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Summary

In this work we analyze the dynamics of some fractional operators. The objective
is to establish the conditions under which these operators are chaotic. For this
purpose, we will rely on proving chaos for the Toeplitz operators associated
to these fractional operators. Likewise, we will also establish a relationship
between chaos for certain numerical methods and the chaotic dynamics of certain
operators that define these schemes. The dynamics of such operators depend
on the sampling in time and space of the numerical method.
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Resumen

En este trabajo se analiza la dinámica de algunos operadores fraccionarios. El
objetivo es establecer las condiciones sobre las que estos operadores son caóticos.
Para ello nos basaremos en probar caos para los operadores de Toeplitz asociados
a dichos operadores fraccionarios. Asimismo, en este trabajo estableceremos
una relación entre el caos para ciertos métodos numéricos y la dinámica caótica
que definen estos esquemas. La dinámica de estos últimos dependerá del paso
espacio-temporal del método numérico.
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Chapter 1

Preliminaries

In this section we recall some basic definitions and theorems that will be useful
in this work. Some classical references where these results can be found are [22],
[20], [6].

1.1 Metric, Banach, Fréchet and Hilbert spaces

The first basic definition is the notion of metric space, that will be of capital
importance in order to define the Banach and Hilbert spaces.

Definition 1.1.1 (Metric space). A real-valued function d : X ˆ X Ñ R,
defined for each pair of elements x, y P X is called a metric if it satisfies:

(i) dpx, yq ě 0, dpx, xq “ 0 and dpx, yq ą 0 if x ‰ y;

(ii) dpx, yq “ dpy, xq;

(iii) dpx, zq ď dpx, yq ` dpy, zq, the triangle inequality.

A set X provided with a metric is called a metric space and dpx, yq is called
the distance between x and y.

We will understand by a neighborhood of a point p P X a set U Ă X, which
contains an open set V containing p.

A point x in a metric space X is called isolated if there exists some neigh-
bourhood of x which does not contain any other point from X.

A metric space is said to be locally compact if each point has a compact
neighbourhood. Finally, we say that a metric space is complete if every Cauchy
sequence in X converges to an element of X.

9
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Theorem 1.1.2 (Baire category theorem). Let pX, dq be a complete metric

space and tGnun a sequence of nonempty dense open sets. Then G :“
8
č

n“1

Gn,

is a dense Gδ-set in X.

Definition 1.1.3 (Seminorm). A functional p : X Ñ R` on a vector space
X over K “ R or C is called a seminorm if it satisfies, for all x, y P X and
λ P K,

(i) ppx ` yq ď ppxq ` ppyq

(ii) ppλxq “ |λ|ppxq.

If, in addition,

(iii) ppxq “ 0 implies that x “ 0,

then p is called a norm.

Definition 1.1.4 (Fréchet space). A Fréchet space is a vector space X en-
dowed with a separating increasing sequence ppnqn of seminorms which is com-
plete when endowed with the metric given by:

dpx, yq :“
8
ÿ

n“1

1

2n
minp1, pnpx ´ yqq, x, y P X

Definition 1.1.5 (Normed space). The pair pX, || ‚ ||q is called a normed
space where X is a vector space endowed with a norm || ‚ ||.
Every normed linear space may be regarded as a metric space, being }x´ y} the
distance between x and y. A Banach space is a normed linear space which is
complete when endowed with the metric defined by its norm.

Definition 1.1.6 (Hilbert space) A Hilbert space H is a real or complex inner
product space that is also a complete metric space with respect to the distance
function induced by the inner product. We say that H is a complex inner product
space if H is a complex vector space on which there is an inner product x‚, ‚y :
H ˆ H Ñ C such that for every pair of elements x, y P H it is satisfied:

(i) xy, xy “ xx, yy.

(ii) For all a, b P C:

xax1 ` bx2, yy “ axx1, yy ` bxx2, yy.

(iii) xx, yy ě 0, and it is equal to 0 if and only if x “ 0.

The norm defined by the inner product x‚, ‚y is the real-valued function:

}x} “
a

xx, xy

and the distance between two points x,y P H is defined in terms of the norm by:

dpx, yq “ }x ´ y} “
a

xx ´ y, x ´ yy.
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Proposition 1.1.7 Let pX, }}Xq and pY, }}Y q be Banach spaces and let T :
X Ñ Y be a linear operator. The following four statements are equivalent:

(i) T is continuous at 0.

(ii) T is continuous.

(iii) T is uniformly continuous.

(iv) T is bounded, i.e., there exists a constant C ą 0 such that }Tx}Y ď C}x}X

for all x P X.

Definition 1.1.8 Let X and Y be Banach spaces. We denote by LpX,Y q the
space of continuous linear operators T : X Ñ Y under the operator norm. The
space LpX,Y q is a Banach space whenever Y is a Banach space. If K denotes
R or C, the dual X˚ “ LpX,Kq of a Banach space X is the space of all
continuous linear functionals on X. If x˚ P X˚ then we write,

x˚pxq :“ xx, x˚y, x P X.

The adjoint T˚ : X˚ Ñ X˚ of an operator T on X is defined by T˚x˚ “ x˚ ˝T ,
that is,

xx, T˚x˚y “ xTx, x˚y, x P X, x˚ P X˚.

Theorem 1.1.9 (Hahn-Banach theorem). Let X be a vector space, M a
subspace of X, p a seminorm on X and u : M Ñ K (where K is R or C) a
linear functional such that |upxq| ď ppxq for all x P M . Then u has a linear
extension û to X such that |ûpxq| ď ppxq for all x P X.

The next corollary is an immediate consequence of the Hahn-Banach theorem.

Corollary 1.1.10 If p is a seminorm on X and x0 P X then there exists a
linear functional u on X such that upx0q “ ppx0q and |upxq| ď ppxq for all
x P X.

Moreover, if X is a Frèchet space, then we have the following corollaries of
the Hahn-Banach theorem.

Corollary 1.1.11

(i) Every continuous linear functional on a subspace of X extends to a con-
tinuous linear on X. Moreover, if X is a Banach space this extension
preserves the norm.

(ii) If M is a closed subspace of X and x R M then there exists a continous
linear functional x˚ on X that vanishes on M with xx, x˚y ‰ 0.

(iii) A subspace M is dense in X if and only if every continous linear functional
that vanishes on M also vanishes on X.

(iv) For any x P X, if xx, x˚y “ 0 for all x˚ P X˚ then x “ 0.
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1.2 Classical Banach and Hilbert spaces

In this section we recall some classical Banach and Hilbert spaces.

Definition 1.2.1 Let 1 ď p ă 8. Then we define the space

ℓp :“ tx “ pxnqn P KN0 :
8
ÿ

n“0

|xn|p ă 8u

of p-summable sequences. This space when endowed with the norm }x} :“
`
ř8

n“1 |xn|p
˘1{p

is a Banach space.

One particularly important ℓp space for our work is ℓ2, which endowed with the
inner product xx, yy :“

ř8

n“1 xnyn is a Hilbert space.

Definition 1.2.2 The space

ℓ8 :“ tx “ pxnqn P KN0 : sup
nPN0

|xn| ă 8u

is a Banach space when endowed with the norm }x} :“ supnPN0
|xn|.

Definition 1.2.3 Let a ă b and 1 ď p ă 8. Then we define

Lpra, bs :“

#

f : ra, bs Ñ K : f is measurable and

ż b

a

|fptq|pdt ă 8

+

as the space of p-integrable functions which endowed with the norm }f} :“
´

şb

a
|fptq|dt

¯1{p

Lpra, bs is a Banach space.

In particular, L2ra, bs when endowed with the inner product xf, gy :“
şb

a
fptqgptqdt

is a Hilbert space. In the proposition 1.3.2 we will use the fact that the functions
t Ñ 1?

2π
eint, n P Z, form an orthonormal basis in L2r0, 2πs.

1.3 Hardy Spaces

In this section we recall the definition of the Hardy space H2. This Hilbert space
will be of capital importance in the development of the results of our work. A
classical reference about Hardy spaces is [9].

Let panqně0 be a complex sequence such that panqně0 P ℓ2pN0q, the function

fpzq “

8
ÿ

n“0

anz
n, z P C, |z| ă 1,

defines a holomorphic function on the complex open disk D. With this con-
struction in mind, we can define the Hardy space H2 as follows.
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Definition 1.3.1 The Hardy Space H2 is defined as the space of the holomor-
phic functions on the complex unit open disk, that is:

H2 “ tf : D Ñ C : fpzq “

8
ÿ

n“0

anz
n, z P D, with panqn P ℓ2pN0qu

The space H2 is a Banach space when endowed with the norm:

}f} “

˜

8
ÿ

n“0

|an|2

¸1{2

when fpzq “

8
ÿ

n“0

anz
n,

and it is a Hilbert space with the inner product:

xf, gy “

8
ÿ

n“0

anbn when fpzq “

8
ÿ

n“0

anz
na and gpzq “

8
ÿ

n“0

bnz
n.

The next proposition will present another equivalent representation of the Hardy
space H2 that will be useful in the development of our results.

Proposition 1.3.2 A holomorphic function f : D Ñ C belongs to H2 if and
only if

sup
0ďră1

1

2π

ż 2π

0

ˇ

ˇf
`

reit
˘
ˇ

ˇ

2
dt ă 8.

Proof. As fpzq is a holomorphic function we can write fpzq “
ř8

n“0 anz
n.

Then:

1

2π

ż 2π

0

ˇ

ˇf
`

reit
˘
ˇ

ˇ

2
dt “

1

2π

ż 2π

0

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“0

an
`

reit
˘n

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “

ż 2π

0

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“0

anr
n 1

?
2π

eint

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt.

Using the Parseval’s identity for the orthonormal basis p 1?
2π

eintqnPZ of L2pr0, 2πsq:

ż 2π

0

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“0

anr
n 1

?
2π

eint

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “

8
ÿ

j“´8

ˇ

ˇ

ˇ

ˇ

ˇ

ż 2π

0

1
?
2π

eijt
8
ÿ

n“0

anrn
1

?
2π

eintdt

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

p2πq2

8
ÿ

j“´8

ˇ

ˇ

ˇ

ˇ

ˇ

ż 2π

0

e´ijt

8
ÿ

n“0

anrneintdt

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

p2πq2

8
ÿ

n“0

ˇ

ˇ2πanrn
ˇ

ˇ

2
“

8
ÿ

n“0

|an|2r2n.

Finally, taking the supreme we obtain:

sup
0ďră1

8
ÿ

n“0

|an|2r2n “ lim
rÑ1´

8
ÿ

n“0

|an|2r2n “ }f}. ■
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1.4 Spectral theory

In the present work we will use some results about hypercyclic operators in
terms of its spectrum. In order to get a better understanding of these results, in
this section we will present some basic results of functional analysis regarding
the spectral theory.

Definition 1.4.1 Let X be a complex Banach space X and let T be an operator
on X. The spectrum σpT q of T is defined as

σpT q “ tλ P C ; λI ´ T is not invertibleu.

Moreover, each 0 ‰ x P X satisfying Tx “ λx is an eigenvector for T corres-
ponding to λ.
The point spectrum σppT q is the set of eigenvalues of T .
The number rpT q :“ supλPσpT q |λ| is called the spectral radius of T .
For the spectral radius we have that

rpT q “ lim
nÑ8

}Tn}1{n.

Theorem 1.4.2 (Riesz decomposition theorem) If σpT q “ σ1pT q Y σ2pT q,
where σ1 and σ2 are two disjoint non-empty closed sets, then there are non-
trivial T -invariant closed subspaces M1 and M2 of X such that X “ M1 ‘ M2,

σpT | M1q “ σ1 and σpT | M2q “ σ2.

Theorem 1.4.3 (Point spectral mapping theorem) Let f be a holomor-
phic function on an open neighborhood O of σpT q that is not constant on any
connected component of O. Then

σppT q “ fpσppT qq.



