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Abstract: In a multi-objective optimization problem, in addition to optimal solutions, multimodal
and/or nearly optimal alternatives can also provide additional useful information for the decision
maker. However, obtaining all nearly optimal solutions entails an excessive number of alternatives.
Therefore, to consider the nearly optimal solutions, it is convenient to obtain a reduced set, putting
the focus on the potentially useful alternatives. These solutions are the alternatives that are close
to the optimal solutions in objective space, but which differ significantly in the decision space. To
characterize this set, it is essential to simultaneously analyze the decision and objective spaces.
One of the crucial points in an evolutionary multi-objective optimization algorithm is the archiving
strategy. This is in charge of keeping the solution set, called the archive, updated during the
optimization process. The motivation of this work is to analyze the three existing archiving strategies
proposed in the literature (ArchiveUpdatePQ,εDxy, Archive_nevMOGA, and targetSelect) that aim to
characterize the potentially useful solutions. The archivers are evaluated on two benchmarks and
in a real engineering example. The contribution clearly shows the main differences between the
three archivers. This analysis is useful for the design of evolutionary algorithms that consider nearly
optimal solutions.

Keywords: multi-objective optimization; nearly optimal solutions; archiving strategy; evolutionary
algorithm; non-linear parametric identification

1. Introduction

Many real-world applications pose different objectives (usually in conflict) to opti-
mize [1–3]. This leads to the proposal of a multi-objective optimization approach (MOOP—
multi-objective optimization problem) [4–7]. In a posteriori multi-objective approach [8],
after the MOOP definition and the optimization stage, a set of Pareto optimal solutions [9]
is generated. The decision maker (DM) can then analyze, at the decision-making stage,
the trade-off of the optimal alternatives for each design objective. This enables a better
understanding of the problem and a better-informed final decision.

For the DM, it is useful to have a diverse set of solutions. Traditionally, diversity
is sought in the objective space. However, obtaining a diverse set in the decision space
also offers advantages [10]: (1) it enables the DM to obtain different (even significantly
different) alternatives before the final decision; (2) it helps speed up the search, improving
exploration, and preventing premature convergence towards a non-global minimum. In
addition, the best solutions are sometimes too sensitive to disturbances, or are not feasible
in practice [11–14]. In this scenario, the multimodal solutions or the nearly optimal solution
set (also called approximate or ε-efficient solutions) plays a key role in enhancing the
diversity of solutions. Two multimodal solutions are those that, being optimal, obtain
the same performance. Nearly optimal solutions are those that have similar performance
to optimal solutions. Generalizing, it can be considered that multimodal solutions are
included in nearly optimal solutions. Nearly optimal solutions have been studied by many
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authors in the bibliography [15–19], have similar performance to optimal solutions and can
sometimes be more adequate according to DM preferences (for instance, more robust [14]).
Therefore, an additional challenge then arises: to obtain a set of solutions that, in addition
to good performance in the design objectives, offer the greatest possible diversity.

However, considering all the nearly optimal solutions requires obtaining and analyz-
ing a great number of alternatives and this causes two problems:

1. It slows down the optimization process. In evolutionary algorithms, an archive (a set
to store solutions during the execution) is required. The computational cost of the
optimization process largely depends on the archive size. This is because to check
for the inclusion of a new candidate solution in the archive, it is necessary to check
the dominance (or ε−dominance) for each solution in the current archive. Many
new candidate solutions are analyzed in an optimization process. Therefore, a large
archive results in a significantly higher computational cost.

2. The decision stage is made more difficult. The designer must choose the final solution
from a much larger number of alternatives.

Therefore, it is necessary to reduce the set of optimal solutions obtained by the designer.
In the literature, there are different algorithms aimed at finding nearly optimal solutions
in multi-objective optimization problems. The multimodal multi-objective evolutionary
algorithms (MMEAs [20]) are intended for multimodal optimization problems. Some
of the MMEAs take into account nearly optimal solutions in the optimization process,
but most of them do not provide these solutions to the DM. Furthermore, evolutionary
algorithms with an unbounded external archive [21] can also be interesting to analyze
these solutions. These unbounded external archives can be analyzed to obtain the relevant
nearly optimal solutions.

One of the crucial points in an evolutionary multi-objective optimization algorithm
is the archiving strategy (or archiver). An archiving strategy is the strategy that selects
and updates a solution set, called the archive, during the evolutionary process. Some
archivers have been studied previously [19,22–26]. In this paper, we address the problem
of discretization of the potentially useful alternatives. For this purpose, we compare
different archiving strategies that aim to obtain the set of potentially useful nearly optimal
solutions. An archiving strategy must take into account the decision space to ensure that
the potentially useful nearly optimal solutions are not discarded.

For the comparison of the results in this real problem, we have chosen to embed the
archiver in a basic evolutionary algorithm. First, to observe the impact of each archiver
when incorporated into an evolutionary mechanism. In addition, second, because the
computational cost associated with the objective functions of the real problem does not
allow simulations on large numbers of points. Therefore, it is not feasible to test each
archiver with a random or exhaustive search as has been done with the benchmarks.

These archivers have not been compared in the literature, so this work is useful for
future designs of evolutionary algorithms that consider nearly optimal solutions or even
to modify the archivers of the old evolutionary algorithms considering such solutions.
Therefore, the purpose of the paper is: (1) to understand the properties of these archivers,
(2) to provide an analysis for choosing one of these archivers and (3) to give ideas for
designing new archivers. The design of these algorithms are currently open issues in this
research area [18,20,27].

This work is structured as follows. In Section 2, a small state of the art on potentially
useful nearly optimal solutions is introduced. In Section 3 some basic multi-objective
backgrounds are presented. In Section 4, different archiving strategies to characterize the
optimal and nearly optimal set are described. In Section 5 the MOOPs and the archivers
comparison procedure are presented. The results obtained on the archivers are shown in
Section 6. Finally, the conclusions are given in Section 7.
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2. State of the Art

As discussed in the previous section, obtaining all nearly optimal solutions leads
to problems. Considering only the most relevant solutions largely avoids the problems
mentioned above. Not all nearly optimal solutions are equally useful to the DM. Therefore,
if we manage to discard those that are less useful, we will reduce both mentioned problems.
Let us see a graphic example to illustrate what we consider as potentially useful solu-
tions. Suppose we have a MOOP with two design objectives and two decision variables
(see Figure 1). Three solutions x1, x2 and x3 are selected. x1 is an optimal solution (member
of the Pareto set), and it slightly dominates the nearly optimal solutions x2 and x3. x1 and
x2 are very similar alternatives in their parameters (both belong to neighborhood1, the same
area in the parameter space), while x3 is significantly different (it belongs to neighborhood2).
In this scenario, x2 does not provide new relevant information to the DM. This solution is
similar to x1 but with a worse performance in design objectives. Predictably, both will have
similar characteristics, therefore the DM will choose x1 since it obtains a better performance
in the design objectives. However, x3 does provide useful new information to the DM
because it has a similar performance to the optimal ones and is in a different neighborhood.
The solutions in neighborhood1 could be, for example, not very robust or not feasible in
practice. In this context, x3 (and the solutions in neighborhood2) could be a potentially
useful solution due to their significantly different characteristics. It is possible, and often
common, for the DM to analyze in the decision stage additional indicators/objectives not
included in the optimization phase. Thus, the DM can assume a small loss of performance
in the design objectives in exchange for an improvement in a new feature not contemplated
in the optimization process. This analysis can decide the final choice in one way or another.
In short, including solutions of neighborhood2 increases the diversity with useful solutions
and enables the DM to make a better-informed final decision.
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Figure 1. A MOOP example. On the left, the objective space is shown, and on the right, the decision space is shown. SET1 is
the Pareto optimal set and SET2 is a potentially useful nearly optimal set.

