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Abstract

The thesis describes the development of control methods for attitude control during the

atmospheric flight of a launch vehicle (LV).

In order to solve the attitude control problem, a mathematical model of the dynamics of the

launch vehicle is first defined. The linearized equations of motion are then derived under

the assumption that the vehicle will experience only small deviations from a reference

trajectory. One of the main concerns during the modelling is comprising the structural

load caused by wind gusts. The atmospheric phase of flight is a difficult scenario for launch

vehicles.

The control system must be capable of providing stability margins under demanding condi-

tions while also ensuring performance and robustness. A baseline controller (BC) with two

proportional-derivative (PD) components for attitude and translational motion control is

created using the time-invariant linear model.

The controller design focused on the LV rigid motion is based on traditional control theory.

Two pole placement methods are used attending to old techniques inside control systems.

In this way, the controller is designed by a manual gain search and a LQR technique. The

controller prototypes are simulated with Matlab and Simulink during the whole process.

It is finally deduced that the biggest constrain in the work is to balance performance

with robustness found in stability. Moreover, the traditional processes are found to be

time-consuming and challenging with respect to accuracy in the response.
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1 Introduction

1.1 Project outline

The thesis describes the design process of a launch vehicle’s (LV) control system in order

to fly a prescribed trajectory. This project focuses only on the atmospheric flight stages,

starting at liftoff, going through the first stage separation and analysing a small period of

flight time. The system covers attitude control through a single input, the Thrust Vector

Control (TVC) angle which deflects to orientate the vehicle in the desirable direction.

A TVC system is commonly used to control the pitch and yaw axes of the atmospheric stage

[1]. The launcher flight control system calculates the necessary engine nozzle deflections

to guarantee stability and comply with the orders on prescribed attitude angles based on

the measurements from the Inertial Navigation System (INS).

When designing a rocket, one of the most important criteria to consider is stability. Apart

from attaining high speeds during launch, it must maintain its orientation and desired

flight plan to avoid wobbling and tumbling. Stability can be achieved either by structural

elements such as fins, or by modifying the control system. The last one is specifically the

aim of this project.

One of the mayor concerns is that launch vehicles are aerodynamically unstable by nature,

as the center of gravity is located behind the center of pressure. Moreover, density changes

through the atmospheric layers, which affects the dynamic pressure. At its maximum

point, aerodynamic loads could damage the structural integrity of LV and can result in

severe performance loss of the vehicle [2]. The report has concentrated in studying the

behaviour in this area in order to work with the most critical condition.

Another challenge that has to be faced with LV design is its flexible dynamics. The initial

bending modes’ frequency range typically are somewhat near to the rigid body dynamics’

frequency range, making the vehicle dynamics unstable. [3]

Hence, it is necessary to design a controller paying close attention to the aspects mentioned

above.

The controller may be designed with classical control systems such as the traditional PID

control and the Linear Quadratic Regulator (LQR) controller. These methods have been

used in real space projects like the Ares-I launch vehicle [4]. Classical control systems, such

as PID controllers with gain scheduling, are often capable of meeting flight requirements

and stability and performance standards, as well as other flight certification parameters.

However, they have several practical constraints. The main disadvantage is that the pro-

cedure is extremely time consuming, owing to the difficulty of addressing a multivariable

problem while attempting to ensure robustness [5].

5



1.2 Objectives

The purpose of this work is the appropriate design of a Flight Control System (FCS) of

a launch vehicle, regarding attitude control. Typically, the attitude control problem is

focused with the vehicle’s short-period dynamics.

The primary goal is to maintain the systems stability, achieve an appropriate response

to guiding orders while resisting wind disturbances (wind gusts), restricting aerodynamic

loads and minimizing deviation from a reference trajectory. In addition, stability margin

requirements impose the robustness features.

The controller is designed with two different approaches inside the pole placement method.

The application of manual gain search and LQR techniques is proposed to overcome the

current challenges of system.

Once the controller is built, it is wanted to analyze the limitations of the traditional control

systems. It will be studied the efficiency in the design process, such as gain tuning and

the performance achieved by each method.

To sum everything up, the most important subject is to accomplish stability regarding

the aerodynamic instability of the LV and its flexible dynamics, and increase performance,

achieved by aerodynamic load minimization and trajectory error minimization.

1.3 Thesis structure

Chapter 2 presents the first step in the FCS design, the system modelling. To facilitate

the subsequent calculations the simplest mathematical model should be developed. In

the thesis the Greensite model [6] is taken as reference, which offers enough precision for

the current work. In addition to the model of the system itself, the simulation of other

dynamic elements should also be taking into account such as TVC actuator, delay and

sensors.

Afterwards, in Chapter 3 the attitude control system is designed in various stages. An

autopilot configuration that meets design requirements is searched for, also considering

a linear system to study the short-period dynamics. A proportional and derivative (PD)

controller is proposed for the pitch axis to decrease lateral deviations, and a PD controller

is selected for the drift channel.

The full design of this control is defined in Chapter 4. A rigid-body controller based

on a PD controller is employed to provide pitch and yaw axis stabilisation. Feedback

loops are included in every state to reduce the structural loads on the launch vehicle. The

design is developed in two different methods; manual pole placement and Linear Quadratic

Regulator (LQR) controllers.

Chapter 5 presents the final results obtained from both controllers. The outcomes are

compared and their efficiency are analyzed.

Finally, Chapter 6 describes the important accomplishments of the project as well as

proposes ideas for a possible improvement in the future.
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2 Launch Vehicle Modeling

This section describes the mathematical model of the LV during the atmospheric phase of

flight. It will be considered rigid body and flexible dynamics for the systems modelling.

Moreover, a wind model representing the possible disturbances that wind gusts can create

during the phase of flight is considered.

2.1 LV model

The LV attitude is modelled with 6 DoF equations of motion. The equations are obtained

from [6].

In order to simplify the design, pitch and yaw axes are assumed to be decoupled. This

can be considered as the LV is symmetric about the roll axis and the roll rate is usually

low enough. In this way, the motion is reduced to a 3 DoF linear model. Two reference

frames are taken into account, that is, the dynamics of the vehicle are expressed by a

body-fixed frame (Xb, Zb) with respect to a set trajectory at a reference frame (Xt, Zt).

