
University of Leeds
Aeronautical and Aerospace

Engineering BEng

Individual Engineering Project

Final report

Rocket design and analysis in support of Leeds
University Rocketry Association (LURA):

Flutter analysis and
its prevention in rocket fins

Author:

Paula Perez Morgado

mn21ppm@leeds.ac.uk

paupemor@etsid.upv.es

Tutors:

External Tutor, UoL - Gregory de Boer

G.N.deBoer@leeds.ac.uk

Tutor, UPV - José Martínez Casas

jomarc12@upv.edu.es

Cotutor, UPV - Víctor Tomás Andrés Ruiz

vicanrui@upv.edu.es

MECH3890 Individual Engineering Project

Academic year: 2021/2022

Leeds, United Kingdom.

29th July 2022



UoL School of Mechanical Engineering

Abstract

Within the field of the aeroelasticty, concretely in the dynamic one, the flutter is the

most important phenomenon to consider during the first steps in a rocket design.

Its prediction is not simple at all, but the catastrophic structural consequences it

supposes make that it must be estimated and controlled as much as possible. That

is why the phenomenon of flutter is chosen as the main subject to study throughout

this final engineering project. Nonetheless, the divergence one is also presented

since the structural failures it involves are not in the least less significant.

For that reason, a graphical user interface where it is possible to input the data of

the fins that are being used in a rocket and get a first estimation of the velocities

at which both phenomenons will occur is created. To this effect, the mathematical

background of flutter is firstly worked out to reach their governing equations. Later

on, those are implemented in MATLAB, creating a set of functions which will be

finally used by the Simulink model, the MATLAB’s toolbox where the user interface

is developed. Lastly, a validation process is performed with the NACA Report

No.685 and the well-known AeroFinSim simulator, where the inlfuence of different

parameters is analysed.

As this project is intended to support the Leeds University Rocketry Association, the

Simulink model is finally used with the data of the fins they are using on its current

design. Thus, the flutter and divergence values they are considering at the moment

are compared with the ones obtained in the Simulink model and the differences

between them are discussed.

i



UoL School of Mechanical Engineering

Contents

1 Introductory chapter 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Report layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Mathematical background 3

2.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Dynamic matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Generalised forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Solution of the dynamic problem . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Steady aerodynamic forces . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Quasi-stationary aerodynamic forces . . . . . . . . . . . . . . . . . 7

3 MATLAB code 8

3.1 Initial function - Dimensionless parameters . . . . . . . . . . . . . . . . . 8

3.2 Steady aerodynamics functions . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Frequency vectors - Steady approach . . . . . . . . . . . . . . . . 9

3.2.2 Fin flutter speed value - Steady approach . . . . . . . . . . . . . . 11

3.3 Quasi-steady aerodynamics functions . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Theodorsen function . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 Frequency vectors - Quasi-steady approach . . . . . . . . . . . . 12

3.3.3 Fin flutter speed (Theodorsen’s method) - Quasi-steady approach 14

3.4 Plotting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Flutter simulator - Graphical user interface 16

4.1 User fin data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Divergence speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Steady aerodynamics approach . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Quasi-steady aerodynamic approach . . . . . . . . . . . . . . . . . . . . . 19

5 Validation process 21

5.1 Steady aerodynamics model . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Quasi-steady aerodynamics model . . . . . . . . . . . . . . . . . . . . . . 22

ii



UoL School of Mechanical Engineering

5.3 AeroFinSim simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Case of LURA’s fins 24

7 Concluding chapter 26

7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Mathematical developments 29

A.1 Process to obtain the dynamic matrices . . . . . . . . . . . . . . . . . . . 29

A.2 Intermediate steps for the generalised forces vector . . . . . . . . . . . . 31

A.3 Steady aerodynamics model - Intermediate steps . . . . . . . . . . . . . . 33

A.3.1 Frequency plots - Extended discussion . . . . . . . . . . . . . . . 33

A.3.2 First order approximation - Complete development . . . . . . . . . 34

A.4 Quasi-steady aerodynamics model - Intermediate steps . . . . . . . . . . 36

A.4.1 New matrix coefficients . . . . . . . . . . . . . . . . . . . . . . . . 36

A.4.2 Expressions of the aerodynamic derivatives . . . . . . . . . . . . . 36

A.4.3 Theodorsen’s method - Mathematical perspective . . . . . . . . . 37

B MATLAB scripts 38

B.1 Initial function code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.2 Steady model 1st function code. Frequency vectors. . . . . . . . . . . . . 39

B.3 Steady model 2nd function code. Value of the fin flutter speed . . . . . . . 41

B.4 Theodorsen’s function code . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B.5 Quasi-steady model 2nd function code. Frequency vectors. . . . . . . . . 42

B.6 Quasi-steadymodel 3rd function code. Flutter speed (Theodorsen’smethod) 44

C Simulink subsystems 45

C.1 First order approximation (steady model) subsystem . . . . . . . . . . . . 45

C.2 Aerodynamic derivatives (quasi-steady model) subsystem . . . . . . . . . 45

D Validation process - Relative error values 46

E LURA’s fins CAD design 47

iii



UoL School of Mechanical Engineering

List of Figures

1 CP and CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Collar’s triangle of forces (Aerospace Engineering Blog, 2017) . . . . . . 1

3 Two degrees of freedom system used to represent the flutter phenomenon

[9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Particular case solution for a = −0.2, µ = 30, iθ = 0.611, d = 0, η = 0.2 [9] 5

5 Solution for the particular case of: a = −0.2, µ = 30, iθ = 0.611, η = 0.2,

d = 0, Clθ = 2π, Cmθ = 0.3142, C lθ̇ = 6.254, Cmθ̇ = −0.6235 [9] . . . . . . 7

6 Initial function flow chart. Dimensionless parameters calculation. . . . . . 8

7 Steady model 1st function. Frequency vectors. . . . . . . . . . . . . . . . 10

8 Steady model 2nd function. Value of the fin flutter speed . . . . . . . . . . 11

9 Quasi-steady model 1st function. Value of the Theodorsen function. . . . 12

10 Quasi-steady model 2nd function. Frequency vectors, graphical flutter

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

11 Quasi-steady model 3rd function. Flutter speed (Theodorsen’s method). . 14

12 Plotting function for the steady and the quasi-steady models . . . . . . . . 15

13 Outer view of the graphical user interface . . . . . . . . . . . . . . . . . . 16

14 User fin data zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

15 Divergence speed section zoom . . . . . . . . . . . . . . . . . . . . . . . 17

16 Steady aerodynamics - frequency vectors, flutter speed and frequency

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

17 Steady aerodynamics - First order approximation . . . . . . . . . . . . . . 19

18 Q-smodel - Theodorsen’s function, aerodynamic coefficients and frequency

vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

19 Quasi-steady aerodynamics - Flutter speed and frequency values . . . . 20

20 Graph comparison between the steady model and the NACA Report No.

685. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

21 Relative errors between the quasi-steadymodel and the the NACAReport

No. 685. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

22 Relative errors between the steady model and the AeroFinSim 10 software 23

23 LURA’s fins parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

24 Comparison between the results of the steadymodel and the LURA’s values 24

25 Frequency graphs for the steady and the quasy-steady approaches . . . 25

iv



UoL School of Mechanical Engineering

26 Initial function code - Dimensionless parameters . . . . . . . . . . . . . . 38

27 Steady model 1st function code - Part 1 . . . . . . . . . . . . . . . . . . . 39

28 Steady model 1st function code - Part 2 . . . . . . . . . . . . . . . . . . . 39

29 Steady model 1st function code - Part 3 . . . . . . . . . . . . . . . . . . . 40

30 Steady model 1st function code - Part 4 . . . . . . . . . . . . . . . . . . . 40

31 Steady model 2nd function code - Part 1 . . . . . . . . . . . . . . . . . . . 41

32 Steady model 2nd function code - Part 2 . . . . . . . . . . . . . . . . . . . 41

33 Quasi-steady model 1st - Theodorsen’s function code . . . . . . . . . . . 41

34 Quasi-steady model 2nd function code - Part 1 . . . . . . . . . . . . . . . 42

35 Quasi-steady model 2nd function code - Part 2 . . . . . . . . . . . . . . . 42

36 Quasi-steady model 2nd function code - Part 3 . . . . . . . . . . . . . . . 43

37 Quasi-steady model 2nd function code - Part 4 . . . . . . . . . . . . . . . 43

38 Quasi-steady model 2nd function code - Part 5 . . . . . . . . . . . . . . . 43

39 Quasi-steady model 3rd function code - Part 1 . . . . . . . . . . . . . . . 44

40 Quasi-steady model 3rd function code - Part 2 . . . . . . . . . . . . . . . 44

41 First order approximation subsystem . . . . . . . . . . . . . . . . . . . . . 45

42 Aerodynamic derivatives subsystem . . . . . . . . . . . . . . . . . . . . . 45

43 Relative errors between the steady model and the NACA Report No.685 . 46

44 CAD design of the current fins used by LURA . . . . . . . . . . . . . . . . 47



UoL School of Mechanical Engineering

1 Introductory chapter
1.1 Introduction
Stability is one of the most crucial criteria to consider when designing a rocket. Apart

from reaching high speeds during launch, its orientation and intended flight plan must

be kept avoiding wobbling and tumbling. This is what is known as stability [8] and it must

be conserved as much as possible, averting any threat that infringe upon it.

Figure 1: CP and CG

Fins are allocated on the rocket’s tail to ensure stability.

They try to guarantee the centre of pressure (green point)

is always behind the gravity one (blue point), so that the

generated aerodynamic forces act as restoring forces in

response to any undesirable rotation the rocket can suffer

from. Fig.1 [8] shows how those restoring forces acts

depending on the locations of both centres.

However, they are designed to work stably within a certain range of speeds. Beyond this

range, fins can start to fiercely vibrate because of the coupling of two modes of vibration

in the aeroelastic system. From this point, the air will act as damping reductor since

the damping speed will no longer increase with flight velocity [6]. That would result in

their permanent deformation and retaking the control would be practically impossible,

leading to catastrophic structural failures [1].

