
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

A reconnaissance based automatic tool for origin server
discovery through misconfigured web servers

End of Degree Project

Bachelor's Degree in Informatics Engineering

AUTHOR: Veciana Belmonte, Alex

Tutor: Escobar Román, Santiago

ACADEMIC YEAR: 2021/2022

Resum
Les redes de entrega de contingut (CDN) i, en particular, aquelles que integren un

firewall d’aplicacions web (WAF) en ellas han experimentat un ràpid augment en el seu
ús en els últims anys. Consisteixen en servidors altament distribuïts que ofereixen una
entrega ràpida i confiable de contingut d’Internet. Dades els seus avantatges, al voltant
del 62,3% dels 1000 principals llocs web d’escriptori utilitzen algun tipus de servei CDN
per a lliurar contingut web. En aquest treball, demostrarem com es poden eludir les CDN
accedint directament als llocs web a través del seu servidor d’origen, i les seves perilloses
implicacions de seguretat. A més, discutirem els mètodes utilitzats per ajudar a desco-
brir el servidor d’origen de servidors web incorrectament configurats, aprofitant diver-
sos mètodes de reconeixement. Recollirem alguns d’aquests mètodes i els integrarem en
una eina automatitzada que desenvoluparem. A més, estudiarem com els servidors web
poden configurar-se correctament per evitar exponer involuntàriament el seu servidor
d’origen.

Paraules clau: CDN, WAF, descobriment de hosts, enumeració, reconeixement, hacking
ètic

Resumen
Las redes de entrega de contenido (CDN) y, en particular, aquellas que integran un

firewall de aplicaciones web (WAF) en ellas experimentaron un rápido aumento en su
uso en los últimos años. Consisten en servidores altamente distribuidos que ofrecen una
entrega rápida y confiable de contenido de Internet. Dadas estas ventajas, alrededor del
62,3 % de los 1000 principales sitios web de escritorio utilizan algún tipo de servicio CDN
para entregar contenido web. En este trabajo, demostraremos cómo se pueden eludir las
CDN accediendo directamente a los sitios web a través de su servidor de origen, y cuá-
les son sus peligrosas implicaciones de seguridad. Además, discutiremos los métodos
utilizados para ayudar a descubrir el servidor de origen de servidores web incorrecta-
mente configurados, aprovechando varios métodos de reconocimiento. Recopilaremos
algunos de estos métodos y los integraremos en una herramienta automatizada que de-
sarrollaremos. Además, estudiaremos cómo dichos servidores web pueden configurarse
correctamente para evitar exponer involuntariamente su servidor de origen.

Palabras clave: CDN, WAF, descubrimiento de hosts, enumeración, reconocimiento, hác-
king ético

Abstract
Content Delivery Networks (CDNs) and particularly those which integrate a Web

Application Firewall (WAF) on them have experienced a rapid increase in usage over
the past years. They consist of highly distributed servers which provide fast and reliable
delivery of web content. Given these advantages, around 62.3% of top 1000 desktop web-
sites use some sort of CDN service to deliver content. In this work we will demonstrate
how CDNs can be bypassed by accessing websites through their origin server directly,
and which are its threatful security implications. Furthermore, we will discuss ways to
help perform origin server discovery on misconfigured web servers by leveraging sev-
eral reconnaissance methods. We will collect some of these methods and integrate them
on an automated tool we will develop. Moreover, we will study how such web servers
can be configured correctly to avoid unintendedly exposing its origin server.

Key words: CDN, WAF, host discovery, enumeration, reconnaissance, ethical hacking

iii

Contents

Contents v
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Personal Motivation . 2
1.3 Objectives . 3
1.4 Expected Impact . 3
1.5 Methodology . 3
1.6 Structure . 3

2 State of the art 5
2.1 Analyzing current state of the art . 5
2.2 Proposed solution . 6

3 Problem analysis 7
3.1 Requirements . 7
3.2 Ethical considerations . 7
3.3 Potential solutions . 7

4 Content Delivery Networks 9
4.1 Content Delivery Process Overview . 9
4.2 Analyzing CDN effectiveness . 10
4.3 WAF integrations within CDNs . 11

5 Reconnaissance methods 13
5.1 Search matching SSL certificates . 14
5.2 Enumerating IP addresses with DNS historical records 16
5.3 Subdomain and IP enumeration . 19
5.4 Comparing content similarity . 21

6 Solution design 25
6.1 System architecture . 25
6.2 Workflow of the proposed model . 25
6.3 Flow diagram of the proposed model . 26
6.4 Detailed design . 26

6.4.1 Flag Validation . 28
6.4.2 Host Addition . 29
6.4.3 External Host File Parsing . 29
6.4.4 Loading original response . 29
6.4.5 Leveraging Censys API for host discovery 29
6.4.6 Leveraging Security Trails API for host discovery 30
6.4.7 Performing requests to hostnames gathered 30

6.5 Technology used . 32
7 Development of proposed solution 33

7.1 Implementation . 34

v

vi CONTENTS

8 Testing 37
8.1 Input Testing . 37
8.2 Module Testing . 37

9 Case Study: Accessing Zalando through their origin server 39
10 Protecting your origin server 41

10.1 Preventing external connections . 41
10.2 Changing IP address . 41
10.3 Avoiding generic subdomain names . 41
10.4 Avoid leaving a trace in DNS records . 42
10.5 Reducing sensitive data . 42

11 Conclusions 43
11.1 Relating work developed to studies coursed 43

12 Future Work 45
Bibliography 49

List of Figures

1.1 CDN usage by desktop site popularity (2021) 2

4.1 Content Delivery Network Infrastructure. The request routing component
redirects end user requests to edge servers that cache and serve contents.
On cache misses, edge servers forward requests to origin servers that host
contents. Origin servers are operated by either CDN providers or content
owners. 10

4.2 Content delivery without using a CDN . 10
4.3 Content delivery with a CDN . 11
4.4 Akamai Bot Manager . 12
4.5 Attacker accessing a server through its direct origin IP address 12

5.1 HTTPS usage for websites . 14
5.2 Certificate Transparency Logs on google.com, obtained from crt.sh 15
5.3 Searching for certificates on zalando.de with Censys 15
5.4 Example certificate of zalando.de . 16
5.5 Searching for hosts provided a certificate fingerprint on Censys 17
5.6 Domain Name Space structure . 18
5.7 Dig usage on google.com . 18
5.8 Historical A DNS records for twitter.com . 19
5.9 Subdomain example . 19
5.10 Subdomain enumeration performed with Amass on google.com 20
5.11 Host header structure . 21
5.12 Host header spoofing to route internal requests 21
5.13 Levenshtein distance function . 22
5.14 Levenshtein distance visualized . 22

6.1 Flow diagram of proposed model . 27
6.2 Censys API search certificate URL and schema 30
6.3 Security Trails API DNS historical record search schema 31

7.1 Building the tool . 35
7.2 Sample execution session on https://en.zalando.de/robots.txt 35

9.1 Basic SQL injection attack on the target through Akamai’s CDN 39
9.2 Basic SQL injection attack on the target through one of its origin servers . 40

List of Tables
vii

viii LIST OF TABLES

3.1 Functional and non-functional requirements 8

5.1 Active and Passive reconnaissance methods 13

6.1 Key features of the project . 25
6.2 Flag input explanation . 28

8.1 Overview of flag parameters which are mandatory 37
8.2 Overview of modules and their intended behaviours 38

Acronyms

AMASS Attack Surface Mapping and Asset Discovery. 20

CDN Content Delivery Network. 1

CIDR Classless Inter-Domain Routing. 29

CMS Content Manager System. 13

DNS Domain Name System. 13

DOS Denial Of Service. 39

HTML Hypertext Markup Language. 1

IDE Integrated Development Environment. 32

JS JavaScript. 13

OSINT Open Source Intelligence. 5

OWASP Open Web Application Security Project. 20

SQL Structured Query Language. 39

SSL Secure Sockets Layer. 13

WAF Web Application Firewall. iii

ix

CHAPTER 1

Introduction

Reverse proxy utilization in website hosting has risen dramatically over the last years.
They work by caching specific content from the origin’s web server, replicating it and
offering it to an end-user, thereby reducing the load on the web server and providing a
higher level of availability of the website. Some reverse proxies consist of a Web Applica-
tion Firewall (WAF), which implements different protection rules and attempts to block
potential attackers from crafting specific payloads, accessing unauthorized end-points,
etc.

Despite a host being vulnerable, pentesters and security researchers may struggle
finding vulnerabilities due to the WAF. This raises the interest of obtaining direct access
to the origin host, which in many cases allows for a broader range of vulnerabilities to be
discovered. In this thesis we will discuss the creation of an automated tool which aims to
help security researchers to discover an origin server behind a reverse proxy, leveraging
several reconnaissance methods.

