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Adaptive Calibration of Diesel Engine
Injection for Minimising Fuel
Consumption with Constrained NO,
Emissions in Actual Driving Missions

José Manuel Lujan' , Benjamin Pla ', Pau Bares ', Varun Pandey '

Abstract

This paper proposes a method for fuel minimisation of a Diesel engine with constrained NO, emission in actual driving
mission. Specifically, the methodology involves three developments: The first is a driving cycle prediction tool which
is based on the space-variant transition probability matrix obtained from an actual vehicle speed dataset. Then, a
vehicle and an engine model is developed to predict the engine performance depending on the calibration for the
estimated driving cycle. Finally, a controller is proposed which adapts the start-of-injection calibration map to fulfill the
NOy emission constraint while minimising the fuel consumption. The calibration is adapted during a pre-defined time
window based on the predicted engine performance on the estimated cycle and the difference between the actual and
the constraint on engine NO, emissions. The method assessment was done experimentally in the engine test setup.
The engine performace using the method is compared with the state-of-the-art static calibration method for different
NO, emission limits on real driving cycles. The online implementation of the method shows that the fuel consumption
can be reduced by 3-4 % while staying within the emission limits, indicating that the estimation method is able to capture

the main driving cycle characterstics.
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Introduction

Motivated by the requirement of improvement in fuel-
efficiency with minimal emissions, the control of Diesel-
engine is being investigated by many researchers'. Diesel-
based vehicles are largely responsible for the NO, emissions
according to Hooftman et. al in’. Despite the continuous
tightening of the NOy type approval limits from EUI to
EUG6, Chen et. al® highlight that the difference between the
type approval NOy and the real world NO, emissions has
grown over the years. The reason for this discrepancy is the
uncertainty due to driving dynamics, ambient temperature
and road sloap during real driving conditions which are not
considered in the engine optimisation process. State-of-the-
art engine optimisation method is based on feedback and
feedforward controllers. Fixed look-up tables are employed
as the set-point generator and feedforward controller. The
maps are obtained during the calibration process as shown by
the authors in*> with a goal of minimising fuel consumption
with regulatory constraint on emissions on a predefined
homologation cycle. The fact that the fixed calibrations are
used regardless of the driving condition causes the engine not
to operate in an optimal way during real driving. A high level
of control is required in the engine for it to run optimally
in the real driving condition. To this aim the controller is
required to have three main features:

e Vehicle speed prediction model is required to assess
the uncertainities in the real world scenario and it can
be based on the available information about vehicle

speed on a given route. One option is to model the
vehicle speed using Markov chains, as described by
the authors in®. This includes extracting information
from a database of real world driving and to generate
the driving cycle using a stochastic process.

e A vehicle model is necessary for the online
estimation of the engine performance. Although,
some works have applied Optimal Control to vehicle
powertrains without the so called quasi-static engine
simplifications’, very simplistic 0D models should be
applied for online purpose. For this reason, the present
paper considers the quasi-static engine approximation
previously followed in other works®™'". In the article
by Yang et al.!', start-of-injection is shown to
control the engine tradeoff performance between fuel
consumption and NO, emissions.

e A supervisory controller is required to optimally
control the engine for minimised fuel consumption
with constrained emissions. Optimal control theory
has been widely used in literature as consolidated by
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the authors in'? to address complex control problem.
However application of these methods in engine
management system is still a big challenge due to
their computational cost. Some other methods have
been focused on lower level engine control for Spark-
Ignition Engine. Extremum seeking method has been
widely used in'31° most of the work is related to
online optimal calibration but does not inlcude real
driving emission constraint. The authors in'’, present
a theoritical basis and algorithmic implementation for
allowing the engine to learn the optimal set values
of accesible variables in real-time, while running
a vehicle. Even though short transients have been
presented for online optimisation, the applicability of
this method in real driving condition still remains
an unsolved issue. Other methods, like Equivalent
Consumption Minimisation Strategy (ECMS) and
Model Predictive Control (MPC) as in'®!”, seem to
be more promising in solving the issues of real-time
control of Diesel engine. Stephan et. al’ propose
an ECMS method to provide a solution for online
optimal control of Diesel engine with constraint
in NO, emission. The authors assume a constant
emission reference target resulting in unrealistic
emission during real driving conditions. In the article
by Gokul et.al?’, MPC is formulated to maximise
the fuel efficiency while tracking boost pressure and
exhaust gas recirculation rate references, in the face of
uncertainties, adhering to the input, safety constraints
and constraints on emissions averaged over some finite
time period. Authors in’?, present a model based
approach to the adaption of the engine calibration to
the driver behaviour and the target pollutant emissions:
they consider a fixed probability matrix for expected
engine operating points, which does not represent a
real world scenario.