The modeling can be divided considering the following features:

• Rigid-body translation and rotation

• Structural elastic dynamics in terms of bending modes

• Aerodynamic and propulsive force and moments

• TVC actuators dynamics

2.1.1 Rigid-body model

The linear dynamic model is defined in two dimensions [7] regarding attitude. The motion

is described as a body (body frame B) following an ascent trajectory (non-stationary

frame T). The scheme is illustrated in Fig. 1.

Figure 1: Sketch of a rigid LV model
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The frame that is attached to the body SB is a right-hand coordinate system, XB, YB,

and ZB fixed to the vehicle body having basis vectors î, ĵ, k̂. The î − axis is parallel to

the vehicle’s longitudinal axis pointing, the ĵ − axis points downward and the k̂ − axis

points rightward.

The reference frame for the trajectory St is a right-hand non-stationary frame with basis

vectors ît, ĵt, k̂t and coordinates Xt, Yt, Zt that moves axially with the vehicle while

remaining tangent to the ascent trajectory. ît and ĵt axes are tangent and normal to the

nominal trajectory, respectively. And k̂t is orthogonal to both of them..

In this way, the equations for the rigid body are the following:

θ̈ =
Nαlα
Iyy

θ +
Nαlα
IyyV

ż +
Tclc
Iyy

β − Nαlα
Iyy

αω (1)

z̈ =
D − Tt −Nα

m
θ − Nα

mV
ż +

Tc

m
β +

Nα

m
αω (2)

α = θ +
ż

V
− αω (3)

where θ is the perturbed pitch angle relative to the trajectory frame, α is the angle of

attack, z is the drift position of the center of mass c.g with respect to the reference

trajectory frame and ż the related drift velocity, m is the LV mass, Tt = Ts + T is the

total thrust force composed of the sustained thrust Ts and the control (swiveled) thrust

Tc. Finally, Nα is the aerodynamic normal force acting on the center of pressure, D is

the aerodynamic axial force (drag), β the nozzle rotation angle, V the forward velocity of

the vehicle, α = Vω
V is the wind-induced angle of attack and Vω is the wind disturbance

velocity.

Eqs. 1 and 2 can be simplified defining the following parameters:

A6 =
Nαlα
Iyy

K1 =
Tclc
Iyy

a1 = − Nα

mV
a3 =

Tc

m
a4 = −(Tt −D)

m
(4)

where A6 and K1 are known as aerodynamic and control moment coefficient respectively.

2.1.2 Flexible Body Dynamics

The LV can be assumed as quasi-rigid. The elastic DoFs are detailed to complete the

vehicle model, and the modal decomposition method [6] is used to do so.

Some simplifications can be made taking into account that the LV model has a relatively

constant cross-section along its length with no important aerodynamic features (fins, wing,

etc.) and controlled by TVC with a nozzle positioned at the base of the rocket. The

bending modes are uncoupled from the rigid motion and are exited by the inertial effects

of engine thrust and nozzle rotation, while aerodynamic effects are ignored. [3]

In Fig. 2, relevant variables representing flexible dynamics are illustrated, with a simplified

schematic of the deflected form of the LV. It is shown the elastic deflection ξ(x, t), the

nozzle longitudinal coordinate xG, and the thrust control force Tc. [8]
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Figure 2: Sketch of a flexible LV model

The elastic deflection in relation to the body frame at any position along the vehicle is

given by:

ξ(x, t) =
∞∑
i=1

ϕi(x)qi(t) (5)

where x is the abscissa along the LV longitudinal axis, ϕi is the normalized mass of the

i− th mode shape in the pitch plane, and qi is the i− th mode’s generalized coordinate.

Several resonant modes describe the LV flexible nature. The following 2nd order model

with natural frequency ωi and damping ratio ζi represents the dynamics of the i−th mode:

q̈i + 2ζωiq̇i + ω2
i qi = −Qi (6)

where Qi is the generalized force due to the moments and normal forces acting on the LV.

It can be expressed as:

Qi =

∫ L

0
(
∑

Fzϕi(x) +
∑

Myσi(x))dx (7)

being the modal rotation σ

σi = −∂ϕi

∂x
(8)

Fz (normal force) and My (moment) may be caused by gravity, aerodynamics, propulsion,

and nozzle inertia, albeit only the thrust component is considered for the purposes of this

study. As a result, Eq. 6 becomes:

q̈i + 2ζωiq̇i + ω2
i qi = −Tcϕiβ (9)
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2.1.3 State Space representation

The prior motion equations allow the LV model to be represented in state-space form,

which is more suited for analysis and design of the later flight control system.

ẍ = Ax+Bu (10)

y = Cx+Du (11)

The state vector includes the rigid body variables and the first bending mode:

x = [θ θ̇ z ż q q̇] (12)

The input to the system is the TVC rotation angle β and the wind induced angle of attack

αω given by the input vector:

u = [β αω] (13)

and the governing equations are then written in matrix form, from Eqs. 1,2,3, 9,as:

ẋ =



ż

z̈

θ̇

θ̈

q̇

q̈


=



0 1 0 0 0 0

0 − Nα
mV

D−Tt−Nα
m 0 0 0

0 0 0 1 0 0

0 Nαlα
IyyV

Nαlα
Iyy

0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
BM −2ζBMωBM





z

ż

θ

θ̇

q

q̇


+



0
Tc
m

0
Tclc
Iyy

0

−ϕ̂TV CTc


β+



0
Nα
m

0

−Nαlα
Iyy

0

0


αω

(14)

Finally, the output vector considers the inertial navigation system measurements as:

y =


zINS

żINS

θINS

θ̇INS

 =


1 0 0 0 −ϕINS 0

0 1 0 0 0 −ϕINS

0 0 1 0 σINS 0

0 0 0 1 0 σINS





z

ż

θ

θ̇

q

q̇


(15)

where ϕINS is the bending mode displacement and σINS is the rotation, both at the

location of the Inertial Navigation System (INS).

This sensor provides information regarding the vehicle rotation and rotation rate, as well

as translation sensing. In this way, local elastic disturbances are also taken into account.