Something similar happens when the divergence phenomenon occurs. In this case, the

generated aerodynamic moments exceed the fin structural stiffness, being impossible

to recover an equilibrium state then. The structure cannot withstand such aerodynamic

loads and will be finally brought to the failure [11].

Because of that, the rocket fins flutter and divergence control must be a priority when

dealing with stability, so aeroelasticity has to be seriously studied. To achieve this, the

connection between the 3 main disciplines shown in the vertices of the Collar’s triangle

of forces of Fig.2 must bemathematically analysed, as it is performed in the next section.

Figure 2: Collar’s triangle of forces (Aerospace Engineering Blog, 2017)

1

https://drive.google.com/file/d/1Cu5csTXnxdwywW9abKBenVSlRwdJSR08/view?usp=sharing
https://drive.google.com/file/d/1ndcWVEVBz9gdiIWl__WkwsFR_mMEAxl5/view?usp=sharing


UoL School of Mechanical Engineering

1.2 Aim of the project
Development of a complete aeroelastic simulator through the toolbox of Simulink which

allows to obtain the vibratory response of the user-defined rocket fin to predict when the

catastrophic flutter and divergence phenomena will occur. The flutter and divergence

speeds and frequencies, as well as the evolution of the frequency of each mode of

vibration when the flight speed is increased, will be the principal outcomes of that simulator.

1.3 Objectives
The principal objectives were updated at the beginning of the second semester, so small

changes can be observed if they are compared with the ones written in the scoping and

planning document. They are listed below, where the milestones are underlined:
1. Literature review

(a) Introduction to aeroelasticity from literature.
(b) Study of the differences between the static and the dynamic aeroelasticity,

focusing on the dynamic one since flutter is found within it.
(c) Investigate about the different possible approaches to solve the flutter problem.

2. Search of different numerical methods that could be used to get the implementation

of the flutter governing equations into MATLAB, noting the possible limitations and

the needed input values for each one.
3. Calculate the frequency of each of the vibration modes of the problem.
4. Identify the flutter and divergence speeds and frequencies.
5. Development of an aeroelastic simulator using the toolbox of Simulink which shows

the vibratory response of the rocket fin that is being studied.
(a) Think about the inputs that are needed for the simulation.
(b) Determination of the outputs that the simulator will generate. They must be

quite useful so that the user is able to get an idea of the velocity at which the

fin will flutter and the divergence speed in a quick look.

6. Trade-off between the input parameters and the flutter results to find the most

suitable conditions in terms of avoiding flutter effects.
7. Validation process with CFD simulations: design, mesh, and post-processing.

1.4 Report layout
The report starts with a brief introduction in order to make the reader aware of the

importance of the fin flutter when designing a rocket. This is followed by themathematical

background where the flutter and divergence governing equations are reached. Next,

they are implemented in a MATLAB code which is explained through a set of helpful flow

diagrams. Then, the Simulink model is described, which results will be finally validated.

Lastly, the flutter condition of the fins that LURA is currently using is deeply studied.

2



UoL School of Mechanical Engineering

2 Mathematical background
During this chapter, all the essential governing equations of the flutter phenomenon are

developed. For that, two of the most relevant books in the aeroelasticity field, [2] and [3],

together with the lecture notes of an excellent university professor from the Universidad

Politécnica de Valencia, [9] and [10], were studied in detail to finally be able to critically

analyse and synthesize all the following mathematical developments.

The main objective is the study of the combination of the three kind of forces that come

simultaneously into play in the vibration problem of flutter. For that, the energy method

will be applied in an aerofoil simulating the fin of a rocket, leading to the Euler-Lagrange

motion equations. First of all, the flutter phenomenon is represented through the two

degrees of freedom system shown in Figure 3.

Figure 3: Two degrees of freedom system used to represent the flutter phenomenon [9]

It can be observed that the two degrees of freedom are the vertical displacement, h(t),

and the turn around the E, θ(t), being positive downwards and clockwise, respectively.

Those represent the elastic of bending and torsion in real fins but in a simplified way.

Thus, it is considered that both, the bending and torsion stiffness, kh and kθ, respectively,

are concentrated in the E where the two elastic and lineal springs are drawn.

2.1 Equations of motion
The two degrees of freedom are the unknowns of the problem and they are bound

together in a dimensionless vector u =
{
h(t)/b, θ(t)

}T . Now, the resulting differential

system of Euler-Lagrange equations can be expressed as:

d

dt

(
∂T

∂u̇

)
+
∂D

∂u̇
+
∂U

∂u
= Q(t) (1)

where T , U and D stand for the kinetic and potential energy, and Rayleigh dissipative

potential, and potential energy, respectively.
2.1.1 Dynamic matrices
The matrices that appear in the analyses of free vibration in a mechanical system are

usually known as dynamicmatrices. They are themass, stiffness, and dampingmatrices.

However, the expression of the last one is not needed since the damping effect is not

being considered in the analysis. The other two are shown below, in Eq.2 and Eq.3.
3

https://drive.google.com/file/d/1F5NU87GNFWgxcBcblx8Yt7WxnYbzWdRS/view?usp=sharing


UoL School of Mechanical Engineering

It can be seen how themass (M ) and stiffness (K) matrices are expressed as a function

of two dimensionless matrices, M and K, to ease further calculations. For that, the

dimensionless parameters written to the right of their expressions are defined, being Iθ
the radius of gyration about E, rθ the dimensionless distance between G and E, and η

the frequency ratio between the torsional (ωθ) and the bending (ωh) frequencies. In turn,

IE stands for the moment of inertia with respect to E. To see the process of how those

matrices were obtained, please refer to Appendix A.1.

mass→ M = mb2

 1 rθ

rθ i2θ

 = mb2M rθ = d− a, iθ =

√
IE
mb2

, r =
rθ
iθ

(2)

stiffness→ K = mb2ω2
θ

η2 0

0 i2θ

 = mb2ωθK η =
ωθ

ωh
, ωθ =

√
kω
m
, ωh =

√
kh
IE

(3)

2.1.2 Generalised forces
Next step is analysing the external forces which depend on the system deformation

according to the dynamic stability analysis that is being carried out. For that, the forces

which are function of u(t), their velocities u̇(t), and accelerations ü(t), must be studied.

The principle of virtual work or the virtual work method (Gavin, 2012) is applied. Thus,

the generalised force associated to a determined degree of freedom is the virtual work

performed by those external forces per unit or virtual variation. In such a way, it is

possible to express the virtual work of a system as a linear combination like:

δW = {δh/b, δθ}{Q1, Q2}T = δuTQ (4)

Hence, if the expression of the virtual work performed by the lift and the aerodynamic

moment that the aerofoil experiences is obtained, it will be possible to solve for the

generalised forces vectorQ(t). The steps followed to reach this vector are not essential,

so they are explained in App. A.2. Then, the final expression is shown below, where

Q(t) is expressed as a function of u, u̇(t), and ü(t):

Q(t) = πρ∞U
2
∞b

2Au(t) + πρ∞U∞b
3Bu̇(t) + πρ∞b

4Cü(t) (5)

Eq.5, the coefficients of which are worked out in App.A.2, represents the most complete

unsteady aerodynamic model where the next time dependency sources are considered:

• Relative motion between the aerofoil and the air flow.

• Unsteady nature of the pressure coefficient reflected in the terms related to the

apparent mass.

• The eddies wake effect in the aerofoil through the Theodorsen function C(K),

depending this on the value of the reduced frequency K, which defines the degree

of unsteadiness of the problem.
4



UoL School of Mechanical Engineering

2.2 Solution of the dynamic problem
In order to address this dynamic problem, different assumptions can be made regarding

the generalised forces. Then, differentmodels of aerodynamic forces, which are deepened

hereafter, arise. The key point is bearing the consequences of those assumptions in

mind, and therefore the limitations of each model.

2.2.1 Steady aerodynamic forces

This is the simplest aerodynamic model since the terms related to the velocities and

accelerations of the degrees of freedom are neglected. Consequently, the reduced

frequency mus be K ≪ 1, what means that the oscillations must be quite slow with

respect to the air flow velocity. Therefore, this model is ruled by the lineal differential

system of equations shown in Equation 6, where only the first term of Q is conserved.

Moreover, some initial conditions are considered for both degrees of freedom, u0, and

their velocities,v0: 
Mü+Ku = πρ∞U

2
∞b

2Au

u(0) = u0, u̇(0) = v0

(6)

Looking for solutions of the kind u(t) = ūeiwt, the eigenvalue problem shown in Eq.7 is

reached. To see how to reach it in detail, refer to App.A.3. Next, solving the determinant

of the expression between brackets for a wide range of dimensionless flight speeds V∞,

the dimensionless frequencies λ = Ω+ ig of the torsion and bending modes, which may

be complex, are obtained and can be plotted as it is shown in Fig.4.[
−λ2M+K− V 2

∞
µ

A

]
ū = 0 where : V∞ =

U∞
bwθ

(7)

Figure 4: Particular case solution for a = −0.2, µ = 30, iθ = 0.611, d = 0, η = 0.2 [9]

5

https://drive.google.com/file/d/1u9vaEca-wDM0HOf0O3JP6jD3lN2dMGlY/view?usp=sharing


UoL School of Mechanical Engineering

The flutter point (square mark), known in this model as the coalescence point, is found

from the graph at the top right of Fig.4, just when the torsion and bending frequencies

match. Before this point, the frequencies were real, making the system stable and

being the torsion mode the one with highest frequencies. However, from this point the

imaginary parts are no longer zero and, therefore, the instability begins. In turn, the

divergence point (triangular mark) is located where the frequencies of both modes are

zero, that is, when the system does not oscillate. Finally, just to remark that the natural

frequencies are marked with circumferences. For a deeper analysis about the graphs,

please read App.A.3.1.

