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Abstract 
 
 
The aim of this work is to investigate coupling techniques and structures to 
minimize the coupling losses between dielectric waveguides and planar photonic 
crystals circuits. The modeling of the coupling between dielectric and photonic 
crystal waveguides has been carried out. Closed form expressions for the reflection 
and transmission matrices that completely characterize the scattering that occurs at 
the interface between dielectric and photonic crystal waveguides have been 
derived. The influence of the main parameters of the photonic crystal on the 
coupling efficiency has also been analyzed. To improve the coupling efficiency 
from both narrow and broad dielectric waveguides, a novel coupling technique 
based on setting a number of localized defects within a discrete photonic crystal 
taper has been proposed. Different approaches, including genetic algorithms, have 
been reported to design the optimum configuration of defects. Once efficient 
coupling from dielectric waveguides into photonic crystal waveguides has been 
achieved, efficient coupling into coupled-cavity waveguides has been pursued. An 
adiabatic coupling technique based on progressively varying the radii of the 
spacing defects between cavities has been proposed. Furthermore, a rigorous 
analysis of pulse propagation in frequency and time domains has been carried out 
for characterizing the influence of the coupling efficiency on the main parameters 
of the pulse. Finally, the fabrication and experimental demonstration of the 
proposed coupling techniques have been addressed. 
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Resumen  
 
 
El objetivo de esta tesis es la investigación de estructuras y técnicas de acoplo para 
minimizar las pérdidas de acoplo entre guías dieléctricas y cristales fotónicos 
planares. En primer lugar se ha estudiado el modelado del acoplo entre guías 
dieléctricas y guías en cristal fotónico así como la influencia de los principales 
parámetros del cristal en la eficiencia de acoplo. Se han obtenido expresiones 
cerradas para las matrices de reflexión y transmisión que caracterizan totalmente el 
scattering que ocurre en el interfaz formado entre una guía dieléctrica y una guía en 
cristal fotónico. A continuación y con el fin de mejorar la eficiencia de acoplo 
desde guías dieléctrica de anchura arbitraria, se ha propuesto como contribución 
original una técnica de acoplo basada en la introducción de defectos puntuales en el 
interior de una estructura de acoplo tipo cuña realizada en el cristal fotónico. 
Diferentes soluciones, incluida los algoritmos genéticos, han sido propuestas con el 
objetivo de conseguir el diseño óptimo de la configuración de defectos. Una vez 
conseguido un acoplo eficiente desde guías dieléctricas a guías en cristal fotónico, 
se ha investigado el acoplo en guías de cavidades acopladas. Como contribución 
original se ha propuesto una técnica de acoplo basada en la variación gradual del 
radio de los defectos situados entre cavidades adyacentes. Además, se ha realizado 
un riguroso análisis en el dominio del tiempo y la frecuencia de la propagación de 
pulsos en guías acopladas de longitud finita. Dicho estudio ha tenido como objetivo 
la caracterización de la influencia de la eficiencia del acoplo en los parámetros del 
pulso. Finalmente, se han presentado los procesos de fabricación y resultados 
experimentales de las estructuras de acoplo propuestas.  
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Resum  
 
 
L'objectiu d'esta tesi és la investigació d'estructures i tècniques d'acoblament per a 
minimitzar les pèrdues d'acoblament entre guies dielèctriques i cristals fotònics 
planars. En primer lloc s'ha estudiat el modelatge de l'acoblament entre guies 
dielèctriques i guies en cristal fotònic així com la influència dels principals 
paràmetres del cristal en l'eficiència d'acoblament. S'han obtingut expressions 
tancades per a les matrius de reflexió i transmissió que caracteritzen totalment el 
scattering que ocorre en l'interfície format entre una guia dielèctrica i una guia en 
cristal fotònic. A continuació i a fi de millorar l'eficiència d'acoblament des de 
guies dielèctrica d'amplària arbitrària, s'ha proposat com a contribució original una 
tècnica d'acoblament basada en la introducció de defectes puntuals en l'interior 
d'una estructura d'acoblament tipus falca realitzada en el cristal fotònic. Diferents 
solucions, inclosa els algoritmes genètics, han sigut proposades amb l'objectiu 
d'aconseguir el disseny òptim de la configuració de defectes. Una vegada s'ha 
aconseguit l'acoblament eficient des de guies dielèctriques a guies en cristal 
fotònic, s'ha investigat l'acoblament en guies de cavitats aclobades. Com a 
contribució original s'ha proposat una tècnica d'acoblament basada en la variació 
gradual del radi dels defectes situats entre cavitats adjacents. A més, s'ha realitzat 
una rigorosa anàlisi en el domini del temps i la freqüència de la propagació de 
polsos en guies adaptades de longitud finita. Tal estudi ha tingut com a objectiu la 
caracterització de la influència de l'eficiència de l'acoblament en els paràmetres del 
pols. Finalment, s'han presentat els processos de fabricació i resultats experimentals 
de les estructures d'acoblament proposades.  
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Chapter 1 

 

Introduction 
 
 
 
 
 
 

1.1 Motivation 
 
The huge growth of data traffic during the last years is forcing next generation 
telecommunications networks to increase their capacity and performance. 
Basically, a telecommunication network consists of a number of nodes connected 
by links, as shown in figure 1.1. The information is first processed at the nodes and 
then transmitted through the appropriate link up to their final destination. 
Nowadays, almost all the links are optical connections whose key component is the 
optical fiber. Optical fibers offer a large range of benefits such as a high capacity, 
low propagation loss, immunity to electromagnetic interferences or low weight. 
Furthermore, optical fiber communications together with advanced multiplexing 
techniques such as wavelength division multiplexing (WDM) and optical time 
division multiplexing (OTDM) will permit to satisfy the growth of capacity 
demanded by the market [Blu03]. However, most of the processing functionalities 
performed at the nodes, such as routing and regeneration, are still performed in the 
electronic domain seriously limiting the maximum data rate achievable with fiber-
based optical networks. 
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Figure 1.1.- Schematic of a telecommunications network. A number of nodes are 
connected by links. The information is first processed at the nodes and then transmitted 
through the appropriate link up to their final destination. 
 
All-optical processing is therefore a must to avoid the bottleneck imposed by 
existing nodes based on an electronic processing. However, current photonic 
integrated circuits are not mature enough to replace microelectronics circuits, 
mainly because of their large size and relative simplicity. Recent results show that 
key components in photonic integrated circuits such as directional couplers and 
Mach–Zehnder interferometer have still lengths in the order of millimetres [Liu04]. 
Therefore, strong efforts are still needed to reduce the size of photonic integrated 
circuits.  
 
Photonic crystals are expected to be one of the main candidates for the realization 
of highly integrated photonic integrated circuits because of their ability to control 
light propagation on a small scale [Joa97]. From their discovery till nowadays the 
research field related to photonic crystal has experienced an exponential interest. 
The initial expectation was so high that it was pointed out that photonic crystals 
could give rise to a technological revolution similar to that caused by 
semiconductors in the middle of the 20th century.  
 
Photonic crystals are periodic materials, typically dielectrics, in which the 
periodicity is on the order of the wavelength of light. The periodicity can extend 
into one, two or three dimensions. Several examples are shown in figure 1.2. In the 
left part, a one-dimensional (1D) photonic crystal is made by alternating layers of 
materials with different refractive indexes. In the middle part, a two-dimensional 
(2D) photonic crystal is made by circular shaped columns arranged in a periodic 
lattice. In the right part, a three-dimensional (3D) photonic crystal is made by an 
arrangement of dielectric spheres placed at each point of a periodic lattice.  
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Figure 1.2.- Schematic of different kinds of photonic crystals, periodic materials, typically 
dielectrics, in which the periodicity is on the order of the wavelength of light. The 
periodicity can extend into one, two or three dimensions. In the left part, a one-dimensional 
(1D) photonic crystal is made by alternating layers of materials with different refractive 
indexes. In the middle part, a two-dimensional (2D) photonic crystal is made by circular 
shaped columns arranged in a periodic lattice. In the right part, a three-dimensional (3D) 
photonic crystal is made by an arrangement of dielectric spheres placed at each point of a 
periodic lattice.  
 
The main feature that distinguishes photonic crystals from other photonic structures 
is that the periodicity of the material gives rise to a frequency region, known as the 
photonic band gap (PBG), where electromagnetic radiation is not allowed. The 
introduction of defects into the otherwise periodic structure gives rise to the 
appearance of localized modes inside the PBG. Thus, light is bound to the defect 
and can not radiate out of it due to the PBG effect. The simplest defect that can be 
created in a photonic crystal is the point defect, which has been used, for instance, 
to design high Q-value nano cavities [Joa97]. On the other hand, photonic crystal 
waveguides are implemented by creating line defects into the periodic structure. 
 
In conventional dielectric waveguides, light propagation is due to the total internal 
reflection effect which restricts the minimum radius of curvature due to the 
radiation losses. Recent progress on high index contrast dielectric waveguides is 
giving rise to sharper bends [Man99]. However, 90-degree bends are only possible 
in photonic crystals where the excitation of radiation modes is forbidden [Mek96]. 
Such a feature has been one of the main reasons for justifying the capacity of 
photonic crystals to realize highly integrated photonic circuits. However, photonic 
crystals have also unique features such as a strong dispersion that can be used to 
implement novel functionalities as well as to enhance different phenomena such as 
the group delay, nonlinear effects or stimulated emission, which in turn implies an 
extra reduction of size. 
 
In recent years, a large variety of functionalities based on photonic crystal 
structures have been reported. Furthermore, there has also been a considerable 
progress on the fabrication processes. However, there is still needed a great effort 
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to resolve several issues that permit the definitive industrial deployment of 
photonic crystal technology [Kra99]. Among them, the minimization of 
propagation losses and coupling losses between photonic crystal circuits and 
external media (fiber and dielectric waveguides) play a crucial role.  
 
1.2 Objectives 
 
The aim of this work is to investigate coupling techniques and structures to 
minimize the coupling losses between photonic crystal circuits and dielectric 
waveguides. A large variety of spot size converters have been developed in the past 
to resolve the mode mismatch between fibre and dielectric waveguides [see for e.g. 
Moe97]. Therefore, we have focussed on the coupling between dielectric and 
photonic crystal waveguides. Furthermore, efficient interfacing between dielectric 
and photonic crystal waveguides is also very important when photonic crystal 
circuits have to be inserted on a chip with other functional blocks implemented 
with conventional dielectric waveguides. The main objectives pursued in this work 
have been as follows: 
 

 The modeling of the coupling between dielectric and photonic crystal 
waveguides and the influence of the main parameters of the photonic 
crystal on the coupling efficiency.  

 The development of a novel coupling technique to improve the coupling 
efficiency from dielectric waveguides into line defect photonic crystal 
waveguides.  

 The development of a novel coupling technique to improve the coupling 
efficiency into coupled-cavity waveguides.  

 The fabrication and experimental demonstration of the proposed coupling 
techniques. 

 
1.3 Outline of this work 
 
The contents of this work are structured in seven chapters. In chapter 2, the 
fundamentals of photonic crystals are drawn. After a brief historical review of 
photonic crystals, light propagation in periodic media is described. Special 
emphasis is made in planar photonic crystals due to their easier fabrication at 
optical wavelengths. The modeling tools used along this work have also been 
described. Furthermore, the potential of photonic crystals to implement a large 
number of functionalities is analyzed.  
 
In chapter 3, butt-coupling between narrow dielectric waveguides and single line 
defect photonic crystal waveguides is analyzed. Closed-form expressions for the 
reflection and transmission matrices are derived based on the mode matching 
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technique. Analytic expressions, validated by means of 2D simulations, are used to 
study coupling losses in two different kind of photonic crystals called rod and hole 
structures. In the former, the photonic crystal is formed by a lattice of high index 
rods surrounded by a material with lower refractive index while in the latter the 
photonic crystal is formed by an air hole lattice etched into a high refractive index 
material. Furthermore, it is shown that the obtained closed form expressions can 
also be used for analyzing coupling issues in more complex photonic crystals by 
means of a semi-analytic approach. 
 
In chapter 4, a coupling technique between both narrow and broad dielectric 
waveguides and line defect waveguides is proposed and analyzed by means of 2D 
simulations. The coupling technique is based on the introduction of a number of 
localized defects within a photonic crystal taper. An initial approach has been 
proposed to design the optimum configuration of defects. However, when coupling 
from broader dielectric waveguides, larger photonic crystal tapers must be used 
that make much more complicated the design. Therefore, the usefulness of genetic 
algorithms to design the optimum configuration of defects has been proposed and 
assesed.  
 
In chapter 5, an adiabatic coupling technique between conventional photonic 
crystal single line defect waveguides and coupled-cavity waveguides is proposed 
and analyzed by means of 2D simulations. Adiabatic coupling is achieved by 
progressively varying the radii of the spacing defects between cavities. Inefficient 
coupling into coupled-cavity waveguides can be a critical point in order to achieve 
an optimum dynamic performance because the propagation of ultra short pulses 
may be seriously distorted. Therefore, a rigorous analysis of pulse propagation in 
the frequency and time domains has been carried out.   
 
In chapter 6, the experimental implementation of the coupling techniques proposed 
in chapter 4 and 5 is addressed. Two different planar photonic crystal structures 
based on a lattice of rods and air holes are considered. The fabrication processes 
for each structure are reviewed, although experimental results are only provided for 
the hole structure since fabrication of the rod structure is still under development. 
However, both structures have been analyzed by means of 3D finite-difference 
time-domain (FDTD) simulations and results have been compared to 2D FDTD 
simulations.  
 
Finally, conclusions and future work are provided in chapter 7. 
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Chapter 2 

 

Fundamentals of  
Photonic Crystals 

 
 
 
 
 
 

2.1 The origin of photonic crystals 
 
Photonic bands in a periodic arrangement of dielectric spheres were first discussed 
in 1979 by K. Ohtaka [Oht79]. However, the concept of photonic band gap was 
proposed in 1987 for the first time. E. Yablonovitch suggested that spontaneous 
emission could be inhibited in a dielectric medium with a periodic variation of the 
refractive index [Yab87]. In a different work also in 1987, S. John reported that 
strong localization of photons could occur in a predictable manner for a certain 
frequency range in particular disordered dielectric lattices [Joh87]. The term 
photonic band gap (PBG) was adopted in analogy to the electronic band gap 
ocurring in semiconductors. Just as a regular arrangement of atoms in a crystal 
gives rise to electronic band gaps, the periodicity of the spatial dielectric 
distribution in a photonic crystal gives rise to a frequency region where 
electromagnetic radiation is not allowed.  
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Figure 2.1.- The Yablonovite, first photonic crystal with a full three dimensional photonic 
band gap experimentally demonstrated in 1991. The structure is fabricated by drilling each 
hole of the lattice at three different angles separated 120 degree and 35 degree away from 
the normal. This results in a three dimensional structure with a diamond lattice. 
 
The research after the works of E. Yablonovitch and S. John was intended to find a 
three-dimensional (3D) lattice that could allow a complete 3D PBG. The first 
choice was a face-centered cubic lattice of air spheres in a high-index dielectric 
material [Yab89]. Because of the lack of numerical tools for design, a number of 
structures were fabricated and tested with different filling factors and refractive 
indexes. For one of these structures, a 1 GHz bandwidth 3D PBG centered at 15 
GHz was experimentally identified. These experimental results were later 
confirmed by two theoretical works [Leu90, Sat90]. However, after this apparent 
success several authors pointed out an inaccuracy in the theoretical procedure and 
showed that the PBG observed experimentally was only a pseudo-PBG, i.e. a PBG 
limited to a certain range of spatial directions [Leu90a, Zha90]. These 
disappointing theoretical results gave rise to some controversy but, in the end of 
1990, the first structure that possessed a complete 3D PBG was discovered: the 
diamond lattice of dielectric spheres [Ho90]. The first experimental demonstration 
was reported in 1991 by E. Yablonovitch [Yab91]. The structure, later called as 
Yablonovite and illustrated in figure 2.1, consisted of a dielectric medium drilled 
along the three of the axes of the diamond lattice. This 3D structure showed a PBG 
for the transmission of microwave waves that extended from 13 GHz to about 15 
GHz.   

 
The microwave regime was initially chosen to fabricate photonic crystals owing to 
the easier fabrication and testing. However, it is in the optical regime where 
photonic crystals would find real applications that justify the interest that they had 
received. This imposed the adaptation of conventional semiconductor 
nanofabrication techniques to make photonic crystals. First experiments were 
carried out in the near infrared regime for two-dimensional (2D) photonic crystals. 
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Deeply etched structures were initially considered to overcome the lack of light 
confinement in the vertical direction [Grü95, Lin96]. However, this approach 
suffered large diffraction losses and a waveguide configuration was chosen to 
achieve light confinement [Kra96]. Following this approach, a one-dimensional 
(1D) photonic crystal that consisted of a series of tiny holes etched in a silicon strip 
was successfully demonstrated for optical communications wavelengths (λ ~ 
1.5µm) in 1997 [For97]. 

 
Initial research on 3D photonic crystals was aimed to fabricate the Yablonovite 
structure at optical wavelengths [Che95]. However, the fabrication was too difficult 
and different approaches to make 3D photonic crystals were investigated. Layer by 
layer 3D photonic crystals formed by stacking one dimensional (1D) rods were 
demonstrated for silicon [Lin98, Fle99] and III-V semiconductor composites 
[Nod00]. Another promising approach was self-assembled colloidal 3D photonic 
crystals, which exploited the tendency of submicron spheres to spontaneously self-
organize [Mig97, Bla00].  

 
2.2 Light propagation in periodic media  
 
2.2.1 Wave equations in mixed media 
 
The propagation of light in electromagnetic periodic media is governed by 
Maxwell equations. For non conducting media without free charges these equations 
take the form 
 

),(),( tr
t

tr
∂
∂

−=×∇
BE  (2.1) 

 

),(),( tr
t

tr
∂
∂

=×∇
DH  (2.2) 

 
0),( =⋅∇ trD  (2.3) 

 
0),( =⋅∇ trB  (2.4) 
 

where E and H are the electric and magnetic fields while D and B are the 
displacement and magnetic induction. 
 
In order to solve the wave equations derived from Maxwell equations, the 
following so-called constitutive relations that relate D to E and B to H are needed 
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),(),( trtr oHB µ=  (2.5) 

 
),()(),( trrtr o ED εε=  (2.6) 

 
where µo is the magnetic permeability in free space, εo is the electric permittivity in 
free space and ε(r) is the relative dielectric constant. Linear, isotropic and lossless 
no magnetic media are assumed as well as that there is no material dispersion. 
Therefore, the magnetic permeability is equal to that in free space and the electric 
permittivity is scaled by a scalar function which only depends on the spatial 
coordinate, r. With all these assumptions in place and substituting (2.5) and (2.6) 
into (2.1)-(2.4), the following wave equations are obtained  
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where c stands for the light velocity in free space: 

 

00

1
µε

=c  (2.9) 

 
In general, both E and H are complicated functions of time and space. However, 
since Maxwell equations are linear, the time dependence can be separated out by 
expanding the fields into a set of harmonic modes and remembering to take the real 
part to obtain the physical fields. The harmonic modes can be written as 

 
tjet ω)(),( rHrH =  (2.10) 

 
tjet ω)(),( rErE =  (2.11) 

 
where ω is the angular frequency. Using (2.10) and (2.11) into the wave equations 
(2.7) and (2.8) results in  

 



Fundamentals of Photonic Crystals  11
 

 

{ } )()(
)(

1)(
2

rErE
r

rE ⎟
⎠
⎞

⎜
⎝
⎛=×∇×∇≡

cE
ω

ε
ζ  (2.12) 

 

)()(
)(

1)(
2

rHrH
r

rH ⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×∇×∇≡

cH
ω

ε
ζ  (2.13) 

 
where the two differential operators ζE and ζH are defined by the first equality in 
each of the above equations. The eigenvector E(r) and H(r) are the field patterns of 
the harmonic modes while the eigenvalues (ω/c)2 are proportional to the squared 
frequencies of these modes.  

 
2.2.2 Light propagation in homogeneous media  
 
In homogeneous media, the relative dielectric constant, ε(r), takes a constant value, 
ε. Therefore, the wave equations can be simplified to  
 

0)()(
2

22 =⎟
⎠
⎞

⎜
⎝
⎛+∇ rErE

c
n ω  (2.14) 

 

0)()(
2

22 =⎟
⎠
⎞

⎜
⎝
⎛+∇ rHrH

c
n ω  (2.15) 

 
where n is the refractive index obtained as the root square of the relative dielectric 
constant. These wave equations are usually expressed as 
 

0)()( 22 =+∇ rErE k  (2.16) 
 

0)()( 22 =+∇ rHrH k  (2.17) 
 
where k is called the wave number which is linearly dependent on ω: 
 

c
nk ω

=  (2.18) 

 
The above equation is called the dispersion relation that depends on the 
homogeneous medium through the refractive index. Therefore, the wavelength λ of 
the wave propagated through the medium depends on the free space wavelength λ0 
through the refractive index by 
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n
0λλ =  (2.19) 

 
The general solution of (2.16) and (2.17) is a set of plane waves whose simplest 
solution for the electric field is given by  
 

rje ⋅= k
0)( ErE  (2.20) 

 
where E0 is a complex value, which describes the amplitude and phase of the plane 
wave, and k is the wave vector, which indicates the propagation direction of the 
wave and whose magnitude is the wave number. A monochromatic plane wave 
propagates at the velocity of ω/k. However, when the plane wave is modulated by a 
signal, this velocity is known as the phase velocity. The phase velocity, vp, 
indicates the velocity that the phase fronts are propagated. On the other hand, the 
group velocity is defined as the velocity that the energy is propagated. The group 
velocity is calculated as  

 

k
vg ∂

∂
=

ω
 (2.21) 

 
In linear, isotropic and homogeneous media, the phase velocity will equal the 
group velocity, vp=vg, however, this is no longer valid when the dielectric medium 
becomes periodic. 
 
2.2.3 Light propagation in 1D periodic media  
 
The simplest possible photonic crystal consists of alternating layers of materials 
with different refractive indexes, n1 and n2, which can have different thickness, d1 
and d2, but the same periodicity of a, being a = d1 +d2 the lattice constant. This 
one-dimensional (1D) periodic structure is depicted in figure 2.2. The traditional 
approach for analyzing this structure is to allow a plane wave to propagate through 
the material and to consider the multiple reflections that take place at each 
interface. In this case, it can be obtained that the structure act as a perfect mirror for 
a certain wavelength range near λ=2m(d1n1+d2n2), where m is an integer number. 
This condition is called the Bragg condition and therefore the structure shown in 
figure 2.2 is usually known as a Bragg mirror [Yeh98]. However, the properties of 
Bragg mirrors can also be analyzed following a different approach based on the 
analysis of the dispersion relation or, in other words, the band diagram. We will 
focus on this approach since it will permit us to further analyze the more complex 
two- and three-dimensional periodic media. 
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Figure 2.2.- One dimensional photonic crystal formed by alternating layers of materials 
with different refractive indexes, n1 and n2, and different thickness, d1 and d2, but with the 
same periodicity of a, being a = d1 +d2 the lattice constant.  
 
In 1D periodic media, the solution of the wave equations (2.12) and (2.13) takes 
the form of a plane wave, as it would be in homogeneous media, but modulated by 
a periodic function uk(z) with the same periodicity of the periodic structure, i.e. 
uk(z)= uk(z+a): 
 

zj
k ezuz ⋅= k)()(E  (2.22) 

 
This result is usually known as the Bloch theorem since it was proved by F. Bloch 
in 1928 when he studied wave propagation in three dimensional periodic structures 
[Blo28], unknowingly extending a similar theorem in one dimension proposed by 
G. Floquet in 1883 [Flo83].  
 
One dimensional periodic structures are homogeneous in the plane perpendicular to 
the direction of periodicity. Therefore, the wave vector in these directions can take 
any value due to the continuous translational symmetry. However, let us consider 
that light propagation is in the direction of periodicity, i.e. the z-direction for the 
particular case shown in figure 2.2, so the wave vectors in the xy-plane are zero. 
One important attribute about Bloch states is that the solution with wave vector kz, 
is identical from a physical point of view to the solutions with wave vector kz+mG, 
where m is an integer number and G=2π/a is known as the reciprocal lattice 
constant. Hence, the Bloch state may be considered as an infinite number of spatial 
harmonics with propagation constants separated by the reciprocal lattice constant. 
All these spatial harmonics that make up the Bloch state have multiple phase 
velocities but they propagate all together with the same group velocity. In the same 
way, the frequencies of the Bloch state are also periodic in kz, i.e. ω(kz)= 
ω(kz+mG). Therefore, it is only needed to consider kz to exist in the range -π/a< kz 
≤ π/a. This region is called the first Brillouin zone and can be further reduced to 0< 
kz ≤ π/a, the irreducible Brillouin zone, because of the reciprocity of Maxwell 
equations.  
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Figure 2.3.- Dispersion relation for (a) a homogeneous material and (b) a 1D periodic 
structure formed by two layers of alternating refraction indexes. In the periodic structure 
the dispersion line is split at the band edges giving rise to ranges of frequencies, called the 
photonic bad gap (PBG), in which no mode, regardless of kz, can exist in the structure. 

 
Figure 2.3(a) shows the dispersion relation, ωn(kz), of an homogeneous material 
while figure 2.3(b) shows the dispersion relation of a 1D periodic structure formed 
by two layers of alternating refraction indexes. In the former, an artificially 
periodicity of a has been assigned and therefore the dispersion line is folded back 
when it reaches the edges of the irreducible Brillouin zone. However, in the 1D 
periodic structures the dispersion line is split at the band edges, kz=0 and kz=π/a, 
giving rise to ranges of frequencies in which no mode, regardless of kz, can exist in 
the structure. This frequency range is called the photonic bad gap (PBG) and is 
originated because the modes at the band edges are mixed each other in the 
presence of the periodic structure resulting in a frequency splitting. The PBG is 
generally larger when the index contrast between the alternating layers of the 
periodic structure is higher [Joa95].  
 
2.2.4 Light propagation in 2D periodic media  
 
A two-dimensional (2D) photonic crystal is a periodic dielectric medium along two 
of its axes being homogeneous along the third axis. The plane of periodicity is 
determined by the primitive lattice vectors that form the basic cell. The primitive 
lattice vectors are defined as the smallest vectors pointing from one lattice point to 
another. Therefore, any point of the plane can be obtained by an integer linear 
combination of the lattice vectors. Figures 2.4(a) and 2.4(b) show a cross section in 
the plane of periodicity of the most common lattices used in photonic crystals. 
Circular shaped columns are arranged in a triangular lattice for the former and in a 
square lattice for the latter. The dashed line shows the basic cell corresponding to 
each lattice. The lattice vectors, a1 and a2, in both lattices have the same modulus, 
a, but different directions.  
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Figure 2.4.- (a) Triangular and (b) square lattices and their corresponding (c) hexagonal 
and (d) square shaped Brillouin zones. The band diagram is shown (e) for a triangular 
lattice of air holes with R=0.45a etched in a high-index material with n=3.45 and (f) for a 
square lattice of dielectric rods with n= 3.45 and R=0.2a embedded in air. The solid lines 
depict the propagating modes with TM polarization and the dashed lines depict the 
propagating modes with TE polarization. 
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Let us assume that the homogeneous direction is in the y-axis while the plane of 
periodicity is the xz-plane. In this case, the Bloch theorem gives us a similar 
solution of the wave equations as the one given for 1D periodic media expressed in 
(2.22). The function uk(r) is now periodic in the xz-plane but homogeneous in the y-
direction. If light propagation is assumed to be in the plane of periodicity, the wave 
vector component in the y-direction will be zero, ky=0. As occurs in 1D periodic 
media, the analysis of the k values is also restricted to the irreducible Brillouin 
zone.  

 
The first Brillouin zones for the triangular and square lattices are shown in figures 
2.4(c) and 2.4(d) respectively. It can be seen that the Brillouin zone has a 
hexagonal shape in the former while a square shape in the latter. In both cases, the 
shape of the Brillouin zone in the reciprocal space coincides with the shape of the 
basic cell in the real space. However, the Brillouin zone corresponding to the 
triangular lattice is rotated by 90 degrees with respect to the basic cell. The 
irreducible Brillouin zone corresponds to the highlighted region and is usually 
defined by the Γ, M and X points in the square lattice and by the Γ, M and K points 
in the triangular lattice. The frequency as a function of the wave vector, i.e. the 
band diagram, is only represented along the edge of the irreducible Brillouin zone, 
from Γ to M to X (K). The mirror symmetry of the structure permits to classify the 
modes by separating them into two uncoupled polarizations. The transverse-electric 
modes, TE polarization, have the magnetic field normal to the plane of periodicity 
and the electric field in the plane, (Ex, Ez, Hy). The transverse-magnetic modes, TM 
polarization, have just the reverse: the electric field normal to the plane of 
periodicity and the magnetic field in the plane, (Hx, Hz, Ey). 

 
Figure 2.4(e) shows the band diagram for a triangular lattice of air holes etched in a 
high-index material. The solid lines correspond to the propagating modes with TM 
polarization and the dashed lines correspond to the propagating modes with TE 
polarization. A PBG appears for the TE polarization between the first and second 
band. Furthermore, narrower PBGs for TM polarization appear at higher 
frequencies. Figure 2.4(f) shows the band diagram for a square lattice of dielectric 
rods in air. In this case, the PBGs are mostly given for the TM polarization. It can 
be obtained that TM PBGs are usually predominant in high index rods lattices 
while TE PBGs are predominant in air holes lattices [Joa95].  
 
In figure 2.4(e) it can be seen that there is also a PBG for the TM polarization 
between the first and second bands that overlaps with the TE PBG. The frequency 
range where the periodic structure has a PBG for both the TE and TM polarizations 
is called a full photonic bandgap. In this frequency range any propagating mode 
regardless of its polarization will be allowed inside the periodic structure. For 
practical applications, it is desirable to have the widest possible full PBG. To 
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achieve this goal, the PBG for both polarizations should be wide enough and 
centred at a similar frequency. Just as in 1D periodic media, the PBG is enlarged 
by increasing the index contrast of the periodic structure. On the other hand, the 
central frequency of the PBG can be controlled by varying the radius of the 
columns as well as the geometry of the lattice. A rounded shape of the Brillouin 
zone contributes to the appearance of full PBGs [Vil92]. Therefore, a larger full 
PBG is easier achieved by a triangular lattice rather than by a square lattice.  

 
Figure 2.5.- Examples of three-dimensional periodic structures. From left to right, self-
assembled colloidal spheres, a layer by layer structure and a sequence of planar layers with 
an horizontal offset. 
 
2.2.5 Light propagation in 3D periodic media  
 
Full control of light propagation by means of the PBG effect can only be achieved 
with three-dimensional periodic media. In this case, the structure is periodic along 
the three dimensions and light propagation can be forbidden in any spatial 
direction. There are a large number of possible geometries for realizing 3D 
periodic media. As in 2D periodic structures, the optical properties are analyzed 
from the band diagram calculated in the irreducible Brillouin zone. However, the 
Brillouin zone is a 3D figure that makes difficult its interpretation. The ability to 
confine light in three dimensions results of great interest to quantum optics and 
quantum-optical devices. For instance, the localization of light to a fraction of a 
cubic wavelength may permit the realization of efficient single-mode light-emitting 
diodes [Kra99]. 
 
The first experimental demonstration of photonic crystals was carried out in the 
microwave regime using a 3D structure [Yab89]. The structure consisted of a 
dielectric medium drilled along the three of the axes of a diamond lattice, which 
was the first geometry analyzed to achieve a full 3D PBG [Ho90]. However, the 
fabrication of this structure for optical wavelengths was too difficult and different 
approaches were investigated [Che95].  
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Figure 2.6.- Point defect created by removing a single column from the crystal that 
introduces a localized defect mode within the PBG in the transmission spectrum.  
 
One of the most promising approaches is the self assembly of colloidal spheres 
placed at each lattice point [Bla00, Vla01], as shown in the left part of figure 2.5. 
The strategy behind this approach is to exploit the tendency of submicron spheres 
to spontaneously organize on a face-centred cubic lattice. The resulting material 
acts as a template into which a semiconductor material is infiltrated. The removal 
of the template leads to a 3D photonic crystal, known as inverted opal, which has a 
periodic arrangement of air spheres embedded inside the semiconductor. 
 
There have also been alternative approaches like the layer by layer 3D photonic 
crystals shown in middle part of figure 2.5. This so-called woodpile structure 
consists of layers of one dimensional rods with a stacking sequence that repeats 
itself every four layers [Lin98, Fle99, Nod00]. A similar structure that has been 
proposed to achieve a full 3D PBG is shown in the right part of figure 2.5. In this 
case, the 3D periodic structure is made by a sequence of planar layers with an 
horizontal offset and repeated every three layers to form the lattice [Joh00]. 
 
2.2.6 Defects in photonic crystals   
 
Previously, we have seen that infinite periodic structures could be conveniently 
designed to achieve a PBG so that no modes are allowed with frequencies inside 
this region. However, the introduction of defects that break the translational 
symmetry of the periodic structure may permit the existence of a localized mode or 
a set of closely spaced modes inside the PBG [Joa95].  
 
