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Summary

In this work we analyze the dynamics of some fractional operators. The objective
is to establish the conditions under which these operators are chaotic. For this
purpose, we will rely on proving chaos for the Toeplitz operators associated
to these fractional operators. Likewise, we will also establish a relationship
between chaos for certain numerical methods and the chaotic dynamics of certain
operators that define these schemes. The dynamics of such operators depend
on the sampling in time and space of the numerical method.






Resumen

En este trabajo se analiza la dindmica de algunos operadores fraccionarios. El
objetivo es establecer las condiciones sobre las que estos operadores son cadticos.
Para ello nos basaremos en probar caos para los operadores de Toeplitz asociados
a dichos operadores fraccionarios. Asimismo, en este trabajo estableceremos
una relacion entre el caos para ciertos métodos numéricos y la dindmica cadtica
que definen estos esquemas. La dinamica de estos ultimos dependerd del paso
espacio-temporal del método numérico.






Chapter 1

Preliminaries

In this section we recall some basic definitions and theorems that will be useful
in this work. Some classical references where these results can be found are [22],
[20], [6].

1.1 Metric, Banach, Fréchet and Hilbert spaces

The first basic definition is the notion of metric space, that will be of capital
importance in order to define the Banach and Hilbert spaces.

Definition 1.1.1 (Metric space). A real-valued function d : X x X — R,
defined for each pair of elements x,y € X is called a metric if it satisfies:

(1) d(z,y) 20, d(z,z) = 0 and d(z,y) > 0 if v # y;
(ii) d(z,y) = d(y, x);
(i) d(z, z) < d(z,y) + d(y, z), the triangle inequality.

A set X provided with a metric is called a metric space and d(x,y) is called
the distance between x and y.

We will understand by a neighborhood of a point pe X a setU < X, which
contains an open set V containing p.

A point x in a metric space X is called isolated if there exists some neigh-
bourhood of x which does not contain any other point from X.

A metric space is said to be locally compact if each point has a compact
neighbourhood. Finally, we say that a metric space is complete if every Cauchy
sequence in X converges to an element of X.
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Theorem 1.1.2 (Baire category theorem). Let (X,d) be a complete metric
(e @]

space and {Gn}, a sequence of nonempty dense open sets. Then G := ﬂ Gn,
n=1

is a dense Gg-set in X.

Definition 1.1.3 (Seminorm). A functional p : X — R, on a vector space
X over K = R or C is called a seminorm if it satisfies, for all x,y € X and
Ae K,

(1) p(z +y) < p(x) + p(y)
(ii) p(Ax) = [Alp(z).
If, in addition,
(11i) p(x) = 0 implies that x = 0,
then p is called a norm.
Definition 1.1.4 (Fréchet space). A Fréchet space is a vector space X en-

dowed with a separating increasing sequence (pn)n of seminorms which is com-
plete when endowed with the metric given by:

0

1
d(il?,y) = Z anmln(l,pn(l’ 7y)),l’,y eX

n=1

Definition 1.1.5 (Normed space). The pair (X,|| o ||) is called a normed
space where X is a vector space endowed with a norm || e||.
Every normed linear space may be regarded as a metric space, being |z — y| the
distance between x and y. A Banach space is a normed linear space which is
complete when endowed with the metric defined by its norm.

Definition 1.1.6 (Hilbert space) A Hilbert space H is a real or complex inner
product space that is also a complete metric space with respect to the distance
Sfunction induced by the inner product. We say that H is a complex inner product
space if H is a complex vector space on which there is an inner product (e, e) :
H x H — C such that for every pair of elements x,y € H it is satisfied:

(i) <y, z) = (z,y).
(i) For all a,be C:
{azy + brz,y) = alz1, y) + &x2, ).
(iii) {xz,y) =0, and it is equal to 0 if and only if x = 0.
The norm defined by the inner product {e, ey is the real-valued function:
|| = /<o,

and the distance between two points x,y € H is defined in terms of the norm by:

d(z,y) = |lz —y| = \{z -y, 2 —y).
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Proposition 1.1.7 Let (X,|||x) and (Y,|||y) be Banach spaces and let T :
X =Y be a linear operator. The following four statements are equivalent:

(i) T is continuous at 0.
(i) T is continuous.
(iii) T is uniformly continuous.

(iv) T is bounded, i.e., there exists a constant C > 0 such that |Tx|ly < C|x|x
forallz e X.

Definition 1.1.8 Let X and Y be Banach spaces. We denote by L(X,Y) the
space of continuous linear operators T : X — Y wunder the operator norm. The
space L(X,Y) is a Banach space wheneverY is a Banach space. If K denotes
R or C, the dual X* = L(X,K) of a Banach space X is the space of all
continuous linear functionals on X . If x* € X* then we write,

z*(x) = (x,2*), weX.

The adjoint T* : X* — X* of an operator T on X is defined by T*x* = x*oT,
that is,
(x, T*2*y =(Tz,z*), xeX, 2*eX*

Theorem 1.1.9 (Hahn-Banach theorem). Let X be a vector space, M a
subspace of X, p a seminorm on X and u : M — K (where K is R or C) a
linear functional such that |u(z)| < p(z) for all x € M. Then u has a linear
extension 4 to X such that |u(x)| < p(x) for all z € X.

The next corollary is an immediate consequence of the Hahn-Banach theorem.

Corollary 1.1.10 If p is a seminorm on X and xg € X then there exists a
linear functional uw on X such that u(zg) = p(xg) and |u(z)| < p(x) for all
ze X.

Moreover, if X is a Frechet space, then we have the following corollaries of
the Hahn-Banach theorem.

Corollary 1.1.11

(i) Every continuous linear functional on a subspace of X extends to a con-
tinuous linear on X. Moreover, if X is a Banach space this extension
preserves the norm.

(ii) If M is a closed subspace of X and x ¢ M then there exists a continous
linear functional * on X that vanishes on M with (x,z*) # 0.

(1ii) A subspace M is dense in X if and only if every continous linear functional
that vanishes on M also vanishes on X.

(iv) For any x € X, if (x,z*) =0 for all * € X* then z = 0.
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1.2 Classical Banach and Hilbert spaces

In this section we recall some classical Banach and Hilbert spaces.

Definition 1.2.1 Let 1 < p < o0. Then we define the space

e
P = {JU = (J?n)n € ]K]NO : Z |x7l|p < OO}

n=0
of p-summable sequences. This space when endowed with the norm |z| :=

(i |zal?) Y7 is o Banach space.

One particularly important P space for our work is £2, which endowed with the
. I00) . .
inner product {(z,y) := > _, £nJn is a Hilbert space.

Definition 1.2.2 The space

(* = {x = (z,), e KN :  sup |z,| < o0}
77,€]N0
is a Banach space when endowed with the norm |x| := sup,ep, [n].

Definition 1.2.3 Let a < b and 1 < p < 0. Then we define
b
LP[a,b] := {f :[a,b] > K:  f is measurable and ‘[ |f(@®)Pdt < oo}

as the space of p-integrable functions which endowed with the norm |f|| :=

b 1/p .
(Sa |f(t)|dt) LP[a,b] is a Banach space.

In particular, L?[a, b] when endowed with the inner product {f, g) := XZ f(t)g(t)dt

is a Hilbert space. In the proposition 1.3.2 we will use the fact that the functions

t— \/%ei”t, n € Z, form an orthonormal basis in L?[0, 27].

1.3 Hardy Spaces

In this section we recall the definition of the Hardy space H2. This Hilbert space
will be of capital importance in the development of the results of our work. A
classical reference about Hardy spaces is [9)].

Let (a,)n>0 be a complex sequence such that (a,)n=0 € £2(INg), the function
a0
F(z) = D ana", z€ €2 <1,

defines a holomorphic function on the complex open disk D. With this con-
struction in mind, we can define the Hardy space H? as follows.
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Definition 1.3.1 The Hardy Space H? is defined as the space of the holomor-
phic functions on the complex unit open disk, that is:

={f:D>C: f(z Z anz",z €D, with (an), € £2(Ng)}

The space H? is a Banach space when endowed with the norm:

0

o 1/2
If1 = (Z |an|2> when f(z Z
n=0

and it is a Hilbert space with the inner product:

0 0

oy = by when f(z - S mraand )= S,
n=0

The next proposition will present another equivalent representation of the Hardy
space H? that will be useful in the development of our results.

Proposition 1.3.2 A holomorphic function f : D — C belongs to H? if and

only if
1 27

— it) |2
0<1:El 2 ’f (re )’ dt < o0.

Proof. As f(z) is a holomorphic function we can write f(z) = > a,z".
Then:

2
1 27T| ( )’ dt = 1 o i ( it)n dt J‘27T i n 1 int dt
R an (re = an,”r ———€ .
2m 0 271— n=0 0 n=0 v 2m

Using the Parseval’s identity for the orthonormal basis (\/%emt)nez of L2([0,27]):

27| © 1 2 0 2r 7 2
a ,rn 61nt dt — J eth AT ezntdt
‘L Zzlo " v 2m j;oo 0 Z "
1 0 27 [e0] 2 1 [e¢]
Y . 2,.2n
= 5 Z f et Z aprtemtdt| = 2 Z |27ranr”} Z |an|*r=".
(277) j=—o0 |Y0 n=0 (27T n=0 n=0

Finally, taking the supreme we obtain:

sup Z jan|?r®" = lim Z jan>r®" = [ f].  ®

o<sr<1 n—=0
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1.4 Spectral theory

In the present work we will use some results about hypercyclic operators in
terms of its spectrum. In order to get a better understanding of these results, in
this section we will present some basic results of functional analysis regarding
the spectral theory.

Definition 1.4.1 Let X be a complex Banach space X and let T be an operator
on X. The spectrum o(T) of T is defined as

o(T)={AeC; A —T is not invertible}.

Moreover, each 0 # x € X satisfying Tx = Ax is an eigenvector for T corres-
ponding to .

The point spectrum o,(T) is the set of eigenvalues of T'.