1.1 Motivation

A Content Delivery Network (CDN) consists of "geographically distributed servers to
cache and efficiently deliver Internet contents, such as Hypertext Markup Language
(HTML) pages, images, and videos" [5]. As the popularity and usage of the Internet
has been steadily rising over the years, so has been the usage of content delivery net-
works. A 62.3% and a 61.1% of top 1,000 desktop and mobile websites respectively, are
using a CDN [2]. Around four million websites are estimated to use CDNs. They have
progressed and offer additional services, such as integrating cloud-host web application
firewalls, bot management solutions, image and computing solutions and more.

As we can observe from Figure 1.1, there seems to be a direct correlation between the
popularity of a website and the percentage of requests which are being managed by a
CDN. One of the main reasons for this is that CDNs offer high content availability while
simultaneously mitigating potential attacks, which is an attractive selling point for them.
Therefore, websites tend to trust the CDNs they are using to handle attack mitigation,
due to this perception of increased security. It sounds like an ideal solution, but is it?

Since content delivery networks function as a reverse proxy, they still need to have
an origin server from which the content delivery network will obtain content from and
cache it accordingly. Websites tend to have a significantly weaker security on their origin
server, under the assumption that the CDN will manage and mitigate potential attacks.
Thus, the origin server offers relevant information to pentesters and security researchers.
With it, they can perform enumeration and reconnaissance methods to gather details

1

2 Introduction

Figure 1.1: CDN usage by desktop site popularity (2021)
[2]

about which services that server is running, which ports it may have open, etc. Moreover,
performing automated attacks on the target through its origin server usually becomes a
trivial task and requires considerably less effort than attempting to do so via the CDN.

Taking this into consideration, it is interesting to analyze possible methods to discover
origin servers behind the CDN, as it will further elucidate the importance of effectively
securing and configuring web servers.

1.2 Personal Motivation

For the last two years, I started looking into web scraping and how that could help me
obtain insightful information from releases of exclusive and limited items. However,
many websites I was interested in scraping had some sort of reverse proxy. For the most
part, this was a CDN with firewall protection, which also cached the content from the
website. Since obtaining a fast and accurate response from the web server was crucial, I
started looking into possible methods of skipping the cache.

After further research, I discovered one of the best ways to consistently skip cache on a
website is to access it directly through its origin server, without any reverse proxy caching
the requests in the way. Therefore, I gathered different methods which helped greatly in
discovering the origin server behind a website. With this thesis I want to highlight the
importance of effectively securing the origin of a web server and demonstrate that relying
your server’s security on a CDN is generally not a good idea.

1.3 Objectives 3

1.3 Objectives

1. Develop an automated tool that will attempt to find the origin server behind a CDN,
combining different reconnaissance methods.

2. Elucidate the importance of effectively securing an origin server, while simultane-
ously offering security researchers and pentesters further insight on origin server
discovery.

1.4 Expected Impact

This work expects to impact two major parties. On one hand, security researchers and
pentesters will be able to obtain more information about a specific target, and potentially
help them with vulnerability discovery. Given the lack of past work on this subject, this
thesis ought to motivate security researchers to investigate and share their findings on
this topic, thus ultimately helping with the overall security of web servers.

On the other hand, content owners will learn about the risks of exposing their origin
server and having a misconfigured web server. Moreover, this work will help them better
understand how they can protect their origin server, and which measures they may take.

1.5 Methodology

The methodology on this work will be specifically focused on two aspects: research and
programming the tool. Research must be considered as a key factor of this work, as there
is not much previous related work about this topic. It is important to not only gather
information from past resources, but moreover, to investigate and discover new findings
ourselves. This is particularly relevant due to the pioneering aspect of this work.

Having done the adequate research, the tool will need to be programmed to a high
standard and satisfy the specified requirements and objectives.

1.6 Structure

The work’s structure will be as follows:

• Acronyms, a collection of acronyms, with references to their appearances on this
work.

• Chapter 1: Introduction, in this chapter we briefly explain the reasons to make this
work and what are our intended goals.

• Chapter 2: State of the art, we analyze the existing work on the topic of origin
server discovery.

• Chapter 3: Problem analysis, we will discuss the requirements we expect to fulfill,
and we will comment on potential solutions.

• Chapter 4: Content Delivery Networks, in this chapter we will discuss what are
CDNs, how they operate and why they are relevant for our work.

4 Introduction

• Chapter 5: Reconnaissance methods, analyzing reconnaissance and enumeration
methods individually will allows us to gain a better understanding of how we pre-
tend to reach our objectives.

• Chapter 6: Solution design, by discussing how the solution proposed is being de-
signed, we aim to clearly explain how every main aspect of the software developed
will work.

• Chapter 7: Development of proposed solution, in this chapter we will see a step-
by-step procedure of how the solution was developed, including the reasons for
some of the decisions taken. As well we will elaborate how the tool is to be imple-
mented.

• Chapter 8: Testing, in this section we will comment how testing was performed,
and which were its major influencing factors.

• Chapter 9: Case Study: Accessing Zalando through their origin server, in this
chapter we will discuss what may be considered to be a real-world server miscon-
figuration, discovered with the tool developed. Details will be discussed on how it
was discovered and which potential implications this may have.

• Chapter 10: Protecting your origin server, this section will explain how content
owners can protect their origin server, in order to avoid unwanted, external users
from accessing it directly.

• Chapter 11: Conclusions, in this chapter we will reflect on the work done, what
could have been improved and what I have learnt from it.

• Chapter 12: Future Work, the last chapter, this includes a small discussion on what
future work could include and how this work may be improved upon.

CHAPTER 2

State of the art

Throughout the last years, web servers and their configurations have changed consider-
ably. As time passes by, previously considered safe practices start being considered un-
safe and new unsafe practices appear. Therefore, in order to keep this work’s relevance,
it is important to research with innovative methods.

2.1 Analyzing current state of the art

There is no previous scientific or academic literature about the topic of origin server dis-
covery, however some previous papers may resemble slightly this work.

The Development of a Reconnaissance Tool Aiming to Achieve a More Efficient Information
Gathering Phase of a Penetration Test [3] written in 2021 aims to outline an approach that
allows penetration testers to execute the information gathering phase of a penetration
test more efficiently. Observing this thesis, we may notice that this tool’s focus is placed
on port discovery, through analyzing IP-ranges. This reconnaissance method is not par-
ticularly useful in our scenario, as port discovery is outside the scope of our objectives.
Moreover, the tool developed does not check if the hosts being discovered are part of a
CDN or not, it simply checks the services running on the ports discovered. Nevertheless,
it may be a relevant thesis to analyze as key points of tool development can be extracted,
which will help maintain a better structure on this work.

Another brief document interesting to analyze is Automation of Recon Process for Ethical
Hackers presented on the 2022 International Conference for Advancement in Technology
[13]. This document is only six pages long; however, it displays a summarized overview
of passive and active reconnaissance hacking methods, placing special focus on the latter.
The only reconnaissance method which can be extracted from this document and used
on this work is subdomain enumeration. However, we will be leveraging public Open
Source Intelligence (OSINT) tools which are specifically designed for this purpose for
our work. Considering there is substantially more previous work on the subject of sub-
domain enumeration, scarce value may be added onto this thesis by developing a specific
module for it on this work. Similar to the previously discussed thesis, this document fa-
cilitates keeping an accurate and precise structure on writing a detailed explanation for a
new tool.

Despite this being the first academic work in the topic of origin server discovery,
other non-scientific resources do exist which discuss origin server discovery in the form
of blogs. A special mention must be done to the article Finding The Origin IP Behind
CDNs published under the website InfoSec Write-Ups by the username HolyBugx [6].
On this article, the writer features several methods for origin server discovery, including

5

6 State of the art

both active and passive reconnaissance methods. Unlike previously discussed papers,
this article does not detail development for an automated tool for the purpose of origin
server discovery. However, we may obtain some key takeaways from it and the article
helps better understand the topic of discussion.

2.2 Proposed solution

Having discussed the current state of the art, we considered it would be fruitful to make
specific, unprecedented work on this topic. The tool developed will leverage passive re-
connaissance methods for host discovery, targeted towards origin server discovery. Fur-
thermore, the tool will implement a state-of-the-art method for testing content similarity
between content responses. All in all, this work will help other security researchers and
ethical hackers to gain more knowledge on this topic, and possibly incentivize further
literature to be written about it.