The simplest defect that can be created in a photonic crystal is the point defect. 
Point defects can be created by removing or changing a single column from the 
crystal. Thus, localized defect modes may appear within the PBG in the 
transmission spectrum. An example is shown in figure 2.6.  
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Figure 2.7.- Line defect created by removing a row of columns in the ΓK direction of a 2D 
photonic crystal formed in a triangular lattice of rods with R=0.2a and n=3.45 in a 
surrounding medium with n=1.45. The band diagram is shown in the left part in which the 
grey area depicts the projected band structure of the perfect 2D crystal. The projected band 
structure is calculated by projecting the reciprocal lattice of the photonic crystal into the 
reciprocal lattice of the line defect structure as depicted in the right part.   
 
It can be seen that the light is trapped inside the point defect since light propagation 
is not allowed out of the defect. Therefore, point defects may be used in designing 
high Q-value nano cavities [Joa97].  
 
Line defects can also be created by removing or changing one or more rows of 
columns into the otherwise periodic structure. By creating line defects well 
confined guided modes may appear inside the PBG. Therefore, a waveguide is 
created where light can only propagate back and forth along the line defect. Thus, 
light can also be guided around sharp bends as the radiation of energy in the 
cladding is prohibited [Mek96]. The ability of controlling the light in such a small 
scale has been one of the main reasons that has boosted the attraction on photonic 
crystals to develop micro scale photonic integrated circuits.  
 
The introduction of line defects may also be analyzed by using the band diagram. 
However, line defects break the periodicity in one spatial direction so the Brillouin 
zone changes with respect to that of the original periodic structure. The band 
diagram for a line defect created along the ΓK direction is shown in figure 2.7. The 
grey area depicts the projected band structure of the perfect 2D crystal. This region 
contains the continuum of states that are extended in the surrounding crystal and it 
is calculated by projecting the reciprocal lattice of the perfect crystal into the 
reciprocal lattice of the line defect structure [Joh00a]. The edge of the Brillouin 
zone is the K’ point, which is the projected image of the M point of the perfect 
crystal into the ΓK direction and therefore has a lower value than the K point of the 
perfect crystal, as depicted in the right part of figure 2.7. 
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Figure 2.8.- Planar photonic crystals, also known as photonic crystal slabs, combine 2D 
photonic crystals with a slab waveguide in the vertical direction.  They can be formed with 
uniform materials as claddings above and below the slab core, as shown in the left part, or 
with claddings with the same periodicity than the core but with a lower effective index, as 
shown in the middle part. On the other hand, it is also possible to have an asymmetric 
structure, as shown in the right part, in which the lower and upper claddings have different 
refractive indexes.  
 
The band above the PBG is usually referred as the air band because the modes 
located at high frequencies concentrate their energy around the material with lower 
index. On the other hand, the band below the PBG is usually referred as the 
dielectric band because the modes located at the low frequencies concentrate their 
energy around the material with higher index [Joa95]. Therefore, the introduction 
of defects into the otherwise periodic structure can be distinguished in the form of 
either adding or removing a certain amount of dielectric material. Adding dielectric 
material pulls modes from the air band into the PBG while removing dielectric 
material pulls modes from dielectric band into the PBG [Yab91]. 
 
2.3 Planar photonic crystals  
 
Although 3D photonic crystals can control light in the three dimensions, they are 
very difficult to fabricate at optical wavelengths. Therefore, planar photonic 
crystals, also known as photonic crystal slabs, have been proposed to allow an 
easier fabrication by using the current planar processing technologies developed by 
the microelectronics industry [Kra96, Joh99, Cho00].  
 
Planar photonic crystals combine 2D photonic crystals with a slab waveguide in the 
vertical direction. Therefore, index confinement is used to bind the light in the third 
dimension. Several examples are shown in figure 2.8. This configuration has 
obvious advantages, such as growth of layered structures by established epitaxial 
methods. There are, however, several issues that need to be addressed when 
designing the structure. Among them, the vertical symmetry of the structure, the 
slab thickness and the index contrast between the slab core and the claddings will 
play a prominent role in determining the properties of planar photonic crystals. 
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 Ex, Ez, Hy Hx, Hz, Ey 
Even modes (TE-like) even odd 
Odd modes (TM-like) odd even 

 
Figure 2.9.- The table shows the definition of the even and odd modes in terms of the 
individual electromagnetic fields components. Even or odd is defined with respect to the 
mirror horizontal plane, shown with a dashed line in the above figure, bisecting the 
symmetric planar photonic crystal. The horizontal plane is defined by the x- and z-axes and 
the vertical dimension is defined by the y-axis. 
 
2.3.1 Influence of vertical symmetry on polarization  
 
For 2D photonic crystal, the electromagnetic fields can be decoupled into two 
transversely polarized modes, the TE modes and the TM modes. However, the 
polarization in planar photonic crystals can not be so clearly defined because the 
structure becomes inhomogeneous in the vertical direction. Therefore, the 
symmetry or asymmetry of the structure in the vertical direction has a large 
influence on the polarization [Joh99, Qiu02]. 
 
In planar photonic crystals, the modes that are symmetric with respect to the 
horizontal plane bisecting the slab have a strong similarity to the modes that are 
originated in unperturbed slab waveguides. Guided modes in unperturbed slab 
waveguides are classified into TE and TM modes in spite of the slab symmetry. 
However, the modes can also be classified as even or odd modes according to their 
symmetry with respect to the horizontal mirror plane bisecting the slab. For the 
fundamental TE and TM modes, even modes correspond to TE modes while odd 
modes correspond to TM modes. This correspondence changes for higher order 
modes.  
 
In symmetric planar photonic crystals, modes can not be considered as purely TM 
or TE polarized due to the lack of translational symmetry. However, modes can 
still be classified into even and odd modes that do no interact between them. Even 
and odd modes are usually called TE-like and TM-like respectively for the 
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fundamental mode. In fact, even and odd modes are purely TE and TM modes at 
the mirror plane itself. Figure 2.9 depicts the definition of the even and odd modes 
in terms of the individual electromagnetic fields components.  
 
On the other hand, it is also possible to have an asymmetric structure in the vertical 
direction so that, for instance, the lower and upper claddings have different 
refractive indexes, as shown in the right part of figure 2.8. In these structures, the 
guided modes can no longer be classified as even or odd modes and they couple to 
each other due to the symmetry breaking. However, it is still possible to distinguish 
them as TE-like and TM-like when the guided modes are tightly confined in the 
slab core [Qiu02].  
 
2.3.2 The light cone 
 
A new band diagram analysis becomes necessary when planar photonic crystals are 
taken into account due to the finite height of the structure. The band diagram 
calculated for the corresponding 2D photonic crystal is no longer valid as only 
states that have no wave vector in the vertical direction are considered. The 
introduction of the third direction requires the inclusion of vertical wave vectors 
that produces a continuum of states which is called the light cone. The light cone 
consists of radiation modes that are extended infinitely in the region outside the 
slab. 
 
However, a discrete number of guided modes can still exist below the light cone 
[Joh99]. These guided modes can not couple to the radiation modes above the light 
cone unless the periodicity of the structure is broken. The lower boundary of the 
light cone, which determines the boundary between guided and radiation modes, is 
called the light line. In case of having a uniform material above and below the slab 
core, the light line is simply the modulus of the wave vector divided by the 
refractive index. The refractive index must be lower than the averaged index of the 
slab core in order to confine the light in the vertical direction. 
 
On the other hand, a material with the same periodicity but with a lower effective 
index may also be used to confine the light in the slab core. This configuration is 
depicted in the middle part of figure 2.8. In this case, the light line is the lowest 
band of the dispersion relation calculated for the corresponding 2D photonic crystal 
structure used in the cladding [Joh99]. Such a structure has the advantage that both 
slab core and claddings could be etched at the same time. It is also possible to have 
an asymmetric structure in the vertical direction, for instance if the lower and upper 
claddings have different refractive indexes. In this case, the light cone is calculated 
as the more restrictive of the two light cones imposed by each cladding. 
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Figure 2.10.- Band diagrams of a planar photonic crystal formed by (a) a square lattice of 
dielectric rods with n=3.45, R=0.2a in air and (b) a triangular lattice of air holes with 
R=0.3a etched in a medium with n=3.45. The slab core thickness is 2a in the former and 
0.5a in the latter. 
 
Figure 2.10(a) shows the band diagram for a planar photonic crystal formed by a 
square lattice of dielectric rods in air while figure 2.10(b) shows the band diagram 
for a triangular lattice of air holes in a dielectric medium. The structure is 
symmetric in the vertical direction since an air cladding is considered above and 
below the slab. The slab core thickness is chosen so that it is not too small, because 
then guided modes will be weakly confined, or too large, because then higher-order 
modes will fill the PBG. The optimum thickness is around half a wavelength 
relative to an averaged index that depends on the polarization [Joh99].  
 
Just like in 2D photonic crystals, TM-like PBGs are predominant in rod lattices 
while TE-like PBGs are predominant in air holes lattices. However, it should be 
pointed out that the PBG can not be considered anymore as a true PBG because 
there are radiation modes at every frequency due to the light cone. The presence of 
these radiating modes means that when translational symmetry is broken, for 
instance at a bend or a resonant cavity, vertical radiation losses are inevitable and 
strategies to minimize these losses will be required. However, in linear defect 
waveguides, where only one direction of translational symmetry is broken, ideally 
lossless guiding can be maintained. 
 
2.3.3 Waveguides in planar photonic crystals 
 
Planar photonic crystal waveguides are also made by the introduction of linear 
defects into the plane of periodicity. The differences to 2D photonic crystals arise 
from the fact that while light is still controlled in the horizontal direction using the 
PBG effect, the confinement in the vertical direction is achieved by index guiding.  
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Figure 2.11.- Band diagram of planar photonic crystal waveguides created by reducing the 
radius of a row of columns. Numbers near the curves denote the radius of the row of 
columns that form the waveguide. Note that the structure is symmetric in the vertical 
direction.  
 
A single mode behavior in the frequency range of interest is desired in order to 
achieve an optimal performance. Furthermore, the guided mode should be below 
the light cone and within the PBG to avoid radiation losses. Conventional 
waveguides formed by removing one or several row of columns usually result in 
multimode guiding, especially in air holes lattices. Therefore, alternative 
approaches, some of them described below, have been proposed to design more 
efficient waveguides [Joh00a].  
 
Figure 2.11 shows the band diagram of planar photonic crystal waveguides created 
by reducing the radius of a row of columns instead of being removed. A triangular 
lattice of silicon rods embedded in a silica medium is considered. It can be seen 
that by appropriately designing the radius of the defects that form the waveguide a 
single guided mode below the light cone and located within the PBG, therefore a 
lossless guided Bloch mode, is achieved. However, it should be noticed that it has a 
narrow bandwidth as well as a very flat dispersion relation. While the former limits 
the frequency range of operation, the latter gives rise to a low group velocity, 
which may be useful for implementing optical functionalities such as optical delay 
lines or dispersion compensators. However, the low group velocity makes difficult 
the coupling from an external medium.  

 
A large variety of different strategies to design waveguides with single mode 
transmission and increased bandwidth have been proposed during the last years. 
Several examples are illustrated in figure 2.12. In figure 2.12(a), the waveguide is 
designed by shifting the lattice so the distance between the adjacent rows of 
columns is reduced γ times the distance of the original waveguide [Not01].  
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Figure 2.12.- Different kinds of waveguides designed to achieve single mode transmission. 
The waveguide is created (a) by reducing the core of the original waveguide, (b) by 
changing the radius of the adjacent rows of columns that form the waveguide, (c) by 
shifting the central row of columns and (d) by replacing the row of columns by a dielectric 
waveguide. 
 
In figure 2.12(b), the radius of the adjacent rows of columns that form the 
waveguide is changed [Adi00]. In figure 2.12(c), the central row of columns is 
shifted up to be aligned with the adjacent rows [Yam02]. Finally, in figure 2.1.2(d), 
the row of columns is replaced by a dielectric waveguide to create the waveguide 
[Lau02]. One important point for any waveguide design is trying to maintain the 
periodicity of the lattice, which is only achieved in the above examples for the 
cases shown in figures 2.11, 2.12(b) and 2.12(d). The preservation of the lattice 
periodicity simplifies the implementation of bends and other discontinuities.  
 
On the other hand, there is an important issue that should be taken into account in 
any design when the planar photonic crystal is asymmetric in the vertical direction. 
Figure 2.13 shows the band diagram of a planar photonic crystal waveguide formed 
by a triangular lattice of air holes etched in a silicon slab core on top of a silica 
layer. The core of the waveguide has been reduced in order to achieve single mode 
transmission, although it can also be seen another guided mode close to the lower 
PBG edge. On the other hand, the lowest mode located below the projected band of 
the TE-like modes is guided by total internal refraction in both the vertical and 
horizontal direction. This kind of mode can not exist in the structure shown in 
figure 2.11 because the core of the waveguide has a refractive index smaller than 
the surrounding medium, i.e. there is not index confinement in the horizontal 
direction.   
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Figure 2.13.- Band diagram of a planar photonic crystal waveguide formed by reducing the 
core of the original waveguide. Note that the structure is asymmetric in the vertical 
direction and therefore both TE-like and TM-like polarizations can couple to each other 
increasing propagation losses.  
 
The vertical asymmetry of the structure shown in figure 2.13 may give rise to an 
interaction between both TM-like and TE-like polarizations. This interaction will 
increase propagation losses because, if the TE-like mode is coupled to a TM-like 
mode, it will no longer experience the PBG and light will not be confined within 
the waveguide. This effect becomes stronger when the asymmetry of the structure 
increases. Therefore, when the PBG occurs only for one of the polarizations, the 
projected band of both TM-like and TE-like modes should be represented in the 
band diagram. The optimum performance is given when the guided mode is below 
the light cone but also below the projected band of the polarization for which the 
PBG does not exist. It is important to notice that even in symmetric planar photonic 
crystals, fabrication imperfections, such as tilted sidewalls, make the structure 
asymmetric so that both polarizations are no longer decoupled and can interact.  
 
2.3.4 Index contrast between claddings and core 
 
The highest index contrast between the slab core and claddings is a priori preferred 
in planar photonic crystals in order to achieve guided modes below the light cone 
thus allowing the implementation of lossless waveguides. The highest contrast is 
achieved by using a semiconductor membrane suspended in air. This membrane-
type structure has been fabricated with slab cores of silicon [Lon00, Not01], 
AlxGayAs composites [Kan97, Kaw01] or GaInAsP [Pai99]. However, this 
structure suffers from a poor mechanical stability, especially in air holes lattices 
with large filling ratios. Therefore, the support of a material with a lower index 
than the one used for the slab core becomes more suitable. The main benefit is that 
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the mechanical stability is improved but the light cone is pulled down reducing the 
space for guided modes. Normally, an air medium is still used above the slab core 
breaking the vertical symmetry of the structure. One example is Silicon-on-
insulator (SOI) in which a silicon layer is used on top of a silica layer [Bog02, 
Pat02]. Another alternative is the use of a high index GaAs layer on top of an 
AlxOy layer [Rip99, Cho00]. 
 
Low vertical index contrast is the alternative to high index contrast. One example is 
GaAs-AlxGa1-xAs heterostructures where the index contrast depends on the fraction 
of Aluminium, x [Kra96]. In this case, the guided modes are usually above the light 
cone. Therefore, radiation modes are always excited making the structure 
inherently lossy due to out-of-plane radiation. This may be seen as a clear 
disadvantage with respect to high index contrast structures. However, out-of-plane 
radiation at discontinuities is much lower than in high index contrast structures. 
This is originated because light in high index contrast structures is more confined 
in the slab core. Therefore, the breakage of the translational symmetry at the 
discontinuities has a larger impact. On the other hand, larger aspect ratios are 
required at the etching process in low index contrast structures because light is less 
confined in the vertical direction. Furthermore, the buffer layer between the slab 
core and the substrate must be thick enough to avoid substrate leakage.  

 
Losses due to out-of-plane radiation, known as out-of-plane losses, can 
significantly degrade the performance of the circuit [Bog01, Ben00]. The choice 
between low or high index contrast will depend on the particular problem and 
material system at hand. However, in both cases, different specific designs are 
required to minimize out-of-plane losses. It is worth to mention that low index 
contrast structures permit an approximated 2D analysis by using the effective index 
method. This method consists of replacing the material index in the corresponding 
2D photonic crystal by the effective index of the fundamental guided mode in the 
unperturbed 3D slab structure [Qui02a]. The effective index method may also be 
used in planar photonic crystals with high index contrast but results will only be 
valid in a narrower frequency range. Therefore, in this kind of structures a 3D 
modelling tool should be used for a more rigorous analysis.  
 
2.4 Modeling tools 
 
Several methods have been proposed for analyzing the properties of photonic 
crystal structures. We will review the most important that have also been used 
throughout this work. 
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2.4.1 Finite-difference time-domain 
 
The finite-difference time-domain (FDTD) method is one of the methods most 
widely employed for simulating photonic crystal circuits. The method is based on 
the discretization of Maxwell equations by replacing the partial differentials by 
finite differences [Taf95]. In general, the method is very accurate since no 
assumptions are made on the kind of solution of the Maxwell equations. Therefore, 
it has been employed for calculating electromagnetic fields distributions in 
structures of arbitrary geometry. Furthermore, FDTD is a time domain technique, 
which allows the analysis of pulse propagation in the structure. Therefore, when a 
pulse is used as source, the transmission spectrum can be obtained with only one 
simulation by applying the Fourier transform. The main weakness of FDTD is that 
long calculation times and huge memory requirements are usually needed, 
especially in 3D simulations.  
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Figure 2.14.- Finite-difference time-domain (FDTD) method. The structure is discretized 
on a spatial grid and the time evolution of the electromagnetic field is determined at every 
point within the computational domain in an iterative process. 

 
In order to use FDTD, a computational domain must be defined and discretized on 
a spatial grid, as shown in figure 2.14. The materials of the structure to be 
simulated must be specified at all points within the computational domain. Once 
the computational domain and the grid are established, a source is specified. The 
source will depend on the type of simulation. The time evolution of the 
electromagnetic field is then determined at every point within the computational 
domain in an iterative process. Thus, the resultant electromagnetic fields can be 
obtained anywhere on the structure for later analysis.  
 
On the other hand, since the computational domain must end at some point, a 
boundary must be established. Different types of absorbing boundary conditions 
can be chosen to avoid undesired reflections in the computational domain. The so-



Fundamentals of Photonic Crystals  29
 

 

called perfectly matched layer (PML) condition is usually employed for simulating 
photonic crystals [Ber94]. In this work, we have used FullWAVE from Rsoft 
Design Group Inc., which allows 1D, 2D and 3D FDTD simulations with PML 
boundary conditions1.  
 
2.4.2  Plane wave method 
 
The plane wave method is a popular numeric technique used to solve periodic 
electromagnetic problems. This technique is based on the expansion of the 
electromagnetic fields into a superposition of plane waves [Leu90]. The Maxwell 
equations are represented in the frequency domain and transformed into an 
eigenvalue problem. By solving this eigenvalue problem, the electromagnetic fields 
and the frequencies corresponding to each plane wave, which provides the 
dispersion relation of the periodic structure, are obtained. The plane wave method 
is the most widely used method to calculate band diagrams in photonic crystals 
[Joh01].  
 

 
Figure 2.15.- Plane wave method. In the left part, the basic cell is periodically repeated 
modelling the structure that extends into infinity. In the right part, a supercell is defined to 
model the photonic crystal waveguide. Several lattice constants are considered in the 
transversal direction to avoid the interaction between neighbouring defects. 

 
The basic cell of the photonic crystal determines the computational domain. Once 
the primitive lattice vectors and materials are defined, the basic cell is periodically 
repeated modelling the structure that extends into infinity, as depicted in the left 
part of figure 2.15. When modelling linear or point defects in photonic crystals, a 
supercell approach is needed. The right part of figure 2.15 shows the supercell used 
to model a photonic crystal waveguide. In this case, the computational domain is 
defined with several lattice constants in the spatial directions where the periodicity 
is broken. Because the electromagnetic fields are localized within the defect, this 
avoids the interaction between neighbouring defects. Therefore, the obtained band 
diagram will be a good approximation of that of the isolated defect.  

                                                      
1 http://www.rsoftdesign.com/products/component_design/FullWAVE/ 
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A similar approach is used to calculate the band diagram of planar photonic 
crystals but, in this case, an artificial periodicity is established in the vertical 
dimension. In the same way, the frequencies of the guided modes are not affected 
because the electromagnetic field is localized within the slab. The frequencies of 
radiation modes are affected but since they fall inside the light cone they are not of 
interest. In this work, we have used BandSOLVE from Rsoft Design Group Inc.2 
and the MIT Photonic-Bands (MPB) package developed by the Massachusetts 
Institute of Technology that can be freely downloaded from Internet3.  
 
2.4.3 Eigenmode expansion 
 
Eigenmode expansion is also a frequency domain method based on the expansion 
of the electromagnetic fields, like in the plane wave method, but using a different 
set of basic functions [Bie01]. In this case, the photonic crystal is divided into a 
number of layers where the refractive index profile does not change in the 
propagation direction, as it is shown in figure 2.16. The electromagnetic field in 
each layer is written as a sum of the local eigenmodes of that particular layer, 
which can be considered as a natural optical field profile that can exist in this layer 
and therefore propagates indefinitely without changing its form. At the interfaces 
between layers, a scattering matrix is calculated describing the coupling between 
the eigenmodes of neighbouring layers.  

 

 
Figure 2.16.- Eigenmode expansion method in which the photonic crystal is divided in a 
number of layers where the refractive index profile does not change in the propagation 
direction.  
 
Shorter computation times than FDTD are achieved because the fields in each layer 
are represented in a more compact form rather than specifying them explicitly at a 
number of grip points, as realized in FDTD. Furthermore, the calculation time of a 
layer is independent of the length of that layer and periodicity or quasi-periodicity 
can also be easily exploited. However, multiple simulations are needed to analyze a 
                                                      
2 http://www.rsoftdesign.com/products/component_design/BandSOLVE/ 
3 http://ab-initio.mit.edu/mpb/ 
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certain frequency range since frequency domain methods can only handle a single 
frequency at the same time. In this work, we have used the modelling tool CAMFR 
developed by the photonics group at the INTEC department of Ghent University4.  
 
2.4.4 Multiple scattering 
 
The multiple scattering method has also been proposed to simulate photonic 
crystals [Och02, Hak05a]. This frequency domain method is based on the 
expansion of the electromagnetic fields into series of orthogonal Bessel functions. 
The computational domain is defined as an array of scatterers located at arbitrary 
positions. The electromagnetic field induced by a particular scatter is obtained by 
multiplying the superposition of the external field and the field scattered by the 
array of scatterers with the so-called transition matrix, which is defined from the 
boundary condition at the interface of this particular scatter. Thus, the total 
electromagnetic field of the structure is obtained as the sum of the induced fields 
by every scatterer.  
 
When circular scatterers are considered, as occurs in photonic crystals, the series 
expansion of the Bessel functions converges rather fast. This fast convergence 
yields to very short computation times. However, the computation time increases 
exponentially with the number of scatterers. Therefore, it is important to exclude 
scatterers that does not influence on the result. Furthermore, the scatterers can not 
overlap. In this work, we have used a self-made code developed by Prof. José 
Sánchez-Dehesa and co-workers.  
 
2.5 Applications of photonic crystals 
 
Resonant cavities and waveguides have been the subject of a significant research 
effort as they are the basic components in photonic integrated circuits. Based on 
these components, different passive functionalities have been proposed and 
demonstrated, such as sharp bends [Mek96, Bab99], Y junctions [Lin02, Bos02, 
Sug02], add drop filters [Nod00a, Fan98], demultiplexers and multiplexers [Kos01, 
Bos02a] or Mach-Zehnder interferometers [Mar03]. Several examples are shown in 
figure 2.17, which were fabricated on Silicon-on-insulator (SOI) [Bog02]. 
 
The ability of photonic crystals to control the flow of light and their capability to 
concentrate light and enhance the interaction between light and matter are also of 
interest to implement active functionalities based on nonlinear effects. 
 

                                                      
4 http://camfr.sourceforge.net/ 
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Figure 2.17.- Scanning electron microscopy (SEM) images of planar photonic crystals 
fabricated on Silicon-on-insulator (SOI). The left part shows a sharp bend and the right part 
shows a Y junction. 
 
Several active functionalities have been proposed such as all-optical switches 
[Lan02, Cue04], second harmonic generation [Mar97] or novel light sources. In the 
latter, light emitted into unwanted directions is prohibited by the photonic crystal, 
which permits the design of high-efficiency light-emitting diodes (LEDs) [Fan97, 
Ryu02]. Furthermore, ultra-low-threshold semiconductor lasers in which the 
photonic crystal is designed to reduce the number of non-lasing modes have also 
been proposed [Pai99, Sak99].  
 
The dispersion features of photonic crystals result also of interest to implement 
different functionalities. In a photonic crystal, the dispersion relation can 
noticeably change with the propagation direction and wavelength. This effect is 
known as the superprism effect because light dispersion is much stronger than in 
conventional glass prism [Kos99]. The angular dispersion can be useful to achieve 
highly collimators or spot size converters, as depicted in the left part of figure 2.18 
[Kos00]. On the other hand, when an incident beam with multiple wavelengths 
impinges at the interface of the photonic crystal, each wavelength is refracted in a 
different angle, as shown in the right part of figure 2.18. Therefore, wavelength 
multiplexers and demultiplexers can also be designed [Wu02]. However, a careful 
design of the input and output interfaces is needed to avoid the high reflection 
originated due to the mode mismatch [Bab01]. 
 
On the other hand, under certain conditions, photonic crystals can have an 
anomalous behaviour in which an incident beam is diffracted in a direction 
different from that expected in homogeneous dielectric materials [Not00, Fot04]. 
This effect, known as negative refraction, has received an increasing interest in the 
last years due to their usefulness to implement novel applications, such as the 
realization of optical flat lenses that overcome the diffraction limit [Pen00, Mar04]. 
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Figure 2.18.- Possible applications of the superprism effect. The left part shows a spot-size 
converter where W is the beam waist while the right part shows a wavelength demultiplexer 
where λ is the wavelength.  
 
Photonic crystal waveguides can also support both strong positive and negative 
dispersion at the band edges of the guided mode where the dispersion relation is 
flattened. For the guided mode shown in figure 2.7, for instance, the group velocity 
increases with the frequency at the lower band edge while the group velocity 
decreases with the frequency at the higher band edge. Therefore, both strong 
positive and negative dispersion are possible which also means that the group 
velocity is significantly reduced at the band edges. These features may be useful to 
implement compact optical delay lines or dispersion compensators [Sca96, Hos02]. 
 
2.6 Conclusion 
 
Photonic crystals have attracted great research interest because of their potential to 
achieve highly integrated photonic circuits with advanced functionality. A large 
number of applications has been proposed and demonstrated during the last years 
with special emphasis in planar photonic crystals due to their easier fabrication at 
optical wavelengths. However, a great effort is still needed in order to solve several 
issues that permit the definitive commercial deployment of photonic crystal 
technology. One of the most important is the reduction of propagation losses. To 
achieve this goal mainly depends on optimization of the fabrication process to 
reduce fabrication imperfections such as sidewall roughness and on the study of 
techniques to minimize out-of-plane losses. At the moment, propagation losses 
lower than 3 dB/mm have been reported [Mcn03, Tan04]. Another very important 
issue that must be addressed is the coupling losses between external media (fiber 
and dielectric waveguides) and photonic crystal circuits, which is the subject of 
study in this work. 
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Chapter 3 

 

Butt-coupling in   
Photonic Crystals 

 
 
 
 
 

3.1 Coupling losses in photonic crystals 
 
Efficient coupling from optical fibres into and out of photonic crystal circuits is a 
key technological step for the definitive commercial deployment of photonic 
crystal technology. The core diameter of single mode optical fibres ranges from 
8µm to 10µm. However, the size of photonic crystal waveguides is usually smaller 
than 1µm in both the vertical and horizontal dimensions. The different sizes of both 
waveguides are illustrated in figure 3.1. Because of the large mode profile 
mismatch, the coupling efficiency is very low when both waveguides are butt-
coupled. However, a large variety of spot size converters between optical fibers 
and dielectric waveguides have been developed in the past to resolve the mode 
profile mismatch mainly in the horizontal dimension but also in the vertical 
dimension [see e.g. Moe97]. Recently, a promising approach based on an inverted 
dielectric taper has been proposed to achieve efficient coupling between narrow 
dielectric waveguides and fibres in relatively short coupling lengths [Alm03, 
Sho02, Mcn03].  
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Figure 3.1.- Coupling from optical fibres into and out of photonic crystal circuits. Because 
of the large mode profile mismatch in both vertical, Wy, and horizontal, Wx, directions, the 
coupling efficiency is very low when both waveguides are butt-coupled.   
 
Therefore, the problem of coupling in photonic crystal circuits may be simplified to 
achieve efficient coupling between dielectric waveguides and photonic crystal 
waveguides of a similar size in both the vertical and horizontal dimensions. 
Furthermore, efficient interfacing between dielectric and photonic crystal 
waveguides with a similar size may also be important if photonic crystal circuits 
have to be inserted on a chip with other functional blocks implemented with 
conventional dielectric waveguides.  
 
However, the coupling efficiency can be still rather poor even when the dielectric 
and photonic crystal waveguide have similar sizes. The origin of coupling losses is 
basically due to the mode mismatch derived from the different guiding mechanism 
in both kinds of waveguides.  Waveguides in photonic crystal circuits are usually 
formed by inserting line defects into the otherwise periodic structure. Propagation 
in this kind of waveguides is characterized by Bloch modes, as introduced in 
chapter two. On the other hand, propagation in conventional dielectric waveguides 
relies on index-contrast guiding. 
 
Butt coupling losses are rather different depending on the nature of the photonic 
crystal considered. In rod structures, where the photonic crystal is formed by rods 
with a higher refractive index than the surrounding medium, the coupling 
efficiency is in general poor [Sto00, Mek01]. However, in hole structures, where 
the photonic crystal is formed by a lattice of air holes inserted in a high refractive 
index medium, the coupling efficiency is very high and transmission efficiencies 
near 100% can be achieved [Adi00a, Qiu01, Miy02, Mol03]. Coupling losses in 
both kinds of photonic crystal structures have been studied by means of simulations 
but to the best of our knowledge there has not been any systematic, all-
encompassing analytic study at the moment.  
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The aim of this chapter is to obtain analytic expressions for the reflection and 
transmission matrices at an interface formed by a dielectric waveguide butt coupled 
to a photonic crystal waveguide. Closed form expressions have been obtained 
following the mode matching technique. Eigenmode expansion on the Bloch mode 
basis has been considered. The Bloch mode basis has been used for engineering 
gratings, propagation in finite photonic crystal waveguides or taper transitions in 
photonic crystals [Pal01, Joh02, Lan04, Bot03]. However, in this case, the coupling 
from a dielectric waveguide into a semi-infinite photonic crystal waveguide and 
vice versa has been considered. Previously, the mode matching technique has been 
introduced for an interface formed by two different dielectric waveguides. Analytic 
expressions, validated by means of simulations, have been used to study coupling 
losses in both rod and hole structures to get a qualitative insight into the origin of 
coupling losses. Furthermore, the obtained expressions have been extended for a 
semi-analytic treatment of complex photonic crystal structures.  

 
3.2 Interface between two dielectric waveguides  
 
Figure 3.2 shows the interface between two different media where the z-axis is 
oriented along the propagation direction. In this case we consider that both media 
are z-invariant. If the interface is placed at z=0 and a singlemode with index p is 
incident from medium I, this incident mode will give rise to a reflected field in 
medium I and a transmitted field in medium II. The following derivation is based 
on the well-known mode matching technique [Zak88, Ele94]. We expand the fields 
in terms of the eigenmodes of each medium and impose the continuity of the 
tangential components of the total field  
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and magnetic fields for the eigenmode with index j and Rj,p and Tj,p are the 
reflection and transmission coefficients for the eigenmode with index j considering 
an incident mode with index p. The minus sign of the reflected magnetic field is 
due to the symmetries for the backward propagating modes. In order to calculate 
the unknown transmission and reflection coefficients, we take the right cross 
product of (3.1) with Hi

I and the left cross product of (3.2) with Ei
I, which are the 

expansion fields of medium I. Here, I is an arbitrary index. After integrating over 
the cross-section, we get 
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Figure 3.2.- Interface between two media where the z-axis is oriented along the 
propagation direction. The incident field impinging on the interface will give rise to a 
reflected field in medium I and a transmitted field in medium II. 
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where the scalar product is defined as the following overlap integral 
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being uz the unitary vector in the z-axis direction. By invoking the orthogonality 
relation and after some algebraic manipulations we get  
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where δip is the Kronecker delta. If the series expansion is truncated after N terms, 
the transmission coefficient will be calculated by solving an N × N linear system, 
and then the reflection coefficients will be obtained by a simple matrix 
multiplication. Although these coefficients are obtained upon incidence of a mode 
with index p, the whole procedure can be repeated using all modes p in 1 → N.  
Thereby, we will obtain the transmission and reflection matrices that completely 
characterize the scattering that occurs at the interface.  
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Figure 3.3.- Schematic of the analyzed structures. A dielectric waveguide is butt-coupled to 
a single line defect photonic crystal waveguide. The width of the input waveguide is w and 
the lattice constant is a. The structure shown in (a) can be decomposed into the two 
structures shown in (b) and (c) in order to calculate the transmission and reflection 
matrices.  
 