The number r(T') := supPxe, (1) |A| is called the spectral radius of T

For the spectral radius we have that

_ 1 n|1l/n
K1) = T |71

Theorem 1.4.2 (Riesz decomposition theorem) If o(T) = 01(T) v 02(T),
where o1 and o9 are two disjoint non-empty closed sets, then there are non-
trivial T-invariant closed subspaces My and My of X such that X = My @ M,

o(T| M) =01 and o(T | M) = o9.

Theorem 1.4.3 (Point spectral mapping theorem) Let f be a holomor-
phic function on an open neighborhood O of o(T) that is not constant on any
connected component of O. Then

Up(T) = f(op(T)).



Chapter 2

Linear Dynamical Systems

In this chapter we present some definitions and results about linear dynamical
systems. The theory of dynamical systems studies the behaviour of evolving
systems and is used in a wide variety of fields ranging from biological or medical
modeling to engineering. All the results presented in this chapter can be found
in [14].

Definition 2.0.1 (Discrete dynamical system) A discrete dynamical sys-
tem is a pair (X,T) consisting of a metric space X and a continous map
T:X - X.

As we are interested in the evolution of the system starting with a certain initial
vector xg, we will define the iterates T™ : X — X, n = 0 by the n-fold iteration
of T:

TV =To..oT n times

with TY = I the identity operator on X.

Definition 2.0.2 Let T : X — X be a dynamical system. For x € X we call:
orb(z,T) := {x, Tz, Tz, ...}

the orbit of x under T.

An interesting notion in the dynamical systems theory is the concept of conju-
gacy.

Definition 2.0.3 Let S:Y - Y and T : X — X be dynamical systems.

(a) Then T is called quasiconjugate to S if there exists a continuous map ¢ :
Y — X with dense range such that T o ® = ® o §.

(b) If ® can be chosen to be a homeomorphism then S and T are called conju-
gate.

15
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Conjugacy is an equivalence between dynamical systems, and conjugate (or
quasiconjugate) dynamical systems have the same dynamical behaviour. This
motivates the following definition.

Definition 2.0.4 We say that a property P for dynamical systems is preserved
under (quasi)conjugacy if a dynamical system S has property P then every
(quasi)conjugate dynamical system T has also property P.

Definition 2.0.5 A dynamical system T : X — X is called topologically tran-
sitive if, for any pair U,V of nonempty open subsets of X, there exists some
n =0 such that T"(U) NV # .

Proposition 2.0.6 Topological transitivity is preserved under quasiconjugacy.

Another important property in dynamical systems is the notion of mixing op-
erators.

Definition 2.0.7 A dynamical system T : X — X 1is called mizing if, for any
pair U,V of nonempty open subsets of X there exists some N = 0 such that

T (U)nV # &, for alln = N.
Proposition 2.0.8 The mixing property is preserved under quasiconjugacy.

The following classical theorem due to G.Birkhoff states the equivalence between
topological transitivity and the existence of a dense orbit.

Theorem 2.0.9 (Birkhoff transitivity theorem). Let T be a continuous
map on a separable complete metric space X without isolated points. Then the
following assertions are equivalent:

(i) T is topologically transitive;
(ii) there exists some x € X such that orb(x,T) is dense in X.

If one of these conditions holds then the set of points in X with dense orbit is
a dense Gg-set.

There exist different notions of chaos. In this work, we will consider Devaney
chaos [8]. Before introducing the definition of a Devaney chaotic dynamical sys-
tem we will define the property of sensitive dependence on the initial conditions.

Definition 2.0.10 (Sensitive dependence on initial conditions) Let (X, d)
be a metric space without isolated points. Then a dynamical system T : X — X
s said to have sensitive dependence on initial conditions if there exists some
0 > 0 such that, for every x € X and € > 0, there exists some y € X with
d(z,y) < € such that, for somen =0, d(T"x,T"y) > 0. The number ¢ is called
the sensitivity constant for T'.

Definition 2.0.11 (Devaney chaos-preliminary version) Let (X,d) be a
metric space without isolated points. Then a dynamical system T : X — X 1is
said to be chaotic (in the sense of Devaney) if it satisfies the following conditions:
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(i) T has sensitive dependence on initial conditions.
(ii) T is topologically transitive.
(ii) T has a dense set of periodic points.

In 1992 Banks et al [3] demonstrated that sensitive dependence on initial condi-
tion in the Devaney’s definition of chaos is implied by the other two conditions.

Theorem 2.0.12 (Banks-Brook-Cairns-Davis-Stacey). Let X be a metric
space without isolated points. If a dynamical system T : X — X is topologically
transitive and has a dense set of periodic points then T has sensitive dependence
on initial conditions with respect to any metric defining the topology of X .

The previous theorem allows to drop the condition of sensitive dependence from
the definition of Devaney chaos.

Definition 2.0.13 (Devaney chaos) A dynamical system T : X — X is said
to be chaotic (in the sense of Devaney) if it satisfies the following conditions:

(i) T is topologically transitive.
(i) T has a dense set of periodic points.

Proposition 2.0.14 Devaney chaos is preserved under quasiconjugacy.

2.1 Linear dynamics

In this work we will focus our study in linear dynamical systems, that is, dy-
namical systems that are defined by linear maps.

Definition 2.1.1 (Linear dynamical system). A linear dynamical system

is a pair (X, T) consisting of a separable Fréchet space X and a linear operator
T:X—->X.

In the context of the dynamics of linear operators, the property of having a
dense orbit has its own name.

Definition 2.1.2 (Hypercyclicity). A linear operator T : X — X is called
hypercyclic if there is some x € X whose orbit under T is dense in X. In such
a case, T s called a hypercyclic vector for T. The set of hypercyclic vectors for
T is denoted by HC(T).

Proposition 2.1.3 Hypercyclicity is preserved under quasiconjugacy.

In the next result, we reformulate Birkhoff’s transitivity theorem in the context
of linear dynamics.

Theorem 2.1.4 (Birkhoff transitivity theorem in linear dynamics). A
linear operator T' on a separable Fréchet space X is hypercyclic if and only if it
is topologically transitive. In that case, the set HC(T') of hypercyclic vectors is
a dense Gg-set.
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This allows us to rephrase the definition of chaos in the sense of Devaney in the
context of linear dynamics.

Definition 2.1.5 (Linear chaos) An operator T on a separable Fréchet space
X is said to be chaotic (in the sense of Devaney) if it satisfies the folloeing
conditions:

(i) T is hypercyclic.

(ii) T has a dese set of periodic points.

2.1.1 Chaos criteria

In the following lines we recall some classical criteria for Devaney chaos. If
nothing else is said we will assume 7' : X — X to be a linear operator on a
separable Fréchet space. The following lemma will be useful in order to achieve
one of the most important chaos criteria, the Godefroy-Shapiro criterion.

Lemma 2.1.6 Let T be a linear operator on a separable Fréchet space X. Then
the set of periodic points of T is given by

Per(T) = span{r € X : Tz = e* 'z for some a € Q}.

Proof. If Tz = e®™'x with a = p/q, p € Z and q € N. This implies that 7?9z =
pTi

ea My —e
Q} < Per(T).

Now for the other inclusion let us suppose that x € Per(T) such that T"z = x.
We can decompose the polynomial z” — 1 into a product of monomials;

2pmi aTi

x =z, 80 x € Per(T) and span{x € X : Ta = e*™x for some « €

2P —1=(z=X)(z—=A)...(z — Ap)

where \;,i = 1,2,...,n are the roots of unity and therefore for ¢ = 1,2,....n,
Ai = e™ for some a; € Q. Since all the roots are different, we can define a
basis of the space of polynomials of degree strictly less than n as {p1, p2, ..., pn}.
Where p;(2) = [];4,(z = Aj), 1 < i < n. In particular, there are 3; € C,
i =1,2,...,n, such that:

1= Bipi(2)-
i1

Since T is a linear operator when we replace z by T we get:
n
1= Bipi(T).
i=1

Therefore we have that @ = Y, | B;y;, where y; = p;(T)z for i = 1,2,...,n.
Now since (z — A;)pi(z) = 2™ — 1, we have that (T'— \;)y; = (T™ —I)x = 0. So
Ty; = \iy; = e*™y; and therefore z € span{r € X : Tz = e*™iz for some a €

Q. m
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Theorem 2.1.7 (Godefroy-Shapiro Criterion). Let T be an operator. If
the subspaces

Xo = span{x € X : Tz = Az with \ € D}
Yy := span{x € X : Tx = Az with A\ € C\D}
Zy = spanf{z € X : Tz = ™'z with a € Q}

are dense in X then T s chaotic.

Proof In this proof we first show that if the subspaces Xy and Y, are dense in
X then the operator T is hypercyclic. For that purpose let U,V be a pair of
nonempty open sets of X. Assuming X, and Y; being dense in X then there
exist zg € Xg and yg € Yy such that zg € Xo[\U and yg € Yo( V. Thereby
these vectors can be expressed as:

m
o = Z AT
k=1

J
Yo = . btk
k=1

where Tz, = M\exg with [ M| < 1for k =1,...,m and Ty, = pryr with |ug| > 1
for k =1,...,J. Now let us define the sequence {u,}, as:

|
Uy = 2 b — Y-
i1 Hk

Tt is clear that {u,}, < Yy and also that T™u,, = yo. Furthermore, we observe
that since |ux| > 1, the sequence {u,}, converges to 0 in the norm of X. So
as U is a nonempty open set of X and zg € U, there exists n; € IN such that
xo + u, € U for all n = ny. It is also easy to observe that:

m
Tz = Z ARALT-
k=1

Due to the fact that [A;| < 1 for k = 1,...,m, then the sequence {T"zo}nen
converges also to 0. Now since V is a nonempty open set of X and yg € V
there exists some ny € IN such that 7"z + yg € V for all n = ny. So taking
N = max{ny,ns} we have that for all n = N:

xo+u, €U and T(x+4u,) =T"xz+yeV.

This shows that T' is mixing and therefore hypercyclic. Now by lemma 2.1.6,
the set Z; is the set of periodic points of T, so if Xy and Y, are dense and
furthermore Z; is dense, T" is chaotic. =W
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The following theorem provides another criterion for chaos that will be based
on the Godefroy-Shapiro criterion. Nevertheless, two definitions are required.
The first one refers to a function that links the eigenvalues of an operator T
with its eigenvectors.