Flutter velocity expression (Vf )
If the expression of the determinant of Eq.7, an incomplete 4th order polynomial expression

is obtained, which coefficients are:
D(λ) = λ4 +R(V∞)λ2 + S(V∞) (8)

R =
(1 + 2d)V

2
∞
µ − i2θ(1 + η2)

i2θ(1− r2)
S =

i2θ − (1 + 2a)V
2
∞
µ

i2θ(1− r2)
η (9)

Then, just solving the quadratic function with the easy writing, one obtains:

λ21,2 =
−R±

√
R2 − 4S

2
(10)

Both frequencies match at the flutter, so it can be stated that λ1 = λ2. Thus, from Eq.

10, the expression for the flutter frequency is obtained just making zero the term inside

the square root:
λ1 = λ2 = λf → R2 − 4S = 0 → λf =

√
−R

2
=

√√√√(1 + 2d)V
2
∞
µ − i2θ(1 + η2)

−2i2θ(1− r2)
(11)

Finally, the first order approximation theory will be used to find the flutter velocity associated

to the previous flutter frequency. The resulting expression is noted below in Eq.12, but

the whole development is found in App.A.3.2. It is remarked that this approximation

gives enough accurate results within the range 0 ≤ η ≤ 0.5 since it is being considered

η ≪ 1.

Vf ≈

√√√√µ
i2θ

1 + 2d

[
1− 2η

iG
iθ

√
2(d− a)

1 + 2d

]
where : iG = iθ

√
1− r2 (12)

Divergence velocity expression (VD)

After the flutter condition, it arrives other flight speed for which the determinant D(λ)

becomes zero when the frequency is zero too (λ = 0, no oscillations). Expressing

that in a mathematical way, the divergence velocity can be easily obtained solving the

simplified determinant shown below in Eq.13:

det

[
K − V 2

∞
µ

A

]
→

V 2
D

µ
=

i2θ
1 + 2a

(13)

6



UoL School of Mechanical Engineering

2.2.2 Quasi-stationary aerodynamic forces

This model is improved with respect to the steady one since four new aerodynamic

derivatives are introduced, which are considered to do not depend directly on the reduced

frequency K, but by means of the Theodorsen function. Moreover, the velocity terms of

ḣ are conserved in this case whereas the acceleration ones are neglected again. Thus,

the system of equations that govern this model is the one shown below, where the matrix

coefficients have slightly changed due to the incorporation of these new derivatives:
Mü+Ku = πρ∞U

2
∞b

2Au+ πρ∞U∞b
3Bu̇

u(0) = u0, u̇(0) = v0

(14)

To check the expressions of these new matrices A and B and the process of how

obtaining the new aerodynamic derivatives (Clθ ,Clθ̇
,Cmθ

,Cmθ̇
), please refer to App.A.4.2.

Again, looking for solutions of the kindu(t) = ūeiwt andmaking some key arrangements:[
−λ2M+K − V 2

∞
µ

A− iλV∞
µ

B

]
ū = 0 (15)

Calculating the determinant of the expression above for a wide range of speeds and

equalling it to zero, the pursued set of eigenvalues (frequencies) is reached and, therefore,

the three typical graphs can be represented. As it can be checked in Fig.5, the flutter

speed is not determined by a coalescence point. In this model, flutter speed is found

when the maximum velocity for which the imaginary part of both modes is positive is

reached. Regarding the divergence one, it is located in the same way as before:

Figure 5: Solution for the particular case of: a = −0.2, µ = 30, iθ = 0.611, η = 0.2, d = 0,

Clθ = 2π, Cmθ = 0.3142, Clθ̇ = 6.254, Cmθ̇ = −0.6235 [9]

Flutter velocity (VfTheo
) - Theodorsen’s method

This method is highly recommended when the degrees of freedom are less than four.

Otherwise, miles of terms would appear and it would be inefficient. It is known that

the flutter frequency will not have imaginary part, so it can be stated that λf = Ωf .

Replacing that in Eq.15 and calculating the determinant expression, complex numbers

are expected. Then, as ū cannot be zero, the imaginary and the real part of that

expressionmust be zero. To get amathematical perspective of it, please read App.A.4.3.

7

https://drive.google.com/file/d/1DPxLzm3acVj_NUstizloFO5goP5i4XSn/view?usp=sharing


UoL School of Mechanical Engineering

3 MATLAB code
This section is dedicated to the explanation of the different MATLAB functions which will

be used to develop the user interface in Simulink. In order to avoid the reader get lost or

needs to have some basic knowledge about programming language, those functions are

easily explained through flow charts. Thus, it is possible to understand what and how

has been programmed without having to read the code. To check the actual MATLAB

scripts, please refer to Appendix B, where a screenshot of each function is included.

Before describing each function, it is essential to make the colour coding followed in the

next flow diagrams clear:

• Rectangular blue blocks: input parameters. It is specified where they come from or

if they are introduced by the user.

• Rectangular green blocks: output parameters achieved after a group of instructions.

• Diamond yellow blocks: represent conditional statements which are followed by a

pair of instructions depending on whether the statement is true or false.

• Rectangular grey (white filled) blocks: instructions and mathematical operations.

3.1 Initial function - Dimensionless parameters
This function is in charge of calculating the dimensionless parameters presented in the

green block based on the user input parameters (blue block). In the middle block,

the expressions used to compute them are just shown since they have been already

developed during the mathematical background of Section 2.

It can be observed the user will be able to choose which value to introduce, iθ or IE . If

the first one is zero (the user does not introduce it), it will be calculated through the IE

value. By contrast, if a value of iθ is indicated, it will be directly passed to the output

section regardless the value of IE since this will not be needed.

Figure 6: Initial function flow chart. Dimensionless parameters calculation.

8

https://drive.google.com/file/d/1jfl6bBbukYnkgv9CByeGYJPJtZ993eKF/view?usp=sharing


UoL School of Mechanical Engineering

3.2 Steady aerodynamics functions
3.2.1 Frequency vectors - Steady approach
Starting with the steady aerodynamic model, this function creates and fills the vectors

with the modes of vibration of the problem to finally be able to plot them versus the

dimensionless flight speed V∞. Then, its purpose lies in generating the data needed to

obtain the graphs of Fig. 4 and 5.

It can be seen in Fig. 7 that the input data are the dimensionless parameters obtained

with the previous function (Sec. 3.1) and the upper bound of V∞, introduced by the user.

This last one must be changed when the graph is not fully represented because flutter

occurs at higher speeds.

The first loop travels along the vector V∞, calculating for each of its elements the values

of R and S, and storing them in two vectors. Their expressions, which are clearly flight

speed dependant, were shown in Eq. 9.

Once that first loop ends, R and S get completely filled, with the same length as V∞.

Thus, the coefficients for the polynomial equation p (Eq.8) are ready. Then, a nested

for loop starts, involving two changing variables, i and j. It is time to compute the roots

of p for each combination of R(i) and S(i). As it is a fourth-degree equation, there will

be 4 solutions, one for each mode of vibration, which are supposed to always appear in

the same order. Therefore, they are stored in two 4x(length(V∞)) matrices, filling each

row j with the jth solution given by the instruction roots(p).

As it is observed in the flow diagram below, two matrices are used because Simulink

does not easily deal with complex numbers. As the solutions are expected to be complex,

it is better that one matrix stores the real part and, the second matrix, the imaginary part.

In such a way, complex numbers and any kind of error related to them are avoided.

The same happens when defining empty vectors. Simulink does not understand their

size and stops running the corresponding MATLAB function. That is why vectors are

defined through the instruction zeros(rows, columns). Thus, instead of filling vectors, it

is just a matter of replacing those zeros by the values wanted to be saved.

Coming back to the flow diagram, and being the nested loop already completed, the

assignment of the frequencies stored in thosematrices, vectorrootsreal and vectorrootsimag ,

to the 4 modes of vibrations is performed. These instructions are shown on the big grey

rectangle on the right hand side of the chart. The real and the imaginary parts are kept

separate to avoid coding errors, what will be finally advantageous to make the graphs.

9



UoL School of Mechanical Engineering

It is known that, until reaching the coalescence point, the frequencies are real and of

the kind {Ω1,−Ω1,Ω2,−Ω2}, and that the roots function gives them in that order, being

the first one the highest one. Therefore, as the torsion mode is the one with larger

frequencies at the beginning, the first row of that matrices can be assigned to the first

torsion mode. Consequently, the second row will be allocated to the second torsion

mode, the third row to the first bending mode and, finally, the fourth row to the second

bending mode. Thus, the 8 vectors containing the real and imaginary parts of the torsion

and bending frequencies are reached.

However, sometimes the roots function stops giving the first torsion frequency in the

first position and the order is totally altered. For that reason, a control check should be

carried out to those 8 vectors to detect any data discontinuity. The process of how to

do it in detail is shown in the screenshot of the code of App.B.2, but it is basically based

on locating the positions in which the data changes significantly in two or more vectors

at the same time. Graphically, the user can realise about it since sudden vertical lines

will appear in the plots. When this occurs, data must be interchanged between them in

order to keep the frequencies of the modes in their corresponding vector.

Figure 7: Steady model 1st function. Frequency vectors.

10

https://drive.google.com/file/d/1fxE4J3VhHh-u-dDLocZUUuzY92X1eEDe/view?usp=sharing


UoL School of Mechanical Engineering

3.2.2 Fin flutter speed value - Steady approach
The second function used for the steady aerodynamicsmodel, which has been simplified

through the flow chart shown in Fig. 8, consists in the resolution of the expression

reached in Eq.11: R2 − 4S2 = 0.

The input data are, basically, the dimensionless parameters coming from the initial

function (Sec.3.1) and the symbolic velocity variable V∞eq . Both, R and S, depend on

the square of the flight speed (Eq.9), so that equation will not have one single solution.

However, only one of them will represent the flutter speed that is being looked for. It is

remarked that the double() instruction must be used after solving the equation in order

to convert the resulting symbolic value to a MATLAB double precision variable.

The solution has to be real, positive, and the lowest one, avoiding the possible null

velocities which correspond to the natural frequencies. Those are the conditions that

must be checked in each element of solutions. If they are met, the velocity solution Vsol
is updated. Otherwise, it is not modified. Thus, once the loop ends, the pursued flutter

speed will be stored in Vsol. Finally, the value of the flutter frequency, λsol, is obtained

just dividing the negative value of the R coefficient for that Vsol by 2.