Therefore, the potentially useful nearly optimal solutions are those nearly optimal
alternatives that differ significantly in the parameter space [28–30]. Thus, the new set must:
(1) not neglect the diversity existing in the set of nearly optimal alternatives; (2) obtain the
least number of solutions. To achieve both aims, it is necessary to employ an evolutionary
algorithm that characterizes the set of solutions by means of a discretization which takes
into account both the decision space and the objective space, simultaneously. A discretiza-
tion that takes into account only the objective space can lead to the loss of significantly
different nearly optimal alternatives in the decision space. This loss is a drawback because,
as we have previously discussed, these alternatives are potentially useful. On the other
hand, a discretization that takes into account only the decision space can lead to archives
with a huge number of solutions [19] and cause the two problems previously mentioned.
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3. Background

A multi-objective optimization problem can be defined as follows:

min
x∈Q

f (x) (1)

where x = [x1, ..., xk] is defined as a decision vector in the domain Q ⊂ <k and f : Q→ <m

is defined as the vector of objective functions f (x) = [ f1(x), ..., fm(x)]. A maximization
problem can be converted into a minimization problem. For each objective to be maximized
max fi(x) = −min(− fi(x)) will be performed. The domain Q is defined by the set of
constraints on x. For instance (but not limited to –any other constraints could be introduced
in a general MOOP–):

xi ≤ xi ≤ xi, i = [1, ..., k] (2)

where xi and xi are the lower and upper bounds of x components.
Consequently, the MOOP obtains a Pareto set PQ (see Definition 2). This set has

solutions non-dominated by any other solution (see Definition 1) in Q.

Definition 1 (Dominance [31]). A decision vector x1 is dominated by another decision vector x2

if fi(x2) ≤ fi(x1) for all i ∈ [1, ..., m] and f j(x2) < f j(x1) for at least one j, j ∈ [1, ..., m]. This is
denoted as x2 � x1.

Definition 2. (Pareto set PQ): is the set of solutions in Q that is non-dominated by any other
solution in Q: PQ := {x ∈ Q|@x

′ ∈ Q : x
′ � x}

Definition 3. (Pareto front f (PQ)): given a set of Pareto optimal solutions PQ, the Pareto front is
defined as:

f (PQ) := { f (x)|x ∈ PQ}

In any MOOP, there is a set of solutions with objective values close to the Pareto front.
These solutions receive several names in the bibliography: nearly optimal, approximate,
or ε-efficient solutions. To formalize the treatment of the nearly optimal solutions, the
following definitions are used:

Definition 4. (−ε-dominance [32]): define ε = [ε1, ..., εm] as the maximum acceptable degrada-
tion. A decision vector x1 is −ε-dominated by another decision vector x2 if fi(x2) + εi ≤ fi(x1)
for all i ∈ [1, ..., m] and f j(x2) + εj < f j(x1) for at least one j, j ∈ [1, ..., m]. This is denoted by
x2 �−ε x1.

Definition 5. (Set of nearly optimal solutions, PQ,ε [30]): is the set of solutions in Q which are
not −ε-dominated by another solution in Q:

PQ,ε := {x ∈ Q|@x
′ ∈ Q : x

′ �−ε x}

The sets defined PQ and PQ,ε usually contain a great, or even infinite, number of
solutions. Optimization algorithms try to characterize these sets using a discrete approx-
imation P∗Q and P∗Q,ε. In general, if such an approach has a limited set of solutions, the
computational cost falls. However, the number of solutions must be sufficient to obtain a
good characterization of these sets.

To compare the archiving strategies, it is useful to use a metric. Different metrics are
used in the literature to measure the convergence of the outcome set. An example of these
is the Hausdorff distance (dH [33–35] see Equation (3)).



Mathematics 2021, 9, 999 5 of 28

dH(A, B) : = max(dist(A, B), dist(B, A))

dist(A, B) : = sup
u∈A

dist(u, B)

dist(u, B) : = inf
v∈B
||u− v||

(3)

This metric is a measure of the distance between two sets. Therefore, dH can be used
to measure convergence between the outcome set (or final archive) f (A) to the target set
f (H) of a given MOOP (or archiving strategy). However, dH only penalizes the largest
outlier of the candidate set. Thus, a high value of dH(A, H) can indicate both that A is
a bad approximation of H and that A is a good approximation but contains at least one
outlier. The dH is used by the archiver ArchiveUpdatePQ,εDxy.

To avoid this problem, a new indicator appears in the literature: the averaged Haus-
dorff distance ∆p (the standard Hausdorff distance is recoverable from ∆p by taking the
limit limp→∞ ∆p = dH). This metric (with 1 ≤ p < ∞) assigns a lower value to sets uni-
formly distributed throughout its domain. ∆p is based on the known generational distance
metrics (GD [36] and represents how “far” f (H) is from f (A)), and inverted generational
distance (IGD [37] represents how “far” f (A) is from f (H)). However, these metrics are
slightly modified in ∆p (GDp and IGDp, see Equation (5)). This modification means that
the larger archive sizes and finer discretizations of the target set do not automatically lead
to better approximations under ∆p [34]. ∆p measures the diversity and convergence in the
decision and objective spaces. In this work we use ∆p with p = 2 (as in [18,38]) so that the
influence of outliers is low.

∆p(X, Y) := max(GDp(X, Y), IGDp(X, Y)) (4)

where

GDp =

(
1

nx

nx

∑
i=1

dist(xi, Y)p

)1/p

IGDp =

(
1

ny

ny

∑
i=1

dist(yi, X)p

)1/p
(5)

where

dist(u, A) := inf
v ∈ A

||u− v|| (6)

To use ∆p it is necessary to define the target set H with which to compare the final
archive A obtained by the archivers. The target set is defined in the decision space (H) and
it has its representation in the objective space ( f (H)). The definition of H is possible on the
benchmarks used in this work (where the global and local optimum are known), but this
definition is not trivial. Archive_nevMOGA and ArchiveUpdatePQ,εDxy archivers discard
solutions similar in both spaces at the same time. However, Archive- _nevMOGA, unlike
ArchiveUpdatePQ,εDxy, discards dominated solutions in their neighborhood. targetSelect
looks for diversity in both spaces simultaneously. On the one hand, defining H as the
optimal and nearly optimal solutions that are not similar in both spaces at the same
time, would give the archive ArchiveUpdatePQ,εDxy an advantage. If H is defined as
the set of optimal and nearly optimal solutions non-dominated in their neighborhood,
Archive_nevMOGA would be benefited. However, the archivers have a common goal: to
obtain the solutions close to the optimals in the objective space but significantly different in
the decision space (potentially useful solutions). Consequently, to be as “fair” as possible
we must define H as the set that defines the common objective. Thus, the potentially useful
solutions can be represented by the local Pareto set (see Definition 6).
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Definition 6. (Local Pareto set [5,39]): is the set of solutions in Q that is non-dominated by any
another neighbor solution in Q (where n is a small positive number):

