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Abstract

The multi-drug resistant yeast Candida Auris (CA) poses a global threat to the

healthcare environment. In this work, we have applied the Fisher Kolmogorov-

Petrovsky–Piskunov (FKPP) equation to model the change in density trough time

of CA. inside an Intensive Care Unit (ICU). Such a model will allow us to evaluate

the efficacy of well timed cleaning measures on CA. population control at the ICU.
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Introduction

The importance of Mathematical Modeling in Biology and

Medicine

If constructed with the collaboration of both mathematicians and medical personnel,

mathematical models can provide valuable support to experts in the fields of biology

and medicine. When supported by computer aided simulations they can help us to

better understand complex biological systems and make reliable predictions.

In order to model a population of microorganisms in a given environment through

time and space, ordinary differential equations (ODEs) and partial differential equa-

tions (PDEs) are, respectively, well studied and valuable tools. In practice, exact

solutions are few and numerical solutions are often used to describe the dynamic

behaviour of the population through time. In order to assert that the numerical so-

lutions are modelling real world phenomena it is important to calibrate these models

with biological and physical data.
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Contents

In this work we present a mathematical model to describe the diffusion of a yeast,

CA, within an ICU.

In Chapter 1 we introduce CA’s characteristics and the problem it represents for

a healthcare environment such as an ICU. Then, in the Chapter 2 we jump into

the mathematical model itself. After that, in the Chapter 3 we explain how the

parameter calibration was performed to fit this model to real world data. Lastly, in

the Chapter 4, we show the results of simulations performed with Matlab.
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Chapter 1

Candida Auris, a short overview

Candida Auris (CA) is a multi-drug resistant yeast that poses a

threat to the global health system, and in particular, to the vulnerable

Intensive Care Unit (ICU) patients. In this chapter we give a quick

overview on CA’s characteristics and why it is a threat in the ICU

environment.

1.1 A short summary of CA’s characteristics

Candida Auris (CA) is a multi-drug resistant yeast that was found in 2009 in the

ears of a Japanese and South Korean patients [23, 7]. It has quickly spread around

the world and has now been identified in more than 30 countries. Four major clades

have been distinguished in Africa, South America, East Asia, and South Asia [6].

CA is able to colonise different body parts, like skin or mucous membranes, with an

optimal growth temperature of 37−40oC (around normal human body temperatures

and temperatures of those suffering from a fever), and it still grows at temperatures

of up to 45oC (for temperatures higher or equal to 45oC its population decays) [23].
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Chapter 1. Candida Auris, a short overview

CA has been observed to express several virulence factors such as the formation of

microorganism communities called biofilms [14]. Microorganisms within a biofilm

have been found to be much more resistant to drugs, in part due to the ability of

biofilm cells to tolerate some antibiotics such as ampicillin [21].

Some strains of CA also display Antimicrobial Resistance (AMR). AMR is the ability

of a microorganism (virus, bacteria, parasite or fungus) to survive and grow in the

presence of antimicrobial drugs.

1.2 A global threat

This relatively new species of yeast is a public health concern in the healthcare

settings and particularly in the ICU environment across the globe [22].

CA can cause superficial candidiasis and also invasive infections such as intra-

abdominal candidiasis, chronic otitis media, and bloodstream infections. These

complications are more likely to occur in severely ill and immunosuppressed patients

admitted to ICU. This yeast is primarily transmitted from a colonized (meaning that

they carry the pathogen but are not infected themselves) or infected patient to un-

contaminated healthcare workers. A colonized or infected patient can also excrete

this pathogen into their environment. Therefore, the main reservoir of CA pathogens

is the contaminated hands of healthcare workers and their environment, including

reusable parts of observation and diagnostic equipment, which play a major role in

the onward transmission of infections among ICU patients [8, 10, 24].

As far as we know, the information available about CA is rather limited and hetero-

geneous, particularly regarding the mortality rates. The mortality rates associated

with CA vary greatly from study to study depending on the country and the envi-

ronment in which infected subjects were located, but overall is high, with a crude
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1.2 A global threat

mortality ranging from 30% to 72% [17]. The crude mortality rate is defined by the

Centers for Disease Control and Prevention (CDC) as the "total number of deaths

during a given time interval" [20].

AMR of some strains of CA not only impedes population control of this microorgan-

ism in healthcare settings, but also poses a serious threat to the global population.

Although in recent years the World Health Organization (WHO), the United Na-

tions General Assembly and other organizations have declared AMR as one of the

top ten global public health threats to humanity [2]. Inaction in the face of this

problem has continued for the past fifty years. In numerous high-impact scientific

studies, researchers acknowledge the important advances in public health thanks

to antibiotic treatments, but warn about the uncontrolled prescription of antibiotic

drugs and the overuse of antibiotics in the food industry [27, 18].

Environmental CA sample have shown presence of CA on many horizontal surfaces

such as floors and keyboards. Furthermore, CA is also able to survive on plastic

surfaces, wich readily present in ICUs, for at least 2 weeks [26]. These microbiological

characteristics are partly due to CA’s ability to form biofilms, making it resistant

to multiple cleaning agents commonly used in healthcare settings [22].

