more
stringent filtering.

33
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First steps

Loading necessary packages

library(tidyverse)
library(cowplot)
library(scales)
library(RColorConesa)
library(UpSetR)
library(optparse)
library(funprog)
library(ggplotify)
library(ggrepel)

Setting theme parameters

sq_theme <- theme_classic(base_family = "Helvetica") +
theme(plot.title = element_text(lineheight=.4, size=15, hjust = 0.5),

plot.subtitle = element_text(hjust = 0.5)) +
theme(plot.margin = unit(c(2.5,1,1,1), "cm")) +
theme(axis.line.x = element_line(color="black", size = 0.4),

axis.line.y = element_line(color="black", size = 0.4)) +
theme(axis.title.x = element_text(size=14),

axis.text.x = element_text(size=14),
axis.title.y = element_text(size=14),
axis.text.y = element_text(vjust=0.5, size=13) ) +

theme(legend.text = element_text(size = 12),
legend.title = element_text(size=14),
legend.key.size = unit(0.5, "cm"))

theme_set(sq_theme)

Setting colors for each filtering combination: FSM FSM_dist RM RM_dist

filt_palette=c(IsoSeq_RM ="lightslateblue", IsoSeq_FSM="darkorange",IsoSeq_RM_dist="skyblue",
IsoSeq_FSM_dist="gold", Common="darkcyan")

filt_palette_un=c(Unique_IsoSeq_RM ="lightslateblue", Unique_IsoSeq_FSM="darkorange"
,Unique_IsoSeq_RM_dist="skyblue",
Unique_IsoSeq_FSM_dist="gold", Common="darkcyan")
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Isoseq3 data analysis

TP FSM subcategories

First, the TP FSM set file is loaded to generate a pie plot with the percentages of the subcategories.

#load TP FSM file
TP_GM<-read.csv('SQ3_MLresults/GM12878/GM12878_input/TP_FSM_GM12878.txt', header=FALSE)

#select de isoform
colnames(TP_GM)<-'isoform'

#load the input classification file
classif_GM12878<-read_tsv('SQ3_MLresults/GM12878/GM12878_input/GM12878_classification.txt')

#select the columns isoform and subcategory
classif_GM12878<-classif_GM12878 %>% select(isoform,subcategory)

#intersect both tables
TP_GM<-left_join(TP_GM,classif_GM12878)

#calculate percentages of each subcategory
cat<-TP_GM %>% group_by(subcategory) %>% summarize(category_count = n()) %>%

mutate(percentin=category_count/sum(category_count)) %>%
mutate(suma=cumsum(category_count))

# Compute percentages
cat$fraction <- cat$category_count / sum(cat$category_count)

# Compute the cumulative percentages (top of each rectangle)
cat$ymax <- cumsum(cat$fraction)

# Compute the bottom of each rectangle
cat$ymin <- c(0, head(cat$ymax, n=-1))

#label positions
cat$labelPosition <- (cat$ymax + cat$ymin) / 2

# Compute a good label
cat$label <- paste0(cat$category_count)

#PIE PLOT
tp_pie<- ggplot(cat, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=subcategory)) +

geom_rect()+
RColorConesa::scale_fill_conesa(palette = "complete")+
coord_polar(theta="y") +
xlim(c(2, 4)) +
geom_label_repel(data = cat,x=4.5, aes(y=labelPosition, label=label), size=6) +
guides(fill = guide_legend(title = "Subcategory")) +
theme_void()
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Loading output classification files

Then, the four classification files generated by the Machine Learning filter are loaded. For this purpose, each
one is given a label.