Figure 8: Steady model 2nd function. Value of the fin flutter speed

3.3 Quasi-steady aerodynamics functions
3.3.1 Theodorsen function
Moving to the quasi-steady model, the first step is the calculation of the Theodorsen

function (Eq.56) since it is essential to obtain the aerodynamic coefficients used in

this model. It depends on a pair of Hankel functions, so the defined MATLAB function

besselh(order, kind,Kf ) is really helpful since it directly returns the value of the specified

Hankel function. Finally, as it can be observed in the green block in Fig.9, its absolute

value is taken since the derivatives must be real numbers.

11

https://drive.google.com/file/d/1YjQ5rvyIOosrC7ofHPOYOnqEmTG5NdWU/view?usp=sharing


UoL School of Mechanical Engineering

It has not been mentioned anything about the input parameter, but it can be clearly seen

in the diagram that it is the reduced flutter frequency Kf , which is calculated from the

flutter speed and frequency found in the steady model (Eq.56).

Figure 9: Quasi-steady model 1st function. Value of the Theodorsen function.

3.3.2 Frequency vectors - Quasi-steady approach

As it is shown in the flow diagram of Fig.10, the process to fill the vectors with the

frequency of the 4 modes of vibrations in the quasi-steady approach is really similar

to the one followed in the steady approach (Sec.3.2.1). Due to this great similarity, this

subsection only covers the differences between them. Otherwise, it would be redundant.

Figure 10: Quasi-steady model 2nd function. Frequency vectors, graphical flutter solution.

The first difference is observed in the input data since the aerodynamic coefficients used

in this quasi-steady model, obtained in a Simulink (App.C.2) subsystem, are needed.

12

https://drive.google.com/file/d/1h4vCFLeiOxwNSP933sjzx7Aj3aFAK89l/view?usp=sharing
https://drive.google.com/file/d/150toYyhuzwyMAeSOZDxMhCQruq51phef/view?usp=sharing


UoL School of Mechanical Engineering

Next, the first loop is in charge of calculating the determinant coefficients of the matrix

in Eq.15. The imaginary unit appears in the last term, so the following substitution must

be applied to be able to work out the determinant and its corresponding eigenvalues

easily:
iλ = s→

∣∣∣∣∣s2M+K − V 2
∞
µ

A− sV∞
µ

B

∣∣∣∣∣ = pqs(s) (16)

A fourth-degree polynomial is found when the determinant written above is computed for

each of the elements of the one-dimensional array of V∞. Again, the user can choose

the upper bound of it.

Nonetheless, the expression of the coefficients of that polynomial must be worked out

before. For that, the determinant is calculated using symbolic variables, obtaining an

expression of the kind pqs = adets
4+bdets

3+cdets
2+ddets+edet, being those coefficients:

adet = i2θ − r2θ bdet =
V∞
µπ

(−2Cmθ̇
+ Clθ i

2
θ − Clθ̇

rθ + 2Cmθ
rθ) (17)

cdet = i2θ(1 + η2) +
V 2
∞

µ2π2
(−2ClθCmθ̇

+ 2Clθ̇
Cmθ

− 2πCmθ
µ− πClθµrθ) (18)

ddet =
V∞
µπ

(−2Cmθ̇
η2 + Clθ i

2
θ) edet = η2(i2θ −

2CmθV 2
∞

µπ
) (19)

Then, once this first loop ends, those coefficients are ready for each value of V∞ and,

therefore, the next nested loop can start. The process is exactly the same as in the

steady model, but the polynomial expression is obtained with those xdet coefficients.

Furthermore, it has to be pointed out that the solutions of the roots(pqs) instruction must

be multiplied by (−1i). That is due to the substitution that was made in Eq. 16. The s

values are not the eigenvalues, but the λ ones are, so: s∙(−i) = iλ∙(−i) = −λ∙(i)2 = λ.

Finally, the frequency vectors are filled as it was done in Sec.3.2.1, also checking that

the data has been stored orderly. However, this function also calculates the flutter speed

from the matrix vectorqsrootsimag with another nested loop (Bottom-left of Fig.10).

As it was discussed in Sec.2.2.2, flutter occurs when the imaginary part of any of the

vibration modes starts being negative. Thus, the imaginary part of the 4 modes of

vibration is checked for each velocity to see if any of them is less than zero. If a negative

value is detected, its location is added to the vector num1.

The first added location will be the pursued one since from that point the fin will start

fluttering .As num1 was initialised with a zero because empty arrays do not work well in

Simulink, the flutter location will be the second one. Just looking for this location in the

velocity vector V∞, the flutter speed, called Vfgraph in this diagram, is found.

13



UoL School of Mechanical Engineering

This value will not be as exact as the one obtained in the following subsection since V∞

cannot be defined with infinity values. Then, its accuracy will depend on the number

of elements of V∞, also bearing in mind the increase in computational time when the

number of elements is higher. Thus, the key point is a kind of trade-off between those.

3.3.3 Fin flutter speed (Theodorsen’s method) - Quasi-steady approach

This function develops the Theodorsen’s method explained in the mathematical

background, at the end of Sec.2.2.2. For that, two symbolic variables are declared, Vf
for the flutter speed, and Ωf for the flutter frequency. When the flutter point arrives, the

imaginary part of that frequency will be 0, so that is why Ωf is treated as a real number.

Next, the expression of the real and imaginary parts of the determinant of Eq.57 are

obtained, again, using symbolic variables, as it was done with the xdet coefficients in

Sec.3.3.2. Those are quite long so, please, refer to Appendix B.6 to check them (7-24).

In order to find the value of Vf and Ωf , both, the real and the imaginary parts, have to

be equalled to zero. In such a way, a system of 2 equations is reached. It has not been

commented but, as it can be observed in the chart below, the input parameters are the

dimensionless parameters and the aerodynamic coefficients.

Figure 11: Quasi-steady model 3rd function. Flutter speed (Theodorsen’s method).

When solving the system, multiple solutions appear but only one combination of Vf and

Ωf is valid. Both of them have to be real, greater than 0, and the lowest velocity must be

the chosen one (avoiding the null velocities which represent the natural frequencies).

14

https://drive.google.com/file/d/1jl8lGRa5b060f2oFrE-iX_37pv00wuw4/view?usp=sharing


UoL School of Mechanical Engineering

This is what is checked with the final loop and the conditional statement in the yellow

blocks. After going over the entire solutions vector, the flutter speed and frequency are

stored in the variables Vfsol and Ωfsol (green block).

Finally, it must be pointed out that this function, as well as the one developed in Sec.3.2.2,

need to resort the coder.extrinsic() strategy to declare them as extrinsic functions. That

is because Simulink does not allow the direct use of the solve() command in a MATLAB

function block. To see how it is programmed in the code, please refer to App.32 and

App.34.

3.4 Plotting function
The eight frequency vectors of Sec.3.2.1 and Sec.3.3.2 have been obtained to be able

to plot the frequency curves and analyse the flutter point graphically. For that, the first

step is to log the data to the MATLAB workspace from the Simulink model. As it will be

seen in the next section, it is done through the block out.variable_name.

To take the data coming from Simulink, the instruction out.get(variable_name) must be

used. Next, 6 plots are arranged in grid a of 2x3, being the first row for the steady

model, and the second row for the quasi-steady one. The 3 plots represented for both

models are exactly the same as the ones shown in Fig.4 and Fig.5: the real part of

the frequencies versus the dimensionless flight velocity, the imaginary part versus the

dimensionless velocity, and the root locus (real versus imaginary part).

As it is indicated in the diagram below (Fig.12), the hold on and hold off instructions

are essential to plot the 4 vibration modes all together with the flutter, the divergence

and the natural frequencies marks in each plot.

Figure 12: Plotting function for the steady and the quasi-steady models 15

https://drive.google.com/file/d/1DEkLU9p4_aJceojx0MxuBVBrZRgbjT8Z/view?usp=sharing


UoL School of Mechanical Engineering

4 Flutter simulator - Graphical user interface
As it was aimed at the beginning of the project, a flutter simulator like the one shown in

Fig.13 is developed. Its main purpose is that the users are able to introduce the data

of the fin they are studying and get a first idea about the velocity at which the flutter

and divergence phenomena would occur. Moreover, the two different aerodynamic

models, the steady and the quasi-steady one, are simulated so that the users can see

the differences in the flutter frequency and speed depending on which approach is taken.

As it is indicated in the outer view of the user interface shown below, it is mainly divided

into 4 sections: user fin data, divergence speed, steady aerodynamics approach, and

the quasi-steady one. Then, each of them is explained in detail throughout the next

subsections, emphasising and referring to the MATLAB functions covered in Sec.3.

Figure 13: Outer view of the graphical user interface

4.1 User fin data
Fig.14 shows the user fin data section of the simulator zoomed in. It is based on the

initial function which calculates certain dimensionless parameters from the user inputs.

It was treated at length in Sec.3.1, specifying the formulas used for each parameter.

Although those parameters are not the principal output for the user, they are displayed

so that the value of a determined parameter can be checked anytime. It may be the

case that, for instance, the user is pursuing a concrete value for the mass ratio µ. Thus,

it would be possible to check how this parameter varies when the input data is modified.

Finally, it must be mentioned that an sketch of the aerofoil dynamic model is shown on

the left hand side so that the user does not lose sight of the problem that is being solved.

16

https://drive.google.com/file/d/1ovADjgPLXE0yQwIxhzAQNk5kc-3dCW_p/view?usp=sharing


UoL School of Mechanical Engineering

Figure 14: User fin data zoom

4.2 Divergence speed
This section of the user interface is dedicated to the calculation of the divergence velocity.

As it can be seen, no MATLAB functions have been used to do it since the divergence

formula is quite easy to implement. Therefore, the creation of a subsystem is done just

taking the expression developed in Eq.13 and solving for VD.