Chapter 2

Linear Dynamical Systems

In this chapter we present some definitions and results about linear dynamical
systems. The theory of dynamical systems studies the behaviour of evolving
systems and is used in a wide variety of fields ranging from biological or medical
modeling to engineering. All the results presented in this chapter can be found
in [14].

Definition 2.0.1 (Discrete dynamical system) A discrete dynamical sys-
tem is a pair pX,T q consisting of a metric space X and a continous map
T : X Ñ X.

As we are interested in the evolution of the system starting with a certain initial
vector x0, we will define the iterates Tn : X Ñ X,n ě 0 by the n-fold iteration
of T :

Tn “ T ˝ ... ˝ T n times

with T 0 “ I the identity operator on X.

Definition 2.0.2 Let T : X Ñ X be a dynamical system. For x P X we call:

orbpx, T q :“ tx, Tx, T 2x, ...u

the orbit of x under T .

An interesting notion in the dynamical systems theory is the concept of conju-
gacy.

Definition 2.0.3 Let S : Y Ñ Y and T : X Ñ X be dynamical systems.

(a) Then T is called quasiconjugate to S if there exists a continuous map ϕ :
Y Ñ X with dense range such that T ˝ Φ “ Φ ˝ S.

(b) If Φ can be chosen to be a homeomorphism then S and T are called conju-
gate.

15
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Conjugacy is an equivalence between dynamical systems, and conjugate (or
quasiconjugate) dynamical systems have the same dynamical behaviour. This
motivates the following definition.

Definition 2.0.4 We say that a property P for dynamical systems is preserved
under (quasi)conjugacy if a dynamical system S has property P then every
(quasi)conjugate dynamical system T has also property P.

Definition 2.0.5 A dynamical system T : X Ñ X is called topologically tran-
sitive if, for any pair U, V of nonempty open subsets of X, there exists some
n ě 0 such that TnpUq X V ‰ H.

Proposition 2.0.6 Topological transitivity is preserved under quasiconjugacy.

Another important property in dynamical systems is the notion of mixing op-
erators.

Definition 2.0.7 A dynamical system T : X Ñ X is called mixing if, for any
pair U, V of nonempty open subsets of X there exists some N ě 0 such that

TnpUq X V ‰ H, for all n ě N.

Proposition 2.0.8 The mixing property is preserved under quasiconjugacy.

The following classical theorem due to G.Birkhoff states the equivalence between
topological transitivity and the existence of a dense orbit.

Theorem 2.0.9 (Birkhoff transitivity theorem). Let T be a continuous
map on a separable complete metric space X without isolated points. Then the
following assertions are equivalent:

(i) T is topologically transitive;

(ii) there exists some x P X such that orbpx, T q is dense in X.

If one of these conditions holds then the set of points in X with dense orbit is
a dense Gδ-set.

There exist different notions of chaos. In this work, we will consider Devaney
chaos [8]. Before introducing the definition of a Devaney chaotic dynamical sys-
tem we will define the property of sensitive dependence on the initial conditions.

Definition 2.0.10 (Sensitive dependence on initial conditions) Let pX, dq

be a metric space without isolated points. Then a dynamical system T : X Ñ X
is said to have sensitive dependence on initial conditions if there exists some
δ ą 0 such that, for every x P X and ϵ ą 0, there exists some y P X with
dpx, yq ă ϵ such that, for some n ě 0, dpTnx, Tnyq ą δ. The number δ is called
the sensitivity constant for T .

Definition 2.0.11 (Devaney chaos-preliminary version) Let pX, dq be a
metric space without isolated points. Then a dynamical system T : X Ñ X is
said to be chaotic (in the sense of Devaney) if it satisfies the following conditions:
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(i) T has sensitive dependence on initial conditions.

(ii) T is topologically transitive.

(iii) T has a dense set of periodic points.

In 1992 Banks et al [3] demonstrated that sensitive dependence on initial condi-
tion in the Devaney’s definition of chaos is implied by the other two conditions.

Theorem 2.0.12 (Banks-Brook-Cairns-Davis-Stacey). Let X be a metric
space without isolated points. If a dynamical system T : X Ñ X is topologically
transitive and has a dense set of periodic points then T has sensitive dependence
on initial conditions with respect to any metric defining the topology of X.

The previous theorem allows to drop the condition of sensitive dependence from
the definition of Devaney chaos.

Definition 2.0.13 (Devaney chaos) A dynamical system T : X Ñ X is said
to be chaotic (in the sense of Devaney) if it satisfies the following conditions:

(i) T is topologically transitive.

(ii) T has a dense set of periodic points.

Proposition 2.0.14 Devaney chaos is preserved under quasiconjugacy.

2.1 Linear dynamics

In this work we will focus our study in linear dynamical systems, that is, dy-
namical systems that are defined by linear maps.

Definition 2.1.1 (Linear dynamical system). A linear dynamical system
is a pair pX,T q consisting of a separable Fréchet space X and a linear operator
T : X Ñ X.

In the context of the dynamics of linear operators, the property of having a
dense orbit has its own name.

Definition 2.1.2 (Hypercyclicity). A linear operator T : X Ñ X is called
hypercyclic if there is some x P X whose orbit under T is dense in X. In such
a case, x is called a hypercyclic vector for T . The set of hypercyclic vectors for
T is denoted by HCpT q.

Proposition 2.1.3 Hypercyclicity is preserved under quasiconjugacy.

In the next result, we reformulate Birkhoff’s transitivity theorem in the context
of linear dynamics.

Theorem 2.1.4 (Birkhoff transitivity theorem in linear dynamics). A
linear operator T on a separable Fréchet space X is hypercyclic if and only if it
is topologically transitive. In that case, the set HCpT q of hypercyclic vectors is
a dense Gδ-set.
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This allows us to rephrase the definition of chaos in the sense of Devaney in the
context of linear dynamics.

Definition 2.1.5 (Linear chaos) An operator T on a separable Fréchet space
X is said to be chaotic (in the sense of Devaney) if it satisfies the folloeing
conditions:

(i) T is hypercyclic.

(ii) T has a dese set of periodic points.

2.1.1 Chaos criteria

In the following lines we recall some classical criteria for Devaney chaos. If
nothing else is said we will assume T : X Ñ X to be a linear operator on a
separable Fréchet space. The following lemma will be useful in order to achieve
one of the most important chaos criteria, the Godefroy-Shapiro criterion.

Lemma 2.1.6 Let T be a linear operator on a separable Fréchet space X. Then
the set of periodic points of T is given by

PerpT q “ spantx P X : Tx “ eαπix for some α P Qu.

Proof. If Tx “ eαπix with α “ p{q, p P Z and q P N. This implies that T 2qx “

e
pπi
q 2qx “ e2pπix “ x, so x P PerpT q and spantx P X : Tx “ eαπix for some α P

Qu Ă PerpT q.
Now for the other inclusion let us suppose that x P PerpT q such that Tnx “ x.
We can decompose the polynomial zn ´ 1 into a product of monomials;

zn ´ 1 “ pz ´ λ1qpz ´ λ2q...pz ´ λnq

where λi, i “ 1, 2, ..., n are the roots of unity and therefore for i “ 1, 2, ..., n,
λi “ eαiπi for some αi P Q. Since all the roots are different, we can define a
basis of the space of polynomials of degree strictly less than n as tp1, p2, ..., pnu.
Where pipzq :“

ś

j‰ipz ´ λjq, 1 ď i ď n. In particular, there are βi P C,
i “ 1, 2, ..., n, such that:

1 “

n
ÿ

i“1

βipipzq.

Since T is a linear operator when we replace z by T we get:

I “

n
ÿ

i“1

βipipT q.

Therefore we have that x “
řn

i“1 βiyi, where yi “ pipT qx for i “ 1, 2, ..., n.
Now since pz ´ λiqpipzq “ zn ´ 1, we have that pT ´ λiqyi “ pTn ´ Iqx “ 0. So
Tyi “ λiyi “ eαiπiyi and therefore x P spantx P X : Tx “ eαπix for some α P

Qu. ■
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Theorem 2.1.7 (Godefroy-Shapiro Criterion). Let T be an operator. If
the subspaces

X0 :“ spantx P X : Tx “ λx with λ P Du

Y0 :“ spantx P X : Tx “ λx with λ P CzDu

Z0 :“ spantx P X : Tx “ eαπix with α P Qu

are dense in X then T is chaotic.

Proof In this proof we first show that if the subspaces X0 and Y0 are dense in
X then the operator T is hypercyclic. For that purpose let U, V be a pair of
nonempty open sets of X. Assuming X0 and Y0 being dense in X then there
exist x0 P X0 and y0 P Y0 such that x0 P X0

Ş

U and y0 P Y0

Ş

V . Thereby
these vectors can be expressed as:

x0 “

m
ÿ

k“1

akxk

y0 “

J
ÿ

k“1

bkyk

where Txk “ λkxk with |λk| ă 1 for k “ 1, ...,m and Tyk “ µkyk with |µk| ą 1
for k “ 1, ..., J . Now let us define the sequence tunun as:

un :“
J
ÿ

k“1

bk
1

µn
k

yk.

It is clear that tunun Ă Y0 and also that Tnun “ y0. Furthermore, we observe
that since |µk| ą 1, the sequence tunun converges to 0 in the norm of X. So
as U is a nonempty open set of X and x0 P U , there exists n1 P N such that
x0 ` un P U for all n ě n1. It is also easy to observe that:

Tnx0 “

m
ÿ

k“1

akλ
n
kxk.

Due to the fact that |λk| ă 1 for k “ 1, ...,m, then the sequence tTnx0unPN

converges also to 0. Now since V is a nonempty open set of X and y0 P V
there exists some n2 P N such that Tnx ` y0 P V for all n ě n2. So taking
N “ maxtn1, n2u we have that for all n ě N :

x0 ` un P U and Tnpx ` unq “ Tnx ` y P V.

This shows that T is mixing and therefore hypercyclic. Now by lemma 2.1.6,
the set Z0 is the set of periodic points of T , so if X0 and Y0 are dense and
furthermore Z0 is dense, T is chaotic. ■
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The following theorem provides another criterion for chaos that will be based
on the Godefroy-Shapiro criterion. Nevertheless, two definitions are required.
The first one refers to a function that links the eigenvalues of an operator T
with its eigenvectors.

Definition 2.1.8 (Eigenvector field). Given a lineal operator T : X Ñ X
on a complex Banach space X, a function E : A Ñ X, A Ă C is an eigenvector
field of T if Epλq P kerpλI ´ T q for any λ P A and

spantEpλq : λ P Au

is dense in X.

The second one is the definition of a weakly holomorphic map.

Definition 2.1.9 (Weakly holomorphic map). Given a non-empty open set
U Ă C, the map G : U Ñ X is said to be weakly holomorphic on U if for any
y P X˚, the composition y ˝ G : U Ñ C is holomorphic.

Theorem 2.1.10 (Eigenvalue criterion). Given an operator T : X Ñ X on
a complex Banach space X, if U Ă C is a connected nonempty open set such
that U

Ş

T ‰ H and G : U Ñ X is a weakly holomorphic eigenvector field, then
T is chaotic.

Proof. By the Godefroy-Shapiro criterion 2.1.7 we need to show that:

X1 :“ spantx P X : Tx “ λx with λ P Du

X2 :“ spantx P X : Tx “ λx with λ P CzDu

X3 :“ spantx P X : Tx “ eαπix with α P Qu

are dense in X. In order to do this, since U is a nonempty open connected
subspace of C and U XT ‰ 0, let us define the sets:

U1 “ tU XDu ,

U2 “
␣

U X CzD
(

,

U3 “ U X
␣

eαπi, α P Q
(

.