Because the ICU population is particularly vulnerable, these attributes pose a sig-

nificant threat. After the colonization of an ICU patient with CA, if no prevention

measures were to be taken, it is estimated that the whole ICU would be colonized

within 48h 1. Therefore, ICU personnel have to undertake costly measures to control

the spread of CA such as weekly testing of patients, isolation of detected colonized

patients, and in depth cleaning.

To face this problem, mathematical models allow us to simulate the CA population

spread in a environment such as ICU in a time and cost efficient manner.
1information provided by chief ICU medical personnel (Hospital General de Castellón).
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Chapter 1. Candida Auris, a short overview

Because the number of people inside an ICU is limited and rather small we concluded

that SIR models (which model much bigger populations) do not seem to be the best

choice. Recently, the study of the dynamics of microorganism populations in biofilms

has shown that the diffusion of these micro-populations resembles the expansion

of urban communities [19]. Schematically, an outbreak could be represented as a

bell shaped function that spreads through its environment like a wave . Hence,

the models for 2D heat waves appears to be adequate for modelling the level of

contamination of an ICU room at a given time.

In this work, we propose to model the biological diffusion of CA within the ICU using

with the Fisher Kolmogorov–Petrovsky–Piskunov (FKPP) model [25]. To calibrate

the model’s parameters, CA in vitro growth data and expert ICU medical personnel

information have been used.
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Chapter 2

Model Overview

In this chapter we introduce the Fisher Kol-

mogorov–Petrovsky–Piskunov reaction-diffusion equation. We shortly

discuss the existence of a unique solution of this system and then

introduce a cleaning factor into our model.

2.1 Fisher Kolmogorov–Petrovsky–Piskunov Equation

The 2-dimensional Fisher Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) model is

a reaction-diffusion system that is used to model population growth in a two dimen-

sional coordinate space through time [25], given by the following equation:

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
+ ru(1− u), (2.1)

where x and y are the coordinates of a point on a plane, u is the density of the

population in [a, b] × [c, d], a, b, c, d ∈ R at a given time t, D > 0 is the diffusion

coefficient and 0 ≤ r ≤ 1 is the growth rate.
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Chapter 2. Model Overview

In this model the variation of the population density u through time is guided by

both the diffusion term D
(

∂2u
∂x2 +

∂2u
∂y2

)
which models microorganism’s expansion in

a plane, and the population growth term ru(1− u), which indicates the amount of

CA at a given time, with restricted growth, as it is assumed that the environment

has a limited amount of resources.

Theorem 2.1.1. Given arbitrary initial conditions at time t = 0 satisfying

0 ≤ u ≤ 1. (2.2)

The PDE
∂u

∂t
= D

∂2u

∂x2
+ f(u)

has one and only one solution for t > 0 satisfying (2.2) 2 if it is true that

1. f(0) = f(1) = 0,

2. f(u) > 0, 0 < u < 1,

3. f ′(0) = 1,

4. f ′(u) < 1, 0 < u ≤ 1,

5. f ′(u) is bounded and continuous on (0, 1),

6. f(u) is sufficiently differentiable.

It is easy to see that, if r = 1, f(u) = ru(1 − u) satisfies conditions (1) − (6) since

f ′(u) = 1− 2u and f(u) ∈ C∞ (set of all infinitely differentiable functions).
2

The proof by Andrey Nikolaevich Kolmogorov can be found in "Selected Works of AN Kolmogorov: Volume I:
Mathematics and Mechanics" pages 255− 270 [25].
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2.2 Introduction of a cleaning factor

In general, and for higher dimensions, it has been proven that there exists a unique

weak solution

Theorem 2.1.2. Suppose that

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
+ f(u) (2.3)

is defined on U × (0, T ] where U ⊂ Rn, open and bounded with smooth boundary

(∂U ∈ C1) and T > 0 is fixed. If u(x, y, t) = 0 on the boundary of U for all

t ∈ (0, T ], u(x, y, 0) = g(x, y) where g ∈ H1
0 (U ;Rm), a subset of a Sobolev space

(H1), and f is Lipschitz continuous, then there exists a unique weak solution of

(2.3). 3

Now we can apply this result to (2.1), since f(u) = u(1 − u), u ∈ [0, 1] which is

Lipschitz continuous since u′ = r(1 − 2u) ≤ 1 since r ∈ (0, 1) and u ∈ [0, 1]. Thus

taking an initial condition u(x, y, 0) = g(x, y), where g ∈ H1
0 (U ;Rm) will ensure a

unique weak solution to this PDE.

However, the closed solution to the FKPP equation is not known. We thus have to

solve it numerically, which we will discuss in more detail in Chapter 4.