Definition 2.1.8 (FEigenvector field). Given a lineal operator T : X — X
on a complex Banach space X, a function E: A — X, A c C is an eigenvector
field of T if E(X\) € ker(AM —T) for any A€ A and

span{E(X) : A e A}
is dense in X.
The second one is the definition of a weakly holomorphic map.

Definition 2.1.9 (Weakly holomorphic map). Given a non-empty open set
UcC, the map G : U — X is said to be weakly holomorphic on U if for any
y € X*, the composition yo G : U — C is holomorphic.

Theorem 2.1.10 (Figenvalue criterion). Given an operator T : X — X on
a complex Banach space X, if U < C is a connected nonempty open set such
that UNT # & and G : U — X is a weakly holomorphic eigenvector field, then
T is chaotic.

Proof. By the Godefroy-Shapiro criterion 2.1.7 we need to show that:

X :=span{z € X : Tx = \x with A € D}
Xy :=span{x € X : Tx = Az with \ € C\D}
X3 :=span{z € X : Tz = ™z with a € Q}

are dense in X. In order to do this, since U is a nonempty open connected
subspace of C and U n T # 0, let us define the sets:

Ulz{Uﬁ]D},
UQZ{UOC\E},
U3=Um{ea“,aeQ}.

By the corollary of the Hahn-Banach theorem 1.1.11, a subspace M of a
Banach space X is dense in X if and only if any continuous linear functional
x* that vanishes on M also vanishes on X. In the context of our problem, the
subspaces X7, Xo or X3 are dense in X if and only if given j € {1,2,3} and
for any y € X*, the equality (x,y) = 0 for every x € X, implies {z,y) = 0 for
all z € X. Now, if y € X* is a functional that vanishes on X7, X5 or X3 the
holomorphic map yo G vanishes on Uy, Uy or Us that are sets with accumulation
points in U. This implies that the composition vanishes on all the domain U so
y o G = 0. Furthermore, as G is an eigenvector field,

span{G(\) : A e U}
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is dense in X. So y is a functional that annihilates in a dense subspace of X
and therefore y = 0 and finally X7, X5 or X3 are dense in X. W

The following theorem is a criterion of chaos for operators in the complex se-
quence space 7.

Theorem 2.1.11 Let X be one of the complex sequences spaces P, 1 < p < o0,
or co. Moreover, let ¢ be a nonconstant holomorphic function on a neighborhood
A c D, then the following equivalence holds:

(i) ¢(B) is chaotic.

(it) ()T # &.
(iii) ©(B) has a nontrivial periodic point.

Proof. (ii) = (i). Let us observe that the eigenvectors of B are the
nonzero multiplies of the sequences of the form

ex = (MAZ N3, L)

with |A] < 1 being the condition that ensures that ey € X.
Furthermore, for any A < D that has an accumulation point on the unit disc,
the set

span{ey : A € A}

is dense in X. To prove this claim, it is useful to use the corollary of the Hahn-
Banach theorem 1.1.11. In the context of our claim, span{ey : A € A} is dense in
X if and only if any continuous linear functional that vanishes on each ey, A € A
also vanishes on X. Now given a linear functional z* € X* that vanishes on each
ex, A € A, via the canonical representation, there exists a sequence (y,), € ¢4
with % + 1% = 1 such that:

0
z¥(en) = (ex, ™) = Z yp A", for all A e D.

n=1

Nevertheless, since (y,,), € €7 then it is clear that the sequence is bounded so
z*(ey) defines a holomorphic function on the unit disk which vanishes on a
subset with an accumulation point. Via the identity theorem for holomorphic
functions the holomorphic function z*(ey) vanishes also on the unit disk D,
which implies that each y,, is zero and therefore * = 0. So every functional x*
that vanishes on each ey, A € A also vanishes in X and therefore span{ey, A € A}
is dense in X.

Now, for any A € D we have that

o0 [}
o(B)ey = Z a,B"e) = 2 anAex = p(Nex
n=0

n=0



Linear Dynamical Systems 22

so each ey is also an eigenvector of ¢(B) associated with the eigenvalue @(\).
By the Godefroy-Shapiro criterion if the subspaces:

Xo =span{z € X : o(B)r = Az with |[A\| <1}
Yo =span{z € X : o(B)x = Az with |\ > 1}
Zy =span{z € X : o(B)x = ™z  for some a € Q}

are dense in X then (B) is chaotic. Nevertheless, to show the implication
(ii) = (i) we will show that the subspaces:

X{, = span{ey : p(Bey = (Ney  with [p(N\)| < 1} < Xp
Yy = span{ey : ¢(B)ex = p(N)ex  with [p(\)| > 1} = Yy
p(Nex  with ¢(\) being a root of unity } < Zj

A
A

)
7\ = span{ey : ¢(B)e

are dense in X and therefore ¢(B) is chaotic. Now since nonconstant holo-
morphic functions are open mappings, the condition (ii) shows that {\ € D :
lp(A)] < 1} and {\ € D : |p(A\)| > 1} are nonempty and open and therefore
contain an accumulation point in D. So both are subsets of D containing an
accumulation point in D and by the claim they are dense in X. Now to show
that Z{ is dense in X let us observe that condition (ii) ensures that there exists
a sequence (A\p), €Y < D being Y a relatively compact subset of D such that
©(An) is a root of unity for all n € IN. As every sequence on a relatively compact
in a metric space converges in the space, then it is clear that the set {\,,n € IN}
has an accumulation point in IN and therefore Z|, is dense in X.

(i) = (iii) is trivial by definition of Devaney chaos.

(iii) = (ii). By condition (iii) there is some point = # 0 from X and some
N > 1 such that ¢V (B)x = ¢(B)Nz = x. This implies that 1 € op(oV(B)),
the point spectrum of ¢(B)Y. Since ¥ is a nonconstant holomorphic function,
by the point spectrum theorem 1.4.3 it follows that op(¢™ (B)) = ¢ (op(B)).
So 1 = ¢™()) for some \ € op(B). Recall that op(B) = D and let us assume
by reductio ad absurdum that ¢(D) € D. Then it is clear that ¢V (D) < (D),
leading us to a contradiction with the fact that ™ (\) = 1. So p(D) ¢ D and
by the open mapping theorem for nonconstant holomorphic functions it follows
that (D) T. N

As a consequence of this last theorem, the next criterion for chaos will be useful
in the analysis of many non-local difference operators.

Theorem 2.1.12 Let be (*(INg) and Ty : £2(INg) — £2(INg) be given by

Tyu(n) = Z b(j)Bu(n), mne€ Ny,
j=0



Linear Dynamical Systems 23

where B denotes the backward shift operator. Let also ¢y : C — C be given by
w .
eu(2) = Y b(5).
§=0

Then the following assertions are equivalent.
(i) Ty is chaotic.
(ii) ep(D)T # &.

Proof. Let us observe that ¢,(B) = T}. Since b e 01 (INp) it is clear that ¢ is
holomorphic on a neighborhood of D and therefore the assertions are equivalent
as a direct consequence of theorem 2.1.11. W






Chapter 3

Toeplitz operators

3.1 Toeplitz operators

Toeplitz operators were introduced by Otto Toeplitz and they are one of the
most studied operators in the Hardy space H?. On this space, via the identifi-
cation of H? with £2, the Toeplitz operators can be represented as matrices that
have constant diagonals, the so called Toeplitz matrices. A classical reference
where all the following results can be found is [5].

Definition 3.1.1 The Toeplitz operator with symbol ¢ € L*(T) is defined as the
operator in H?, Ty, : H?> — H?, such that Ty(f) = P(My(f)), f € H?, where
My is the multiplication operator by ¢ (My(f) = ¢+ f) and P : L*(T) — H? is
the Riesz projection.

If we write
O(z) = ). anz" € L?(T),
neZ
given f(z) = >0 b,z" € H*(D), we can write (Tsf)(z)
the sequence (¢, ), is obtained as the convolution of a =
follows:

= Zf=0 cn 2", where
(an)n with (by), as

n

en = (a*b), = Z ajbn,—j, mneNg.

j=—o

Considering the equivalency between H2(ID) and ¢2, the Toeplitz operator can
be represented in matrix form as an infinite matrix with constant diagonals:

ap a-1 a-2 aG-3 ... bo
al Qg a_1 Qa_9 e b1
_|a a a a—q ... b
(Cn)n = 2 1 0 1 : 2. (31)
as a9 aiq aon . b3

25
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In case that ®(z) = Y}, ., a,2™ is such that (a,), € £*(Z), then by the Young’s
convolution inequality:

la b2 < [lafy - [b]2 < o

and it follows that Ty is a well-defined bounded operator on £2(INg).

As we are interested in the dynamical behaviour of these operators, the study
of the chaos for Toeplitz operators will be always referred to the study of the
conditions on the symbol of the Toeplitz operator that leads to a chaotic be-
haviour. The next proposition will show a family of Toeplitz operators that are
not chaotic. In order to prove this result, we will first need to introduce the
following lemma.

Lemma 3.1.2 Let T be a hypercyclic operator on a Banach complex vector
space X, then its adjoint operator T* has no eigenvalues. Equivalently, if the
adjoint T* of an operator has eigenvalues then the operator T cannot be hyper-
cyclic.

Proof Let x € X be a hypercyclic vector for T. By reductio ad absurdum let
suppose that T* has an eigenvalue \ € C associated to the eigenvector z* € X*

T*z* = \z*
with * # 0. Then by definition of adjoint operator it is verified that
{x, T*z*) = Tz, z*)
and therefore for any n > 0:
(T, x*) = {x, (T*)"z*) = \"{(x, *).

Now since x is an hypercyclic vector of T, by definition we get that the set
{T"z} e is dense in X. Moreover since x* # 0 is a continuous functional it is
clear that

{(T"2,2%)}nen
is dense in C. Nevertheless the set
{A" (@, %) }nen

is not dense in C, leading us to a contradiction. So if T is an hypercyclic
operator on X its adjoint operator has no eigenvalues. M

Proposition 3.1.3 If the symbol of the Toeplitz operator is analytic and bounded
on D then the Toeplitz operator is not hypercyclic and therefore is not chaotic.