By the corollary of the Hahn-Banach theorem 1.1.11, a subspace M of a
Banach space X is dense in X if and only if any continuous linear functional
x˚ that vanishes on M also vanishes on X. In the context of our problem, the
subspaces X1, X2 or X3 are dense in X if and only if given j P t1, 2, 3u and
for any y P X˚, the equality xx, yy “ 0 for every x P Xj implies xx, yy “ 0 for
all x P X. Now, if y P X˚ is a functional that vanishes on X1, X2 or X3 the
holomorphic map y˝G vanishes on U1, U2 or U3 that are sets with accumulation
points in U . This implies that the composition vanishes on all the domain U so
y ˝ G “ 0. Furthermore, as G is an eigenvector field,

spantGpλq : λ P Uu
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is dense in X. So y is a functional that annihilates in a dense subspace of X
and therefore y “ 0 and finally X1, X2 or X3 are dense in X. ■

The following theorem is a criterion of chaos for operators in the complex se-
quence space ℓp.

Theorem 2.1.11 Let X be one of the complex sequences spaces ℓp, 1 ď p ă 8,
or c0. Moreover, let φ be a nonconstant holomorphic function on a neighborhood
A Ă D, then the following equivalence holds:

(i) φpBq is chaotic.

(ii) φpDq
Ş

T ‰ H.

(iii) φpBq has a nontrivial periodic point.

Proof. (ii) ùñ (i). Let us observe that the eigenvectors of B are the
nonzero multiplies of the sequences of the form

eλ “ pλ, λ2, λ3, ...q

with |λ| ă 1 being the condition that ensures that eλ P X.
Furthermore, for any Λ Ă D that has an accumulation point on the unit disc,
the set

spanteλ : λ P Λu

is dense in X. To prove this claim, it is useful to use the corollary of the Hahn-
Banach theorem 1.1.11. In the context of our claim, spanteλ : λ P Λu is dense in
X if and only if any continuous linear functional that vanishes on each eλ, λ P Λ
also vanishes on X. Now given a linear functional x˚ P X˚ that vanishes on each
eλ, λ P Λ, via the canonical representation, there exists a sequence pynqn P ℓq

with 1
q ` 1

p “ 1 such that:

x˚peλq “ xeλ, x
˚y “

8
ÿ

n“1

ynλ
n, for all λ P D.

Nevertheless, since pynqn P ℓq then it is clear that the sequence is bounded so
x˚peλq defines a holomorphic function on the unit disk which vanishes on a
subset with an accumulation point. Via the identity theorem for holomorphic
functions the holomorphic function x˚peλq vanishes also on the unit disk D,
which implies that each yn is zero and therefore x˚ “ 0. So every functional x˚

that vanishes on each eλ, λ P Λ also vanishes in X and therefore spanteλ, λ P Λu

is dense in X.
Now, for any λ P D we have that

φpBqeλ “

8
ÿ

n“0

anB
neλ “

8
ÿ

n“0

anλ
neλ “ φpλqeλ
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so each eλ is also an eigenvector of φpBq associated with the eigenvalue φpλq.
By the Godefroy-Shapiro criterion if the subspaces:

X0 “ spantx P X : φpBqx “ λx with |λ| ă 1u

Y0 “ spantx P X : φpBqx “ λx with |λ| ą 1u

Z0 “ spantx P X : φpBqx “ eαπix for some α P Qu

are dense in X then φpBq is chaotic. Nevertheless, to show the implication
(ii) ùñ (i) we will show that the subspaces:

X 1
0 “ spanteλ : φpBqeλ “ φpλqeλ with |φpλq| ă 1u Ă X0

Y 1
0 “ spanteλ : φpBqeλ “ φpλqeλ with |φpλq| ą 1u Ă Y0

Z 1
0 “ spanteλ : φpBqeλ “ φpλqeλ with φpλq being a root of unity u Ă Z0

are dense in X and therefore φpBq is chaotic. Now since nonconstant holo-
morphic functions are open mappings, the condition (ii) shows that tλ P D :
|φpλq| ă 1u and tλ P D : |φpλq| ą 1u are nonempty and open and therefore
contain an accumulation point in D. So both are subsets of D containing an
accumulation point in D and by the claim they are dense in X. Now to show
that Z 1

0 is dense in X let us observe that condition (ii) ensures that there exists
a sequence pλnqn Ă Y Ă D being Y a relatively compact subset of D such that
φpλnq is a root of unity for all n P N. As every sequence on a relatively compact
in a metric space converges in the space, then it is clear that the set tλn, n P Nu

has an accumulation point in N and therefore Z 1
0 is dense in X.

(i) ùñ (iii) is trivial by definition of Devaney chaos.

(iii) ùñ (ii). By condition (iii) there is some point x ‰ 0 from X and some
N ě 1 such that φN pBqx “ φpBqNx “ x. This implies that 1 P σP pφN pBqq,
the point spectrum of φpBqN . Since φN is a nonconstant holomorphic function,
by the point spectrum theorem 1.4.3 it follows that σP pφN pBqq “ φN pσP pBqq.
So 1 “ φN pλq for some λ P σP pBq. Recall that σP pBq “ D and let us assume
by reductio ad absurdum that φpDq Ă D. Then it is clear that φN pDq Ă pDq,
leading us to a contradiction with the fact that φN pλq “ 1. So φpDq Ć D and
by the open mapping theorem for nonconstant holomorphic functions it follows
that φpDq

Ş

T. ■

As a consequence of this last theorem, the next criterion for chaos will be useful
in the analysis of many non-local difference operators.

Theorem 2.1.12 Let b P ℓ1pN0q and Tb : ℓ
2pN0q Ñ ℓ2pN0q be given by

Tbupnq “

8
ÿ

j“0

bpjqBupnq, n P N0,
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where B denotes the backward shift operator. Let also φb : C Ñ C be given by

φbpzq :“
8
ÿ

j“0

bpjqzj .

Then the following assertions are equivalent.

(i) Tb is chaotic.

(ii) φbpDq
Ş

T ‰ H.

Proof. Let us observe that φbpBq “ Tb. Since b P ℓ1pN0q it is clear that φb is
holomorphic on a neighborhood of D and therefore the assertions are equivalent
as a direct consequence of theorem 2.1.11. ■





Chapter 3

Toeplitz operators

3.1 Toeplitz operators

Toeplitz operators were introduced by Otto Toeplitz and they are one of the
most studied operators in the Hardy space H2. On this space, via the identifi-
cation of H2 with ℓ2, the Toeplitz operators can be represented as matrices that
have constant diagonals, the so called Toeplitz matrices. A classical reference
where all the following results can be found is [5].

Definition 3.1.1 The Toeplitz operator with symbol ϕ P L8pTq is defined as the
operator in H2, Tϕ : H2 Ñ H2, such that Tϕpfq “ P pMϕpfqq, f P H2, where
Mϕ is the multiplication operator by ϕ (Mϕpfq “ ϕ ¨ f) and P : L2pTq Ñ H2 is
the Riesz projection.

If we write

Φpzq “
ÿ

nPZ

anz
n P L8pTq,

given fpzq “
ř8

n“0 bnz
n P H2pDq, we can write pTΦfqpzq “

ř8

n“0 cnz
n, where

the sequence pcnqn is obtained as the convolution of a “ panqn with pbnqn as
follows:

cn “ pa ˚ bqn “

n
ÿ

j“´8

ajbn´j , n P N0.

Considering the equivalency between H2pDq and ℓ2, the Toeplitz operator can
be represented in matrix form as an infinite matrix with constant diagonals:

pcnqn “

»

—

—

—

—

—

–

a0 a´1 a´2 a´3 . . .
a1 a0 a´1 a´2 . . .
a2 a1 a0 a´1 . . .
a3 a2 a1 a0 . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

—

–

b0
b1
b2
b3
...

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.1)

25
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In case that Φpzq “
ř

nPZ anz
n is such that panqn P ℓ1pZq, then by the Young’s

convolution inequality:

}a ˚ b}2 ď }a}1 ¨ }b}2 ă 8

and it follows that TΦ is a well-defined bounded operator on ℓ2pN0q.
As we are interested in the dynamical behaviour of these operators, the study
of the chaos for Toeplitz operators will be always referred to the study of the
conditions on the symbol of the Toeplitz operator that leads to a chaotic be-
haviour. The next proposition will show a family of Toeplitz operators that are
not chaotic. In order to prove this result, we will first need to introduce the
following lemma.

Lemma 3.1.2 Let T be a hypercyclic operator on a Banach complex vector
space X, then its adjoint operator T˚ has no eigenvalues. Equivalently, if the
adjoint T˚ of an operator has eigenvalues then the operator T cannot be hyper-
cyclic.

Proof Let x P X be a hypercyclic vector for T . By reductio ad absurdum let
suppose that T˚ has an eigenvalue λ P C associated to the eigenvector x˚ P X˚

T˚x˚ “ λx˚

with x˚ ‰ 0. Then by definition of adjoint operator it is verified that

xx, T˚x˚y “ xTx, x˚y

and therefore for any n ě 0:

xTnx, x˚y “ xx, pT˚qnx˚y “ λnxx, x˚y.

Now since x is an hypercyclic vector of T , by definition we get that the set
tTnxunPN is dense in X. Moreover since x˚ ‰ 0 is a continuous functional it is
clear that

txTnx, x˚yunPN

is dense in C. Nevertheless the set

tλnxx, x˚yunPN

is not dense in C, leading us to a contradiction. So if T is an hypercyclic
operator on X its adjoint operator has no eigenvalues. ■

Proposition 3.1.3 If the symbol of the Toeplitz operator is analytic and bounded
on D then the Toeplitz operator is not hypercyclic and therefore is not chaotic.

Proof Let the symbol of the Toeplitz operator Tϕ be:

ϕpzq “

8
ÿ

n“0

anz
n
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with supně0 |an| ă 8. Since the Hardy space H2 is a Hilbert space then there
exists some x˚ P X˚ such that x˚ ãÑ 1 ` 0z ` 0z2 ` ... “ 1 P H2. Now given
f P H2 such that f “

ř

ně0 bnz
n, it follows that

xf, T˚
ϕ x

˚y “ xTϕf, x
˚y “ xTϕf, 1y “ a0b0 “ xf, a0y “ xf, a0 ¨ 1y “ xf, a0 ¨ x˚y

so T˚
ϕ x

˚ “ a0x
˚ and therefore a0 is an eigenvalue of T˚

ϕ associated to the
eigenvector x˚ ãÑ 1 and by lemma 3.1.2, Tϕ cannot be hypercyclic. ■

3.1.1 Tridiagonal Toeplitz Operators

In this section we will characterize chaos and hypercyclicity for a particular
Toeplitz operator, the tridiagonal one. Tridiagonal Toeplitz operators are stud-
ied as generators of chaotic semigrups associated to birth and death processes
in [2] and [1].

Definition 3.1.4 The tridiagonal Toeplitz operator is defined as the Toeplitz
operator Tϕ : H2pDq Ñ H2pDq with symbol ϕpzq “ a1z ` a0 `

a´1

z , where
a1, a0, a´1 P C.

Note that if a1 is zero, the Toeplitz operator Tϕ is an anti-analytic operator and
if a´1 is zero the tridiagonal Toeplitz operator is an analytic operator and we
have proven that these operators are not chaotic. In this section we characterize
chaos for tridiagonal Toeplitz operators when a1 and a´1 are not zero. For this
purpose it will be useful the eigenvalue criterion 2.1.10. To do this we will have
to solve the equation Tϕz “ λz in order to find the eigenvalues of the operator.
Now let us note that for fpzq “

ř8

n“0 anz
n P H2pDq:

Tzfpzq “ zfpzq.

On the other hand,

T 1
z
fpzq “ P

ˆ

1

z
fpzq

˙

“ P

˜

1

z

8
ÿ

n“0

anz
n

¸

“

8
ÿ

n“1

anz
n “

1

z
pfpzq ´ fp0qq.

Note also that Tϕ “ a´1T 1
z

` a0I ` a1Tz, so Tϕf “ λf is equivalent to

a´1
fpzq ´ fp0q

z
` a0fpzq ` a1zfpzq “ λfpzq.

Therefore:

fpzq “
a´1fp0q

a1z2 ` pa0 ´ λqz ` a´1
.