2.2 Introduction of a cleaning factor

The ICU is cleaned regularly by trained staff in order to minimize the spread of

any harmful microorganism. To model this we introduce a cleaning factor into our

model. We assume that the ICU is cleaned in a uniform manner. So at times

separated by equal intervals, the amount of CA is reduced by some percent at every
3

Proof using Banach’s fixed point theorem available in [9] Chapter 9.2.
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Chapter 2. Model Overview

point (x, y) on the plane. Then when this is introduced to the model, the amount

of CA in the ICU at every point (x, y) on the plane and time t is

u(x, y, t) =


pû(x, y, t), if cleaning happend at time t,

û(x, y, t), otherwise.
(2.4)

where û(x, y, t) is the numeric solution to equation (2.1) and p ∈ (0, 1) represents

the efficacy of the cleaning product used. We will explore two cases, when p is the

same for all the points, or when p follows a given density distribution function.

10



Chapter 3

Model Parameter Estimation

In this chapter we solve the FKPP equation numerically in Matlab.

We then calibrate our model so that it matches real-life data of CA in-

vitro growth.

We begin our parameter estimation by solving and fitting the logistic growth part

of the FKPP system without worrying about the diffusion term for now. Since it

has a nonlinear closed form solution we will use Nonlinear Least Squares to do so.

3.1 Nonlinear Least Squares

We will first give a short overview of the least squares estimation method for non-

linear functions where the parameters are unknown. For further detail on nonlinear

methods, consult [5].

Suppose our observed data is (xi, yi) , i = 1, . . . , n and we know f , its functional

relationship if no noise were to be present in the observed data. Taking the noise

into consideration, we have:
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Chapter 3. Model Parameter Estimation

yi = f(xi, θT ) + ϵi, i = 1, . . . , n (3.1)

with E(ϵi) = 0, θT ∈ Θ ⊂ Rp (here E(·) denotes the expectation operator) where

θT is a vector with parameters of f to be estimated.

We denote the least squares estimate of θT as θ̂. θ̂ is such that it minimizes the sum

of squares:

S(θ) =
n∑

i=1

[yi − f(xi, θ)]
2

over θ ∈ Θ.

We also assume that ϵi ∼ M(0, σ2), iid (independently and identically distributed)

where the continuous probability distribution M is not known. Further, ϵ̂ = [yi −

f(xi, θ̂)]i=1,...,n

If we assume that M is a normal distribution, then θ̂ is also the maximum-likelihood

estimator.

If it is true that every f(xi, θ), i = 1, . . . , n is differentiable with respect to θ and

θ̂ ∈ int(Θ), then

∂S(θ)

∂θr

∣∣∣∣
θ̂

= 0. (3.2)

Let fi(θ) := f(xi, θ), and f(θ) = (f1(θ), . . . , fn(θ))
′. Then we denote F (θ) := ∂f(θ)

∂θ
.

We also denote F̂ := F (θ̂).

Then by (3.2), we can write
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3.1 Nonlinear Least Squares

n∑
i=1

[yi − fi(θ)]×
∂S(θ)

∂θr

∣∣∣∣
θ̂

= 0, i = 1, . . . , p,

which can be rewritten as

0 = F̂ × ϵ̂. (3.3)

The equation (3.3) is called the normal equation and for most non-lineal models it

cannot be solved analytically [5]. We thus choose to solve it numerically using the

R package nls [4].

We first solve the logistic growth equation ∂u
∂t

= ru(1− u).

The closed-form solution is

u(t) =
u0 exp(rt)

u0(exp(rt)− 1) + 1
, (3.4)

where u0 is the initial normalized quantity of CA in the ICU. So here f is (3.4), and

θ = (r, u0).

In order to estimate the growth rate, r, and the initial value, u0, the solution to the

logistic growth model (3.4) has been fitted to CA in vitro growth data [11] using

nonlinear least squares (Figure 3.1).

The in vitro growth data comes from experimental strains of CA inoculated onto

Sarcocystis dextrose agar. These strains were incubated for 24 hours at a constant

temperature of 37oC.
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Chapter 3. Model Parameter Estimation

We have found the approximate growth rate to be r̂ = 0.30955 and û0 = 0.01507,

with a residual sum-of-squares of 0.1353. These two results give us an estimate of

the parameter space in which to calibrate the model and a way to choose an initial

condition that fits the data.

3.2 Numerical solution of the FKPP

We choose to solve the FKPP model numerically using Matlab. We use explicit

finite differences. We decide to set Neumann, no flux boundary conditions. We set a

spatial integration step h and a temporal step k and we discretize the FKPP equation

by evaluating it at the points (xi, yl, tj), i = 1, 2, . . . , nx, l = 1, 2, . . . , ny, j =

1, 2, . . . , T . We further suppose that N := nx = ny making our ICU plane a square.

We are aware that this is a simplification but it is a first approach to the problem.

We take as an approximation of the temporal derivative the foward difference

∂u(x, y, t)

∂t
≈ u(x, y, t+ k)− u(x, y, t)

k
=

ui,l,j+1 − ui,l,j

k

and for the spatial derivative we take the centered differences, giving us

∂2u(x, y, t)

∂x2
≈ u(x+ h, y, t)− 2u(x, y, t) + u(x− h, y, t)

h2

=
ui+1,l,j − 2ui,l,j + ui−1,l,j

h2
,

∂2u(x, y, t)

∂y2
≈ u(x, y + h, t)− 2u(x, y, t) + u(x, y + h, t)

h2

=
ui,l+1,j − 2ui,l,j + ui,l−1,j

h2
.