CHAPTER 3

Problem analysis

So as to discuss our problem, we will attempt to tackle our objectives previously defined,
while explaining the thought process behind. Therefore, we can subdivide this work into
two main topics, explaining the problem in-depth and discussing the development for an
automated tool to solve the problem. Starting with the former, we considered to include
relevant figures and explanations of each separate key topic, such as reconnaissance and
CDN. Moving onto the latter, we decided to craft a list of functional and non-functional
requirements for the tool, which must be fulfilled in order to consider the tool to be suc-
cessfully developed.

3.1 Requirements

The aim of this section is to present and detail how the requirements were organized.
We will subdivide requirements between functional and non-functional requirements.
Functional requirements define how the system must work, whereas non-functional re-
quirements will define how the system must perform and which quality constraints it
must satisfy. Requirements are redacted in Table 3.1.

3.2 Ethical considerations

Nowadays, most tools used for penetration testing and cyber security research are pub-
lic. However, we can consider these tools can also be used by black-hat hackers for ma-
licious purposes. This may be the case for this newly developed tool, however at the
time of publishing this work, this tool is not open-source and available for anyone to
use. Nevertheless, even if this tool does eventually reach public domain, its intended
users are ethical hackers and penetration testers. Moreover, the information discussed
on this work can help content owners to emphasize the importance of having securely
configured servers.

3.3 Potential solutions

As one of the core aspects of the proposed solution is the discovery of new, related hosts,
it is interesting to observe the existence of numerous host discovery methods which can
be implemented onto a new solution in order to obtain more results. Considering time
limitations for this work, emphasis was placed on those specific methods which from
personal experience yield more success in the process of origin server discovery, which

7

8 Problem analysis

Functional Requirements Non-Functional Requirements

The system shall have a dictionary to in-
sert and get hostname results.

The system shall only insert hostnames
which do not belong to CDN subnets.

The system shall handle network re-
quests to external APIs with credential
authorization.

The system shall report on standard out-
put which requests it is performing and
their results.

The hostname dictionary shall be written
to an external file.

The user shall optionally define an ex-
ternal file path to which to dump to the
hostname dictionary.

The system shall load hostnames from a
provided file path.

The user shall optionally define an exter-
nal file path to which to read hostnames
from.

The system shall perform HTTP GET re-
quests to a provided target URL.

The system shall allow for insecure re-
quests to be performed, e.g: a request to
a target with an invalid SSL certificate.

The system shall spoof real browser net-
work requests.

The user shall optionally define with
a flag input, if they want to perform
browser-like network requests.

The system shall distribute its dictio-
nary’s hostnames to workers.

The user shall optionally define with a
flag input, the number of workers the
system will run.

Workers shall algorithmically compare
content from network responses.

The user shall optionally define with a
flag input, the threshold value the system
will decide content similarity upon.

Workers shall share their results to the
main running process.

The system shall report all results ob-
tained from the workers into the stan-
dard output, including the content sim-
ilarity and if it detected a match or not.

Table 3.1: Functional and non-functional requirements

are all passive reconnaissance methods. Nevertheless, other solutions may exist, which
can include further enumeration methods, such as using active reconnaissance methods.

Therefore, the number of potential solutions is very extensive, and this work marks a
precedent in this topic which may help further solutions to be developed on this matter.

CHAPTER 4

Content Delivery Networks

Content delivery networks utilize network resources more efficiently, thus improving the
quality of experience when delivering digital contents to end users. A CDN generally
caches digital contents in locations geographically nearby end users, routes their content
requests to these locations, and ultimately transfers said content to the respective users.

End users, content owners and CDN providers form the different parties involved
in the content delivery process. End users consume contents through electronic devices,
with the use of laptops, smart phones, tables. Content owners are customers of a CDN
and own digital contents which are meant to be shared. CDN providers manage and
operate the CDN infrastructure.

4.1 Content Delivery Process Overview

Once the end user has made the decision to use a CDN to deliver their content, there is a
separate content delivery process which is in place, and it consists of several main steps.

Initially, content owners place digital contents in their origin servers. The selected
CDN distributes and replicates the contents from the origin server across its plentiful
edge servers (ranging from hundreds to thousands of servers). Such edge servers are
geographically distributed to provide low access times to end users.

As we can observe from Figure 4.1, once the edge servers have obtained contents from
origin servers, there are different actions that are taken to provide these contents to an
end user.

1. End users request the contents they are interested in consuming to the CDN di-
rectly, acting as a man in the middle.

2. CDNs use request routing mechanisms to select and redirect the request to one of
its numerous edge servers.

3. Edge servers perform security checks and will decide whether the content requested
is to be delivered to the end user from cache. These checks depend on the level of
security and protection required by content owners which are generally able to con-
figure them through the CDN.

4. In the case that there is a cache miss, edge servers will first obtain information from
the origin server, update their contents accordingly and deliver them to the end
user.

9

10 Content Delivery Networks

Figure 4.1: Content Delivery Network Infrastructure. The request routing component redirects
end user requests to edge servers that cache and serve contents. On cache misses, edge servers
forward requests to origin servers that host contents. Origin servers are operated by either CDN

providers or content owners.
[5]

4.2 Analyzing CDN effectiveness

As we have observed, the CDN model offers high availability, while also maintaining a
relatively low load on the origin server thus offering fast content access.

Figure 4.2 depicts how content delivery is performed when users access digital con-
tents from the origin server directly. Allowing any user to access and download content
from your origin server increases the load on your server and may put a significant toll
in performance, which is a relevant factor for content owners.

The remarkable difference in origin server load between Figure 4.2 and Figure 4.3,
explains why content owners may be interested in delivering content through a CDN.

Figure 4.2: Content delivery without using a CDN
[6]

4.3 WAF integrations within CDNs 11

Figure 4.3: Content delivery with a CDN
[6]

Performance of the origin server can be preserved, while simultaneously offering an im-
proved user’s quality of experience.

4.3 WAF integrations within CDNs

CDN providers nowadays offer a wide variety of services and products which can be
embedded into CDNs to enhance the security of content delivery.

Akamai, one of the most relevant content delivery network providers in the market
right now, offers products such as its bot manager, depicted in Figure 4.4 to mitigate bot
attacks. CDN providers offer web application firewalls and similar products whose end
goal is to secure content delivery and reduce the number of attacks that can be performed
on content owner’s servers.

Furthermore, setup of CDNs with web application firewalls integrated is a trivial
task for content owners. Taking this into consideration, many content owners using a
CDN will integrate its web application firewall and may ultimately take for granted the
performance and security of their website.

Nevertheless, once attackers gain direct access to origin servers, they may pose a
significant threat to their security and performance. Figure 4.5 depicts a simple network
diagram of content delivery from an origin server to an attacker, which in the general
case is unintended.

12 Content Delivery Networks

Figure 4.4: Akamai Bot Manager
[14]

Figure 4.5: Attacker accessing a server through its direct origin IP address
[6]

CHAPTER 5

Reconnaissance methods

Hackers have diverse ways to help them discover more information on a target and po-
tentially obtain their origin server. We call this phase reconnaissance. "Reconnaissance
is a set of processes and techniques (Footprinting, Scanning & Enumeration) used to
covertly discover and collect information about a target system" [11]. We can subdivide
reconnaissance into passive and active methods.

Passive reconnaissance involves gathering information about a target without inter-
acting with the target directly. Therefore, no request is being sent to the target server,
thus it has no way of knowing you are collecting information on them. Often, public
resources are used to gather information, this is OSINT. With it, attackers can discover
IP addresses, host names, domain names, historic Domain Name System (DNS) records
and which services they are running.

Active reconnaissance involves directly interacting with the target to gain information
about it. In the scope of origin server discovery, there are several methods which can be
used, such as scanning the content delivered by the target for IP addresses and hostnames
that may appear inside HTML or JavaScript (JS) files for example. Other methods involve
making use of debug headers, using WordPress XLM-RPC pingback API if the target’s
Content Manager System (CMS) is WordPress or even searching for favicon hashes.

On Table 5.1 we can observe some of the most common discovery methods for origin
IP searching. For this thesis we will focus on some of the most used and effective passive
recon methods, such as Secure Sockets Layer (SSL) certificate searching, looking through
historical DNS records, or finding subdomains and IP addresses related to the target.

Active Passive

Favicon Hashes DNS Records
XML/RPC Pingbacks MX Records and Methods

SSRF Trackbacks SSL Certificates
Misconfigured Subdomains Shodan, Censys, Zoomeye

Verbose Errors Vhosts
Debug Headers IP Range/CIDR

Table 5.1: Active and Passive reconnaissance methods

13

14 Reconnaissance methods

Figure 5.1: HTTPS usage for websites
[2]

5.1 Search matching SSL certificates

An SSL certificate is a digital certificate that authenticates a website’s identity and enables
an encrypted connection. "SSL stands for Secure Sockets Layer, a security protocol that
creates an encrypted link between a web server and a web browser" [8].