Now let us assume that fp0q “ 0, this implies that fpzqpa1z
2`pa0´λqz`a´1q “

0 and knowing that fpzq is an analytic function this will lead us to fpzq “ 0
for all z P D. Nevertheless, by definition of eigenvector the function fpzq must
be non-zero and therefore for being an eigenvector fp0q ‰ 0. Assuming this



Toeplitz Operators 28

last condition we can also consider without loss of generality that fp0q “ 1,
otherwise if an eigenvector f such that fp0q “ a with 0 ‰ a ‰ 1 is associated to
an eigenvalue λ every proportional vector is also an eigenvector associated to λ
and in particular the proportional vector f1pzq “ 1

afpzq is an eigenvector such
that f1p0q “ 1.
Another condition for fpzq in order to be an eigenvector is that fpzq must belong
to H2pDq, so necessarily the polynomial qλpzq “ a1z

2 ` pa0 ´ λqz ` a´1 must
have its roots in CzD. Otherwise the eigenvector function fpzq would have a
singularity in D and would not be analytic. This condition is equivalent to the
roots of the polynomial:

pλpzq :“ z2qλp1{zq “ a´1z
2 ` pa0 ´ λqz ` a1

being in D. And to do so we will consider the following criterion.

Lemma 3.1.5 (Jury test) Consider the family of the equations for z P C:

z2 ` wz ` r “ 0,

where w P C and r P p´1, 1q Ă R. For a fixed r let us denote:

Wr “
␣

w P C : |z| ă 1, whenever z2 ` wz ` r “ 0
(

then

Wr “ Er :“

#

w P C :

ˆ

Repwq

1 ` r

˙2

`

ˆ

Impwq

1 ´ r

˙2

ă 1

+

.

Proof. Let us consider z1 and z2 the roots of the equation for a fixed r, so
z2 ` wz ` r “ pz ´ z1qpz ´ z2q.
The proof is subdivided in three cases.

• The first one is when r “ 0. This implies that the equation is z2 `wz “ 0,

so the roots will be z1 “ 0, z2 “ ´w. Therefore
´

Repwq

1`r

¯2

`

´

Impwq

1´r

¯2

“

Repwq2 ` Impwq2 “ |z2|2. So it is clear that:

|z2| ă 1 ðñ |z2|2 ă 1 ðñ Repwq2 ` Impwq2 ă 1

and this implies E0 “ W0.

• The second case corresponds to r P p0, 1q. We can assume without loss
of generality that z1 ă z2. An easy computation shows that when r ‰ 0
we have that r “ z1 ¨ z2 and z1 ` z2 “ ´w. Therefore there exist r1, r2
and θ such that z1 “ r1 ¨ eiθ and z2 “ r2 ¨ e´iθ. We can assume r1 and r2
to be positive (otherwise another θ can be chosen in order to verify this
condition). Now we can observe that |z1| ă 1 and |z2| ă 1 if and only if
r1 P pr, 1q and r2 P pr, 1q. Now since:

´w “ z1 ` z2 “ pr1 ` r2q cospθq ` ipr1 ´ r2q sinpθq
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and

1 ` r “ 1 ` r1r2 “ r1 ` rp1 ´ r1q ` r1r2s ą r1 ` rp1 ´ rq ` r1r2s “

“ r1 ` rp1 ´ rq ` rs “ 1 ` r1 ą r1 ` r2

we obtain that if |z1| ă 1 and |z2| ă 1 (so w P Er) then:

ˆ

Repwq

1 ` r

˙2

`

ˆ

Impwq

1 ´ r

˙2

“

ˆ

r1 ` r2
1 ` r

˙2

cos2pθq `

ˆ

r1 ´ r2
1 ´ r

˙2

sin2pθq ă

ă

ˆ

1 ` r

1 ` r

˙2

cos2pθq `

ˆ

1 ´ r

1 ´ r

˙2

sin2pθq “ cos2pθq ` sin2pθq “ 1

and therefore w P Wr.
Conversely, if w P Wr then

ˆ

Repwq

1 ` r

˙2

`

ˆ

Impwq

1 ´ r

˙2

“

ˆ

r1 ` r2
1 ` r

˙2

cos2pθq `

ˆ

r1 ´ r2
1 ´ r

˙2

sin2pθq ă 1.

Now let us assume without loss of generality r1 ď r2. By reductio ad
absurdum, if r2 ě 1 then r1 ď r ă 1 and this implies

r2 ´ r1 ě 1 ´ r1 ě 1 ´ r,

or reformulating
1 ´ r1 ď r2 ´ r.

Also it is verified that

1 ` r “ r1 ` rp1 ´ r1q ` rs ď r1 ` r2 ´ r ` r “ r1 ` r2,

so with the above inequalities it is clear that:

ˆ

r1 ` r2
1 ` r

˙2

cos2pθq `

ˆ

r1 ´ r2
1 ´ r

˙2

sin2pθq

“

ˆ

r1 ` r2
1 ` r

˙2

cos2pθq `

ˆ

´pr2 ´ r1q

1 ´ r

˙2

sin2pθq

ě

ˆ

1 ` r

1 ` r

˙2

cos2pθq `

ˆ

1 ´ r

1 ´ r

˙2

sin2pθq “ 1,

which leads to a contradiction, so r2 ă 1 and w P Er. We have demon-
strated that in this case Er “ Wr.

• The last case would be when r P p´1, 0q. However, this case can be
reduced to the previous one just taking into account the observation that
iWr “ W´r and iEr “ E´r. ■

Nevertheless, as a1, a´1 P C, then the Jury test must be generalized.
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Lemma 3.1.6 (Generalized Jury test). The roots of the equation z2 `wz`

reiθ, with w P C, θ P r0, 2πq and r ě 0 belong to D if and only if r ă 1 and

˜

Repwe´i θ
2 q

1 ` r

¸2

`

˜

Impwe´i θ
2 q

1 ´ r

¸2

ă 1.

Proof Let us consider the polynomial ppzq “ z2 ` pwe´i θ
2 qz ` r. Let us call

qpzq “ z2 ` wz ` reiθ, and note that qpzei
θ
2 q “ ppzqeiθ, so ppzq “ 0 if and only

if qpzei
θ
2 q “ 0. Applying the Jury test to ppzq and taking into account that

qpzei
θ
2 q “ ppzq “ 0 with |z| ă 1 if and only if r ă 1 and

˜

Repwe´i θ
2 q

1 ` r

¸2

`

˜

Impwe´i θ
2 q

1 ´ r

¸2

ă 1,

the lemma holds. ■

Now we can apply the generalized Jury test to the polynomial:

1

a´1
pλpzq “ z2 `

pa0 ´ λq

a´1
z `

a1
a´1

.

Note that for 1
a´1

pλpzq having roots in D it is necessary (by the generalized

Jury test) that | a1

a´1
| ă 1. Therefore a necessary condition for the tridiagonal

Toeplitz operator in order to be chaotic is that |a´1| ą |a1| ą 0.
Let us consider the following ellipse

E :“

"

z P C :
Repzq2

p|a´1| ` |a1|q2
`

Impzq2

p|a´1| ´ |a1|q2
“ 1

*

and its interior

E0 :“

"

z P C :
Repzq2

p|a´1| ` |a1|q2
`

Impzq2

p|a´1| ´ |a1|q2
ă 1

*

.

Also let us consider the interior of the outer parallel at distance one of this
ellipse:

A0 :“ tz P C : dpz, E0q ă 1u .

In the case that |a´1| ` |a1| ă 1 the ellipse would have its major axis less than
one. Consequently, in this case we would also consider F the inner parallel
curve at distance one of E. This set F is defined through a bijection. So each
point x of E corresponds to a point y of F , where y corresponds to the point
that is at a unit distance from x in the direction of the interior normal vector to
the ellipse at x. In figure 3.1.1 we can see an example of an ellipse with major
axis less than 1 and its inner parallel F at distance 1. As we observe in figure
3.1.1 there is only a connected component of the interior of F that contains 0,
whose closure will be denoted as A1

0 and it is represented in the figure as the
blue region.
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Figure 3.1: Example of an ellipse with its major axis less than 1, inner parallel
curve and A1

0 set.

Lemma 3.1.7 Let a1, a´1 P C with a1 “ |a1|eiθ1 , a´1 “ |a´1|eiθ´1 , and

θ1, θ´1 P r0, 2πq, θ “
θ1`θ´1

2 . Then there exists λ with |λ| “ 1 such that
pλpzq “ a´1z

2 ` pa0 ´ λqz ` a1 has its roots in D if and only if a0 satisfies one
of the following cases:

1. If |a´1| ` |a1| ą 1 then a0e
´iθ P A0.

2. If |a´1| ` |a1| “ 1 then a0e
´iθ P A0zt0u.

3. If |a´1| ` |a1| ă 1 then a0e
´iθ P A0zA1

0.

Proof. By applying the Jury test to the polynomial

1

a´1
pλpzq “ z2 `

pa0 ´ λq

a´1
z `

a1
a´1

we know that its roots are in D if and only if the next inequality holds:

Re
´

a0´λ
a´1

e´i
θ1´θ´1

2

¯2

´

1 `
|a1|

|a´1|

¯2 `

Im
´

a0´λ
a´1

e´i
θ1´θ´1

2

¯2

´

1 ´
|a1|

|a´1|

¯2 ă 1.
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Now by multiplying |a1|2 in the numerator and denominator and simplifying we
obtain:

Re
`

a0e
´iθ ´ λe´iθ

˘2

p|a1| ` |a´1|q2
`

Im
`

a0e
´iθ ´ λe´iθ

˘2

p|a1| ´ |a´1|q2
ă 1.

Now let us call b0 “ e´iθ so the inequality will be

Re
`

b0 ´ λe´iθ
˘2

p|a1| ` |a´1|q2
`

Im
`

b0 ´ λe´iθ
˘2

p|a1| ´ |a´1|q2
ă 1.

Furthermore, let us call λ1 “ λe´iθ, so the previous inequality is satisfied for
λ P T if and only if λ1 P T, and then we obtain the following inequality:

Re pb0 ´ λ1q
2

p|a1| ` |a´1|q2
`

Im pb0 ´ λ1q
2

p|a1| ´ |a´1|q2
ă 1.

Note that this last inequation is verified if and only if pb0´λ1q P E0. This, in turn
is equivalent to having z1, z2 P E0 such that |b0 ´ z1| ă 1 and |b0 ´ z2| ą 1. To
check this equivalence let assume that there exists λ1 P T such that pb0´λ1q P E0.
Now since E0 is open, there exist z1

1 and z1
2 such that pb0 ´ z1

1q, pb0 ´ z1
2q P E0,

|z1
1| ă 1 and z1

2 ą 1. Now, if we call z1 “ pb0 ´ z1
1q and z2 “ pb0 ´ z1

2q

one implication is proven. On the other hand, let us assume that there exist
z1, z2 P E0 such that |b0 ´ z1| ă 1 and |b0 ´ z2| ą 1 and consider the function
f : E0 Ñ R defined by:

fpzq “ |b0 ´ z|.

Since E0 is a connected set, the image of the function fpE0q is an interval in
R that has points greater and smaller than one, so necessarily contains one. So
there exists some z P E0 such that |b0 ´ z| “ 1 and taking z “ b0 ´ λ1 the other
implication holds.
Therefore, there exists λ P T such that pλpzq has its roots in D if and only if
there exist some z1, z2 P E0 satisfying |b0 ´ z1| ă 1 and |b0 ´ z2| ą 1. The
equivalence with the cases of a0 will be shown:

1. If |a1| ` |a´1| ą 1 then b0 P A0.
In this case the major axis of the ellipse E is greater than one so by the
definition of A0 (interior of the outer parallel at distance one to E) it is
clear that there exist z1, z2 P E0 such that |b0 ´ z1| ă 1 and |b0 ´ z2| ą 1.
In figure 3.2 we see in blue an ellipse with major axis greater than one
and in green the outer parallel curve.