3.3 Interface between dielectric and photonic crystal 
waveguides  
 
The mode matching technique has been used to calculate the transmission and 
reflection matrices for an interface between a dielectric waveguide and a semi-
infinite photonic crystal waveguide. Two different approaches, which yield to the 
same closed-form expressions, are presented. 
 
3.3.1 First approach 
 
Figure 3.3(a) shows the structure under study that is formed by a dielectric 
waveguide butt-coupled to a single line defect photonic crystal waveguide. In this 
case, medium II shown in figure 3.2 is not a z-invariant medium but a periodic 
medium, which consists of an infinitive number of repetitions of the same basic 
period in the z-direction. Propagation in the periodic medium is determined by 
Bloch modes [Blo28]. Mode properties can change significantly within the basic 
period. Therefore, the coupling efficiency will depend on the interface chosen 
among all the possible cuts within the basic period.  
 
In order to calculate the transmission and reflection matrices of the structure shown 
in figure 3.3(a), we expand the fields of medium II in terms of the Bloch modes 
and use (3.5) and (3.6). These equations are still valid because the orthogonality 
relation is invoked by using the field expansions of the dielectric waveguide, which 
is a z-invariant medium. On the other hand, only forward-propagating Bloch modes 
are used in the series expansion because a semi-infinite photonic crystal waveguide 
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is considered. In order to distinguish the forward-propagating Bloch modes from 
the backward-propagating Bloch modes we look at the power flux for the guided 
mode and at the imaginary part of the wave vector for the evanescent modes 
[Bot01]. As described in the previous chapter, in eigenmode expansion, the 
structure is sliced up into layers where the index profile does not change in the 
propagation direction. In each of these individual layers, we can write the field as a 
sum of the eigenmodes. In the case of Bloch modes, the field in each layer is 
composed of forward and backward components. Eq. (3.5) and (3.6) can be 
simplified by expressing the Bloch modes in terms of their forward and backward 
components so that we get  
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where kE~  and kH~ are the eigenmodes of the individual layer that depend on the 
chosen cut position within the basic period. Adding and subtracting (3.7) and (3.8) 
results in 
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Using (3.9) and (3.10) into (3.5) and (3.6) we obtain the transmission and reflection 
matrices for the structure shown in figure 3.3(a), which can be expressed by the 
following matrix equations  
 

( ) 12
111

121212
1 TBFTRTIFTIN

−−−− +=  (3.11) 
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12

1
1212

−− +=  (3.12) 
 
where the transmission matrix can be simplified to 
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IN
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It can be shown that Tij and Rij are the transmission and reflection matrices of the 
structure shown in figure 3.3(b), which are calculated using (3.5) and (3.6). In 
figure 3.3(b), the medium I-II is the individual layer corresponding to the interface 
chosen within the basic period of the photonic crystal. Therefore, it can be deduced 
that the problem shown in figure 3.3(a) can be decomposed in the two sub-
problems shown in figures 3.3(b)-(c) and a similar derivation can be followed to 
obtain the scattering matrices.  
 
3.3.2 Second approach 
 
In this subsection, we demonstrate that another approach to calculate the scattering 
matrices of the structure shown in figure 3.3(a) is to separate the basic structure 
into two structures, shown in figures 3.3(b)-(c), and then combine the transmission 
and reflection matrices of each structure. Medium I and I-II are z-invariant media 
so that we expand the fields in terms of the eigenmodes of each medium. On the 
other hand, medium II is a periodic medium so that we expand the fields in terms 
of the Bloch modes. 
 
In the first structure, shown in figure 3.3(b), the forward and backward propagating 
modes are related by a transfer matrix  
 

IIIIIII BRFTF −− += 2112  (3.14) 
 

IIIII BTFRB −+= 2112  (3.15) 
 
where Tij and Rij are the transmission and reflection matrices calculated using (3.5) 
and (3.6). On the other hand, in the second structure, shown in figure 3.3I, there are 
no backward propagating Bloch modes in medium II so that  
 

IIIII FTF −= 23  (3.16) 
 

IIIIII FRB −− = 23  (3.17) 
 
In this case, T23 and  R23 can also be simplified by expressing the Bloch modes in 
terms of forward and backward components. Moreover, it can be seen that as the 
interface layer of medium II is the same as that of medium I-II, the eigenmodes 
expansion will be the same in both media allowing us to take advantage of the 
orthogonality relation. Therefore, it can be shown that  
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Thus, inserting (3.18) and (3.19) into (3.5) and (3.6) we get 
 

1
23

−= FT  (3.20) 
 

1
23

−= BFR  (3.21) 
 
These results are in agreement with those reported in [Bot01, Bot03] where a 
plane-wave expansion was used to describe the input field as well as the Bloch 
modes.   
 
The transmission and reflection matrices of the full structure can be easily 
calculated by relating (3.14)-(3.17) and inserting (3.20) and (3.21) which yields  
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ININ BTTRR 2112 +=  (3.23) 
 
It can be seen that the transmission matrices given by (3.13) and (3.22) are the 
same because RT

21=R21 due to reciprocity. Furthermore, the reflection matrices 
given by (3.12) and (3.23) are also identical as it is next demonstrated. First, we 
can put (3.23) into the form   
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1212 +−= −−  (3.24) 
 
After some algebraic manipulations we get 
 

( )( ) ININ TBRRTTTFTRR 21212112
1

12
1

1212 ++= −−  (3.25) 
 
where it can be shown that  
 

IRRTT =+ 21212112  (3.26) 
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by using the self-inverting property of the scattering matrix and relating it with the 
transfer matrix [Ele94]. Thus, it can be shown that (3.25) is equal to (3.12).  
 
The transmission and reflection matrices involve the scattering properties of 
guided, radiation and evanescent modes. Thus, if the modes are normalized, the 
transmitted and reflected power from the fundamental mode of the dielectric 
waveguide into the fundamental guided propagating Bloch mode are given by  
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T
IN T=η  (3.27) 

 
2[0,0]IN

R
IN R=η  (3.28) 

 
where [ ]0,0INT  is the first element of (3.22) while [ ]0,0INR  is the first element of 
(3.23). 
 
3.4 Interface between photonic crystal and dielectric 
waveguides  
 
Transmission and reflection matrices have also been obtained for the reverse 
interface between a semi-infinite photonic crystal waveguide and a dielectric 
waveguide.  On the contrary regarding to the previous derivation, in this case both 
forward and backward propagating Bloch modes inside the photonic crystal 
waveguide need to be considered. Figure 3.4 shows the analyzed interface formed 
by a line defect photonic crystal waveguide butt-coupled to a dielectric waveguide. 
The transmission and reflection matrices have also been calculated by using the 
mode matching technique. Therefore, let us consider that the interface is placed at 
z=0 and a single Bloch mode with index p is incident from medium I. This incident 
mode originates a reflected field in medium I and a transmitted field in medium II. 
We expand the fields in terms of the Bloch modes in medium I and in terms of the 
eigenmodes in medium II. Imposing the continuity of the tangential components of 
the total field at the interface yields  
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Figure 3.4.- Schematic of the analyzed structure for coupling out of photonic crystals. The 
right part shows the definition of R21, R12 and T12 which is the same as in the previous 
derivation.  

 
Where the plus and minus signs represent the forward and backward propagating 
Bloch modes respectively. The unknown transmission and reflection coefficients 
are calculated by taking the right cross product of (3.29) with Hi

II and the left cross 
product of (3.30) with Ei

II, which are the expansion fields of medium II. Here, I is 
an arbitrary index. After integrating over the cross-section and by invoking the 
orthogonality relation in medium II, we get 
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The reflection can be easily obtained by subtracting (3.31) to (3.32) yielding  
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This equation can be simplified by decomposing the Bloch modes in terms of their 
forward, Fk, and backward, Bk, components. It should be noticed that the forward 
and backward components are different for the forward and backward propagating 
Bloch modes. Furthermore, the forward and backward components depend on the 
chosen cut position within the basic period of the photonic crystal waveguide. The 
chosen cut position will determine the index profile of the interface layer in 
medium I, shown at the right part of figure 3.4.  
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Therefore, we get 
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where kE~ and kH~  are the electric and magnetic field at the interface layer. Eq. 
(3.34) can be expressed with the following matrix equation  
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where T12 and R12 are defined as depicted in figure 3.4. It should be noticed that 
these terms are the same as those used in the previous derivation. A similar 
expression can be obtained for the right hand side of (3.33) so that we obtain 
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that results in the reflection matrix  
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The transmission matrix is obtained by adding (3.31) to (3.32) and following a 
similar procedure as that used from (3.34) to (3.37)  
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If the modes are normalized, the transmitted and reflected power from the 
fundamental guided propagating Bloch mode into the fundamental mode of the 
dielectric waveguide are given by  
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where [ ]0,0OUTT  is the first element of (3.38) while [ ]0,0OUTR  is the first element 
of (3.37). 
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Figure 3.5.- Dispersion relation for the dielectric and photonic crystal waveguides for the 
(a) rod and (b) hole structures.  
 
Structure ndefects nmedium R fn (a/λ) a @ λ=1.55µm Polarization 
Rod 3.4 1.45 0.2a 0.3 465 nm TM 
Hole 1 3.4 0.3a 0.235 364.2 nm TE 

Table 3.1.- Description of the main parameters of the two photonic crystal structures 
considered. Ndefects and nmedium are the refractive index of the defects (rods or holes) and the 
surrounding medium respectively, R is the defect radius, fn is the normalized frequency and 
a is the lattice constant to achieve transmission at 1.55µm for the normalized frequency 
considered. 
 
3.5 Butt-coupling in photonic crystals  
 
3.5.1 Description of the analyzed structures  
 
The analytic results were obtained with a frequency-domain model based on a 
vectorial eigenmode expansion technique and a staircase approximation of the 
index profile [Bie01]. This modeling tool, known as CAMFR, is freely available 
from the Internet5. For the photonic crystal waveguide, the Bloch modes were 
calculated from the eigenstates of the scattering matrix associated to the basic 
period. Afterwards, the field profiles and the forward and backward components of 
the Bloch modes were obtained at the chosen cut position within the basic period in 
order to calculate analytic expressions. Analytic results have been compared to 
simulation results. Simulations were performed with CAMFR as well as with the 
finite-difference time-domain (FDTD) method. 
 
Two different photonic crystal structures formed by a dielectric waveguide butt-
coupled to a single line defect photonic crystal waveguide have been analyzed. The 
first, hereafter named rod structure, consists of a 0.5µm-wide dielectric waveguide 
                                                      
5 http://camfr.sourceforge.net/ 
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with a silica core and an air cladding. The considered photonic crystal structure is a 
two-dimensional triangular lattice of dielectric rods of silicon surrounded by a 
homogeneous dielectric medium of silica. The second, hereafter named hole 
structure, consists of a 0.5µm-wide dielectric waveguide with a silicon core and an 
air cladding. The photonic crystal structure in this case is a two-dimensional 
triangular lattice of air holes surrounded by a homogeneous dielectric medium of 
silicon. The main parameters of both photonic crystal structures are summarized in 
table 3.1.  
 
Figure 3.5 shows the dispersion relation of the rod and hole photonic crystal 
waveguides and of the dielectric waveguides considered in each case. The 
dispersion relations have been obtained by plane wave expansion method [Joh01] 
for the photonic crystal waveguides and by CAMFR for the dielectric waveguides. 
For the rod structure, it can be seen that both the dielectric and the photonic crystal 
waveguide are singlemode. The lattice constant has been calculated to get 
transmission at λ=1.55 µm for the central normalized frequency of the guided 
mode.  
 
For the hole structure, it can be seen in figure 3.5 that the dielectric waveguide is 
singlemode while two guided modes, with odd and even symmetries in the 
transversal direction, appear for the photonic crystal waveguide. The lattice 
constant has been calculated to get transmission at λ=1.55 µm for a normalized 
frequency where only the even mode exists. However, as the dielectric waveguide 
mode has even symmetry, only the even mode can be excited in the photonic 
crystal waveguide. 
 
3.5.2 Coupling efficiency dependence on cut position   
 
Coupling losses between conventional dielectric and photonic crystal waveguides 
are caused due to the different guiding mechanism in both waveguides, which 
gives rise to a mode mismatch. Modal properties in dielectric waveguides are 
unaltered along the propagation direction but, in photonic crystals, they change 
within the basic period that defines the photonic crystal. Therefore, the mode 
mismatch between both waveguides will depend on the chosen cut position within 
the basic period.  
 
Figures 3.6(a) and 3.7(a) show the transmission efficiency as a function of the 
chosen cut position within the basic period normalized to the lattice constant (z/a) 
for the rod and hole structure respectively. The frequency of operation is the one 
shown in table 3.1.  
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Figure 3.6.- (a) Transmission and (b) reflection efficiency for the butt-coupling between 
the dielectric waveguide and the photonic crystal waveguide as a function of the chosen cut 
position within the basic period normalized to the lattice constant (z/a) for the rod structure. 
The inset shows the basic period used, the propagation direction is in the z-axis. 
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Figure 3.7.- (a) Transmission and (b) reflection efficiency for the butt-coupling between 
the dielectric waveguide and the photonic crystal waveguide as a function of the chosen cut 
position within the basic period normalized to the lattice constant (z/a) for the hole 
structure.  
 
The inset of figure 3.6(a) shows the basic period considered where the propagation 
direction is along the z-axis. It should be noticed that the cut position is only varied 
along the ΓK direction.  Results are shown for CAMFR, FDTD and the analytic 
expressions derived in section 3.3. It can be seen that analytic and simulation 
results show an excellent agreement especially with CAMFR as the parameters in 
both simulation and analytic calculations are the same. Reflection into the 
dielectric waveguide has also been calculated and is shown in figure 3.6(b) and 
3.7(b) for the rod and hole structure respectively. It can be seen that analytic and 
simulation results are also in agreement. However, FDTD results are somewhat 
different for the rod structure. This is because in this case, the reflection was 
calculated by integrating the power only along the width of the input waveguide.  
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Figure 3.8.- Electric field diagram in the rod structure for (a) z/a=0.3 and (b) z/a =0.0 and 
magnetic field diagram in the hole structure for (c) z/a =0.3 and (d) z/a=0.66. 
 
However, in the rod structure, as the index contrast of the dielectric waveguide is 
lower, the mode will be less confined and it will expand into the cladding. 
Therefore, the power calculation is underestimated but the shape remains unaltered.  
 
From figures 3.6 and 3.7, it can be seen that the transmission response is 
asymmetric in both structures although the absolute value of the total field is 
symmetric within the basic period. This behaviour can be interpreted from the 
transmission expression (see Eq. (3.22)), in which the forward and backward 
components of the Bloch modes are responsible for the asymmetric response as 
they have different values depending on the chosen cut position. It is also 
interesting to notice that the transmission expression is similar to the Airy formula 
[Yeh98] but without any propagation terms as medium I-II has zero length. On the 
other hand, it can be seen that the reflection is proportional to the backward 
components multiplied by the transmission (see Eq. (3.23)). In the hole structure, 
the transmission is very high while the reflection is maintained very low. 
Therefore, the low reflection implies that the backward components should be very 
low in order to counteract the high transmission. On the other hand, a good mode 
profile matching is expected at the optimum cut position due to the coupling 
efficiency improvement. In order to show this effect the field diagrams have been 
calculated at different cut positions.  
 
Figures 3.8(a)-(b) show the electric field diagrams in the rod structure for z/a=0.3 
and z/a=0.0 respectively, which corresponds to the maximum and minimum 
transmission efficiency shown in figure 3.6(a).  
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Figure 3.9.- Transmission efficiency for the butt-coupling between the dielectric 
waveguide and the photonic crystal waveguide as a function of the normalized frequency 
for (a) the rod structure with z/a=0.3 and (b) the hole structure with z/a=0.3. 
 
Figures 3.8I-(d) show the magnetic field diagram in the hole structure for z/a=0.3 
and z/a=0.66 respectively, which again corresponds to the maximum and minimum 
transmission efficiency shown in figure 3.7(a). It can be seen that at the optimum 
cut position a high coupling efficiency is achieved which reflects in a good mode 
profile matching. However, at the non optimum cut position the reflection 
increases and the coupling efficiency decreases, which is reflected in a poor mode 
profile matching. It is also interesting to point out that the higher reflection in the 
rod structure could be attributed to the fact that the waveguide mode is less 
confined, because of the smaller index contrast, which increases the mode profile 
mismatch. However, the reflection is also highly dependent on the modal 
properties of the photonic crystal waveguide, as it can be deduced from the results 
shown in figure 3.6, so that it can not be stated that a more confined waveguide 
mode will reduce the reflection. 
 
3.5.3 Coupling efficiency dependence on frequency 
 
We have seen that the transmission efficiency can be significantly improved at a 
fixed frequency by choosing the optimum interface. Now, we will study the 
dependence of transmission efficiency on frequency which is mainly determined by 
the difference in the dispersion relations between the dielectric and photonic crystal 
waveguides. In figure 3.5(b), it can be seen that for the hole structure the dispersion 
relations of the dielectric and photonic crystal waveguide are very similar. This 
will result in an efficient coupling and high transmission will be achieved over the 
whole bandwidth of the photonic crystal mode. On the other hand, in the rod 
structure the dispersion relations of both waveguides differ more (see figure 3.5(a)) 
and therefore the frequency response will be worse.  
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Figure 3.10.- Transmission efficiency for the butt-coupling between the dielectric 
waveguide and the photonic crystal waveguide as a function of the chosen cut position 
within the basic period normalized by the lattice constant (z/a) for different normalized 
frequencies and for (a) the rod structure and (b) the hole structure. 
 
Figures 3.9(a)-(b) show the transmission spectra for the hole and rod structures 
respectively considering in both cases the optimum interface position (z/a=0.3) 
which corresponds to the maximum transmission. Analytic results are compared to 
CAMFR and FDTD simulations showing a good agreement. However, it can be 
seen that FDTD results are slightly shifted to higher frequencies especially in the 
rod structure. We attribute this shifting to an artifact of FDTD as the results 
obtained by CAMFR are also in agreement with the band diagrams shown in figure 
3.5, which were calculated with the plane wave expansion method. On the other 
hand, the dash-dotted results shown in figure 3.9 have been calculated with the 
scalar Fresnel equation but involving the group indexes of the dielectric and 
photonic crystal waveguide and given by 
 

( )24 wg
g

phc
g

wg
g

phc
gng nnnn +=η  (3.41) 

 
where ng

phc and ng
wg are the group index of the photonic crystal and dielectric 

waveguides respectively. The group index is inversely related to the group velocity 
and the group velocity is determined by the variation of the frequency with respect 
to the wave vector, i.e. the slope of the dispersion relation. Therefore, the group 
indexes can be easily calculated from the dispersion curves.  
 
From the results presented in figure 3.9, it can be seen that the transmission 
spectrum presents a parabolic shape in the rod structure while it is relatively flat in 
the hole structure. In both cases, it is very remarkable to notice that even though 
the optimum cut position has been obtained for a fixed frequency, the transmission 
spectrum shape is similar to the one obtained with Eq. (3.41). 
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Figure 3.11.- Reflection as a function of the chosen cut position within the basic period 
normalized by the lattice constant (z/a) for different normalized frequencies and for (a) the 
rod structure and (b) the hole structure. The reflection is different depending on if the light 
is transmitted into or out of the photonic crystal.  
 
This indicates that the transmission efficiency dependence on frequency mainly 
stems from the group index mismatch. However, the influence of the frequency on 
the cut position has also been analyzed. Figures 3.10(a)-(b) show the transmission 
efficiency as a function of the cut position for the rod and hole structure 
respectively and considering different frequencies. Results have only been 
calculated with the analytic expression showing the advantages of the developed 
formulation as the computation time was significantly reduced. In both structures, 
it can be seen that the transmission response does not change significantly with 
frequency and the optimum cut position is only slightly shifted. It is interesting to 
notice that the maximum transmission efficiency in all cases is similar to that 
predicted with Eq. (3.41). On the other hand, it can be seen that the transmission 
efficiency variation with the chosen cut position in the hole structure increases as 
the frequency is close to the band edge. We will show that this behaviour can be 
partly explained by looking at the forward and backward components of the 
fundamental guided Bloch mode. 
 
3.5.4 Reflection into photonic crystals  
 
Because of the reciprocity theorem, the transmission matrix that characterizes the 
transmission from the dielectric waveguide into the photonic crystal waveguide, 
TIN, is equal to the transpose of the transmission matrix that characterizes the 
transmission from the photonic crystal waveguide into the dielectric waveguide, 
TOUT. However, this is not the case for the reflection matrices, RIN and ROUT, which 
are different. Thus, the transmission efficiency from the fundamental mode of the 
dielectric waveguide into the fundamental guided Bloch mode and vice versa, i.e. 
Eqs. (3.24) and (3.38), are the same while the reflection, i.e. Eqs. (3.25) and (3.37), 
are different.  
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Figure 3.12.- Reflection as a function of the normalized frequency for the input and output 
coupling of the photonic crystal waveguide at the cut positions  (a) z/a=0.7 and (b) z/a=0.3. 
 
Figure 3.11 shows the reflection as a function of the chosen cut position for the rod 
and hole structures considering two different cases: (i) input coupling where the 
light is propagated from the dielectric waveguide into the photonic crystal 
waveguide and (ii) output coupling where the light is propagated from the photonic 
crystal waveguide into the dielectric waveguide. It is important to notice that the 
reflection for the input coupling case is into the dielectric waveguide while the 
reflection for the output coupling case is into the photonic crystal waveguide. In the 
hole structure, the reflection is very low in both cases and the responses have a 
similar shape, as it is shown in figure 3.11(b). However, it can be seen in figure 
3.11(a) that the reflection for the rod structure as a function of the cut position is 
different for both cases except for the range of z/a between 0.2 and 0.4, which 
corresponds to the range where the transmitted power is maximum. However, the 
minimum reflection for the output coupling is not achieved for the maximum 
transmission. The former is obtained at z/a=0.7 while the latter is obtained at 
z/a=0.3. 
 
Hereafter, we will focus on the rod structure. Figure 3.12 shows the reflection 
spectra for the input and output coupling cases at the cut positions that give the 
minimum reflection into the photonic crystal waveguide (z/a=0.7) and the 
maximum transmission efficiency (z/a=0.3). The transmission efficiency at z/a=0.3 
is around 70% while the reflection into the dielectric waveguide (input coupling) is 
around 30% at the normalized frequency of 0.3(a/λ). Therefore, coupling losses are 
mainly due to reflection, while scattering losses are negligible. Scattering losses are 
due to the coupling to radiation modes which can only be excited in the dielectric 
waveguide, as depicted in figure 3.13(a). Therefore, it can be expected that 
radiation modes will also not excited for the output coupling which could explain 
the similarity of the reflection spectra between both input and output coupling 
shown in figure 3.12(b).  
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Figure 3.13.- (a) Transmission, reflection and scattering at the interface between the 
dielectric waveguide and the photonic crystal waveguide when light propagates from the 
former into the latter. (b) Transmission efficiency as a function of the normalized frequency 
for the rod structure considering the cut positions that give the minimum reflection into the 
photonic crystal waveguide (z/a=0.7) and the maximum transmission efficiency (z/a=0.3). 
 
However, a higher mode mismatch occurs at z/a=0.7 which significantly increases 
the coupling to radiation modes, i.e. scattering losses. In this case, the transmission 
is around 30% at the normalized frequency of 0.3(a/λ) while the reflection into the 
dielectric waveguide is around 40% so that scattering losses will be around 30%. 
Therefore, a high coupling to radiation modes can be expected for the output 
coupling, which could explain the very low reflection achieved into the photonic 
crystal waveguide.  
 
The minimization of the reflection that occurs when the light is extracted from the 
photonic crystal waveguide may be useful to avoid Fabry-Perot resonances in the 
transmission spectrum of photonic crystal structures of finite length. However, the 
transmission efficiency is reduced so a trade-off between maximum transmission 
and low reflection will exist. Figure 3.13(b) shows the transmission efficiency as a 
function of the normalized frequency for z/a=0.3 and z/a=0.7 and considering a 
semi-infinite photonic crystal waveguide. The left part of figure 3.14 shows the 
considered photonic crystal structure of finite length where the optimum cut 
positions can be designed for both input and output interfaces. The transmission 
efficiency as a function of the normalized frequency for this photonic crystal 
structure is shown at the right part of figure 3.14 for different cut positions. The 
transmission spectra were calculated by means of FDTD simulations. An incident 
pulsed field was launched at an input dielectric waveguide so that the transmission 
spectrum was obtained by calculating the overlap integral between the launched 
field and the measured field at output dielectric waveguide. 
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Figure 3.14.- Photonic crystal structure of finite length considered and the corresponding 
transmission efficiency as a function of the normalized frequency calculated by means of 
FDTD simulations. Different cut positions in both interfaces of the finite length photonic 
crystal waveguide are analyzed. 
 
When the input and output interfaces are chosen to achieve the maximum 
transmission efficiency (z/ain= z/aout =0.3), notable Fabry-Perot resonances appear 
in the transmission spectrum as the reflection into the photonic crystal waveguide 
is significant. It can be seen that the transmission at the resonance peaks is near 
unity at the frequencies where scattering is negligible. Another possibility is to 
choose the input and output interfaces to minimize the reflection into the photonic 
crystal waveguide (z/ain= z/aout=0.7). In this case, it can be seen that the Fabry-
Perot resonances are eliminated but the overall transmission efficiency is very low.  
 
One possible approach to improve the transmission efficiency without increasing 
Fabry-Perot resonances is to use at the output interface the cut position which gives 
minimum reflection into the photonic crystal waveguide (z/aout=0.7) and use at the 
input interface the cut position which gives maximum transmission (z/ain=0.3). 
Thus, the transmission efficiency is improved without increasing the Fabry-Perot 
peaks as the reflection at the output interface is still negligible. However, it can be 
seen that some resonances appear at the frequency range between 0.275(a/λ) and 
0.3(a/λ), which is in agreement with the increase of reflection that can be seen in 
figure 3.12(a). The agreement between FDTD results and the analytic results for 
the corresponding semi-infinite photonic crystal structure prove the validity of the 
derived expressions. 
 
3.5.5 Differences between rod and hole structures 
 
We have seen that the coupling is much better for the hole structure than for the rod 
structure. As already mentioned, coupling losses between dielectric and photonic 
crystal waveguides are derived from the different guiding mechanism in the two 
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waveguides. In the dielectric waveguide, the guiding mechanism relies only on the 
index-contrast effect. On the other hand, the guiding mechanism in photonic 
crystals is determined by the propagation of Bloch modes. In principle, the 
properties of the guided Bloch mode are due to distributed Bragg reflections but 
they can also be affected by the total internal reflection effect depending on the 
features of the photonic crystal [Joh00a, Adi01]. In the hole structure, the core 
refractive index of the photonic crystal waveguide is higher than in the surrounding 
medium. In this case, the properties of the Bloch mode will be affected by the total 
internal reflection effect so that the modal properties in the dielectric and photonic 
crystal waveguides will be more similar, yielding to a high efficient coupling. This 
explains the similarity of the dispersion relations shown in figure 3.5(b).  
 
On the other hand, the photonic crystal waveguide in the rod structure has a core 
refractive index smaller than the surrounding medium. In this case, the properties 
of the guided Bloch mode are only affected by the photonic band gap (PBG) effect 
so modal properties in the dielectric and photonic crystal waveguides will differ 
more, yielding to a worse coupling. However, we have seen that the transmission 
efficiency in the rod structure is highly dependent on the chosen cut position with 
values that go from lower than 5% to near 70%. On the other hand, the 
transmission efficiency variation with the chosen cut position is very low in the 
hole structure with values near 100% although it increases if frequencies close to 
the band edge are considered. In order to give an explanation of this behavior, we 
have analyzed the forward and backward components of the fundamental guided 
Bloch mode. The following factor for the forward component has been defined  
 

**

*

H,EH,E

H,E

BWBWFWFW

FWFW
FW

+
=γ  (3.42) 

 
where the subscript FW and BW denotes the forward and backward components of 
the total field respectively. A similar expression has been used for the backward 
component. Figure 3.15 shows the factor values as a function of the chosen cut 
position within the basic period normalized to the lattice constant for the rod and 
hole structures. Results are only shown for the frequency of operation shown in 
table 3.1, for the sake of simplicity. A strong interaction between forward and 
backward components can be observed in the rod structure, which gives rise to a 
large difference between the Bloch mode and the waveguide mode. Thereby, the 
mode profiles in the dielectric and photonic crystal waveguide are rather different, 
as it is shown in figure 3.8(a), so that a higher mode mismatch exists which 
increases reflection and scattering.  
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Figure 3.15.- Influence of forward and backward components as a function of the cut 
position within the basic period normalized to the lattice constant (z/a) for the (a) rod and 
(b) hole structures. 
 
The results shown in figure 3.15(a) are only related with to the fundamental Bloch 
mode. However, the increase of scattering means that coupling losses are also due 
to interaction with higher order modes. Therefore, clear correspondence can not be 
established between the results shown in figure 3.6(a) and figure 3.15(a). On the 
other hand, it can be seen that the Bloch mode in the hole structure is mainly 
determined by the forward component. Furthermore, the γFW and γBW values are 
mainly constant along the different cut positions within the basic period, which 
explains the low dependence of the transmission efficiency with the chosen cut 
position shown in figure 3.7(a). We attribute this behaviour to the total internal 
reflection effect that results in a large similarity between the Bloch mode and the 
waveguide mode. This similarity can also be shown in the mode profiles shown in 
figure 3.8(c) and explains the results reported in [Adi01] where it was shown that 
the properties of the photonic crystal waveguide can be similar to those obtained 
from an effective corrugated waveguide.   
 
For different frequencies we obtained similar curves for both rod and hole 
structures. In the later, we observed that, for frequencies close to the band edge, the 
reduction of the transmission efficiency as well as the higher variation with the 
chosen cut position, shown in figure 3.10(b), was associated with an increase of the 
backward components indicating a higher mode mismatch. However, we noticed 
that the reflection was maintained very low indicating that coupling losses mainly 
arose due to scattering. Therefore, the steep dip, shown in figure 3.10(b) and 
accentuated for frequencies close to the band edge, can be attributed to the complex 
interplay between mode mismatch and interaction with higher order modes.  
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3.5.6 Relation to classical approximate formula 
 
We have also studied the usefulness of the classical approximate formula employed 
to study fiber-coupling issues (see e.g. [Mur88]) for interfaces involving photonic 
crystal structures. This formula can also be derived from Eq. (3.1) and (3.2) 
considering that medium I and II are z-invariant. In this case, the reflection is 
neglected and the transmission is obtained by taking the right cross product of (3.1) 
with Hi

II and the left cross product of (3.2) with Ei
II. However, as the reflection has 

been neglected, the transmission coefficients obtained from (3.1) and (3.2) will be 
different 
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The transmission from the incident mode into the desired transmitted mode is 
obtained using the orthogonality relation in (3.43) and (3.44) which yields  
 

IIIIIIIET H,EH,E=  (3.45) 
 

IIIIIIIHT H,EH,E=  (3.46) 
 
The power coupling efficiency is then described by  
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where Re denotes the real part. However, the above derivation is normally followed 
by using the conjugated magnetic field, which gives rise to the same results 
provided we have lossless materials. Thus, (3.47) results in  
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Figure 3.16.- Comparison between the results obtained with the analytic expression and the 
classical approximate formula employed to study fiber-coupling issues. The transmission is 
shown as a function of the chosen cut position normalized to the lattice constant (z/a) for 
the (a) rod and (b) hole structures.  
 
In conventional index-guiding waveguides, the tangential component of the 
magnetic and electric fields are related by the wave impedance allowing us to 
simplify (3.48) into the well-known formula  
 

**

2*

E,EE,E

E,E

IIIIII

III
=η  (3.49) 

 
The general expression (3.48) was successfully used to study radiation losses of a 
structure formed between a dielectric waveguide and a semi-infinite Bragg mirror 
[Pal01]. In that work, the non-propagating fundamental Bloch mode operating in 
the PBG was considered and it was obtained that the reflection of the structure 
could be calculated as η2 but using the forward field of the Bloch mode instead of 
the total field. The prove of this assessment is out of the scope of this work, 
however, the fact of using only the forward field in order to calculate η can be 
understood from Eq. (3.20) that shows that the transmission only involves the 
forward components when the input waveguide has the same index profile than the 
interfacing layer of the photonic crystal waveguide, as occurs in [Pal01]. In our 
case, we have analyzed the usefulness of (3.48) in order to calculate the 
transmission efficiency in the rod and hole structure. As a difference to [Pal01], the 
transmission in this case relies on the fundamental guided propagating Bloch mode. 
In principle, the above derivation is not valid when medium II is a photonic crystal 
because the orthogonality relation is not true if the cross product is taken with the 
forward field of the Bloch mode. This implies that the coupling to higher order 
Bloch modes in addition to the backward components of the fundamental Bloch 
mode should be negligible to ensure the validity of the formula.  
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Figure 3.17.- Analyzed structure to prove the proposed semi-analytic approach. The 
structure is formed by a dielectric waveguide coupled to a semi-infinite photonic crystal 
waveguide by using an especially designed two-defect configuration placed within a 
photonic crystal taper. T12, R21, T21 and R12 are the transmission and reflection matrixes 
calculated in medium I-II while F+ (F-) and B+ (B-) are the forward and backward 
components of the forward (backward) propagating Bloch modes calculated at the interface 
layer between medium I-II and medium II. 