Putting all of these together and solving for the largest time step we get
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3.2 Numerical solution of the FKPP

ui,l,j+1 =
kD

h2

(
ui+1,l,j + ui,l+1,j − 4ui,l,j + ui−1,l,j + ui,l−1,j

)
+ ui,l,j + krui+1,l,j(1− ui+1,l,j),

which we can rewrite in matrix form as follows

u(j+1) =
kD

h2
Au(j) + u(j) + kru(j) ◦ (1− u(j))

u(j) =



u1,1,j = 0

u2,1,j

u3,1,j

...

uN,1,j = 0

...

u1,N,j = 0

...

uN,N,j = 0


(3.5)

for j = 1, . . . , T , where A is a N2 × N2 matrix with all zeroes except at the main

diagonal, D0, off 1 diagonals, D−1, D1 and off 10 diagonals,D−N , DN . Here ◦ denotes

the Hadamard product.

D0 =
( N+1︷ ︸︸ ︷
0 . . . 0

N2−2N+2︷ ︸︸ ︷
−4 . . . − 4

N+1︷ ︸︸ ︷
0 . . . 0

)
D1 = D−1 =

( N︷ ︸︸ ︷
0 . . . 0

N2−2N−1︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
0 . . . 0

)
D−N =

(
0

N−2︷ ︸︸ ︷
1 . . . 1 0 0

N−2︷ ︸︸ ︷
1 . . . 1 . . .

)

15



Chapter 3. Model Parameter Estimation

DN =
( N+1︷ ︸︸ ︷
0 . . . 0

N−2︷ ︸︸ ︷
1 . . . 1 0 0

N−2︷ ︸︸ ︷
1 . . . 1 . . .

)
This numerical solution has error O(h+ k2).

We built a 101 × 101 mesh-grid to model the plane representing the ICU where

x ∈ {0, 0.1, 0.2, . . . , 10} and y ∈ {0, 0.1, 0.2, . . . , 10}, which sets the spatial step to

be h = 0.1. The FKPP equation is parabolic

We let the time go from 0 to 48 with a time step of

k = min{0.5, 0.99 h2

4D
}

so that k < h2

4D
in order to guarantee stability in the numerical scheme [16, 15], but

we can also achieve higher resolutions if h2

4D
is small enough.

To numerically solve the F-KPP model, we need to define our initial condition,

which we want to both agree with previous results and literature on microorganism

populations.

The dynamics of microorganism populations in biofilms have been shown to share

structural aspects with urbanizations [19]. We assume that the outbreak of CA is a

city (set of densely populated microcolonies enclosed to well-defined boundaries) as

defined by Paula Amauri, Geelsu Hwang, and Hyun Koo and resembles schematically

a dome [19]. Therefore, we want our initial condition (IC) of to be bell shaped and

represents the accumulation of CA cells. For simplicity, we will set the IC as to

model an outbreak located in the center of the ICU. In order for the IC to agree

with previous results of nonlinear least squares, where u0 = 0.01507 ≈ 10−2 (Section

3.1), we also want to set the initial amount of CA in the ICU,
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3.2 Numerical solution of the FKPP

∫ 10

0

∫ 10

0

u(x, y, 0)dxdy,

estimated here as the sum of u(x, y, t) over all the points of the mesh-grid at times

0, to be around 10−2 on the normalized scale of 0 to 1. We recall that u ∈ [0, 1],

meaning that the maximum density of CA at any point (x, y) is 1. The orange

points in Figure 3.1 , that represent real growth data, reach 1 after 24 hours, and

because we chose the logistic growth, it will plateau there and remain at the last

time instance 48. So we know that in our model the maximum will be achieved

when the mesh-grid has values of 1 everywhere except in the four corners (that are

always 0). Since we have built a 101× 101 mesh-grid, we will get 10201− 4 = 10197

points evaluated at 1. In our discretization, our estimate of
∫ 10

0

∫ 10

0
u(x, y, 48)dxdy

is 0.12
∑∑

x,y∈{0,0.1,0.2,...,10} u(x, y, 48) so the maximum sum will be 1.0197 × 104 ×

10−2 = 101.9700, which is our normalizing constant.

We set the initial condition of the problem to be

u(x, y, 0) = exp{3
(
− (x− 5)2 − (y − 5)2

)
}. (3.6)

This function is bell shaped and centered in the middle of our [0, 10]2 ICU plane

and

∫ 10

0

∫ 10

0

exp{3
(
− (x− 5)2 − (y − 5)2)

)
dxdy ≈ 1.05

giving us, after normalization 1.05/101.9700 ≈ 0.0103 which is around 1 × 10−2 as

wanted. Therefore the function in equation (3.6) seems to be an appropriate initial

condition.

17



Chapter 3. Model Parameter Estimation

Figure 3.1: Observed in vitro growth of CA and estimated logistic growth using nonlinear least squares.

In our numerical solution we set Neumann boundary conditions, where the four

corners of the ICU plane have no flux and are maintained to be 0.