This paper proposes a look-ahead based methodology
to continually adapt the engine calibration such that the
fuel consumption is minimised while fulfilling the NOy
emission constraint in real driving condition. The strategy
is to estimate the vehicle speed using the Markov chain
model and then calculate the fuel consumption and the NOy
emission for a time window using a OD vehicle model. The
calculation is done with different sets of start-of-injection
(SOI) calibration and at the end of every time window there
exist a set of SOI maps associated with different levels of
cumulative fuel consumption and emissions. A supervisory
controller updates the calibration from the available set such
that, fuel consumption is minimised while NO, emission
is less than the limit in the upcoming time window. The
constraint on NO, emission is time dependent and is
calculated as the difference between the actual NO, emission
(measured by the sensor) and the NO, emission limit.

Further, the article is structured as follows: Next section
describes the problem and its proposed solution, The
developed tools have been described in the order of
vehicle speed prediction method, vehicle model and the
proposed control method has been elaborated followed by
the experimental setup. Finally, the results of the case study
are presented followed by conclusion and the summary.

Problem description

The standard engine calibration approach consists on taking
a driving cycle, e.g. the New European Driving Cycle
(NEDC), or a set of them to make an optimisation and
then use the obtained results to fill the calibration maps.
However, in this case, the optimality of the calibration for
a given driver will depend on the similarity between the
NEDC and his driving patterns. Moreover, this approach
neglects other boundaries as the traffic, pollution levels in
the area or other environmental conditions. On the other
hand, optimal control approach require a priori knowledge
of the driving cycle, which prevents its application for
real-time control. To overcome these drawbacks, as an
intermediate solution between the optimal control approach
and the static calibration approach, the present paper poses
the calibration problem as finding a set of optimal calibration
maps containing the set points that minimise the accumulated
fuel consumption (my) over a sequence of engine speeds
and torques (n., M) representative of the driving conditions
for a driver, while fulfilling constraints on emissions for
unknown driving conditions.

Adaptive Calibration based on Power
Demand Estimation

Application of engine controls in real driving conditions
for minimising fuel consumption with constrained emissions
requires vehicle speed prediction model which could also
account for the real driving uncertainities, simple but
accurate engine and vehicle model to estimate engine
performace and finally a controller to calculate and
implement optimal actuations. The trip could be discretised
in space, where each section is called window and based
on the predicted emissions for an upcoming window, the
control actions that minimise fuel consumption keeping
emissions within certain limits, could be calculated and
stored as calibration maps, that could be applied during
the next time window. In this sense, the proposed control
algorithm has three layers: The first one is the estimation
of power demands in a predicting horizon, the second one
computes the expected fuel consumption and NO, emissions
depending on the SOI calibration used (from a limited set of
possible calibrations). The last phase applies the calibration
with minimum expected fuel consumption from those whose
expected NO, emissions are below a predefined limit.

In Figure 1, schematic of the high level control system
of the developed method is presented. where vgsti, and
Ureq) are the estimated and actual vehicle speeds respectively.
Prediction horizon window ( PHW) is the moving time
window for which the fuel consumption and engine out
NOy emissions are cumulated. The length of the PHW is
a design choice (calibration parameter) which affects the
closeness of the cumulative NOx emissions at the end of the
cycle from the target emissions/limits. Larger the window,
farther will be the NOx emissions from the target. On the
contrary, short windows will avoid fuel reduction potential
since the problem will be transformed on tracking a constant
NOx emission, and will have an excessive computation
cost for the real-time implementation. For the purpose of
explanation, the schematic has three time frames represented
by the three columns as past, present and upcoming time



windows. During each PHW there are three processes
happening in parallel, represented by the three rows. The
top row represents the first process, which is regarding
the estimation of driving cycle and calculation of engine
speed and torque from vehicle speed demand. The second
process as in central row is regarding the calculation of
the control actions and their conversion into the calibration
maps. Finally, bottom row represents the third process
which is regarding the application of the stored calibration
maps, calculated during the previous PHW. The calculation
of the optimal calibration map is based on the predicted
NOy emissions for the upcoming PHW, the measured NOy
emission in the previous PHW and the NOy emission limit.
At the end of PHW, the calibration is adapted in order
minimise fuel consumption while keeping NO, emission
under a certain limit. In this study, PHW (in red boxes) is
chosen to be 100 sec. It must be noticed that during the first
time window, standard calibration map is applied. Further,
each subsystem is described in the following subsections.