Proof Let the symbol of the Toeplitz operator Tj be:

o(z) = 2 anz"

n=0
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with sup,,~ |an| < . Since the Hardy space H? is a Hilbert space then there
exists some z* € X* such that 2* < 1+ 0z + 022 + ... = 1 € H?. Now given
f € H? such that f = _,b,2", it follows that

<f7T<;kx*> = <T¢f,$*> = <T¢f’ 1> = apby = <fv%> = <fa% 1> = <f,%$*>

SO Tgx* = apx* and therefore ag is an eigenvalue of T(;‘ associated to the
eigenvector z* «— 1 and by lemma 3.1.2, T, cannot be hypercyclic. W

3.1.1 Tridiagonal Toeplitz Operators

In this section we will characterize chaos and hypercyclicity for a particular
Toeplitz operator, the tridiagonal one. Tridiagonal Toeplitz operators are stud-
ied as generators of chaotic semigrups associated to birth and death processes
in [2] and [1].

Definition 3.1.4 The tridiagonal Toeplitz operator is defined as the Toeplitz
operator Ty : H*(D) — H?*(D) with symbol ¢(z) = a1z + ag + “5*, where
ai,ap,a_1 € C.

Note that if a; is zero, the Toeplitz operator Ty is an anti-analytic operator and
if a_; is zero the tridiagonal Toeplitz operator is an analytic operator and we
have proven that these operators are not chaotic. In this section we characterize
chaos for tridiagonal Toeplitz operators when a; and a_; are not zero. For this
purpose it will be useful the eigenvalue criterion 2.1.10. To do this we will have
to solve the equation Tz = Az in order to find the eigenvalues of the operator.
Now let us note that for f(z) = > a,z" € H*(D):

T.f(z) = zf(z).
On the other hand,

o) - # (L) - 7 (1 S )

Note also that Ty = a_1T1 + apl + a7, so Ty f = Af is equivalent to

X " = Z(f() ~ F(0).

n=1

a,lio) +aof(z) + a1zf(2) = Af(2).

Therefore:
a_1f (0)

Jz) = a122 + (ap — Nz +a_1

Now let us assume that f(0) = 0, this implies that f(z)(a122+(ag—\)z+a_1) =
0 and knowing that f(z) is an analytic function this will lead us to f(z) = 0
for all z € D. Nevertheless, by definition of eigenvector the function f(z) must
be non-zero and therefore for being an eigenvector f(0) # 0. Assuming this
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last condition we can also consider without loss of generality that f(0) = 1,
otherwise if an eigenvector f such that f(0) = a with 0 # a # 1 is associated to
an eigenvalue A every proportional vector is also an eigenvector associated to A
and in particular the proportional vector fi(z) = % (2) is an eigenvector such
that f1 (0) =1.

Another condition for f(z) in order to be an eigenvector is that f(z) must belong
to H?(DD), so necessarily the polynomial gx(z) = a12? + (ag — A\)z + a_; must
have its roots in C\ID. Otherwise the eigenvector function f(z) would have a
singularity in D and would not be analytic. This condition is equivalent to the
roots of the polynomial:

pa(2) i= 220 (1/2) = a_12% + (ap — N)z + a1
being in D. And to do so we will consider the following criterion.
Lemma 3.1.5 (Jury test) Consider the family of the equations for z € C:
22 twz+r= 0,
where w e C and r € (—1,1) € R. For a fized r let us denote:

W,={weC:|z| <1, whenever z*+wz+r=0}

2 2
I
W,=E.=<weC: fe(w) + m(w) <1;.
1+ 1—7r
Proof. Let us consider z; and 25 the roots of the equation for a fixed r, so

22 +wz4r=(2—-2)(z— 2).
The proof is subdivided in three cases.

then

o The first one is when r = 0. This implies that the equation is 22 +wz = 0,
2 2
so the roots will be z; = 0, 29 = —w. Therefore (M) + (M> =

1+7r 1—7r
Re(w)? + Im(w)? = |22]2. So it is clear that:
|22] <1 = |22 <1 < Re(w)? +Im(w)* < 1
and this implies Ey = W.

e The second case corresponds to r € (0,1). We can assume without loss
of generality that z; < z2. An easy computation shows that when r # 0
we have that r = 21 - 2z and 21 + 29 = —w. Therefore there exist ri, 9
and 6 such that z; =71 - e and 25 = 79 - e~ . We can assume r; and 79
to be positive (otherwise another 6 can be chosen in order to verify this
condition). Now we can observe that |z1| < 1 and |22| < 1 if and only if
r1 € (r,1) and r9 € (r,1). Now since:

—w =21 + 23 = (r1 + 72) cos(f) + i(r1 — o) sin(f)
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and
l+r=1+rmro=ri+[1—r1)+rire] >r+[(1—7r)+rre] =

=r+[1-r)+r]=14+r>ri+r

we obtain that if |21 < 1 and |22| < 1 (so w € E,.) then:
Re(w)\ > Im(w) ) > (1t 2 2 r—ro\? . 2
(1—1—7') 1) = i) < 0) + T, ) sin (0) <

< <1 ki T>2cosz(9) 4 (1 - r>251n2(9) — cos?(0) + sin®(0) = 1

1+

and therefore w € W,..
Conversely, if w € W,. then

Re(w) ? Im(w) ? r+ 7o\ 2 r—r\? 2
= 0 0) < 1.
<1+r)+ 1—r T+ cos™(6) + 1—r sin™(6)
Now let us assume without loss of generality r; < 2. By reductio ad
absurdum, if ro > 1 then r; < r < 1 and this implies

ro—ri=21l—ry=21-—r

or reformulating
1—ri1<ro—r.

Also it is verified that
l+r=r+[1—-r)+r]<r+ro—r+r=ry +rg,

so with the above inequalities it is clear that:

(’"1 * ’"2>2cos2(9) 4 (’”1 - ’"2)231112(9)

1+7r 1—r
B k] 20082(9)+ 7_(@_“) 251112(0)
1+7r 1—r
1+r\> 1-r\>
= — =1
<1+r> cos (9)+<1r> sin(0) = 1

which leads to a contradiction, so 7o < 1 and w € E,. We have demon-
strated that in this case E,. = W,..

e The last case would be when r € (—1,0). However, this case can be
reduced to the previous one just taking into account the observation that
iW,=W_,andiE,=FE_.. 1

Nevertheless, as a1,a_1 € C, then the Jury test must be generalized.



Toeplitz Operators 30

Lemma 3.1.6 (Generalized Jury test). The roots of the equation 2> +wz +
re??, with w e C, 6 € [0,27) and r = 0 belong to D if and only if r < 1 and

a2 e\ 2
Re(we™'2) N Im(we™"2) <1
1+7r 1—r '

Proof Let us consider the polynomial p(z) = 2% + (we™"%)z + r. Let us call
q(2) = 22 + wz + re, and note that ¢(ze'?) = p(2)ei?, so p(z) = 0 if and only
if q(zei%) = 0. Applying the Jury test to p(z) and taking into account that
q(z€'%) = p(z) = 0 with |z| < 1 if and only if < 1 and

.0 2 - 0 2
Re(we™"2) Im(we™"2)
= ) 4= <1,
1+7r 1—1r
the lemma holds. W

Now we can apply the generalized Jury test to the polynomial:

1 ag — A a
LR B O S LI
a_q a_1 a_1

1 . . o s .
Note that for a—_lpA(z) having roots in D it is necessary (by the generalized
Jury test) that [2-| < 1. Therefore a necessary condition for the tridiagonal

Toeplitz operator in order to be chaotic is that |a_1| > |ai| > 0.
Let us consider the following ellipse

1, ' Re(z)? Im(z)? _
b {ec'ua1+|a1|>2+<|a1—|a1|>2 1}

and its interior

PR I N

laal+la))?  (Jaa] = |

Also let us consider the interior of the outer parallel at distance one of this
ellipse:
AQ = {ZGC : d(Z,E()) < ].}

In the case that |a_1| + |a1| < 1 the ellipse would have its major axis less than
one. Consequently, in this case we would also consider F' the inner parallel
curve at distance one of E. This set F' is defined through a bijection. So each
point x of E corresponds to a point y of F', where y corresponds to the point
that is at a unit distance from x in the direction of the interior normal vector to
the ellipse at . In figure 3.1.1 we can see an example of an ellipse with major
axis less than 1 and its inner parallel F' at distance 1. As we observe in figure
3.1.1 there is only a connected component of the interior of F' that contains 0,
whose closure will be denoted as A{, and it is represented in the figure as the
blue region.
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Figure 3.1: Example of an ellipse with its major axis less than 1, inner parallel
curve and Aj set.

Lemma 3.1.7 Let aj,a_1 € C with a; = |ay]e?®, a_y = |a_1]e?-1, and

J

61,60_1 € [0,27), O = %. Then there exists A\ with |A| = 1 such that
pa(2) = a_12% + (ap — A\)z + ay has its roots in D if and only if ag satisfies one
of the following cases:

1. If la_q| + |a1| > 1 then age™ € Ay.

2. If la_1| + |a1| = 1 then age™" € Ap\{0}.

3. If |la_1| + |a1| < 1 then age™" € Ap\Aj.

Proof. By applying the Jury test to the polynomial

1 ag — A a
—pa(z) =22 + Mz + =
a_q a_q a_1

we know that its roots are in D if and only if the next inequality holds:

_ 2 _ 2
Re (222eiF2 )" g (m=dei®5)
1

a—1 a—1

R laa] )
(1+ ) (1)
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Now by multiplying |a;|? in the numerator and denominator and simplifying we
obtain:

Re (aoe_w — )\e_“g)g Im (aoe_w — )\e_“g)Q

< 1.
(laa| + la—1])? (lax| = la—1])?
Now let us call by = e~ so the inequality will be
—i0)2 —i0)2
Re(bo—)\e ) Im(bg—/\e ) .
<1

(laa] + la])? (lar| = faal)?