3.3 Particle Swarm Optimization

We then applied Particle Swarm Optimization (PSO) to calibrate both the diffu-

sion coefficient D and the growth coefficient r simultaneously. PSO is a numeric

biologically derived search algorithm, fist introduced by Kennedy and Eberhar in

1995 [12]. When searching for optimal parameters that minimize a given function,

it searchers the parameter space. It is a computationally very effective algorithm.

The data we mentioned in the previous part (plotted in Figure 3.1) shows that the

normalized A600nm (absorbance at 600nm wavelength) readings of CA reaches 1

at about 20h and is more or less mantained at 1 for the next 30 or so hours.

Let f(t) =
∫ 10

0

∫ 10

0
u(x, y, t)dxdy and {z1, ..., zn} be the observed CA growth data.

We define as the objective function for the PSO to minimize, the Symmetric Mean

Absolute Percentage Error (SMAPE)

18



3.3 Particle Swarm Optimization

S =
1

n

n∑
i=1

|zi − f(ti)|
|zi|−|f(ti)|

2

(3.7)

where {t1, t2, . . . , tn} is the set of times where CA’s A600nm (absorbance at 600nm

wavelength) was measured.

We replace f(ti) with
f̂(ti) = 0.12

∑∑
x,y∈{0,0.1,0.2,...,10}

u(x, y, ti)

for all i ∈ {1, . . . , n} to get the discritized estimate of S

Ŝ =
1

n

n∑
i=1

|zi − f̂(ti)|
|zi|+|f̂(ti)|

2

(3.8)

Using the results from the initial parameter estimation, we search for (D, r) in

[0.0001, 1]2. The particleswarm function in Matlab allows us to calibrate the model

using PSO with ease. This function has many parameters which one can tune. We

chose to modify the default parameters for SwarmSize, which is the number of parti-

cles in the swarm (and is by default min{100, 10∗number of variables to estimate}),

and MaxIterations, which is the maximum number of iterations (which is by default

200 ∗ (number of variables to estimate)).

The parameters D̂ = 0.4141, r̂ = 0.3539 were obtained after 68 iterations when the

relative change in the objective value was less than 1e−6. The objective function

Ŝ was evaluated at 0.1160. Figure 3.2 shows that the estimated growth follows the

observed data closely, except between 15 and 25 hours and after 43 hours, where

there are sudden drops in the observed data that could not be captured by the

logistic growth. Figure 3.3 illustrates the diffusion of CA throughout the ICU room,

with CA being present everywhere in the room after 25 hours and being completely

contaminated at 48 hours (meaning that the density of CA is 1 everywhere).

19



Chapter 3. Model Parameter Estimation

When we first set the objective function to be the Mean Squared Error, we obtained

D̂ = 0.9803, r̂ = 0.3423 (described in more detail in the Appendix in section 4.2.2).

The results for SMAPE shows a decrease in D, which could be more realistic ap-

proximation of the diffusion term in the ICU environment since the temperature

there is maintained at 23oC instead of the 37oC from the data (which is closer

to CA’s optimal growth temperature). Hence, for the rest of this work we use

D̂ = 0.4141, r̂ = 0.3539 as our fixed parameters.
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3.3 Particle Swarm Optimization

Figure 3.2: Observed in vitro growth of CA (points in orange) and f̂(ti)) (blue line) estimated using
PSO and SMAPE error.

(a) Time 0h (b) Time 18h

(c) Time 25h (d) Time 48h

Figure 3.3: 3D plots of the FKPP numeric solutions when r̂ = 0.3539, D̂ = 0.4141
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Chapter 4

Simulations

In this chapter we proceed to run several simulations using Matlab.

We first vary the location of the outbreak, and the number of outbreaks

present in the room by changing the initial condition in our model. We

then introduce a cleaning factor that reduces the amount of CA in a

timed a homogeneous manner.

4.1 Simulations of different initial conditions

Now that we have calibrated the model, using D̂ and r̂ we run several simulations

to observe the changes in the systems behavior. While maintaining the optimal

parameters estimated in Chapter 3 we change the initial condition in several ways.

First we change the location of the outbreak of CA in the ICU plane.

The contour plot 4.1 of the initial condition defined in equation (3.6) shows that the

bell representing a concentration of CA cells has a radius of 1. We will re-center the

function in order to start define different locations and number of outbreaks on the
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Chapter 4. Simulations

(a) 2D contour plot (b) 3D plot

Figure 4.1: 3D plot and 2D plot of u(x, y, 0) with Initial Condition 1 (IC 1)

(a) 2D contour plot (b) 3D plot

Figure 4.2: 3D plot and 2D plot of u(x, y, 0) with Initial Condition 2 (IC 2)

(a) 2D contour plot (b) 3D plot

Figure 4.3: 3D plot and 2D plot of u(x, y, 0) with Initial Condition 3 (IC 3)

(a) 2D contour plot (b) 3D plot

Figure 4.4: 3D plot and 2D plot of u(x, y, 0) with Initial Condition 4 (IC 4)
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4.2 Introduction of a Cleaning Factor into the numerical solution

ICU plane. We recall that when calibrating the model u(x, y, 0) was centered in the

middle of the ICU.