2. If |a1| ` |a´1| “ 1 then b0 P A0zt0u.
In this case the major axis of the ellipse E0 is equal to one so by the
same reason as in the previous case there exist some z1, z2 P E0 such that
|b0 ´ z1| ă 1 and |b0 ´ z2| ą 1. In figure 3.3 we see one example of an
ellipse (in blue) with major axis equal to 1 and its outer parallel curve.
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Figure 3.2: Example of case 1.

Figure 3.3: Example of case 2

3. If |a1| ` |a´1| ă 1 then b0 P A0zA1
0.

Since b0 P A0 and A0 is the outer parallel of the ellipse at distance one,
then we can find z1 P E0 such that |b0 ´ z1| ă 1. Furthermore as b0 R A1

0,
we can find some z2 P E0 such that |b0 ´ z2| ą 1. In figure 3.4 we can see
an example of an ellipse (in blue) with major axis strictly less than one
and its outer (red) and inner (green) parallels. ■

So far, it has been characterised the existence of λ P T such that the λ-
eigenvector of Tϕ belongs to H2pDq. Nevertheless, we will see in proposition
3.1.9 that this is equivalent to the existence of an open subset B Ă C with non
empty intersection with T such that fλ P H2pDq for any λ P B, where fλ are
the eigenvectors of the tridiagonal Toeplitz operator Tϕ. The next lemma will
be useful for the achievement of this result.

Lemma 3.1.8 Let pb : C Ñ C be the polynomial given by

pbpzq “ az2 ` bz ` c
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Figure 3.4: Example of case 3

with roots z1 and z2. Then for each ϵ ą 0 there exists δ ą 0 such that every
polynomial of the form pbδ “ az2 ` bδz ` c with |b´ bδ| ă δ have their roots z1δ
and z2δ such that |z1 ´ z1δ | ă ϵ and |z2 ´ z2δ | ă ϵ.

Proof. It is well known that:

z1 “
´b `

?
b2 ´ 4ac

2a

z2 “
´b ´

?
b2 ´ 4ac

2a

and also:

z1δ “
´bδ `

a

b2δ ´ 4ac

2a

z2δ “
´bδ ´

a

b2δ ´ 4ac

2a
.

We define the complex functions fi : C Ñ C, i “ 1, 2 as follows:

f1pzq “
´z `

?
z2 ´ 4ac

2a

f2pzq “
´z ´

?
z2 ´ 4ac

2a
.

With these definitions it is verified f1pbq “ z1 and f2pbq “ z2. Furthermore, since
both f1 and f2 are continuous, given the open balls Bpf1pbq, ϵq “ Bpz1, ϵq and
Bpf2pbq, ϵq “ Bpz2, ϵq there exist δ1 and δ2 such that f1pBpb, δ1qq Ă Bpz1, ϵq and
f2pBpb, δ2qq Ă Bpz2, ϵq. Taking now δ “ mintδ1, δ2u the lemma holds. ■
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Proposition 3.1.9 Let tpλuλPC be the set of complex coefficient polynomials
given by pλpzq “ a´1z

2 ` pa0 ´ λqz ` a1. If there exists λ0 P T such that
the roots of pλ0

belong to D, then there exists an open set B Ă C such that
B XT ‰ H and for every λ P B the roots of pλ belong to D.

Proof. Let denote z1 and z2 the roots of the polynomial pλ0 , and let ϵ be such
that Bpzi, ϵq Ă D i “ 1, 2. By the previous lemma 3.1.8 there exists δ such that
|λ´λ0| ă δ and the roots of pλ belong to Bpzi, ϵq for i “ 1, 2. So it is clear that
there exists an open set B “ Bpλ0, δq such that for every λ P B, the roots of pλ
belong to D as we wanted to prove. ■
With this last proposition we have demonstrated that the conditions in lemma
3.1.7 are equivalent to the existence of an open set B Ă C of eigenvalues with
non empty intersection with T. The next theorem shows that the eigenvec-
tors associated to the set B will define an eigenvector field that satisfies the
conditions of the eigenvector field criterion 2.1.10.

Theorem 3.1.10 Let B Ă C be an open subset with non empty intersection
with T and suppose that fλ P H2pDq for any λ P B, where

fλpzq :“
a´1

a1z2 ` pa0 ´ λqz ` a´1
.

Then the map G : B Ñ H2pDq, Gpλq :“ fλ, is weakly holomorphic and

spantGpλq : λ P Bu is dense in H2pDq.

Proof. Let g be a function in H2pDq. Applying the Hahn-Banach theorem
1.1.9 in the form of the corollary 1.1.11, the subspace spantGpλq : λ P Bu is
dense in H2pDq if and only if xfλ, gy “ 0 for all λ in B implies g “ 0 (recall that
H2pDq is a Hilbert space and therefore g P pH2pDqq˚).
Let us consider H : B Ñ C defined by Hpλq :“ xfλ, gy. This defines an
holomorphic function on B given by

Hpλq “
1

2π

ż 2π

0

a´1

qλpeiθq
gpeiθqdθ, where qλpzq “ a1z

2 ` pa0 ´ λqz ` a´1.

Now suppose that Hpλq “ 0 for all λ P B. This implies that all the derivatives
will also vanish for all λ P B and in particular at a certain eiα P T

Ş

B, so we
get:

dpHpλqq

dλ
peiαq “

1

2π

ż 2π

0

eiθ

qeiαpeiθq
hpθqdθ “ 0, where hpθq :“

a´1

qeiαpeiθq
gpeiθq,

and also:

dnpHpλqq

dλn
peiαq “

1

2π

ż 2π

0

pΦpθqq
n
hpθqdθ “ 0, where Φpθq :“

eiθ

qeiαpeiθq
. (3.2)

Now let us define Ψpzq :“ z
qeiα pzq

. Since qeiαpzq is a polynomial with its roots in

CzD, then Ψpzq is an analytic function in an open disc U Ą D. We state that
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Ψpzq is univalent in a neighborhood of D. To prove this, let us take z1, z2 ‰ 0
such that Ψpz1q “ Ψpz2q. Then we have:

z1
qeiαpz1q

“
z2

qeiαpz2q

if and only if it is verified

z1 ¨ qeiαpz2q “ z2 ¨ qeiαpz1q,

and consequently

a1z1z
2
2 ` pa0 ´ eiαqz1z2 ` a´1z1 “ a1z2z

2
1 ` pa0 ´ eiαqz1z2 ` a´1z2.

Developing this last identity we get

a1z1z
2
2 ` a´1z1 “ a1z2z

2
1 ` a´1z2

and simplifying
a1
a´1

pz2 ´ z1q “
1

z1
´

1

z2
“

z2 ´ z1
z1z2

,

so finally
a1
a´1

“
1

z2z1
.

Recall that |a´1| ą |a1|, and then we have:

1 ą
|a1|

|a´1|
“

1

|z1z2|
.

It is clear that we can find a neighborhood A of D in which for every pair
z1, z2 P A, it is verified that 1

|z1z2|
ě 1 and therefore Ψpzq must be univalent in

A.
Since Ψpzq is univalent in A there exists Ψ´1 : W Ñ A, where W :“ ΨpAq is
a simply connected open set. Let us set HpMq :“ tf : M Ñ C; f is analyticu

for an open set M Ă C. The map CΨ : HpW q Ñ HpAq defined by f Ñ f ˝ Ψ
is an isomorphism since Ψ is univalent in A. It is known that the polyno-
mials t1, z, z2, ...u are dense in HpW q and therefore CΨ

`

spant1, z, z2, ..., u
˘

“

spant1,Ψpzq,Ψ2pzq, ..., u is dense in HpAq. Since H2pDq Ă HpAq, then Y :“
spant1,Ψpzq,Ψ2pzq, ..., u is dense in H2pDq. Finally, since the identity (3.2)
holds then hpzq K Y and by the Hahn-Banach theorem hpzq “ hpzq “ 0, leading
to state that gpzq “ 0, as we wanted to demonstrate. ■

All the previous results can be summarized in the following theorem.

Theorem 3.1.11 Let T : H2pDq Ñ H2pDq be a Toeplitz operator with symbol
the function Φpzq “

a´1

z ` a0 ` a1z, where a´1 “ |a´1|eiθ´1 , a1 “ |a1|eiθ1 , with

θ1, θ´1 P r0, 2πq, and a0 P C. Set θ “
θ1`θ´1

2 , and let A0, A
1
0 be the sets defined

in lemma 3.1.7. Then the following assertions are equivalent:
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(i) 0 ă |a1| ă |a´1| and a0 satisfies one of the following conditions:

(a) If |a´1| ` |a1| ą 1 then a0e
iθ P A0.

(b) If |a´1| ` |a1| “ 1 then a0e
iθ P A0zt0u.

(c) If |a´1| ` |a1| ă 1 then a0e
iθ P A0zA1

0.

(ii) T satisfies the Eigenfield criterion.

(iii) T satisfies the Godefroy-Shapiro criterion.

(iv) T is Devaney chaotic.

We have just characterized Devaney Chaos for tridiagonal Toeplitz operators.
Nevertheless, Baranov and Lishansky [4] proved chaos for Toeplitz operators
with a more general symbol form.

3.1.2 Toeplitz operators with a more general symbol form

In [4], the authors provide sufficient and necessary conditions that ensure hy-
percyclicity for the Toeplitz operators with symbol Φpzq “ pp 1

z q ` φpzq, where
p is a polynomial and φ is a bounded holomorphic function. One of the main
results of their article corresponds to the specific case in which ppzq “

γ
z where

γ P C.

Theorem 3.1.12 Let γ P C, let φ P H8 and let Φpzq “
γ
z ` φpzq.

(a) If TΦ : H2 Ñ H2 is hypercyclic then

(i) the function Φ is univalent in Dzt0u;

(ii) D
Ş

pCzΦpDqq ‰ and pCzDq
Ş

pCzΦpDqq ‰ H.

(b) If φ P ApDq, that is, the space of bounded analytic functions in the disk that
extends to continuous functions in the closure, and:

(a) the function Φ is univalent in Dzt0u;

(b) D
Ş

pCzΦpDqq ‰ and pCzDq
Ş

pCzΦpDqq ‰ H;

then TΦ is hypercyclic.

In [4] there are also results regarding the spectrum of the operator TΦ linked to
the concept of N-valence.

Definition 3.1.13 (N-valence of a function). Let A Ă C, a function Φ :
A Ñ C is said to be N-valent in A if for all w P A the equation Φpzq “ w has
at most N solutions in A.



Toeplitz Operators 38

Proposition 3.1.14 Assume that Φ is N -valent in D. Then

σpTΦq “ CzΦpD, Nq, CzΦpDq Ă σpTΦq.

If λ P CzΦpDq then the corresponding eigenspace has dimension N and the
eigenvectors are given by

fλpzq “
qpzq

zNΦpzq ´ λzN

where q is an arbitrary polynomial of degree at most N ´ 1.
In particular, for univalent Φ, we get that

fλpzq “
1

zΦpzq ´ λz

is a λ-eigenvector of TΦ for any λ P CzΦpDq.

So far, hypercyclity on Toeplitz operators with symbol of the form Φpzq “

φpzq `
γ
z , φ P H8, γ P C has been characterized. Nevertheless, in [18] the

authors reached chaos under the same hypothesis.

Theorem 3.1.15 Let Φpzq “
γ
z ` φpzq with γ P C and φ P ApDq satisfying

(i) the function Φ is univalent in Dzt0u;

(ii) D
Ş

pCzΦpDqq ‰ H and pCzDq
Ş

pCzΦpDqq ‰ H.

Then the Toeplitz operator TΦ : H2 Ñ H2 is Devaney chaotic.

Proof. By the theorem 3.1.12, TΦ is a well-defined hypercyclic operator in H2.
Moreover, this theorem shows that

fλpzq “
1

zΦpzq ´ λz

is a λ-eigenvector of TΦ for any λ P CzΦpDq. By assumption we get that
Gpλq :“ fλ is a weakly holomorphic map on an open set U that intersects T.
Baranov and Lishansky proved in [[4],theorem 1.1], that the map G satisfies the
condition:

spantGpλq : λ P Uu is dense in H2

and therefore by the eigenvector field criterion 2.1.10, TΦ is Devaney chaotic.
■



Chapter 4

Non-local operators

In the last two decades there has been a growing interest in applying fractional
or non-local operators in the field of mathematical modeling. That is why many
researchers have focused their interest on the study of the dynamic behavior of
such operators [13, 11]. In this chapter we will present some definitions from
discrete fractional calculus. All the results presented throughout this chapter
can be found in [18] and [12].