Furthermore, let us call X = Xe~%, so the previous inequality is satisfied for

A e T if and only if M € T, and then we obtain the following inequality:

Re(bo—N)?>  Im(by—N)?

< 1.
(lar| + [a=1])* * (Jar| = [a-1])?

Note that this last inequation is verified if and only if (bg—\') € Ey. This, in turn
is equivalent to having z1, 22 € Ey such that |bg — 21| < 1 and |bg — 22| > 1. To
check this equivalence let assume that there exists X' € T such that (bp—\') € Ep.
Now since Ejy is open, there exist 2] and 2} such that (bg — 27), (bo — 25) € Ej,
|21] < 1 and 2, > 1. Now, if we call z; = (bg — 27) and 2z = (by — 24)
one implication is proven. On the other hand, let us assume that there exist
21, 22 € Eg such that |bg — 21| < 1 and |bg — 22| > 1 and consider the function
f: Ey — R defined by:

f(z) = [bo — 2.

Since Ejy is a connected set, the image of the function f(Ep) is an interval in
R that has points greater and smaller than one, so necessarily contains one. So
there exists some z € Ey such that |by — z| = 1 and taking z = by — X’ the other
implication holds.

Therefore, there exists A € T such that py(z) has its roots in D if and only if
there exist some z1,29 € Ey satisfying |bp — 21| < 1 and |bg — 22| > 1. The
equivalence with the cases of ag will be shown:

1. If ‘(11| + |a_1\ > 1 then b() € Ao.
In this case the major axis of the ellipse F is greater than one so by the
definition of Ay (interior of the outer parallel at distance one to E) it is
clear that there exist z1, 29 € Ey such that |bg — z1] < 1 and |by — 22| > 1.
In figure 3.2 we see in blue an ellipse with major axis greater than one
and in green the outer parallel curve.

2. If \a1| + |CL_1‘ =1 then bo € Ao\{O}
In this case the major axis of the ellipse Fy is equal to one so by the
same reason as in the previous case there exist some 21, 25 € Ey such that
|bp — z1] < 1 and |bg — 22| > 1. In figure 3.3 we see one example of an
ellipse (in blue) with major axis equal to 1 and its outer parallel curve.
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Figure 3.3: Example of case 2
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T

3. If |CL1‘ + |a,1| < 1 then bo S Ao\A6
Since by € Ag and Ay is the outer parallel of the ellipse at distance one,
then we can find z1 € Ey such that |bg — 21| < 1. Furthermore as by ¢ Aj,
we can find some 23 € Ey such that |bg — 22| > 1. In figure 3.4 we can see
an example of an ellipse (in blue) with major axis strictly less than one
and its outer (red) and inner (green) parallels. W

So far, it has been characterised the existence of A € T such that the A-
eigenvector of Ty belongs to H 2(D). Nevertheless, we will see in proposition
3.1.9 that this is equivalent to the existence of an open subset B < C with non
empty intersection with T such that fy € H?(D) for any A\ € B, where fy are
the eigenvectors of the tridiagonal Toeplitz operator Ty. The next lemma will
be useful for the achievement of this result.

Lemma 3.1.8 Let p : C — C be the polynomial given by

pp(2) = az® + bz +c
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Figure 3.4: Example of case 3

with roots z1 and zy. Then for each € > 0 there exists § > 0 such that every
polynomial of the form py, = az? + bsz + ¢ with |b— bs| < § have their roots 21,
and za; such that |21 — z15| < € and |z — z95| < €.

Proof. It is well known that:

—b 4+ Vb?% — dac

2a
—b —+/b?% — 4ac
S R
and also:
—bs + /b3 — dac
s = 2a
—bs — 4/b3 — dac
225 = .
2a

We define the complex functions f; : C — C, i = 1,2 as follows:

—2+ V2% —dac
filz) = 2t o dae

2a
—z — /22 — 4dac
o) = =5

With these definitions it is verified f1(b) = 21 and f2(b) = z2. Furthermore, since
both f; and fo are continuous, given the open balls B(f1(b),e) = B(z1,¢€) and
B(f2(b),€) = B(za,¢€) there exist §; and d2 such that f;(B(b,d1)) < B(z1,€) and
f2(B(b,d2)) < B(z2,€). Taking now = min{dy, d2} the lemma holds. |
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Proposition 3.1.9 Let {pr}rec be the set of complex coefficient polynomials
given by pa(z) = a_122 + (ag — Nz + a1. If there exists \g € T such that
the roots of px, belong to D, then there exists an open set B < C such that
BT # & and for every A € B the roots of py belong to D.

Proof. Let denote z; and zy the roots of the polynomial py,, and let € be such
that B(z;,€) € D i = 1,2. By the previous lemma 3.1.8 there exists § such that
A= Xo| < § and the roots of py belong to B(z;,€) for i = 1,2. So it is clear that
there exists an open set B = B(\g, ) such that for every A € B, the roots of py
belong to D as we wanted to prove. ]

With this last proposition we have demonstrated that the conditions in lemma
3.1.7 are equivalent to the existence of an open set B — C of eigenvalues with
non empty intersection with T. The next theorem shows that the eigenvec-
tors associated to the set B will define an eigenvector field that satisfies the
conditions of the eigenvector field criterion 2.1.10.

Theorem 3.1.10 Let B < C be an open subset with non empty intersection
with T and suppose that fy € H2(D) for any A € B, where

N(z) =

a_—1
a1z + (ap — N)z+ a1

Then the map G : B — H?(D),G(\) := fx, is weakly holomorphic and
span{G(\) : X € B} is dense in H*(ID).

Proof. Let g be a function in H?(D). Applying the Hahn-Banach theorem
1.1.9 in the form of the corollary 1.1.11, the subspace span{G(\) : A € B} is
dense in H?(D) if and only if (fy,g) = 0 for all A in B implies g = 0 (recall that
H?(D) is a Hilbert space and therefore g € (H2(ID))*).

Let us consider H : B — C defined by H(X) := {fx,g). This defines an
holomorphic function on B given by

H(\) = — . 0Ydh, wh =a122 + (ag— Nz +a_1.
N =30 | S, where iy(:) = 012+ (a0 = )z + 0
Now suppose that H(A) = 0 for all A € B. This implies that all the derivatives
will also vanish for all A € B and in particular at a certain ¢* € T B, so we
get:

AN, oy 1 (7 e 0 heme gy o O
) = 5 | —ash )0 0, where h(0) i~ —dgle),
and also:

d*(HN) ey L [T n _ e
T, )*EL (@(0)" hO)d0 0. where B(0) = . (32

Now let us define ¥(z) := ﬁ(z). Since ggia (2) is a polynomial with its roots in

C\D, then ¥(z) is an analytic function in an open disc U > D. We state that
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U(z) is univalent in a neighborhood of D. To prove this, let us take z, zo # 0
such that ¥(z1) = ¥(z3). Then we have:

Z1 z2

Geia(21) Qi (22)

if and only if it is verified
21 " Qeia (22) = 22 - Qein (21),
and consequently
a12175 + (a0 — €")z120 + a_121 = a12227 + (ag — ') 2120 + a_1 2.
Developing this last identity we get
alzlzg +a_1z1 = alzng +a_122

and simplifying

so finally
a_1 Z97Z1
Recall that |a_1| > |a1], and then we have:

1
1> |a1| =

la1]  Jzize|

It is clear that we can find a neighborhood A of D in which for every pair
z1,%2 € A, it is verified that ‘Zl—lzzl > 1 and therefore ¥(z) must be univalent in
A.

Since ¥(z) is univalent in A there exists ¥=! : W — A, where W := W(A) is
a simply connected open set. Let us set H(M) := {f : M — C; f is analytic}
for an open set M < C. The map Cy : H(W) — H(A) defined by f — fo W
is an isomorphism since ¥ is univalent in A. It is known that the polyno-
mials {1,z,22,...} are dense in H(W) and therefore Cy (span{l,z,2?,...,}) =
span{1, ¥(2), ¥%(2),...,} is dense in H(A). Since H*>(D) = H(A), then Y :=
span{1, ¥(2), ¥%(z2),...,} is dense in H?(D). Finally, since the identity (3.2)
holds then h(z) L Y and by the Hahn-Banach theorem h(z) = h(z) = 0, leading
to state that g(z) = 0, as we wanted to demonstrate. W

All the previous results can be summarized in the following theorem.

Theorem 3.1.11 Let T : H*>(D) — H?(D) be a Toeplitz operator with symbol
the function ®(z) = afl +ag + a1z, where a_y = |a_1]e?-1,a; = |ay|e?, with
01,0_1 €[0,27), and ag € C. Set 6 = 0129’1 , and let Ay, Ay be the sets defined
in lemma 3.1.7. Then the following assertions are equivalent:
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(i) 0 <la1| <la—1| and ag satisfies one of the following conditions:

(a) If a_1| + |ai| > 1 then age € A,.
(b) If la_1| + |a1| = 1 then age®® € Ap\{0}.
(c) If la_1| + |a1| < 1 then age®® € Ag\Aj.

(i1) T satisfies the Figenfield criterion.
(iii) T satisfies the Godefroy-Shapiro criterion.
(iv) T is Devaney chaotic.

We have just characterized Devaney Chaos for tridiagonal Toeplitz operators.
Nevertheless, Baranov and Lishansky [4] proved chaos for Toeplitz operators
with a more general symbol form.

3.1.2 Toeplitz operators with a more general symbol form

In [4], the authors provide sufficient and necessary conditions that ensure hy-
percyclicity for the Toeplitz operators with symbol ®(z) = p(1) + ¢(z), where
p is a polynomial and ¢ is a bounded holomorphic function. One of the main
results of their article corresponds to the specific case in which p(z) = 1 where
veC.

Theorem 3.1.12 Let ye C, let o € H® and let ®(z) = L 4 ¢(2).
(a) If T : H> — H? is hypercyclic then

(i) the function ® is univalent in D\{0};

(ii) D(C\@(D)) # and (C\D)((C\®(D)) # .