 
Therefore, we obtained more or less consistent results for the hole structure but not 
for the rod structure, as it can been in figure 3.16. This result can also be 
interpreted by looking at the forward and backward components of the fundamental 
guided Bloch mode. As previously shown, the fundamental guided Bloch mode in 
the hole structure is mainly determined by the forward components however a 
stronger interaction between the forward and backward components exists in the 
rod structure. Furthermore, a high transmission is achieved in the former case so 
that the coupling to higher order Bloch modes as well as the reflection can be 
neglected. However, the results obtained with (3.48) also begin to disagree with 
exact analytic results when the reflection increases, as it can be seen in figure 
3.16(b). Therefore, we conclude that only in very specific cases, Eq. (3.48) can be 
used for coupling issues in photonic crystals.  
 

3.6 Semi-analytic treatment of complex structures 
 
In recent years, coupling losses in photonic crystal circuits have been mainly 
studied by means of simulations. Only a few works have been focused in the 
modeling of the interface between photonic crystal circuits and external media such 
as free space of dielectric waveguides [Pal01, Bot03, Ush03, Bis04]. The modeling 
of photonic crystal circuits with efficient and accurate approaches may 
significantly reduce the computation time, which is usually very long in 
conventional numerical methods such as the FDTD method. The previously 
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derived closed-form expressions for the transmission and reflection at an interface 
between a dielectric waveguide and a semi-infinite photonic crystal waveguide can 
also be used for analyzing coupling issues in more complex photonic crystal 
structures by means of a semi-analytic approach. The proposed approach is valid 
for any kind of complex structure as long as the input medium has an invariant 
index profile along the propagation direction and the output medium is semi-
infinitely periodic along the propagation direction or vice versa. The transmission 
and reflection matrices are  
 

( ) 12
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1 TFBRIFT
−−

++
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+ −=  (3.50) 
 

TBTRRIN ++= 2112  (3.51) 
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where F+ and B+ are the forward and backward components of the forward 
propagating Bloch modes while F- and B- are the forward and backward 
components of the backward propagating Bloch modes. These expressions are 
identical to (3.22), (3.23) and (3.37) respectively. The transmission matrix is (3.22) 
instead of (3.38) because we obtained a much better numerical stability. The semi-
analytic character of the proposed approach is because, in this case, the 
transmission and reflection matrices T12, T21, R12 and R21 depend on the structure 
placed between the invariant medium and the semi-infinite periodic medium so it 
must be calculated by means of a numerical tool. Here, we use CAMFR to 
calculate the T12, T21, R12 and R21 matrices as well as the forward and backward 
components of the Bloch modes.  
 
Figure 3.17 shows an example of structure that can be analyzed. T12, T21, R12 and 
R21 are calculated for medium I-II considering that the input interface is a dielectric 
waveguide and the output interface is the layer with an invariant index profile that 
depends on the cut position in the photonic crystal waveguide, as depicted in the 
middle part of figure 3.17. The transmission, T, and reflection, RIN, matrices 
describe the coupling for light propagating from the invariant medium (medium I 
in figure 3.17) into the periodic structure (medium II in figure 3.17) while the 
reflection matrix, ROUT, describes the coupling for light propagating from the 
periodic medium into the invariant medium. In the latter case, the transmission 
matrix can be simply obtained by the transpose of T due to the reciprocity theorem. 
Thus, if the modes are normalized, the transmitted and reflected power of the j-
Bloch mode into the i-mode of the dielectric waveguide and vice versa is given by  
 

2

, jiT T=η  (3.53) 
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Figure 3.18.- Transmitted power as a function of the normalized frequency for the structure 
shown in figure 3.17. Semi-analytic results are compared to FDTD simulations. 
 

2

, jiR R=η  (3.54) 
 
where Ti,j and Ri,j are the i-row and j-column of the corresponding transmission and 
reflection matrices. 
 
The proposed semi-analytic approach has been first proven for the structure shown 
in figure 3.17 considering a 3µm-wide dielectric waveguide of silica surrounded by 
an air cladding and a photonic crystal formed by a two-dimensional triangular 
lattice of dielectric rods of silicon embedded in silica. The dielectric waveguide is 
coupled to a semi-infinite photonic crystal waveguide by using an especially 
designed two-defect configuration placed within a photonic crystal taper to 
improve the coupling efficiency. The structure shown in figure 3.17 will be 
carefully studied in the next chapter.  The transmitted power as a function of the 
normalized frequency is shown in figure 3.18. Semi-analytic results are compared 
with FDTD simulations. In the latter, the fundamental mode of the dielectric 
waveguide was excited by a monochromatic continuous wave with normalized 
power. The transmitted power was then calculated by integrating the power flux 
inside the photonic crystal waveguide. It can be seen that there is a very good 
agreement between semi-analytic results and FDTD simulations.  
 
Figure 3.19 shows the spectrum of the reflected power into the dielectric 
waveguide. Semi-analytic results were calculated by substituting (3.51) into (3.54). 
It is important to notice that the 3µm-wide dielectric waveguide is multimode for 
the frequency range of interest.  
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Figure 3.19.- Reflected power into the dielectric waveguide as a function of the normalized 
frequency for the structure depicted in figure 3.17. Semi-analytic results are shown for each 
of the guided modes in the dielectric waveguide as well as for the total sum of the power, 
which is compared to that calculated by FDTD simulations. 
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Figure 3.20.- Reflected power into the photonic crystal waveguide as a function of the 
normalized frequency for the structure shown in figure 3.17 but considering that the light 
propagates from the photonic crystal to the dielectric waveguide. The transmitted power is 
also shown for the same structure used to couple light into and out of a photonic crystal 
waveguide of finite length.  
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The waveguide supports two even guided modes below the frequency of 0.3(a/λ) 
but three even guided modes above this frequency. In FDTD, the reflected power 
was obtained by integrating the power flux along the dielectric waveguide at a 
certain distance before the position of the light source. Therefore, the power carried 
by each of the guided modes can not be separately calculated and only the total 
power is obtained. However, the proposed semi-analytic approach allows 
calculating the reflection into each one of the guided modes. In figure 3.19, it can 
be seen that the power is not only reflected into the fundamental mode but it is 
spread into the different guided modes that the dielectric waveguide supports. 
Furthermore, it can also be seen that the sum of the power carried by each of the 
guided modes is in good agreement with the reflected power calculated by FDTD. 
 
The reflection into the photonic crystal waveguide when the light propagates from 
the photonic crystal into the dielectric waveguide has also been analyzed by using 
(3.52) into (3.54). Figure 3.20 shows the reflected power as a function of the 
normalized frequency. In this case, FDTD simulations results by using a 
monochromatic continuous wave were not accurate because the fundamental 
guided Bloch mode could not be excited within the photonic crystal waveguide. 
However, semi-analytic results can still be validated by calculating with FDTD the 
transmitted spectrum of a photonic crystal waveguide of finite length coupled to 
input and output dielectric waveguides using the optimized photonic crystal taper. 
Semi-analytic results (solid line) show that there is a frequency range between 
0.285(a/λ) and 0.3(a/λ) where the reflection is almost negligible. Therefore, Fabry-
Perot resonances do not appear in the transmission spectra calculated by FDTD 
(dashed line) at these frequencies.  
 
The proposed approach can also be used to analyze the transmission and reflection 
properties of more complex structures such as a coupled-cavity waveguide (CCW) 
[Yar99] coupled to a conventional single line defect photonic crystal waveguide by 
using an adiabatic taper based on progressively varying the radii of the spacing 
defects between the cavities that form the CCW. The details of the coupling 
technique will be shown in chapter five. In this case, we are interested in 
calculating the reflection into the CCW when the light propagates from the CCW 
into the photonic crystal waveguide through the adiabatic taper.  
 
In principle, both media are periodic so the proposed semi-analytic approach can 
not be used. However, a simple trick can avoid this situation. Figure 3.21(a) shows 
the analyzed structure. The dashed square corresponds to medium I-II in which R21 
have to be numerically calculated. The photonic crystal waveguide has been butt 
coupled to a 0.5µm-wide dielectric waveguide by conveniently choosing the cut 
position to achieve negligible reflection (see figure 3.11(a)) in the whole bandwidth 
of the CCW.  
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Figure 3.21.- (a) Coupled-cavity waveguide (CCW) coupled to a conventional single line 
defect photonic crystal (PhC) waveguide by using an adiabatic taper based on progressively 
varying the radii of the spacing defects between the cavities that form the CCW. The 
photonic crystal waveguide is butt coupled to a 0.5µm-wide dielectric waveguide by 
conveniently choosing the cut position to achieve negligible reflection back to the CCW. 
(b) Reflected power into the CCW as a function of the normalized frequency considering an 
adiabatic taper formed by 9 intermediate rods with a linear variation of their radius. The 
transmitted power is also shown for the same structure used to couple light into and out of a 
CCW of finite length. 
 
This is possible since the bandwidth of the photonic crystal waveguide is much 
broader than that of the CCW. Therefore, the reflection into the CCW will only be 
the one originated due to inefficient coupling between the CCW and the single line 
defect photonic crystal waveguide. Once more, the validity of semi-analytic results 
has been demonstrated by comparing with the transmitted power obtained by 
means of FDTD for a CCW of finite length coupled to the input and output 
photonic crystal waveguide by using the adiabatic taper. The considered adiabatic 
taper is formed by 9 intermediate rods with a linear variation of their radius. In 
figure 3.21(b), it can be seen that Fabry-Perot resonances appear in the 
transmission spectrum, calculated by FDTD, at the frequencies in which the 
reflection, calculated by using the semi-analytic approach, increases. 
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3.7 Conclusion 
 
Coupling losses have been analyzed at an interface formed by a dielectric 
waveguide butt coupled to a photonic crystal waveguide and vice versa. The main 
contribution is the derivation of closed form expressions for the reflection and 
transmission matrices that completely characterize the scattering that occurs at the 
interface. Analytic expressions are based on an eigenmode expansion technique but 
the same derivation can be followed by using other field expansions. The derived 
expressions can be very useful to analyze the influence of different parameters on 
the coupling efficiency as well as for efficient designing novel photonic crystal 
structures.  
 
Analytic expressions, validated by means of CAMFR and FDTD simulations, have 
been used to analyze coupling losses in two different photonic crystal structures. 
We have shown that the transmission efficiency can be significantly improved by 
choosing the optimum cut position within the basic period of the photonic crystal. 
Thereby, the transmission efficiency can be increased from values lower than 5% 
to values near 70% for the rod structure while efficiency near 100% can be 
achieved for the hole structure. On the other hand, it has been obtained that even 
choosing the optimum interface the maximum transmission efficiency is limited by 
the group index mismatch. We have also shown that the reflection into a photonic 
crystal waveguide can be minimized by choosing the appropriate cut interface. 
Furthermore, it has been obtained that the behaviour of the coupling efficiency can 
be partly predicted by analyzing the forward and backward components of the 
guided propagating Bloch mode and it has also been demonstrated that the classical 
approximate formula employed to study fiber-coupling issues can only be used for 
interfaces involving photonic crystal structures in very specific cases.  
 
An efficient approach has also been proposed for a semi-analytic treatment of 
complex photonic crystal structures based on the previously derived closed-form 
expressions. The proposed approach introduces several advantages with respect to 
other conventional numerical methods such as a shorter computation time and the 
possibility to calculate parameters, such as the reflection into photonic crystal 
structures, difficult to obtain with other methods.  
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Chapter 4 

 
Coupling into Line Defect 

Photonic Crystal Waveguides 
 
 
 
 
 

4.1 Coupling techniques in photonic crystals 
 
In chapter three, the improvement of the coupling efficiency between dielectric 
waveguides and single line defect photonic crystal waveguides was achieved by 
choosing the optimum cut interface. However, it was shown that this improvement 
is still rather low in rod structures, where the photonic crystal is formed by a rod 
lattice with a higher refractive index than the surrounding medium, when compared 
to that achieved for hole structures, where the photonic crystal is formed by a 
lattice of air holes etched in a high refractive index medium. Furthermore, the 
coupling efficiency is considerably degraded in both rod and hole structures when 
the width of the dielectric waveguide increases. Therefore, alternative approaches 
to butt-coupling become necessary in order to improve the coupling efficiency 
independently of the width of the dielectric waveguide. It is important to point out 
that an efficient coupling from broad dielectric waveguides would also imply a 
reduction of the conversion ratio in the horizontal direction needed to couple from 
a fiber, thus allowing the design of compact spot size converters.    
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Figure 4.1.- Different kinds of photonic crystal tapers. In the left part, the taper is based on 
progressively varying the defects radii. In the middle part, the taper is based on a 
continuous tapering of the periodic lattice. In the right part, the taper is formed by removing 
some defects from the original photonic crystal waveguide. 
 
A large variety of coupling structures and techniques has been proposed during the 
last years to minimize the coupling losses between photonic crystal waveguides 
and dielectric waveguides. First approaches relied on tapering the dielectric taper 
into the photonic crystal waveguide achieving simulated transmission efficiencies 
over 90% [Xu00, Mek01]. However, this approach is not very useful because the 
refractive index of the material surrounding the defects in the photonic crystal must 
be different from that of the dielectric waveguide, which does not usually occur in 
real structures. An original alternative approach was the so-called J-coupler that 
basically consisted of an offset parabolic mirror dielectric structure used to focus 
the light into the narrower photonic crystal waveguide. This structure was 
fabricated but experimental results failed to demonstrate the high transmission 
efficiencies achieved by means of simulations [Pra02].  
 
Coupling from dielectric waveguides perpendiculars to the photonic crystal 
waveguides have been proposed by using grating coupler structures but the 
obtained simulated transmission efficiencies were smaller than 75% [Pot02]. It is 
also interesting to remark that grating couplers have been demonstrated for 
efficient coupling from tapered fibers parallel to the photonic crystal waveguides 
[Kua02, Bar02] and for out-of-plane coupling between fibers and compact planar 
waveguides [Tai02].  
 
However, among all the proposed solutions, one of the most promising approaches 
are photonic crystal tapers mainly due to its small coupling length and high 
coupling efficiencies achieved over a large frequency range. Different kinds of 
photonic crystal tapers are possible, which are depicted in figure 4.1. In the right 
part of figure 4.1, the taper is based on progressively varying the defects radii to 
ensure an adiabatic mode transformation [Lal02]. Although transmission 
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efficiencies above 90% have been predicted by means of simulations, experimental 
results have only demonstrated efficiencies of 70% [Tal03, Tal04]. The main 
weakness of this approach is that the taper becomes useless when the dielectric 
waveguide is much broader than the photonic crystal waveguide. In the middle part 
of figure 4.1, the taper is based on a continuous tapering of the periodic lattice to 
also achieve an adiabatic mode transformation [Joh02, Bie03]. Transmission 
efficiencies above 90% have been experimentally demonstrated [Pot03]. However, 
the parameters of the photonic crystal taper, such as the angle with respect to the 
taper axis, must be carefully designed to achieve a broad bandwidth. Furthermore, 
the coupling length is still very long, especially when the width of the dielectric 
waveguide increases. In the right part of figure 4.1, the taper is formed by 
removing some defects from the original photonic crystal waveguide [Hap01]. In 
this case, the shortest coupling length is achieved but the transmission efficiency is 
generally worse than the other two approaches. Transmission efficiencies smaller 
than 80% have been demonstrated for this kind of photonic crystal taper [Din03]. 
 
4.2 Defects based photonic crystal tapers 
 
4.2.1 Proposed coupling technique  
 
A coupling technique based on setting a number of localized defects within a 
discrete photonic crystal taper, as the one shown in the right part of figure 4.1, is 
proposed. Coupling losses between conventional dielectric waveguides and 
photonic crystal waveguides are originated due to the mode mismatch between 
both kinds of waveguides. Although a mode transformation is achieved by 
employing the photonic crystal taper, the condition of adiabaticity is not satisfied 
resulting in a mode mismatch that decreases the coupling efficiency and increases 
reflection losses. The introduction of localized defects within the photonic crystal 
taper modifies the modal properties of the guided mode so that mode matching can 
be achieved by determining the optimum number of defects as well as their 
optimum parameters (radii and relative position within the photonic crystal taper) 
thus improving the transmission efficiency.  
 
Multiple localized defects were also employed in photonic crystal waveguides to 
maximize the transmission efficiency in sharp bends and Y-junction [Bos02, 
Bos02c]. But while the effect of introducing defects inside a photonic crystal 
waveguide was modelled by means of the transmission line theory [Bos02c], a 
different approach is necessary for setting localized defects into photonic crystal 
tapers due to the variation of the modal properties along the taper. In order to 
analyze the proposed coupling technique, a photonic crystal structure formed by a 
two-dimensional (2D) triangular array of dielectric rods with a lattice constant of 
a=465nm surrounded by a homogeneous dielectric medium has been considered.  
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Figure 4.2.- (a) Schematic of the analyzed structure. A novel coupling technique based on 
setting a number of localized defects within the photonic crystal taper is proposed to 
achieve efficient coupling between a silica dielectric waveguide (SWG) of width w and a 
photonic crystal (PhC) waveguide. (b) Transmission efficiency as a function of the SWG 
width for the butt-coupling case and considering a photonic crystal taper without and with a 
defect of radius rdef=0.5R located in the centre of the taper.  
 
Rods with a radius of R=0.2a and a refractive index of 3.45, which corresponds to 
silicon at optical wavelengths, are embedded in a medium of an refractive index of 
1.45, which corresponds to silica at optical wavelengths. The photonic crystal 
structure considered is the same than the rod structure of the previous chapter and 
has a photonic band gap (PBG) for TM polarized modes between 1.34µm and 
1.71µm for the considered lattice constant value, which corresponds to the 
normalized frequencies of 0.272(a/λ) and 0.347(a/λ). A single mode guided by a 
truly PBG effect appears by forming a linear defect along the ΓK direction in the 
photonic crystal. On the other hand, a silica waveguide (SWG) is used as the 
external dielectric waveguide. The SWG has a dielectric index of 1.45 and an air 
cladding. 

 
Figure 4.2(a) shows the proposed coupling structure which consists of a SWG 
coupled to the photonic crystal waveguide by using a photonic crystal taper with a 
dielectric defect rod placed within it. Figure 4.2(b) shows the transmission 
efficiency as a function of the SWG width, w, at the normalized frequency of 
0.3(a/λ). This normalized frequency is located close to the mid-gap frequency and 
corresponds to 1.55µm for the lattice value considered. The transmission into the 
photonic crystal waveguide was calculated by using the two dimensional finite-
difference time-domain (FDTD) method. A monochromatic continuous-wave with 
normalized power corresponding to the fundamental mode of the SWG was used as 
light source in the z-direction. Then, the optical power transmitted through the 
photonic crystal waveguide was measured using a power monitor placed inside the 
waveguide, as shown in figure 4.2(a).  
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Figure 4.3.- Transmission efficiency as a function of the defect radius normalized to the 
rod radius of the photonic crystal, rdef/R, and of the relative position in the z-axis within the 
taper normalized to the lattice constant, zdef/a.  
 
Three cases are considered: the butt-coupling case and the photonic crystal taper, 
shown in figure 4.2(a), without and with a defect of radius r=0.5R located in the 
centre of the photonic crystal taper. It can be seen that the transmission for the butt-
coupling case is very low and only a maximum transmission of 22% is achieved 
when the SWG width is similar to the photonic crystal waveguide width. It is 
important to point out that the transmission could be improved by choosing the 
optimum cut position within the basic period of the photonic crystal, as it was 
shown in chapter three. However, it can be obtained that even at the optimum cut 
position the transmission decreases as the SWG broadens due to the mode profile 
mismatch. Therefore, the interface position has been chosen at a distance of a/2 
with respect to the centre of the rods located at the border of the photonic crystal, 
as depicted in figure 4.2(a).  
 
In figure 4.2(b), it can be seen that the transmission sharply increases with respect 
to the butt-coupled case when the photonic crystal taper without defect is used, 
achieving a transmission above 50% for a SWG width ranging from around 1µm to 
2µm. However, the introduction of a defect within the photonic crystal taper 
improves the transmission up to 75% for a SWG width ranging from around 0.8µm 
to 2µm. It should be noticed that the transmission responses obtained in both cases 
using the photonic crystal taper are very similar, which indicates that the defect 
only acts as a mode matching technique improving the transmission efficiency but 
without modifying the shape of the response. The optimum SWG width to achieve 
the maximum transmission (81%) is 1.5µm.  
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Figure 4.4.- Diagram of the Poynting vector for the photonic crystal taper (a) without and 
(b) with the optimized defect at the normalized frequency of 0.3(a/λ). 
 
4.2.2 Optimization of the defect parameters  
 
Once that the SWG width has been fixed (w=1.5µm), the radius, rdef, and position, 
zdef, of the defect placed within the photonic crystal taper can be further optimized 
to achieve the highest coupling efficiency. The optimum radius and z-position was 
initially obtained by means of FDTD on a trial an error basis [San02]. However, 
the semi-analytic method proposed in chapter three permits to obtain the map of all 
the possible solutions for a single defect in a very short computation time. Thus, 
the true optimum position can be determined. Figure 4.3 shows the transmission 
efficiency as a function of the defect radius normalized to the rod radius and of the 
relative position in the z-axis within the taper normalized to the lattice constant. It 
can be seen that the transmission efficiency can significantly vary from values very 
low up to values above 80% depending on the defect parameters. The maximum 
transmission efficiency (84%) is achieved for a defect of radius rdef=0.5R located at 
zdef=0.6a. The optimum parameters coincide with the ones obtained on a trial an 
error basis [San02]. Furthermore, there is another transmission maximum of 77% 
for a defect of radius rdef=1.6R located at zdef=0.6a. This solution could be useful in 
case the fabrication constraints limit the minimum achievable rods size. On the 
other hand, the optimum relative position of the defect along the x-axis has also 
been investigated. Variations in the x-axis indicate that the optimum position is 
xdef=0, which corresponds to the mirror symmetry axis (see figure 4.2(a)), with a 
parabolic-like decreasing of the transmission efficiency. 
 
The introduction of the defect within the photonic crystal taper matches the modes 
of the dielectric and photonic crystal waveguides improving the coupling 
efficiency. The diagram of the Poynting vector has been calculated to achieve a 
better understanding of the defect behaviour.  
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Figure 4.5.- (a) Transmission and (b) reflection efficiency as a function of the normalized 
frequency for the photonic crystal taper without and with defect. In the latter, two cases 
with a different radius of the defect (rdef=0.5R and rdef=1.6R) but located at the same z-
position (zdef=0.6a) have been considered. 
 
Figure 4.4 shows the Poynting vector for the photonic crystal taper without and 
with the optimum defect (rdef=0.5R, zdef=0.6a) at the normalized frequency of 
0.3(a/λ). It can be seen that large backscattering occurs when no defects are 
considered. However, when the defect is placed within the taper, the power flux is 
concentrated around the defect and focused inside the photonic crystal waveguide. 
This behavior can be explained by the fact that the field is mostly concentrated 
around the regions of high refractive index. Therefore, the power flux is 
concentrated around the defect due to the higher refractive index with respect to the 
surrounding medium.  
 
So far, the defect parameters have been optimized to achieve the highest 
transmission for a normalized frequency of 0.3(a/λ). However, the optimum 
calculated parameters have also been used to obtain the frequency response of the 
whole structure shown in figure 4.2(a). The transmission and reflection efficiencies 
as a function of the normalized frequency are shown in figure 4.5(a) and 4.5(b) 
respectively for the photonic crystal taper without and with defect. Furthermore, a 
defect of a radius of rdef=1.6R, corresponding to the second highest maximum of 
transmission, has also been considered in addition to the optimum radius. It can be 
seen that the introduction of the defect for both radii significantly improves the 
transmission efficiency with respect to the photonic crystal without defect. 
Furthermore, a high transmission efficiency and low reflection are obtained for a 
large frequency band corresponding to the band of the guided mode excited in the 
photonic crystal waveguide. The sum of transmission and reflection spectrum 
levels does not exactly equal the unity because the reflected power is only 
measured at the SWG neglecting the reflection in other directions. On the other 
hand, the transmission is lower for rdef=1.6R than for rdef=0.5R, as expected from 
the previously obtained results.  
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Figure 4.6.- Schematic of the analyzed structure. The photonic crystal taper is formed by 
1.5a-spacing between adjacent rows and it is used for coupling light from a 1.5µm-wide 
silica dielectric waveguide (SWG) into the photonic crystal (PhC) waveguide. 
 
4.2.3 Modification of the taper length  
 
Just as occurs in conventional dielectric tapers, the transmission efficiency depends 
on the length of the photonic crystal taper [Hap01]. Therefore, higher transmission 
efficiency could be achieved by using a photonic crystal taper longer than the 
previous one. In order to investigate this fact, the structure shown in figure 4.6 has 
been analyzed. The photonic crystal taper is formed by 1.5a-spacing between 
adjacent rows. The total length of the taper is 3a, which corresponds to a length of 
1.4µm for the considered lattice constant. The transmission efficiency without any 
defect is of only 56% similar to that obtained with the previous shorter photonic 
crystal taper. However, the proposed coupling technique can also be used to 
improve the transmission efficiency.  
 
The semi-analytic method proposed in chapter three have also been used to obtain 
the transmission map of all the possible solutions in terms of the radius and z-
position within the taper for a single defect. Figure 4.7(a) shows the transmission 
efficiency from the SWG into the photonic crystal waveguide as a function of the 
defect radius normalized to the rod radius and of the relative position in the z-axis 
normalized to the lattice constant. The maximum transmission efficiency (85%) is 
achieved for a defect of radius r=0.55R located at z=2.55a. It is interesting to notice 
that the defect parameters are similar to that obtained for the previous a-long 
photonic crystal taper. However, the transmission map is more complex than that 
shown in figure 4.3 and it can be seen that there are several maximums of 
transmission.  
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Figure 4.7.- (a) Transmission efficiency as a function of the defect radius normalized to the 
rod radius of the photonic crystal, rdef/R, and of the relative position in the z-axis within the 
taper normalized to the lattice constant, zdef/a. (b) Transmission efficiency map of an 
additional single defect considering that a defect of radius rdef=0.55R is placed at zdef=2.55a 
within the photonic crystal taper.  
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Figure 4.8.- (a) Transmission and (b) reflection efficiencies as a function of the normalized 
frequency for the a-long and 3a-long photonic crystal tapers shown in figure 4.2(a) and 4.6 
respectively. In the former, an one defect configuration (rdef=0.5R, zdef=0.6a) placed within 
the taper is used to achieve the maximum transmission while in the latter a two-defect 
configuration (rint=0.5R,  zint=2.6a and rext=0.6R,  zext=0.2a) is used.  
 
Therefore, the introduction of an additional defect within the taper has been 
analyzed in order to improve the transmission efficiency. The transmission map has 
been calculated for an additional defect considering that a defect of radius 
rdef=0.55R is placed at zdef=2.55a within the photonic crystal taper. Figure 4.7(b) 
shows the result. The transmission efficiency is improved up to 94% when the  
additional defect of radius rdef=0.5R is placed at zdef=0.3a. 
 
Figure 4.8 shows the transmission and reflection efficiencies as a function of the 
normalized frequency for the 3a-long and a-long photonic crystal tapers 
considering in each case its optimum configuration of defects. It can be seen that a 
broad flat transmission band is also achieved for the 3a-long photonic crystal taper. 
In this case, the transmission efficiency is above 90% for a transmission band from 
0.28(a/λ) to 0.329(a/λ), which corresponds to a wavelength range between 1.41 
and 1.66µm. However, a similar transmission spectrum was obtained for both 
tapers without defects so the transmission is sharply improved when the 
appropriate configuration of defects is placed within each taper. On the other hand, 
it can be seen in figure 4.8(b) that the reflection into the SWG is similar for both 
the 3a-long and a-long photonic crystal tapers.  
 
Figure 4.9 shows the electric field for the 3a-long taper with and without the 
optimized two defects configuration at the normalized frequency of 0.3(a/λ). It can 
be seen that almost perfect coupling to the photonic crystal waveguide is achieved 
when the proposed coupling technique is employed (see figure 4.9(a)). However, 
there is significant reflection when the taper is used without defects, as it can be 
seen in figure 4.9(b).  
 



Coupling into Line Defect Photonic Crystal Waveguides 79
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Figure 4.9.- Electric field intensity for the 3a-long photonic crystal taper (a) with and (b) 
without the optimized two defect configuration at the normalized frequency of 0.3(a/λ) and 
calculated by means of 2D FDTD simulations. It can be seen that almost perfect coupling to 
the photonic crystal waveguide is achieved when the proposed coupling technique is 
employed, which does not occur when the conventional taper without defects is used. 
 
4.2.4 Transmission through photonic crystals of finite length  
 
The transmission through photonic crystals of finite length has been analyzed by 
using the proposed coupling technique. The photonic crystal taper with the 
corresponding optimized configuration of defects is firstly used to couple the light 
from the SWG into the photonic crystal waveguide. Light is then propagated 
through a photonic crystal waveguide of finite length and coupled again into the 
SWG by using the same taper with the optimized configuration of defects. The 
analyzed structure is illustrated in figure 4.10. In this figure, the a-long photonic 
crystal taper is used to couple light into and out of a 16-rows photonic crystal 
waveguide. However, the 3a-long photonic crystal taper has also been considered 
by taking into account a photonic crystal waveguide with the same length. 
 
Figure 4.11(a) shows the transmission efficiency as a function of the normalized 
frequency using the a-long taper with and without the optimized defect while 
figure 4.11(b) shows the transmission spectra of the a-long and 3a-long tapers each 
one with its corresponding optimized configuration of defects. The transmission 
spectra have been calculated by means of the FDTD method as follows. The 
fundamental mode of the SWG is excited by a pulsed wave that propagates along 
the z-direction. The transmission spectrum is then calculated by the overlap 
integral between the launched field and the field measured at the output SWG. 
Therefore, the transmission spectrum of the fundamental mode in the SWG can be 
calculated by only one simulation.  
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Figure 4.10.- Schematic of the analyzed structure. The photonic crystal taper with the 
corresponding optimized configuration of defects is used for efficient coupling from the 
silica dielectric waveguide into and out of a photonic crystal waveguide of finite length.  
 
The resonance peaks that appear in the transmission spectrum of the a-long 
photonic crystal taper without defect (see dotted line in figure 4.11(a)) are due to 
the Fabry-Perot-like cavity originated due to the mode mismatch at the interfaces 
between the SWG and the photonic crystal waveguide. Therefore, the number and 
position of the resonance peaks depend on the photonic crystal length. On the other 
hand, the variation of the oscillation period with the normalized frequency is 
originated due to the dispersive behaviour of the photonic crystal. The period of the 
resonant peaks in a Fabry-Perot cavity is calculated by  

 
gLncf 2=∆  (4.1) 

 
where c is the light velocity in free space, L is the cavity length, and ng is the group 
index. Thus, the increase or decrease of the oscillation period is inversely 
proportional to the group index. The group index of the guided mode in the 
photonic crystal waveguide increases as the normalized frequency is close to the 
band edge. Therefore, the oscillation period decreases at those frequencies.  
 
When the corresponding configuration of defects is placed within the a-long and 
3a-long photonic crystal tapers, the resonances peaks are partly eliminated even 
though lower transmission efficiency is achieved by the a-long taper. The 
resonance peaks that appear near the band edges are due to the increase of the 
reflection into the photonic crystal waveguide, which in turn also implies a 
reduction of the transmission efficiency.  
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Figure 4.11.- Transmission efficiency as a function of the normalized frequency using (a) 
the a-long photonic crystal taper each one with and without the optimized defect and (b) the 
a-long and 3a-long photonic crystal tapers with their corresponding optimized 
configuration of defects. In the former, the optimized configuration of defects consists of a 
single defect (rdef=0.5R, zdef=0.6a) while in the latter it consists of two defects (rint=0.5R,  
zint=2.6a and rext=0.6R,  zext=0.2a).  
 
The reflection into the photonic crystal waveguide for both tapers was also 
analyzed by using the semi-analytic method proposed in the chapter three. High 
reflection around 35% was obtained for the whole transmission band when no 
defects were placed within the photonic crystal taper. Therefore, the resonance 
peaks that appear in the transmission spectrum shown in figure 4.11(a) have a large 
peak-to-valley ratio. On the other hand, the reflection was similar and almost 
negligible in a broad transmission band when the corresponding optimized 
configuration of defects was used for both the a-long and 3a-long photonic crystal 
tapers. Therefore, the transmission spectra shown in figure 4.11(b) are similar and 
almost flat in a broad frequency range. On the other hand, the lower transmission 
efficiency in the a-long photonic crystal taper implies that higher radiation losses 
occur for this taper since both the reflection into the SWG and the reflection into 
the photonic crystal waveguide are similar to those obtained for the 3a-long taper.  
 