That subsystem is shown below, pointed with a grey arrow. The input parameters (a,

iθ, and µ) are taken from the dimensionless parameters obtained with the initial function

covered in Sec.3.1. Next, just using the most common blocks, such as the add, the

square or the product/divide one, the dimensionless divergence speed is reached and

shown in the grey displayer. This value is sent to the MATLAB workspace with the out.

block instruction since the divergence point will be represented in the frequency graphs

through the plotting function covered during Sec.3.4.

Lastly, if this dimensionless velocity is multiplied by the span b and the torsion frequency

ωθ (Eq.7), the actual divergence speed value is obtained and displayed in the biggest

cyan rectangle, following the SI (m/s).

Regrading the divergence frequency, it has not been discussed or calculated either.

That is because this phenomenon is characterised by not presenting oscillations, so the

frequency can be directly set to 0, without working out any mathematical operation.

Figure 15: Divergence speed section zoom
17

https://drive.google.com/file/d/18THsBSMvkiEG9C7K3vNzodALVcZs4dr9/view?usp=sharing
https://drive.google.com/file/d/1t_zWWCyxxJcTQH_XnahvoDHr07bxxL_X/view?usp=sharing


UoL School of Mechanical Engineering

4.3 Steady aerodynamics approach
Looking at Fig.16, it can be observed how the steady model 1st and 2nd functions are

utilised. The input data for both of them is the dimensionless parameters, having the

first one the additional velocity limit value commented in Sec.3.2.1 too.

Figure 16: Steady aerodynamics - frequency vectors, flutter speed and frequency values

The first function, shown in the upper part of the model, returns the eight frequency

vectors (there are only 4 modes of vibration, but as the real and imaginary parts had to

be separated, this results in eight outputs) and the dimensionless flight velocity vector.

They are transferred to theMATLABworkspace since both are essential for the frequency

graphs implemented in the plotting function (Sec.3.4).

From the second function, just below the previous one, the dimensionless flutter speed

(grey displayer) and the flutter frequency (drak blue displayer) values are obtained. Both

of them are also logged to the MATLAB workspace with the out. block since they are

needed to represent the flutter point on the graphs. Furthermore, as well as in the

divergence section, the actual flutter speed (biggest cyan displayer) is reached just

using the product block to multiply the dimensionless one times the span and the torsion

frequency, being those last two introduced by the user.

Moreover, the reduced frequency value is also calculated using a divide block, dividing

the flutter frequency by the dimensionless flutter speed (Eq.56). The value obtained is

shown in the dark green displayer, on the right hand side of the model.

It can be also observed a yellow displayer which seems to show an error value, in %.

This values stands for the relative error between the exact solution coming from the

direct solving of the steady model equations and the first order approximation.

18

https://drive.google.com/file/d/1Yw69rwepN2QDr_TtwsBLVxYi6bOxjsWe/view?usp=sharing


UoL School of Mechanical Engineering

Regarding this first approximation, its Simulink model is shown in the figure below:

Figure 17: Steady aerodynamics - First order approximation

Looking at Fig.17, a new subsystem is clearly observed on the left hind side of the

model, having as inputs all the dimensionless parameters excluding the rθ value. The

combination of blocks used for this subsystem is included in Appendix C.1 since it is

quite long and it does not contribute to any new idea. It is just the set of blocks used

to build the expression for Vf shown in Eq.12 and its corresponding flutter frequency

(Eq.11).

As usual, the value of the reduced frequency is computed dividing the flutter frequency

by the dimensionless flutter speed. The colour code for the displayers is exactly the

same as before, so it is not repeated to avoid being redundant. Note that all the displayers

are named with the word approx at the end since, in this way, it is easier to differentiate

them from the others when taking a quick look to the interface.

4.4 Quasi-steady aerodynamic approach
The Simulink model of the quasi-steady aerodynamics approach has been divided into

two parts. Otherwise, it was impossible to appreciate all the blocks used in this section.

The first part is shown in Fig.18, just below. At the top left hand side of the model, the

Theodorsen’s function described in Sec.3.3.1 is implemented. As it can be seen, the

input parameter is the reduced frequency obtained in the steady aerodynamics model.

The output, as it can be expected, is the absolute value of the Theodorsen’s function C,

which is needed for the calculation of the aerodynamic derivatives.

Next, the subsystem shown below the previous function is in charge of obtaining the

values of the aerodynamic derivatives, which expressions were developed in Sec.A.4.2.

Again, the fact of showing the block diagram of this subsystem would be useless since it

does not help understanding the Simulink model that is being discussed in this section.

19

https://drive.google.com/file/d/1cKTpyzbvq5bPJNcarxLDxl6BGrhLUoYT/view?usp=sharing


UoL School of Mechanical Engineering

For that reason, it is included in Appendix C.2, just in case it is wanted to be checked.

Figure 18: Q-s model - Theodorsen’s function, aerodynamic coefficients and frequency vectors

Finally, the second function of the quasi-steady aerodynamics model is run, taking as

inputs the dimensionless parameters (coming from the initial function of Sec.3.1) and

those aerodynamic derivatives. The eight frequency vectors are obtained as outputs,

as well as the dimensionless flight velocity vector. As well as in the first function of the

steady model, all those vectors are logged to the MATLAB workspace to finally plot them

through the final plotting function (Sec.3.4).

It has to be remarked that the graphical flutter solution, covered in Sec.3.3.2, is displayed

on the big grey block. As it was commented, the accuracy of this flutter velocity will

depend on the number of elements used to define the dimensionless flight speed vector.

Again, it is reminded that the user can modify the upper bound of the dimensionless

velocity just in case the flutter or the divergence points occurs later. That is why there

is an extra input in the function, being a total of three.

Lastly, the flutter speed and frequency are obtained solving the system of equations

reachedwith the quasi-steady aerodynamics assumptions, and transferred to the workspace.

As expected, the inputs parameters are the dimensionless parameters and the aerodynamic

derivatives. Again, the reduced frequency and the dimensional flutter speed are also

computed. Regarding the displayers in Fig.19, the colour code used during all the

Simulink model is followed once more time, so it is not repeated.

Figure 19: Quasi-steady aerodynamics - Flutter speed and frequency values
20

https://drive.google.com/file/d/16qMD-9ut8Vt8h0O8T0suFNnhBfwK-N_l/view?usp=sharing
https://drive.google.com/file/d/1-HY3fhPT70CAwdb9iHMt8CsV238gjKQH/view?usp=sharing


UoL School of Mechanical Engineering

5 Validation process
Once the code and the Simulink model are covered, it is time to validate the flutter

results obtained with the steady and the quasi-steady aerodynamic approaches. It is

not enough to get values that make sense, they must be validated. For that, they

are compared with the data published in the NACA Technical Report No. 685 [13],

concretely with the graphs observed in the first case presented on it, the flexure-torsion

one.

Before discussing the results, it must be remarked that this NACA’s report express the

mass ratio µ the other way round and use k to name it. However, please, bear in mind

that k = 1
µ . Something similar with the radius of gyration iθ, since it is written as rθ.

5.1 Steady aerodynamics model
As it can be seen at the top of Fig.20, the chosen graph plots the dimensionless flutter

speed versus the frequency ratio for different squared radius of gyration and mass

ratios. Then, the curves from the third case, which have been zoomed below and where

k = 1/20, are replicated immediately on its left with the data obtained from the steady

aerodynamics approach, both the first order approximation (approx) and the steady

model 2nd function (2nd function).

Figure 20: Graph comparison between the steady model and the NACA Report No. 685.

21

https://drive.google.com/file/d/1soR9r6f3civT2yLYc6eOJUcMJ5gLowNJ/view?usp=sharing


UoL School of Mechanical Engineering

With respect to the tendency, it is checked that it is really similar. As the frequency ratio

increases, the dimensionless flutter speed decreases regardless the value of the radius

of gyration. Moreover, the point where the six curves come together at ωh
ωθ

= η = 0.8 is

quite well represented with the steady approach. They are not as coincident as in the

actual zoomed graph, but the intention to do it is clear. The curves have not been plotted

beyond that point since, as it was said in the mathematical background, the steady

approach and its first order approximation gives good results as long as 0 < η < 1.

Besides that, it is also verified that the flutter speeds are higher as larger is the radius of

gyration. However, there is no denying that the numbers are not exactly the same, they

are always lower than the NACA’s report ones, being even lower if the steady model

second function (light coloured curves) is used instead of the first order approximation

(dark coloured ones). This is completely reasonable since the steady model accounts

neither for the velocity nor the acceleration terms whereas the NACA’s report try to

obtain the most possible accurate result. Thus, errors due to the approximations and

simplifications taken in the steady approach were more than expected.

For that reason, the relative errors between the results of the first order approximation

and the NACA’s report ones are calculated. The same is done with the second function

of the steady model, to finally plot them versus the frequency ratio. This relative errors

graph is shown at the bottom left of Fig.20, following the same colour code. It can be

appreciated how the errors are lower for small frequency ratios since it was indicated

that the steady approach works rather well for η << 1. Furthermore, as the first order

approximation results were higher in this case and therefore close to the NACA’s report

ones, their relative errors are smaller. To find the exact values of each method and their

corresponding errors, please, refer to Appendix D, where a sample calculation is also

done.

5.2 Quasi-steady aerodynamics model
As it can be seen in the table shown on Fig.21, the results of the quasi-steady approach

are not accurate at all. The relative errors are huge, what means that the flutter speed

values are rather far from the NACA’s report ones. The model did not work as it should

have and one potential problem could be perfectly found in the aerodynamic derivatives.

They have been obtained deriving the lift and moment coefficients with respect to θ̇,

depending the resulting expressions on the Theodorsen’s function (reduced frequency

dependant) and the fin chord values. In the table below, the model was run for i2θ = 1/3

22



UoL School of Mechanical Engineering

and for two different half chord values, b = 0.9 m and b = 44 m, being this last one

extremely large and totally unfeasible in aircraft/rockets projects. Even so, the flutter

speed values are really small in comparison with the steady model or the NACA’s report

ones. Moreover, it is pretty weird the fact that the flutter speeds are so insensitive to the

frequency ratio variations. Unlike in the steady model, the changes in the flutter speed

are almost unnoticeable when the frequency ratio increases.