Observing Figure 5.1 we may assess that in general terms, websites prefer to use SS-
L/TLS to encrypt their connection between the end user and the server.

With the number of certificates being issued increasing rapidly, in 2013 a solution was
proposed to keep track of them by Ben Laurie and Adam Langley, which was named
Certificate Transparency. The core idea behind Certificate Transparency is the public, verifi-
able, append-only log. "Creating a log of all certificates issued that does not need to be
trusted because it is cryptographically verifiable allows clients to check that certificates
are in the log, and servers can monitor the log for mis-issued certificates" [9]. Certifi-
cate transparency allows to match a specific SSL/TLS certificate to a SHA-1 or SHA-256
hash, which can therefore be cross-referenced and matched across different domains and
websites.

As it is portrayed in Figure 5.2 the same SSL certificate can be used across different
domains and subdomains. When a content owner sets their website on the Internet with
the CDN, it may expose the SSL certificate it is using on their origin IP. Scanning the full
range of possible IP addresses 0.0.0.0/0, it would be possible to discover the origin IP
behind a website using a CDN, as their SSL certificate hashes will match.

Since scanning the entire range of IP addresses is impractical, there exist services such
as Censys which allow you to obtain the SSL/TLS fingerprints of websites serving with
HTTPS.

5.1 Search matching SSL certificates 15

Figure 5.2: Certificate Transparency Logs on google.com, obtained from crt.sh

Figure 5.3: Searching for certificates on zalando.de with Censys

16 Reconnaissance methods

Figure 5.4: Example certificate of zalando.de

As we may observe from Figure 5.3, we obtain several SSL certificates which are is-
sued for specific hosts matching a Subject Distinguished Name 1. We may obtain further
information regarding each certificate such as its SHA-1 and SHA-256 fingerprints, as can
be observed on Figure 5.4.

Censys, as well as other similar providers, offer specific OSINT about the target, in
such way that we may find which IPs are serving that same SSL/TLS certificate finger-
print. By performing a reverse search on the certificate fingerprint, it is therefore possible
to obtain which other IP addresses or host names are using the same HTTPS encryption.

Judging from Figure 5.5, searching for a specific certificate fingerprint has returned
previously undiscovered hosts which share the same fingerprint as our original target
delivering content through their CDN. They may be potentially tested to attempt a direct
connection to the origin server.

5.2 Enumerating IP addresses with DNS historical records

"DNS stands for Domain Name System, and it is considered the phonebook of the inter-
net" and has been essential for the functionality of the Internet since 1985". Humans
access information online through domain names, such as google.com or upv.es. Web
browsers and digital devices interact through IP addresses. DNS translates domain names
to IP addresses so browsers can load Internet resources [15].

1Subject Distinguished Name is a term which describes the owner or requestor of a certificate

5.2 Enumerating IP addresses with DNS historical records 17

Figure 5.5: Searching for hosts provided a certificate fingerprint on Censys

Each device connected to the Internet has associated a unique IP address which other
machines use to find the device. Therefore, DNS servers eliminate the need for humans
to memorize IP addresses such as 127.0.0.1 in the case of IPv4 or more alphanumeric IPv6
addresses such as 2400:cb00:2048:1::c629:d7a2.

DNS plays a vital role in content delivery networks, as we previously portrayed its
impact resolving IP addresses geographically nearby the end user in Figure 4.3. The
main advantage of using DNS in content delivery networks, is that it can deliver fast and
reliable content to end users across a wide range of geographical locations.

One of the key parts of the structure of a DNS is its domain name space, which con-
sists of a tree data structure, portrayed in Figure 5.6. In it, each node or leaf contains sev-
eral resource records, which hold information associated with the domain name. Each
record has a type, an expiration time, a class, and type-specific data. The number of
different resource records has been expanding over the years, and the information they
hold varies from IP address records to SSH Public Key fingerprints. Since one of the key
elements of reconnaissance is to collect IP addresses that belong to the target, we will be
focusing on resource records with type A, MX and TXT [17].

• The function of A resource records is to return 32-bit IPv4 addresses. It is most
commonly used to map hostnames to an IP address of the host, but is also used for
storing subnet masks in RFC 1101, DSNBLs, etc.

• MX records map domain names to a list of message transfer agents for that do-
main. Assuming the target shares the same IP for its webhosting than for its mail
servers, analyzing these records provide a useful method of searching potential ori-
gin servers.

• TXT was originally planned for human-readable text in a DNS record; however, it
often contains machine-readable data. On it, other potentially relevant IP addresses
may appear, which may easily be obtained with a regular expression search.

Nowadays, there exists numerous DNS lookup tools which retrieve and return re-
source records from DNS. Most modern Linux systems include dig (Domain Information
Groper), a command used to gather DNS information. An example usage may be found
below in Figure 5.7.

18 Reconnaissance methods

Figure 5.6: Domain Name Space structure
[15]

Figure 5.7: Dig usage on google.com

5.3 Subdomain and IP enumeration 19

Figure 5.8: Historical A DNS records for twitter.com

Figure 5.9: Subdomain example
[18]

We may leverage this command to collect IP addresses from the current DNS infor-
mation about a specific hostname. Nevertheless, it is even more fruitful to obtain and
analyze historical DNS records, in such way that we may obtain past records thus ex-
panding the number of IP addresses we can gather.

There exist many services that provide DNS historical records, for example Security
Trails, which we will be using in the development of our automation tool.

Figure 5.8 displays the historical DNS records for a specific website, from it we may
gather more IP addresses, which could lead us to finding a potential direct origin server
access.

5.3 Subdomain and IP enumeration

In the Domain Name System hierarchy, a subdomain is a domain which is part of another
main domain [18]. For example, a website could be served under example.com, and said
website could offer an online shop under shop.example.com. A visual example can be
found in Figure 5.9

Subdomains are generally used by internet service providers supplying web services.
They allocate subdomains to their clients, thus allowing them to independently adminis-

20 Reconnaissance methods

Figure 5.10: Subdomain enumeration performed with Amass on google.com

ter them. Furthermore, subdomains are used by organizations which wish to subdivide
a particular service, or department within their organization.

A key aspect of the reconnaissance phase is enumerating IP addresses and subdo-
mains. Given the case where a target hosts two or more different subdomains under the
same server, it may be possible to access them within each other. Under the scenario that
our target subdomain is being hosted under a CDN, while another subdomain we are in-
terested in targeting is not, we could potentially obtain direct origin server access while
sending requests to the subdomain without a CDN setup.

Nowadays, there exists many tools and resources which allow for subdomain and IP
address enumeration. For our automation tool we will be using Open Web Application
Security Project (OWASP) Attack Surface Mapping and Asset Discovery (AMASS) tool.

OWASP is a nonprofit foundation that works to improve the security of software.
OWASP Foundation is the source for developers and technologists to secure the web
through community-led open-source software projects. Through their Amass tool it is
possible to perform external asset discovery leveraging OSINT and active reconnaissance
techniques.

While Amass offers five main subcommands: intel, enum, viz, track and db; we will
be focusing on the “enum” subcommand, which is used to perform DNS enumeration
and network mapping of systems exposed to the Internet [10].

This subcommand leverages different API services, both free and paid, to gather sub-
domains and their associated IP addresses. There exist numerous flags available to exe-
cute the enum command, some of which are most relevant to our use case are: “-active”
to perform active recon methods, “-brute” to perform brute force subdomain enumera-
tion, “-d” to select the target domain to obtain information from and “-ip” to display the
associated IP addresses. An illustrative example may be found in Figure 5.10

Having collected the associated subdomains and IP addresses to our target, we may
have more information which help find direct origin server access.

5.4 Comparing content similarity 21

Figure 5.11: Host header structure
[12]

Figure 5.12: Host header spoofing to route internal requests

5.4 Comparing content similarity

According to RFC 9110, the "Host" header field in a request provides the host and port
information from the target URI, enabling the origin server to distinguish among re-
sources while servicing requests for multiple host names [12]. "In HTTP/2 [HTTP/2]
and HTTP/3 [HTTP/3], the Host header field is, in some cases, supplanted by the ":au-
thority" pseudo-header field of a request’s control data".

The Host header structure is clearly depicted in Figure 5.11. The target URI’s au-
thority information is critical for handling a request. A user agent MUST generate a Host
header field in a request unless it sends that information as an ":authority" pseudo-header
field. A user agent that sends Host should send it as the first field in the header section
of a request.

As host and port information act as an application-level routing mechanism, it may be
possible to redirect requests to internal servers, without first verifying that the connection
is targeting a valid IP address for the provided host.