# first output to compare
path1 <- "SQ3_MLresults/GM12878/GM12878_output_withcol"
label1 <- "IsoSeq_RM_dist"
files1 <- dir(path1)

# second output to compare
path2 <- "SQ3_MLresults/GM12878/GM12878_output_FSM_withcol"
label2 <- "IsoSeq_FSM_dist"
files2 <- dir(path2)

# third output to compare
path3 <- "SQ3_MLresults/GM12878/GM12878_output_FSM"
label3 <- "IsoSeq_FSM"
files3 <- dir(path3)

# fourth output to compare
path4 <- "SQ3_MLresults/GM12878/GM12878_output"
label4 <- "IsoSeq_RM"
files4 <- dir(path4)

#Load first classification files
classif1_file <- files1[str_detect(files1, "MLresult_classification")]
classif_1 <- read_tsv(paste0(path1, "/", classif1_file))

classif_1 <- classif_1 %>%
mutate(structural_category = factor(structural_category) %>%

fct_infreq() %>%
fct_recode(ISM = "incomplete-splice_match",

FSM = "full-splice_match",
NNC = "novel_not_in_catalog",
NIC = "novel_in_catalog",
Intergenic = "intergenic",
Antisense = "antisense",
Genic = "genic",
Fusion = "fusion",
Genic_intron = "genic_intron") %>%

fct_relevel(c("FSM", "ISM", "NIC", "NNC",
"Genic", "Antisense", "Fusion",
"Intergenic", "Genic_intron")))

# Load second classification file
classif2_file <- files2[str_detect(files2, "MLresult_classification")]
classif_2 <- read_tsv(paste0( path2, "/", classif2_file))

classif_2 <- classif_2 %>%
mutate(structural_category = factor(structural_category) %>%

fct_infreq() %>%
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fct_recode(ISM = "incomplete-splice_match",
FSM = "full-splice_match",
NNC = "novel_not_in_catalog",
NIC = "novel_in_catalog",
Intergenic = "intergenic",
Antisense = "antisense",
Genic = "genic",
Fusion = "fusion",
Genic_intron = "genic_intron") %>%

fct_relevel(c("FSM", "ISM", "NIC", "NNC",
"Genic", "Antisense", "Fusion",
"Intergenic", "Genic_intron")))

# Load third classification file
classif3_file <- files3[str_detect(files3, "MLresult_classification")]
classif_3 <- read_tsv(paste0(path3, "/", classif3_file))

classif_3 <- classif_3 %>%
mutate(structural_category = factor(structural_category) %>%

fct_infreq() %>%
fct_recode(ISM = "incomplete-splice_match",

FSM = "full-splice_match",
NNC = "novel_not_in_catalog",
NIC = "novel_in_catalog",
Intergenic = "intergenic",
Antisense = "antisense",
Genic = "genic",
Fusion = "fusion",
Genic_intron = "genic_intron") %>%

fct_relevel(c("FSM", "ISM", "NIC", "NNC",
"Genic", "Antisense", "Fusion",
"Intergenic", "Genic_intron")))

# Load fourth classification file
classif4_file <- files4[str_detect(files4, "MLresult_classification")]
classif_4 <- read_tsv(paste0(path4, "/", classif4_file))

classif_4 <- classif_4 %>%
mutate(structural_category = factor(structural_category) %>%

fct_infreq() %>%
fct_recode(ISM = "incomplete-splice_match",

FSM = "full-splice_match",
NNC = "novel_not_in_catalog",
NIC = "novel_in_catalog",
Intergenic = "intergenic",
Antisense = "antisense",
Genic = "genic",
Fusion = "fusion",
Genic_intron = "genic_intron") %>%

fct_relevel(c("FSM", "ISM", "NIC", "NNC",
"Genic", "Antisense", "Fusion",
"Intergenic", "Genic_intron")))
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Variable importance plot

Importance files (in which the values of importance of each variable are stored), are loaded.

imp1_file <- files1[str_detect(files1, "variable-importance")]
imp_1 <- read_tsv(paste0( path1, "/", imp1_file),

col_names = c("variable", "importance"))

imp2_file <- files2[str_detect(files2, "variable-importance")]
imp_2 <- read_tsv(paste0( path2, "/", imp2_file),

col_names = c("variable", "importance"))

imp3_file <- files3[str_detect(files3, "variable-importance")]
imp_3 <- read_tsv(paste0( path3, "/", imp3_file),

col_names = c("variable", "importance"))

imp4_file <- files4[str_detect(files4, "variable-importance")]
imp_4 <- read_tsv(paste0( path4, "/", imp4_file),

col_names = c("variable", "importance"))

The four importance tables are now combined.

imp_combined <- bind_rows(list(imp_1 = imp_1, imp_2 = imp_2,
imp_3 = imp_3, imp_4 = imp_4),