Figure 21: Relative errors between the quasi-steady model and the the NACA Report No. 685.

As it is commented in the conclusion, specifically in Sec.7.4, it would be ideal that the

future work undertake this problem and investigate where is the error.

5.3 AeroFinSim simulator
The AeroFinSim software is a really helpful app since it enables the user to obtain the

critical flutter and divergence speeds from the input parameters zoomed on the right

hand side of Fig.23. As it is indicated on its website [4], it uses the Theodorsen and U-g

methods to solve the unsteady torsion-flexure problem. If their results are compared

with the ones obtained with the steady model, the table shown below is reached. It can

be seen that the reduced frequency and the divergence speed values are really close.

Nevertheless, and as it was expected again, the flutter speed values are lower as it

happened when comparing results with the NACA’s report in Sec.5.1.

Figure 22: Relative errors between the steady model and the AeroFinSim 10 software

23

https://drive.google.com/file/d/1RHpK76MrEQsT7Hs75Z0qWW2CY5zi-8ET/view?usp=sharing


UoL School of Mechanical Engineering

6 Case of LURA’s fins
As it is mentioned in the cover page and throughout the introduction, this project was

born in order to help the LURA team with the flutter and divergence problem. The

graphical user interface, as well as the code that makes it works, have been already

explained. Thus, it is the time to input the data of the fins that LURA is currently using.

The CAD design (attached in Appendix E) and the OpenRocket Simulator [12] file which

LURA is basing its fins design on were really helpful since all the data shown in the table

below could be extracted:

Figure 23: LURA’s fins parameters

From those, the input parameters for the simulator developed in Sec.4 are almost ready.

However, some calculations must be worked out before. It has been possible to take

directly the values of the fin mass and the values of a and d, being the last two measured

from half of mean aerodynamic chord. However, this mean aerodynamic chord,MAC,

has had to be previously computed following the specific formula for tapered and delta

fins shown in Eq.20 [7]. In such a way, the value of b is obtained as:

if t =
rt
rc

→MAC =
2

3
rc
1 + t+ t2

1 + t
= 0.153m→ b =

1

2
MAC = 0.0756m (20)

No information was provided for the radius of gyration, so it has been left with one of

the most common values used for aerospace purposes, which is iG = 0.5. The same

with the ratio of frequencies, which is set to η = 0.2, since it is indicated that the bending

frequency is quite lower than the torsional one when real stiffness values are used, in

the order of ωh < 0.3 ωθ [9].

Then, the model is run and the flutter and divergence results obtained with the steady

model are compared with the values that LURA is currently using, reaching the table

shown in Fig.24. The results achieved with the quasi-steady approach are not being

analysed since, as it has been seen in the previous section, they could not be validated.

Figure 24: Comparison between the results of the steady model and the LURA’s values

It can be checked that the flutter speed values obtained with the steady model are

enough close to the LURA’s ones. As it happened in the validation process, the values

24



UoL School of Mechanical Engineering

are slightly lower, being the first order approximation the nearest one. It has to be

remarked the fact that the values of eta and iG have been estimated, so the studied

case may not be exactly the same as the one considered by LURA.

Regarding the divergence velocity, the steady model predict a value of 601.3 m/s, being

higher than the flutter one. However, it happens precisely the opposite with the LURA’s

divergence speed since it is considerably lower, with a value of 367.2 m/s. That weird

fact should be analysed in detail by the LURA’s team since it may not be entirely reliable.

In most of the cases, the flutter phenomenon occurs before the divergence, what makes

totally sense since this last one implies the total failure of the structure due to the

exceeding aerodynamic moment created. However, there is not any strict rule stating

that flutter speeds must be always lower than the divergence ones.

Finally, the frequency graphs that have been commented throughout the project are

shown in Fig.25. As the LURA’s case is being analysed in this section, those graphs

represent the behaviour of the frequency of their 4 modes of vibration. Then, the key

point lies in knowing how to interpret them. For that, the flutter and divergence conditions

for each aerodynamic approach should be remembered:

Steady approach: flutter dimensionless velocity is found from the coalescence point at

which the bending and torsion real frequencies match. To get the actual or dimensional

flutter speed, just multiply that value by half of the chord length and the torsion frequency.

The divergence point can be detected when all the frequencies are 0 (no oscillations).

Quasi-steady approach: flutter dimensionless velocity is found at the point from which

any vibration mode starts presenting negative imaginary parts. The divergence point

works in the same way as in the steady approach. It must be pointed out that the natural

frequencies (frequencies for flight speed = 0) are also marked in green on the graphs.

Figure 25: Frequency graphs for the steady and the quasy-steady approaches

25

https://drive.google.com/file/d/1mxO68gcNE05PDGY3xvXaz73NxkaJoZdV/view?usp=sharing


UoL School of Mechanical Engineering

7 Concluding chapter
To conclude this engineering project, all the achievements are presented one by one,

comparing them with what was expected at the beginning of the semester. Moreover,

the key points of every discussion are summarised, recommending where the future

work may be undertaken.

7.1 Achievements
The following list collects all the accomplishments, making reference to the objectives

established in Sec.1.3:

1. The literature review was shown in the scoping and planning document, where

everything was perfectly referenced.

2. The different approaches (steady and quasi-steady aerodynamic models), as well

as the numerical methods used to estimate the flutter and divergence conditions

are developed in the mathematical background section, where all the assumptions

taken in each of them are specified.

3. The frequency of each mode of vibration is achieved for both models through the

frequency vectors functions of Sec.3.2.1 and Sec.3.3.2.

4. It has been possible to obtain the flutter and divergence speeds and frequencies

too, thanks to the functions developed in Sec.3.2.2 and Sec.3.3.3.

5. The pursued aeroelastic simulator has been successfully built thanks to the toolbox

of Simulink. It is a kind of user interface where the users can introduce the data

of the fins they are using and obtain the flight speeds and frequencies at which

flutter and divergence phenomena will take place. Regarding its structure, it has

been seen in Sec.4 how it was divided into several sections clearly separated so

that the users are sure about the values they are reading.

7.2 Discussion
In this subsection, the two last objectives stated in Sec.1.3 are discussed since they

have not been achieved in the way they were defined. It is not weird at all that the

objectives changes throughout the development of the project. It is not easy to foresee

if one of the objectives will not be as essential as it seemed to be when it was written.

As it can be checked in Sec.5, the validation process was finally carried out with the

NACA Report No.685 (Theodorsen and Garrik, 1940) and the wwll-known software of

AeroFinSim Simulator (Cipolla, 2022). The CFD simulations that were thought at the

beginning would have been so useless. First, in order to match the dimension order,

it would have had to be a 2D simulation since 3D effects have not been considered in

26



UoL School of Mechanical Engineering

any moment. Moreover, the CAD design would have been uncertain since choosing an

aerofoil would have not been trivial. There is not much information about flutter analysis

performed with CFD. Even LURA has not defined any aerofoil for their fins yet either.

In the case of the mentioned trade-off, it can be said that it has been done somehow by

means of some trends obtained in the validation process of Sec.5. Thus, the principal

conclusion drawn from it, considering the studied range 0 < η < 1, is that: flutter

speed increases with higher radius of gyration, and decreases when the frequency ratio

is increased. Therefore, whenever possible, it will be always preferable to use high

radius of gyration and small frequency ratios. In such a way, the flutter speed will be

significantly higher and, consequently, the speed operating range of the rocket wider.

7.3 Conclusions
After considering the project overall, it has been more than demonstrated that the flutter

prediction is not simple at all. Even though, it has been possible to build the pursued

aeroelastic simulator, which works quite well with the steady method, hoping it results

helpful for LURA. That is why the values obtained from this model were validated easily,

giving the first order approximation the closest results to the ones stated by NACA.

Just the opposite happens with the quasi-steady flutter values, which are significantly

far from those. Thus, it has been impossible to validate them. However, it is highly likely

that the problem/error is due to the way the Theodorsen’s function and, therefore, the

aerodynamic coefficients are obtained.

Finally, it has to be pointed out the fact that the divergence velocity that LURA is obtaining

is lower than the flutter one, as it was discussed in Sec.6. It would be recommended

that this value is checked once more time since it is not usual that the total structural

failure occurs before the flutter phenomenon.

7.4 Future work
This last subsection is dedicated to suggest the reader about how this project could be

undertaken for future work.

As it has beenmentioned before, it is needed that anothermethod to get the aerodynamic

derivatives is investigated because they are causing the quasi-steady inaccuracy almost

certainly. Moreover, the non-steady aerodynamic model could be also incorporated to

the simulator to take into account the acceleration terms of the equations too, instead

of neglecting them. Lastly, to better approximate the real case of the fins, the flutter and

divergence analysis could be performed in 3D, considering the whole span of them.

27



UoL School of Mechanical Engineering

References
[1] Benson, T. 2021. Rocket Stability. [Online]. [Accessed 18 November 2021].

Available from: https://www.grc.nasa.gov/www/k-12/rocket/rktstab.html

[2] Bisplinghoff, R. L., Ashley, H. and Halfman, R. L. 2013. Aeroelasticity. Newburyport:

Dover Publications.

[3] Bisplinghoff, R. L. and Ashley, H. 2013. Principles of Aeroelasticity. New York: Dover

Publications.

[4] Cipolla, J. 2022. AeroFinSim 10. [Online]. [Accessed 25 March 2022]. Available

from: http://www.aerorocket.com/finsim.html

[5] Collar, A.R. 1978. The first fifty years of aeroelasticity. Aerospace. 5(2), pp.12-20.

[6] Fung, Y.C. 1993. Introduction. In: Dover Publications, Inc. ed. An Introduction to the

THEORY OF AEROELASTICITY. 2nd ed. London: Constable and Company Ltd,

pp. 11-13.

[7] Johnson, P.K. 2003. Finding the Mean Aerodynamic Chord (MAC).[Online].

[Accessed 3 April 2022]. Available from: https://acortar.link/WHZNlh

[8] Nakka, R. 2001. Fins for Rocket Stability. [Online]. [Accessed 23 November].