4.1 Nonlocal operators

For a real number a, we denote

Na :“ ta, a ` 1, a ` 2, ...u,

and we write N1 “ N. Let us consider X a complex Banach space. We will
denote by spNa, Xq the vector space of all vector-valued sequences f : Na Ñ X.

Definition 4.1.1 (Forward Euler operator). Let f : Na Ñ X be a vector-
valued sequence on a complex Banach space X. The forward Euler operator,
denoted by ∆a, is defined as the operator on spNaq given by the formula:

∆afptq :“ fpt ` 1q ´ fptq, t P Na.

Furthermore, for m P N2, the m-th order forward difference operator ∆m
a :

spNa, Xq Ñ spNa, Xq is defined recursively by

∆m
a :“ ∆m´1

a ˝ ∆a.

For instance, for any f P pN0q, we have

∆m
0 fpnq “

m
ÿ

j“0

ˆ

m

j

˙

p´1qm´jfpn ` jq, n P N0.

We will usually denote ∆0 ” ∆ and ∆0
a ” Ia, where Ia : spNa, xq Ñ spNa, xq is

the identity operator.

39
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Definition 4.1.2 (Translation operator). The translation operator by a P

R, denoted as τa : spNa, Xq Ñ spN0, xq is defined as:

τagpnq :“ gpa ` nq, n P N.

Let us observe that τ´1 “ τ´a and τa`b “ τa ˝ τb. Furthermore, it is easy to
check that:

∆m
a ˝ τ´1

a “ τ´1
a ˝ ∆m

0 .

For any α P Rzt0u, we also define the function kαpnq : N0 Ñ R as:

kαpnq “
αpα ` 1q...pα ` n ´ 1q

n
.

In case α “ 0, we set k0pnq “ e0pnq, being eipjq the Kronecker delta. Note that
using the properties of the Euler gamma function, for α P Rzt´1,´2, ..u, we
have

Γpα ` nq

ΓpαqΓpn ` 1q
“

αpα ` 1q...pα ` n ´ 1qΓpαq

Γpαqn!

“
αpα ` 1q...pα ` n ´ 1q

n!
“ kαpnq, n P N0.

The following proposition is a useful property of the above function.

Proposition 4.1.3 The following generation formula holds

8
ÿ

j“0

kαpjqzj “
1

p1 ´ zqα
. (4.1)

Proof. We know that for q P RzN0 and |z| ă 1:

p1 ` zqq “

8
ÿ

n“0

ˆ

q

n

˙

zn.

From the properties of the Euler Gamma function we also obtain for β P RzN0

and j P N0:

Γp1 ` βq

Γp1 ` jqΓpβ ´ j ` 1q
“

Γpβqβ

j!Γpβ ´ jqpβ ´ jq
“

Γpβqβ

j! Γpβq

pβ´1qpβ´2q...pβ´jq
pβ ´ jq

“
βpβ ´ 1qpβ ´ 2q...pβ ´ j ` 1q

j!
“

ˆ

β

j

˙

.

So we can write:

p1 ` wqβ “

8
ÿ

j“0

ˆ

β

j

˙

zn “

8
ÿ

j“0

Γp1 ` βq

Γp1 ` jqΓpβ ´ j ` 1q
wj , β P RzN0, |w| ă 1.
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If we use the following expression with α “ ´β and z “ ´w we obtain:

p1 ´ zq´α “
1

p1 ´ zqα
“

8
ÿ

j“0

Γp1 ´ αq

Γp1 ` jqΓp´α ´ j ` 1q
p´1qjzj

whenever |z| ă 1 and α ą 0, so the coefficients in the development of p1 ´ zq´α

are of the form:
Γp1 ´ αq

Γp1 ` jqΓp´α ´ j ` 1q
p´1qj .

And now using the identity Γp1 ´ zqΓpzq “ π
sinpπzq

for z “ α ` j and z “ α we
get:

Γp1 ´ αqΓpαq “
π

sinpπαq

and
Γp1 ´ α ´ jqΓpα ` jq “

π

sinpπpα ` jqq
.

Using the previous identities we obtain:

Γp1 ´ αq

Γp1 ` jqΓp´α ´ j ` 1q
p´1qj “

sinpπαq

sinpπαqp´1qj

Γp1 ´ αq

Γp1 ` jqΓp´α ´ j ` 1q

“
sinpπαqΓp1 ´ αq

π

1

Γp1 ´ α ´ jqΓpj ` 1q

π

sinpπpα ` jqq

“
1

Γpαq

1

Γp1 ´ α ´ jqΓpj ` 1q

π

sinpπpα ` jqq

“
1

Γpαq

1

Γp1 ´ α ´ jqΓpj ` 1q
Γp1 ´ α ´ jqΓpα ` jq

“
Γpα ` jq

ΓpαqΓpj ` 1q
“ kαpjq,

so the generation formula (4.1) holds, as we wanted to demonstrate. ■

Definition 4.1.4 (α-th fractional sum). Let f : N0 Ñ X be a vector-valued
sequence and α ą 0. The α-th fractional sum of f , denoted by ∆´αf , is a vector
valued sequence defined by the formula:

∆´αfpnq :“
n
ÿ

j“0

kαpn ´ jqfpjq, n P N0.

Recalling that the finite convolution (˚) between two sequences f and g is defined
by:

pf ˚ gqpnq :“
n
ÿ

j“0

fpn ´ jqgpjq, n P N0

then the definition of α-th fractional sum is also equivalent to:

∆´αfpnq :“ pkα ˚ fqpnq, n P N0.

The next definition generalizes the previous α-th fractional sum.
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Definition 4.1.5 (Nabla α-th fractional sum). Let α ą 0. For any positive
real number a, the nabla α-th fractional sum of a function f is:

∇´α
a fptq “

1

Γpαq

t
ÿ

s“a

pt ´ s ` 1qα´1fpsq

where t P Na and tα :“ Γpt`αq

Γptq .

Definition 4.1.6 (Fractional difference operator in the sense of Riemann-
Liouville). The fractional difference operator in the sense of Riemann-Liouville
∆α : spN0q Ñ spN0q is defined by

∆αfpnq :“ ∆m ˝ ∆´m´αfpnq, n P N0,

where m ´ 1 ă α ă m, m :“ rαs, the last integer that is greater than or equal
to α.

For instance, for 0 ă α ă 1 we obtain:

∆αfpnq “ ∆ ˝ ∆´p1´αqfpnq “ ∆

˜

n
ÿ

j“0

k1´αpn ´ jqfpjq

¸

“

n`1
ÿ

j“0

k1´αpn ` 1 ´ jqfpjq ´

n
ÿ

j“0

k1´αpn ´ jqfpjq

“ p1 ´ αqfpn ` 1q `

n
ÿ

j“0

fpjq
`

k1´αpn ` 1 ´ jq ´ k1´αpn ´ jq
˘

. (4.2)

Developing the expression k1´αpn ` 1 ´ jq ´ k1´αpn ´ jq we obtain:

k1´αpn ` 1 ´ jq ´ k1´αpn ´ jq

“
p1 ´ αqp1 ´ α ` 1q...p1 ´ α ` n ´ jq

pn ` 1 ´ jq!
´

p1 ´ αqp1 ´ α ` 1q...p1 ´ α ` n ´ j ´ 1q

pn ´ jq!

“
p1 ´ αq...p1 ´ α ` n ´ j ´ 1q

pn ´ jq!

ˆ

1 ´ α ` n ´ j

n ` 1 ´ j
´ 1

˙

“
p1 ´ αq...p1 ´ α ` n ´ j ´ 1q

pn ´ jq!

ˆ

´α

n ` 1 ´ j

˙

“
p´αqp1 ´ αq...p´α ` n ´ jq

pn ` 1 ´ jq!
“ k´αpn ` 1 ´ jq.

Making the substitution of the previous development in equation (4.2) we get:

∆αfpnq “ p1´αqfpn`1q`

n
ÿ

j“0

k´αpn`1´jqfpjq “

n`1
ÿ

j“0

k´αpjqfpn`1´jq (4.3)
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where in the last identity a change of variable has been made. This last iden-
tity (4.3) corresponds to the Grünwald-Letnikov scheme of approximation with
unitary step for the one dimensional Caputo fractional derivative. In addition
to the definition of fractional difference operator we also define the nabla frac-
tional difference operator. Later, we will see that both the fractional difference
operators are conjugated by the translation operator.

Definition 4.1.7 (Nabla fractional difference operator) The nabla frac-
tional difference operator ∇α : spNaq Ñ spNaq of order α ą 0 is defined by:

∇α
afptq “ ∆m

a ˝ ∇´pm´αq
a fptq, t P Na

where m “ rαs.

4.2 Transference principle

The following result known as transference principle shows that the fractional
difference operator in the sense of Riemann-Liouville and the Nabla fractional
difference operator are conjugated. This implies that both the operators are at
the same time Devaney chaotic or not.

Theorem 4.2.1 (Transference principle). Let α ą 0 and a P R be given.
Then we have

τa ˝ ∇α
a “ ∆α ˝ τa.

Proof. By the definition of Nabla α-th fractional sum, for f P spNaq we have:

τ ˝ ∇´α
a “ ∇´α

a fpn ` aq “
1

Γpαq

n
ÿ

j“0

pn ´ j ` 1qα´1fpa ` jq

“

n
ÿ

j“0

Γpα ` n ´ jq

ΓpαqΓpαqΓpn ´ j ` 1q
fpa ` jq “

n
ÿ

j“0

kαpn ´ jqfpa ` jq “ ∆´α ˝ τafpnq,

for all n P N0.
Let f P spNaq be given. By the definition of Nabla fractional difference

operator and the previous identities we have:

τa ˝ ∇α
afpnq “ τa ˝ p∆m

a ˝ ∇´pm´αq
a qfpnq “ p∆m

a ˝ ∇´pm´αq
a qfpn ` aq “

“

m
ÿ

j“0

ˆ

m

j

˙

p´1qm´j∇´pm´αq
a fpn ` a ` jq “

“

m
ÿ

j“0

ˆ

m

j

˙

p´1qm´jτa ˝ ∇´pm´αq
a fpn ` jq “

“

m
ÿ

j“0

ˆ

m

j

˙

p´1qm´j∆´pm´αq ˝ τafpn ` jq “

“ ∆mp∆´pm´αq ˝ τafqpnq “ ∆α ˝ τafpnq,

for all n P N0 and this proves the theorem. ■





Chapter 5

Chaos for non-local
operators and numerical
schemes

In this last chapter we will show the conditions under which Devaney chaos can
be ensured for non-local operators and different numerical schemes. The main
references among the chapter will be the articles [18] and [19].

5.1 Non-local operators are chaotic

Let 0 ă α ă 1. We recall equation (4.3):

∆αfpnq “ p1 ´ αqfpn ` 1q `

n
ÿ

j“0

k´αpn ` 1 ´ jqfpjq “

n`1
ÿ

j“0

k´αpjqfpn ` 1 ´ jq.

If we evaluate the previous operator on a generic canonical vector elpnq we get:

∆αelpnq “

n`1
ÿ

j“0

k´αpjqelpn ` 1 ´ jq.

The first observation we make is that if n ` 1 ă l then n ` 1 ´ j ă l for all
j “ 0, 1, ..., n ` 1 so ∆αelpnq “ 0. Now if n “ l ´ 1 an easy computation shows
that ∆αelpl´1q “ k´αp0q “ 1. Finally if n ą l´1 then we get that n`1´j “ l
if and only if j “ n ´ l ` 1 so ∆αelpnq “ k´αpn ´ l ` 1q. We can summarize
these observations as follows:

∆αelpnq “

$

’

’

’

’

&

’

’

’

’

%

k´αpn ` 1 ´ lq if n ě l

1 if n “ l ´ 1

0 if n ă l ´ 1

.