4.3 Defects design based on a genetic algorithm 
 
4.3.1 Coupling from broad dielectric waveguides 
 
We have seen that very high transmission efficiency, above 90%, into single line 
defect photonic crystal waveguides can be achieved by using the proposed 
coupling technique. A compact photonic crystal taper of a length of only 1.4µm 
was sufficient to maximize the transmitted light from a 1.5µm-wide dielectric 
waveguide into a photonic crystal waveguide. However, the transmission 
efficiency decreases when the dielectric waveguide becomes broader due to the 
mode profile mismatch.  
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Figure 4.12.- Schematic of the structure used to analyze the coupling from broad dielectric 
waveguides into the narrow line defect photonic crystal waveguide by using the proposed 
coupling technique.  
 
Therefore, a wider photonic crystal taper is required to maximize the transmission 
efficiency between the broad dielectric waveguide and the narrow photonic crystal 
waveguide. To prove the usefulness of the proposed coupling technique for 
efficient coupling from broad dielectric waveguides, the photonic crystal structure 
shown in figure 4.12 have been considered. A 2a-long photonic crystal taper is 
used to couple light from a 3µm-wide SWG. The photonic crystal taper is wider 
than the ones previously analyzed. However, its length is similar to that shown in 
figure 4.6. Therefore, it is expected that the optimum coupling performance will 
also obtained by setting two defects with different radii.  
 
Figure 4.13(a) shows the transmission efficiency at the normalized frequency of 
0.3(a/λ) as a function of the defect radius normalized to the rod radius and of the 
relative position in the z-axis normalized to the lattice constant. It can be seen that 
there is a dominant maximum of 79% for a radius of rdef=1.1R and at a position of 
zdef=0.65a. After fixing a defect with these parameters within the taper, the 
transmission map has been obtained for an additional single defect. The result is 
shown in figure 4.13(b). The transmission is improved up to 87% when the 
additional defect of a radius of rdef=0.35R is placed at zdef=1.7a. Therefore, by 
setting the two defects within the photonic crystal taper at the optimum positions 
and with their optimum radii (rint=0.35R, zint=1.7a, rext=1.1R, zext=0.65a), the 
transmission efficiency at the normalized frequency of 0.3(a/λ) is improved from 
around 40%, when no defects are considered, up to 87%. 
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Figure 4.13.- (a) Transmission efficiency as a function of the defect radius normalized to 
the rod radius of the photonic crystal, rdef/R, and of the relative position in the z-axis within 
the taper normalized to the lattice constant, zdef/a. (b) Transmission efficiency map of an 
additional single defect considering that a defect of radius r=1.1R is placed at z=0.65a 
within the photonic crystal taper. 
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Figure 4.14.- Diagram of the Poynting vector at the normalized frequency of 0.3(a/λ) for 
the photonic crystal taper (a) without and (b) with the two defects configuration. 
 
The diagram of the Poynting vector has been calculated to analyze the two defects 
configuration behaviour. Figure 4.14 shows the diagrams for the photonic crystal 
taper without and with the optimized two defects configuration. It can be seen that 
there is a large backscattering when no defects are placed within the taper. 
However, efficient mode matching is achieved when the two defects configuration 
is considered. It can be seen again that the power flux is concentrated around the 
higher refractive index defects and focused inside the photonic crystal waveguide.  
 
Figure 4.15 shows the transmission and reflection efficiencies as a function of the 
normalized frequency for the photonic crystal taper with and without defects. It can 
be seen that the transmission is significantly improved when the defects are placed 
within the photonic crystal taper. The high transmission efficiency is achieved at 
the expense of a bandwidth reduction, which becomes more sensitive to the 
normalized frequency employed to optimize the parameters of the defects. 
However, the optimization process can be repeated by using other normalized 
frequency. For instance, the optimum two defects configuration considering a 
normalized frequency of 0.32(a/λ) is obtained for zint=1.7a, rint=0.4R and zext=0.8a, 
rext=1.1R. The transmission spectrum is also shown in figure 4.15. It can be seen 
that the transmission efficiency is also above 80%, however the spectrum is shifted 
towards the normalized frequency used in the optimization. 
 
The previous analysis has been made possible because the computation time 
needed to calculate the maps shown in figure 4.13 (as well as those depicted in 
figures 4.3 and 4.7) is rather short by using the semi-analytic method proposed in 
chapter three. Notice that the total number of possible solutions is N= 
(2a/∆z)·(2R/∆r), where ∆z and ∆r are the steps related to the position and radius of 
the defect, respectively. Thus, for steps values of ∆z= 0.1a and ∆r= 0.1R, the total 
number of solutions is 400.  
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Figure 4.15.- (a) Transmission and (b) reflection efficiency as a function of the normalized 
frequency for the structure shown in figure 4.12 using the photonic crystal taper with and 
without the optimized two defects configuration defects. The two defects configuration is 
different depending on the normalized frequency used in the optimization process. 
 
However, if one wants to explore the full set of solutions for the two defects 
configuration, the number N increases to 160,000, which makes unfeasible the 
calculation due to the huge computation time required. Because of this 
computational effort, the map in figure 4.13(b) has been calculated under the 
approach of fixing one of the defects at the position where a single defect 
configuration maximizes the transmission (see figure 4.13(a)). Fortunately, the 
correlation between defects is not very large for this 2a-long photonic crystal taper. 
Thus, a similar configuration of defects was obtained by using a heuristic approach 
[San03]. The heuristic approach was based on firstly deciding the number and 
relative position of the defects that should be placed into the photonic crystal taper 
and then optimizing the radius of each defect by considering both defects placed 
within the photonic crystal taper [San03]. However, the correlation between defects 
becomes an important issue either when the photonic crystal taper is made longer 
or when the number of the defects increases. In other words, the possible 
correlation between the defect parameters could be an important drawback in order 
to determine the true maximum transmission efficiency. Therefore, although high 
transmission efficiency is achieved by following the previous approach, alternative 
efficient approaches that simultaneously optimize the whole configuration of 
defects would be more suitable in order to take into account the correlation among 
the different defects.  
 
4.3.2 Genetic algorithms 

 
Genetic algorithms were formally introduced in the 1970s by John Holland 
[Holl75]. The goal was trying to improve the understanding of the natural 
adaptation process in order to design artificial systems having properties similar to 
natural systems [Gol89].  
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Figure 4.16.- Typical process flow used by genetic algorithms. The algorithm starts from a 
initial population of normally random individuals. In each generation, multiple individuals 
are stochastically selected from the current population and modified (crossover and 
mutation) to form a new population, which becomes the initial population in the next 
iteration of the algorithm. 
 
During generations, natural populations have evolved according to the principles of 
natural selection. Thus, new populations are better adapted to the environment and 
they are best suited for survival than the previous generations. Genetic algorithms 
are adaptive methods aimed to find approximate solutions to difficult to solve 
problems by using the principles of natural evolution. They work with a population 
of individuals, each representing a possible solution to the optimization problem. A 
fitness function is assigned to each individual to evaluate the quality of the 
solution. For instance, in our case the fitness function is the transmitted power from 
the dielectric waveguide into the photonic crystal waveguide. Genetic algorithms 
are one of the best approaches to solve complex problems in which there is a very 
large set of possible solutions. Therefore, they have been used for different 
applications in many science fields such as engineering, physics, medicine or 
robotics.  
 
Genetics algorithms have also been proven to be very effective to tackle complex 
problems in photonic crystals [Jia03, She03, San04, Bor04]. The algorithm starts 
from an initial population of normally random individuals. In each generation, 
multiple individuals are stochastically selected from the current population and 
modified to form a new population, which becomes the initial population in the 
next iteration of the algorithm. Thereby, the population of individuals evolve 
toward the better solution during each successive generation.  
 
Typically, three operators are used to obtain the new population: selection, 
crossover and mutation that are iteratively applied, as shown in figure 4.16. The 
selection operator selects the individuals of the population that have better fitness, 
i.e. they that are better solutions to the given problem.  
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Figure 4.17.- (a) Schematic of the analyzed structure. A photonic crystal taper formed by a 
1.5a-spacing between the successive discrete steps is used for coupling light from a 3µm-
wide dielectric waveguide into the photonic crystal waveguide. (b) Transmission efficiency 
as a function of the normalized frequency using the photonic crystal taper without and with 
the optimized three defects configuration reported in table 4.1. 

 
 Position Radius 

Defect 1 1.77a 0.38R 
Defect 2 2.09a 1.03R 
Defect 3 4.68a 0.64R 

Table 4.1.- Optimum radius and position of the three defects configuration obtained by 
means of the genetic algorithm for the structure shown in figure 4.17(a) considering a 
frequency of 0.3(a/λ). 
 
The crossover operator mixes two or more solutions creating a new solution with 
mixed properties from the previous ones. The mutation operator introduces random 
effects into the new solution to ensure that it differs from the previous ones. 
Therefore, this process results in a new population that is different from the initial 
generation. The solutions are usually represented by a digital string formed by a 
number of bits, where each bit codes one parameter of the problem.  
 
4.3.3 Modification of the taper length 
 
In the same spirit that the work in [San03], a micro genetic algorithm was recently 
used to design the optimum configuration of defects within a photonic crystal taper 
[Jia03]. The proposed defects had an elliptical symmetry and they were placed out 
of the mirror horizontal plane of the taper. However, only the same kind of 
photonic crystal taper as the one proposed in [San03] was investigated and no 
dependence on frequencies was reported.  
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In this work, a genetic algorithm have been used for properly designing the 
optimum configuration of defects considering photonic crystal tapers of different 
lengths and geometries in order to improve the transmission efficiency. One of the 
most popular genetic algorithms used in combination with multiple scattering 
theory has been considered to evaluate the transmission across the photonic crystal 
structures [San04, Hak05a]. The same design approach based on this genetic 
algorithm was successfully employed in different optimization problems [Hak04, 
Hak05] 
 
Initially, the genetic algorithm has been used to optimize the configuration of 
defects for the previous photonic crystal taper shown in figure 4.12. The optimum 
two defects configuration is achieved for zint=1.48a, rint=0.38R and zext=0.6a, 
rext=0.84R. These parameters are somewhat different to those previously reported 
but the transmission efficiency is not improved. The optimization was also carried 
out for a three defects configuration but the transmission efficiency was also not 
substantially improved. Therefore, longer photonic crystals tapers have been 
analyzed with the aim of improving the transmission efficiency.  
 
The structure shown in figure 4.17(a) has been first analyzed. The photonic crystal 
taper has a staircase-like profile, due to the periodicity nature imposed by the 
photonic crystal, with a 1.5a-spacing between the successive discrete steps. The 
taper length is of 5a. The optimum configuration of defects was searched by means 
of the genetic algorithm considering one, two, three and four defects. On the one 
hand, the case of a four defects configuration resulted in a transmission efficiency 
slightly higher than the three defects case but in a much narrower frequency band. 
On the other hand, the one and two defects configurations gave lower efficiencies 
than the three defects configurations. Therefore, the three defects configuration has 
been chosen.  
 
The optimum radius and position of the defects at a normalized frequency of 
0.3(a/λ) are given in table 4.1. The achieved transmission efficiency is of 86% not 
improving the 87% achieved with the previously considered photonic crystal taper 
depicted in figure 4.12. The transmission spectrum is shown in figure 4.17(b) 
considering the taper with and without the optimized three defects configuration. 
The FDTD method was used to calculate the transmission spectrum thus 
corroborating the results obtained by means of the genetic algorithm implemented 
by using the multiple scattering method. In figure 4.17(b), it can be seen that a 
broad bandwidth with transmission efficiencies above 80% is achieved for the 
taper with defects. Although the bandwidth for the taper with defects is narrower 
than that for the taper without defects, the transmission efficiency is significantly 
improved in the former. 
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Figure 4.18.- (a) Schematic of the longer photonic crystal taper formed by a 2.5a-spacing 
between the successive discrete steps. (b) Transmission efficiency as a function of the 
normalized frequency using the photonic crystal taper without and with the optimized three 
defects configuration reported in table 4.2.  
 

 Position Radius 
Defect 1 0.76a 0.45R 
Defect 2 2.92a 0.77R 
Defect 3 7.49a 0.45R 

Table 4.2.- Optimum radius and position of the three defects configuration obtained by 
means of the genetic algorithm for the structure shown in figure 4.18(a) considering a 
frequency of 0.3(a/λ). 

 
The transmission efficiency can be further improved by considering a longer 
photonic crystal taper, as the one shown in figure 4.18(a). In this case, the taper has 
a 2.5a-spacing between the successive discrete steps that form the taper. The taper 
length is of 8a. As before, the best results were obtained for a three defects 
configuration. The optimum radius and position of the defects calculated at the 
normalized frequency of 0.3(a/λ) are given in table 4.2. The transmission efficiency 
achieved in this case is 94% improving the transmission efficiency achieved by the 
previously considered photonic crystal tapers.  
 
The transmission spectrum is shown in figure 4.18(b) for the photonic crystal taper 
with and without the optimized three defects configuration. It can be seen that there 
is also a broad bandwidth with transmission efficiencies above 80% for the taper 
with defects. However, it can also be observed that the transmission efficiency is 
rather worse at the high frequencies of the transmission band.  
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Figure 4.19.- Modulus of the electric field for (a) the structure shown in figure 4.17(a) at a 
normalized frequency of 0.336(a/λ) and for (b) the structure shown in figure 4.18(a) at a 
normalized frequency of 0.329(a/λ) both without considering defects within the photonic 
crystal taper. 
 
Furthermore, the transmission efficiency for the photonic crystal taper without 
defects suddenly drops at the normalized frequency of 0.329(a/λ). A similar effect 
is also observed for the 5a-long photonic crystal taper shown in figure 4.17(a). In 
figure 4.17(b), it can be seen that the transmission efficiency for the taper with 
defects is also very low at the same frequency range while the transmission 
efficiency also drops for the photonic crystal taper without defects although with a 
lower strength and at a slightly higher frequency of 0.336(a/λ).  
 
4.3.4 Modification of the taper geometry 
 
In order to analyze more in depth this effect, the modulus of the electric field has 
been obtained for the 5a-long and 8a-long photonic crystal tapers without defects 
at the normalized frequency where the transmission efficiency drops. Figure 
4.19(a) shows the modulus of the electric field for the 5a-long photonic crystal 
taper at the normalized frequency of 0.336(a/λ) while figure 4.19(b) shows the 
modulus of the electric field for the 8a-long photonic crystal taper at the 
normalized frequency of 0.329(a/λ). The results, which were calculated with 
CAMFR, indicate that a resonant mode is excited near the end of the photonic 
crystal taper, thus reducing the transmitted power into the photonic crystal 
waveguide.  
 
The resonant effect is stronger for the 8a-long photonic crystal taper as expected 
due to the sharper notch with almost zero transmission that can be seen in the 
transmission spectrum. In order to avoid the excitation of the resonant mode, the 
section of the taper closer to the photonic crystal waveguide has been suppressed.  
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Figure 4.20.- (a) Schematic of the photonic crystal taper proposed to avoid the excitation of 
the resonant mode shown in figure 4.19(b). (b) Transmission efficiency as a function of the 
normalized frequency using the photonic crystal tapers shown in (a), named 6a-long 
modified taper, and the 5a-long and 8a-long photonic crystal tapers shown in figures 
4.17(a) and 4.18(b) respectively. In all cases, no defects were placed within the photonic 
crystal taper. 
 

F=0.30(a/λ) f=0.32(a/λ) f=0.335(a/λ)  
Position Radius Position Radius Position Radius 

Defect 1 0.76a 0.45R 1.01a 0.45R 2.54a 0.45R 
Defect 2 2.92a 0.77R 2.92a 0.77R 3.05a 0.71R 
Defect 3 7.49a 0.45R 6.22a 0.77R 7.62a 1.22R 
Table 4.3.- Optimum radius and position of the three defects configuration obtained by 
means of the genetic algorithm for the structure shown in figure 4.18(a) considering 
different optimization frequencies. 
 

F=0.30(a/λ) f=0.32(a/λ) f=0.335(a/λ)  
Position Radius Position Radius Position Radius 

Defect 1 0.57a 0.71R 1.14a 0.64R 0.00a 0.77R 
Defect 2 2.95a 0.64R 2.85a 0.64R 4.86a 0.45R 
Defect 3 5.62a 0.71R 5.52a 1.16R 5.71a 1.03R 
Table 4.4.- Optimum radius and position of the three defects configuration obtained by 
means of the genetic algorithm for the structure shown in figure 4.20(a) considering 
different optimization frequencies. 
 
The resulting photonic crystal taper, named as 6a-long modified taper is depicted in 
figure 4.20(a). The spectrum transmission of this new taper is shown in figure 
4.20(b) and it is compared to those obtained for the 5a-long and 8a-long photonic 
crystal tapers shown in figures 4.17(a) and 4.18(a), respectively, with no defects in 



92 Coupling into Line Defect Photonic Crystal Waveguides
 

 

them. It can be seen that the transmission does not present the drop at the high 
frequency of the band because the resonant mode can not be excited.  
 
The huge reduction of transmission efficiency observed at frequencies around 
0.335(a/λ) for the 5a-long and the 8a-long photonic crystal tapers when defects are 
considered within the photonic crystal taper can also be explained due to a similar 
resonant effect. For the sake of comparison, the optimization of a three defects 
configuration at the frequency of 0.3(a/λ) has also been carried out for the so-called 
6a-long modified photonic crystal taper shown in figure 4.20(a). Results are given 
in table 4.4 and the transmission spectrum is shown in figure 4.21(a) and compared 
to that obtained for the 8a-long photonic crystal taper. The maximum transmission 
efficiency is also above 90%. However, it can be seen that in this case the 
transmission is not degraded at frequencies around 0.335(a/λ).  
 
4.3.5 Coupling dependence on the frequency of optimization 
 
The transmission efficiency can be improved at different frequencies since the 
defect parameters depend on the frequency used in the optimization process. To 
prove the usefulness of the proposed coupling technique, the optimization of the 
three defects configuration has been repeated for the 8a-long photonic crystal taper 
at the frequencies of 0.32(a/λ) and 0.335(a/λ). The parameters are given in table 4.3 
and the corresponding transmission spectra are plotted in figure 4.21 with dashed 
lines. It is interesting to notice that the radius and position of the defect 3, located 
within the section of the taper closer to the photonic crystal waveguide, are the 
ones that differ more noticeable among the different optimization frequencies. This 
result corroborates that this section of the taper has a large influence on the 
coupling efficiency. On the other hand, the optimization of the three defects 
configuration has also been carried out at the same frequencies for the 6a-long 
modified photonic crystal taper. The defects parameters are given in table 4.4 and 
the solid lines in figure 4.21 represent the corresponding transmission spectra. In 
this case, the parameters of all the defects differ more or less for the different 
optimization frequencies. 
 
In figure 4.21(b), it can be seen that the transmission efficiency at frequencies 
around 0.32(a/λ) is above 80% and almost the same for both the 8a-long and the 
6a-long modified photonic crystal tapers. However, the transmission for the 8a-
long photonic crystal taper sharply drops at frequencies above and below 0.32(a/λ). 
This does not occur for the 6a-long modified photonic crystal taper and, in this 
case, a much broader bandwidth is achieved although a drop of the transmission 
efficiency can still be seen near 0.34(a/λ).  
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Figure 4.21.- Transmission efficiency as a function of the normalized frequency using the 
8a-long photonic crystal taper shown in figure 4.18(a) and the 6a-long modified photonic 
crystal taper shown in figure 4.20(a) each one with its corresponding three defects 
configuration optimized at the frequency of (a) 0.3(a/λ), (b) 0.32(a/λ) and (c) 0.335(a/λ). 



94 Coupling into Line Defect Photonic Crystal Waveguides
 

 

(a) (b) (c)(a) (b) (c)

 
Figure 4.22.- Modulus of the electric field for the 8a-long photonic crystal taper at the 
normalized frequencies of (a) 0.303(a/λ) and (b) 0.3355(a/λ) and for the 6a-long modified 
photonic crystal taper at the normalized frequency of (c) 0.339(a/λ). The corresponding 
three defects configuration optimized at the normalized frequency of 0.32(a/λ) are used 
within each taper.  
 
To analyze this behaviour, the modulus of the electric field has been first obtained 
for the 8a-long photonic crystal taper at the frequencies in which the transmission 
is minima. Figure 4.22(a) and 4.22(b) shows the plots at the normalized 
frequencies of 0.303(a/λ) and 0.3355(a/λ) respectively. It can be seen that for both 
frequencies a resonant mode is excited within the photonic crystal taper and 
therefore the transmission efficiency is significantly reduced. The resonant mode is 
located at a different place within the photonic crystal taper depending on the 
frequency. Figure 4.22(c) shows the modulus of the electric field for the 6a-long 
modified photonic crystal taper at the normalized frequency of 0.339(a/λ) in which 
the transmission drop occurs. A resonant mode is also excited which is very similar 
to that excited in the 8a-long photonic crystal taper at a nearby frequency.  
 
On the other hand, it can be seen in figure 4.21I that the transmission efficiency at 
frequencies around 0.33(a/λ) is above 70% for both the 8a-long and the 6a-long 
modified photonic crystal tapers. The transmission efficiency is lower than that 
obtained at the frequencies of 0.3(a/λ) and 0.32(a/λ) because the optimization 
frequency is closer to the band edge where the mode mismatch between the 
dielectric and photonic crystal waveguides is higher. However, higher transmission 
efficiencies at frequencies closer to the band edge are achieved by using the 6a-
long modified photonic crystal taper.  
 
Finally, it is important to point out that no minimum transmission are found in the 
transmission spectra of the shortest photonic crystal tapers considered along this 
chapter (see for instance figure 4.15(a)). This occurs independently if there are or 
not are defects placed within the taper because of no resonant states are excited in 
the different sections that form the taper. 
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4.4 Conclusion 
 
A coupling technique has been proposed for efficient light coupling between 
dielectric waveguides and line defect photonic crystal waveguides. The proposed 
coupling technique is based on setting a number of localized defects within a 
discrete photonic crystal taper. Therefore, mode matching at the interface between 
both kinds of waveguide is achieved reducing reflection losses and improving 
significantly the transmission efficiency over a large frequency band.  
 
The optimum number of defects as well as their radii and position within the 
photonic crystal taper need to be carefully designed depending on the size of the 
photonic crystal taper. For small photonic crystal tapers, useful for coupling from 
narrow dielectric waveguides, the optimum parameters have been chosen by 
making a scan of all the possible solutions using the semi-analytic method 
proposed in chapter three. However, the optimization of the configuration of 
defects by using this approach can not lead to the best solution either when a large 
photonic crystal taper or a high number of defects are required, for instance for 
coupling from broad dielectric waveguides. Therefore, in this case, the 
optimization of the configuration of defects has been carried out by means of a 
genetic algorithm.  
 
On the other hand, the influence of the photonic crystal taper length on the 
coupling efficiency has also been analyzed. We have obtained that resonant modes 
can be excited when the length of the taper is increased thus degrading the coupling 
efficiency. The origin of these resonant modes depends on the geometry of the 
photonic crystal taper. Therefore, it has been shown that the resonant modes can be 
avoided by modifying the design of the photonic crystal taper geometry. 
Furthermore, the transmission efficiency is maximized when the proposed coupling 
technique is used. 
 
In summary, transmission efficiencies above 90% have been demonstrated by 
using the proposed coupling technique for both narrow and broad dielectric 
waveguides coupled to single line defect photonic crystal waveguides. In all the 
different analyzed tapers, the transmission efficiency was significantly improved 
with respect to the case of using the same photonic crystal taper without defects. 
 
Part of the obtained results has been published in the following peer-reviewed 
journals: 
 
• P. Sanchis, J. Martí, A. García, A. Martínez and J. Blasco, “High efficiency 

coupling technique for planar photonic crystal waveguides”, Electron. Lett., 
vol. 38, pp. 961-962, 2002. 
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planar photonic crystal circuits”, Opt. Express, vol. 10, pp. 1391-1397, 2002. 

 
 
And in the following conferences: 
 
• P. Sanchis, J. Martí, A. Martínez J. Blasco and A. Griol, “A novel high 

efficiency coupling technique for planar photonic crystal circuits”, Conferencia 
de dispositivos electrónicos (CDE), pp. IV10.1-IV10.4, Calella, Barcelona, 
2003. 

 
• P. Sanchis, A. Håkansson, J. Sánchez-Dehesa, and J. Marti, “High efficiency 

defect-based photonic-crystal-tapers designed by a genetic algorithm”, 
Photonic and Electromagnetic Crystal Structures (PECS-VI), Crete, Greece, 
2005. 

 
 
 
 
 
 
 



 

97 

 
 
 
 
 
 

 
Chapter 5 

 

Coupling into Coupled 
Cavity Waveguides 

 
 
 
 
 
 
 
 

5.1 Coupled cavity waveguides 
 
Waveguides in photonic crystals are usually created by forming line defects into 
the otherwise periodic structure. In the previous chapters, we have seen that these 
waveguides may be efficiently coupled to conventional index-guiding dielectric 
waveguides. Furthermore, efficient coupling between line defect waveguides of 
arbitrary widths has also been experimentally demonstrated [Tal02]. In a different 
kind of photonic crystal waveguide, known as coupled cavity waveguide (CCW) or 
coupled-resonator optical waveguide (CROW), only some evenly spaced point 
defects or cavities are created along a crystal direction [Ste98, Yar99]. The defect 
cavities are designed such that their eigenfrequency falls within the PBG of the 
surrounding photonic crystal. Hence, the waveguide can be considered as a chain 
of strongly confined defect cavities embedded in the photonic crystal. 
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Figure 5.1.- (a) Schematic of a coupled-cavity waveguide (CCW). The waveguide is 
formed as a chain of strongly confined point defects or cavities created along a crystal 
direction. Light propagation can be explained as photon hopping from a cavity to its next 
neighbour due to the overlapping of the evanescent tails of the tightly confined modes. (b) 
modulus of the electrical field in a CCW created in a 2D photonic crystal and formed by 
single missing defect cavities with a spacing of two lattice constants between next 
neighbouring cavities. 
 
Figure 5.1(a) illustrates the basics of transmission in CCWs. Although the cavity 
modes are tightly confined at the defect cavities, the overlapping between 
neighbouring cavities is enough to provide light propagation as photon hopping 
from a cavity to its next neighbour [Bay00]. The coupling between the strongly 
localized cavity modes originates a frequency splitting of the single cavity mode 
into a number of resonance peaks that depend on the number of coupled cavities. 
Therefore, a guided band appears when the CCW has an infinite length. The central 
frequency of the guided band can be tuned by modifying the cavities shape while 
the bandwidth can be varied by adjusting the spacing between cavities. A longer 
spacing between cavities leads to a narrower bandwidth. The physics behind light 
propagation in CCW is the classical wave analogous to the tight-binding approach 
employed in solid-state physics. Hence, the tight-binding formalism has been used 
to analyze the properties of CCWs and to derive a closed form expression of the 
dispersion relation of the guided mode [Lid98, Bay00a, Ozb02].  
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Waveguiding through CCWs has been experimentally demonstrated at microwave 
and optical frequencies [Bay00, Oli01]. Figure 5.1(b) shows the modulus of the 
electrical field in a CCW created in a 2D photonic crystal and formed by single 
missing defect cavities with a spacing of two lattice constants between next 
neighbouring cavities. One of the main features of the CCW is a very small group 
velocity, mainly near the band edges, which gives rise to the enhancement of 
phenomena such as group delay, nonlinear effects and stimulated emission. 
Therefore, CCW results of great interest for the design of optical functionalities 
such as optical delay lines [Lan01], dispersion compensators [Hos02], pulse 
compression [Moo02], second harmonic generation [Xu00] or Mach-Zehnder 
interferometers [Mar03]. Furthermore, lossless transmission through sharp bends is 
achieved if the cavity mode has a proper symmetry [Yar99]. 
 
However, when the CCW has finite length, as occurs in reality, the resonance 
peaks that appear in the transmission spectrum originate ripples in both group 
velocity and group delay responses that may distort the transmission of ultrashort 
pulses through the structure [Lan01]. The peak-to-valley ratio of these undesired 
resonant peaks is determined by the coupling efficiency at the two ends of the 
CCW. Therefore, proper mode matching may be achieved by designing the CCW 
interfaces in order to avoid the abrupt change in the reflectivity at the input and 
output of the chain of resonant cavities [Kar02]. An efficient coupling will result in 
eliminating the resonant peaks of the transmission spectrum so that flat 
transmission bands will be achieved. 
 
5.2 Adiabatic coupling  
 
Efficient coupling into conventional line defects photonic crystal waveguides have 
been widely investigated in the last years. However only a few works have focused 
on CCWs. Flat transmission bands were obtained by adding a number of additional 
defect cavities, carefully designed, at both ends of the waveguide in 1D [Ye04] and 
2D CCW [Lan01]. It was also proposed that flat transmission bands could be 
achieved by a proper design of the filling ratio, i.e. the ratio of the defect radius to 
the lattice constant [Yan03]. In this work, adiabatic coupling between conventional 
photonic crystal single line defect waveguides (SLWGs) and CCWs is proposed. 
Adiabatic coupling is achieved by progressively varying the radii of the spacing 
defects between cavities. Therefore, the SLWG and CCW guided modes are 
gradually matched and an efficient coupling is achieved [Sum03].  
 
5.2.1. Band diagram analysis 
 
Figure 5.2 depicts the structure under study. An adiabatic taper is used to couple 
light from a SLWG into and out of a CCW of finite length.  
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Figure 5.2.- Adiabatic coupling into CCWs. A taper, formed by gradually varying the 
radius of the spacing defect between cavities, is used to couple light from single-line-defect 
waveguides (SLWGs) into and out of a CCW of finite length. 
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Figure 5.3.- (a) Dispersion diagrams for the SLWG and CCWs with r=0.25R, r=0.5R, 
r=0.75R and r=R.  The parameter r refers to the radius of the spacing rod between cavities 
while R is the rod radius of the photonic crystal. (b) Isolated cavity and the corresponding 
CCW of reduced radius used to obtain the dispersion diagram. 
 
The bulk photonic crystal structure considered here is a two-dimensional triangular 
lattice of dielectric rods of silicon surrounded by a homogeneous dielectric medium 
of silica. The refractive index value is of 3.45 for the former and of 1.45 for the 
latter. A TM gap appears between the normalized frequencies of 0.266(a/λ) and 
0.361(a/λ) for a rod radius R=0.2a, a being the lattice constant. This is the same 
structure used in previous chapters. The SLWG is created by removing a row of 
rods along the ΓK direction while the CCW is formed by single missing rod 
cavities with a spacing of one rod between next neighbouring cavities. Initially, a 
taper formed by three rods of radius r=0.25R, r=0.5R and r=0.75R has been 
considered. Adiabatic transmission in photonic crystals may be achieved if it is 
ensured that the operating mode for every intermediate point in the taper is 
propagating (non evanescent) and guided [Joh02]. Therefore, the taper behavior 
may be predicted by calculating the independent dispersion diagrams at 
intermediate points in the taper. 
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Figure 5.4.- Detailed view of the dispersion diagrams shown in figure 5.3(a). It can be 
observed that the mode splitting at the edge of the Brillouin zone originates frequency 
ranges in which propagation is not allowed. 
 
The intermediate dispersion diagrams for the taper under study are obtained by 
CCWs formed by reducing the radius, r, of the spacing single rod between cavities. 
Figure 5.3(a) shows the dispersion diagrams of the SLWG and the CCWs with 
r=0.25R, r=0.5R, r=0.75R and r=R, calculated by means of the plane wave 
expansion method. Figure 5.3(b) shows the isolated cavity and the corresponding 
CCW of reduced radius as well as the supercell used in the plane wave expansion 
(PWE) simulations to obtain the dispersion diagrams [Joh01]. For the SLWG, a 
single mode appears that is folded back because a supercell of a periodicity of 2a in 
the ΓK direction, the same as that used for the CCW, was considered in the 
calculation. However, for the CCWs a mode splitting at the edge of the Brillouin 
zone, k=0.25(2π/a), occurs, which is enlarged as the radius of the spacing rod 
increases. As described later, mode splitting degrades the transmission at those 
frequencies close to the edge band because the required condition of being a 
propagation mode at every point of the taper is not met. The violation of this 
condition is shown in figure 5.4, in which a detailed view of the dispersion 
diagrams represented in figure 5.3(a) is depicted. On the other hand, it can be seen 
in figure 5.3(a) that the high-frequency waveguide mode is the one giving rise to 
the CCW band while the low-frequency waveguide mode is rapidly pulled down 
toward the dielectric band. To understand this phenomenon, transmission spectra 
and field distributions of the corresponding isolated cavities, which form each of 
the CCWs with different radius, have been calculated by means of two-dimensional 
finite-difference time-domain (FDTD) simulations. A grid size of a/50 was 
employed in the FDTD simulations and perfectly matched layers conditions were 
considered at the boundary regions. 
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Figure 5.5.- Transmission responses of the isolated cavities that form the CCWs with 
different rod radius as a function of the normalized frequency. The considered isolated 
cavity is shown in figure 5.3(b). 
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Figure 5.6.- Electrical field distribution for r=0.25R, r=0.5R and r=0.75R is shown at (a)-
(c) the low-frequency and (d)-(f) the high-frequency resonant modes respectively. 
 