H := {x ∈ Q|@y ∈ Q : ||x− y||∞ ≤ n and y � x}

Figure 2 shows an example of a MOOP with two design objectives and two decision
variables. Sets SET1 and SET2 form the global Pareto set. Both sets, together with SET3
and SET4 form the local Pareto set (since the global Pareto set is also a local Pareto set).
No solution of a local Pareto set is dominated by a neighboring solution. Furthermore, all
the solutions neighboring the local Pareto set are dominated by a neighboring solution,
and therefore they are not part of this set. This can be verified by the colored areas around
the sets SET1, SET2, SET3 and SET4. For example, solutions in the gray area, which are
neighboring solutions to SET3, obtain a worse objective value than SET3. For this reason,
the solutions of the gray area are dominated by neighboring solutions, and therefore are
not part of the local Pareto set. Sets SET3 and SET4 provide the DM with alternatives
potentially useful (significantly different to SET1 and SET2), enabling the DM to make a
more informed final decision. For this work, the ε−dominated solutions (solutions that
are not in the set PQ,ε) will not be considered to be local Pareto solutions (H) because their
degradation in performance is significant for the DM.
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Figure 2. Visualization of an MOOP in the objective space (on the left) and decision space (on the right). The sets SET1 and
SET2 are the optimal solutions. Both sets and SET3 and SET4 form the local Pareto set.

4. Description of the Compared Archivers

As already discussed above, nearly optimal solutions can be very useful. However,
it is necessary to discretize this set in order to find a reduced set of solutions to avoid the
problems associated with an excessive number of solutions. Furthermore, it is necessary not
to neglect the potentially useful nearly optimal solutions, i.e., nearly optimal alternatives
significantly different (in the decision space) to the optimal solutions. To achieve both
purposes, it is essential to discretize the set of solutions taking into account the decision
and objective spaces at the same time. In this section, three archivers that discretize the set
PQ,ε in both spaces are described.

There are MMEAs and algorithms that consider nearly optimal solutions that of-
fer these solutions: PQ,ε-NSGA-II [28], PQ,ε-MOEA [30], nevMOGA [29], NεSGA [18],
DIOP [10], 4D-Miner [40,41], MNCA [42].

PQ,ε-NSGA-II [28] was one of the first algorithms aimed at finding approximate (nearly
optimal) solutions. PQ,ε-NSGA-II uses the same classification strategy as the algorithm
on which it is based, NSGA-II [43], and therefore, the highest pressure of the population
is taken toward the Pareto set. Thus, this may result in the neighborhoods with only
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nearly optimal solutions not being adequately explored [30]. To avoid this problem, the
algorithm PQ,ε-MOEA [30] is created. This algorithm was designed to avoid Pareto set bias.
Nevertheless, PQ,ε-MOEA does not take into account the location of solutions in the decision
space. PQ,ε-MOEA does not then guarantee that the potentially useful alternatives will
not be discarded. To overcome this problem, the nevMOGA [29] algorithm was designed.
This algorithm seeks to ensure that the potentially useful alternatives are not discarded.
DIOP [10] is a set-based algorithm that can maintain dominated solutions. This algorithm
simultaneously evolves two populations A and T. Population A approaches the Pareto
front, and is not provided to the DM, while T is the target population that seeks to maximize
diversity in the decision and objective spaces. MNCA [42] is an evolutive algorithm that
simultaneously evolves multiple subpopulations. In MNCA each subpopulation converges
to a different set of non-dominated solutions. Finally, 4D-Miner [40,41] is an algorithm
especially designed for functional brain imaging problems.

One of the crucial points in an evolutionary multi-objective optimization algo-
rithm is the archiving strategy. The PQ,ε-NSGA-II and PQ,ε-MOEA algorithms share the
ArchiveUpdatePQ,ε archiver. This archiver seeks to characterize all nearly optimal solu-
tions without taking into account the decision space. In [19], different archiving strate-
gies are compared: ArchiveUpdatePQ,ε, ArchiveU pdatePQ,ε Dx , ArchiveU pdatePQ,ε Dy
and ArchiveUpdatePQ,εDxy. On the one hand, ArchiveUpdatePQ,ε gets an excessive num-
ber of solutions. On the other hand, ArchiveUpdatePQ,εDx, ArchiveUpdatePQ,εDy do not
discretize the decision and objective spaces simultaneously. Therefore, these archivers
do not achieve the two purposes discussed above. The mentioned work concludes that
archiver ArchiveUpdatePQ,εDxy is most practical use within stochastic search algorithms.
Furthermore, this archiver is the only one of the archivers compared in this paper that
discretizes the decision and objective spaces simultaneously [27], a factor that we consider
necessary to obtain potentially useful solutions. The archiver ArchiveUpdatePQ,εDxy has
been employed in the recent NεSGA algorithm to maintain a well-distributed represen-
tation in the decision and objective spaces. For this reason, the present work compares
the archiver ArchiveUpdatePQ,εDxy and not ArchiveUpdatePQ,ε, ArchiveUpdatePQ,εDx and
ArchiveUpdatePQ,εDy.

The second archiver included in this comparison is the archiver of the nevMOGA algo-
rithm (Archive_nevMOGA). This archiver characterizes the set of potentially useful solutions
by discretizing both spaces simultaneously. Finally, the archiver of the DIOP algorithm
(targetSelect) is also compared in this work. targetSelect seeks to find the population that max-
imizes an indicator that measures diversity in the decision and objective spaces simultaneously.
Therefore, a metric-based archiver targetSelect is compared to the distance-based archivers
ArchiveUpdatePQ,εDxy and Archive_nevMOGA. The three archivers compared in this work
seek to characterize the potentially useful solutions. The archiver of the MNCA algorithm
has not been included in the comparison because it looks for non-dominated solutions. The
archiver of the 4D-Miner algorithm has also not been included in the comparison because
4D-Miner is a very specific algorithm for functional brain imaging problems.

4.1. ArchiveUpdatePQ,εDxy

ArchiveUpdatePQ,εDxy is the proposed archiving strategy in [19] (see Algorithm 1). As
already mentioned, potentially useful solutions are those that obtain similar performance
(in the design objectives) but differ significantly in their parameters (in the decision space).
This archiver aims to maintain these solutions. This archiver uses, in addition to the
parameter ε (maximum degradation acceptable to the DM, see Definition 4), the parameters
∆x and ∆y. Two solutions are considered similar if their distance in the decision space is
less than ∆x. Therefore, the parameter ∆x is the maximum distance, in the decision space,
between two similar solutions. Two alternative solutions obtain a similar performance
if their distance in the objective space is less than ∆y. Therefore, the parameter ∆y is the
maximum distance between two solutions to be considered similar in the objectives space.
Both parameters are measured using the Hausdorff distance [34] (dH , see Equation (3)). The
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archive A stores the set of obtained alternatives. A new solution p from P (new candidate
solutions) will only be incorporated in A if: (1) p is a nearly optimal solution; and (2) A
does not contain any solution similar to p, in the decision and objective spaces at the same
time. If the new solution p is stored in archive A, the new set of optimal and nearly optimal
solutions (Â) belonging to archive A is calculated. Thus, a solution a ∈ A will be removed
if: (1) it is not a nearly optimal solution (p ≺−(ε+∆y) a); and (2) the distance to the set Â
fulfills the condition dist(a, Â) ≥ 2∆x.