Vehicle speed prediction model

The vehicle speed prediction process uses Markov chain due
to its relative simplicity in representing an unknown system.
Markov property means that the future states depend only on
the present states and are independent of the past states. Let
the state x,, = v,, where v,, is the current vehicle velocity.
A Markov chain is a sequence of random variables X;,X5,
...X,, whose conditional probabilities are expressed as;
P(XnJrl = $n+1|X1 = $17X2 = T2,... 7Xn = LL’n) (1)
= P(XnJrl = xn+1|Xn = xn)

The set of possible values that the random variables X,
can take is called the state space of the chain. The conditional
probabilities are called transition probabilities. The sum of
all probabilities leaving a state must satisfy:

Zpij:ZP(Xn-&-lzﬂXn:i):l )
J J

pi; is predicted by all the transitions that have occurred in
the previously recorded driving cycle, on the same route.
The probability used in the synthesis procedure is space
dependent, that is, as the vehicle moves on, the probability
of evolving from one state (vehicle velocity) to another
may change. In other words, the controller requires two
parameters to make a prediction of vehicle velocity: first it
needs the current position of the vehicle which determine the
transition probability matrix to be applied and then it requires
the knowledge of the velocity in the previous time step to
determine the probability distribution of the current state and
hence the prediction is made.

Transition probabilities are stored as Transition Proba-
bility Matrix for thirty equally divided sections (s) of the
route (approximately 60 km). In the present work the vehicle
speed is the system state (x,, = v,,) and its sequence in each
section of the route is used to build the Transition Probability
Matrices. For practical reasons, the data has been discretised
in steps of 1 km/h in velocity. The process of cycle synthesis
could be summarised as :

Step 1: Transition probability matrices (I"P M), where s
represents the section from which the tranistion probabilities
have been extracted from the experimental data for the
route under consideration. In particular, the probabilities are
assumed to be equal to the event frequency during a given
section.

Step 2: The inputs to the generator are the initial
vehicle velocity (vg), vehicle position or the section of
route (s) and the Cumulative Probability Function derived
from sectional TPM;, extracted in Step 1. Then the
synthesis of each section is dealt with separately. The
corresponding Cumulative Probability Function is used to
randomly generate velocity for the next time step. The
detailed description of the synthesis process is presented by
the authors in*’.

Vehicle model

In line with works of >*?°, the longitudinal vehicle model has
been developed considering non-conservative forces related
with aerodynamic drag (F,) and rolling resistance (F).). On
the one hand, aerodynamic drag depends on the vehicle’s
frontal area A, the drag coefficient Cy, which is mainly
function of the vehicle shape and surface roughness, the air
density and the square of the vehicle speed (v):

1
F, = §ACdpv2 3
On the other hand, rolling resistance is represented by:

F,. = pmygcosf “4)

where 1 is a friction coefficient, dependent on the tyre-
tarmac contact, and therefore difficult to evaluate accurately,
but generally assumed to be in the range of 0.01 to 0.015 for
light duty vehicles. Regarding the rest of parameters, m,, is
an equivalent vehicle mass accounting for the vehicle mass
(m) but also for the inertia of the powertrain rotating parts,
g is the gravity constant and /3 represents the road grade,
that also leads to a force against the vehicle advance when
it climbs (F) which expression is:

Fy =mygsinfj (5)

Note that the energy required to overcome Fy when the
vehicle is climbing can be theoretically recovered when
going downhill to the initial position.
A force balance leads to the following ordinary differential
equation:
Fr=myo+F,+F. + F, 6)

which is the main equation of the vehicle longitudinal
dynamics. The parameters in (3) are estimated from
literature, (6) allows to calculate required engine speed and
torque to fulfill the demanded vehicle speed profile.