In this report, the FCS only takes into account rigid body motion. Thus, the state space

representation ignoring flexible dynamics becomes:
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ẋ =


ż

z̈

θ̇

θ̈

 =


0 1 0 0

0 − Nα
mV

D−Tt−Nα
m 0

0 0 0 1

0 Nαlα
IyyV

Nαlα
Iyy

0



z

ż

θ

θ̇

+


0
Tc
m

0
Tclc
Iyy

β +


0
Nα
m

0

−Nαlα
Iyy

αω (16)

y =


zINS

żINS

θINS

θ̇INS

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



z

ż

θ

θ̇

 (17)

with the state vector only including the corresponding rigid body variables:

x = [θ θ̇ z ż] (18)

2.2 TVC Actuator Dynamics

Thrust Vectoring Control, or TVC, is used to give the required nozzle deflection angle for

the desired thrust orientation to drive the vehicle. The actuator dynamics of the TVC

system are relatively complex and non-linear. [1]

Before sending the control signal, the system is coupled in series with a delay model to

account for the time delay imposed by the hardware. A second order Padé approximation

is used to approximate the time delay of τ = 20 ms caused by hardware processing times.

[9]

[
ḋ

d̈

]
=

[
0 1

− 12
τ2

− 6
τ

][
d

ḋ

]
+

[
0

− 12
τ2

]
βc (19)

βĉ = ḋ+ βc (20)

Where βc and βĉ are respectively, the TVC command and the same signal with delay.

The transfer function of the TVC dynamics is:

WTV C =
β

βĉ
=

ω2
TV C

s2 + 2ζTV CωTV Cs+ ω2
TV C

(21)

where ζTV C and ωTV C are the damping ration and natural frequency.

2.3 Wind Model

In this study the perturbations generated by the wind will be modelled through two

different wind gust models.
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2.3.1 Deterministic gust generator

The system is stressed with a synthetic step-like wind gust of the form:

vω(t) =


Va(

t
ta
)2 for 0 ≤ t < ta

(Vb − Va)
t−ta
tb−ta

+ Va for ta ≤ t ≤ tb

Vbe
t−tb
tf−tb

log 0.1

|Vb| for tb < t ≤ tf

(22)

where tf = 100s, ta = 70s, tb = 75s, Va = 5m/s and Vb = −30m/s.

Fig. 3 is the plot of the previous piece-wise function characterized by:

• t = [0, 45[: a parabolic profile with wind velocity stating from rest to 2.5 m/s.

• t = [45, 50[: a linear profile with wind velocity from 2.5 to -30 m/s.

• t = [50− 100] : an exponential profile with magnitude from -30 m/s to rest.

Figure 3: Deterministic step-like wind gust profile 1

It may be highlighted that in this wind gust, speed starts from a resting position and ends

in the same condition. This will give considerably stable results on the performance of

drift and pitch angle. For that reason, experiments will also be conducted using another

wind gust which does not return to equilibrium in order to analyze more critical conditions

(Fig. 4).

Figure 4: Deterministic step-like wind gust profile 2
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2.4 Time domain Model

This system is inherently time-varying, so the transfer functions are computed at successive

time-points along the trajectory. An assumption is made that stability can be assessed by

considering points on the trajectory where the parameters are varying “slowly enough”

that they may be assumed constant.

The time-varying model is implemented by altering the linear model parameters with

time using a planned look-up table in order to explain the perturbed motion around the

reference trajectory of the LV during the time span of ascending flight.

The reference LV model used in this work represents a medium-sized vehicle (lift-off mass

120.000 kg) in the same payload class as VEGA, with a complete description available in

Ref. [10].

Fig. 5 depicts variations in the main LV parameters, namely A6, K1, and ωBM , as a

function of flight duration for a sample ascent trajectory from the launch pod to an

altitude of 60 km.

Figure 5: Aerodynamic and control moment coefficients, and bending mode natural fre-

quency vs. flight time. [11]

Table 1 shows the whole set of model data at the highest dynamic pressure (max-Q)

condition (t = 72 s).
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Unit Value

m kg 7.38× 104

lα m 10.39

lc m 9.38

Iyy kgm2 3.28× 106

V m/s 937.70

Alt m 15143

Tc N 1.52× 106

Tt −D N 1.71× 106

Nα N/rad 1.07× 106

A6 1/s2 3.3818

K1 1/s2 4.5647

a1 1/s2 −0.0154

a3 1/s2 20.6090

a4 1/s2 −27.2710

ωBM rad/s 18.9

ζBM − 0.005

ϕINS − 0.8

σINS rad/m 0.178

ϕ̂TV C 1/kg 4.31× 10−5

ωTV C rad/s 70

ζTV C − 0.7

Table 1: LV model parameters at t=72 s (max-Q condition)[11]
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3 Baseline Controller

In this section, the goal is to analyse a flight control system for the LV.

In the design of attitude control it is necessary to limit trajectory deviations in terms

of attitude error and lateral drift, as well as the angle of attack, in order to ensure the

structural integrity of the vehicle. The LV is stabilized by acting on TVC nozzle deflections.

It is considered that the LV’s motion comprises of tiny deviations from the reference

trajectory.

Due to the time-invariant condition described in Subsection 2.4, to deal with rapidly

changing dynamics, a gain-scheduling strategy is typically used, which involves interpolat-

ing between a series of linear controllers developed for a distinct set of LV linear models

associated with numerous operational locations along the climb trajectory. The autopi-

lot can be designed with time-varying solutions that are frozen at short periods of time.

During this report, the calculus are developed only in the most critical condition of flight,

during the maximum dynamic pressure stage (Table 1).

3.1 Control requirements

The flight control system must guarantee that the behaviour fulfills demanding stabil-

ity and performance requirements in the face of external disturbances such as wind and

parametric dispersion, in order for the system to be resilient.

The classical FCSs of LVs allow performance evaluation using classical frequency-domain

criteria based on stability margins and time-domain simulations, which represent well-

proven flight certification practices.

Traditional stability criteria borrowed from classical control theory, such as phase-margin

and gain-margin, can be applied to the derived linear model.

Table 2 shows a group of stability requirements used for the VEGA launcher [12], set as

a reference in the thesis.

Rigid body margins Flexible body margins

Aero GM Rigid DM Rigid GM Flex GM Flex DM

Nominal conditions ≥ 6 dB ≥ 100 ms ≤ −6 dB ≤ −3 dB ≥ 50 ms

Table 2: VEGA Stability requirements

Other than stability, performance should also be taken into account. The objective is to

follow a determined trajectory, thus some boundaries are defined in Table 3 creating a

margin of error in the execution.