We define three new initial conditions:

IC2 One outbreak located in one of the four corners of the ICU, shown in Figure4.2.

IC3 Two outbreaks: one located in the center, the second located in the corner,

shown in Figure4.3.

IC4 Two outbreaks: located in opposite corners, shown in Figure4.4.

We then run our algorithm in Matlab as was done in Chapter 4 and just change the

initial condition. Figure 4.8 compares the values on f̂ for all four initial conditions.

As expected, and shown in Figure 4.5 IC 2 has the slowest growth of all four initial

conditions, as the outbreak starts in the corner and it takes longer for the wave to

fill the ICU room.

The third case, IC 3, has outbreaks located relatively close and through our sim-

ulation we can observe that the centered wave merges into the corner wave. It is

interesting to note that IC 3 and IC 4 display almost itentical f̂ .

4.2 Introduction of a Cleaning Factor into the numerical

solution

4.2.1 Homogeneous Cleaning

Now, in order to estimate the efficacy of cleaning measures on CA population control

and determine potential recommendations, we introduce a cleaning factor into our

25



Chapter 4. Simulations

(a) Time 0h (b) Time 5h

(c) Time 10h (d) Time 48h

Figure 4.5: 3D plots of the FKPP numeric solutions with IC2

(a) Time 0h (b) Time 5h

(c) Time 10h (d) Time 48h

Figure 4.6: 3D plots of the FKPP numeric solutions with IC3
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4.2 Introduction of a Cleaning Factor into the numerical solution

(a) Time 0h (b) Time 5h

(c) Time 10h (d) Time 48h

Figure 4.7: 3D plots of the FKPP numeric solutions with IC4

Figure 4.8: f̂ estimated with different initial conditions
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Chapter 4. Simulations

model. This cleaning factor is as described in Section 2.2. We periodically reduce

the population of CA present in the ICU by a percentage in a homogeneous way.

We compare the values of

M =
maxi=1,...,n[f̂(ti)]

1, 0197× 102
(4.1)

for different combination of time intervals between cleaning (TI) and cleaning effi-

cacy (CE). This represents the maximum quantity of CA present in the ICU relative

to the worse case scenario where the whole ICU is infected (1, 0197× 102).

We choose to vary TI from 2 hours to 10 hours with a one hour increase. Cleaning

more often than every 2h seems unrealistic and expensive, whereas cleaning less

than every 10h appears to be too low for a healthcare environment with gravely ill

patients who are very susceptible to any sort of infection.

The CE is equivalent to p as defined in Section 2.2 and thus CE has to be strictly

between 0 and 1. The highest CE value we choose is 0.966 in order to model the

efficacy of vaporized hydrogen peroxide (H2O2) on CA [1]. From the current litera-

ture on the efficacy of cleaning agents commonly used in healthcare environments,

H2O2 appeared to be the most effective against CA. The next eight variations of

CE go from 0.9 to 0.5, in 0.1 decreases, meaning that the lowest cleaning agent we

consider reduces the CA quantity by 50% each time the ICU is cleaned. A cleaning

agent that kills less than 50% of CA would be unlikely to be used in an ICU since

the personnel is well trained and follows guidelines issued after laboratory research.

We observe that given a combination of CE and TI the values of M (defined in

equation (4.1)) are equivalent to f̂(t = 0) = 0.0103, meaning that the amount of

CA never surpasses the quantity of the initial outbreak. Figure 4.9 and Table 4.1
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4.2 Introduction of a Cleaning Factor into the numerical solution

show us that this happens for all TI except 10 hours when the cleaning agent is

H2O2, corresponding to CE of 0.966. This suggests that a homogeneous cleaning of

the entire ICU with H2O2 vapor could be an effective population control tool. In

this table we can also observe how keeping either CE or TI constant and varying

the other affects the value of M , which reflects in to some degree the efficacy of

cleaning measures on CA population control. For example, if we keep CE = 0.7 and

vary TI, we can see that up to TI = 4, we do not surpass the initial amount of CA

(0.0103). However, for TI of 4 and up, we surpass this value and start approaching

the worst case scenario (M = 1). As expected, the highest M is obtained in our

simulations when TI = 10h and CE = 0.5. In this case M = 0.9689, which is quite

close to 1, or our worse case scenario (no cleaning measures are taken). Meaning

that if cleaning is not done often enough and with an effective enough cleaning

agent almost no population control of CA is achieved. Furthermore, some cleaning

agents that are not particularly effective against CA are quite effective against other

microorganisms that might be present in the ICU and could compete with CA for

resources [1]. The partial reduction of CA accompanied with complete removal of

some of the competing microorganisms could increase the rate at which CA diffuses

throughout the ICU and increase the risk of contamination for the patients.