Engine model

Within the elements of the vehicle powertrain, the engine
is most complex due to the large amount of energy
transformations and physical processes involved. This
complexity makes it difficult to have real-time modelling
capabilities for detailed engine physical models. In addition,
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Figure 1. High level control schematic: Top row is vehicle speed prediction, middle row the calculation of optimal control and
storing it as calibration maps and bottom row is the application of control to the real engine. Three columns represent time windows,
where middle column represent the present time, left and right columns represent past and future time windows

the high number of states on high fidelity models make
optimisation a very complex task since the computational
burden of optimisation algorithms strongly depends on the
number of states of the model. In this sense, a typical
approach also shown by the authors in’®?’ is to assume
that engine dynamics are not relevant or at least their
characteristic times are much lower than those of the
pedal actuation. In this sense, in the vehicle model, the
engine torque, the fuel consumption and NO,, emissions are
calculated by interpolation of experimental data as a function
of engine speed (¢ng), load (My) and SOL.

Fuel consumption optimisation with
constrained NO, emissions

The inputs to the low level controller shown in Figure 2 are
the estimated vehicle velocity v(s), estimated engine speed
ne, engine torque My and dynamic NOy emission limit

——dvyn
(NOXy ), which is updated after every PHW based on (7).

TRdyn T2 ® 1’hNO meas

NO, = NOx — ————ds @)
0 Vmeas(s)

where, NBX is the predefined emission limit for the entire
trip, M N0, meas 15 the rate of NOy emissions measured by
the sensor, vyeqs(s) is the measured vehicle velocity and s
is the distance travelled by the vehicle.

Within the controller there are quasi-steady engine model
and an optimiser. The engine model performs online
calculation of fuel consumption and NOy emissions during
the transient operations with different calibration maps in
parallel. This is achieved by modelling engine as a set of

maps as in (8)

my (0, Mg, SOT*1))

(3)
NOy (ng, Mg, SOI*M))

The two outputs of the engine model are, ms and NOy
emissions, which are fuelling rate and NOy emissions
depending on the calibration index k. The three inputs of the
engine model are n,, M4 and SOI. The base line calibration
SOI** is perturbed as shown in (9).

SOI*M) = SOI**™ 4 (k) 4 ay (k) * nio™

norm (9)
+ag (k) * My

where, ag, aq, ag € [—1, 1], nto™, M5°™ are normalised
engine speed and torque in euclidean space. Then, obtained
calibrations are stored as vectors into a matrix A as in (10),
where a(k) is a vector of the three coefficients of the ky,
calibration.

= [ Qg Q1 Q9 ] (10)

It must also be noted that the lookup set must fullfil
following conditions:

e They must lie within the feasible actuator boundary. In
the current study, SOI was explored within [SOTtd-
3,SOIStd+3] CAD, which is within the feasible
boundary shown in Figure 3 for the engine under study.

e The engine must have senstivity to the changing
calibrations within the look-up set.
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explored

o Calibration maps must be smooth enough in order to
fulfill conditions of drivability.

Finally, the controller selects an optimal calibration (k)
by solving the problem in (11), where fuel consumption is
minimised for a given distance s while being within dynamic

NOy limits .
mina(k)GA /
0

mNo,

mf .

v(s)
——dyn

ds —NO, <0

(1)

r

The components of « are discretised in 3 elements leading to
27 combinations which is the size of the lookup set. Figure 4,
presents sequence of optimal calibration map adapting with
time for the first 600 s of a real driving cycle. Naturally,
the maps get updated in the map domain anticipated by the

Figure 4. Representation of the adaptation of SOI calibration
with time. Maps update at the end of the moving prediction
horizon window of 100 s.

vehicle cycle predictor, which in the presented case is about
2000 rpm and low engine loads.

Experimental set up

The approach presented in this paper was tested on a
Diesel engine with specifications as in (1) at CMT-Motores
Termicos. The engine is coupled to an asynchronous Horiba
DYNAS 3 dynos which is controlled with a Horiba SPARC
through the PC interface Horiba STARS. The dyno is able
to perform steady-state, transient and dynamic tests and in
particular it is able to emulate the vehicle behaviour to
carry out tests simulating real driving missions. An open
Electronic Control Unit (ECU) was used to modify the
SOI feedforward maps. With the modified SOI settings, the
engine follows the desired torque profile acting on the engine
throttle in closed loop with torque feedback. For which, a
rapid prototyping system was connected via ECU ETK port
allowing for sending and receiving the signals. This bypass