Available from: https://www.nakka-rocketry.net/fins.html

[9] Navarro, M.L. 2009. Aeroelasticidad dinámica. Flameo del perfil en régimen

incompresible. Valencia: Escuela Técnica Superior de Ingeniería del Diseño, UPV.

[10] Navarro, M.L. 2009. Aerodinámica no-estacionaria de perfiles. Valencia: Escuela

Técnica Superior de Ingeniería del Diseño, UPV.

[11] Nithin, S. and Vijayalakshmi, B.K. 2019. REVIEW ON AEROELASTICITY.

International Journal of Engineering Applied Sciences and Technology. 4 (8), pp

271-274.

[12] OpenRocket. 2022. Build better rockets. [Online]. [Accessed 15 March 2022].

Available from: https://openrocket.info/index.html

[13] Theodorsen, T. and Garrick, I.E. 1940. Report No.685 - MECHANISM

OF FLUTTER A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF

THE FLUTTER PROBLEM. Washington D.C: National Advisory Committee for

Aeronautics.

28



UoL School of Mechanical Engineering

A Mathematical developments
A.1 Process to obtain the dynamic matrices

Mass matrix (M )

The mass matrix is found through the kinetic energy of the system due to the velocities

of the points on the aerofoil. Nevertheless, the oscillations are usually enough small

(θ << 0) to be able to neglect horizontal velocities and consider only the vertical ones.

In such a way, all the points at a constant x distance will have the same vertical speed,

żp(x, t), which must be written as a function of the dimensionless vector u. So, attending

to the geometry in Figure 3:

zp(x, t) = −h(t)− θ(t)(x− xE) =
{
−b, −(x− xE)

}{
h/b, θ

}T
= dT (x)u(t) (21)

żp(x, t) = dT (x)u̇(t) (22)

Then:

T =
1

2

∫ b

−b
żp

2(x, t) dm =
1

2

∫ b

−b
żp

T (x, t)żp(x, t) dm =
1

2
u̇T

∫ b

−b
d(x)dT (x) dm u̇ (23)

T =
1

2
u̇TMu̇ → M =

b2m bSE

bSE IE

 (24)

being m =
∫ b
−b dm the aerofoil mass, IE =

∫ b
−b(x−xE)

2 dm the moment of inertia with

respect to the E, and SE =
∫ b
−b(x − xE) dm the static moment or first moment of area

with respect to the E too.

Next, some extra parameters are defined in order to make the matrices dimensionless.

Those are the dimensionless turn radius, iθ, the distance between the E and G, rθ, and

the ratio between them, r:

iθ =

√
IE
mb2

rθ =
SE
mb

=
xG − xE

b
= d− a r =

rθ
iθ

(25)

Thus, the M defined in Equation 24 is written as a function of a dimensionless matrix

denoted by M:

M =

b2m bSE

bSE IE

 = mb2

 1 rθ

rθ i2θ

 = mb2M (26)

29



UoL School of Mechanical Engineering

Stiffness matrix

In this case, the stiffness matrix is obtained through the expression of the potential

energy of the system. Therefore, assuming that the aerofoil is in its resting position

lying on the x axis, the deformation energy is:

U =
1

2
khh

2 +
1

2
kθθ

2 =
1

2
{h/b, θ}

khb2 0

0 kθ

 {h/b, θ}T =
1

2
uTKu (27)

being the stiffness matrix K:

K =

khb2 0

0 kθ

 (28)

In the same way as with the mass matrix, it is preferable to work with dimensionless

matrices. Thus, besides the dimensionless turn radius defined in Equation 25, three

more dimensionless parameters are used. Those are the frequencies ωθ and ωh created

from the stiffness values of the springs. The first one is the frequency of the system

considering the aerofoil has a fixed joint in the E, whereas the second one is the frequency

of the system assuming the aerofoil cannot turn. Finally, η represents the ratio between

them:

ωh =

√
kh
m

ωθ =

√
kθ
IE

η =
ωh

ωθ
(29)

Finally, rearrangingK (Equation 28) and introducing those new parameters, the dimensionless

stiffness matrix K is reached, which only depends on the frequencies ratio and on the

dimensionless turn radius:

K =

khb2 0

0 kθ

 = mb2ω2
θ

η2 0

0 i2θ

 = mb2ωθK (30)

30



UoL School of Mechanical Engineering

A.2 Intermediate steps for the generalised forces vector
When a virtual variation δu occurs, the lifting surface changes its geometry from zp to

zp+ δzp. Then, the pressure acting on a point x performs a work of∆p(x, t) dx δzp(x, t).

Thus, the whole pressure distribution over the aerofoil do a virtual work of:

δW =

∫ b

−b
∆p(x, t)δzp(x, t) dx (31)

Again, it is assumed that the aerofoil is deformed as a solid rigid, moving downwards

h(t) and rotating an angle θ with respect to the E. Then, recalling the expression for zp

in Equation 21, substituting it in Equation 31, and rearranging the integrals:

δW =

∫ b

−b

(
−δh(t)− δθ(t)(x− xE)

)
∆p(x, t) dx (32)

δW = δh

(
−
∫ b

−b
∆p(x, t) dx

)
+ δθ

(
−
∫ b

−b
(x− ab)∆p(x, t) dx

)
(33)

Paying attention to the integrals that follow δh and δθ, the lift and the aerodynamic

moment in the E (x = ab) are found, respectively. Therefore, writing Equation 33 as

a function of δu, the generalised forces vector is reached:

δW = δh(−L) + δθMa = {δh/b, δθ}{−Lb, Ma}T = δuTQ (34)

The unsteady aerodynamics linearised in incompressible regime allows an analytical

solution for the lift and the aerodynamicmoment in a concrete point [10]. Both expressions,

shown in Equation 35, contain terms related to the circulatory nature (subindex Q) and

the apparent mass (subindex A), being the first ones multiplied by the Theodorsen

function C(K).

L = 2πρ∞U∞b C(K)

[
ḣ+ U∞θ + b

(
1

2
− a

)
θ̇

]
+ πρ∞b

2
(
ḧ+ U∞θ̇ − abθ̈

)
(35)

L = C(K)LQ + LA (36)

Ma = 2πρ∞U∞b
2 C(K)

(
1

2
− a

)[
ḣ+ U∞θ + b

(
1

2
− a

)
θ̇

]
+ (37)

+πρ∞b
2

[
abḧ− U∞b

(
1

2
− a

)
θ̇ − b2

(
1

8
+ a2

)
θ̈

]
Ma = C(K)MQ +MA (38)

It must me mentioned that K refers to the reduced frequency of the system, which is

calculated as K = ω b
U∞

and controls the lifting effect due to the eddies distribution along

the wake in the aerofoil. It will help to define the unsteadiness degree of the problem.

31



UoL School of Mechanical Engineering

Finally, the generalised forces vector can be written as a function of u in an easy way

as follows:

Q(t) = πρ∞U
2
∞b

2Au(t) + πρ∞U∞b
3Bu̇(t) + πρ∞b

4Cü(t) (39)

being:

A = C(K)

0 −2

0 1 + 2aθ

 C =

−1 a

a −a2 − 1/8

 (40)

B = C(K)

 −2 −1 + 2a

1 + 2a 1/2− 2a2

+

0 −1

0 −1/2 + a

 (41)

32



UoL School of Mechanical Engineering

A.3 Steady aerodynamics model - Intermediate steps

The solution to the system written in Eq.6 will be the lineal combination of the set of

solutions of its homogeneous equation. Looking for solutions of the kind u(t) = ūeiwt,

the following eigenvalue problem is reached:

[−ω2M +K − πρ∞U
2
∞b

2A] ū = 0 (42)

Introducing now the expressions of the dimensionlessmass and stiffnessmatrices obtained

in Equation 26 and 30:

[−ω2mb2M+mb2ω2
θK− πρ∞U

2
∞b

2A] ū = 0 (43)

Dividing by mb2, using µ = m/πρ∞b
2 as the aerofoil mass coefficient, defining the

dimensionless frequency as λ = ω/ωθ and the dimensionless flight velocity as V∞ =

U∞/bωθ, the typical eigenvalue problem appears, referringKeq to the equivalent stiffness

matrix: [
−λ2M+K− V 2

∞
µ

A

]
ū =

[
−λ2M+Keq

]
ū = 0 (44)

Just calculating the determinant of the expression between brackets,D(λ), and equalling

it to zero, the values of λ are obtained.

A.3.1 Frequency plots - Extended discussion

Before the flight, when V∞ = 0, the frequencies are found in the real axis. Those are

the natural frequencies (no flight speed, no aerodynamic forces acting on the aerofoil)

and they are represented with a circumference in the three graphs of Figure 4.

Looking at Equation 7, it is noticeable thatK starts decreasing its values as flight velocity

increases. Paying special attention to the non-null terms inA, which is multiplied by V∞,

they are directly connected to the torsion mode since those multiply θ. Thus, the torsion

frequency presents a larger variation than the bending one. This last one is also affected

since both are coupled (both vibration modes depend on h and θ), but to a lesser degree.

In such a way, the frequencies become closer to each other along the positive real axis.

Before reaching the same value, the solution is stable, corresponding to the case of free

vibrations without dissipative damping. It is remarked that only one pair of frequencies

is plotted. The conjugated ones would do the same but in the negative part.

The point where the frequencies match is known as coalescense. From this point on,

real part Ω will be the same for both modes but they will come into the complex plane,

drawing an ellipse in the root locus.

33



UoL School of Mechanical Engineering

Now, the solution becomes unstable since some terms start depending on a positive time

dependant exponential function (right part of Equation 45) that will cause the structural

failure:

u(t) = e−gωθt(C1ψe
iΩωθt + C4ψ

∗e−iΩωθt) + egωθt(C3ψe
−iΩωθt + C2ψ

∗eiΩωθt) (45)

being ψ the eigenvectors associated to the eigenvalues λ and Cx the constants that will

be determined through the initial conditions noted in Equation 6.

Therefore, it can be said that the point represented with a square is the last stable

one, characterised by a velocity Vf = Uf/bωθ which is known as flutter velocity, and

a frequency λf = Ωf , called flutter frequency. Thus, it is essential to fly always at

lower velocities than this flutter velocity. Otherwise, the structure will dramatically and

irrevocably fail.