Abusing possible server misconfigurations, it is therefore possible to route a request
targeting a host, to deliver content from an associated subdomain or host.

Analyzing Figure 5.12 we may realize that supplying a different Host header to the
provided IP address yields two different results. On the left side of the figure, we can
observe from the html lang tag, how we were able to access the German content from the
Zalando online shop, while on the right side we obtained its Spanish counterpart.

An improperly misconfigured server may deliver content for a different subdomain
than the target domain if an arbitrary Host header is supplied.

We may, therefore, use the IP addresses and subdomains previously enumerated to
perform requests, spoofing the Host header thus potentially obtaining content from the
target origin’s server.

22 Reconnaissance methods

Figure 5.13: Levenshtein distance function
[16]

Figure 5.14: Levenshtein distance visualized
[4]

Nevertheless, the content we receive should be compared against the original content
from the target serving through a CDN, in order to allow us to verify the host we targeted
is in fact the origin server.

A popular computer science metric used to measure the difference between two strings
is the Levenshtein distance. Informally, the Levenshtein distance between two words is
the minimum number of single-character edits (insertions, deletions or substitutions) re-
quired to change one word into the other [16].

The Levenshtein distance between two strings a, b (of length |a| and |b| respec-
tively) is given by lev(a, b) where the tail of some string x is a string of all but the first
character of x, and x[n] is the nth character of the string x, counting from 0. We may
observe this from the function definition Figure 5.13.

A visualization of Levenshtein’s edit distance may be found in Figure 5.14

Using Levenshtein’s distance to compare the difference between the original content
and the latest content obtained by spoofing the Host header request, we have a precise
metric to decide upon the similarity of the content. This metric is relevant as it does not
depend on subjective evaluation and can be integrated on programming languages and
automation software.

Maintaining a low processing rate while performing Levenshtein’s distance algorithm
with extensive strings, is a challenging task. According to HTTP Archive, the median
desktop page had 29 KB of HTML. Considering every character of text has a size of one
Byte, this translates into a non-negligible total number of characters on the page in ques-
tion. Comparing the similarity between multiple pages with respect to median or exten-
sive HTML pages can result in a tedious and prolonged task.

5.4 Comparing content similarity 23

A solution is proposed to reduce the comparison time and ultimately find the simi-
larity between two texts, absolute content distance. Despite it is not a valid edit distance
algorithm, it may be in some cases an adequate solution to discover content similarities
between two pages, by comparing their length differences. Absolute content distance has
a time complexity of O(1), while Levenshtein distance has a time complexity of O(nm)
being n and m the texts to be compared. We may conclude that absolute content distance
might be a preferred solution for extensive page content comparison if at the same time,
achieving results with speed is relevant.

CHAPTER 6

Solution design

This provided solution considers the provided reconnaissance methods and incorporates
them with the goal of obtaining IP addresses and relevant associated hosts to a provided
host target, this constitutes the first phase of the tool. Subsequently, the second phase
comprises of performing requests to the previously collected IP addresses and hosts,
while spoofing the Host header and their responses are respectively compared to the
original response using Levenshtein’s distance or alternatively absolute content distance
when applicable.

6.1 System architecture

This solution encompasses several features which distinguishes it considerably from other
existing projects. Key features of the project are depicted on table 6.1.

S.No Features of the project

1

Time taken for both reconnaissance phase and content similarity compari-
son is considerately low, as the tool is fully written in Golang. Golang pro-
vides built-in concurrency support and handles multiple network requests
with ease.

2
Provides support to obtain content from specific paths or directories, which
may yield better results than accessing the raw / path.

3
Effective support to spoof requests as if they were being made through a
Chrome browser, by matching exactly its headers and TLS fingerprint.

4
Allows for external hosts or IP addresses to be appended directly onto the
total collection of hosts, by reading from a provided file path.

5
With CDNs having already known and existing CIDRs, this solution allows
for a simple way of blacklisting IP addresses to be included on the host
collection.

Table 6.1: Key features of the project

6.2 Workflow of the proposed model

1. Reads and validates several input flags from the user as a command line argument
to the tool.

25

26 Solution design

2. Extracts the host and path from the provided URL, then initializes a host collection
dictionary.

3. If an optional flag is provided to load hosts from an external file, it will attempt to
read it line by line and store each host onto the previously initiated dictionary.

4. Performs an initial network request to the URL provided by the user and stores its
string response on a variable.

5. Enumerates SSL fingerprints associated with the host previously extracted, through
Censys API.

6. Iterates through every SSL fingerprint and collects IP addresses which have match-
ing SSL fingerprints, once again through Censys API. The IP addresses discovered
are then added onto the existing host dictionary.

7. Obtains historical A, MX and TX DNS records from the original host, using the API
offered by Security Trails.

8. Scans every record to obtain IP addresses from them and adds them onto the host
dictionary.

9. Initializes an optionally specified number of workers which are arbitrarily sent IP
addresses and hosts from the host dictionary, one by one.

10. Each worker will perform four unique requests to the parsed host, two requests
with the provided host, HTTP scheme and the path initially extracted, and two
other requests with the same host, HTTPS scheme and the same path extracted.
Moreover, one of each respective HTTP and HTTPS request will have no SSL cer-
tificate verification, thus allowing insecure hosts to be analyzed.

11. Upon obtaining each response, its content is then analyzed using Levenshtein’s
distance or absolute content distance if the content length of the original response
is above 65536 characters.

12. Workers then submit the similarity result to the main thread which will be dis-
played in the terminal.

6.3 Flow diagram of the proposed model

The step-by-step process of the model is portrayed in Figure 6.1 in the form of a flowchart.
It clearly depicts how each module interacts with each other and displays its working
flow. Each main task like SSL certificate fingerprint search, DNS historical record search
are termed as a module as they contribute to the final output of the model.

6.4 Detailed design

Having considered a brief overview of the proposed model for the tool, it is important to
classify and discuss in-depth its main individual modules.

6.4 Detailed design 27

Figure 6.1: Flow diagram of proposed model

28 Solution design

6.4.1. Flag Validation

It is important to start by discussing the expected input flags by a user from the command
line. The tool reads command line arguments from the standard input and automatically
parses them, storing their respective values. Table 6.2 presents a detailed explanation of
every input flag.

Flag Input Explanation

Threshold

Uses the prefix "−l” and has a default value of 5. This in-
teger input defines the Levenshtein threshold which rep-
resents the maximum number of characters that may dif-
fer between the response from the spoofed Host header re-
quests and the original response. A higher threshold value
implies the tool will require less character difference in or-
der to display a match.

Workers

Uses the prefix "−t” and has a default value of 32. This in-
teger input defines the number of workers which will be
crafting requests to the recently obtained hosts from the
host collection dictionary. Workers may be used to fasten
execution times, but it may also lead to rate-limits or IP ad-
dress blacklisting from certain servers.

Censys API ID

Uses the prefix "−censys − api − id” and has no default
value. This string input defines the Censys API ID, which
is part of the API credentials required to utilize Censys ser-
vices.

Censys API Secret

Uses the prefix "−censys − api − secret” and has no de-
fault value. This string input defines the Censys API secret,
which is part of the API credentials required to utilize Cen-
sys services.

Security Trails API Key

Uses the prefix "−sec− api − key” and has no default value.
This string input defines the Security Trails API key, which
will be used in order to obtain DNS historical records from
Security Trails databases.

Host File

Uses the prefix "−h” and has no default value. This string
input defines a file path containing a list of hostnames
which will be added onto the hosts collection dictionary,
which will later be utilised to generate spoofed requests.

Output File
Uses the prefix "−o” and has no default value. This string
input defines a file path to which the tool will try to write
all the hosts discovered.

Fingerprint

Uses the prefix "− f ” and has a default value of false. This
boolean input defines whether the tool will try to emulate
Chrome’s browser in order to load content responses. It
may be useful for websites with a more advanced bot pro-
tection.

Input URL
Uses the prefix "−u” and has no default value. This string
input defines the URL of the website we want to obtain an
original response from.

Table 6.2: Flag input explanation

6.4 Detailed design 29

6.4.2. Host Addition

The tool has a previously loaded list of known CDN Classless Inter-Domain Routing
(CIDR) 1, which will be used to discard IP addresses belonging to those subnets, thus
reducing the number of unwanted hosts collected.

Therefore, the module will read the provided hostname, parse it as an IP address if
possible, and either add it to the existing hosts collection dictionary or discard it and
finish the function execution.

6.4.3. External Host File Parsing

Considering the user entered a flag to load hostnames from an external file path, this
module will attempt to open the file provided, and read it line by line. Each line will be
considered as a hostname and thus directed to the host addition module.