Algorithm 1 A := ArchiveUpdatePQ,εDxy(P, A0, ε, ∆x, ∆y)

Require: population P, archive A0, ε ∈ Rm
+, ∆x ∈ R+, ∆y ∈ R+

Ensure: updated archive A
1: A := A0
2: for all p ∈ P do
3: if (@a1 ∈ A : a1 ≺−ε p) and (@a2 : (dH( f (a2), f (p)) ≤ ∆y and dH(a2, p) ≤ ∆x))

then
4: A← A ∪ {p}
5: Â = {a1 ∈ A|@a2 ∈ A : a2 ≺−(ε+∆y) a1}
6: for all a ∈ A \ Â do
7: if p ≺−(ε+∆y) a and dist(a, Â) ≥ 2∆x then
8: A← A \ {a}
9: end if

10: end for
11: end if
12: end for

The archiver ArchiveUpdatePQ,εDxy goes through all the set of candidate solutions
p ∈ P, and in the worst case, the algorithm compares them with all the solutions a ∈ A.
Thus, the complexity of the archiver is O(|P||A|) [44]. Also, ArchiveUpdatePQ,εDxy has a
maximum number of solutions |A(Dxy)| [19] which is given by:

|A(Dxy)| ≤ |A(Dx
xy)||A(Dy

xy)| (7)

where |A(Dx
xy)| is the maximum number of neighborhoods that the decision space can

contain (based on ∆x) and |A(Dy
xy)| is the maximum number of solutions that can exist in

each neighborhood (based on ∆y and ε), and are defined as:

|A(Dx
xy)| ≤

k

∏
i=1

(
1

∆x
+ 1
) k

∏
j=1

(xj − xj) (8)

|A(Dy
xy)| ≤

(
1

∆y

)m−1 m

∑
i=1

(
εi
∆y

+ 3
) m

∏
i=1

i 6=j

(Mj −mj + ∆y) (9)

xj and xj are the bounds in the decision space (PQ,ε+2∆y is included in [x1, x1]...[xk, xk]) and
Mj and mj are the bounds in the objective space of the set to discretize f (PQ,ε+2∆y). Also, it
is assumed that any εi is greater than ∆y.

4.2. Archive_nevMOGA

Archive_nevMOGA is the archiving strategy used by the nevMOGA evolutionary
algorithm [29]. This archiver, just as ArchiveUpdatePQ,εDxy, aims to guarantee solu-
tions that obtain similar performance to the optimals, but are significantly different in
the decision space. The archiver Archive_nevMOGA uses the same three parameters as
ArchiveUpdatePQ,εDxy (ε, ∆x, ∆y). However, there are differences in the definition of some
parameters in this archiver with respect to ArchiveUpdatePQ,εDxy: (1) ∆x is a vector that
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contains the maximum distances (in the decision space) between similar solutions for each
dimension. Thus, two individuals a and b are similar if: |ai − bi| ≤ ∆xi ∀i ∈ [1, ..., k]. (2) ∆y
is also a vector that contains the maximum distances (in the objective space) between
solutions with similar performance for each dimension. Thus, two individuals a and b
have a similar performance if: | fi(a)− fi(b)| ≤ ∆yi ∀i ∈ [1, ..., m].

The archiver Archive_nevMOGA will add a new candidate solution p to the archive
A if the following conditions are met simultaneously: (1) p is a nearly optimal solution;
(2) there is no similar solution to p (in the decision space) ∈ A that dominates it; and (3)
there is no similar solution to p in A in both spaces at the same time (if it exists, and p
dominates it, it will be replaced). If a solution p is incorporated in the archive A, it will
remove from A: (1) the similar individuals (in the parameter space) that are dominated by
p and (2) the individuals ε−dominated by p.

The complexity of the archiver Archive_nevMOGA is equivalent to the complexity
of ArchiveUpdatePQ,εDxy previously defined (O(|P||A|)). Moreover, Archive_nevMOGA
has a maximum number of solutions |A(nMOGA)| which is given by:

|A(nMOGA)| ≤ |A(nMOGAx)||A(nMOGAy)| (10)

where |A(nMOGA)|x is the maximum number of neighborhoods that the decision space
can contain (based on ∆x) and |A(nMOGA)|y is the maximum number of solutions that
can exist in each neighborhood (based on ∆y and ε), and are defined as:

|A(nMOGAx)| ≤
k

∏
i=1

(
1

∆xi

+ 1
) k

∏
j=1

(xj − xj) (11)

|A(nMOGAy)| ≤ ∏m
i=1 n_boxi

n_boxmax
(12)

where n_boxi = (Mi −mi)/∆yi , n_boxmax = maxi n_boxi and Mj and mj are the bounds in
the objective space of the set to discretize f (PQ,ε).

The archive size with respect to the decision space is equivalent for the com-
pared archivers (A(Dx

xy) and A(nMOGAx)). However, there is a difference between
A(Dy

xy) and A(nMOGAy) (objective space). The archiver Archive_nevMOGA, unlike
ArchiveUpdatePQ,εDxy, discards nearly optimal solutions dominated by a similar so-
lution in the decision space. Thus, in the worst case, Archive_nevMOGA will obtain
the best solutions (non-dominated) in each neighborhood. These solutions will have a
maximum number of alternatives depending on ∆y . However, ArchiveU pdatePQ,εDxy ,
in the worst case, will obtain, in each neighborhood, in addition to the best solutions,
additional solutions. These additional solutions are dominated by neighboring solu-
tions, but are considered solutions with different performance (based on ∆y). As a
result, the archive of Archive_nevMOGA will have fewer solutions than the archive of
ArchiveU pdatePQ,εDxy . Therefore, we can deduce that the archiver Archive_nevMOGA
has a lower computational cost than ArchiveU pdatePQ,εDxy because its archive con-
tains fewer solutions (the candidate solutions are compared with a smaller number
of solutions).

4.3. targetSelect

targetSelect is the archiving strategy used by the DIOP evolutionary algorithm [10].
This archiver seeks to obtain a diverse set of solutions (keeping solutions close to the Pareto
set) in the decision and objective spaces. A = targetSelect(F, T, µt, ε) has as inputs: an
approximation to the Pareto front F, the set of solutions to be analyzed T, the size of the
set target µt, and ε. This archiver selects µt solutions from set T. The goal is to find the
population A, with size µt, to maximize G(T) (see Equation (13)). G(T) is defined as the
sum of the product between a metric and its respective weight.

G(T) := ωo · Do(T) + ωd · Dd(T), |T| = µ with qF(t) ≤ ε ∀t ∈ T, ωo + ωd = 1 (13)
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where Do and Dd are metrics that measure diversity in the objective and decision spaces
respectively, and qF is a distance metric defined as:

qF(x) := min{ε | ∃y ∈ F : x �ε y} (14)

Do is an indicator that measures diversity and convergence to the Pareto front, and Dd
is an indicator that measures diversity in the decision space. In this work, as in [10], Do and
Dd were specified by the hypervolume indicator [45] and the Solow–Polasky diversity
measure [46], respectively. An advantage of the archiver targetSelect is that you can directly
and arbitrarily specify the archive size.