A.3.2 First order approximation - Complete development

The first order approximation theory is used with the term V∞/µ to find the flutter velocity

associated to the previous flutter frequency. The fact that the decoupled bending and

torsion frequencies fulfil that η = ω/ωθ ≪ 1. Thus, S can be consider to be zero and

consequently, according to Equation 11, R must be also zero. In this way:

R(η = 0) =
(1 + 2d)V

2
∞
µ − i2θ

i2θ(1− r2)
= 0 → V 2

∞
µ

(η = 0) =
i2θ

1 + 2d
(46)

Deriving R2 − 4S with respect to η and assuming it to be zero again:

V∞
µ

′

(η = 0) =

−
∂R
∂η − 2∂S

∂η

∂R

∂
V 2∞
µ

− 2 ∂S

∂
V 2∞
µ


η→0,

V 2∞
mu

=
V 2∞
mu

(η=0)

= −2
V 2
∞
µ

(η = 0)

√
2rθ(1− r2)

1 + 2d
(47)

Finally, just applying the first order approximation, the expression for flutter velocity is

found:
V 2
∞
µ

(η) ≈ V 2
∞
µ

(η = 0) +
V 2
∞
µ

′

(η = 0)η (48)

V 2
f

µ
≈

i2θ
1 + 2d

[
1− 2η

iG
iθ

√
2(d− a)

1 + 2d

]
(49)

being iG = iθ
√
1− r2. It must be beard in mind that the expression shown in Equation 49

gives enough accurate results within the range 0 ≤ η ≤ 0.5 since it has been considered

η ≪ 1. Besides that, the reduced frequency K has been also considered to be really

small and therefore the velocity and acceleration terms of u were neglected.

34



UoL School of Mechanical Engineering

However, it is not usually that the flutter K is enough small to make such assumption.

That is why this unsteady model should only be used as a first approximation of the

flutter velocity value. It basically gives information about how the locations of E and G

affect the stability of the aerofoil, but it does not consider effect of the aerofoil velocity

and acceleration in the aerodynamic pressures.

35



UoL School of Mechanical Engineering

A.4 Quasi-steady aerodynamics model - Intermediate steps
A.4.1 New matrix coefficients

The matrices A and B, which were used in the steady approach, are substituted by

other similar ones, A and B, which are adapted to include the previous aerodynamic

derivatives/coefficients to remove the direct influence of C(K). Thus, in order to keep

the structure of the generalised forces vectorQ = {−Lb, Ma}, those new matrices are:

A =

0 −Clθ/π

0 2Cmθ/π

 B =

−Clθ/π −Clθ̇/π

2Cmθ/π 2Cmθ̇/π

 (50)

A.4.2 Expressions of the aerodynamic derivatives

The value ofClθ is given by the thin aerofoil theory for a cambered aerofoil. It corresponds

to the value of the slope ∂Cl
∂θ , which is 2π. From this, the value of Cmθ

can be calculated

as follows:
Cmθ

=
(12 + a)Clθ

2
=

(
1

2
+ a

)
π (51)

RegardingCmθ̇
andCmθ̇

, their expressions are obtained deriving the next approximations

for the lift and the aerodynamic moment (per unit span), which are function of them:

L ≈ 1

2
ρ∞U

2
∞2b

Clθ

(
θ +

ḣ

U∞

)
+ Clθ̇

(
bθ̇

U∞

) (52)

Ma ≈ 1

2
ρ∞U

2
∞(2b)2

Cmθ

(
θ +

ḣ

U∞

)
+ Cmθ̇

(
bθ̇

U∞

) (53)

Knowing these expressions, it is just needed to solve for the still missing derivatives,

Clθ̇
and Cmθ̇

, and differentiate both with respect to θ̇. In such a way:

CL ≈ L

ρ∞U∞2b
→ δCL

δθ̇
= Clθ̇

=
πb

U∞
(1 + 2∙|C(k)|(0.5− a)) (54)

Cm ≈ Ma

2ρ∞U∞2b2
→ δCm

δθ̇
= Cmθ̇

=
πb(0.5− a)

U∞
(−0.5 + |C(k)|(0.5 + a)) (55)

They are calculated with the Theodorsen function C(k) using the value of the flutter

reduced frequency obtained through the steady model:

Kf =
ωfb

U∞
=
ωf/ωθ

U∞
bωθ

=
λf
Vf

→ C(kf ) =
H

(2)
1 (kf )

H
(2)
1 (kf ) + iH

(2)
0 (kf )

(56)

As it can be seen in Equation 56, C(K) depends on the Hankel functions of the second

kind, also known as Bessel function of the third kind. Those can be directly obtained

through the MATLAB function (H = besselh(nu,Z)), so it is not worthwhile to spend

time and space developing them.

36



UoL School of Mechanical Engineering

A.4.3 Theodorsen’s method - Mathematical perspective

It is easily noticeable that the determinant of the expression between brackets of the

equation reached after substituting λ by ωf in Eq.15 will give complex numbers of the

form P = PR + iPI , which will depend on Vf and Ωf .[
−λ2M+K − V 2

∞
µ

A− iλV∞
µ

B

]
ū = 0 (57)

Thus, in order to fulfil Equation 57, the real and the imaginary part of P must be zero.

Finally, just solving the system of equations shown in Equation 58, the values of the

flutter frequency and velocity are obtained.
PR(Ωf , Vf ) = 0

PI(Ωf , Vf ) = 0
(58)

It has to be taken into account that multiple solutions will appear, though the lowest

real and positive values will be the ones that will represent the beginning of the flutter

phenomenon.

37



UoL School of Mechanical Engineering

B MATLAB scripts

B.1 Initial function code

Figure 26: Initial function code - Dimensionless parameters

38



UoL School of Mechanical Engineering

B.2 Steady model 1st function code. Frequency vectors.

Figure 27: Steady model 1st function code - Part 1

Figure 28: Steady model 1st function code - Part 2

39



UoL School of Mechanical Engineering

Figure 29: Steady model 1st function code - Part 3

Figure 30: Steady model 1st function code - Part 4

40



UoL School of Mechanical Engineering

B.3 Steady model 2nd function code. Value of the fin flutter speed

Figure 31: Steady model 2nd function code - Part 1

Figure 32: Steady model 2nd function code - Part 2

B.4 Theodorsen’s function code

Figure 33: Quasi-steady model 1st - Theodorsen’s function code

41



UoL School of Mechanical Engineering

B.5 Quasi-steady model 2nd function code. Frequency vectors.

Figure 34: Quasi-steady model 2nd function code - Part 1

Figure 35: Quasi-steady model 2nd function code - Part 2

42



UoL School of Mechanical Engineering

Figure 36: Quasi-steady model 2nd function code - Part 3

Figure 37: Quasi-steady model 2nd function code - Part 4

Figure 38: Quasi-steady model 2nd function code - Part 5

43



UoL School of Mechanical Engineering

B.6 Quasi-steady model 3rd function code. Flutter speed (Theodorsen’s
method)

Figure 39: Quasi-steady model 3rd function code - Part 1

Figure 40: Quasi-steady model 3rd function code - Part 2

44



UoL School of Mechanical Engineering

C Simulink subsystems

C.1 First order approximation (steady model) subsystem

Figure 41: First order approximation subsystem

C.2 Aerodynamic derivatives (quasi-steady model) subsystem

Figure 42: Aerodynamic derivatives subsystem

45



UoL School of Mechanical Engineering

D Validation process - Relative error values
Just in case there is any confusion regarding how the relative errors are obtained, a

sample calculation for the first error shown on the upper table is left below:

i2θ = 1/5, ωh/ωθ = 0.2 → Relative error =
|Vf − VfNACA|

VfNACA
∙100 = 6.70% (59)

Figure 43: Relative errors between the steady model and the NACA Report No.685

46



UoL School of Mechanical Engineering

E LURA’s fins CAD design
The geometry of the fins that the LURA’s team is using in its current design can be

observed in the figure below, being all the measures and tolerances in millimetres.

Figure 44: CAD design of the current fins used by LURA

47


	Introductory chapter
	Introduction
	Aim of the project
	Objectives
	Report layout

	Mathematical background
	Equations of motion
	Dynamic matrices
	Generalised forces

	Solution of the dynamic problem
	Steady aerodynamic forces
	Quasi-stationary aerodynamic forces


	MATLAB code
	Initial function - Dimensionless parameters
	Steady aerodynamics functions
	Frequency vectors - Steady approach
	Fin flutter speed value - Steady approach

	Quasi-steady aerodynamics functions
	Theodorsen function
	Frequency vectors - Quasi-steady approach
	Fin flutter speed (Theodorsen's method) - Quasi-steady approach

	Plotting function

	Flutter simulator - Graphical user interface
	User fin data
	Divergence speed
	Steady aerodynamics approach
	Quasi-steady aerodynamic approach

	Validation process
	Steady aerodynamics model
	Quasi-steady aerodynamics model
	AeroFinSim simulator

	Case of LURA's fins
	Concluding chapter
	Achievements
	Discussion
	Conclusions
	Future work

	Mathematical developments
	Process to obtain the dynamic matrices
	Intermediate steps for the generalised forces vector
	Steady aerodynamics model - Intermediate steps
	Frequency plots - Extended discussion
	First order approximation - Complete development

	Quasi-steady aerodynamics model - Intermediate steps
	New matrix coefficients
	Expressions of the aerodynamic derivatives
	Theodorsen's method - Mathematical perspective


	MATLAB scripts
	Initial function code
	Steady model 1st function code. Frequency vectors.
	Steady model 2nd function code. Value of the fin flutter speed
	Theodorsen's function code
	Quasi-steady model 2nd function code. Frequency vectors.
	Quasi-steady model 3rd function code. Flutter speed (Theodorsen’s method)

	Simulink subsystems
	First order approximation (steady model) subsystem
	Aerodynamic derivatives (quasi-steady model) subsystem

	Validation process - Relative error values
	LURA's fins CAD design