(b) If p € A(D), that is, the space of bounded analytic functions in the disk that
extends to continuous functions in the closure, and:

(a) the function ® is univalent in D\{0};
(b) DO(C\®(D)) # and (C\D) ((C\&(D)) # ;
then T 1s hypercyclic.

In [4] there are also results regarding the spectrum of the operator Tg linked to
the concept of N-valence.

Definition 3.1.13 (N-valence of a function). Let A c C, a function ® :
A — C is said to be N-valent in A if for all w € A the equation ®(z) = w has
at most N solutions in A.
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Proposition 3.1.14 Assume that ® is N-valent in D. Then

o(Tg) = C\®(D,N), C\®(D)c o(Ts).

If X € C\®(D) then the corresponding eigenspace has dimension N and the
etgenvectors are given by

A(z) = zNé((i()Zz AN

where q is an arbitrary polynomial of degree at most N — 1.
In particular, for univalent ®, we get that

1

Az) = 2®(2) — Az

is a A-eigenvector of Ty for any X € C\®(D).

So far, hypercyclity on Toeplitz operators with symbol of the form ®(z) =
o(z) + 1, ¢ € H*”, v € C has been characterized. Nevertheless, in [18] the
authors reached chaos under the same hypothesis.

Theorem 3.1.15 Let ®(z) = 2 + ¢(z) with vy € C and ¢ € A(D) satisfying
(i) the function ® is univalent in D\{0};
(i) D(C\2(D)) # & and (C\D)((C\@(D)) # &.

Then the Toeplitz operator Ty : H?> — H? is Devaney chaotic.

Proof. By the theorem 3.1.12, Ty is a well-defined hypercyclic operator in H?.
Moreover, this theorem shows that

M) = =3

is a A-eigenvector of Te for any A € C\®(D). By assumption we get that
G(A) := fy is a weakly holomorphic map on an open set U that intersects T.
Baranov and Lishansky proved in [[4],theorem 1.1], that the map G satisfies the
condition:

span{G(\) : Ae U} is dense in H?

and therefore by the eigenvector field criterion 2.1.10, Ty is Devaney chaotic.
[



Chapter 4

Non-local operators

In the last two decades there has been a growing interest in applying fractional
or non-local operators in the field of mathematical modeling. That is why many
researchers have focused their interest on the study of the dynamic behavior of
such operators [13, 11]. In this chapter we will present some definitions from
discrete fractional calculus. All the results presented throughout this chapter
can be found in [18] and [12].

4.1 Nonlocal operators

For a real number a, we denote
N, :={a,a+1,a+2,..},

and we write IN; = IN. Let us consider X a complex Banach space. We will
denote by s(IN,, X) the vector space of all vector-valued sequences f : N, — X.

Definition 4.1.1 (Forward Euler operator). Let f : N, — X be a vector-
valued sequence on a compler Banach space X. The forward Fuler operator,
denoted by A, is defined as the operator on s(IN,) given by the formula:

Aof(t) = f(t+1)— f(t), teNN,.

Furthermore, for m € Ny, the m-th order forward difference operator A7 :

$(IN,, X) — s(IN,, X) is defined recursively by
AT = Ao A,
For instance, for any f € (INg), we have
m _ < [(m m—j .
Aof(n)—2<->(—1) f(n+37), nelNo.
j=o Y
We will usually denote Ag = A and AY = I, where I, : s(IN,, z) — s(IN,, 7) is
the identity operator.

39
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Definition 4.1.2 (Translation operator). The translation operator by a €
R, denoted as 1, : s(Ny, X) — s(INg, ) is defined as:

Tag(n) :=g(a+n), nelN.

Let us observe that 771 = 7_, and Tapp = Tq 0 Tp. Furthermore, it is easy to
check that:

m -1 _ -1 m
Aot =1, o Aj.

For any « € R\{0}, we also define the function k%(n) : Ny — R as:

ala+1)..(a+n— 1).

E%(n) =

In case a = 0, we set k(n) = eg(n), being e;(j) the Kronecker delta. Note that
using the properties of the Euler gamma function, for o € R\{—1,-2,..}, we
have

I'a+n) ala+1)..(a+n—1)T(a)

D(@)(n+1) L(a)n!
ala+1)...(a+n—-1)

= o = k”‘(n), ne ]N().

The following proposition is a useful property of the above function.

Proposition 4.1.3 The following generation formula holds

; ﬁ (4.1)

Proof. We know that for ¢ € R\INy and |z| < 1:

(1+2)7 = i (Z)w

n=0

From the properties of the Euler Gamma function we also obtain for 5 € R\INy
and j € Ng:

ra+s) . TBB r(8)8
_BB-DB-2.B-jt1) _ (6)
7! i)

So we can write:

1+w)? =" (j) Z;) ”ﬁ) w', BeR\No,|w| < 1.
iz

= FrA+/)r(B—-43+1)
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If we use the following expression with o = —8 and z = —w we obtain:

—a I'l-q) i
-9 =% Z e e

whenever |z| < 1 and a > 0, so the coefficients in the development of (1 — z)~®

are of the form:
I'(l—«)

1+ j)I'(—a—j+ 1)
And now using the identity I'(1 — 2)I'(z) =

(=1).

for z=a+jand z = a we

:am(‘n'z)
get:
I'(1-a)(a) = —
sin(ma)
and
T

Il —a—j(a+j) =

Using the previous identities we obtain:

I'(l—«) (1) = sin(ra) (1 - )
Fr1+j)0(—a—j+1) sin(ma)(—=1) T'(1 + j)T(—a—j + 1)
_ sin(ra)T'(1 — @) 1 ™
T Nl—a—7)TG+1)sin(r(a+j))
1 1 T
M) T(1—a—7)I(G+ 1) sin(r(a + j))
1 1

T T()I(1—a— LG+ 1)F(1 —a—j)(a+j)

(o +j) a

“Targen Y

so the generation formula (4.1) holds, as we wanted to demonstrate. W

Definition 4.1.4 (a-th fractional sum). Let f : Ny — X be a vector-valued
sequence and o > 0. The a-th fractional sum of f, denoted by A= f, is a vector
valued sequence defined by the formula:

n
Z (n—34)f(j), neNo.

Recalling that the finite convolution () between two sequences f and g is defined
by:
(f#9)(n) ==Y f(n—4)g(4), neNg
j=0
then the definition of a-th fractional sum is also equivalent to:

AT f(n):= (k% * f)(n), mneN,.

The next definition generalizes the previous a-th fractional sum.
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Definition 4.1.5 (Nabla a-th fractional sum). Let o > 0. For any positive
real number a, the nabla a-th fractional sum of a function f is:

_ 1 : al
V 7F7§1t_8+1 f()
where t € N, and t* := %

Definition 4.1.6 (Fractional difference operator in the sense of Riemann-
Liouwille). The fractional difference operator in the sense of Riemann-Liouville

A% : s(INg) — s(INg) is defined by
A%f(n) :=AM o AT % f(n), ne Ny,

where m — 1 < o < m, m := [«], the last integer that is greater than or equal
to a.

For instance, for 0 < o < 1 we obtain:

A f(n) = Ao AT f(n) = A (2 B (0~ j)f(.i))

=0
= Y BT A 1= 4)fG) = Y kT (= 4) £ ()
j=0 7=0
=1-a)f(n+1) Z ) (k' (n+1—4) = k' *(n—7)). (4.2)
7=0

Developing the expression k'=%(n + 1 — j) — k!=%(n — j) we obtain:

K+ 1—4) — k' "%(n—j)
_ l-a)(l-a+1)..l-a+n—j) ((I-ao)l-a+1)..l-a+n—j7—-1)

(n+1-J)! - (n—J)!
-l (R )
_a —a)...(l(n—_aj—;-!n—j —1) (n +—1a_j)
_ (o) (‘nal“l'(_j‘)!* n=J) _ E™%(n+1-3j).

Making the substitution of the previous development in equation (4.2) we get:

n+1

A F(n) = (1) f(nt 1)+ Y k(b 1) () = O k() F(n+1—j) (43)

Jj=0 Jj=0
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where in the last identity a change of variable has been made. This last iden-
tity (4.3) corresponds to the Griinwald-Letnikov scheme of approximation with
unitary step for the one dimensional Caputo fractional derivative. In addition
to the definition of fractional difference operator we also define the nabla frac-
tional difference operator. Later, we will see that both the fractional difference
operators are conjugated by the translation operator.

Definition 4.1.7 (Nabla fractional difference operator) The nabla frac-
tional difference operator V< : s(IN,) — s(IN,) of order a > 0 is defined by:

Vaf(t)=Arov (MmO f(t), teN,

where m = [a].

4.2 Transference principle

The following result known as transference principle shows that the fractional
difference operator in the sense of Riemann-Liouville and the Nabla fractional
difference operator are conjugated. This implies that both the operators are at
the same time Devaney chaotic or not.

Theorem 4.2.1 (Transference principle). Let « > 0 and a € R be given.
Then we have
Ta oV = A%oT,.

Proof. By the definition of Nabla a-th fractional sum, for f € s(IN,) we have:
1
I(a)

w a+n 7) 2 Cw
; o i@ty g fla+j) = A o1y f(n),

ToV,* =V, f(n+a)= (n—j+1)°Lf(a+7)

1m:

for all n € INy.
Let f € s(IN,) be given. By the definition of Nabla fractional difference
operator and the previous identities we have:

700 VEF(n) = T4 0 (A 0 V70"0)) F(n) = (AT 0 V5 ")) (n + a) =

< ) DIV M f(nta+ j) =

)1 0V fn + ) =

/—\

I
] Ms ] Mg I3

(T) AT o r fn+ ) =
—(

I
> 3
3

(AT O‘)oTaf)(n) = A%or7,f(n),

for all n € INy and this proves the theorem. W






Chapter 5

Chaos for non-local
operators and numerical
schemes

In this last chapter we will show the conditions under which Devaney chaos can
be ensured for non-local operators and different numerical schemes. The main
references among the chapter will be the articles [18] and [19].