5. Materials and Methods

In this section, the MOOPs, on which the three archivers will be compared, will be
defined. In addition, the methodology for carrying out the comparison is introduced.

5.1. Definition of MOOPs

The archivers will be compared on two benchmarks and a real engineering example.
Benchmarks have a very low computational cost for the objective function. For this reason,
it is inexpensive to obtain a target set (with a very fine discretization in the decision space)
H. This discrete set is necessary for the use of the metric ∆p (see Section 3). Furthermore,
the definition of this set must be as “fair” as possible. Therefore, for the benchmarks, the
target set H is defined as the local and global Pareto set (see justification in Section 3). This
set is obtained by discretizing the decision space with 10,000,000 solutions in the range
of the parameters. Furthermore, the target set H has its representation in the objective
space. In the real engineering example, obtaining a set H would be computationally very
expensive (or even unaffordable). Therefore, this set is not defined in this MOOP. By
means of these problems it is possible to analyze the behavior of the archivers for different
characteristics in the MOOP: multimodal solutions; local Pareto sets; or discontinuous
Pareto fronts. However, there are other features of MOPs that are not analyzed in this
article (such as MOPs with many objectives and/or decision variables).

5.1.1. Benchmark 1

Benchmark 1 (see Equation (15)) is a test problem called SYM-PART defined in [47]
widely used in the literature [18,20,48–50] for the evaluation of algorithms that characterize
nearly optimal or multimodal solutions. Benchmark 1 has the Pareto set located in a single
neighborhood, and it also has eight local Pareto set that overlap in the objective space
(see Equation (20) and Figure 3). Thus, this benchmark is very useful to observe if the
compared archivers can adequately characterize the nine existing neighborhoods, and
provide all the existing diversity to the DM.

min
x

f (x) = [ f1(x) f2(x)] (15)

f1(x) = (x1 − t1(c + 2a) + a)2 + (x2 − t2b)2 + δt

f2(x) = (x1 − t1(c + 2a)− a)2 + (x2 − t2b)2 + δt
(16)

where

t1 = sgn(x1)min
(⌈
|x1|−a−c/2

2a+c

⌉
, 1
)

t2 = sgn(x2)min
(⌈
|x2|−b/2

b

⌉
, 1
)

and

δt =

{
0 f or t1 = 0 and t2 = 0
0.1 else
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subject to:

−20 ≤ x1 ≤ 20

−20 ≤ x2 ≤ 20
(17)

using a = 0.5, b = 5 and c = 5.
This MOOP contains one global Pareto set:

P0,0 = [−0.5, 0.5]× {0} = PQ (18)

as well as the following eight local Pareto sets:

P−1,−1 = [−6.5,−5.5]× {−5}
P0,−1 = [−0.5, 0.5]× {−5}
P1,−1 = [5.5, 6.5]× {−5}
P−1,0 = [−6.5,−5.5]× {0}
P1,0 = [5.5, 6.5]× {0}

P−1,1 = [−6.5,−5.5]× {5}
P0,1 = [−0.5, 0.5]× {5}
P1,1 = [5.5, 6.5]× {5}


Local Pareto set (19)

Therefore, the target set H is defined as:

H := P0,0 ∪ P−1,−1 ∪ P0,−1 ∪ P1,−1 ∪ P−1,0 ∪ P1,0 ∪ P−1,1 ∪ P0,1 ∪ P1,1 (20)

Figure 3. Target set H for the benchmark 1 formed by the global (blue) and local (red) Pareto set.

To evaluate the archivers on benchmark 1, the parameters are defined in Table 1.
The parameters ε, ∆x and ∆y are defined based on prior knowledge of the problem. The
targetSelect archiver is based on an indicator, and therefore has different parameters from
the rest of the compared archives. For the choice of the parameter µt, based on the size of
the archives obtained by the rest of the archivers, the following values have been analyzed:
µt = {100, 75, 50}. For the choice of the ωo parameter, the following parameters suggested
in [10] have been analyzed: ωo = {0, 0.7692, 0.9091, 0.9677, 1}. Among all these values,
µt = 100 and ωo = 0.9677 have been defined as the parameters that obtain the best
performance, with respect to ∆p, for the uniform dispersion. For random dispersion,
ωo = 0.7692 obtain the best performance.
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Table 1. Parameters for benchmark 1.

Parameters Value

ε [0.15 0.15]

ArchiveUpdatePQ,εDxy

∆x 1

∆y 0.2

Archive_nevMOGA

∆x [1 1]

∆y [0.2 0.2]

targetSelect

µt 100

ωo 0.9677 (uniform dispersion)

ωo 0.7692 (random dispersion)

5.1.2. Benchmark 2

The benchmark 2 (see Equation (21)) is an adaptation of the modified Rastrigin bench-
mark [51–54]. Figure 4 show the global and local Pareto set H of benchmark 2. This
benchmark has a discontinuous Pareto front made up of solutions in different neighbor-
hoods. In addition, it also provides nearly optimal solutions significantly different from
the optimal solutions (in different neighborhoods).

min
x

f (x) = [ f1(x) f2(x)] (21)

f1(x) = −(
2

∑
i=1

10 + 9cos(2π · ki · xi))(1−
√
(x1 − 0.65)2 + (x2 − 0.5)2)

f2(x) = min((x1 − 0.65) + (x2 − 0.5), (x1 − 0.65) + (x2 − 0.25), (x1−
0.65) + (x2 − 0.75), (x1 − 0.35) + (x2 − 0.5), (x1 − 0.35) + (x2 − 0.75),

(x1 − 0.35) + (x2 − 0.25))

(22)

where k1 = 2 and k2 = 3, and subject to:

0 ≤ x1 ≤ 4

0 ≤ x2 ≤ 4
(23)

-40 -20 0
f
1
(x)

-1.4

-1

-0.6

-0.2

f 2(x
)

Nearly optimal set
Pareto set
Local Pareto set

0 0.25 0.5 0.75
x
1

0

0.2

0.4

0.6

x 2

Figure 4. Target set H for the benchmark 2 formed by the global (blue) and local (red) Pareto set.
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To analyze the archivers on the benchmark 2, we define the parameters of Table 2. The
parameters ε, ∆x and ∆y are defined based on prior knowledge of the problem. Following
the same procedure as the previous benchmark, µt = 150 (in this case µt = {200, 150, 100}
has been analyzed) and ωo = 0.9677 is defined as the parameters that obtains the best
performance, with respect to ∆p, for the uniform dispersion. For random dispersion,
ωo = 0.9091 obtains the best performance.

Table 2. Parameters for benchmark 2.

Parameters Value

ε [2.5 0.15]

ArchiveUpdatePQ,εDxy

∆x 0.15

∆y 0.25

Archive_nevMOGA

∆x [0.15 0.15]

∆y [0.25 0.25]

targetSelect

µt 150

ωo 0.9677 (uniform dispersion)

ωo 0.9091 (random dispersion)

5.1.3. Identification of a Thermal System

Finally, a MOOP is defined to solve a real engineering problem: identification of a
thermal system. In this problem, the energy contribution inside the process is due to the
power dissipated by the resistance inside it (see Figure 5). Air circulation inside the process
is produced by a fan, which constantly introduces air from outside. The actuator is made
up of a voltage source which is controlled by voltage. The actuator input range is [0 100]
% ([0 7.5] V). Two thermocouples are used to measure the resistance temperature and the
air temperature in the range [−50 250] ◦C. Figure 6 shows the signals that will be used in
the identification process. The ambient temperature Ta is considered constant and equal to
17 ◦C for the entire identification test.