5.2.2. Transmission spectra analysis 
 
Figure 5.5 shows the transmission spectra of the different isolated cavities that 
form the CCWs as a function of the normalized frequency. The isolated cavity is 
created by two adjacent point defects: a missing rod and a rod of radius r smaller 
than the radius of the rest of the rods, as illustrated in figure 5.3(b). In figure 5.5, it 
may be observed that for r=R one resonant mode appears while for r<R two 
resonant modes result due to the two adjacent defects. It should be noticed that 
these two resonant modes are those that give rise to the two waveguides modes 
shown in figure 5.3(a) and the eigenfrequencies of each isolated cavity are in 
agreement with the central frequencies of the waveguide modes.  
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Figure 5.7.- Transmission efficiency as a function of the normalized frequency for the 
structure shown in figure 5.2 for several cases: (a) without taper and with taper with (b) 
L=3, (c) L=9 and (d) L=14. The parameter L refers to the number of intermediate rods, with 
a linear variation of their radius, used in the taper. 
 
The electric field distributions of the two resonant modes for r=0.25R, r=0.5R and 
r=0.75R cases are shown in figure 5.6. In figure 5.6(a)-(c), it can be clearly seen 
that the field distribution of the low-frequency mode is concentrated around the 
small rod of reduced radius, i.e. in the region of high refractive index, while the 
field in the high-frequency resonant mode is concentrated around the missing rod, 
i.e. in the region of low refractive index, as depicted in figure 5.6(d)-(f). This result 
is consistent with the fact that high-frequency modes concentrate their energy in 
low dielectric constant regions while low-frequency modes concentrate their 
energy in high dielectric constant regions [Joa95]. These results also explain why 
the low-frequency waveguide modes (see figure 5.3(a)) are rapidly pulled down 
toward the dielectric band. As the radius of the spacing rod increases, the region of 
high refractive index, where the mode is concentrated, also increases and thus the 
waveguide mode is shifted to lower frequencies.  
 
Figure 5.7 shows the transmission efficiency as a function of the normalized 
frequency for the structure shown in figure 5.2. The vertical scale is in linear units 
to enhance the variations of the transmission spectra shape. To obtain the presented 
results an incident pulsed field was launched at an input dielectric waveguide and 
coupled to the SLWG by employing the coupling technique proposed in chapter 
four. This coupling technique was also used to extract light at the end of the 
structure shown in figure 5.2 and allowed us to calculate the transmission spectrum 
with the overlap integral between the launched and measured field at the input and 
output dielectric waveguides respectively. The transmission spectrum was then 
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obtained with a simple rescaling to remove external coupling losses from the 
results.  
 
Transmission spectra have been calculated for a 7-cavities CCW coupled to an 8-
rows SLWG without taper, shown in figure 5.7(a), and by using three tapers of 
different length formed by L rods with a linear variation of their radius, shown in 
figure 5.7(b)-(d), where r=nR/(L+1), n values ranging from 1 to L. It should be 
noticed that the number of resonant peaks that appears in the transmission spectra 
depends on both the taper and the CCW length. However, only the taper length has 
been varied keeping the CCW length constant to show that, although the number of 
resonance peaks increases for longer tapers, the peak-to-valley ratio is reduced due 
to the improvement of the coupling efficiency. Thereby, flat transmission bands 
with coupling efficiencies above 90% are achieved. However, it can be seen that 
the transmission is degraded at the low frequencies of the band appearing 
significant resonance peaks. The reason of this behavior is twofold. Firstly, the 
group index mismatch is especially large at those frequencies because the modes of 
the CCWs with reduced radius are flattened at the band edge unlike the SLWG 
mode, which is simply folded back as shown in figure 5.4. Therefore, efficient 
transmission can only be achieved by using slowly varying tapers as it can be seen 
in figure 5.7 in which the transmission response is improved at low frequencies as 
the taper length increases. Secondly, the imposed requirement for a proper 
adiabatic coupling of being a propagation mode for every intermediate point in the 
taper is not ensured near the band edge (see figure 5.4). This gives also rise to a 
slight bandwidth reduction at lower frequencies, which is enhanced as the taper 
length increases. For the shorter taper (L=3) this reduction is negligible because the 
tails of the evanescent field, which is not allowed to propagate within the taper at 
those frequencies, achieve to excite the CCW mode.  
 

5.3 Pulse propagation analysis 
 

It has been seen that an inefficient coupling originates a number of undesired 
resonance peaks in the transmission spectrum that coincides with the number of 
cavities that form the CCW. Efficient coupling into CCWs can be a critical point in 
order to achieve an optimum dynamic performance because the propagation of 
ultra short pulses may be seriously distorted due to the oscillations in the 
transmission spectrum. In recent years, pulse propagation has been analyzed by 
means of simulations and experiments in bulk photonic crystals [Imh99, Tan02], 
line defects photonic crystal waveguides [Yam03, Asa04] as well as in CCW 
[Lan01, Moo02a, Kar04]. In almost all the works, pulse propagation has been 
analyzed to study the dispersion features of photonic crystals. However, only the 
work of S. Lan et al. is, to the best of our knowledge, focused on the analysis of 
pulse propagation from the coupling point of view [Lan01].  
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Figure 5.8.- Schematic of the analyzed structures. A coupled cavity waveguide (CCW) of 
finite length is (a) butt coupled and (b) adiabatically coupled to single line defect 
waveguides (SLWGs). 
 
A rigorous analysis of pulse propagation in frequency and time domains is carried 
out in order to analyze the influence of the coupling efficiency on the main 
parameters of the pulse. Results by using the proposed adiabatic coupling 
technique are compared to the case of butt coupling between the SLWGs and the 
CCW of finite length. A comprehensive explanation of the origin of the pulse 
degradation when the CCW is inefficiently coupled is provided. A different 
explanation from that provided by S. Lan et al. is given in order to explain the 
origin of pulse degradation when the CCW is inefficiently coupled. It is shown that 
pulse degradation is simply originated due to the overlapping between the 
transmitted pulse and the reflected pulses produced due to the high reflection at the 
CCW interfaces. Furthermore, the Fabry-Perot formula has been used to study a 
large variety of parameters dramatically reducing the computation time with 
respect to FDTD simulations. 
 
5.3.1 Theoretically model 
 
The photonic crystal structure and parameters are the same that the ones used in the 
previous section. The SLWG is used to couple light into and out a CCW of finite 
length.  Both waveguides are created along the ΓK direction. The CCW consists of 
neighbouring cavities formed by removing individual rods and the spacing between 
cavities is of one rod. Figure 5.8(a) shows the butt coupled CCW while figure 
5.8(b) shows the adiabatically coupled CCW. The well-known Fabry-Perot formula 
has been used for modeling the pulse propagation along the CCW of finite length 
[Hau84].  



106 Coupling into Coupled Cavity Waveguides
 

 

Normalized frequency (a/λ)

R
ef

le
ct

ed
 p

ow
er

Adiabatically coupled CCW
Butt coupled CCW

Normalized frequency (a/λ)

R
ef

le
ct

ed
 p

ow
er

Adiabatically coupled CCW
Butt coupled CCW

 
Figure 5.9.- Reflected power, R, as a function of the normalized frequency for the butt 
coupled and adiabatically coupled CCW. The adiabatic taper is formed by 9 intermediate 
rods with a linear variation of their radius. 
 
The transmission response in amplitude can be written as 
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where fn is the normalized frequency, k is the normalized wave vector, L is the 
cavity length and t and r are the transmission and reflection coefficients. The 
relation between fn and k is determined by the dispersion diagram, which is shown 
in figure 5.4 with thin solid line. The reflection coefficients for the butt coupled 
and the adiabatically coupled CCW, depicted in figure 5.8, were calculated with 
the semi-analytic method described in chapter three. The reflected power, R, as a 
function of the normalized frequency is shown in figure 5.9 for both structures. The 
adiabatic taper considered hereafter is formed by 9 intermediate rods with a linear 
variation of their radius. It can be seen that the reflection is almost negligible for a 
broad frequency range in agreement with the results shown in figure 5.7. 
The reflection is calculated as 
 

Rr =  (5.2) 
 

and the transmission is obtained from (5.2) as 
 

21 rt −=  (5.3) 
 

because radiation modes are not allowed in the photonic crystal and both the CCW 
and the SLWG are single mode. 



Coupling into Coupled Cavity Waveguides 107
 

 

Normalized frequency (a/λ)

Tr
an

sm
is

si
on

Normalized frequency (a/λ)

Tr
an

sm
is

si
on

 
Figure 5.10.- Transmission spectra calculated by the Fabry-Perot formula (dashed line) and 
by the finite-difference time-domain method (solid line) for the butt coupled CCW. 
 
The power transmission spectrum is calculated as   
 

2)()( nFPnFP ftfT =
 

(5.4) 
 
Figures 5.10 and 5.11 show the transmission spectra calculated with (5.4) (dashed 
line) and the transmission spectra calculated by using the FDTD method (solid 
line) for the butt coupled and the adiabatically coupled CCW respectively. The 
CCW has a length of L= 16a in both cases. A very good agreement can be seen 
between the Fabry-Perot model and FDTD simulation for the butt coupled CCW 
shown in figure 5.10. The amplitude of the resonance peaks, principally at the band 
edges, is lower in the FDTD simulation because a higher frequency resolution 
would require a very long simulation time. On the other hand, the number of 
resonances in the adiabatically coupled CCW, shown in figure 5.11, is higher in the 
FDTD spectrum compared to the theoretical results. This is because the total cavity 
length will not only depend on the CCW length but also on the input and output 
tapers length. The taper sections can not be modelled by using the Fabry-Perot 
model since the dispersion relation is also modified along the taper. However, we 
are mainly interested in the range of frequencies in which flat transmission occurs, 
where the Fabry-Perot model and FDTD simulations agree quite well. Even in this 
case, it is important to notice that the taper sections may introduce an additional 
broadening and group delay on the propagated pulse that is not taken into account 
by the Fabry-Perot model. However, the broadening is usually negligible due to the 
short length of the taper while the group delay can be theoretically estimated, as it 
will be shown later.  
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Figure 5.11.- Transmission spectra calculated by the Fabry-Perot formula (dashed line) and 
by the finite-difference time-domain method (solid line) for the adiabatically coupled 
CCW. 
 
The main advantage of using the theoretical model is that the computational time is 
significantly reduced compared to FDTD simulations. Therefore, a large variety of 
parameters can be easily analyzed. The procedure is the following. A Gaussian 
source is used as input pulse. The input pulse is Fourier transformed and multiplied 
by the Fourier transform of (5.1). Thereby, the spectrum response of the output 
pulse is obtained and the time response is calculated by the inverse Fourier 
transform. The main parameters of the input pulse that can be adjusted are the full-
width at half-maximum (FWHM) and the central frequency while the amplitude is 
normalized.  
 
5.3.2 Frequency domain analysis 
 
The influence on group delay, FWHM and peak amplitude of a pulse propagated 
through a CCW of finite length (L=16a) has been investigated. Results were 
obtained by using the Fabry-Perot model. Three input pulses of different FWHM 
have been considered: 250, 500 and 1000 femtoseconds (fs). In this case, a lattice 
constant of 465nm has been considered. First of all, it can be seen in figure 5.12(a) 
that when the input pulse is propagated through the adiabatically coupled CCW, 
the group delay is almost the same for the three widths of the input pulse. The 
thicker solid line shows the theoretical group delay calculated from the dispersion 
relation of the CCW particularized for the CCW length of L=16a. A very good 
agreement with the results obtained by using the Fabry-Perot model is observed. 
The increase of group delay at the band edges is due to the low group velocity of 
the guided mode at those frequencies.  
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Figure 5.12.- Group delay of the output pulse as a function of the normalized central 
frequency of the input pulse for (a) the adiabatically and (b) butt coupled CCW of length 
L=16a. The solid, dashed and dotted lines show the results for FWHMs of the input pulse 
of 250fs, 500fs and 1000fs respectively. The thicker solid line shows the theoretical group 
delay calculated from the dispersion relation of the CCW.  

 
However, it can be seen in figure 5.12(b) that the group delay oscillates with 
frequency when the input pulse is propagated through the butt coupled CCW. The 
origin of this oscillation, which can also be seen as an oscillation of the group 
velocity, is due to the overlapping between the transmitted pulse and the successive 
reflected pulses, which are transmitted out of the CCW after they travel a number 
of times back and forth along the CCW depending on the reflection at the 
interfaces.  
 
Figure 5.13 explains more clearly this effect. The increase or decrease of group 
delay with respect to the ideal case depends on the constructive or destructive 
interference between the transmitted and reflected pulses, which depends on the 
CCW length and the central frequency of the input pulse, but also on the width of 
the input pulse. Therefore, the group delay in the adiabatically coupled CCW, 
shown in figure 5.12(a), begins to oscillate at the low frequencies of the band due 
to the increase of reflection that occurs at these frequencies. The  group delay 
oscillations have also higher amplitude as the FWHM of the input pulse increases 
in both the butt coupled and adiabatically coupled CCW. Figure 5.14(a) shows the 
transmitted and successive reflected pulses in the butt coupled CCW considering 
an input pulse with a FWHM of 1000fs and a central frequency of 0.3101(a/λ). The 
amplitude of the successive reflected pulses is attenuated each time the pulse 
travels back and forth along the CCW due to the reflection losses.  
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Figure 5.13.- Effect of the overlapping between pulses due to the inefficient coupling at the 
CCW interfaces. The transmitted pulse, to, and successive reflected pulses, to+NT,  which 
are transmitted out of the CCW after they travel back and forth along the CCW, interfere 
among them forming the total transmitted pulse. T is the round-trip delay.  
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Figure 5.14.- (a) Transmitted and successive reflected pulses and (b) the output pulse 
evolution in time after each reflected pulse is transmitted out the butt coupled CCW. In this 
example, the input pulse has a FWHM of 1000fs and a central frequency of 0.3101(a/λ) 
while the CCW length is 16a. 
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Figure 5.15.- The same as above figure but considering an input pulse with FWHM=250fs. 
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However, it can be seen that due to the short length of the CCW (L=16a), the 
transmitted and reflected pulses overlap when they are transmitted out of the CCW. 
This overlapping distorts the total output pulse affecting to the group delay as well 
as to the FWHM and pulse attenuation, as it will be shown later. Figure 5.14(b) 
shows the output pulse evolution in time after each reflected pulse is transmitted 
out of the CCW. The distortion of the output pulse is higher as the number of 
successive reflected pulses transmitted out of the CCW increases. 
 
On the other hand, when the input pulse is narrower, the overlapping becomes 
almost negligible. This can be seen in figure 5.15 that shows the transmitted and 
successive reflected pulses considering an input pulse with a FWHM of 250fs and 
a central frequency of 0.3101(a/λ) as well as the output pulse evolution after each 
reflected pulse is transmitted out the CCW. In this case, the group delay and 
FWHM of the main output pulse is not altered independently of the reflection at the 
CCW interfaces. Therefore, the group delay responses considering an input pulse 
with a FWHM of 250fs, shown with solid lines in figure 5.12, are the same for the 
adiabatically and butt coupled CCW. However, a train of successive pulses appears 
at the output of the CCW when high reflection exists at the interfaces, as shown in 
the right part of figure 5.15(b). Furthermore, the amplitude of the output pulse 
depends also on the transmission efficiency at the CCW interfaces. When the 
overlapping between successive pulses is negligible, the pulse amplitude will be 
approximately twice the transmission efficiency between the SLWG and the CCW. 
Therefore, the highest transmission efficiency, or in other words the lowest 
reflection, is desirable even when narrow input pulses are used. 
 
The effect of the overlapping between successive pulses can be theoretically 
estimated by comparing the FWHM and the round trip delay, which is defined as 
2L/vg where L is the CCW length and vg is the group velocity. For the particular 
case of L=16a (7.44µm) and a central frequency of the input pulse of 0.3101(a/λ) 
that corresponds to a vg~0.02fs/µm, the round trip delay is 744fs. When the FWHM 
is lower than the round trip delay, the overlapping will be minimized. Therefore, 
there is a significant overlapping when the FWHM of the input pulse is 1000fs, as 
depicted in figure 5.14(a), but it is insignificant when the FWHM of the input pulse 
is 250fs, as depicted in figure 5.15(a).  
 
The same behavior than that of the group delay response can be observed for the 
FWHM and peak amplitude of the output pulse, as shown in figures 5.16 and 5.17. 
The FWHM is similar to that of the input pulse, as shown figure 5.16(a), when the 
reflection at the CCW interfaces is negligible, but it becomes to oscillate with 
frequency, as shown in figure 5.16(b), when the reflection grows up. 
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Figure 5.16.- Full-width at half-maximum (FWHM) of the output pulse as a function of the 
normalized central frequency of the input pulse for (a) the adiabatically and (b) butt 
coupled CCW. The solid, dashed and dotted lines show the results considering an input 
pulse of 250fs, 500fs and 1000fs respectively. 
 
The increase of the FWHM at the band edges is due to the larger group velocity 
dispersion (GVD). Furthermore, there is also an additional broadening because part 
of the bandwidth of the pulse is filtered by the transmission spectrum. This 
reduction of the bandwidth implies that the output pulse suffers an extra 
broadening that adds to that derived from the effect of GVD. On the other hand, 
when narrower input pulses are considered, the FWHM of the output pulse at 
frequencies located in the middle of the band is slightly higher than that of the 
input pulse because the bandwidth of the pulse covers a higher frequency range 
thus increasing the effect of GVD.  
 
The attenuation of the output pulse is very low when the adiabatically coupled 
CCW is used, as it can be seen in figure 5.17(a), except at the low frequencies of 
the band, which is again expected due to the higher reflection at these frequencies. 
Furthermore, there is a slight bandwidth reduction at low frequencies compared to 
the butt coupled CCW response, shown in figure 5.17(b), which can also be seen in 
the results shown in figures 5.12(a) and 5.16(a). The origin of this bandwidth 
reduction was discussed in section 5.2.2. On the other hand, although the group 
delay and FWHM responses in both the butt coupled and the adiabatically coupled 
CCW are the same when narrower input pulses are considered due to the lower 
overlapping between the transmitted and reflected pulses, the attenuation of the 
output pulse is much higher in the butt coupled CCW than in the adiabatically 
coupled CCW due to the lower transmission efficiency. 
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Figure 5.17.- Peak amplitude of the output pulse as a function of the normalized central 
frequency of the input pulse for (a) the adiabatically and (b) butt coupled CCW. The solid, 
dashed and dotted lines show the results considering an input pulse of 250fs, 500fs and 
1000fs respectively. 
 
5.3.3 Time domain analysis 
 
Comparing the results shown in figures 5.12(b), 5.16(b) and 5.17(b) to the 
transmission spectrum of the butt coupled CCW, shown in figure 5.10, it can be 
observed that the maximums and minimums in the transmission spectrum 
correspond to maximums and minimums of group delay, FWHM and peak 
amplitude of the output pulse. This behavior is due to the fact that when the central 
frequency of the input pulse coincides with a maximum of the transmission 
spectrum, the transmitted pulse interferes constructively with the reflected pulses 
so the width of the output pulse is increased as well as the group delay. 
Furthermore, the pulse attenuation decreases because the transmission efficiency is 
higher. The opposite performance occurs when the central frequency of the input 
pulse coincides with a minimum of the transmission spectrum. In order to analyze 
in depth this behavior, time domain pulse propagation has been analyzed at two 
different normalized central frequencies of the input pulse, 0.3089(a/λ) and 
0.3101(a/λ), which correspond to a minimum and a maximum of the transmission 
spectrum, respectively, for the butt coupled CCW. The input pulse spectra 
corresponding to FWHMs of 250fs, 500fs and 1000fs are shown in figure 5.18(a) 
for the central frequency of 0.3089(a/λ) and in figure 5.18(b) for the central 
frequency of 0.3101(a/λ). The transmission spectrum of the adiabatically coupled 
CCW is also shown in figure 5.18. The group delay, FWHM and amplitude of the 
output pulse have been obtained by means of FDTD simulations as well as with the 
Fabry-Perot model.  
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Figure 5.18.- Transmission spectra of the input pulse for a normalized central frequency of 
(a) 0.3089(a/λ) and (b) 0.3101(a/λ). The FWHM of the input pulse is 250fs (broader 
spectrum), 500fs and 1000fs (narrower spectrum). The solid and dashed lines show the 
transmission spectra of the butt coupled and adiabatically coupled CCW. 
 
 

Fabry-Perot model FDTD simulations FWHM 
FWHM Delay Amplitude FWHM Delay Amplitude 

250 264.281 650.117 0.3096 258.923 672.758 0.2905 
500 456.464 617.405 0.3021 449.696 635.064 0.2712 

1000 897.418 513.253 0.2147 876.925 512.112 0.1827 

Table 5.1.- Full-width at half-maximum (FWHM) (fs), group delay (fs) and peak amplitude 
of the output pulse as a function of the FWHM of the input pulse considering the butt 
coupled CCW. Results of FDTD simulations and the Fabry-Perot model are compared. 
Regarding the group delay, the excess delay (~330fs) introduced by the input and output 
SLWGs have been added to the group delay obtained from the Fabry-Perot model to better 
compare to FDTD simulations. The central frequency of the input pulse is 0.3089(a/λ) and 
the CCW length is L=16a. 
 
Tables 5.1 and 5.2 show the results for the butt coupled CCW for the two different 
central frequencies considered while tables 5.3 and 5.4 show the results for the 
adiabatically coupled CCW.  First of all, it can be seen that FDTD simulations and 
theoretical results agree quite well. Regarding the group delay, the excess delay 
introduced by the input and output SLWGs have been added to the group delay 
obtained from the Fabry-Perot model to better compare to FDTD simulations. This 
additional delay can be theoretically estimated from the dispersion relation of the 
SLWG. 
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Fabry-Perot model FDTD simulations FWHM 

FWHM Delay Amplitude FWHM Delay Amplitude 
250 281.295 669.549 0.2528 291.447 697.809 0.2557 
500 621.622 699.535 0.3128 654.569 745.185 0.3514 

1000 1266.51 873.341 0.5028 1214.06 897.606 0.5670 

Table 5.2.- Full-width at half-maximum (FWHM) (fs), group delay (fs) and peak amplitude 
of the output pulse as a function of the FWHM of the input pulse considering the butt 
coupled CCW. Results of FDTD simulations and the Fabry-Perot model are compared. 
Regarding the group delay, the excess delay (~328fs) introduced by the input and output 
SLWGs have been added to the group delay obtained from the Fabry-Perot model to better 
compare to FDTD simulations. The central frequency of the input pulse is 0.3101(a/λ) and 
the CCW length is L=16a. 
 

Fabry-Perot model FDTD simulations FWHM FWHM Delay Amplitude FWHM Delay Amplitude 
250 263.858 784.347 0.9193 263.200 814.886 0.9344 
500 499.704 774.101 0.9698 502.195 799.799 0.9856 

1000 995.46 767.521 0.9609 1000.830 797.309 0.9905 

Table 5.3.- Full-width at half-maximum (FWHM) (fs), group delay (fs) and peak amplitude 
of the output pulse as a function of the FWHM of the input pulse considering the 
adiabatically coupled CCW. Results of FDTD simulations and the Fabry-Perot model are 
compared. Regarding the group delay, the excess delay (~460fs)  introduced by the input 
and output SLWGs and tapers have been added to the group delay obtained from the Fabry-
Perot model to better compare to FDTD simulations. The central frequency of the input 
pulse is 0.3089(a/λ) and the CCW length is L=16a.  
 

Fabry-Perot model FDTD simulations FWHM FWHM Delay Amplitude FWHM Delay Amplitude 
250 276.877 806.466 0.8843 278.005 835.848 0.8299 
500 503.981 797.912 0.9816 503.464 827.071 0.9716 

1000 1002.79 795.374 0.9937 1002.79 817.329 0.9807 

Table 5.4.- Full-width at half-maximum (FWHM) (fs), group delay (fs) and peak amplitude 
of the output pulse as a function of the FWHM of the input pulse considering the 
adiabatically coupled CCW. Results of FDTD simulations and the Fabry-Perot model are 
compared. Regarding the group delay, the excess delay (~455fs) introduced by the input 
and output SLWGs and tapers have been added to the group delay obtained from the Fabry-
Perot model to better compare to FDTD simulations. The central frequency of the input 
pulse is 0.3101(a/λ) and the CCW length is L=16a.  
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Furthermore, the input and output tapers also introduce an additional delay in the 
adiabatically coupled CCW, which has also been added in tables 5.3 and 5.4 to the 
group delay obtained from the Fabry-Perot model. This delay can be estimated for 
a particular normalized frequency with  
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where 4a is twice the length of the intermediate sections that form the taper being a 
the lattice constant, vi

g(fn) is the group velocity at the corresponding normalized 
frequency calculated from the intermediate dispersion diagrams of the taper and LT 
is the taper length. For instance, the additional delay for the butt coupled CCW due 
to the input and output SLWGs, whose total length is 51a, at the normalized 
frequency of 0.3089(a/λ) will be around 330fs while the additional delay for the 
adiabatically coupled CCW will be around 460fs being 360fs due to the input and 
output tapers, calculated with (5.5) and whose total length is 36a, and being 100fs 
due to the input and output SLWGs, whose total length is 15a. On the other hand, 
the results shown in tables 5.1 and 5.2 corroborate that the group delay, FWHM 
and amplitude of the output pulse decrease with respect to the ideal performance 
when the central frequency of the input pulse coincides with a minimum of the 
transmission spectrum while they increase when the central frequency of the input 
pulse coincides with a maximum of the transmission spectrum. Furthermore, this 
effect becomes more noticeable as the input pulse is wider. 
 
The input pulse (FWHM=1000fs) as well as the output pulses propagated through 
the butt coupled CCW when the central frequency of the input pulse is 0.3101(a/λ) 
and 0.3089(a/λ) are shown in figures 5.19(a)-(c) respectively. It should be noticed 
that only the pulse envelope is shown and therefore the time response of the input 
pulse for both central frequencies will be the same. From the results shown in 
figure 5.19, it can be seen that an excellent agreement between FDTD results, 
shown with solid line, and theoretical results, shown with dashed line, is achieved. 
On the other hand, it can be observed that at both frequencies the rising time of the 
output pulse is the same than that of the input pulse. However, the falling time 
increases at 0.3101(a/λ), as it can be seen in figure 5.19(b), due to the constructive 
interference between the transmitted and reflected pulses while it decreases at 
0.3089(a/λ), as it can be seen in figure 5.19(c), due to the destructive interference 
between the transmitted and reflected pulses. Therefore, the FWHM as well as the 
group delay increases in the former while decreases in the latter. Furthermore, the 
attenuation of the output pulse is much lower in the former than in the latter.  
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Figure 5.19.- Pulse propagation through the butt coupled CCW for an input pulse, shown 
in (a), with FWHM=1000fs and central frequencies (b) 0.3101(a/λ) and (c) 0.3089(a/λ). 
The solid line shows FDTD simulations while the dashed line shows the results obtained 
with the Fabry-Perot model.  
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Figure 5.20.- Pulse propagation through the butt coupled CCW for an input pulse, shown 
in (a), with FWHM=500fs and central frequencies (b) 0.3101(a/λ) and (c) 0.3089(a/λ). The 
solid line shows FDTD simulations while the dashed line shows the results obtained with 
the Fabry-Perot model.  
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Figure 5.21.- Pulse propagation through the butt coupled CCW for an input pulse, shown 
in (a), with FWHM=250fs and central frequencies (b) 0.3101(a/λ) and (c) 0.3089(a/λ). The 
solid line shows FDTD simulations while the dashed line shows the results obtained with 
the Fabry-Perot model.  
 
It is important to point out that the increase or decrease of FWHM and group delay 
is an artificial artifact due to the overlapping between the transmitted and reflected 
pulse and not due to a variation of the dispersion relation associated to the finite 
length of the CCW.  
 
The same behavior takes place when the input pulse has a FWHM of 500fs, as 
shown in figure 5.20. However, in this case the reflected pulses, which travel 
several times back and forth along the CCW and therefore suffer a higher delay, do 
not entirely overlap with the transmitted pulse due to the lower width of the input 
pulse. Therefore, the variation of the FWHM and group delay of the output pulse 
regarding the ideal performance is diminished. The successive reflected pulses that 
suffer a higher delay are seen when the central frequency of the input pulse is 
0.3089(a/λ), shown in figure 5.20I, because the destructive interference of the 
reflected pulses that overlap shortens the falling time of the output pulse.  
 
This performance can be clearly observed in figure 5.21, which shows the 
propagated pulses when the input pulse has only a FWHM of 250fs. In this case, 
the reflected pulses practically do not overlap with the transmitted pulse and 
therefore they can be seen independently of the central frequencies of the input 
pulse. Therefore, the FWHM, group delay and pulse attenuation of the output pulse 
is similar in figures 5.21(b) and 5.21(c). The slight differences in the FWHM and 
group delay are those determined due to the different behaviour of the dispersion 
relation at both frequencies. 
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Figure 5.22.- Full-width at half-maximum (FWHM) of the output pulse as a function of the 
normalized CCW length for an input pulse of FWHMs of 250fs, 500fs and 1000fs and a 
central frequency of 0.3101(a/λ). The solid line shows the results for the butt coupled CCW 
while the dashed line shows the results for the adiabatically coupled CCW. 
 
5.3.4 Variation of the CCW length 
 
Figure 5.22 shows the FWHM as a function of the normalized CCW length for the 
butt coupled (solid line) and the adiabatically coupled CCW (dotted line) 
considering that the central frequency of the input pulse is 0.3101(a/λ). Three input 
pulses of different FWHM have been considered: 250fs, 500fs and 1000fs. It can 
be seen that the FWHM of the output pulse does not oscillate when the adiabatic 
taper is used independently of the FWHM of the input pulse. However, the FWHM 
oscillates when the reflection into the CCW increases, i.e. for the butt coupled 
CCW. Furthermore, the oscillations have higher amplitude and occur in a larger 
range of CCW lengths when the FWHM of the input pulse increases due to the fact 
that the overlapping between the transmitted and reflected pulses will be larger. 
The highest amplitude of the oscillations arises when the round trip delay of the 
CCW is similar to the FWHM of the input pulse. On the other hand, the maximum 
or minimum of the oscillations depends on if the central frequency of the input 
pulse coincides or not with a maximum or minimum of the transmission spectrum. 
Note that the resonances in the transmission spectrum are located at different 
frequencies and their number decreases or increases as the CCW length is shorter 
or longer respectively. It is also interesting to notice that if the CCW is very short, 
the transmitted and reflected pulses will almost entirely overlap and therefore the 
FWHM of the output pulse will not be affected although the amplitude of the 
output pulse will still be attenuated with respect to the adiabatically coupled CCW.  
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Figure 5.23.- Group delay of the output pulse as a function of the normalized CCW length 
for the butt coupled and adiabatically coupled CCW. The input pulse has a FWHM of 
1000fs and a central frequency of 0.3089(a/λ) (solid line) and 0.3101(a/λ) (dashed line). 
 
From the results shown in figure 5.22, it can also be seen that the FWHM of the 
output pulse increases with the CCW length due to the GVD. The effect of the 
GVD is higher, i.e. the slope of FWHM as a function of CCW length increases, as 
the input pulse is narrower due to the broader spectral width.  
 
Figure 5.23 shows the group delay as a function of the normalized CCW length for 
the butt coupled and the adiabatically coupled CCW considering that the input 
pulse has a FWHM of 1000fs and the central frequency is 0.3101(a/λ) (dashed 
line) and 0.3089(a/λ) (solid line). The group delay of the adiabatically coupled 
CCW is increased by ∆τtaper, which can be estimated with Eq. (5.5), due to the 
excess of delay introduced by the input and output tapers. In figure 5.23, we have 
taken an arbitrary ∆τtaper in order to better interpret the results. It can be seen that 
the group delay in both the butt coupled and adiabatically coupled CCW increases 
linearly with the CCW length. However, it oscillates at shorter lengths for the 
former due to the overlapping between the transmitted and reflected pulses. In this 
case, the group delay is maximum at 0.3101(a/λ) and minimum at 0.3089(a/λ) only 
when the CCW length of 16a. Obviously, this behavior does not occur for other 
CCW lengths because the frequency response, i.e. the number and position of 
resonances, is modified.  
 
On the other hand, it should be noticed that although the group delay response of 
both the butt coupled and the adiabatically CCW is the same for long CCWs, apart 
from the ∆τtaper factor, the time response of the propagated pulse will not be the 
same, as discussed in the previous sections.  
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Figure 5.24.- (a) Input pulse of a FWHM of 1000fs and a central frequency of 0.3101(a/λ) 
propagated through the (b) butt coupled and (c) adiabatically coupled CCW of a length of 
50a. 
 