Requirements Metrics Bounds

Aerodynamic load Qα < Qα safety envelope

Lateral drift zmax < 500 m

Lateral rate drift żmax < 15 m/s

TVC angle deflection βmax < 6 deg

Table 3: VEGA Performance requirements
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The autopilot is designed to fulfil the established requirements, presented in the above

Tables, to minimize trajectory error and aerodynamic load in order to avoid the loss of

the vehicle while encountering external disturbances.

3.2 Short-period stabilization

The first need of FCS for LV stabilization is met by a PD controller on the attitude feedback

channel, whose design takes into account the vehicle’s rotational dynamics. Derived from

Eq. 1 while ignoring wind lateral, TVC, and bending mode dynamics,

θ̈ = A6θ +K1β (23)

it is then obtained the transfer function relating θ and β

θ(s)

β(s)
= G(s) =

K1

s2 −A6
(24)

Figure 6: Rigid body pole location

Fig. 6 shows the system’s root locus, where it is shown the position of the poles at ±
√
A6.

The instability of the system is represented, as a branch is located in the right-half plane.

For its stabilization, it is proceeded to the design of a PD controller of the form

K(s) = KPθ
+KDθ

s (25)

Considering the stability margins requirements of Table 2, KPθ
and KDθ

are calculated

adjusting to:

- 6 dB GM at low frequency

- 30 deg PM at high frequency

K(s)G(s) =
K1(KPθ

+KDθ
s)

s2 −A6
(26)
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At low frequency (ω → 0) it is imposed a value of 6 dB (= 2 in rad/s) gain margin,

knowing that

s = jω (27)

we can substitute in Eq. 26

K(jω)G(jω) =
K1(KPθ

+KDθ
jω)

−ω2 −A6
(28)

obtaining for ω → 0:

KPθ
=

2A6

K1
(29)

At high frequency, a 30 deg phase margin is considered so that

K(jω)G(jω) =
K1(KPθ

+KDθ
jω)

−ω2 −A6
= cos 30 + j sin 30 = (−

√
3

2
+ 0.5j) (30)

It can be separated now the real part as

K1KPθ
= −0.866(−ω2 −A6) (31)

and knowing the value of KPθ
, the frequency value can be extracted

ω =
√
1.31A6 (32)

On the other hand, the imaginary part gives

K1KDθ
ω = 0.5(−ω2 −A6) (33)

KDθ
=

√
A6

K1
(34)

In this way, the PD controller calculated will be the following:

K(s) = KPθ
+KDθ

s =
2A6

K1
+

√
A6

K1
s (35)

Fig. 7 shows the root locus once the PD controller has been applied to the system. The

zero from the derivative term forces the unstable pole branch to finish at the left-half

plane. Stability is then achieved.
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Figure 7: K(s)G(s) root locus

Fig. 8, illustrates the comparison between the open-loop system G(s) and the controlled

systemK(s)G(s) at t = 72s. It is observed how the application of a PD controller improves

gain and phase margin, as the curve is moving upwards and to the right.

Figure 8: Nichols plots of open-loop system G(s) (blue line) and controlled system

K(s)G(s) (orange line)

Fig. 9, shows that the stability requirements are obtained with an Aero gain margin of

6.02 dB at ω = 0 rad/s and a Rigid phase margin of 29.7 deg at ω = 2.1 rad/s.
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Figure 9: Bode diagram of the controlled system K(s)G(s)

3.3 TVC actuator dynamics

The TVC frequency response is a second-order low-pass filter that, when used in an

open-loop system, has the effect of attenuating high-frequency noise and neglecting high-

frequency dynamics. More crucially, the rigid body phase margin is proportional to the

delays imposed by various control loop elements. As a result of the sensor dynamics,

filters, and delays provided by digital computing, the phase margin and the delay margin

are further deteriorated.

From the bode diagram (Fig. 10), it is seen how the phase margin has experienced a

decrease of 2.4 deg, going under the stability margins, while the change in the aero gain

margin can be neglected.

Figure 10: Bode diagram of the controlled system with TVC actuator dynamics
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The TVC actuator dynamics is also represented as a Nichols plots in Fig. 11. Including

TVC dynamics, a rigid GM appears at 33.9 deg.

Figure 11: Nichols plots of open-loop controlled system K(s)G(s) without (blue line) and

with TVC controlled dynamics K(s)TV C(s)G(s) (orange line)

3.4 Drift control

Considering drift, performance requirements must be fulfilled. These are reported in Table

3.

The appearance of aerodynamic load is mainly due to wind disturbances. It can be

expressed as

Qα = Q(θ +
ż

V
− αω) (36)

So, minimizing the angle of attack (Eq. 3) , the aerodynamic load can be decreased. To

minimize the α variations, a θ feedback controller can be used [13]. Since the fundamental

time constant of the lateral drift dynamics is much greater than that associated to the

attitude dynamics, an appropriate selection of Kθ may be obtained by analyzing the so

called quasi steady-state form of the rigid body equation [14]. Here we will set to zero the

first and high order derivatives in θ.

From the equation of rigid-body attitude dynamics (Eq. 1), we may obtain

θ̈ = A6α+K1β (37)

Using the calculated PD, β control can be defined:

β(s) = −(KPθ
+KDθ

s)θ(s) (38)
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The transfer function results in

θ(s) =
A6

s2 +K1KDθ
s+ (K1KPθ

−A6)
(
żss
V

− αω) (39)

where żss is the drift rate value at steady-state. Setting the derivatives of θ to zero we

can find θ at steady-state

θss =
A6

(K1KPθ
−A6)

(
żss
V

− αω) (40)

Finally, knowing the relation between angles, we may calculate α at steady-state

αss =
K1KPθ

(K1KPθ
−A6)

(
żss
V

− αω) (41)

The minimum angle of attack will be achieved for KPθ
= 0. However, this condition

makes the system unstable. In this way, to limit the aerodynamic load and the lateral

drift, additional feedback on drift z and drift rate ż is introduced, so as to obtain the

controller

KBC(s) =
[
KPθ

KDθ
KPz KDz

]
(42)

With regard to the θ proportional control, even though it has an effect on α, it is difficult

to select a value of KPθ
which both satisfies stability requirements and performance in

terms of angle of attack or aerodynamic load.

On the other hand, small values forKPθ
andKDθ

may reduce lateral drift and aerodynamic

loads without jeopardizing the attitude tracking performance. However, using large values

of KPθ
and KDθ

the system will become unstable.