Input 

Voltage

 v (V)
Actuator

Resistance

Resistance 

Temperature

 (ºC)

Temperature 

sensor
Room 

Temperature

 Ta (ºC)

Measured

 Resistance

Temperature

 T (ºC) 

Figure 5. Block diagram of the thermal system.

Taking into account the physical laws of thermodynamics [55], the initial structure of
the model can be defined using the following differential equations, where heat losses due
to convection and conduction are modeled, as well as losses due to radiation:
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Ṫ(t) =
1

1000

(
x1v(t)2 − x2(T(t)− Ta(t))− x3

(
273.0 + T(t)

100

)4
)

(24)

where T(t) is the process output temperature and state variable in ◦C, v(t) is the input
voltage to the process in volts, Ta(t) is the ambient temperature in ◦C and x = [x1 x2 x3]
are the parameters of the model to estimate.

The MOOP is defined as follows:

min
x

f (x) = [ f1(x) f2(x)] (25)

subject to:
x ≤ x ≤ x

where:
f1 =

1
τ

∫ τ

0
|T̂ − T|dt (26)

f2 = max
i ∈ 1...τ

|T̂i − Ti| (27)

τ = 2500 is the duration of the identification test, variables with circumflex accent are
process outputs (experimental data), variables without circumflex accent are the model
outputs, x the parameter vector:

x = [x1 x2 x3] (28)

and x and x (see Table 3) the lower and upper limits of the parameter vector x which define
the decision space Q.

35
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(º
C
)

Figure 6. Identification test of the thermal system.

Table 3. Lower (x) and upper (x) limits of the parameters x.

Limits θ1 θ2 θ3

x 0.01 2 0

x 0.15 10 0.8
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In this MOOP, the design objectives measure the mean and maximum error between
the temperatures of the process outlet and the model. The parameters to be estimated and
the design objectives have a physical meaning. This fact makes it easier to choose the ε, ∆x
and ∆y (see Table 4). The ε parameter (maximum acceptable degradation) is the same for
all archivers. ∆y is similar for ArchiveUpdatePQ,εDxy and Archive_nevMOGA, taking into
account the difference in vector size. However, ∆x is different for ArchiveUpdatePQ,εDxy
and Archive_nevMOGA. For ArchiveUpdatePQ,εDxy, ∆x = 0.1. A lower value increases
significantly higher number of solutions. A higher value gives a poor approximation to the
set of optimal and nearly optimal solutions. For Archive_nevMOGA, ∆x = [0.0015 0.2 0.1].
In this case, ∆x is independent for each dimension in the decision space, being different for
each parameter due to its different limits (see Table 3). For targetSelect, µt = 78 solutions
to obtain the same number of solutions as Archive_nevMOGA. In this way, both archivers
will have equal conditions. Additionally, ωo = 0.7692 is defined to give greater weight to
diversity in the decision space.

Table 4. Parameters for identification of thermal system.

Parameters Value

ε [0.25 0.25]

ArchiveUpdatePQ,εDxy

∆x 0.1

∆y 0.025

Archive_nevMOGA

∆x [0.0015 0.2 0.1]

∆y [0.025 0.025]

targetSelect

µt 78

ωo 0.7692

5.2. Archivers Comparison Procedure

The procedure performed to carry out the archiver comparison is different on the
benchmarks and on the real example. Benchmarks have a very low computational cost for
the objective function. Therefore, it is possible to evaluate large populations that discretize
the entire search space. These populations are entered in the archiver as input population.
To analyze the behavior of the archivers on different types of populations, a uniform and
random distribution is used to obtain these initial populations.

Because the computational cost of the objective functions of the engineering problem
are significantly higher, it is not feasible to test each archiver with random or exhaustive
searches as has been done with the benchmarks. Thus, the archiver has been embedded in a
basic evolutionary algorithm. In addition to the reduction of computational cost, this enables
observing the impact of each archiver when incorporated into an evolutionary mechanism.

5.2.1. Benchmarks

For the comparison of the archivers on the two benchmarks presented, the archivers
will be fed in two ways: (1) by a uniform distribution; (2) by a random distribution
of solutions in the search space. The comparison of the results will be made using the
averaged Hausdorff distance ∆p [34] (see Equation (4)). This metric measures the averaged
Hausdorff distance between the outcome set (or final archive) f (A) and the target set f (H)
(local Pareto set in this paper) of a given MOOP. Since ∆p considers the averaged distances
between the entries of f (A) and f (H), this indicator is very insensitive to outliers. This
metric measures the diversity and convergence towards the target set. Furthermore, this
metric can be applied both in the decision and objective space.
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To carry out the comparison of the archiving strategies with data of a uniform disper-
sion, each archiver is fed with a file of 100,000 solutions uniformly distributed throughout
the domain Q (generating a hypergrid). These solutions are introduced in a random or-
der. This process is repeated with 25 different files, where each file slightly displaces the
generated hypergrid vertically and/or horizontally on the search space.

To carry out the analysis with data of a random dispersion, each archiver is fed with a
file of 100,000 solutions randomly distributed throughout the domain Q. This process is
repeated with 25 different files, avoiding as far as possible the random component.

5.2.2. Identification of Thermal System

In this example, we are going to analyze the different archivers on a multi-objective
generic optimization algorithm [23,34] (see Algorithm 2). This algorithm generates the
initial population randomly with NindP0 individuals, obtaining the initial archive A0
(through the archiver). Subsequently, in each iteration, new solutions are generated and
the archive At is updated (using the selected archiver). The Generate() function generates
new individuals in each iteration. To do this, two solutions are randomly selected from
the current file At−1. A random number u ∈ [0 1] is generated. If u > Pcm (probability of
crossing/mutation) a crossing is made. The crossover generates two new solutions using
the simulated binary crossover (SBX [56]) technique. If u ≤ Pcm a mutation is performed.
The mutation generates two solutions through the polynomial mutation [43]. In this way,
the three archivers are compared using the same evolutionary strategy. For this example,
an initial population of 500 individuals (NindP0 = 500), a probability of crossing/mutation
of 0.2 (Pcm = 0.2), and 5000 generations are used. Therefore, 10,500 solutions are evaluated
(500 + 2 × 5000) for each archiver.

Algorithm 2 Generic multi-objective optimization algorithm
1: P0 ⊂ Q . Random selection
2: A0 := Archiver(P0, ∅)
3: for t := 1:Number of iterations do
4: Pt := Generate(At−1)
5: At := Archiver(Pt, At−1)
6: end for

6. Results and Discussion

This section shows the results obtained on the two benchmarks and the real example
previously introduced.