Stroke x Bore[mm] 84.8 x 75
Displacement[cc] 1498

Compression ratio  16:1

Number of Cyl. Inline 4

Valves per Cyl. 4

Rated Torque 300Nm @ 1750rpm

Emission std. Euro 6
Table 1. Engine specification

configuration is created using INTERCRIO and generated
in the dSpace system. The hardware setup is composed of
dSpace Microauto164 box II, ETAS 910 and an open ECU.
The test-bench apparatus such as the fuel balance FQ2100
and the gas analyzer (GA) Horiba MEXA 7100 series are
connected to the STARS interface. The NTC sensors and
the Cambustion NDIR 500 gas analyzer are connected to
the RPS dSpace by analogic signal, while the NO,, sensors
are connected to the RPS dSpace by CAN protocol. For the
concentrations measurements in the test bench, the Horiba
MEXA 7100 DEGR GA is used to measure NO,, at one point
of the exhaust line.

Results

In the current study three driving cycles are considered: The
first cycle CO is an estimated cycle, synthesized using the
tool described in the previous section. The second and the
third cycles - C1 and C2 respectively are recorded on a
vehicle on the route under consideration. In Figure 5, the
evolution of the vehicle speed is presented. The plots at the
bottom shows the frequency of engine operations for the
three cycles, it can be noticed that the aggressiveness of
CO0 is higher than C1 and less than C2. Using these three
cycles, a case study was designed for the method validation.
Three relevant scenarios are considered based on the driving
dynamics of the predicted vehicle speed, driving dynamics
of actual vehicle speed and limits over NO, emissions.

e The first scenario Scenl is when the actual driving
cycle coincides with the estimated driving cycle.

o The second scenario Scen?2 is when the aggressiveness
of actual driving cycle is less than the estimated cycle.

e The third scenario Scen3 is when the aggressiveness
of actual cycle is higher than the estimated cycle.

For each scenario, two cases casel and case2 which are
regarding the constraint on NOy emission are presented,
where casel and case2 are with NBX less than 0.2 g/km
and 0.3 g/km respectively for the trip.

In Figures 6, 9 and 11, the result of the engine performance
for the three scenarios are presented. The comparision is
made with the engine performance using standard calibration
(stdcqr). It should be recalled that during the first 100 sec the
controller applies standard calibration regardless of the Scen
or the case.

Scenl In Figure 6 the estimation of driving cycle is
perfect; therefore the estimation of emissions for PHW
would be different from the actual emissions only due to
the error in engine modelling, the difference due to driving
uncertainity would be zero. In figure, 8 an enlarged view of
0-360 sec is presented. The emissions in g/km are very high
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Figure 5. Predicted and measured vehicle speed on the route
under consideration; frequency of engine operating points for
the three cases velocity profiles

at the beginning of the cycle and therefore SOI is largely
retarded for both the cases in order to reduce NO, emissions.
The difference in performance can be noticed with dm;
and 0NOy (defined in (12), as the percentage of cumulative
deviation of fuel consumption or NOy emissions for a case
and standard calibration). At the beginning of this phase of
the cycle NOy emissions are largely reduced; while at the
end of this phase as the emissions are less than the limits, the
controller emphasises on saving the fuel.

fos Mfeaser,2 — fos Mo,
S
fO mfstdcal
fOs NOXcasel,Z - fOS NO
fOs Noxstdcal

From 360-1800 sec vehicle speed is quite constant
(representative of the highway driving) and only few
transients appear due to the road slope effect, for casel
the SOI is retarded more than case2 to have lower NOy
emissions at the end of the cycle. For case2 the emissions
are within the N@X while for casel emissions are 0.21g/km.
For a lower emission constraint, adapting the calibration to
the actual driving scenario allows to have 14 % reduction in
emissions with a penalty of 1.3 % in fuel consumption. If
the NOy constraint is relaxed to 0.3 g/km and the calibration
is adapted to the actual driving cycle, as in Figure 7, fuel
consumption can be reduced by 0.9 % while limiting the
NOy emissions below 0.3g/km. It can be also be observed
that lower emission limit can be achieved with the calibration
look-up set.

omy = x 100

(12)