The Figure 4.10 shows us how f̂(t) changes for t ∈ [0, 48] when TI is 4 hours. We

observe that for the CE of 0.966 and 0.8, the normalized amount of CA never goes

above the initial amount of 0.0103. But we can see that it takes longer for the

amount of CA to decrease in the second case and after 48h it is further from 0. For

the case where the CE is lowered to 0.7, we rapidly surpass the initial amount of

CA, but it still is quite far from reaching the worst case scenario (when no cleaning

is introduced).
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4.2 Introduction of a Cleaning Factor into the numerical solution

Figure 4.9: Surface plot of the maximum normalized quantity of CA given different CE and TI.

Overall, Table 4.1 shows us that in order to control CA population and keep its

amount always under the initial amount present in the outbreak, cleaning of the

ICU should be performed at most every 3h. If cleaning is performed every 3h the

cleaning efficacy of the agent should be at least 70%. If it is affordable to perform

cleaning every 2h, then the cleaning agent should have an efficacy of at least 60%.

For cleaning efficacies of 50% and under, we do not achieve the desired population

control.

4.2.2 Randomly distributed cleaning

The previous modeling of cleaning does not capture reality quite well. It is very

hard to clean homogeneously everywhere, there will always be surfaces where less

product of pressure is applied. There are some surfaces that are hard to reach, such

as the inside of a tube, as well as surfaces, such as screens, that cannot be cleaned

with some cleaning agents. Therefore, we propose a randomly distributed cleaning,

where every point of the ICU has been cleaned by a certain amount, and this amount

follows a probability density function. To define our randomly distributed cleaning
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(a) CE = 0.966

(b) CE = 0.8

(c) CE = 0.7

Figure 4.10: Comparison of CE when TI is 4 hours.
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4.2 Introduction of a Cleaning Factor into the numerical solution

factor, we will use the notions of probability space, random variable and its expected

value and variance. For further details about probability and measure theory consult

[3].

We suppose that that X, which represents the amount of CA killed by the cleaning

agent (equivalent to CE previously defined) at a point (x, y) on the ICU plane is

a random variable. Further, we assume that E(X) = 0.8, which means that the

expected amount of C.A killed is 0.8 (we recall that the amount of CA is restricted

to the interval [0, 1]). If we have n points where cleaning is performed, we suppose

that the amounts of CA killed, Xi, i = 1, . . . , n are independent and identically

distributed.

Because X must lie in [0, 1], we decide to choose a probability with a support

restricted to this interval. We propose a Beta distribution and will calculate its

parameters so that its mean is 0.8. This probability distribution is left-skewed,

meaning that most of its weight is located at the right side of [0, 1], so that it is

more likely that an amount of CA closer to 1 is killed.

Let X be a random variable in a probability space (Ω,F , P ). We say that X follows

a Beta distribution with parameters α, β (denoted as X ∼ Beta(α, β)) if it has an

associated measure µ such that for any A ∈ B (subset of the Borel σ-algebra of R),

we have

µ(A) =
1

B(α, β)

∫
A

xα−1(1− x)β−1I(0,1)(x)m(dx), (4.2)

Further the probability density function of X is

f(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1 (4.3)
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Chapter 4. Simulations

Figure 4.11: Probability density function of Beta(12, 3)

for any x ∈ [0, 1] where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

, I(0,1) denotes the characteristic function

on (0, 1), and α, β ∈ (0,∞).

Then it is known that E(X) = α
α+β

and V ar(X) = αβ
(α+β)2(α+β+1)

[3].

As discussed before we set the expected value (mean) to be E(X) = 0.8. We also

set the variance to be 0.01, V ar(X) = 0.01, so that most of the amount of CA killed

is in [0.7, 0.9] since the standard deviation is 0.1. After solving the system we obtain

α and β that give us the wanted behavior, we get α = 12, β = 3, giving us

X ∼ Beta(12, 3)

. The probability density function given by equation (4.3) with α = 12, β = 3 is

represented in Figure 4.11. We can see that as wanted, most of the weight is in

[0.7, 0.9].

For our simulations, the amount of CA at each point of the ICU plane is reduced

by 1 − x, x ∈ (0, 1) where X ∼ Beta(12, 3). We then proceed to simulate cleaning
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4.2 Introduction of a Cleaning Factor into the numerical solution

for TI of 2, 4, 8 hours. Figure 4.12 shows us how the amount of CA changes through

time as TI is changed. We can compare subplots (b) of figures 4.10 and 4.12, where

the first one is simulated with a fixed CE of 0.8 and the second is simulated with

expected CE of 0.8. We can see that the results are quite similar, both in shape

and range of values. In both cases M = 0.0103, meaning that we never surpass the

initial amount of CA.

However, here, we are assuming that there is no correlation between our n points

where cleaning is performed which is not realistic. This can be clearly seen in

Figure 4.14, where at 10h, where cleaning is performed, the surface displays many

spikes as at each point the amount of CA killed, or CE, is independent, even for

adjacent points. The other three subplots show us that the solution smoothes out

after cleaning is performed. It is natural to assume that points nearby will have a

similar amounts of CA killed. Hence, a generalization of the Beta distribution to the

multivariate case (where each marginal distribution is a Beta distribution) with a

correlation structure, such as the Dirichlet distribution would be more appropriate.