The definition of the elements of KBC , will be discussed in the following section.
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4 Controller design

In this section and based on the theory explained in Section 3, the parameters that will

compose the PD controller are designated. This will be done with two different procedures

based on pole placement methodology in order to study the most efficient, regarding

stability, performance and robustness.

As already mentioned, the two main objectives will be to obtain minimum drift and load

minimum always inside the requirements established in Subsection 3.1.

4.1 System architecture

First of all, it must be understood the architecture chosen to model the LV system. Figure

12 shows the composition used in Simulink software in order to simulate the system.

Figure 12: System architecture scheme

The plant is represented by the space state form of the EoM (Eq. 16), multiplied to the

TVC transfer function (Eq. 21). Moreover, there is a feedback channel for each element

of the state vector and multiplied by the gain matrix KBC (Eq. 42). The reference term

is scaled to ensure there is no steady-state reference tracking error, which in this case all

states are set to zero.

Thus, there are two inputs going through the plant, βc is the controlled input found after

the PD controller and αω is disturbance simulated in this case by the synthetic step-like

wind gusts defined in Subsection 2.3, divided by the forward velocity V of the LV. The

system is frozen at t = 72 s (Table 1) being this the point of highest dynamic pressure

condition and for that, the most critical one.

4.2 Pole placement

In feedback control system theory, pole placement, also known as Full State Feedback

(FSF), is a technique used to position a plant closed-loop poles at predetermined places.

The primary function of state feedback control is to stabilize a system so that all of its

closed-loop eigenvalues are located in the left side of the complex plane. Pole placement

provides a prerequisite for placing system poles in the desired positions. [15]

Considering a plant with input u (Eq. 13) and output y (Eq. 17), the goal is to develop a

feedback control system that drives the output to some desired value. This can be done by

comparing the output to a reference signal to get the control error and develop a controller
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that uses that error to generate the input signals into the plant with the mission of driving

the error to zero. [5]

Using the pole placement method, this problem may be approached by, rather than feed-

back of the output y, feedback of the value of each state variable in the state vector (Eq.

18). The state vector is then multiplied by a matrix that is made up of a collection of

different gain values (Eq. 42), the result is subtracted from a scaled reference signal and

this result is fed directly into the plant as the input, as seen in Fig. 12. Pole placement is

a method by which the proper gain matrix can be calculated to guarantee system stability.

[16]

With respect to the plant, the A matrix captures the dynamics of the system. Any

feedback controller has to modify the A matrix in order to change the dynamics of the

system. The eigenvalues of the matrix are the poles of the system and the location of the

poles dictates stability of a linear system. [15]

That is the key to pole placement, generating the required closed-loop stability by moving

the poles or the eigenvalues of the closed-loop A matrix.

In a mathematical view [5], the structure defined varies the inputs value as:

u = r−Kx (43)

Plugging this control input into the state equation, the loop is being closed and the

following state equation is obtained:

ẋ = Ax+B(r−Kx) (44)

or

ẋ = (A−BK)x+Br (45)

(A − BK) is the closed loop A matrix and the ability to move the eigenvalues is then

achieved by choosing an appropriateK. This will be proceeded in the following subsections.
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4.3 Manual Pole Placement

At first, the design of the new KBC controller will be done through a manual pole place-

ment method. To this end, the ability to place closed-loop poles wherever is chosen is

achieved, assuming the system is controllable and observable.

The rigid body system is initially unstable (Fig. 6) so the incorporation of KBC is com-

pulsory. As a first attempt it will be studied the effect of KPθ
and KDθ

already calculated

(Eqs. 29 and 35).

Figure 13: Model wind 1 input response to PD pitch controller

Figure 14: Model wind 2 input response to PD pitch controller
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In both cases (Figs. 13 and 14), pitch stability has been achieved as θ̇ reaches the steady

condition after the disturbance has stabilized. However, for the wind model 2 (Fig. 14),

drift is still unstable, illustrated with the divergence of z. In this degree, the implementa-

tion of a PD controller regarding drift is also needed. As previously stated, this controller

must have small values to guarantee stability.

The best results found with this method have been for

KPz = −0.0008; KDz = −0.005; KPθ
= 1.8; KDθ

= 1.5; (46)

To find this values it has been followed a manual process described in Annex A.1.

The final results are plotted in Figs. 15 and 16.

Figure 15: Model wind 1 input response to final PD controller

Fig. 15 shows how, after the action of a wind disturbance (model wind 1), both drift and

pitch angle return to the reference position. However, in Fig. 16, a small error appears

in the performance of z and θ after dealing with the model wind 2 input, although inside

the defined margins (Table 3).
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Figure 16: Model wind 2 input response to final PD controller

In order to see if the final results meet the requirements, the response of the TVC angle

and the aerodynamic load are obtained. For both input wind gusts, the results of the

controlled TVC angle βc obtained are illustrated in Figs 17 and 18.

Figure 17: βc response to model wind 1

input

Figure 18: βc response to model wind 2

input

Fig. 17 shows how, once the wind disturbance returns to a steady condition, βc goes to

zero. While in Fig. 18, where the wind disturbance is not zero at equilibrium, there is a

need of a small TVC angle in order to follow the reference trajectory. This is in relation

with the fact that ż, θ and β are all proportional to each other (Eqs. 1 and 2), and being

ż and θ different from zero (Fig. 16), βc could not possibly be zero at stability.
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The aerodynamic load is calculated considering that, at the frozen time considered (t = 72

s), the LV is at an altitude of h = 15143 m and has a forward velocity of V = 937.70 m/s

(Table 1). For that reason we can obtain the dynamic pressure as

Q =
1

2
ρ(h)V 2; ρ(h) = 0.15595ρ0 (47)

And from Eq. 36 we have:

Figure 19: Qα response to model wind 1

input

Figure 20: Qα response to model wind 2

input

The aerodynamic load has linear relation with the sum of ż
V , θ and αω (Eq. 36). In this

way, for model wind 1 input, having all these parameters reaching the steady condition,

Qα is also close to zero at equilibrium (Fig. 19). Whereas in Fig. 20, the aerodynamic

load is different from zero as the wind disturbance is not null and neither are the drift

rate and pitch angle obtained. For this reason, the mission of obtaining small values of ż

and θ is determined to reaching minimum load in the LV.

To have a clearer view, the obtained results are presented in Table 4.