45
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Furthermore, we can also compute the representation of ∆α in the canonical
basis telpnqun,lPN0 as the following Toeplitz matrix:

»

—

—

—

—

—

–

k´αp1q 1 0 0 . . .
k´αp2q k´αp1q 1 0 . . .
k´αp3q k´αp2q k´αp1q 1 . . .
k´αp4q k´αp3q k´αp2q k´αp1q . . .

...
...

...
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

“ (5.1)

“

»

—

—

—

—

—

—

–

´α 1 0 0 . . .
´αp´α`1q

2 ´α 1 0 . . .
´αp´α`1qp´α`2q

3
´αp´α`1q

2 ´α 1 . . .
´αp´α`1qp´α`2qp´α`3q

4
´αp´α`1qp´α`2q

3
´αp´α`1q

2 ´α . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Theorem 5.1.2 will show that ∆α is a well defined Toeplitz operator on ℓ2pN0q

and exhibits chaos for any 0 ă α ă 1. In order to achive it we will use the
following lemma of univalence for meromorphic functions stated in [10].

Lemma 5.1.1 Let Mn denote the class of functions of the form fpzq “ 1
z `

ř8

n“0 anz
n which are regular in 0 ă |z| ă 1 and satisfy

R

ˆ

Dn`1fpzq

Dnfpzq
´ 2

˙

ă ´
n

n ` 1
, |z| ď 1

where Dnfpzq “ 1
z

´

zn`1 fpzq

n!

¯pnq

, m P N0. Then Mn`1 Ă Mn for all n P N0

and all functions in Mn are univalent.

Theorem 5.1.2 For any 0 ă α ă 1, the operator ∆α defines a chaotic Toeplitz

operator on ℓ2pN0q with symbol Φpzq “
p1´zq

α

z .

Proof. First we will prove that the fractional difference operator ∆α is bounded
in ℓ2pN0q. Given u P ℓ2pN0q, we have by equation (4.3) that

∆αu “ p1 ´ αqτ1u ` τ1k
´α ˚ u,

where τ1 is the translation operator by 1. By [23] and [12, Proposition 3.1 (viii)],
we get that:

k´αpnq “
1

nα`1Γpαq

ˆ

1 ` O
ˆ

1

n

˙˙

«
C

nα`1
. (5.2)

so the sequence pk´αpnqqnPN0
P ℓ1.

Now using Young’s inequality and the previous expression (5.2) we obtain:

}∆αu}2 ď }p1 ´ αqτ1u}2 ` }τ1k
´α ˚ u}2 ď |p1 ´ αq|}τ1u}2 ` }τ1k

´α}1}u}2 ă 8

leading us to assert that ∆α is a bounded operator in ℓ2pN0q. Now observing the
expression (5.1) we get that ∆α is a Toeplitz operator on ℓ2pN0q. Comparing the
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expression (5.1) with equation (3.1) we get that the coefficients of the Toeplitz
operator symbol are given by:

$

’

&

’

%

a´1 “ 1

an “ k´αpn ` 1q, if n ě 0

an “ 0, if n ă 0

which leads us to state that the symbol of the operator is:

Φpzq “
1

z
`

8
ÿ

j“0

k´αpj ` 1qzj .

Let us denote φpzq “
ř8

j“0 k
´αpj `1qzj . Using the generation formula (4.1) we

have:

z ¨ φpzq “

8
ÿ

j“0

k´αpj ` 1qzj`1 “

8
ÿ

j“0

k´αpjqzj ´ k´αp0q “
1

p1 ´ zq´α
´ 1,

and therefore:

φpzq “
p1 ´ zqα

z
´

1

z
.

So the symbol of the Toeplitz operator ∆α is:

Φpzq “
1

z
` φpzq “

p1 ´ zqα

z
.

Now we will prove the chaotic behaviour of the operator TΦ and to do so we use

Theorem 3.1.15. Let first check condition (i), that is, Φpzq “
p1´zq

α

z is univalent

in Dzt0u. Using Theorem 5.1.1 we have to show that

R

ˆ

Dn`1Φpzq

DnΦpzq
´ 2

˙

ă 0, |z| ď 1.

An easy computation shows that D1Φpzq “
p1´zq

α

z ´ αp1 ´ αqα´1 and taking
z “ a ` ib with ´1 ď 1 ď 1 and ´1 ď b ď 1 then it follows that

R

ˆ

Dn`1Φpzq

DnΦpzq
´ 2

˙

“ R

ˆ

´1 ´
αz

1 ´ z

˙

“
´p1 ´ αq2 ` pα ´ 1qb2 ´ αap1 ´ aq

p1 ´ a2q ` b2
.

It is clear that R
´

Dn`1Φpzq

DnΦpzq
´ 2

¯

ă 0 if and only if ´ p1 ´ αq2 ` pα ´ 1qb2 ´

αap1 ´ aq ă 0 and this last assertion holds since 0 ă α ă 1 and ´1 ď a ď 1.
It only remains to check condition (ii) in theorem 3.1.15. To do so, as r´2α, 0s

intersects D and CzD, we will check that r´2α, 0s Ă CzΦpDq. Let us first
compute ΦpTq:

ΦpTq “

"

p1 ´ eitqα

eit
: t P r´π, πs

*

“

!

eiptα{2´1q´ 3π
2 q2α sinpt{2qα : t P r´π, πs

)

.
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If we represent the following set for α “ 0.5 we obtain the curve of figure 5.1.
In this figure we have also represented the unit disk in shadowed blue. As we
see in figure 5.1, the border between ΦpDq and CzΦpDq is represented by a
cardioid, so ΦpDq lies either in the interior of the cardiod or in the exterior.
Nevertheless, observing that Φp0q “ 8 we get that ΦpDq corresponds to the
exterior of the cardioid (in the figure ΦpDq is represented in shadowed orange).
Let us also observe that Φp1q “ 0 and Φp´1q “ ´2α so it is clear by the shape
of the cardioid that the interval r0,´2αs belongs to its interior and therefore
r0,´2αs X ΦpDq “ H, also r0,´2αs Ă CzΦpDq as we wanted to prove. ■

Figure 5.1: Representation of ΦpTq with α “ 0.5.

Let us observe that the symbol of the Toeplitz operator ∆α coincides with the
symbol of the explicit Euler approximation scheme for the Riemann-Liouville
fractional difference operator [16].
The transference principle 4.2.1 ensures the following corollary.

Corollary 5.1.3 For any 0 ă α ă 1 and a ą 0, the Nabla difference operator
∇α

a is chaotic in ℓ2pNaq.

Proof. It is a direct consequence of theorem 5.1.2 throughout the transference
principle 4.2.1 and the preservation of Devaney chaos under quasiconjugacy
2.0.14. ■

5.2 Chaos for operators related to fractional nu-
merical schemes

In this section we will prove chaos for several operators that are related to
fractional numerical schemes. Throughout the section we will implicitly use the
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notion of Gelfand transform.

Definition 5.2.1 (Gelfand transform). Let b P ℓ1pN0q be a summable se-
quence, we define its Gelfand transform by:

δpzq :“
8
ÿ

n“0

bpnqzn, z P D.

Time-stepping schemes for fractional operators [16] are defined by a convolution
operator Bα

b : ℓ2pN0q Ñ ℓ2pN0q given by:

Bα
b upnq :“ pb ˚ uq, n P N0,

where b P ℓ1pN0q is a real valued sequence implicitly defined by the generating
series:

δpζq “

8
ÿ

j“0

bpnqζn, ζ P T,

and δpζq is called the symbol of the scheme. Evaluating the operator Bα
b on a

generic canonical vector elpnq we obtain:

Bα
b elpnq “

n
ÿ

j“0

bpn ´ jqelpjq. (5.3)

One easy observation is that if l ą n then Bα
b elpnq “ 0 and if l ď n then

Bα
b elpnq “ bpn ´ lq. We can summarize this observation as follows:

Bα
b elpnq “

$

’

’

&

’

’

%

0 if n ă l

bpn ´ lq if n ě l
.

Computing the representation of Bα
b in the canonical basis telpnqun,lPN0 we ob-

tain the following matrix:

»

—

—

—

—

—

–

bp0q 0 0 0 . . .
bp1q bp0q 0 0 . . .
bp2q bp1q bp0q 0 . . .
bp3q bp2q bp1q bp0q . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.4)

In the following paragraphs we will demonstrate that the adjoint operators pBα
b q˚

of some of the time-stepping schemes are chaotic. Nevertheless, to do so we will
need the following lemma.

Lemma 5.2.2 Let Bα
b : ℓ2pN0q Ñ ℓ2pN0q defined, as before, by a convolution

operator:
Bα
b upnq :“ pb ˚ uq, n P N0,
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in this case the adjoint operator pBα
b q˚u, takes the form:

pBα
b q˚upnq “

8
ÿ

j“0

bpjqupn ` jq “

8
ÿ

j“0

bpjqBjupnq, n P N0, (5.5)

where B denotes the backward operator.

Proof. Let us recall that the adjoint operator pBα
b q˚ is defined as the unique

operator satisfying xpBα
b q˚u, vy “ xu, Bα

b vy for all u, v P ℓ2pN0q. Therefore eval-
uating xu, Bα

b vy we obtain

xu, Bα
b vy “

8
ÿ

n“0

upnqBα
b vpnq “

8
ÿ

n“0

upnq

n
ÿ

j“0

bpn ´ jqvpjq “

8
ÿ

j“0

8
ÿ

j“n

upnqbpn ´ jqvpjq

“

8
ÿ

j“0

vpjq

8
ÿ

m“0

upm ` jqbpmq “

8
ÿ

j“0

vpjq

8
ÿ

m“0

pBmuq pjqbpmq

“ x

8
ÿ

m“0

pBmuq pjqbpmq, vy “ xpBα
b q˚u, vy,

as we wanted to demonstrate. ■

Applying this last lemma, we obtain that the representation of the adjoint op-
erator pBα

b q˚ in the canonical basis telpnqun,lPN0
corresponds to the following

matrix:
»

—

—

—

—

—

–

bp0q bp1q bp2q bp3q . . .
0 bp0q bp1q bp2q . . .
0 0 bp0q bp1q . . .
0 0 0 bp0q . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.6)

Now let us observe that the symbol of the numerical scheme δ coincides with the
Gelfand transform of the sequence b and also coincides with the holomorphic
function that characterizes chaos in theorem 2.1.12. This observation allows
us to consider condition (ii) in theorem 2.1.12 in order to prove chaos for the
following operators we are going to consider.

Let us consider as a first example the backward Euler scheme, whose symbol is
δpζq “ 1´ ζ. Comparing with the series (5.3) we get that bpnq “ e0pnq ´ e1pnq.
And therefore:

Bα
b upnq “ upnq ´ upn ´ 1q, n P N1.

We get that the associated matrix for this operator in the canonical basis is:
»

—

—

—

—

—

–

1 0 0 0 . . .
´1 1 0 0 . . .
0 ´1 1 0 . . .
0 0 ´1 1 . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

.
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Again by comparison with the series (5.5) and matrix (5.6) we obtain:

pBα
b q˚upnq “ upnq ´ upn ` 1q, n P N0,

and the associated matrix is:
»

—

—

—

—

—

–

1 ´1 0 0 . . .
0 1 ´1 0 . . .
0 0 1 ´1 . . .
0 0 0 1 . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

.