Figure 5.24 shows the propagated pulse as a function of time considering a CCW 
length of 50a for the butt coupled CCW (see figure 5.24(b)) and the adiabatically 
coupled CCW (see figure 5.24(c)). The input pulse (FWHM=1000fs) is shown in 
figure 5.24(a) and in this case ∆τtaper=0. It can be seen that while the shape and 
group delay of the main transmitted pulse is the same in both cases, there are 
several additional pulses of lower amplitude in the butt coupled CCW 
corresponding to the successive reflected pulses. Furthermore, the output pulse is 
significantly attenuated for the butt coupled CCW while it is not attenuated for the 
adiabatically coupled CCW. 
 
Figure 5.25 shows the peak amplitude of the output pulse as a function of the 
normalized CCW length for the butt coupled CCW. The input pulse has a FWHM 
of 250fs (solid line), 500fs (dashed line) and 1000fs (dotted line) and a central 
frequency of 0.3089(a/λ). It can be seen that the peak amplitude also oscillates 
with the normalized CCW length due to the overlapping between the transmitted 
and reflected pulses. As occurred in figure 5.22, the oscillations have higher 
amplitude and arise in a larger range of CCW lengths when the FWHM of the input 
pulse increases. Furthermore, the maximum or minimum peak amplitude for each 
particular CCW length depends on the coincidence or not of the central frequency 
of the input pulse with a maximum or minimum of the transmission spectrum. 
Therefore, the maximums and minimums appear at the same value of the CCW 
length independently of the FWHM of the input pulse.  
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Figure 5.25.- Peak amplitude of the output pulse as a function of the normalized CCW 
length for the butt coupled CCW. The FWHM of the input pulse is 250fs (solid line), 500fs 
(dashed line) and 1000fs (dotted line) and the central frequency is 0.3089(a/λ).  
 
When the CCW is long enough so that there is not overlapping between the 
transmitted and reflected pulses, the attenuation is higher for narrower input pulses 
because the bandwidth of the pulse becomes broader thus increasing the 
attenuation due to the parabolic shape of the transmission spectrum. 
 
5.4 Conclusion 
 
The interesting features of CCWs, such as a very small group velocity, make this 
kind of photonic crystal waveguide a key component for the development of 
compact photonic integrated devices such as optical delay lines or dispersion 
compensators.  However, we have seen that an efficient coupling becomes 
mandatory in order to ensure their optimum dynamic performance. The proposed 
adiabatic coupling technique between SLWGs and CCWs based on progressively 
varying the radii of the spacing defects between cavities has been shown to be a 
promising approach. Flat transmission spectra with transmission efficiencies above 
90% may be achieved with relatively short tapers, although longer tapers are 
necessary to achieve good transmission at the low frequencies of the band. 
 
Furthermore, the causes of distortion of ultra short pulses that are propagated 
through inefficiently coupled CCW have been analyzed and discussed. It has been 
shown that pulse degradation is simply originated due to the overlapping between 
the transmitted pulse and the successive reflected pulses originated due to the high 
reflection at the CCW interfaces. This overlapping yields to undesired oscillations 
in the group delay, FWHM and peak amplitude frequency responses of the output 
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pulse, which can seriously limit the dynamic performance for a particular 
application. On the other hand, a theoretical model based on the Fabry-Perot 
formula has also been proposed and used to analyze a large variety of parameters. 
We want to point out that such a model could be extended for easily testing the 
performance of other devices based on CCW. 
 
Part of the obtained results has been published in the following peer-reviewed 
journals: 
 
• P. Sanchis, J. Garcia, A. Martínez, F. Cuesta, A. Griol, J. Martí, “Analysis of 

adiabatic coupling between photonic crystal single-line-defect and coupled-
resonator optical waveguides”, Optics Letters, vol. 28, pp. 1903-1905, 2003. 

 
• P. Sanchis, J. García, A. Martinez, J. Martí, “Pulse Propagation in 

Adiabatically Coupled Photonic Crystal Coupled Cavity Waveguides”, Journal 
of Applied Physics, vol. 97, pp. 013101, 2005. 
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Chapter 6 
 

Fabrication and 
Measurements 

 
 
 
 
 
 
 

6.1 Fabrication and characterization of photonic crystals  
 
Photonic crystals have been mainly fabricated in the form of planar structures, 
known as planar photonic crystals or photonic crystal slabs, due to the easier 
fabrication at optical wavelengths and most suitable integration into photonic 
integrated circuits [Kra96]. However, their submicron size increases the difficulty 
of both the fabrication and characterization processes. For the characterization, 
very precise alignments tolerances are required, which demands the use of 
translation stages with submicron control. On the other hand, resolutions with 
accuracies of the order of nanometres are required for their fabrication.  
 
Currently, most photonic integrated circuits are fabricated by optical lithography, 
where a mask with the pattern of the structure is projected onto a photosensitive 
film and then the pattern on the film is developed and transferred into the structure.  
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The resolution of the fabrication depends on the illumination wavelength used in 
the lithography process. Higher resolutions are achieved with shorter wavelengths. 
However, the resolution achieved by using current optical or near-UV wavelengths 
does not meet the accuracies required for photonic crystal circuits. Therefore, 
shorter illumination wavelengths are needed.  
 
Deep UV lithography uses illumination wavelengths shorter than 250 nm, which 
provide the required resolution accuracies but at expenses of much higher costs that 
limit its use for research purposes. Nowadays, deep UV lithography is widely used 
for the mass manufacturing of complementary metal-oxide-semiconductor 
(CMOS) circuits at the microelectronic industry. However, the adaptation of 
CMOS techniques to the fabrication of photonic crystal circuits is far from being 
straightforward [Bog04].  
 
The schematic of the process flow followed from the initial design of the photonic 
crystal structures until their characterization is depicted in figure 6.1. The design of 
the structures is carried out by means of theoretical studies and simulations. 
Several modelling tools, as those described in chapter 2, may be used for the 
design. Once the design stage is finished, the mask layout is defined before 
fabrication. The mask contains the pattern of the different designed structures that 
are transferred into a photoresist during the lithography process. The length of 
photonic crystal structures is usually very short. However, narrow dielectrics 
waveguides are coupled to the photonic crystal thus increasing the sample length. 
These waveguides are tapered up to broad waveguides more suitable for efficient 
coupling into and out of the samples. The whole structure is defined in the mask 
layout. 
 
The fabrication process basically consists of a lithography process followed by an 
etching process. The lithography transfers the mask layout onto the photoresist, 
which was previously coated on top of the wafer. The photoresist is then developed 
and transferred into the structure by the etching process. Finally, the photoresist is 
removed from the structure. After fabrication, a post processing is carried out to 
obtain the sample of interest from the whole wafer. The samples are then ready to 
be measured. 
 
One alternative to deep UV lithography is electron beam (e-beam) lithography. In 
this case, the pattern of the structure is written in a sequential way onto the 
photoresist by using a focused narrow electron beam in a vacuum system [Mar99]. 
Higher resolution and lower costs than deep UV lithography are achieved. 
However, the slower speed of the process makes this technique not suitable for 
mass manufacturing. Therefore, e-beam lithography has been mainly focussed to 
research purposes.  
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Figure 6.1.- Schematic of the photonic crystal fabrication process flow. The structures are 
first designed by means of theoretical studies and simulations. The mask layout, needed for 
the lithography process, is then designed and fabricated. The samples are basically 
fabricated following lithography and etching processes. A post processing is carried out to 
obtain the sample of interest from the wafer. Finally, samples are characterized.  
 
6.2 Rod or hole structure? 
 
Planar photonic crystals based on a hole structure, hereafter named hole structures, 
are usually formed by a lattice of air holes etched into a high refractive index 
material. On the other hand, planar photonic crystals based on a rod structure, 
hereafter named rod structures, are formed by a lattice of high index rods 
surrounded by a material with lower refractive index. In both kinds of structures, 
illustrated in figure 6.2, light is confined in the vertical direction due to the total 
internal reflection effect.  
 
The main difference between hole and rod structures is the field polarization. TE 
polarization is normally used in hole structures while TM polarization is used in 
rod structures. The different polarization has several implications. Firstly, the 
optimum thickness of the slab core depends strongly on the polarization. Therefore, 
it is much larger in the rod structure (~1µm) than in the hole structure (~250nm) 
[Joh99, Mar03a]. This means that larger aspect ratios are required in the rod 
structure making the fabrication process more difficult. However, the mode 
mismatch in the vertical dimension to external optical fibers is lower so coupling 
losses will be reduced.  
 
On the other hand, it has been predicted that TM modes are more sensitive to 
sidewall roughness [Bog04]. This means that rod structures would suffer from 
higher propagation losses. However, the sidewall roughness depends on the 
optimization of the fabrication process. In fact, low propagation losses (below 
5dB/mm) comparable to those obtained in hole structures have been recently 
reported in a rod structure similar to that used in this work [Tok04]. 



128 Fabrication and Measurements
 

 

Air holes
High index
material High index rods

Low index
materialAir holes

High index
material High index rods

Low index
material

 
Figure 6.2.- Planar photonic crystal based on a hole structure (left part) and on a rod 
structure (right part). In the former, a lattice of air holes is usually etched into a high 
refractive index material. In the latter, the lattice is formed by high index rods surrounded 
of a material with lower refractive index. 
 
Another important difference between hole and rod structures is the index contrast 
between the waveguide and the surrounding lattice in the horizontal dimension. In 
the so-called reduced-index waveguides, where the average refractive index of the 
waveguide is lower than the refractive index in the cladding, the total internal 
reflection effect is not present and therefore it is easily to achieve single mode 
transmission. Furthermore, better mode coupling, i.e. lower transmission losses, is 
expected at discontinuities because the number of undesired spurious modes that 
may be excited is also reduced [Chu00].  
 
In hole structures, reduced-index waveguides are only achieved by increasing the 
amount of air in the waveguide, for instance by using holes of a larger size than the 
holes of the photonic crystal. However, the confinement in the vertical direction is 
then very weak pushing the guided modes above the light line. Furthermore, the 
influence of sidewall roughness is stronger increasing out-of-plane losses. On the 
other hand, waveguides in the rod structure are inherently of reduced index. The 
most obvious case are waveguides formed by completely removing a row of rods. 
However, in this case the guided modes are usually above the light line because 
low index contrast is given in the vertical dimension. Therefore, alternative 
waveguide designs, such as using rods of a smaller size, are required to achieve 
high vertical index contrast thus giving rise to guided modes below the light line. 
To summarize, it can be stated that single mode transmission with lossless Bloch 
modes may be easily achieved in rod structures. 
 
At the moment, planar photonic crystals have been almost uniquely fabricated 
based on a hole structure due to the easier fabrication process. There has only been 
a few works that have recently reported the fabrication of a planar photonic crystal 
formed by a lattice of rods [Tok04, Ass04, Che05, Chu05]. Therefore, the lack of 
experimental results for the rod structure makes difficult to judge which structure is 
preferred and only time will answer to this question.  
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The fabrication of planar photonic crystals based on a rod structure is planned at 
the Nanophotonics Technology Centre, where this work has been carried out. 
Therefore, although both hole and rod structures were initially analyzed (chapter 
3), the proposed coupling techniques for efficient coupling into photonic crystal 
line defect waveguides (chapter 4) and coupled-cavity waveguides (chapter 5) were 
analyzed and designed considering a rod structure. However, the proposed 
coupling techniques are also useful for hole structures, as it will be shown in this 
chapter.  The fabrication processes of both rod and hole structures are still under 
development at the Nanophotonics Technology Centre. However, the fabrication of 
the hole structure was possible thank to a collaboration with the photonics research 
group at the INTEC department of the University of Ghent and within the 
framework of the IST-PICCO project6. Thus, experimental results have been 
obtained for the hole structure.  
 
On the other hand, the complete analysis of previous chapters was carried out by 
using two-dimensional (2D) modelling tools. However, three-dimensional (3D) 
simulations are required for a rigorous design of planar photonic crystals. We did 
not have the facilities to perform 3D simulations until recently because of the high 
complexity and huge resources requirements of 3D modelling tools. Therefore, 3D 
simulations have only been obtained in this last chapter for comparing with 
experimental results as well as for analyzing the discrepancies with 2D simulation 
results. A cluster of four machines with parallel computing capabilities has been 
used to achieve 3D finite-difference time-domain (FDTD) simulations. A single 
simulation usually takes from 24 to 48 hours depending on the size of the 
computational domain. 
 
6.3 Measurement set-up 
 
To characterize the fabricated structures, light has to be coupled into and out of the 
fabricated sample. The end-fire technique shown in figure 6.3(a) has been used. 
Figure 6.3(b) shows a photo of the measurement set-up. Light is focussed from a 
polarization maintaining lensed fiber into the sample at a cleaved facet. Similarly, 
the transmitted light is coupled out of the sample at a cleaved facet and collected 
by using an objective with a high numerical aperture. Instead of coupling the light 
directly into and out of the photonic crystal structure, a 3µm-wide ridge waveguide 
is used at both ends of the sample to improve the coupling efficiency. A linear 
taper narrows the 3µm-wide ridge waveguide down to a 500nm-wide photonic 
wire, more suitable for coupling into and out of the photonic crystal structure. On 
the other hand, the total length of the samples is around 5mm, which simplifies the 
cleaving process.  

                                                      
6 IST-PICCO Project web site: http://www.intec.ugent.be/picco 



130 Fabrication and Measurements
 

 

Lensed 
fiber

Ridge waveguide

Objective

Linear taper

Photonic wire
Photonic crystal 

waveguide(a)

Lensed 
fiber

Ridge waveguide

Objective

Linear taper

Photonic wire
Photonic crystal 

waveguide

Lensed 
fiber

Ridge waveguide

Objective

Linear taper

Photonic wire
Photonic crystal 

waveguide(a)  
 

Lensed fiber Objective

Sample

(b)

Lensed fiber Objective

Sample

(b)  
Figure 6.3.- (a) Detailed view of the sample and (b) photo of the measurement set-up. The 
sample is formed by a 3µm-wide ridge waveguide that is narrowed down by using a linear 
taper to a 500nm-wide photonic wire, more suitable for coupling into and out of the 
photonic crystal.  Light is coupled into the sample by using a lensed fiber and it is collected 
at the end of the sample by using an objective.  
 
Figure 6.4 shows the schematic of the measurement set-up. Light from a tunable 
laser is used as input source. In our measurements, we use the TSL-210F laser from 
SANTEC. The laser has four internal cavity lasers thus covering a very broad 
wavelength range from 1260 to 1630nm. Firstly, the sample has to be aligned with 
the lensed fiber and the objective. An infrared (IR) camera is needed to control the 
alignment, as depicted in figure 6.4(a). The observation of the interference pattern 
indicates if the light is being transmitted through the substrate or the air instead of 
being transmitted through the core. 
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Figure 6.4.- Schematic of the measurement set-up. (a) Firstly, the sample has to be aligned 
with the lensed fiber and the objective. Translation stages with submicron resolution and an 
infrared (IR) camera are used to achieve proper alignment. (b) The transmitted power is 
then measured as a function of the wavelength by using a power detector.  
 
When a spot appears in the screen, as shown in figure 6.4(a), the sample is 
correctly aligned. The alignment is achieved by using translation stages with 
submicron resolution. For the lensed fiber and objective, the translation stages can 
be moved along the three spatial axes (x,y,z) as well as in angular positions of the 
yz-plane (θ) and the xz-plane (φ), taking into account that light propagates in the z-
direction. On the other hand, the sample is fixed to another translation stage with a 
vacuum holder and, in this case, it can be moved only along the xy-plane 
perpendicular to the direction of light propagation.  
 
Once the sample is properly aligned, an aperture is used to get rid of the remaining 
scattered light. After the aperture, the transmitted light is detected using a power 
detector and finally measured by using a power meter. A polarizer is placed 
between the objective and the aperture in order to select the polarization state. 
Therefore, the polarization maintaining lensed fiber has to be conveniently rotated 
to align its polarization to the desired polarization. Furthermore, a polarization 
controller is needed to ensure that light has the proper polarization state at the input 
of the lensed fiber. Finally, the transmitted power is measured as a function of the 
wavelength by remote control via GPIB using a personal computer.  
 



132 Fabrication and Measurements
 

 

Design.gdsDesign.gds

 
Figure 6.5.- Illustration of the procedure followed to design the mask layout of the 
fabricated planar photonic crystal on Silicon-on-insulator technology.  
 
6.4 Hole structure: Silicon-on-insulator  
 
6.4.1 Fabrication process 
 
Silicon-on-insulator (SOI) consists of a thin silicon layer on top of an oxide 
cladding layer deposited on a bare silicon substrate. In this work, 200mm (8 
inches) SOI wafers were used with a top silicon layer of a thickness of 220nm and 
an underlying silica layer of a thickness of 1µm. The photonic crystal is formed by 
a lattice of air holes etched on the silicon layer. As depicted in figure 6.1, the mask 
layout has to be designed before fabrication. The mask design was created with a 
script-based tool as illustrated in figure 6.5.  
 
The photonic crystal structure is coupled to narrow dielectric waveguides which 
are tapered up to broad waveguides more suitable for efficient coupling into and 
out of the sample. The air holes were defined by hexagons with restrictions 
imposed by the fabrication process on the minimum diameter as well as on the 
spacing between holes. A large number of photonic crystal structures are usually 
defined on a single die. Therefore, similar structures are grouped together and 
labelled with text to help to identify them during measurements.  
 
Deep UV lithography at the standard wavelength of 248nm is used for the 
fabrication process. This technique offers both the resolution and speed required 
for the mass manufacturing of photonic crystals. The fabrication process flow is 
illustrated in figure 6.6 [Bog02, Bog03, Bog04].  
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Figure 6.6.- Description of the fabrication process of the planar photonic crystal based on a 
hole structure on Silicon-on-insulator (SOI). SOI consists of a thin silicon layer on top of an 
oxide cladding layer deposited on a bare silicon substrate. Courtesy of Wim Bogaerts 
[Bog04]. 
 
First, the photoresist is coated on top of the SOI wafer, and then pre-baked. On top 
of the resist, an antireflective coating is spun to eliminate reflections at the 
interface between the air and the photoresist. These reflections increase standing 
waves in the photoresist and therefore inhomogeneous illumination. The following 
step is to process the wafer by a stepper, which illuminates the photoresist with the 
pattern on the mask. After lithography, the resist goes through a post-exposure 
bake, and is then developed. The developed photoresist is used directly as a mask 
for etching. Only the top silicon layer is etched in order to reduce propagation 
losses due to sidewall roughness [Bog04]. Resist hardening is used prior to etching 
to compensate the litho-etch bias. 
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Figure 6.7.- Post processing to obtain the samples from the wafer. The amorphous nature 
of the silica as well as the large thickness (725µm) of the silicon substrate makes very 
difficult to achieve smooth facets by directly cleaving onto the wafer. Therefore, the thick 
substrate has to be thinned before making the cleaving. Courtesy of Wim Bogaerts [Bog04]. 
 
As a 200mm wafer can contain many structures, the die with the pattern is repeated 
across the wafer. Furthermore, not all structures have the same dose-to-target. 
Therefore, they are fabricated with a variety of exposure doses. As the dose can be 
changed from die to die on a wafer, a linear scan of the dose is done in the 
horizontal direction so that repetitions of the same structures with different hole 
radius are achieved. In the vertical direction, all dies in a column are identical. 
Therefore, a large variety of structures is achieved on a single wafer, while still 
keeping multiple dies with the same structure parameters. 
 
6.4.2 Post processing 
 
Once the photonic crystal structures have been fabricated, a post processing is 
needed to obtain the samples to be measured from the wafer. As previously 
described, an end-fire measurement set-up has been used so that the light is 
coupled into and out of the ridge waveguides at cleaved facets. Smooth facets at 
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both extremes of the sample are needed to reduce coupling losses. However, the 
amorphous nature of the silica as well as the large thickness (725µm) of the silicon 
substrate makes very difficult to achieve smooth facets by directly cleaving onto 
the wafer. Therefore, the thick substrate has to be thinned before making the 
cleaving. 
 
The procedure is illustrated in figure 6.7. Firstly, the wafer is divided into big dies 
of approximately 4 × 4cm2. To thin the substrate, each die has to be glued upside 
down on a glass plate. Therefore, a resist is previously coated and baked on top of 
the dies to protect them. Bee wax is used to glue the die on the glass plate. The 
glass plate is then fixed with a vacuum holder and turned on top of the thinning 
machine. Several hours are usually needed to thin the substrate from 725µm down 
to 250µm. The time depends on the area of the die, the kind of alumina powder 
used for the thinning and the rotating speed of the steel plate. Once the thinning is 
finished, the dies are taken off from the glass plate by heating the wax. TCE 
(C2HCl3) is used to get rid of the remaining wax. Then, the resist is removed by 
using acetone and the die is cleaned by using isopropanol (IPA) and distilled water. 
Finally, the die is cleaved to obtain the different samples that contain each die. 
 
6.4.3 Coupling into photonic crystal waveguides 
 
The coupling technique proposed in chapter four has also been used to achieve 
efficient coupling into photonic crystals circuits formed by an air holes lattice 
etched into a high-index dielectric background. The structure considered is shown 
in figure 6.8. An input dielectric waveguide is coupled to a line defect photonic 
crystal waveguide by using a photonic crystal taper. The bulk photonic crystal is a 
two-dimensional triangular array of air holes in a dielectric background of silicon. 
We use the effective index approximation (neff=2.8) for the vertical direction 
[Qiu02a] and a hole radius of R=0.3a. A lattice constant of a=435nm has been used 
for transmission at the wavelength band around 1.55µm. The effective index was 
calculated for a thickness of the silicon layer of 220nm in agreement with that of 
the fabricated structure. This approach allows us to initially design the fabricated 
structures by means of two-dimensional (2D) finite-difference time-domain 
(FDTD) simulations.  
 
A line defect photonic crystal waveguide of a reduced width of 0.6W, W being the 
width of the single-line missing-hole defect waveguide, has been chosen in order to 
obtain singlemode transmission [Not01]. The width of the dielectric waveguide is 
3µm with a surrounding medium of air. In order to design the optimum parameters 
of the defect, the transmission efficiency as a function of the position along the 
waveguide axis of a defect placed with radius r=R within the photonic crystal taper 
has been first calculated. Figure 6.9(a) shows the obtained results. 
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Figure 6.8.- Schematic of a the analyzed structure. An input dielectric waveguide is 
coupled to a line defect photonic crystal (PhC) waveguide by using a photonic crystal taper. 
The coupling efficiency is significantly improved by placing a single defect within the 
taper. 
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Figure 6.9.- (a) Transmission efficiency as a function of the position in the z-axis 
normalized to the lattice constant for a defect of radius R placed within the taper. (b) 
Transmission efficiency as a function of the radius of the defect normalized to the hole 
radius of the photonic crystal and located at z=0.39a.  
 
It can be seen that several peaks of high transmission efficiency appear in the 
transmission response at different positions. The peak of maximum transmission 
(84%) is achieved at z=4.6a. However, this position is too close to the photonic 
crystal waveguide not meeting the fabrication constraint of minimum separation 
between holes. Therefore, the nearest peak, located at z=3.9a and of a lower 
transmission efficiency of 72%, has been chosen.  
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Figure 6.10.- Modulus of the electric field at 1.55 µm for the photonic crystal taper (a) with 
and (b) without the optimized defect located at z=3.9a. 
 
The next step is to optimize the defect radius at the previously calculated optimum 
position. Figure 6.9(b) shows the transmission efficiency as a function of the radius 
of the defect normalized to the hole radius of the photonic crystal and located at 
z=3.9a and also at z=4.6a It can be seen that the optimum defect radius coincides in 
both cases to the one used in the defect position scan, i.e. r=R. The introduction of 
the defect significantly improves the transmission efficiency up to 72% regarding 
the photonic crystal taper without defect, in which the transmission efficiency is 
only 44%, and the butt-coupled case, in which the transmission efficiency is 36%.  
 
In principle, the optimum width of the dielectric waveguide to achieve the 
maximum transmission by means of butt-coupling is 1.5µm, however even in this 
case the transmission efficiency is still of 60%. An efficient coupling from a wider 
dielectric waveguide implies a reduction of the conversion ratio in the horizontal 
direction needed to couple from a fiber, which typically has a thickness between 8 
and 10 µm, allowing the design of compact spot size converters. Although, 
alternative approaches will be required to resolve the mode mismatch between the 
fiber and the photonic crystal circuit in the vertical direction. 
 
As discussed in chapter four, the introduction of the defect within the photonic 
crystal taper modifies the modal properties of the modes so that mode matching is 
achieved. This can be seen in figure 6.10 that shows the modulus of the electric 
field for the photonic crystal taper without defect and with the optimized defect 
located at z=3.9a. The diagrams were obtained with CAMFR. In figure 6.10(b), it 
can be seen that resonant modes are excited within the photonic crystal taper, 
which increase coupling losses. Resonant modes are eliminated by the introduction 
of the defect (see figure 6.10(a)) thus improving the coupling efficiency. 
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Figure 6.11.- Transmission efficiency as a function of the wavelength for a photonic crystal 
(PhC) waveguide of finite length considering the butt-coupled and photonic crystal taper 
structures without and with defect. 
 
The optimum parameters of the defect have been designed to achieve the highest 
transmission at 1.55µm. Figure 6.11 shows the transmission efficiency as a 
function of the wavelength for the butt-coupled and the photonic crystal taper 
structures without and with the optimized defect. Both cases of the defect located at 
z=3.9a and z=4.6a have been considered for the sake of comparison. It can be seen 
that the transmission spectrum for the photonic crystal taper with defect, either 
located at z=3.9a or z=4.6a, significantly improves the transmission achieved for 
the taper without defect and butt-coupled structure. For the photonic crystal taper 
with defect, the transmission is only improved by 10% at wavelengths around 
1.55µm when the defect with radius R is placed at the more optimum position of 
z=4.6a instead of at the position of z=3.9a.  
 
The butt-coupled and photonic crystal taper without and with the optimized defect 
structures have been fabricated. Figure 6.12 shows SEM images of the photonic 
crystal taper with defect and butt-coupled structures. A 3µm-wide ridge dielectric 
waveguide is used to couple light into and out of the line defect photonic crystal 
waveguide. The photonic crystal waveguide has a length of 23a for the butt-
coupled structure and of 13a for the photonic crystal taper structures. Thus, the 
total length of the photonic crystal is the same in the three analyzed structures. The 
radius is approximately the same (R=0.3a) to that used in the previous 2D analysis, 
i.e. 130nm for the considered lattice value.  
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Figure 6.12.- Scanning electronic microscope (SEM) images of the (a) photonic crystal 
taper with defect structure and the (b) butt-coupled structure. The total length of the 
photonic crystal is the same in both cases. 
 
Experimental results are shown in figure 6.13. The transmission as a function of 
wavelength was measured using the measurement set-up described in section 6.3. 
The output power of the laser was 1mW (0dBm) and the polarizer was adjusted for 
only measuring TE polarized light.  Figure 6.13(a) shows the transmitted power as 
a function of the wavelength for the unpatterned sample which consists only of the 
ridge waveguide without the photonic crystal.  Figures 6.13(b)-6.13(d) show 
respectively the transmitted power as a function of the wavelength for the butt-
coupled and the photonic crystal taper without and with defect structures. Although 
there are noticeable Fabry-Perot resonances in the transmission spectra due to the 
inefficient coupling into and out of the ridge waveguide, experimental results 
demonstrate a power transmission improvement when the photonic crystal taper 
with defect is used compared to the butt-coupled and photonic crystal taper without 
defect cases. Furthermore, it can be seen that a reduction of the Fabry-Perot 
resonances comparable to those obtained for the unpatterned sample is achieved for 
the photonic crystal taper with defect structure.  

 
Experimental results have been compared to three (3D) and two dimensional (2D) 
FDTD simulation results. Figure 6.14 shows the results for the photonic crystal 
taper with and without defect structures while figure 6.15 shows the results for the 
photonic crystal with taper and butt-coupled structures. Experimental results have 
been normalized by the averaged transmission spectrum of the unpatterned 
structure. It can be seen that a good agreement is achieved between experimental 
and 3D simulation results. Transmission efficiencies above 30% over a rather large 
wavelength range are achieved for the photonic crystal taper with defect structure. 
However, the transmission efficiency is lower than 25% and 15% for the taper 
without defect and butt-coupled structures respectively. Furthermore, the higher 
transmission efficiencies for the taper without defect structure are only achieved at 
very small wavelength ranges.  
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Figure 6.13.- Experimental transmission spectrum for (a) the unpatterned structure, (b) the 
butt-coupled structure and the photonic crystal taper structure (c) without and (d) with the 
optimized defect. The photonic crystal is formed by a triangular lattice of air holes. The 
hole radius is R=130nm while the lattice constant is a=435nm. 
 
On the other hand, although similar transmission behaviour of the three analyzed 
structures is achieved for 2D and 3D simulation results, there are also important 
discrepancies between them such as a smaller bandwidth shifted to lower 
wavelengths as well as a lower transmission for the 3D results. These discrepancies 
indicate that the effective index method used for the calculation of 2D results is 
valid but gives only approximated 3D results. It is important to notice that out-of-
plane losses are not modelled by the effective index method. Therefore, the 
decrease of the transmission efficiency in about 25% for 3D results compared to 
2D results is mainly attributed due to out-of-plane losses in the photonic crystal 
waveguide.  
 
The photonic crystal waveguide supports a guided mode below the light line. 
However, the wavelength range in which the mode is below the light line is very 
narrow so that almost all the bandwidth of the mode is above the light line. The 
grey area shown in figure 6.14(b) and 6.15(b) and located close to the upper band 
edge corresponds to the wavelength range in which the mode is below the light 
line. This wavelength range was obtained by calculating the 3D band diagram of 
the photonic crystal waveguide by means of the plane wave method [Joh01].  
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Figure 6.14.- (a) Experimental, (b) 3D FDTD simulated and (c) 2D FDTD simulated 
transmission spectra for the photonic crystal taper with defect structure (solid line) and the 
photonic crystal taper without defect structure (dashed line). The grey area shown in (b) 
corresponds to the wavelength range in which the guided mode is below the light line. The 
hole radius is R=130nm. 
 
 

 
Figure 6.15.- (a) Experimental, (b) 3D FDTD simulated and (c) 2D FDTD simulated 
transmission spectra for the photonic crystal taper with defect structure (solid line) and the 
butt-coupled structure (dashed line). The grey area shown in (b) corresponds to the 
wavelength range in which the guided mode is below the light line. The hole radius is 
R=130nm. 
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Figure 6.16.- Experimental transmission spectrum for (a) the unpatterned structure, (b) the 
butt-coupled structure and the photonic crystal taper structure (c) without and (d) with the 
optimized defect. The photonic crystal is formed by a triangular lattice of air holes. The 
hole radius is R=115nm while the lattice constant is a=435nm. 
 
In this region, the transmission efficiency discrepancies between 2D and 3D 
simulation results are directly those determined by the coupling efficiency between 
the ridge dielectric waveguide and the photonic crystal waveguide since there are 
no out-of-plane losses in the waveguide. It can be seen that the best agreement 
between 2D and 3D results is achieved for the photonic crystal taper with defect.  
 
However, the waveguide mainly operates above the light line, as it can be observed 
in figure 6.14(b) and 6.15(b). In this region, radiation modes can be excited in the 
vertical direction giving rise to out-of-plane losses. Therefore, discrepancies 
between 2D and 3D simulation results are mainly attributed due to out-of-plane 
losses and not due to higher coupling losses between the ridge dielectric waveguide 
and the photonic crystal waveguide. It is interesting to notice that 2D and 3D 
simulation results disagree more for wavelengths far away from the upper band 
edge, where the guided mode is below the light line. On the other hand, the 
discrepancies between experimental and 3D simulation results are due to the 
existence of sidewall roughness in the former which gives rise to higher out-of-
plane losses thus increasing transmission losses.  
 
Experimental results have also been obtained for the same photonic crystal 
structures but with a smaller hole radius (R=115nm), i.e. with a smaller filling 
ratio. The decrease of the hole radius increases the amount of dielectric in the 
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waveguides shifting the guided mode to higher wavelengths. Figure 6.16(a) shows 
the transmitted power as a function of the wavelength for the unpatterned structure. 
Figures 6.16(b)-6.16(d) show respectively the transmitted power as a function of 
the wavelength for the butt-coupled structure and photonic crystal taper without 
and with defect structures. It can be seen that the transmission spectra are similar to 
those previously obtained, shown in figure 6.13, in which the photonic crystal 
structures had a larger filling ratio.  
 
Again, normalized experimental results have been obtained and compared to 3D 
FDTD simulation results. Figures 6.17(a)-6.17(b) show the results for the photonic 
crystal taper with and without defect structures while figures 6.18(a)-6.18(b) show 
the results for the photonic crystal with taper and the butt-coupled structures. It can 
be seen that there is also a very good agreement between experimental and 3D 
simulation results as well as that the transmission is significantly improved for the 
taper with defect structure with respect to the butt-coupled and taper without defect 
structures. The transmission efficiencies are higher than the ones obtained for the 
previous structures with larger filling ratio. Transmission efficiencies, t, up to 60% 
are achieved for the photonic crystal taper with defect structure. Thereby, the 
coupling efficiency between the ridge dielectric waveguide and the photonic crystal 
waveguide is obtained from tT =  that yields to a transmission efficiency of 
75%.  
 