Parameters Wind Model 1 Wind Model 2

Aerodynamic load ≃ 0 N 803.1 N

Lateral drift ≃ 0 m −36.56 m

Lateral rate drift ≃ 0 m/s ≃ 0 m/s

TVC angle deflection ≃ 0 deg −0.4072 deg

Table 4: Performance parameters for final PD controller

These are inside the performance requirements defined in Table 3.

Regarding stability margins, the controller proposed, together with the system, develops

an Aero Gain Margin of 6.44 dB, a Rigid Phase Margin of 71.6 deg and a Rigid Gain

Margin of 23 dB as represented in Fig. 21, which considering Table 2, is inside the

margins established.
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The improvement with respect to the system which only used pitch control (Eq. 35) can

be analysed through Fig. 21.

Figure 21: Nichols plots of open-loop controlled system K(s)TV C(s)G(s) (orange line)

and KBC(s)TV C(s)G(s) (blue line)

Both Aero GM and Rigid PM are improved as the curve translates upwards and to the

right, although with a cost of lower Rigid GM, which is still inside the requirements.

4.4 Linear Quadratic Regulator

The controller will also be designed by a different method. A Linear Quadratic Regulator

is a type of optimal control that is based on state-space representation.

Being this also a type pole placement, LQR controllers also feed back the full state vector,

multiplying it by a gain matrix K and subtracting it from the scaled reference. So the

structure of these two control laws is the same (Fig. 12). However, how K is chosen is

different.

In LQR pole locations are not picked, but the optimal K matrix is found by choosing

closed-loop characteristics that are important to the mission. Specifically, how well the

system performs and how much effort does it take to get that performance.

In short, LQR computes control signals by simulating the situation as an optimization

problem. In other words, it attempts to provide control signals that minimize a cost

function. [17]

Considering a linear time-invariant system in state-space form as Eq. 16, the cost function

will be given by a quadratic cost function which quantifies the performance of the controller
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J =

∫ ∞

0
[xTQx+ uTRu]dt, Q = QT ≤ 0, R = RT > 0 (48)

Q is a square matrix NxN (N=number of states) and defines the performance whilst R

defines the effort.

Since the only controlled variable in this case is the TVC angle β, the specific cost function

to minimize is expressed as

minβc

∫ ∞

0
(xTQx+ β2

c )dt (49)

Q is a user defined matrix that tells the solver which combination of states to minimize.

And the input thrust angle is also trying to be minimized by R. At first these two matrices

will be defined as

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ; R = 1; (50)

The mathematics of this process are very time consuming and complex. In order to simplify

the process, the calculus is done in Matlab software with the function K=lqr(A,B,Q,R),

where Q and R are the previously defined matrices and A and B are the matrices corre-

sponding to the state space representation of the system. Obtaining the matrix K, it can

now be substituted in the gains of the system.

Thus, it is first analyzed the performance and stability for this case.

Figure 22: Response to model wind 1 input with LQR controller
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Figure 23: Response to model wind 2 input with LQR controller

The plots obtained (Figs. 22 and 23) show all parameters are within the margins for

both wind model inputs. Similarly, to the controller designed in Subsection 4.3, for the

response to model wind 2 input (Fig. 23), drift rate and pitch angle present small errors

with respect to the reference point.

In the case of stability, Fig. 24 illustrates how the system now has an Aero GM of 18.9

dB, a Rigid PM of 42.9 deg and a Rigid GM of 9.57 dB.

Figure 24: Nichols plot for initial LQR controller
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Having stability margins inside the desired range, the mission is to improve the signal

shape of Figs. 22 and 23 paying attention to time response and overshoot.

The difficulty of this method is that although it is indeed more intuitive the choice of

parameters to vary, in every variation of Q and R to improve any performance aspect, it

must be checked that the stability of the system has not been jeopardized.

After some tryouts, the best results have been obtained by Q and R matrices defined as

follows. The process of design is developed in Annex A.2.

Q =


5 0 0 0

0 0.01 0 0

0 0 1 0

0 0 0 1

 ; R = 0.1; (51)

The calculated gains that compose matrix K are

KPz = −7.0711; KDz = −5.0763; KPθ
= 98.2365; KDθ

= 29.3690; (52)

Fig. 25, shows the stability margins obtained by incorporating the new K matrix into the

system. These will be Aero GM at 14 dB, Rigid PM at 34.2 deg and Rigid GM at 8.52

dB.

Figure 25: Nichols plot for final LQR controller
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Now, with regard to performance, it is going to be studied the equilibrium reached for

each parameter.

Figure 26: Response to model wind 1 input with final LQR controller

Figure 27: Response to model wind 2 input with final LQR controller

Figs. 26 and 27 display there has been an improvement in minimizing the error of drift

with respect to the previous results (Figs. 22 and 23), specifically in the response to model

wind 2 input. The deviation of drift has been lowered by almost 0.4 m and with a better
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time response.

From the error minimization, it is also minimized the cost of β and the aerodynamic load.

Figs. 28 and 29 show the TVC angle needed in the equilibrium is very small.

Figure 28: βc response to model wind 1

input for final LQR controller

Figure 29: βc response to model wind 2

input for final LQR controller

Likewise, the aerodynamic load experienced for both wind inputs is plotted in Figs. 30 and

31. As in previous cases, aerodynamic load is only present after the system has confronted

to wind model 2 input (Fig. 31).

Figure 30: Qα response to model wind 1

input for final LQR controller

Figure 31: Qα response to model wind 2

input for final LQR controller

Table 5 illustrates all the steady state responses seized during this process.

Parameters Wind Model 1 Wind Model 2

Aerodynamic load −0.002199 N 803.1 N

Lateral drift ≃ 0 m −0.1719 m

Lateral rate drift ≃ 0 m/s ≃ 0 m/s

TVC angle deflection ≃ 0 deg −0.4071 deg

Table 5: Performance parameters for final LQR controller

As mentioned, these are also inside the performance requirements defined in Table 3.

33



5 Results and discussion of the differences among the

considered methods

Aiming to analyze the diversity between the two traditional methods, the response of both

designs previously described is compared.

First, the difference in the steady state reached is analysed. Tables 4 and 5 are recalled

in Table 6.