6.4.4. Loading original response

With the URL previously by the user, the tool will craft a request to the target hostname.
It utilizes headers which attempt to match real-like browser headers, in order to increase
the chances of obtaining a successful response. Moreover, if the fingerprint flag has been
provided, it will spoof Chrome’s TLS fingerprint, thus making the request crafted seem-
ingly more legitimate.

Once the request has been crafted, it is executed and the response obtained is stored
onto a new variable, if the request fails to execute correctly, the tool will terminate its
execution and exit with an unsuccessful status code.

6.4.5. Leveraging Censys API for host discovery

Censys is a business which provides internet asset discovery as well as attack surface
management solutions. They provide a useful API which allows for distinct types of
queries, ranging from SSL certificate searches to IP address discovery. Our tool leverages
two main API queries, certificate searching and host name searching.

Figure 6.2 depicts the API request URL needed in order to make a search on certifi-
cates, as well as it portrays the request body required.

The module uses the query parsed.names: hostname AND tags.raw: trusted AND NOT
parsed.names: cloudflaressl.com, where hostname represents the hostname of the original
URL provided. It is important to discuss the two different filters being applied. The
first filter tags.raw: trusted ensures only certificates from trusted certificate authorities
will be collected. The second filter, AND NOT parsed.names: cloudflaressl.com ensures SSL
certificates belonging to Cloudflare, a popular CDN provider are not included. These
filters limit the number of results, while maintaining relevant results.

Moreover, we only want to obtain the SHA 256 fingerprint generated from every SSL
certificate collected, thus we will select as fields parsed.names and parsed.fingerprint_sha256.

These requests are repeated, with an increasing order number of the page parameter,
yielding all the available SSL certificates for a specified hostname.

Having collected the fingerprints for all potential SSL certificates which match the
hostname provided, the tool leverages the host search functionality of the API. It will

1CIDR is a way of organizing IP addresses which are allocated on the same range

30 Solution design

Figure 6.2: Censys API search certificate URL and schema

perform requests for every fingerprint obtained and store the hostnames which share the
same SSL certificate to the original hostname. Once the execution for every fingerprint
has finished, all the hosts are then shared and added to the hosts collection dictionary,
using the host addition module.

6.4.6. Leveraging Security Trails API for host discovery

Security Trails is a company which provides data security, threat hunting and attack sur-
face management tools. Alike Censys, they expose an API for everyone to use, which
amongst other things, provides historical DNS record searching.

As we previously explained in section 5.2, it is of our interest to obtain historical DNS
records for A, MX and TXT resource records. Figure 6.3 displays the schema for the API
query.

This module will perform searches for every resource record for the original host
name provided. It will then parse every host and IP address collected from the respective
responses. Once full module execution has concluded, every hostname is added onto the
hosts collection dictionary.

6.4.7. Performing requests to hostnames gathered

Having inserted hosts obtained from different sources into the hosts collection dictionary,
we may assert the enumeration and reconnaissance sections of the tool have concluded.
It is relevant to finish analyzing them one by one, and thus attempting to obtain the same
content from the original host name provided.

Workers previously initialized will be delivered host names at an arbitrary order, thus
parallelizing their execution. Each one of them will perform four different requests, as
we previously detailed on the section 6.1. The main difference between these requests
and a regular request, is that the Host header of the request will be spoofed and replaced

6.4 Detailed design 31

Figure 6.3: Security Trails API DNS historical record search schema

32 Solution design

by the hostname obtained from the original URL provided. This is a key aspect of this
module, as in many cases this makes the difference between obtaining direct origin server
responses or not doing so. Each response will be analyzed individually according to
the Levenshtein distance or content distance when preferred and the similarity result
obtained will be printed on the standard output.

6.5 Technology used

As concurrency is a strong advantage for the proposed solution, the tool was coded in
Golang. Golang is becoming an increasingly popular programming language due to its
extremely good performance in concurrency. Moreover, it natively supports low level
network handling, thus making it significantly easier to perform more advanced requests
which will try to emulate a real browser. Furthermore, it is a language which I consider
to be relatively easy to learn and there is a considerable number of open-source packages
and libraries which may be used. The tool was coded using GoLand, which in my opin-
ion is an excellent Integrated Development Environment (IDE) with many useful features
such as syntax highlighting and debugging.

Two main external libraries were used for the tool. I used a library which allowed
accurate Chrome’s TLS fingerprinting, which may be used to spoof browser requests
precisely. Another external package is used to calculate Levenshtein’s distance, which
offers an adequate performance. The main reason to use libraries for these tasks and not
a manual implementation for this feature was for time efficiency, as it would not influence
the result.

Two main external libraries were used for the tool. I used a library which allowed
accurate Chrome’s TLS fingerprinting, which may be used to spoof browser requests
precisely. Another external package is used to calculate Levenshtein’s distance, which
offers an adequate performance. The main reason to use libraries for these tasks and to
not develop a manual implementation for them was for time efficiency, as it would not
influence the final tool had I developed them myself.

Furthermore, we selected both Censys and Security Trails API services as they are
simple to use, easy to learn and offer a small free plan which is an attractive point for
other people to make use of the tool. Moreover, they provide information on what our
tool requires, and they have extensive databases which deliver a considerable number
of results. Nevertheless, there are many other existing API providers which offer similar
services, so a similar tool can be developed with different providers.

Another advantage about this tool is that it can be compiled, built, and executed on
Linux, Windows and Mac operating systems, thus offering full operating system inter-
operability. This is especially relevant for the cybersecurity sector, as Linux is a popular
operating system to use for research, and some languages such as C# are harder to be
built and compiled on Linux OS.

CHAPTER 7

Development of proposed solution

Initially, we started by developing flag input validation. This was a trivial task as simply
checking if a value was empty or not would be enough to decide if that flag was correctly
entered. Furthermore, Golang’s native library for flag handling, offers support for in-
built data types such as integers, strings and Boolean, thus making this task even easier.

Then simple modules such as host file parsing and host addition were implemented
onto the tool. They are not complex, as they perform basic read and write operations,
and use simple programming objects. However, after performing several executions of
the tool once it was finished, we noticed the number of hosts collected was too extensive.
Therefore, we decided to store a simple list of subnets which will be blacklisted as they
belong to CDN providers, which we are not interested in targeting.

Continuing with module programming, we coded the module to perform a HTTP
request to the original URL provided. This module would consider if the fingerprint
flag was enabled, and would decide based on a simple conditional, how the request was
going to be crafted. As there were many examples of HTTP requests on the Internet for
Golang, this task was not hard to perform.

Moving on, we can discuss what we consider to be the core of the tool, which is enu-
meration and reconnaissance performed leveraging our selected API providers. The ex-
tensive documentation from both providers, facilitated programming the reconnaissance
modules. However, it is important to note that they return API responses with paging.
Therefore, we had to parse the last available page and enclose the API requests on a loop
until all the available results were collected.

1 // GetAllPagesHistoricalDNS
2 // Performs h i s t o r i c a l DNS records search f o r every resource record (A, MX, TXT

) .
3 // Moreover , i t w i l l read page by page every response obtained , u n t i l r e s u l t s
4 // from the l a s t page are obtained .
5 func GetAllPagesHistoricalDNS (c l i e n t * nhttp . Cl ient , domain , apiKey s t r i n g)

e r r o r {
6 // I t e r a t e s through a previously defined l i s t of resource records , s tored in

the v a r i a b l e lookupTypes
7 f o r _ , lookupType := range lookupTypes {
8 response , e r r := getResponse (c l i e n t , apiKey , fmt . S p r i n t f ("%s/ h i s t o r y/%s/dns

/%s " , secTrai lsApiHost , domain , lookupType))
9 i f e r r != n i l {

10 re turn e r r
11 }
12 var s e c T r a i l s R e s p = Secur i tyTra i l sResponse { }
13 // Parses the response obtained from the API .
14 e r r = j son . Unmarshal (response , &s e c T r a i l s R e s p)
15 i f e r r != n i l {
16 re turn e r r

33

34 Development of proposed solution

17 }
18 // Obtains the maximum page from the parsed response o b j e c t .
19 maxPage := s e c T r a i l s R e s p . Pages
20 // Adds the obtained hosts to the host d i c t i o n a r y .
21 addSecTrai lsHosts (& secTra i l sResp , lookupType)
22 // I t e r a t e s through every page u n t i l the maximum page .
23 f o r i := 2 ; i <= maxPage ; i ++ {
24 response , e r r = getResponse (c l i e n t , apiKey , fmt . S p r i n t f ("%s/ h i s t o r y/%s/

dns/%s /?page=%s " , secTrai lsApiHost , domain , lookupType , s t rconv . I t o a (
i)))

25 i f e r r != n i l {
26 re turn e r r
27 }
28 e r r = j son . Unmarshal (response , &s e c T r a i l s R e s p)
29 i f e r r != n i l {
30 re turn e r r
31 }
32 addSecTrai lsHosts (& secTra i l sResp , lookupType)
33 }
34 }
35 re turn n i l
36 }

Above is the code for the function responsible for collecting hostnames from the historical
DNS records provided by Security Trails. As it can be observed, it iterates through the
total number of pages available, by using the variable maxPage.