We could also use a multivariate Normal distribution for our n points and then

truncate it to [0, 1]n.
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(a) TI = 2h

(b) TI = 4h

(c) TI = 8h

Figure 4.12: Comparison of TI when the amount of CA killed follows a Beta(12, 3) distribution.
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(a) TI = 2h (b) TI = 4h (c) TI = 8h

Figure 4.13: Histograms of the amount of CA killed for the respective TI.

(a) Time 0h (b) Time 5h

(c) Time 10h (d) Time 48h

Figure 4.14: 3D plots of the FKPP numeric solutions with TI = 2 and CE following a Beta distribution
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Discussion and Conclusion

We have built a FKPP reaction-diffusion model, which we solved numerically and

then calibrated to real-life data of CA growth. After the calibration we have found

that the speed at which the ICU gets completely infected depends, to a certain

degree, on the location and number of outbreaks. In our simulations, we also showed

that if cleaning is done often enough, and at a high enough frequency, the maximum

amount of CA present in the ICU does not surpass the initial amount of the outbreak.

If cleaning is performed every 3 hours the cleaning efficacy of the agent should be

at least 70%. If cleaning is performed every 2 hours, then the cleaning agent should

have an efficacy of at least 60%. Our results using fixed and random cleaning efficacy

were very similar.

There are, however, great limitations in our model and the introduction of the

cleaning factor that need to be addressed.

First, our model is calibrated with in-vitro growth of CA which is not equivalent to

microbial growth in a health care environment. The ICU is kept at a temperature of

23oC, whereas the strains in the observed data were incubated at 37oC, which is a

lot closer to the optimal temperature for CA growth. Therefore, we can expect CA
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growth to be slower in an ICU, approaching a full contamination level at around 48

hours, as mentioned by ICU personnel, rather than 25 hours.

Secondly, our model does not account for the ecological pressures present in the

microbial environment such as local extinction and colonization processes as different

species compete for resources [13]. It is important to think about how cleaning can

affect the environmental competition. Cleaning could perhaps reduce in a more

significant way a microorganism that is highly competitive with CA, which would

then allow CA access to more resources and accelerate its growth. Some cleaning

agents such as H2O2 vapor have been shown to be more effective at killing non CA

species [1].

Homogeneous cleaning is also an unreasonable assumption. Some of the ICU mate-

rial cannot be cleaned as in depth as a simple plastic surface. Keyboards, screens,

tubes, etc. cannot be always cleaned with all cleaning agents and in a in depth

manner. Our simulations with randomly distributed cleaning efficacy appears to be

a bit more realistic, although it lacks a covariance structure to model the fact that

points nearby are more likely to be cleaned in a similar manner and provided with

a very irregular cleaning pattern.

This model, however, indicates that the efficacy of the cleaning agent and how often

the ICU room is cleaned greatly affects how well the yeast can be controlled.
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Appendix

Mean Squared Error

The mean squared error is:
E :=

1

n

n∑
i=1

(
f(ti)− zi

)2

(4.4)

where {t1, t2, . . . , tn} is the set of times where CA’s A600nm (absorbance at 600nm

wavelength) was measured and {z1, z2, . . . , zn} is the set of measurements them-

selves. Minimizing E will give us that u(x, y, t) > 0 for all 0 ≤ x ≤ 10, 0 ≤ y ≤

10, 25 ≤ t ≤ 48.

Computationally, since we have built a mesh-grid to represent the plane of the ICU,

we estimate for any i ∈ {1, 2, . . . n},

f(ti) =

∫ 10

0

∫ 10

0

u(x, y, ti)dxdy

with
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f̂(ti) = 0.12
∑∑

x,y∈{0,0.1,0.2,...,10}

u(x, y, ti).

We can then define an estimate of the error E defined in (4.4) as:

Ê :=
1

n

n∑
i=1

(
f̂(ti)− zi

)2
. (4.5)

Ê is the target function to minimize we give the PSO algorithm in order to calibrate

r and D simultaneously. When calculating Ê, we normalize both f(ti) and zi for i =

1, . . . , n by dividing them by their respective maximum so they both are restricted

to the interval [0, 1].

We search for (D, r) in [0.0001, 1]2 and run the particleswarm function with a swarm

size of 30 for 200 iterations and get D̂ = 0.9803, r̂ = 0.3423, and Ê = 0.0034.

We remark that 200 iterations were not needed as the algorithm stopped after 48

iteration because the relative change in the objective value was less than 1e−6.

As we can see in Figure 4.16, the estimated curve follows more closely the larger ob-

served values. This is because the mean squared error has bias towards values larger

in magnitude. It is then appropriate to calibrate the model using a different type of

error that takes into account the relative magnitude of the points and compare the

results as was done in Chapter 4.
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4.2 Introduction of a Cleaning Factor into the numerical solution

(a) Time 0h (b) Time 5h

(c) Time 10h (d) Time 48h

Figure 4.15: 3D plots of the FKPP numeric solutions when D̂ = 0.9803, r̂ = 0.3423

Figure 4.16: Observed in vitro growth of CA (points in orange) and f̂(ti)) (blue line) estimated using
PSO.
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