.id = "source_transcriptome")

imp_combined <- imp_combined %>%
mutate(variable = fct_reorder(variable, importance),

source_transcriptome = factor(source_transcriptome,
levels = c("imp_1", "imp_2",

"imp_3", "imp_4"),
labels = c(label1, label2,

label3, label4)))

And the plot is generated.

imp_plot <- ggplot(imp_combined,
aes(x = variable, y = importance, fill=source_transcriptome)) +

ggtitle("Variable importance in ML filter") +
geom_bar(width = 0.8, color = "black",

stat = "identity", position = "dodge") +
labs(x = "SQ3 variable", y = "Variable importance") +
scale_fill_manual(values = filt_palette[1:4], name="Source transcriptome") +
coord_flip()
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Number of artifacts

First, we filter the transcripts considered artifacts in each classification file and save them in a new table.

artifacts_1 <- filter(classif_1, filter_result == "Artifact")
artifacts_2 <- filter(classif_2, filter_result == "Artifact")
artifacts_3 <- filter(classif_3, filter_result == "Artifact")
artifacts_4 <- filter(classif_4, filter_result == "Artifact")

Then, we create a list of these artifacts (iso_list) and add the names of the filtering combination they come
from.

iso_list <- list(classif_1 = artifacts_1 %>% select(isoform) %>% deframe,
classif_2 = artifacts_2 %>% select(isoform) %>% deframe,
classif_3 = artifacts_3 %>% select(isoform) %>% deframe,
classif_4 = artifacts_4 %>% select(isoform) %>% deframe)

names(iso_list) <- c(label1, label2, label3, label4)

Finally, we generate a plot to represent the intersections of the four filtering combination compared.

intersections <- fromList(iso_list)

upset <- upset(intersections, main.bar.color = "skyblue4",
mainbar.y.label = "No. of artifacts",
sets.bar.color = "darkgoldenrod3",
sets.x.label = "Total transcripts \n in transcriptome",
point.size = 2.5, line.size = 1, text.scale = c(1.3, 1.3, 1.3, 1.3, 1.3, 1.3))
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IsoSeq3 first comparison: FSM_dist vs RM_dist

Categories plots

First, we create a list of artifacts of both filtering combinations (artifact_list) and add the name of the
source transcriptome.

artifact_list <- list(artifacts_1, artifacts_2)
names(artifact_list) <- c(label1, label2)

artifacts_all <- bind_rows(artifact_list,
.id = "source_transcriptome")

Then we calculate the percentage of artifacts filtered by each combination for each subcategory (arti-
fact_summary).

artifact_summary <- artifacts_all %>%
group_by(source_transcriptome, subcategory) %>%
summarize(category_count = n()) %>%
mutate(percent = category_count/sum(category_count))

And plot it.

cat_all <- ggplot(artifact_summary,
aes(x = subcategory, y = percent)) +

ggtitle("Subategories of all transcripts labeled as artifacts") +
geom_bar(aes(fill = source_transcriptome), stat = "identity", position = "dodge",

width = 0.8, color = "black") +
labs(x = "Structural category", y = "% artifacts") +
scale_y_continuous(labels = scales::percent_format()) +
scale_fill_manual(values=filt_palette[3:4], name="Source transcriptome")+
theme(axis.text.x = element_text(angle = 60, hjust = 1))
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We extract those unique artifacts from each classification file and we make a list with all of them.

unique_1 <- filter(classif_1, filter_result == "Artifact" &
!(isoform %in% intersect(iso_list[[1]], iso_list[[2]])))

unique_2 <- filter(classif_2, filter_result == "Artifact" &
!(isoform %in% intersect(iso_list[[1]], iso_list[[2]])))

unique_list <- list(unique_1, unique_2)
names(unique_list) <- c(label1, label2)

artifacts_unique <- bind_rows(unique_list,
.id = "source_transcriptome")

And calculate the percentage of artifacts filtered by each combination (unique_summary).

unique_summary <- artifacts_unique %>%
group_by(source_transcriptome, subcategory) %>%
summarize(category_count = n()) %>%
mutate(percent = category_count/sum(category_count))