After, I programmed the module responsible for performing spoofed requests to the
new hostnames discovered. This module was similar to the one which is used to ob-
tain the original response from the user provided URL, except for one minor adjustment
which was modifying the Host header’s value. Once this was finished, we implemented
a simple conditional which would compare the content length of the obtained response
in order to decide whether to use Levenshtein’s distance or absolute content distance as
metrics to define the similarity between responses. This similarity result would include
the response HTTP status code, the Levenshtein distance or absolute content distance
and whether there was a close enough similarity to be considered as a match.

Finally, we leveraged Golang’s native sync WaitGroups in order to provide concur-
rency to the tool. The tool initializes a pool of workers and uses three different channels
to allow communication between them and the main process. On one channel, hosts
from the hosts collection dictionary are loaded and thus read by the worker pool, which
arbitrarily assigns hostnames to the available workers. The worker uses another channel
to push the similarity result to the main process and display it onto the standard output.
The last channel is used by the workers to indicate when their job is done, and when all
workers have finished their execution, the tool terminates its execution with a successful
status code.

7.1 Implementation

As this tool is a self-contained application, its implementation can be briefly described as
performing a successful execution when using it. Building and compiling an application
with Go is a relatively simple task, as it only requires for a simple go build command
call. Figure 7.1 depicts the building process of the application, which generates a new
executable Origin_Finder.exe.

In Figure 7.2 we may observe a sample execution session for the tool. As the figure
depicts, every successful response from the hostnames discovered shows its HTTP re-

7.1 Implementation 35

Figure 7.1: Building the tool

Figure 7.2: Sample execution session on https://en.zalando.de/robots.txt

36 Development of proposed solution

sponse status code, and its similarity result. In this specific execution we may observe
we have actually found three potential IP addresses which could provide direct origin
server access to the content from the target URL provided.

CHAPTER 8

Testing

Testing for the tool can be subdivided into input testing and module testing.

8.1 Input Testing

As the user may only input some specific flags and they are all validated, simple tests
were performed in order to verify that the input flags were not empty.

Parameter Mandatory

Threshold No
Workers No

Censys API ID Yes
Censys API Secret Yes

Security Trails API Key Yes
Host File No

Output File No
Fingerprint No
Input URL Yes

Table 8.1: Overview of flag parameters which are mandatory

In table 8.1 we can observe an overview of the flag parameters which are mandatory
and thus need a non-empty value to be introduced. Tests were performed on each pa-
rameter, ensuring every mandatory parameter must be filled in, in order to proceed with
program execution and those optional parameters can be omitted.

8.2 Module Testing

Module testing comprises of verifying previously discussed modules operate as they
should. As Go does not have try catch clauses, but it relies on handling errors indi-
vidually, the number of unhandled errors or exception is minimal. Execution tests have
been performed to ensure the intended behavior for each module appearing in table 8.2
is guaranteed.

37

38 Testing

Module Intended Behaviour

Host Addition
The specified input hostname to the module is
added if applicable, to the hosts collection dic-
tionary.

External Host File Parsing
The specified input file path, if has the right
read access permissions, will be read line by line
and extract all its hostnames.

Loading Original Response
Given a URL, this module will craft and per-
form a request, which if successful will store its
response content.

Censys API handling
Given valid Censys credentials, this module
will load every SSL certificate fingerprint avail-
able, and its respective hosts.

Security Trails API handling

Given valid Security Trails credentials, this
module will load every historical DNS record
for the specified resource records defined and
extract hostnames from them.

Loading Response On New Hosts

Given the original hostname and a new host-
name, this module will craft a request to the
new hostname spoofing its Host header as if the
request were intended to the original hostname.
Moreover, this module shall successfully com-
pare the content responses between both and
obtain a conclusive similarity result.

Table 8.2: Overview of modules and their intended behaviours

CHAPTER 9

Case Study: Accessing Zalando
through their origin server

Zalando, an online sneaker and clothing retailer with more than 48 million active cus-
tomers across 23 markets [7] uses Akamai to deliver their content to end users. Akamai,
as we have previously examined offers bot management solutions and a powerful web
application firewall which mitigates potential threats.

We may assume that Zalando’s intended content delivery process to end users is that
it should be handled through Akamai CDNs and not through their origin servers directly.

As it may be observed from the response status code 403 on Figure 9.1, the CDN
has successfully blocked this basic Structured Query Language (SQL) injection attack.
Moreover, we can observe from the Server header from the response, AkamaiNetStorage,
that the CDN provider being used by Zalando is Akamai. Its web application firewall
detects and blocks potentially threatful payloads to protect the content owner’s server.
This generally poses a problem to security researchers and pentesters as they will have
to craft more thoughtful payloads to successfully execute an attack on targets behind a
CDN with a web application firewall. Moreover, since they usually implement admission
control, it makes it significantly harder for hackers to perform a successful Denial Of
Service (DOS) on their origin server. Let us observe what happens when we make this
same request through one of the origin servers behind these edge servers.

Figure 9.1: Basic SQL injection attack on the target through Akamai’s CDN

39

40 Case Study: Accessing Zalando through their origin server

Figure 9.2: Basic SQL injection attack on the target through one of its origin servers

Judging from Figure 9.2 we can determine the attack has been successfully executed,
and as it can be observed from the Server response header, we have performed this re-
quest directly passing through Akamai’s edge servers. Considering performing simple
SQL injections attack such as ’ or ’1’=’1 is allowed on the target, opens the range of pos-
sible attacks which may be executed by hackers. Furthermore, since the content delivery
from the target is no longer distributed across hundreds or thousands of edge servers,
performing a DoS attack on it becomes a trivial task.

This case study further reinforces the point that content owners should at the very
least implement their own firewall on the origin server, as even large and recognized
companies fall into the trap of assuming they have a secure content delivery system in
place just because they are using a CDN with WAF.

This is usually not considered as a vulnerability by many companies, but it can be
considered as a major server misconfiguration. It may pose a serious security threat as it
certainly facilitates new vulnerabilities to be found and exploited and performing DDoS
or DoS attacks may be considerably easier. As per Figure 7.2, these IP addresses and
direct origin server accesses have been found using the tool developed in this thesis,
which demonstrates it’s real-life utility in finding real origin servers from target websites.

CHAPTER 10

Protecting your origin server

In the scenario that we may have found out our origin server IP address has been exposed
to the public, we might need to know how to protect it, to prevent unwanted users to
access it directly. We may consider that a server misconfiguration is happening if the
content owner does not intend to expose its content directly through its origin server.
Below are explained some of the most common ways for protecting an origin server IP
address, and thus correctly configuring the origin server.

10.1 Preventing external connections

Some CDN providers such as Cloudflare, propose content owners to exclusively whitelist
traffic from IP addresses belonging to Cloudflare IP addresses or the IP addresses of
trusted partners, vendors or applications [1].

Another way of preventing external connections is to use a Tunnel such as Cloud-
flare Tunnel which will encrypt all traffic between the origin server and prevent inbound
connections.

Preventing external connections through any of the above methods is generally con-
sidered to be the best practice, no traffic can possibly come from unwanted IP addresses
if servers are correctly configured.

10.2 Changing IP address

Another potential protection method to consider changing the IP address of the origin
server. This method should probably be combined with some other protection methods,
as it may still be possible to discover the new IP address and obtain direct origin access
through it.

10.3 Avoiding generic subdomain names

We have previously seen tools such as AMASS which help enumerate subdomains from
a provided domain. One of the methods it may use is a brute-force search from a pre-
defined list of keywords. If generic subdomain names are avoided, it may be harder for
discover some subdomains via brute-force searching.

41

42 Protecting your origin server

10.4 Avoid leaving a trace in DNS records

As historical DNS records may be exploited to obtain new hostnames, it is important to
avoid leaving trace in them. Migrating your email service to a different server may help
reduce the information which can be obtained from MX records for example. It is gen-
erally recommended to check your current DNS records and verify we are not exposing
more information than required.

10.5 Reducing sensitive data

Publicly accessible system and server logs on a web server (e.g., phpinfo), may also ex-
pose sensitive information from them, such as their IP address. It is recommended to
check the services running on a website and require authorization for paths and end-
points that expose sensitive information.