6.1. Benchmark 1 with Uniform Dispersion

The archivers are tested on 25 different input populations obtained by uniform dis-
persion. Figure 7 shows the median results of archive A on the benchmark 1 for both
decision and objective spaces with respect to ∆p(A, H) in decision space. As can be seen,
the archivers make a good approximation to the target set H, characterizing the nine neigh-
borhoods that compose it. However, there are differences between the sets found by the
archivers. First, the Archive_nevMOGA archiver obtains fewer solutions. The number of
solutions µt = 100 for the targetSelect is user-defined, but a smaller size makes ∆p worse
for both spaces. The archive A obtained by ArchiveUpdatePQ,εDxy obtains a larger number
of solutions.

The targetSelect archiver obtains a better approximation to the Pareto front than the other
archivers. This is because the weight ωo has a high value, giving greater weight to the Do indica-
tor that measures convergence and diversity for the Pareto front. The ArchiveUpdatePQ,εDxy
and Archive_nevMOGA archivers do not select a candidate solution p (even if p belongs to the
Pareto set) if an alternative already exists in the current archive that is similar in both spaces (in
Archive_nevMOGA, p is selected if it dominates the similar solution). These archivers could
obtain a better approximation to the Pareto front by reducing the parameter ∆y (parameter
with which the degree of similarity in the objective space is decided), but it probably also
implies obtaining a greater number of solutions.
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Regarding the local Pareto set, the archive Archive_nevMOGA obtains a better ap-
proximation in the comparison. ArchiveUpdatePQ,εDxy and targetSelect obtain solutions
in all neighborhoods where nearly optimal solutions exist. However, these solutions are
rarely located on the lines that define the local Pareto set.

Notice that ArchiveUpdatePQ,εDxy and Archive_nevMOGA archivers obtain ε− domi-
nated solutions. In ArchiveUpdatePQ,εDxy, it is possible that a solution in A that is no longer
nearly optimal due to the apparition of a new candidate solution p. p may not be removed
because it does not satisfy condition in the line 7 of Algorithm 1. In Archive_nevMOGA, a
new candidate solution p can be added to the archive A through the condition of line 8 of
Algorithm 3. In some cases, solutions that are not nearly optimal due to the appearance of
p (by line 8 of Algorithm 3) are not eliminated. Therefore, the archive A obtained by both
archivers may contain solutions that do not belong to the nearly optimal set.

Figure 7. Median result of archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
uniform dispersion on benchmark 1.
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Figure 8 shows the boxplot of the indicators ∆p( f (A), f (H)), ∆p(A, H) and archive
size for the 25 tests performed. Archive_nevMOGA achieves a better approximation in
the decision and objective spaces, and obtains fewer solutions. targetSelect also obtains
a better approximation in both spaces with fewer solutions than ArchiveUpdatePQ,ε Dxy.
ArchiveUpdatePQ,εDxy obtains greater variability among the 25 archives obtained. There-
fore, Archive_nevMOGA has achieved, in a better way, the two main objectives: not
neglecting the diversity of solutions (locates all nine neighborhoods) and obtains a reduced
number of solutions (simplifying the optimization and decision stages).

Algorithm 3 A := Archive_nevMOGA(P, A0, ε, ∆x, ∆y)

Require: population P, archive A0, ε ∈ Rm
+, ∆x ∈ Rk

+, ∆y ∈ Rm
+

Ensure: updated archive A
1: A := A0
2: for all p ∈ P do
3: if (@a1 ∈ A : a1 ≺−ε p) and (@a2 ∈ A : |a2 − p| ≤ ∆x and a2 ≺ p) and (@a3 :
|a3 − p| ≤ ∆x and | f (a3)− f (p)| ≤ ∆y) then

4: A← A ∪ p
5: if ∃a4 ∈ A : p ≺−ε a4 or |a4 − p| ≤ ∆x and p ≺ a4 then
6: A← A \ a4
7: end if
8: else if ∃a5 : |a5 − p| ≤ ∆x and | f (a5)− f (p)| ≤ ∆y and p ≺ a5 then
9: a5 := p

10: end if
11: end for

PQeDxy nevMOGA targetSelect

0.1

0.2

0.3

p
 Decision Space

PQeDxy nevMOGA targetSelect

0.1

0.3

0.5
p
 Objective Space

PQeDxy nevMOGA targetSelect

60

80

100

120

Archive Size

Figure 8. Boxplot of ∆p(A, H) (decision space), ∆p( f (A), f (H)) (objective space) and archive size with a uniform dispersion
on the benchmark 1.

6.2. Benchmark 1 with Random Dispersion

The archivers are tested on 25 different input populations obtained by random dispersion.
Figure 9 shows the archive A, with median result for ∆p(A, H). The archivers characterize the
nine neighborhoods that form the target set H. The archive A obtained by Archive_nevMOGA
has a smaller number of solutions. Decreasing the number of solutions µt ≤ 100 for the
archive targetSelect makes ∆p worse in both spaces. Comparing Figures 7 and 9, targetSelect
in random dispersion produces a worse approximation of the Pareto front than in uniform
search. This is for two reasons: (1) the lower value of the weight ωo = 0.7692 (lower weight
of the metric Do, which measures convergence in Pareto front); (2) the initial population has
been obtained in a random way (meaning certain areas have not been adequately explored).
Figure 10 shows the boxplot, of the 25 archives obtained in the tests. Archive_nevMOGA
obtains better results in both spaces, also obtaining a smaller number of solutions. On the
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benchmark 1, the approximations obtained by the archivers in a random dispersion are slightly
worse than in a uniform dispersion.

Figure 9. Median result of Archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
random dispersion on benchmark 1.
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6.3. Benchmark 2 with Uniform Dispersion

The archive A, with the median result (in the decision space), for each archiver is
shown in Figure 11. The archivers locate the neighborhoods where nearly optimal solutions
are found. The archive of Archive_nevMOGA again obtains fewer solutions. Keep in mind
that decreasing µt = 150 for targetSelect causes a considerable increase in the variability of
the results obtained ∆p(A, H) for the 25 tests. targetSelect obtains a better approximation
to the Pareto front due to the high value of the weight ωo. However, Archive_nevMOGA
obtains solutions closer to the local Pareto set. This is because targetSelect seeks to achieve
the greatest diversity in the decision space (through Dd) without taking into account
whether these solutions are worse than a close solution (if they are not optimal).

Figure 12 shows the boxplot, of the 25 archives obtained for the archivers, for the indi-
cator ∆p in the decision and objective spaces and the archive size. Regarding the decision
space, Archive_nevMOGA obtains a better approximation to the target set than its competi-
tors. Regarding the objective space, Archive_nevMOGA and targetSelect obtain a similar
minimum value. However, targetSelect obtains worse variability. Therefore, as occurred
with benchmark 1, the archiver Archive_nevMOGA achieves a better approximation in
both spaces and obtains a smaller number of solutions.
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0.1

0.3
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Figure 10. Boxplot of ∆p(A, H) (decision space), ∆p( f (A), f (H)) (objective space) and archive size with a random dispersion
on the benchmark 1.