It is clear that the symbol δpζq “ 1´ ζ is such that δpDq XT ‰ 0 so the adjoint
operator of the backward Euler scheme is chaotic by theorem 2.1.12.
Let us now consider the fractional backward Euler scheme with symbol δpζq “

τ´αp1 ´ ζqα, for some α ą 0 and τ ą 0 the step size of the scheme. By the
generation series (4.1) we get that the symbol of the scheme can be also written
as follows:

δpζq “ τ´αp1 ´ zqα “ τ´α

˜

8
ÿ

n“0

k´αpnqzn

¸

,

so we can identify the sequence bτ pnq as:

bτ “ τ´αk´αpnq. (5.7)

Let us observe that with the estimation (5.2), the sequence pk´αpnqqnPN0
belongs

to ℓ1pN0q, so it is clear that the sequence pbτ pnqqnPN0
also belongs to ℓ1pN0q.

With identity (5.7), the operator that defines the fractional backward Euler
scheme is given by:

Bα
bτupnq “ pbτ ˚ uqpnq “

n
ÿ

j“0

τ´αk´αpn ´ jqupjq

and its dual operator is:

pBα
bτ q˚upnq “

8
ÿ

j“0

τ´αk´αpjqBjupnq.

It is surprising that the adjoint of the fractional backward Euler operator pBα
bτ

q˚

correspond to the Weil fractional difference operator Wα
τ . The following result

proves that chaos for the Weil fractional difference operator depends on the step
size τ but not on the fractional order α.

Theorem 5.2.3 For any α ą 0, the Weil fractional difference operator is
chaotic on ℓ2pN0q if and only if 0 ă τ ă 2.
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Proof. By theorem 2.1.12, Wα
τ is chaotic if and only if δpDq XT ‰ 0, and this

in turn is equivalent to the existence of w P T such that w “ τ´αp1 ´ zqα, with
|z| ă 1 and then |1´ τw1{α| “ |z|. This last identity implies that Wα

τ is chaotic
if and only if τw1{α belongs to the unity disk with center 1. Nevertheless, this
is satisfied if and only if 0 ă τ ă 2 as we wanted to demonstrate. ■

Let us now consider the fractional second order backward Euler difference, whose
symbol is given by:

δpζq “ τ´α

ˆ

3

2
´ 2ζ `

1

2
ζ2
˙α

“ τ´α

ˆ

3

2

˙α

p1 ´ ζqα
ˆ

1 ´
ζ

3

˙α

. (5.8)

It was proven in [17] that for this time-stepping scheme, the sequence bpnq is

bpnq “
3

2
e0pnq ´ 2e1pnq `

1

2
e2pnq

in case α “ 1, and

bpnq “

ˆ

3

2

˙α n
ÿ

j“0

k´αpn ´ jq
1

3j
k´αpjq

when α ‰ 1. Let us check that b P ℓ1pN0q. In the case that α “ 1 trivially
b P ℓ1pN0q. When α ‰ 1 let us define cpnq :“ 1

3n k
´αpnq. By the estimation (5.2)

we have that cpnq « C
3nn1`α , so c P ℓ1pN0q. Now by the Young’s convolution

inequality we get:

}b}1 “

ˆ

3

2

˙α

}k´α ˚ c}1 ď

ˆ

3

2

˙α

}k´α}1 ¨ }c}1 ă 8,

so b P ℓ1pN0q. We will consider for such a sequence bpnq the following scheme:

Bα
b upnq “ τ´αpb ˚ uqpnq,

where τ ą 0 is the step size. The next result shows chaos for the adjoint of such
an operator.

Theorem 5.2.4 The operator Tb, which is the dual of the operator that de-
fines the fractional second order backward difference scheme with step size τ , is
chaotic on ℓ2pN0q if and only if 0 ă τ ă 4.

Proof. By theorem 2.1.12, we have to prove that δpDq X T ‰ H if and only if
0 ă τ ă 4, where δ is given by (5.8). Since δ is a holomorphic function on D, by
the maximum principle we have supzPD |δpzq| “ maxzPT |δpzq| “ 4ατ´α, whose
maximum is attained at z “ ´1. This implies that δpDq X T ‰ H if and only
if 4ατ´α ą 1, and this in turn is equivalent to τ being in p0, 4q as we wanted to
prove. ■
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Finally, we consider the fractional Crank-Nicholson stepping scheme, whose
symbol is given by

δpζq “ τ´α p1 ´ ζqα

1 ´ α
2 ` α

2 ζ
, (5.9)

where 0 ă α ă 2. By [17] we have that the sequence bpnq is given by

bpnq “ τ´α 2

2 ´ α

n
ÿ

j“0

k´αpn ´ jq

ˆ

α

α ´ 2

˙j

.

For 0 ă α ă 1, let us define cpnq :“
´

α
α´2

¯n

. Since α ă 1, we have c P ℓ1pN0q

and by Young’s convolution inequality

}b}1 “ τ´α 2

2 ´ α
}k´α ˚ c}1 ď τ´α 2

2 ´ α
}k´α}1 ¨ }c}1 ă 8,

so b P ℓ1pN0q. The next result shows conditions for chaos in the adjoint of the
fractional Crank-Nicholson stepping scheme operator in the case 0 ă α ă 1.

Theorem 5.2.5 Let 0 ă α ă 1. The operator Tb, which is the dual of the oper-
ator that defines the fractional Crank-Nicholson scheme with step τ , is chaotic
on ℓ2pN0q if and only if 0 ă τ ă 2

p1´αq1{α .

Proof. By theorem 2.1.12, we have to prove that δpDq XT ‰ H. By the maxi-
mum principle for holomorphic functions we have that supzPD δpzq “ maxzPT δpzq,
which observing the scheme (5.9) is attained at z “ ´1 with value δp´1q “

τ´α 2α

1´α . This implies that δpDq X T ‰ H if and only if τ´α 2α

1´α ą 1, which is

in turn equivalent to 0 ă τ ă 2
p1´αq1{α as we wanted to demonstrate. ■

5.3 Chaos for numerical schemes

Finite difference methods are one of the most used numerical methods in order
to solve differential equations. A finite differences scheme consists on a system of
equations that can be solved by basic linear algebra techniques. The derivatives
in this numerical scheme are approximated by divided finite differences in a
discrete set of points.

This transformation of a differential continuous problem into a system of
algebraic equations makes possible to find the solution by iterative algorithms
in computers, in fact, nowadays is one of the most used techniques for solving
differentials equations. Many of these numerical schemes for differential equa-
tions can be regarded as dynamical systems. In this context, it is interesting
the study of the dynamic behaviour and the conditions under which this system
can exhibit chaos.

There is a variety of finite divided difference approximations of derivatives
depending on the level of accuracy required. The general method to obtain
these estimates is based in the Taylor series expansion of the function (see [7]
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for a complete derivation of these approximations), although there exist other
non-standard approaches to derive divided finite difference approximations of
derivatives [21]. The simplest examples of finite differences are the approxima-
tions of the derivative of a real function f : R Ñ R. With the usual notation,
fixed x0 P R and h ą 0, xn “ x0 ` kh, k P Z, fk “ fpxkq and f 1

k “ f 1pxkq,
the well-known standard finite differences approximations for the first and the
second derivatives are

f 1
k «

fk`1 ´ fk
h

, f2
k «

fk`2 ´ 2fk`1 ` fk
h2

, Forward

f 1
k «

fk ´ fk´1

h
, f2

k «
fk ´ 2fk´1 ` fk´2

h2
, Backward

f 1
k «

fk`1{2 ´ fk´1{2

h
, f2

k «
fk`1 ´ 2fk ` fk´1

h2
, Centered

The next step is to construct finite difference schemes for differential equations
using these approximate derivatives of divided differences. In this work, we con-
sider finite difference schemes for the one-dimensional heat equation and other
PDEs related with it, with the purpose of analyzing the conditions under which
the numerical schemes are chaotic. Consider the heat (or diffusion) equation
(HE) on a infinite thin rod that, in one dimension, is given by

Bu

Bt
“ α

B2u

Bx2
, (5.10)

where upt, xq represents the temperature in the point x of the rod at time t, and
α ą 0 is the thermal diffusivity. Herzog showed in [15] the chaotic behaviour of
the solution semigroup to the HE on certain spaces of analytic functions with
controlled growth.

We will present two examples of discretization of the heat equation (5.10) in
order to prove its possibly chaotic behaviour.

Example 1. Centered space derivative scheme

One easy numerical scheme for (5.10) is obtained by using a forward discretiza-
tion for the time derivative and a centered approximation for the space second
derivative. We assume the thin rod to be infinite so that pt, xq P R` ˆR`. We
denote

tn :“ n∆t , xk :“ k∆x , un
k :“ uptn, xkq ,

where ∆t and ∆x are the time and space steps respectively, and n, k P Z` and
the common choice of p0, 0q has been considered as the initial point. This way
we obtain the finite difference equation

un`1
k ´ un

k

∆t
“ α

un
k`1 ´ 2un

k ` un
k´1

∆x2
. (5.11)
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If we let the sequence un :“ pun
k qkě0 to lie on a convenient sequence space X,

the above difference equation reads as

un`1 “ Tun,

where T : X Ñ X is a linear operator whose canonical matrix is an infinite
tridiagonal matrix with constant diagonals. This means that the asymptotic
behaviour of the numerical scheme (5.11) is given by the iterates of the linear
operator T acting on the initial condition, that is, un`1 “ Tn`1u0 for n ě 0,
we assume u0 P X.
Now, let us express equation (5.11) into the following explicit scheme

un`1
k “ λun

k`1 ` p1 ´ 2λqun
k ` λun

k´1 . (5.12)

where λ :“ α ∆t
∆x2 . This way equation (5.12) can be written as un`1 “ TΦu

n,
where TΦ is a tridiagonal Toeplitz operator with symbol

Φpzq “ λ{z ` p1 ´ 2λq ` λz.

Since a´1 “ a1, by Theorem 3.1.11, we have that TΦ is not chaotic.

Example 2. Forward space derivative scheme

Scheme (5.12) is not chaotic, nevertheless, it is possible to construct numerical
schemes which exhibit chaos. Consider the numerical scheme for the HE ob-
tained by applying a forward approximation of the space derivative in (5.10).
We obtain the finite differences equation:

un`1
k ´ un

k

∆t
“ α

un
k`2 ´ 2un

k`1 ` un
k

∆x2
. (5.13)

This equation can be written as

un`1
k “ λun

k`2 ´ 2λun
k`1 ` p1 ` λqun

k , (5.14)

where λ “ α ∆t
∆x2 . Scheme (5.14) reads as un`1 “ TΦu

n, where TΦ : X Ñ X is
the Toeplitz operator

TΦ “ λB2 ´ 2λB ` pλ ` 1qI “ λpB ´ Iq2 ` I

and B denotes the backward shift operator. Taking φpzq “ λpz ´ 1q2 ` 1, we
have that φpBq “ TΦ is a Toeplitz operator whose symbol is the antianalytic
function Φpzq “ φp1{zq and the study of its chaotic behavior is addressed by
theorem 2.1.11.

Proposition 5.3.1 Let φpzq “ λpz ´ 1q2 ` 1 and set Φpzq “ φp1{zq. The
Toeplitz operator TΦ : X Ñ X is chaotic for each λ ą 0.
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Figure 5.2: Example of the cardioid generated by the set φpTq with λ “ 0.5
and its visual intersection with D.

Proof. By Theorem 2.1.11 it is enough to check that φpDq X T ‰ H. Let us
first compute φpTq:

φpeiθq “ λpeiθ ´ 1q2 ` 1 “ λpe2iθ ´ 2eiθ ` 1q ` 1

“ λeiθpeiθ ´ 2 ` 1e´iθq “ 2λpcos θ ´ 1qeiθ ` 1, θ P r0, 2πq.

By this last identity we get that φpTq is a cardioid such that its interior corre-
sponds to φpDq. As in the proof of theorem 5.1.2, we can represent the set φpDq

with λ “ 0.5 along with the complex unit disk D, obtaining figure 5.2. Now, let
us observe that the cardioid curve is symmetric with respect to the abscissas
axis, and its cusp, the point where the tangent vector vanishes, is placed as
φp1q “ 1, that is, whenever θ “ 0. So it is clear that for a small enough θ0, it is
verified |φpθ0q| ă 1, and therefore φpDq XT ‰ H as we wanted to demonstrate.
■
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