To plot it.
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cat_un <- ggplot(unique_summary,
aes(x = subcategory, y = percent,

fill = source_transcriptome)) +
ggtitle("Subcategories of unique artifacts detected after each filter") +
geom_bar(stat = "identity", position = "dodge",

width = 0.8, color = "black") +
labs(x = "Subcategory", y = "% unique artifacts") +
scale_y_continuous(labels = percent_format()) +
scale_fill_manual(values = filt_palette[3:4], name="Source transcriptome")+

theme(axis.text.x = element_text(angle = 60, hjust = 1))
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In order to see this information all together, with common and unique artifacts in one plot, we add a column
to classification to artifacts_all list including whether the artifact is unique or common.

artifacts_all <- artifacts_all %>%
mutate(artifact_type = case_when(isoform %in% artifacts_unique$isoform == TRUE ~ "Unique",

isoform %in% artifacts_unique$isoform == FALSE ~ "Common"),
artifact_lab = if_else(artifact_type == "Unique",

true = paste0(artifact_type, "_", source_transcriptome),
false = "Common"))

Then, we calculate again the percentages.

52



artifact_sum <- artifacts_all %>%
dplyr::filter(!(source_transcriptome == label2 &

artifact_lab == 'Common')) %>%
group_by(source_transcriptome, subcategory, artifact_lab) %>%
summarize(category_count = n()) %>%
group_by(subcategory) %>%
mutate(percent = category_count/sum(category_count),

suma=cumsum(category_count)) %>%
arrange(desc(artifact_lab))

To finally plot the percentages of categories of all transcripts labeled as artifacts.

cat_stack <- ggplot(artifact_sum,
aes(x = subcategory, y = percent)) +

ggtitle("Subcategories of all transcripts labeled as artifacts") +
geom_bar(aes( fill =artifact_lab), stat = "identity", position = "stack",

width = 0.8, color = "black") +
labs(x = "Subcategory", y = "% artifacts") +
scale_y_continuous(labels = scales::percent_format()) +
scale_fill_manual(values = filt_palette_un[3:5], name="Source transcriptome")+
geom_text(aes(x=subcategory,y=1.03, label=suma),size=4,

check_overlap=TRUE)+
theme(axis.text.x = element_text(angle = 60, hjust = 1))
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Variables comparison plots

For comparing the values of each variable, we make a function (compare_artifacts), that takes the arti-
facts_all table, each variable and the imp_combined table to return a set of plots.

compare_artifacts <- function(classification,
var, importance){

require(ggplot2)
require(magrittr)

# Select variable for evaluation plot
var_df <- classification %>%

dplyr::select(structural_category,
source_transcriptome,
artifact_type, artifact_lab,
dplyr::all_of(var))

# Explicitly remove NAs
var_df <- var_df %>%

dplyr::filter(!(is.na(var)))

# Get variable column info (class, name)
var_type <- purrr::map_chr(var_df, class)
var_name <- names(var_type[5])

# Rename variable column to handle during plotting
var_df <- var_df %>% dplyr::rename(variable = var)

# Obtain labels
labels <- importance %>%

dplyr::filter(variable == var) %>%
select(source_transcriptome) %>% deframe %>% levels()

# Obtain and round importance
imp <- importance %>%

dplyr::filter(variable == var) %>%
select(importance) %>% deframe

imp <- round(imp, 2)

# Generate plot by type
if(var_type[5] == "numeric"){

if(var_name=='min_sample_cov'){

var_df <- var_df %>%
dplyr::filter(!is.na(variable),

!(source_transcriptome == labels[2] &
artifact_lab == 'Common'))%>%

dplyr::mutate(variable = factor(variable)) %>%
group_by(source_transcriptome,

structural_category, artifact_lab, variable) %>%
summarize(category_count = n()) %>%
group_by(source_transcriptome, structural_category, artifact_lab) %>%
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mutate(percentin=category_count/sum(category_count)) %>%
mutate(suma=cumsum(category_count)) %>%
arrange(desc(variable))

p<- ggplot(var_df) +
ggtitle(paste(var, "\n"),

subtitle = paste0("\n", labels[1], " ML importance: ", imp[1],
"\n", labels[2], " ML importance: ", imp[2])) +

geom_bar(aes(y=percentin,x = artifact_lab, fill = variable ),
stat = "identity", width = 0.8, color = "black",
position = "stack") +

labs(x = "Artifact type", y = "Percentage") +
theme(axis.text.x = element_text(angle = 60, hjust = 1)) +
geom_text(aes(x=artifact_lab,y=1.03, label=suma),size=2,

check_overlap=TRUE)+
scale_y_continuous(labels=scales::label_percent())+

RColorConesa::scale_fill_conesa(paste0(var), palette = "complete",
continuous = FALSE, reverse = FALSE) +

facet_grid(~structural_category, scales = "free")

return(p)