POLE PLACEMENT LQR

Parameters Wind M1 Wind M2 Wind M1 Wind M2

Aerodynamic load ≃ 0 N 803.1 N -0.002199 N 803.1 N

Lateral drift ≃ 0 m -36.56 m ≃ 0 m -0.1719 m

Lateral rate drift ≃ 0 m/s ≃ 0 m/s ≃ 0 m/s ≃ 0 m/s

TVC angle deflection ≃ 0 deg -0.4072 deg ≃ 0 deg -0.4071 deg

Table 6: Performance comparison for final controllers

From Table 6 it is understood that, for the first wind model input, all parameters reach a

value close to the reference position. This is due to the fact that the step input (Fig. 3)

starts and finishes in the resting condition. For the second step input (Fig. 4), the nozzle

angle is different from zero. This steady state error is due to the fact that model wind

input 2 does not return to the resting position but keeps maintaining velocity. Therefore,

it is required to deflect the TVC angle to compensate for this disturbance. Comparing

both designs, there is a lower trajectory error in the LQR method although the objectives

of load minimum and smaller effort with respect to TVC angle are almost the same in

both controllers. Whether the difference in drift achieved is significant enough will be

discussed after studying other characteristics of the response.

In the next step, the shape of the response signals is evaluated. Figs. 32, 33, 34, 35 plot

the signals obtained from both controllers. Plots in orange correspond to the manual pole

placement and blue plots, to the LQR.

Figure 32: Comparison Qα response to

model wind 1 input for both controllers

Figure 33: Comparison Qα response to

model wind 2 input for both controllers
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Figure 34: Comparison βc response to

model wind 1 input for both controllers

Figure 35: Comparison βc response to

model wind 2 input for both controllers

As described before, Figs. 32, 33, 34, 35 illustrate how the aerodynamic load and TVC

angle deflection are almost the same in both controllers when equilibrium has been reached.

Moreover, in all cases, the transition to the final response is more aggressive in the LQR

controller while it has a smaller time response.

Fig. 36 reports the response of both controllers with model wind 1 as input. All parameters

end in a steady condition. With the LQR controller, drift is close to be constant and pitch

experiences a small overshoot before returning to the reference position. While with the

manual pole placement controller, both pitch and drift take more time to find the steady

condition with bigger trajectory error during the path.

Figure 36: Comparison response to model wind 1 input for both controllers
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Fig. 37 shows the response of both controllers with model wind 2 as input. Both pitch and

drift experience a small error in the trajectory once equilibrium has been reached. The

main difference between both is the improvement on drift performance obtained with the

LQR controller. LQR controller also reaches equilibrium quicker although with a more

aggressive transition. Moreover, it is important to highlight how the first PD controller

(manual pole placement) experiences a higher overshoot.

Figure 37: Comparison response to model wind 2 input for both controllers

Finally with regard to stability, Fig. 38 presents the Nichols plots drawn by each controller.

Figure 38: Nichols plots of pole placement controlled system (orange line) and LQR con-

trolled system (blue line)
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It is apparent that the Aero GM is increased with the LQR controller at a cost of reducing

the Rigid PM and Rigid GM. Both controllers fulfil stability requirements as already

stated.
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6 Conclusions

In conclusion, both methods cover the need of guarantying stability and performance inside

the determined restrictions. The selection of the best controller will depend on whether

it is more critical to obtain a quicker response or having a smother transition will depend

on the mission of each project.

On the other hand, with respect to the optimization process, the design of the LQR

controller has turned out to be less time consuming and more intuitive. The fact that its

design is based on giving importance to certain characteristics, makes the parameters that

are modified each time more intuitive.

6.1 Accomplishments

During the work, it has been possible to fulfill the principal objectives mentioned at the

beginning of the report.

The design of a Flight Control System has been developed in two different ways, attending

to the need of ensuring a favorable stability of the system and the correct performance of

the model. The control system is a classical gain-scheduled proportional-derivative (PD)

controller, to stabilize rigid-body dynamics.

It has been taken into account how a proper trajectory performance of drift rate and

pitch angle will guarantee minimum load. Moreover, it is appreciated that stability and

performance have an inversely proportional relation in such that the improvement of one

may jeopardize the other’s outcome. The classical ’drift-minimum’ and ’load-minimum’

control principles have been pursued, as well as the robustness with respect to possible loss

of performance due to model uncertainties, off-nominal flight conditions, and unexpected

wind gust disturbances.

The most difficult task is to find control system parameters that satisfy both the stability

and robustness requirements as well as performance in terms of error tracking and dis-

turbance rejection. As a result, an iterative and time-consuming procedure is required to

reach a good compromise between competing flight control system requirements.

Finally, having worked with the two different methods, the efficiency of traditional control

theory in such complicated systems has been studied and the importance of the imple-

mentation of new techniques in the current days has been understood.

6.2 Future work

Regarding an improvement on the work in the future, it would be interesting to consider

the design of a bending filter. Having already developed a rigid body controller, the

inclusion of a bending filter would also take into account the flexible dynamics of the

system.

However, it should be considered that the incorporation of this new element could jeop-

ardize the effectiveness of the controller already designed. There is a need to re-tune the

controller in a iterative process until the desired results are reached.
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A Gain search

A.1 Manual pole placement gain search

The design of the first controller follows a manual process. The responses are obtained

from the simulation of the system (Fig. 12) in MATLAB Simulink. All tests are done

with the wind model 2 (Fig. 4) as input, which is a more critical condition. Using the

wind model 1 (Fig. 3), only performance results will be modified although with a better

outcome, stability is independent of the input used.

The below table collects the different tests performed in the search for the better controller

KBC design. In all cases, stability of the system and performance of maximum drift and

TVC angle deflection are studied.

KPz KDz KPθ
KDθ

zmax β Aero GM Rigid PM Rigid GM

0 0 1,4866 0,4037 -2340 0 5,56 26,4 33,9

-0,001 0 1,4866 0,4037 -26,4 -0,3461 3,86 -10,5 33,9

-0,0001 0 1,4866 0,4037 -255 -0,401 5,42 26,4 33,9

-0,00001 0 1,4866 0,4037 -1618 -0,1825 5,55 26,4 33,9

-0,0001 -0,01 1,4866 0,4037 -171,4 -0,3871 2,37 12,1 34,8

-0,0001 -0,001 1,4866 0,4037 -253,9 -0,402 5,14 25,1 34

-0,0001 -0,0001 1,4866 0,4037 -254,4 -0,4025 5,4 26,3 33,9

-0,0001 -0,0001 1,7 0,4037 -279,5 -0,3973 6,51 25,5 33,8

-0,0001 -0,0001 1,3 0,4037 -231,1 -0,4076 4,27 26,6 34

-0,0001 -0,0001 1,7 0,7 -279,7 -0,3963 6,75 46,8 29,3

-0,0001 -0,0001 1,7 0,9 -279,7 -0,3956 6,81 58,3 27,2

In order to understand better the results, it is arranged a color pattern, where green

expresses that the requirements have been fulfilled; yellow, that they are close to be met;

and red, that they are far from the desired value. Moreover, in bold, the controller elements

that are being varied are highlighted.