Xstd

ONOy = <l % 100

Scen2 In Figure 9, the actual driving cycle is less
aggressive than the estimated driving cycle, therefore the
estimation of emissions for PHW would be higher than the
actual emissions. From 100-360 s, even though the vehicle
is running at low velocity, the estimated emissions are more
than actual and hence the SOI is retarded. For instance,
during the second PHW, the estimation of emission is higher
and therefore the control strategy is to minimise the emission
as much as possible. At the beginning of third PHW the NOy
limit is corrected due to lower emission produced in second
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Figure 7. Scenl; Cumulative fuel consumption and NOy
emissions and their relative difference with standard calibration

PHW. The higher @iyn limit, makes a calibraiton, favoring
better fuel efficiency. Thereby, for casel, 5% reduction in
emissions is possible while insignificant increase in fuel
consumption as shown in Figure 10. In case 2, the fuel
consumption can be improved upto 3.9 % while staying
within the emission limits. Moreover, in both the cases the
limits on NOy emissions are fulfilled at the end of the cycle.

Scen3 In Figure 11, the actual driving cycle has
higher aggressiveness than the estimated driving cycle.
Accordingly, the estimation of emissions for PHW would
be lower than the actual emissions, resulting in a strategy
favouring NOy reduction in the second PHW. Under-
estimating the cycle aggressiveness leads to unfulfilled
constraint in casel. In order to fullfill the NO, limit, the SOI
is largely retarded during the cycle. As presented in figure
12, emissions are reduced by 14% with a 1.1% penalty in
fuel consumption for casel. In case2, it is possible to reach
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Figure 8. Scenl, Zoom : 0 — 360sec; Start-of-Injection;
fuelling rate, difference of cumulative fuel mass, instanteneous
NOx emissions, difference of cumulative NOx emissions
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Figure 9. Scen2; Start-of-Injection; fuelling rate, difference of
cumulative fuel mass, instanteneous NOy emissions, difference
of cumulative NOy emissions

the emission target of 0.3 g/km, while further reducing fuel
consumption by 0.8 %.
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The result can be summarised as:

e In scenarios 2, the constraints in both the cases are
satisfied. Therefore considering a driving cycle with
higher aggressiveness for calculating calibration is a
preferred approach to fulfilling the NO, constraint.

e In the first and third scenario, the constraint in casel
can not be fulfilled, this is because the range of the
look-up set for SOI is limited to 6 CAD. Including
more actuators and increasing their range will directly

influence the range of achievable NO, emissions at
the expense of control complexity. In addition to
the control actions taken, there is an impact of the
driving condition itself on the fuel consumption and
emissions. However with the developed methodology
the emissions could be brought as close to the limit as
possible by adaptation of the engine controls.

Summary and conclusions

The discrepancy in actual and declared Diesel engine
emissions has raised a trend in applications which can
optimise the engine performance during actual driving
conditions. This paper has aimed to develop a pre-lookup
based online adaptive calibration method to minimise fuel
consumption with constrained NOy emissions. In order to
do that, three developments have been done: firstly, a vehicle
and an engine model are developed to evaluate the engine
perfomance in terms of fuel consumption and emission .
Then, a vehicle speed prediction model is proposed which is
based on the space dependent transition probability matrices
obtained from the experimental data for a given route. Lastly,
a controller is proposed which is capable of running in
realtime and adapts the engine calibration based on the
cumulative fuel consumption and real driving NO,, emission.
Following the development of necessary tools, a case study
was designed and tested on an engine testing set-up. The
main contribution of the article according to the authors are
as follows:

e The implementation of the proposed methodology
shows that the NO, emissions can be constrained
in real driving condition. The developed method is
a mid-way to optimal control methods, which are
computationally expensive for real-time application
and state-of-the-art method based on fixed calibration
which do not take into account most of the real driving
uncertainties.

e The study demonstrates a real-time capable applica-
tion of the Markov based cycle prediction tool also
shown by Lujan et al. in?®. The proposed method
takes the advantage of available information about the
velocity profile on a given route.

e The study shows that aggressiveness is a critical
parameter for evaluating real-time calibration of
a Diesel engine. As the cycle prediction tool is
efficiently able to capture the driving aggressiveness,
with the proposed tool fuel consumption can be
minimised upto 3 % while staying well within a
predefined emission limit. Otherwise, the controller
can not reduce the emissions below a certain level
and then a driver advisory can be used to advise the
driver about aggressiveness in order to fulfill emission
targets.
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