5.1 Non-local operators are chaotic

Let 0 < o < 1. We recall equation (4.3):

n n+1
A%f(n) =1 =a)f(n+1)+ D k™ (n+1=7)f() = > k() f(n+1-j).
j=0 3=0

If we evaluate the previous operator on a generic canonical vector ¢;(n) we get:

n+1

A% (n) = Y k™ (ealn +1 - j).

J=0

The first observation we make is that if n +1 < [ then n +1 — j < [ for all
j=0,1,...,n+1s0o A%;(n) =0. Now if n = — 1 an easy computation shows
that A%e;(I—1) = k~%(0) = 1. Finally if n > [ —1 then we get that n+1—j =
if and only if j = n—1+ 1 so A%(n) = k~*(n — 1+ 1). We can summarize
these observations as follows:

E~%n+1-1) ifn=I
A%(n) =+ 1 ifn=101-1.
0 iftn<i-1

45
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Furthermore, we can also compute the representation of A% in the canonical
basis {e;(n)}n,1en, as the following Toeplitz matrix:

k(1) 1 0 0
e2) ko) 1 0
Fe3) @) o) 1 _ (5.1)
k=2(4) k7(3) k%(2) k(D)
i -« 1 0 0
7a(72a+1) o 1 0
_ 7a(7a+;)(fa+2) 7a(72a+1) o 1
—a(—a+l)(—a+2)(—a+3) —a(—a+l)(—a+2) —a(—a+l)
4 3 2

Theorem 5.1.2 will show that A% is a well defined Toeplitz operator on ¢2(IN)
and exhibits chaos for any 0 < a < 1. In order to achive it we will use the
following lemma of univalence for meromorphic functions stated in [10].

Lemma 5.1.1 Let M, denote the class of functions of the form f(z) = % +
> g anz™ which are regular in 0 < |z| < 1 and satisfy

DHLf(2) n
(Bt =) < W

(n)
where D™ f(z) = % (z"HM) , meWNy. Then M, .1 = M, for all n € Ny

n!
and all functions in M, are univalent.

Theorem 5.1.2 For any 0 < a < 1, the operator A% defines a chaotic Toeplitz
operator on (*(INg) with symbol ®(z) = %

Proof. First we will prove that the fractional difference operator A® is bounded
in 2(INg). Given u € £2(INg), we have by equation (4.3) that

A% = (1 —a)mu+ 1k~ % u,

where 7 is the translation operator by 1. By [23] and [12, Proposition 3.1 (viii)],

we get that:
1 1\\ ¢

so the sequence (k~%(n))nen, € £*.
Now using Young’s inequality and the previous expression (5.2) we obtain:

[A%ul2 < [I(1 = a)mruf2 + |7k~ xuf2 < [(1 = a)||mruf2 + |7k~ [1]luf2 < oo

leading us to assert that A® is a bounded operator in ¢2(INg). Now observing the
expression (5.1) we get that A% is a Toeplitz operator on £2(INg). Comparing the
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expression (5.1) with equation (3.1) we get that the coefficients of the Toeplitz
operator symbol are given by:

a,1=1
an =k *(n+1), ifn=0
a, =0, ifn <0

which leads us to state that the symbol of the operator is:

O(z) = l+

EY( + 1)27.
p; (j+1)=z

L8

Let us denote ¢(z) = 377  k~*(j 4+ 1)27. Using the generation formula (4.1) we

=0
have:
0 _ 0 _ 1
zop(2) = DI ETG+ DT = YTET() — kT(0) = (EOEE L,
j=0 j=0 o
and therefore: i ) .
o) = = -2
So the symbol of the Toeplitz operator A% is:
1 (1—2z)~
D(2) = - ="
() = -+ plz) =

Now we will prove the chaotic behaviour of the operator Te and to do so we use
Theorem 3.1.15. Let first check condition (i), that is, ®(z) = % is univalent

in D\{0}. Using Theorem 5.1.1 we have to show that

(Dn+1q>(z)

_9 <1
Do (2) ) <0, I

An easy computation shows that D'®(z) = % —a(l —a)*"! and taking
z=a+ibwith -1 <1<1and —1<b<1 then it follows that

() o) op (- ) e oot

It is clear that Z <%ff§) - 2) <0 if and only if — (1 —a)? + (o —1)b* —

aa(l —a) < 0 and this last assertion holds since 0 < @ < 1 and —1 < a < 1.
It only remains to check condition (ii) in theorem 3.1.15. To do so, as [—2%,0]
intersects D and C\D, we will check that [-2% 0] < C\®(D). Let us first
compute ®(T):

(1 _ eit)oc

eit

o(T) = { te [—7T77r]} - {ei(m/?*l)*%’)za sin(t/2)® : t e [—w,w]}.
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If we represent the following set for & = 0.5 we obtain the curve of figure 5.1.
In this figure we have also represented the unit disk in shadowed blue. As we
see in figure 5.1, the border between ®(ID) and C\®(D) is represented by a
cardioid, so ®(ID) lies either in the interior of the cardiod or in the exterior.
Nevertheless, observing that ®(0) = o we get that ®(ID) corresponds to the
exterior of the cardioid (in the figure ®(ID) is represented in shadowed orange).
Let us also observe that ®(1) = 0 and ®(—1) = —2“ so it is clear by the shape
of the cardioid that the interval [0, —2%] belongs to its interior and therefore
[0,—2%] n ®(D) = &, also [0, —2%] < C\®(D) as we wanted to prove. N

05

00

I I . A
-1.5 -1.0 -05 0.0 0.5 10 15

Figure 5.1: Representation of ®(T) with o = 0.5.

Let us observe that the symbol of the Toeplitz operator A® coincides with the
symbol of the explicit Euler approximation scheme for the Riemann-Liouville
fractional difference operator [16].

The transference principle 4.2.1 ensures the following corollary.

Corollary 5.1.3 For any 0 < a < 1 and a > 0, the Nabla difference operator
V< is chaotic in £*(IN,).

Proof. It is a direct consequence of theorem 5.1.2 throughout the transference
principle 4.2.1 and the preservation of Devaney chaos under quasiconjugacy
2.0.14. N1

5.2 Chaos for operators related to fractional nu-
merical schemes

In this section we will prove chaos for several operators that are related to
fractional numerical schemes. Throughout the section we will implicitly use the
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notion of Gelfand transform.

Definition 5.2.1 (Gelfand transform). Let b € (*(INy) be a summable se-
quence, we define its Gelfand transform by:

0
0(z) := Z b(n)z", =zeD.
n=0
Time-stepping schemes for fractional operators [16] are defined by a convolution
operator 0¢ : ¢2(INg) — ¢?(INy) given by:
opu(n) := (bxu), ne Ny,

where b € £*(INg) is a real valued sequence implicitly defined by the generating
series:

5(¢) = Y b(n)c", e,
=0

and 6(C) is called the symbol of the scheme. Evaluating the operator J; on a
generic canonical vector e;(n) we obtain:

denn) = Y bln — j)e(s). (5:3)
j=0
One easy observation is that if [ > n then dye;(n) = 0 and if | < n then
oper(n) = b(n —1). We can summarize this observation as follows:
0 ifn<l

Feam) =3 pn_1) itn>1"

Computing the representation of J;' in the canonical basis {e;(n)}r, e, We ob-
tain the following matrix:

bOo) 0 0 0

b(1) b0O) O 0

b(2) b(1) bO) 0 (5.4)
b(3) b(2) b(1

~—
=%
.
(=)
N

In the following paragraphs we will demonstrate that the adjoint operators (J5')*
of some of the time-stepping schemes are chaotic. Nevertheless, to do so we will
need the following lemma.

Lemma 5.2.2 Let 0% : (*(INg) — ¢*>(Ng) defined, as before, by a convolution
operator:
opu(n) := (b*u), neNo,
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in this case the adjoint operator (05 )*u, takes the form:

(09)* Z u(n + j5) Z ), nelNg, (5.5)

where B denotes the backward operator.

Proof. Let us recall that the adjoint operator (d¢)* is defined as the unique
operator satisfying {(05)*u,v) = (u, dgv) for all u,v € £2(INy). Therefore eval-
uating (u, f'v) we obtain

u(mgo(n) = 2, u(n) 2, bn j)v@:ZZ b(n = §)v(3)
"o

(B™u) (7)b(m), v) = () u, v),

[
18

(u, dgv)

3
Il
o
H
<
Il
o

B™u) (7)b(m)

I
s
[
S

3

1 D8
=
3
J’_
M

(=)

ﬁMsa

<.

I
P
s =

3
I
o

as we wanted to demonstrate. W

Applying this last lemma, we obtain that the representation of the adjoint op-
erator (d5)* in the canonical basis {€;(n)}n, e, corresponds to the following

matrix: b(0) b(1) b(2) b(3)
0 b0) b(1) b2) ...
0 0 b0) b1) .| (5.6)
0 0 0  b0) ...

Now let us observe that the symbol of the numerical scheme § coincides with the
Gelfand transform of the sequence b and also coincides with the holomorphic
function that characterizes chaos in theorem 2.1.12. This observation allows
us to consider condition (ii) in theorem 2.1.12 in order to prove chaos for the
following operators we are going to consider.

Let us consider as a first example the backward Euler scheme, whose symbol is
0(¢) = 1 —¢. Comparing with the series (5.3) we get that b(n) = eg(n) —e1(n).
And therefore:

opu(n) =u(n) —un—1), nelNj.

We get that the associated matrix for this operator in the canonical basis is:

1 0 0 0
-1 1 0 0
0 -1 1 0
0o 0 -1 1
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Again by comparison with the series (5.5) and matrix (5.6) we obtain:
(@5)*u(n) = u(n) —u(n +1), neN,

and the associated matrix is:

1 -1 0 O
0 1 -1 0
0 0 1 -1
0 0 0 1

Tt is clear that the symbol §({) = 1 — ( is such that 6(D) n T # 0 so the adjoint
operator of the backward Euler scheme is chaotic by theorem 2.1.12.