6.4. Benchmark 2 with Random Dispersion

Figure 13 shows the archive A, which obtains a median result for ∆p(A, H) for the
archivers. Again, the archiver Archive_nevMOGA obtains significantly fewer solutions
while also obtaining a better characterization of the target set H. Figure 14 shows the
boxplot of the archivers. The archiver Archive_nevMOGA obtains a better value of ∆p
in both spaces. Regarding the objective space, targetSelect obtains results similar to
Archive_nevMOGA but worse variability. The archiver Archive_nevMOGA obtains fewer
solutions, which simplifies the optimization and decision stages. Using the random search,
ArchiveUpdatePQ,εDxy and Archive_nevMOGA perform slightly worse than the uniform
search. targetSelect obtains slightly better results than the uniform search.
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Figure 11. Median result of archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
uniform dispersion on the benchmark 2.
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Figure 12. Boxplot of ∆p(A, H) (decision space), ∆p( f (A), f (H)) (objective space) and archive size with a uniform dispersion
on the benchmark 2.

6.5. Identification of a Thermal System

Figure 15 shows the final archive A obtained when using the three archivers inside
a compared basic optimization algorithm. In this example, the obtained archives are
compared by pairs to better observe the differences between them.

The three archivers obtain diversity in the decision space, and convergence in the
Pareto front. The first thing that stands out is the large number of solutions (610 solutions)
obtained by the archive ArchiveUpdatePQ,εDxy. This high number of solutions complicates
the optimization and decision phases. For each iteration, the newly generated solutions
must be compared with the solutions in the current file A(t). Therefore, many solutions in
the file A(t) implies a higher computational cost. In addition, a high number of solutions
makes the final decision of the DM more difficult. This large number of solutions can be
reduced by increasing the parameters ∆x and ∆y. However, this increase also implies a
worse discretization in both spaces. ArchiveUpdatePQ,εDxy obtains a worse approximation
to the Pareto front.

The results show more similarities with respect to the other two archivers. Archiver
Archive_nevMOGA obtains 78 solutions. To compare under similar conditions, we set the
size of the file obtained by targetSelect to 78 solutions (µt = 78). In this way, both archivers
obtain the same number of solutions. The set of solutions found by both archivers are
different. With respect to the Pareto front, both archivers achieve a good approximation
in the range f1(x) = [0.3 0.8]. However, Archive_nevMOGA does not get solutions in the
range f1(x) = [0.8 0.9] of the Pareto front. Therefore, in this example, targetselect gets a
little more diversity in the Pareto front.

targetSelect focuses on obtaining, in addition to a good convergence in the Pareto
front, the greatest diversity in the decision space (using Dd, see Section 4.3). However,
solutions that provide greater diversity may be worse than neighboring solutions. For
example, Figure 15 shows the solution x1 obtained by Archive_nevMOGA. This solution
has similar parameters to the neighborhood1 solutions (see decision space). x1 performs
better ( f (x1)) than all the neighborhood1 solutions obtained by targetSelect. Therefore,
Archive_nevMOGA would eliminate all these solutions (dominated in its neighborhood
by x1). targetSelect maintains them because they increase the diversity in the decision
space. This happens repeatedly in this MOOP. For this reason, targetSelect obtains nearly
optimal solutions farther from the Pareto front than obtained by Archive_nevMOGA. These
solutions are in the contour/ends of the plane that form the optimal and nearly optimal
solutions in the decision space, and therefore, they obtain a better diversity under the Dd
indicator. Archive_nevMOGA could find solutions closer to the contour/ends of the plane
formed in the decision space (as is the case with targetSelect) by reducing the parameter ∆x,
although this would imply obtaining a larger number of solutions. Therefore, depending
on the needs or preferences of the DM, the use of one archiver or another may be more
appropriate. This archiver can be embedded in most of the multi-objective algorithms avail-
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able. ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect archivers are currently
built into the algorithms NεSGA, nevMOGA and DIOP respectively.
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Figure 13. Median result of Archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
random dispersion on benchmark 2.
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7. Conclusions

In this paper, the characterization of nearly optimal solutions potentially useful in
a MOOP has been addressed. In this type of problem, in practice, the DM may wish to
obtain nearly optimal solutions, since they can play a relevant role in the decision-making
stage. However, an adequate approximation to this set is necessary to avoid an excessive
number of alternatives that could hinder the optimization and decision-making stages. Not
all nearly optimal solutions provide the same useful information to the DM. To reduce the
number of solutions to be analyzed, we consider potentially useful solutions (in addition to
the optimals) that are close to the optimals in objective space—but which differ significantly
in the decision space. To adequately characterize this set, it is necessary to discretize the
nearly optimal solutions by analyzing the decision and objective spaces simultaneously.

This article compares different archiving strategies that perform this task: Archive-
UpdatePQ,εDxy, Archive_nevMOGA and targetSelect. The main objective of the archivers
is to obtain potentially useful solutions. This analysis is of great help to designers
of evolutionary algorithms who wish to obtain such solutions. In this way, design-
ers will have more information to choose their archivers based on their preferences.
ArchiveUpdatePQ,εDxy and Archive_nevMOGA are two distance-based archivers. Both
archivers simultaneously discard solutions that are similar in decision and objective spaces.
However, Archive_nevMOGA, in contrast to ArchiveUpdatePQ,εDxy, discards solutions
dominated by a neighboring solution in the decision space. targetSelect is an archive based
on an indicator that measures the diversity in both spaces simultaneously. targetSelect,
unlike the other archivers, can directly and arbitrarily specify the archive size. This can
be an advantage. The archivers are evaluated using two benchmarks. They obtain a good
approximation to the set of potentially useful solutions, characterizing the diversity exist-
ing in the set of nearly optimal solutions. As discussed in [19], the ArchiveUpdatePQ,εDxy
archiver is more practical than other archivers in the literature. However, this archiver, as
demonstrated in this paper, obtains significantly more solutions than its competitors in
this paper. This can make the optimization and decision phase more difficult. In addition,
Archive_nevMOGA obtains a better approximation to the target set H under the averaged
Hausdorff distance ∆p. In addition, Archive_nevMOGA obtains a smaller number of solu-
tions, which speeds up the optimization process and facilitates the decision-making stage.
However, fewer solutions can also decrease diversity (which can lead to degraded global
search capabilities).

Finally, the compared archivers are analyzed on a real engineering example. This
real example is the identification of a thermal system. To carry out this analysis, a generic
multi-objective optimization algorithm is used, in which it is possible to select different
archivers. This enables a more realistic comparison of the impact of the archivers on the
entire optimization process.

The three archivers obtain the existing diversity in the set of optimal and nearly optimal
solutions. In this last example, we can see how the archive obtained by ArchiveUpdatePQ,εDxy
obtains a very high number of solutions, complicating the optimization and decision stages.
Archive_nevMOGA and targetSelect obtain the same number of solutions. Both archivers
obtain an adequate Pareto front. However, targetSelect gets more diversity on the Pareto front.
The main difference between the two archivers is in the set of nearly optimal solutions. On the
one hand, Archive_nevMOGA obtains solutions closer to the Pareto front, but significantly
different in the decision space. On the other hand, targetSelect obtains the solutions that
provide the greatest diversity in the decision space, even though these solutions are farther
away from the Pareto front, and therefore, offer significantly worse performance.

Finally, this analysis suggests two possible future lines of research: (1) design of new
evolutionary algorithms, which characterize the nearly optimal solutions, using some of the
archivers compared in this work and (2) design of new archivers that improve the current ones.
For example, the clustering techniques could improve the archivers compared in this work.
These techniques, not analyzed in this work, allow the location of new neighborhoods, allowing
their exploration and evaluation. In this way, the optimization process could be improved.
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