Starting (first row) from the baseline controller (Eq. 25), drift and pitch gains are modified

individually to evaluate the effect on the result. Using the BC, drift performance is outside

the requirements although there is no need to deflect the TVC angle. Regarding stability,

the required margins are almost reached. Including a small drift proportional gain KPz ,

stability margins are heavily jeopardized although drift performance is improved. For a

low magnitude KDz stability can be improved considerably. Lastly, both KPθ
and KDθ

are

increased a bit to obtain the desired stability margins, always checking the performance

is desirable.
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Once all values are inside the requirements of Tables 2 and 3, it is analysed the response

signal.

Figure 39: Test 1- Responses to manual pole placement

Fig. 39 shows the responses obtained are really slow, especially with respect to drift. The

gains for drift and drift rate are then modified as

KPz KDz KPθ
KDθ

zmax β Aero GM Rigid PM Rigid GM

-0,0001 -0,0001 1,7 0,9 -279,7 -0,3956 6,81 58,3 27,2

-0,0003 -0,005 1,7 0,9 -93,3 -0,4069 6,12 56,1 27,4

-0,0008 -0,005 1,7 0,9 -35,02 -0,407 5,78 56,2 27,4

and its corresponding response becomes

Figure 40: Test 2- Responses to manual pole placement
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In this way, the response is much quicker as shown in Fig. 40.

However, stability has been jeopardized a bit, seen in the first row of the below table. To

solve the problem, pitch gains are also modified.

KPz KDz KPθ
KDθ

zmax β Aero GM Rigid PM Rigid GM

-0,0008 -0,005 1,7 0,9 -35,02 -0,407 5,78 56,2 27,4

-0,0008 -0,005 1,7 1 -35,02 -0,4072 5,84 61 26,5

-0,0008 -0,005 1,7 1,2 -35,02 -0,4072 5,89 67,5 25

-0,0008 -0,005 1,7 1,5 -35,02 -0,4071 5,9 72,2 23,1

-0,0008 -0,005 1,7 1,6 -35,02 -0,4072 5,89 73 22,5

-0,0008 -0,005 1,8 1,5 -36,56 -0,4072 6,44 71,6 23

The final response is shown in Fig. 41.

Figure 41: Test 3- Responses to manual pole placement

It has been managed to manually find a controller inside stability and performance re-

quirements and improving the time response.

A.2 LQR gain search

In order to find the optimal Q and R matrices, these are first defined as

Q =


q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

 ; R = r; (53)

In the same way than in Annex A.1, all tests are obtained from the simulation of the

system (Fig. 12) and done with the wind model 2 as input.
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First, it is analysed the specific function of each element. Starting from all values equal

to 1, they are then modified individually and their side effect is interpreted.

Figure 42: LQR tests for r = 1 (blue) and r = 0.1 (orange)

Figure 43: LQR tests for r = 1 (blue) and r = 10 (orange)

From Fig. 42 it is seen that, decreasing the value of r, the absolute value of drift is

decreased with smaller overshoot although higher time response. The opposite effect than

in Fig. 43, where r is increased.
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Figure 44: LQR tests for q1 = 1 (blue) and q1 = 10 (orange)

Figure 45: LQR tests for q1 = 1 (blue) and q1 = 0.1 (orange)

From Fig. 44 and Fig. 45 it is shown that, increasing q1, the absolute value of drift is

decreased with smaller time response although higher overshoot.
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Figure 46: LQR tests for q2 = 1 (blue) and q2 = 10 (orange)

Figure 47: LQR tests for q2 = 1 (blue) and q2 = 0.1 (orange)

Fig. 46 and Fig. 47 state that, contrary to the latter case, the absolute value of drift is

decreased with smaller time response although higher overshoot for a smaller value of q2.
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Figure 48: LQR tests for q3 = 1 (blue) and q3 = 1000 (orange)

Figure 49: LQR tests for q3 = 1 (blue) and q3 = 0.001 (orange)

Fig. 48 illustrates that the absolute value of drift can be increased with a quite high value

of q3, whilst Fig. 49 shows that decreasing this value, there is no change.
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Figure 50: LQR tests for q4 = 1 (blue) and q4 = 10 (orange)

Figure 51: LQR tests for q4 = 1 (blue) and q4 = 0.001 (orange)

Fig. 50 and Fig. 51 have a similar response to the previous case, where increasing q4,

the absolute value of drift can be increased, although decreasing it has no effect on the

response.

As an overview, changing the specified values of Q and R matrices only have an effect on

drift and drift rate as the pitch angle has maintained unaltered in the whole process.
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Regarding stability, it is also studied for the desired modifications of the values. This is,

for a decreasing r and q2 and an increasing q1 while q3 and q4 will remain equal to 1.

R Q1 Q2 Q3 Q4 Aero GM Rigid PM Rigid GM

1 1 1 1 1 18,9 42,9 9,57

0,1 1 1 1 1 27 5,19 1,09

0,01 1 1 1 1 36,2 -31,1 -8,35

1 5 1 1 1 17,5 40,3 9,06

1 10 1 1 1 16,8 38,4 8,7

1 100 1 1 1 15,4 27,6 6,52

1 1 0,1 1 1 12,3 49,5 14,6

1 1 0,01 1 1 10,2 49 16

1 1 0,001 1 1 9,87 48,9 16,2

1 1 0,0001 1 1 9,84 48,9 16,2

Considering the best combination with regard to both performance and stability, it is set

Q =


5 0 0 0

0 0.01 0 0

0 0 1 0

0 0 0 1

 ; R = 0.1; (54)

Fig. 52 plots the Aero GM at 14 dB, Rigid PM at 34.2 deg and Rigid GM at 8.52 dB.

Figure 52: Nichols plot for final LQR controller
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And the performance for this combination results in

Figure 53: Responses plot for final LQR controller
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