3D simulation results have also been compared to 2D results, which are shown in 
figures 6.17I and 6.18I. The same effective index (neff=2.8) has been used for the 
calculation of 2D simulation results7. Just as occurred in the previous photonic 
crystal structures with larger filling ratio, the transmission behaviour is similar for 
the three analyzed structures, although the bandwidth is also smaller and shifted to 
lower wavelengths for the 3D results with respect to the 2D results. The 
discrepancy between 2D and 3D results is higher for the photonic crystal taper with 
defect structure. The 2D simulated transmission spectrum is degraded at 
wavelengths around 1650nm. The lower transmission is attributed to the fact that 
the defect has been optimized at the wavelength of 1550nm. Therefore, in 
principle, the maximum transmission efficiency is only achieved at wavelengths 
around 1550nm, as it is corroborated in figures 6.17I and 6.18I. However, it is 
interesting to notice that the power drop is less accentuated in the 3D simulated 
transmission spectrum. This behaviour may be explained from the fact that the 3D 
spectrum is, in this case, more centred at wavelengths around 1550nm.  
 

                                                      
7 Although the transmission band is shifted to higher wavelengths due to the smaller filling 
ratio, the effective index does not significantly change when higher wavelengths are 
considered. For instance, the effective index at the wavelength of 1600nm is 2.78.  
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Figure 6.17.- (a) Experimental, (b) 3D FDTD simulated and (c) 2D FDTD simulated 
transmission spectra for the photonic crystal taper with defect structure (solid line) and the 
photonic crystal taper without defect structure (dashed line). The grey area shown in (b) 
corresponds to the wavelength range in which the guided mode is below the light line. The 
hole radius is R=115nm. 
 
 
 

 
Figure 6.18.- (a) Experimental, (b) 3D FDTD simulated and (c) 2D FDTD simulated 
transmission spectra for the photonic crystal taper with defect structure (solid line) and the 
butt-coupled structure (dashed line). The grey area shown in (b) corresponds to the 
wavelength range in which the guided mode is below the light line. The hole radius is 
R=115nm. 
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Figure 6.19.- 3D FDTD simulated transmission efficiency as a function of the wavelength 
for the photonic crystal taper with defect structure for (a) R=130nm (R=0.3a) and (b) 
R=115nm (R=0.264a) by considering three different lengths, L, of the photonic crystal 
waveguide.  
 
On the other hand, the 2D and 3D transmission efficiencies for the three analyzed 
structures agree much better than for the previous structures with larger filling 
ratio. This better agreement is even given at the wavelength range in which the 
guided mode operates above the light line. The grey area shown in figure 6.17(b) 
and 6.18(b) depicts the wavelength range in which the mode is below the light line. 
In this case, this range is broader than the one achieved by taking into account a 
larger filling ratio. However, the guided mode still operates mainly above the light 
line. The good agreement between 2D and 3D simulation results indicates that out-
of-plane losses in the photonic crystal waveguide are lower than the one obtained 
for the previous structures with larger filling ratio. This behaviour is expected due 
to the fact that out-of plane radiation increases as the hole size is enlarged.  
 
In order to better analyze out-of-plane losses, the transmission spectrum for the 
photonic crystal taper with defect structure has been calculated by considering 
different lengths of the photonic crystal waveguide. Figure 6.19 shows the 
transmission spectrum considering (a) R=130nm and (b) R=115nm. It can be seen 
that below the light line, the transmission efficiency is not worsen as the photonic 
crystal waveguide increases. Propagation losses for wavelengths below the light 
line may only be produced due to fabrication imperfections such as sidewall 
roughness, which have not been taken into account in the 3D simulations. 
However, when the photonic crystal waveguide length is increased, the 
transmission efficiency decreases for wavelengths above the light line due to out-
of-plane losses.  
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Figure 6.20.- Adiabatic coupling  technique for efficient light transmission from single-line 
defect waveguides (SLWGs) into and out of a coupled-cavity waveguide (CCW) of finite 
length. The taper is based on gradually varying the radii of the spacing holes between 
cavities. 
 
Propagation losses have been estimated by using the so-called cut-back method 
[Mcn03]. The method is based on comparing the transmission efficiency for 
different waveguide lengths. Propagation losses are then calculated as the line 
slope that best fits the data points for each wavelength. For both cases shown in 
figure 6.19, almost constant propagation losses were obtained for a broad 
wavelength range located above the light line. The estimated propagation losses are 
0.6dB/µm for R=130nm and 0.35dB/µm for R=115nm. The larger propagation 
losses in the former confirm that out-of-plane losses are higher as the filling ratio 
increases. However, propagation losses are rather high in both cases so the 
optimum performance will be given for wavelengths located below the light line. 
On the other hand, it can be seen in figure 6.19(a) that the transmission efficiency 
is much less attenuated as the photonic crystal waveguide length increases for 
wavelengths located close to the lower band edge. Therefore, in this case the low 
transmission efficiency is mainly attributed to larger coupling losses instead of to 
higher propagation losses.  
 
6.4.4 Coupling into coupled-cavity waveguides  
 
The adiabatic coupling technique proposed in chapter five has also been used to 
achieve efficient coupling into photonic crystal coupled-cavity waveguides created 
in an air holes lattice etched into a high index dielectric background. The coupling 
technique is based on gradually varying the radii of the spacing holes between 
cavities. Thus, efficient light transmission from single-line defect waveguides 
(SLWGs) into and out of a coupled-cavity waveguide (CCW) of finite length is 
achieved.  
 
The bulk photonic crystal is a two-dimensional triangular array of air holes in a 
dielectric background of silicon. The lattice constant is a=445nm while the hole 
radius is R=0.26a.  
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Figure 6.21.- (a) Dispersion diagram of the coupled-cavity waveguide (CCW). The insets 
show the mode profile for the even and odd modes for a given wave vector value.  (b) 
Dispersion diagram of the SLWG and the CCWs with r=0.33R, r=0.66R and r=R. Only the 
even mode is shown. 
 
The effective index approximation (neff=2.8) has also been used to initially analyze 
the proposed structure by means of 2D FDTD simulations. The analyzed structure 
is shown in figure 6.20. A silicon waveguide with an air cladding is used to couple 
light into and out of the SLWGs. The thickness of the waveguide (w=0.6µm) has 
been chosen to achieve negligible coupling losses into the SLWG. 
 
The taper behavior can also be analyzed by calculating the independent dispersion 
diagrams at intermediate points in the taper, as described in chapter five. Figure 
6.21(a) shows the dispersion diagram of the CCW formed by single missing hole 
cavities with a spacing of one hole between neighbouring cavities. In this case, the 
CCW supports two guided modes with odd and even symmetries in the transversal 
direction. It can be obtained that the SLWG supports also odd and even modes. 
However, as the fundamental mode of the dielectric waveguide has an even 
symmetry, only the even mode is excited in both the SLWG and CCW. Figure 
6.21(b) shows the dispersion diagram for the even mode of the SLWG and of three 
different CCWs with r=0.33R, r=0.66R and r=R, being r the radius of the spacing 
single hole between cavities. It can be seen that the modes are pulled towards 
higher frequencies when the radius of the spacing hole is increased. This effect is 
just the opposite of that occurred in the rod structure because in this case we are 
removing dielectric material from the waveguide instead of adding it. However, 
there is also a mode splitting at the edge of the Brillouin zone that is enlarged as 
the radius of the spacing hole increases. Therefore, there are frequency ranges in 
which the mode is not allowed to propagate at intermediate points of the taper. This 
violates the condition of adiabaticity of the taper so the transmission at those 
frequencies is degraded [Joh02]. The same behavior occurred in the rod structure. 
However, in this case, the condition of adiabaticity is violated at the high 
frequencies of the band instead of at the low frequencies.  
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Figure 6.22.- Transmission efficiency as a function of the wavelength for a CCW length of 
five cavities and for different taper lengths: (a) without taper, (b) L=3, (c) L=6 and (d) L=9. 
The parameter L refers to the number of intermediate holes with a linear variation of their 
radius used in the taper. 
 
Figure 6.22 shows the transmission efficiency as a function of the wavelength for a 
CCW length of five cavities and for different taper lengths. The vertical scale is in 
linear units to enhance the variations of the transmission spectra shape. When no 
taper is used, a number of resonances peaks equal to the number of cavities appear 
in the transmission spectrum, as it can be seen in figure 6.22(a). The spacing 
between adjacent resonance peaks is smaller at higher wavelengths, i.e. at lower 
frequencies, because the dispersion relation of the CCW is flatter in that region, as 
it is shown in figure 6.21(b). This region is more suitable for implementing 
functionalities based on the high dispersion of the CCW and therefore the 
elimination of these resonance peaks is especially desired when ultrashort pulses 
are transmitted through the structure.  
 
The peak-to-valley ratio of the undesired resonance peaks is reduced when the 
adiabatic taper is inserted into the structure. The wavelength range, in which a 
rather flat transmission is observed, grows as the taper length increases. However, 
it can also be seen that the bandwidth is reduced at lower wavelengths and sharper 
resonance peaks appear when the taper length increases. This is originated due to 
the violation of the condition of adiabaticity occurred for those wavelengths at 
intermediate points in the taper.  
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Figure 6.23.- Scanning electronic microscope (SEM) images of the coupled cavity 
waveguide (CCW) coupled to the single-line defect waveguides (SLWGs) (a) without and 
(b) with the adiabatic taper. The taper is based on gradually varying the radii of the spacing 
holes between cavities. 
 
CCWs of different lengths coupled to the SLWGs with and without taper have 
been fabricated. Figure 6.23(a) shows a SEM image of a 10 cavities-long CCW 
while figure 6.23(b) shows a SEM image of a 9 cavities-long taper/CCW/taper 
structure. The adiabatic taper is formed by two intermediate holes. The input and 
output SLWGs have a different length in the CCW with and without taper 
structures because the taper was initially designed by using a length of three 
intermediate holes. However the smaller hole was too close to the allowed 
minimum size so it was not fabricated.  
 
The transmission as a function of wavelength was measured using the 
measurement set-up previously described in section 6.3. The sample was formed 
by a 3µm-wide ridge waveguide tapered down to a 500nm-wide waveguide. The 
output power of the laser was 1mW (0dBm) and the polarizer was adjusted for only 
measuring TE polarized light.  
 
Figure 6.24 shows the experimental transmitted power as a function of the 
wavelength for (a) a 10 cavities-long CCW and a 9 cavities-long taper/CCW/taper 
structure (structures shown in figure 6.23) and for (b) a 15 cavities-long CCW and 
a 14 cavities-long taper/CCW/taper structure. The Fabry-Perot resonances that 
appear at the transmission spectra are due to the inefficient coupling into and out of 
the 3µm-wide ridge waveguide. However, it can be seen that the transmitted power 
is improved at higher wavelengths when the adiabatic taper, of only two 
intermediate holes, is used to couple light into and out the CCW. This transmission 
improvement is in agreement to the one obtained from the previous 2D analysis.  
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Figure 6.24.- Experimental transmitted power as a function of the wavelength for (a) a 10 
cavities-long CCW and a 9 cavities-long taper/CCW/taper structure and for (b) a 15 
cavities-long CCW and a 14 cavities-long taper/CCW/taper structure. The thicker lines 
depict the medium value obtained after filtering the Fabry-Perot resonances.  
 
However, although the lower band edge of the transmission spectra is also in 
agreement between experimental and 2D simulation results, the bandwidth is 
narrowed for the experimental results, which restricts the transmission 
improvement provided by the taper.  
 
Experimental results have been compared to 3D FDTD simulation results. Figure 
6.25 shows the transmission efficiency as a function of the wavelength for the 10 
cavities-long CCW and the 9 cavities-long taper/CCW/taper structure while figure 
6.26 shows the transmission spectra for the 15 cavities-long CCW and the 14 
cavities-long taper/CCW/taper structure. Experimental results have been 
normalized by the averaged transmission spectrum of the unpatterned structure. It 
can be seen that a very good agreement between experimental and 3D FDTD 
results is obtained. The transmission efficiency is improved when the adiabatic 
taper, of only two intermediate holes, is used to couple light into and out of the 
CCW. However, transmission losses are still very high.  
 
The only difference between the results shown in figure 6.25 and 6.26 is that the 
CCW has a different length since the taper length is not changed. Therefore, 
transmission losses are only increased in figure 6.26 due to the propagation losses 
in the CCW. Concretely, the transmitted power is decreased around 3dB when the 
CCW length is increased by 4.45µm (10a) so propagation losses of the CCW are 
roughly estimated at 0.67dB/µm. These rather high propagation losses are 
attributed to the out-of-plane losses originated from the fact that the CCW operates 
above the light line, which implies that the guided mode is intrinsically lossy. It is 
important to remark that propagation losses due to sidewall roughness are not taken 
into account in the 3D simulations.  
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Figure 6.25.- (a) Experimental and (b) 3D FDTD simulated transmission efficiency as a 
function of the wavelength for the 10 cavities-long CCW and the 9 cavities-long 
taper/CCW/taper structure. Experimental results have been normalized by the averaged 
transmission spectra of the unpatterned structure. 
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Figure 6.26.- (a) Experimental and (b) 3D FDTD simulated transmission efficiency as a 
function of the wavelength for the 15 cavities-long CCW and the 14 cavities-long 
taper/CCW/taper structure.  
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The transmission losses due to the estimated propagation losses are of 6.3dB (23% 
transmission) for a 10 cavities-long CCW and of 9.3dB (11.75% transmission) for 
a 15 cavities-long CCW. These values are close to those obtained for the CCW 
without taper structure, depicted as dashed lines in figures 6.25 and 6.36, which 
means that the propagation losses of the CCW are clearly dominant in the overall 
transmission losses. However, the transmission is higher for the CCW with taper 
structure, especially at the high wavelengths of the band. This transmission 
improvement is attributed to the effect of the taper but also because the CCW 
length is actually shorter in the CCW with taper structure since the total number of 
cavities including the input and output tapers is almost the same to that of the CCW 
without taper structure.  
 
In order to better analyze the taper performance, the transmission spectra for a 
CCW of the same length coupled to the SLWG with and without the adiabatic taper 
have been calculated by means of 3D FDTD simulations. The photonic crystal has 
also the same length in both structures so the adiabatic taper has been replaced by a 
SLWG in the CCW without taper structure. Furthermore, 3D simulation results 
have been compared to 2D simulation results.  
 
Figure 6.27 shows the transmission spectra calculated by means of (a) 2D and (b) 
3D FDTD simulations for a 5 cavities-long CCW coupled to the SWLGs without 
taper (dashed line) and with a taper formed by two intermediate holes (solid line). 
On the other hand, figure 6.28 shows the 2D and 3D transmission spectra for a 5 
cavities-long CCW coupled to the SWLGs with a taper formed by two (dashed 
line) and four (solid line) intermediate holes. In both figures 6.27 and 6.28, the 
transmission spectrum is also shown for a 12a-long SLWG (dotted line), which 
corresponds to the total length of the input and output SLWGs used in the CCW 
with taper structure considering a taper length of two intermediate rows.  
 
It can be seen that the transmission improvement provided by the taper is not so 
evident for the 3D results compared to the 2D results. However, this is not due to a 
bad performance of the taper. In figures 6.27 and 6.28, it can be seen that the 
transmission efficiency decreases in the 12a-long SLWG structure as the 
wavelength is closer to the band edge due to the larger coupling losses between the 
external dielectric waveguide and the SLWG. Furthermore, the cut-off wavelength 
is shorter than the one given for the 2D results. These higher coupling losses 
besides the high propagation losses in the CCW make negligible the transmission 
efficiency at the high wavelengths of the CCW band, which restricts the 
transmission improvement provided by the taper.  
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Figure 6.27.- (a) 2D and (b) 3D FDTD simulated transmission efficiency as a function of 
the wavelength for a 5 cavities-long CCW coupled to the SWLGs without taper (dashed 
line) and with a taper formed by two intermediate holes (solid line). The dotted line depicts 
the transmission spectrum for a 12a-long SLWG, which corresponds to the total length of 
the input and output SLWGs used in the CCW with taper structure.  

 

Tr
an

sm
is

si
on

Tr
an

sm
is

si
on

Wavelength (nm) Wavelength (nm)

(a) (b)

Tr
an

sm
is

si
on

Tr
an

sm
is

si
on

Wavelength (nm) Wavelength (nm)

(a) (b)

 
Figure 6.28.- (a) 2D and (b) 3D FDTD simulated transmission efficiency as a function of 
the wavelength for a 5 cavities-long CCW coupled to the SWLGs with a taper formed by 
two (dashed line) and four (solid line)intermediate holes. The dotted line depicts the 
transmission spectrum for a 12a-long SLWG. 
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The transmission efficiency is also attenuated at higher wavelengths in the 2D 
results, as it can bee seen in figure 6.27(a) and 6.28(a). However, it is much less 
critical due to the lack of out-of-plane losses. Thus, the 3D simulated transmission 
efficiency is improved at higher wavelengths while it is degraded at lower 
wavelengths due to the effect of the taper, which agrees with the results predicted 
by the 2D simulations. This behaviour is enhanced as the taper length increases, as 
it can be seen in figure 6.28(b). Furthermore, the transmission improvement due to 
the taper explains why the cut-off wavelength of the upper band edge of the CCW 
with taper structure is above than that of the CCW without taper structure while the 
cut-off wavelength of the lower band edge is the same in both cases, as it can be 
seen in figure 6.25(b), 6.26(b) or 6.27(b).  
 
The previous analysis confirms that the transmission improvement shown at higher 
wavelengths in the experimental results for the CCW with taper structures is 
attributed to the higher coupling efficiency between the SLWG and the CCW. 
However, the overall transmission losses are lower because the propagation losses 
in the taper are lower than the propagation losses in the CCW. Therefore, it can be 
observed in figure 6.27 and 6.28 that the transmission losses are similar in both the 
CCW with and without taper structures when the CCW has the same length. This 
result also indicates that the propagation losses in the taper are similar to the 
propagation losses in the SLWG since the photonic crystal has also the same length 
in both the CCW with and without taper structures. 
 
6.5 Rod structure: Silicon rods embedded in silica 
 
6.5.1 Fabrication process 
 
The planar photonic crystal structure consists of a borophosphosilicate glass 
(BPSG) layer on top of a silica layer. The BPSG layer has a higher index of 
refraction than the silica layer to ensure the index confinement in the vertical 
dimension. Both layers are deposited on top of a bare silicon wafer. The photonic 
crystal is formed by a lattice of rods of polycrystalline silicon or polysilicon 
inserted on the BPSG layer. An upper cladding of silica is deposited over the core 
layer to achieve a symmetric structure in the vertical dimension. The fabrication 
process is still under development. The main challenge is the minimum achievable 
rods diameter since there are not standard solutions for diameters smaller than 
500nm.  
 
The fabrication process flow is illustrated in figure 6.29. Low pressure chemical 
vapour deposition (LPCVD) is used for hard mask deposition prior to etching. The 
hard mask layer improves the selectivity of the further etching into the BPSG layer 
and it is firstly deposited on top of this layer.  
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Figure 6.29.- Description of the fabrication process of the planar photonic crystal based on 
a rod structure. The planar photonic crystal structure consists of a doped silica layer on top 
of a silica layer of a lower index of refraction to ensure the index confinement in the 
vertical dimension. The photonic crystal is formed by a lattice of rods of polycrystalline 
silicon or polysilicon on the doped silica layer. An upper cladding of the same material than 
that of the lower cladding is deposited over the core layer in the final step to achieve a 
symmetric structure in the vertical dimension. 
 
After deposition of the hard mask layer, the photoresist is coated over the wafer 
and electron beam lithography is used to illuminate the photoresist with the pattern. 
The photoresist is then developed and reactive ion etching (RIE) is firstly used for 
etching the hard mask layer. High aspect ratio etching (HARE) is then used for 
etching the holes in the BPSG layer. The holes are filled with the deposition of 
polysilicon by means of LPCVD. Finally, the extra polysilicon is removed and an 
upper cladding is deposited on top of polysilicon rods lattice.  
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Figure 6.30.- SEM pictures of the planar photonic crystals based on a rod structure. The 
surrounding BPSG has been removed for highlighting the rods.   
 
Figure 6.30 shows SEM pictures of a recently fabricated sample. The surrounding 
BPSG has been removed for highlighting the rods. Rods of a diameter up to 200nm 
are currently achieved. 
 
6.5.2 Coupling into photonic crystal waveguides 
 
The proposed coupling technique to achieve efficient coupling between dielectric 
waveguides and line defect photonic crystal waveguides has been evaluated for the 
rod structure by means of 3D FDTD simulations due to the lack of experimental 
results. For the sake of comparison, the same parameters as that used in the 2D 
analysis carried out in chapter four have been taken into account. The photonic 
crystal is formed by a triangular array of silicon rods with radius R=0.2a and lattice 
constant a=465nm surrounded by a homogenous dielectric medium of silica. The 
thickness of the planar photonic crystal structure is 2a while an air medium is used 
as upper and lower claddings. A 1.5µm-wide silica dielectric waveguide is coupled 
to a single line defect photonic crystal waveguide.   
 
The analyzed structure consists of a photonic crystal waveguide of finite length 
coupled to input and output dielectric waveguides by means of a photonic crystal 
taper optimized with the suitable configuration of defects. Thus, the transmission 
spectrum of the whole structure may be calculated in only one FDTD simulation. 
The a-long photonic crystal taper optimized with the one defect configuration 
(rdef=0.5R, zdef=0.6a) has been first simulated. Figure 6.31 shows the transmission 
spectra calculated by means of (a) 2D and (b) 3D FDTD simulations for the taper 
with defect (solid line), without defect (dashed line) and also for the butt-coupling 
case (dotted line). The length of the photonic crystal is 11a for the three analyzed 
structures. It can be seen that almost negligible transmission is achieved by the 
butt-coupling case.  
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Figure 6.31.- (a) 2D and (b) 3D FDTD simulated transmission efficiency as a function of 
the wavelength considering a photonic crystal taper with defect (solid line), without defect 
(dashed line) and the butt-coupling case (dotted line). The a-long photonic crystal taper is 
depicted in the inset and the parameter of the defect are rdef=0.5R, and zdef=0.6a.  The length 
of the photonic crystal is 11a for the three analyzed structures. 
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Figure 6.32.- (a) 2D and (b) 3D FDTD simulated transmission efficiency as a function of 
the wavelength considering a 3a-long photonic crystal taper, depicted in the inset, with a 
two defects configuration of parameters rint=0.5R, zint=2.6a and rext=0.6R, zext=0.2a (solid 
line), without defects (dashed line) and the butt-coupling case (dotted line)  The length of 
the photonic crystal is 11a for the three analyzed structures. 
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Figure 6.33.- 3D FDTD simulated transmission efficiency as a function of the wavelength 
for the 3a-long photonic crystal taper with the two defects configuration by considering 
three different lengths, L, of the photonic crystal waveguide.  
 
The transmission is significantly improved when the photonic crystal taper is used. 
However, a number of resonance peaks appears in the transmission spectrum of the 
taper without defect structure due to Fabry-Perot like cavity originated from the 
mode mismatch at the input and output interfaces. The resonance peaks are 
eliminated from the transmission spectrum when the taper with defect is used. On 
the other hand, it can be seen in figure 6.31 that there is a good agreement between 
2D and 3D results in the transmission behaviour for the three analyzed structures 
although a narrower bandwidth and lower transmission efficiency is observed for 
the 3D results. 

 
The 3a-long photonic crystal taper analyzed in chapter four has also been 
evaluated. A broad transmission spectrum with efficiencies above 90% was 
predicted when a two defects configuration (rint=0.5R, zint=2.6a and rext=0.6R, 
zext=0.2a) was placed within the taper. Figure 6.32 shows the transmission spectra 
calculated by means of (a) 2D and (b) 3D FDTD simulations for the taper with the 
two defects configuration (solid line), without defects (dashed line) and for the 
butt-coupling case (dotted line). The length of the photonic crystal is also 11a in 
the three analyzed structures, the same as the one previously considered. A good 
agreement in the transmission behaviour is also observed between 2D and 3D 
results. Therefore, higher transmission efficiency is achieved with respect to the a-
long photonic crystal taper. 
 
The discrepancy of the transmission efficiency between 2D and 3D results is 
mainly attributed to the out-of-plane losses in the photonic crystal waveguide. 
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Therefore, in order to evaluate the effect of out-of-plane losses on the transmission 
efficiency, the transmission spectrum for the 3a-long taper with the two defects 
configuration structure has been calculated by considering three different lengths of 
the photonic crystal waveguide. Figure 6.33 shows the results. It can be seen that 
the transmission efficiency decreases as the length of the photonic crystal 
waveguide is increased. Propagation losses, which have been estimated by using 
the cut-back method, vary from 0.2dB/µm up to 1dB/µm as a function of the 
wavelength. These high propagation losses are mainly attributed to the fact that the 
guided mode is above the light line so out-of-plane losses are unavoidable.  
 
Out-of-plane radiation may be avoided by using a different sort of photonic crystal 
waveguide that support a guided mode below the light line. One approach is to use 
rods of smaller radius instead of completely removing them to form the waveguide 
[Joh00a]. In this case, propagation losses below 0.005dB/µm have been 
experimentally obtained [Tok04]. Therefore, further work by properly designing 
the photonic crystal waveguide and optimizing the proposed coupling technique for 
that waveguide will be required to minimize propagation losses.  
 
6.6 Conclusion 
 
The coupling techniques proposed in chapters four and five for a rod structure have 
been demonstrated in this chapter for a hole structure. Furthermore, a 3D analysis 
have been carried out for both structures and compared to 2D simulation results. 
The main discrepancies between 2D and 3D simulation results are due to out-of-
plane losses, which are not taken into account in the 2D simulations. Therefore, 2D 
simulations can be a good instrument to obtain preliminary results and demonstrate 
new concepts, although a 3D analysis must be carried out to accurately design real 
structures and analyze out-of-plane losses. On the other hand, the fabrication 
processes of both hole and rod structures have also been described. However, 
experimental results have only been provided for the hole structure since the 
fabrication process of the rod structure is still under development. 
 
Experimental coupling efficiencies up to 75% from a 3µm-wide ridge waveguide 
into a line defect photonic crystal waveguide have been demonstrated for the hole 
structure. The coupling efficiency could be improved by using better optimization 
tools, such as genetic algorithms, to design the optimum configuration of defects, 
as it was shown in chapter four. On the other hand, it has also been obtained that 
out-of-plane losses may seriously degrade the transmission performance in both 
hole and rod structures when the photonic crystal waveguide operates above the 
light line. Therefore, alternative waveguides designs with a larger bandwidth below 
the light line should be investigated to reduce out-of-plane losses.  
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Finally, the experimental implementation of the proposed adiabatic coupling 
technique to improve the coupling efficiency from single line defect photonic 
crystal waveguides into CCWs has also been reported for the hole structure. High 
out-of-plane losses were also obtained in the CCW thus increasing propagation 
losses and restricting the transmission improvement provided by the taper. 
Therefore, the analysis of out-of-plane losses and techniques to avoid them will 
become necessary to improve the CCW performance. 
 
Part of the obtained results has been published in the following peer-reviewed 
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• P. Sanchis, J. García, J. Martí, W. Bogaerts, P. Dumon, D. Taillaert, R. Baets, 

V. Wiaux, J. Wouters and S. Beckx, “Experimental demonstration of high 
coupling efficiency between wide ridge waveguides and single-mode photonic 
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high efficiency coupling technique for planar photonic crystal circuits”, 
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Chapter 7 

 

Conclusions  
and Future Work 

 
 
 
 
 

7.1 Conclusions 
 
The aim of this work has been primary focused to minimize coupling losses 
between dielectric waveguides and line defect photonic crystal waveguides. The 
simplest way to couple them is butt-coupling, which has been firstly analyzed. 
Closed form expressions for the reflection and transmission matrices that 
completely characterize the scattering that occurs at the interface have been 
derived. Furthermore, an efficient approach has been proposed for a semi-analytic 
treatment of complex photonic crystal structures thus reducing the computation 
time with respect to other conventional numerical methods such as the widely used 
FDTD method.  Coupling losses are originated due to the mode mismatch between 
dielectric and photonic crystal waveguides. However, mode properties in photonic 
crystals can significantly change within the basic period. Thus, it has been shown 
that the coupling efficiency can be improved by choosing the optimum cut position 
within the basic period of the photonic crystal.   
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However, even at the optimum cut position, the coupling efficiency gets worse 
when the dielectric waveguide becomes broader due to the mode profile mismatch. 
Furthermore, high resolution fabrication accuracies are required to achieve the 
target cut position. Therefore, a coupling technique has been proposed to maximize 
the transmission efficiency from both narrow and broad dielectric waveguides into 
line defect photonic crystal waveguides. The proposed coupling technique is based 
on setting a number of localized defects within a photonic crystal taper. Genetic 
algorithms have been demonstrated to be a very efficient tool to design the 
optimum number of defects as well as their radii and position within the photonic 
crystal taper. Transmission efficiencies above 90% over a large frequency range 
have been achieved significantly improving the results obtained by the same 
photonic crystal taper but without defects.  
 
Once the problem of coupling from an external medium into line defect photonic 
crystal waveguides has been resolved, efficient coupling from line defect photonic 
crystal waveguides into coupled-cavity waveguides has been investigated. An 
adiabatic coupling technique based on progressively varying the radii of the 
spacing defects between cavities has been proposed and analyzed. Flat 
transmission spectra with transmission efficiencies above 90% have been achieved 
by using short tapers. Furthermore, the dynamic performance of the proposed 
coupling technique has been investigated by analyzing the propagation of ultra 
short pulses. A theoretical model based on the Fabry-Perot formula has been 
proposed for efficiently analyzing a large variety of parameters, such as the group 
delay, FWHM and peak amplitude of the transmitted pulse, thus avoiding the large 
computation times associated to the FDTD method.  
 
Finally, the fabrication and experimental demonstration of the previously proposed 
coupling techniques and structures have been provided. Photonic crystals have 
been fabricated in the form of planar structures, known as planar photonic crystals 
or photonic crystal slabs. Two different planar photonic crystal structures named as 
rod and hole structures have been considered. In the former, the photonic crystal is 
formed by a triangular lattice of silicon rods surrounded by a silica material, which 
has a lower refractive index. In the latter, the photonic crystal is formed by a 
triangular lattice of air holes etched into a Silicon-on-insulator (SOI) substrate. 
Experimental results have only been provided for the hole structure since the 
fabrication process of the rod structure is still under development. However, the 
usefulness of the proposed coupling techniques have been demonstrated for both 
hole and rod structures by means of 3D simulation results. Furthermore, the 
discrepancies between 2D and 3D simulation results have been analyzed. It has 
been obtained that 2D simulations can be a good instrument to obtain preliminary 
result and demonstrate new concepts. However, 3D simulations must be carried out 
for a rigorous design and to analyze out-of-plane losses, which are not taken into 



Conclusions and Future Work  163
 

 

account by the 2D analysis and can significantly increase transmission losses. A 
very important advantage of the proposed coupling techniques is that the optimum 
performance is achieved in very short coupling lengths. Therefore, coupling losses 
due to out-of-plane losses are minimized and compact photonic crystal structures 
are achieved. 
 
7.2 Main original contributions 
 
The main original contributions of this work are: 
 

 Modeling of the interface between dielectric waveguides and photonic 
crystal circuits.  

 High efficiency coupling technique between dielectric waveguides and line 
defect photonic crystal waveguides. 

 High efficiency coupling technique between line defect photonic crystal 
waveguides and coupled-cavity waveguides. 

 
7.3 Future work 
 
The proposed coupling techniques have been exhaustively analyzed through this 
work by means of 2D simulation tools. Only in the last term, we were able to 
perform 3D simulation results that corroborated the results obtained by the 2D 
analysis. However, an exhaustive 3D analysis will become necessary to optimize 
the proposed coupling technique making them useful for implementing future 
devices based on photonic crystals. Furthermore, the experimental demonstration 
of the proposed coupling techniques for the rod structure should be carried out. 
 
The 3D implementation of the closed form expressions derived in chapter three 
would be very useful for a 3D analysis in a shorter computation time with respect 
to FDTD. Furthermore, it would also be interesting to repeat a similar derivation to 
obtain closed form expression for the butt-coupling between two different periodic 
media. These expressions would be useful to analyze a large variety of 
functionalities based on photonic crystals, such as directional couplers or Y-
junctions.  
 
Finally, future work should also be devoted to minimize out-of-plane losses in 
photonic crystal waveguides, especially in coupled-cavity waveguides. It is worth 
mentioning that the analysis of out-of-plane radiation in coupled-cavity 
waveguides has been almost untreated until now in the literature. On the other 
hand, conventional line defect photonic crystal waveguide should also be properly 
designed to mainly operate above the light line thus minimizing out-of-plane 
losses.  
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