CHAPTER 11

Conclusions

This thesis aimed to provide further insight onto origin server discovery and elucidate
its importance nowadays. Therefore, protection mechanisms to avoid exposing an origin
server were outlined. An automated tool was specifically developed for origin server
discovery, which combined several passive reconnaissance methods. Based on the real-
world obtained results from the tool, we may conclude it has successfully accomplished
its intended objective. Nevertheless, it is important to note the developed tool still has
room for significant improvements, as further reconnaissance methods may be imple-
mented onto it.

While comprehensively understanding every topic discussed in this thesis was ini-
tially a difficult task, it has greatly improved my overall knowledge on ethical hacking
and web security. It is worth mentioning that topics such as SSL certificate identification
or CDN infrastructures posed a remarkable challenge to be effectively understood. Due
to its high-performance, Golang was learnt to develop the automated tool mentioned in
this thesis. This serves as a boost both for personal and professional experience, as it is a
programming language which is becoming to be more on-demand.

11.1 Relating work developed to studies coursed

First of all, it is important to mention that an important part of my knowledge with net-
works and application software comes from working professionally as a freelance soft-
ware developer for almost three years on these topics. Nevertheless, the work developed
on this thesis is also closely related to the contents of several subjects I have taken along
the degree.

Starting off, subject Redes de computadores has greatly helped with the work developed
in this thesis. In this subject we studied how network traffic is handled, under the differ-
ent layers available. With the knowledge obtained from this subject, I better understood
how things such as DNS operate, as well as helping to understand how HTTP requests
are handled internally. Furthermore, another topic introduced on this subject on the ap-
plication layer unit, was about REST APIs. They are briefly explained and it helped me
get introduced into them in order to understand how to handle them, as they are a key
part of the work I developed.

Moreover, another closely related subject to the work developed is Tecnología de sis-
temas de información en la red, especially its practical aspect. On the practical side of the
subject, we learnt to code in JavaScript, language which is very similar in many things to
Golang, thus helping to learn this new language. Since my tool is developed in Golang, I

43

44 Conclusions

consider this subject was relevant and very helpful as it may have taken me considerably
more time to understand how to code in Golang without this knowledge.

In addition, I consider Hacking ético a subject which made me be more motivated on
cyber security and web vulnerabilities. Because of it, I discovered a completely new field
of informatics I had previously never explored, but which I personally find fascinating
and motivated me to investigate about the topic of the work I developed.

Finally, I consider Aprendizaje permanente to be a very relevant transversal competence
for this work developed. Despite some of the topics discussed on this work have been
previously introduced by the subjects I coursed; these topics did not go into enough
depth. Therefore, by continuously reading other related work, and investigating by
myself, I have been able to gain a much deeper understanding of the topics on this
work: DNS, SSL/TLS certificates, CDNs, etc. Another relevant competence, which I
have gained through my studies is Conocimiento de problemas contemporáneos, as the work
developed in this thesis discusses topics and fields of study which have been scarcely
explored before.

CHAPTER 12

Future Work

Given the time provided for this work, it was difficult to include more enumeration and
reconnaissance methods onto this tool. Nevertheless, on future work, active reconnais-
sance methods can be leveraged, in order to obtain potential hostnames. We have already
discussed some active recon methods, such as scanning files from the website for host-
names.

Another potential way of obtaining origin server hostnames may be by performing
requests to the target server when its CDN is having network performance outages, as
they have sometimes happened. In those specific scenarios the origin server hostname
may be exposed directly. We did not consider this for my work as it is impractical for the
most part, as many CDN providers tend to have excellent uptime statistics.

From my point of view, future work could benefit from this thesis in order to provide
for more versatile and complete vulnerability scanners. As we have observed some of
the implications of exposing an origin server directly, vulnerability discovery becoming
a considerably easier task is an interesting take for security researchers.

45

46 Future Work

ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE

Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenible Alto Medio Bajo No
procede

ODS 1. Fin de la pobreza. X
ODS 2. Hambre cero. X
ODS 3. Salud y bienestar. X
ODS 4. Educación de calidad. X
ODS 5. Igualdad de género. X
ODS 6. Agua limpia y saneamiento. X
ODS 7. Energía asequible y no contaminante. X
ODS 8. Trabajo decente y crecimiento económico. X
ODS 9. Industria, innovación e infraestructuras. X
ODS 10. Reducción de las desigualdades. X
ODS 11. Ciudades y comunidades sostenibles. X
ODS 12. Producción y consumo responsables. X
ODS 13. Acción por el clima. X
ODS 14. Vida submarina. X
ODS 15. Vida de ecosistemas terrestres. X
ODS 16. Paz, justicia e instituciones sólidas. X
ODS 17. Alianzas para lograr objetivos. X

47

Reflexión sobre la relación del TFG/TFM con los ODS y con el/los ODS más rela-
cionados.

Considero que ningún ODS se relaciona con mi trabajo ya que mi trabajo es muy específico en
el sector de la ciber seguridad. En menor grado, podría relacionarse con el ODS 9, puesto que no
hay apenas trabajo previo de este tema específico considero que aporto a la innovación de la ciber
seguridad. Es posible que gracias a este trabajo, la seguridad web en general se vea reforzada, y
que ganen experiencia y conocimiento, tanto los investigadores de seguridad, como los usuarios
que deseen ofrecer contenido a través de Internet.

Bibliography

[1] Cloudflare. Protect your origin servers. https://developers.cloudflare.
com/fundamentals/get-started/task-guides/origin-health/free/. [Online; ac-
cessed 20-June-2022].

[2] Web Almanac Contributors. 2021 web almanac. https://almanac.httparchive.
org/static/pdfs/web_almanac_2021_en.pdf, 2021. [Online; accessed 14-June-
2022].

[3] Madelen Berg Dalseth. The development of a reconnaissance tool aiming to achieve
a more efficient information gathering phase of a penetration test, 2021.

[4] Exorbyte. The levenshtein-algorithm. http://www.levenshtein.net/. [Online; ac-
cessed 14-June-2022].

[5] Milad Ghaznavi, Elaheh Jalalpour, Mohammad A. Salahuddin, Raouf Boutaba,
Daniel Migault, and Stere Preda. Content delivery network security: A survey. IEEE
Communications Surveys & Tutorials, 23(4):2166–2190, 2021.

[6] HolyBugx. Finding the origin ip behind cdns. https://infosecwriteups.com/
finding-the-origin-ip-behind-cdns-37cd18d5275, December 2020. [Online; ac-
cessed 14-June-2022].

[7] Patrick Kofler. Zalando full year results. https://corporate.zalando.com/
en/investor-relations/news-stories/zalando-full-year-results-2021, 2021.
[Online; accessed 14-June-2022].

[8] AO Kaspersky Lab. What is an ssl certificate? https://www.kaspersky.com/
resource-center/definitions/what-is-a-ssl-certificate. [Online; accessed
14-June-2022].

[9] Ben Laurie. Certificate transparency. Commun. ACM, 57(10):40–46, sep 2014.

[10] OWASP contributors. Owasp amass - users’ guide. https://github.com/OWASP/
Amass/blob/master/doc/user_guide.md. [Online; accessed 14-June-2022].

[11] Tutorials Point. Ethical hacking - reconnaissance. https://www.tutorialspoint.
com/ethical_hacking/ethical_hacking_reconnaissance.htm. [Online; accessed
14-June-2022].

[12] RFC contributors. Rfc9110 - host and :authority. https://www.rfc-editor.org/
rfc/rfc9110.html#name-host-and-authority. [Online; accessed 14-June-2022].

[13] Vijaya R Saraswathi, Iftequar Sk Ahmed, Sriveda M Reddy, S Akshay, Vrushik M
Reddy, and Sanjana M Reddy. Automation of recon process for ethical hackers.
In 2022 International Conference for Advancement in Technology (ICONAT), pages 1–6,
2022.

49

50 BIBLIOGRAPHY

[14] Akamai Technologies. Bot manager. https://www.akamai.com/en/products/
bot-manager, 2022. [Online; accessed 14-June-2022].

[15] Wikipedia contributors. Domain name system — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Domain_Name_System&
oldid=1092781489, 2022. [Online; accessed 14-June-2022].

[16] Wikipedia contributors. Levenshtein distance — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&
oldid=1082661551, 2022. [Online; accessed 14-June-2022].

[17] Wikipedia contributors. List of dns record types — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=List_of_DNS_record_
types&oldid=1090675362, 2022. [Online; accessed 14-June-2022].

[18] Wikipedia contributors. Subdomain — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Subdomain&oldid=1084975153, 2022. [On-
line; accessed 14-June-2022].