}

else{
p <- ggplot(var_df) +

ggtitle(paste(var),
subtitle = paste0("\n", labels[1], " ML importance: ", imp[1],

"\n", labels[2], " ML importance: ", imp[2])) +
geom_boxplot(aes(x = structural_category, y = log(abs(variable)+1),

fill = artifact_lab),
outlier.size = 0.2, width = 0.5) +

labs(x = "Structural category", y = paste0("log( |", var_name, "| +1)")) +
scale_fill_manual(values=filt_palette_un[3:5],name="Artifact type")+
theme(axis.text.x = element_text(angle = 60, hjust = 1))

return(p)

}

} else if(var_type[5] == "integer"){

# Specific plot for exon-related columns (integer variables divided into intervals)
var_fct <- var_df %>%

dplyr::filter(artifact_type == "Unique") %>%
dplyr::mutate(variable = cut(variable, breaks = c(0, 1, 3, 5, 10, max(.$variable)),

labels = c("1", "2-3", "4-5", "6-10", ">10")))

p <- ggplot(var_fct) +
ggtitle(paste(var, "\n"),

subtitle = paste0("\n", labels[1], " ML importance: ", imp[1],
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"\n", labels[2], " ML importance: ", imp[2], "\n")) +
geom_bar(aes(x = artifact_lab, fill = variable), stat = "count",

width = 0.8, color = "black", position = "dodge") +
labs(x = "Artifact type \n(common artifacts not displayed)",

y = "Transcript no.") +
theme(axis.text.x = element_text(angle = 60, hjust = 1)) +
scale_fill_manual(values=filt_palette_un[3:5],name=paste0(var))+
facet_grid(~structural_category, scales = "free")

return(p)

} else{
var_df <- var_df %>%

dplyr::filter(!is.na(variable),
!(source_transcriptome == labels[2] &

artifact_lab == 'Common'))%>%
dplyr::mutate(variable = factor(variable)) %>%
group_by(source_transcriptome,

structural_category, artifact_lab, variable) %>%
summarize(category_count = n()) %>%
group_by(source_transcriptome, structural_category, artifact_lab) %>%
mutate(percentin=category_count/sum(category_count)) %>%
mutate(suma=cumsum(category_count)) %>%
arrange(desc(variable))

p<- ggplot(var_df) +
ggtitle(paste(var, "\n"),

subtitle = paste0("\n", labels[1], " ML importance: ", imp[1],
"\n", labels[2], " ML importance: ", imp[2])) +

geom_bar(aes(y=percentin,x = artifact_lab, fill = variable ),
stat = "identity", width = 0.8, color = "black",
position = "stack") +

labs(x = "Artifact type", y = "Percentage") +
theme(axis.text.x = element_text(angle = 60, hjust = 1)) +
geom_text(aes(x=artifact_lab,y=1.03, label=suma),size=2,

check_overlap=TRUE)+
scale_y_continuous(labels=scales::label_percent())+
scale_fill_manual(values=filt_palette_un[3:5],name=paste0(var))+
facet_grid(~structural_category, scales = "free")

return(p)

}
}

So that, the next code will generate the plots comparing the values of all the variables:

art_compare <- purrr::map(imp_combined$variable %>% unique,
~compare_artifacts(artifacts_all, ., imp_combined))

As an example, it is shown some of the plots generated:
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Bidimensional plots (for comparing each variable vs distance variables)

First of all, we store the names of the distance variables columns in distcol.

distcol<-colnames(artifacts_all)[str_detect(colnames(artifacts_all), "diff")]

And we also store the names of the structural categories in scat.

scat<- select(artifacts_all,structural_category) %>% filter(!duplicated(structural_category))
scat<-as.character(scat$structural_category)

We create a function to generate bidimensional plots of each numeric variable vs each distance variable
(bidimensional_plots_num). The function takes the artifacts_all table, the distance columns names, the
variable to compare with, one label of the filtering combination and one name of a structural category.

bidimensional_plotsnum <- function(classification,
col, var,labl, sc){

var_df <- classification %>%
dplyr::select(structural_category,

source_transcriptome,
artifact_type, artifact_lab,
dplyr::all_of(col),
dplyr::all_of(var))

# Rename variable column to handle during plotting
var_df <- var_df %>% dplyr::rename(variable = var)
# Rename distance column to handle during plotting
var_df <- var_df %>% dplyr::rename(distance = col)

var_df <- var_df %>%
dplyr::filter(!(is.na(variable))& !(is.na(distance)))

difvar<-var_df %>%
dplyr::filter(!(source_transcriptome == labl &

artifact_lab == 'Common'))%>%
dplyr::filter(structural_category==sc) %>%
dplyr::mutate(variable = factor(variable)) %>%
group_by(source_transcriptome,

structural_category, artifact_lab, variable, distance) %>%
summarize(category_count = n()) %>%
group_by(source_transcriptome, structural_category, artifact_lab) %>%
mutate(suma=cumsum(category_count)) %>%
arrange(structural_category)

difvar$variable<-as.numeric(as.character(difvar$variable))

p<- ggplot(difvar) +
ggtitle(paste0(var," vs ",col))+
geom_point(aes(x = log(abs(variable)+1) , y = log(abs(distance)+1),

colour = factor(artifact_lab)), alpha = 0.5)+
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ylim(-1,NA)+
labs(x=paste0("log( |",var,"| +1)"), y = paste0("log( |",col,"| +1)"))+
scale_color_manual(values=filt_palette_un[3:5],name="Artifact type")

}

So that, a code like the following one will store a set of bidimensional plots for each variable desired, in this
example, ‘gene_exp’ for each category, in this example, ISM.

plots_expISM<- purrr::map(distcol,
~bidimensional_plotsnum(artifacts_all, .,'gene_exp', label2,'NNC'))

As an example, it is shown one of the plots generated:
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Then, we create another function to plot the rest of variables (non numeric) the same way (bidimen-
sional_plots).

bidimensional_plots <- function(classification,
col, var,labl){

var_df <- classification %>%
dplyr::select(structural_category,

source_transcriptome,
artifact_type, artifact_lab,
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dplyr::all_of(col),
dplyr::all_of(var))

# Rename variable column to handle during plotting
var_df <- var_df %>% dplyr::rename(variable = var)
# Rename distance column to handle during plotting
var_df <- var_df %>% dplyr::rename(distance = col)

var_df <- var_df %>%
dplyr::filter(!(is.na(variable))& !(is.na(distance)))

#plot

diffvar<-var_df %>%
dplyr::filter(!(source_transcriptome == labl &

artifact_lab == 'Common'))%>%
dplyr::mutate(variable = factor(variable)) %>%
group_by(source_transcriptome,

structural_category, artifact_lab, variable, distance) %>%
summarize(category_count = n()) %>%
group_by(source_transcriptome, structural_category, artifact_lab) %>%
mutate(suma=cumsum(category_count)) %>%
arrange(structural_category)

p<-ggplot(diffvar) +
ggtitle(paste0(var," vs ",col))+
geom_boxplot(aes(x = variable, y = log(abs(distance)+1),

fill = artifact_lab),
outlier.size = 0.2, width = 0.5) +

labs(subtitle= "Structural category", x=var,
y = paste0("log( |",col,"| +1)")) +

facet_grid(~structural_category, scales = "free")+
scale_fill_manual(values=filt_palette_un[3:5],name="Artifact type") +
theme(axis.text.x = element_text(angle = 60, hjust = 1))

}

With this code we can obtain all the bidemensional plots of ‘min_sample_cov’ vs each distance variable:

plots_min<- purrr::map(distcol,
~bidimensional_plots(artifacts_all, .,

'min_sample_cov', label2))
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