Let us now consider the fractional backward Euler scheme with symbol §(¢) =
771 — ()%, for some o > 0 and 7 > 0 the step size of the scheme. By the
generation series (4.1) we get that the symbol of the scheme can be also written

as follows:
5¢) = ro(1 - 2 (2 - )

so we can identify the sequence b, (n) as:

br =77 %(n). (5.7)

Let us observe that with the estimation (5.2), the sequence (k~%(n))nen, belongs
to £1(INg), so it is clear that the sequence (b, (n))nen, also belongs to ¢1(INg).
With identity (5.7), the operator that defines the fractional backward Euler
scheme is given by:

o u(n) = (br xu)(n) = > 7k~ (n — j)u(j)
7=0

and its dual operator is:
o0
Z 7%~ *(§)Blu(n).

It is surprising that the adjoint of the fractional backward Euler operator (75 )*
correspond to the Weil fractional difference operator W¢. The following result
proves that chaos for the Weil fractional difference operator depends on the step
size 7 but not on the fractional order a.

Theorem 5.2.3 For any o > 0, the Weil fractional difference operator is
chaotic on €*(INg) if and only if 0 < 7 < 2.
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Proof. By theorem 2.1.12, W2 is chaotic if and only if 6(ID) n T # 0, and this
in turn is equivalent to the existence of w € T such that w = 77%(1 — 2)®, with
|z| <1 and then |1 —7w'/®| = |z|. This last identity implies that W is chaotic
if and only if 7w'/® belongs to the unity disk with center 1. Nevertheless, this
is satisfied if and only if 0 < 7 < 2 as we wanted to demonstrate. W

Let us now consider the fractional second order backward Euler difference, whose
symbol is given by:

6(¢) =77" (“;’ - 20+ ;@)a =7 @)a (1-0¢)” (1 ~ §>a (5.8)

It was proven in [17] that for this time-stepping scheme, the sequence b(n) is
3 1
b(n) = ieo(n) —2e1(n) + 562(77/)

in case a = 1, and

b = (3) L= i)k

when o # 1. Let us check that b € £1(INg). In the case that a = 1 trivially
be (*(INg). When a # 1 let us define ¢(n) := 55k~ *(n). By the estimation (5.2)
we have that ¢(n) ~ 3%%, so ¢ € £*(INg). Now by the Young’s convolution

inequality we get:

3\, _ 3\, _
ol = (3) el < (3) B2t <

so b e ¢1(INg). We will consider for such a sequence b(n) the following scheme:
Opu(n) = 7-%(bxu)(n),

where 7 > 0 is the step size. The next result shows chaos for the adjoint of such
an operator.

Theorem 5.2.4 The operator Ty, which is the dual of the operator that de-
fines the fractional second order backward difference scheme with step size T, is
chaotic on €*(INg) if and only if 0 < T < 4.

Proof. By theorem 2.1.12, we have to prove that §(D) n T # ¢ if and only if
0 < 7 < 4, where 0 is given by (5.8). Since 4 is a holomorphic function on D, by
the maximum principle we have sup,cp |0(z)| = max.er |0(2)| = 47—, whose
maximum is attained at z = —1. This implies that (D) n T # ¢ if and only
if 4477 > 1, and this in turn is equivalent to 7 being in (0,4) as we wanted to
prove. W
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Finally, we consider the fractional Crank-Nicholson stepping scheme, whose
symbol is given by
(1-9

3(¢) =T‘a71_%+%<7 (5.9)

where 0 < o < 2. By [17] we have that the sequence b(n) is given by

n

b(n) = T—QQEQ S k(- j) (a‘iZ)j.

Jj=0

n
For 0 < a < 1, let us define ¢(n) := ( 2 ) . Since a < 1, we have ¢ € £1(INg)

a—2

and by Young’s convolution inequality

L, 2 _ e 2 _
o =7 amHk Cucli <7 am“"ﬁ “1-llefh < oo,
so b e £*(INg). The next result shows conditions for chaos in the adjoint of the
fractional Crank-Nicholson stepping scheme operator in the case 0 < o < 1.

Theorem 5.2.5 Let 0 < a < 1. The operator Ty, which is the dual of the oper-
ator that defines the fractional Crank-Nicholson scheme with step T, is chaotic
on £2(INo) if and only if 0 < T < W

Proof. By theorem 2.1.12, we have to prove that §(D) n T # ¢J. By the maxi-
mum principle for holomorphic functions we have that sup,.p 6(z) = max,e 6(2),
which observing the scheme (5.9) is attained at z = —1 with value §(—1) =
T*O‘%. This implies that (D) n T # ¢ if and only if T*O‘% > 1, which is

in turn equivalent to 0 < 7 < W as we wanted to demonstrate. W

5.3 Chaos for numerical schemes

Finite difference methods are one of the most used numerical methods in order
to solve differential equations. A finite differences scheme consists on a system of
equations that can be solved by basic linear algebra techniques. The derivatives
in this numerical scheme are approximated by divided finite differences in a
discrete set of points.

This transformation of a differential continuous problem into a system of
algebraic equations makes possible to find the solution by iterative algorithms
in computers, in fact, nowadays is one of the most used techniques for solving
differentials equations. Many of these numerical schemes for differential equa-
tions can be regarded as dynamical systems. In this context, it is interesting
the study of the dynamic behaviour and the conditions under which this system
can exhibit chaos.

There is a variety of finite divided difference approximations of derivatives
depending on the level of accuracy required. The general method to obtain
these estimates is based in the Taylor series expansion of the function (see [7]
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for a complete derivation of these approximations), although there exist other
non-standard approaches to derive divided finite difference approximations of
derivatives [21]. The simplest examples of finite differences are the approxima-
tions of the derivative of a real function f : R — R. With the usual notation,
fixed zo € Rand h > 0, x,, = zo + kh, k € Z, fr = f(zy) and f], = f'(xx),
the well-known standard finite differences approximations for the first and the
second derivatives are

- 2
o~ fk+1h fr 7 i Jr+2 h.];kJrl + fr 7 Forward
— fr_ — 2f1_ _
£~ fr hfk L i fr fkh21 + fr—2 7 Backward
— JE— -2 _
i~ Jrev12 = fr—ap2 1~ Sed1 — 2fk + fro—1 Contored

h b

h? ’

The next step is to construct finite difference schemes for differential equations
using these approximate derivatives of divided differences. In this work, we con-
sider finite difference schemes for the one-dimensional heat equation and other
PDEs related with it, with the purpose of analyzing the conditions under which
the numerical schemes are chaotic. Consider the heat (or diffusion) equation
(HE) on a infinite thin rod that, in one dimension, is given by

ou 0%u

= —a—s, 5.10

ot o0x? ( )
where u(t, x) represents the temperature in the point x of the rod at time ¢, and
a > 0 is the thermal diffusivity. Herzog showed in [15] the chaotic behaviour of
the solution semigroup to the HE on certain spaces of analytic functions with
controlled growth.

We will present two examples of discretization of the heat equation (5.10) in
order to prove its possibly chaotic behaviour.

Example 1. Centered space derivative scheme

One easy numerical scheme for (5.10) is obtained by using a forward discretiza-
tion for the time derivative and a centered approximation for the space second
derivative. We assume the thin rod to be infinite so that (¢,z) € RT x R*. We
denote

tn i=nAt, xp:=kAz, up:=u(t,,zy),

where At and Az are the time and space steps respectively, and n, k € Z and
the common choice of (0,0) has been considered as the initial point. This way
we obtain the finite difference equation

UZH —up _ a“ZH = 2up +uy_y

AL = A2 (5.11)
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If we let the sequence u™ := (u})rx0 to lie on a convenient sequence space X,
the above difference equation reads as

un+1 — Tun’

where T : X — X is a linear operator whose canonical matrix is an infinite
tridiagonal matrix with constant diagonals. This means that the asymptotic
behaviour of the numerical scheme (5.11) is given by the iterates of the linear
operator T' acting on the initial condition, that is, u™*! = T"+140 for n > 0,
we assume u’ € X.

Now, let us express equation (5.11) into the following explicit scheme

up = A+ (1= 20 )up + g (5.12)

where A\ := aAAth. This way equation (5.12) can be written as u"*! = Tpu™,

where Ty is a tridiagonal Toeplitz operator with symbol

D(z) =Az+ (1 —2)) + Az

Since a_1 = a1, by Theorem 3.1.11, we have that T4 is not chaotic.

Example 2. Forward space derivative scheme

Scheme (5.12) is not chaotic, nevertheless, it is possible to construct numerical
schemes which exhibit chaos. Consider the numerical scheme for the HE ob-
tained by applying a forward approximation of the space derivative in (5.10).
We obtain the finite differences equation:

UZ+1 B ’U’Z — au2+2 - 2“Z+1 + UZ (5 13)
At Az? ' '

This equation can be written as
Pt = M, — 22y + (1 + Nul, (5.14)

where \ = aAAItZ. Scheme (5.14) reads as u"*! = Tpu™, where Ty : X — X is
the Toeplitz operator

To =AB?> —2X\B+ A+ 1) =XB-1)*+1

and B denotes the backward shift operator. Taking ¢(z) = A(z — 1)? + 1, we
have that ¢(B) = Ty is a Toeplitz operator whose symbol is the antianalytic
function ®(z) = ¢(1/z) and the study of its chaotic behavior is addressed by
theorem 2.1.11.

Proposition 5.3.1 Let ¢(z) = Mz — 1)2 + 1 and set ®(z) = ¢(1/2). The
Toeplitz operator Te : X — X is chaotic for each A > 0.
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-1 0 1 2 3

Figure 5.2: Example of the cardioid generated by the set ¢(T) with A = 0.5
and its visual intersection with D.

Proof. By Theorem 2.1.11 it is enough to check that ¢(ID) n T # . Let us
first compute ¢(T):

o)y =X —1)2 +1=Me* — 27 +1) + 1
=X =2+ 1e7) = 2\(cos O — 1)’ +1, O e [0,2n).

By this last identity we get that ¢(T) is a cardioid such that its interior corre-
sponds to ¢(ID). As in the proof of theorem 5.1.2, we can represent the set ¢(ID)
with A = 0.5 along with the complex unit disk D, obtaining figure 5.2. Now, let
us observe that the cardioid curve is symmetric with respect to the abscissas
axis, and its cusp, the point where the tangent vector vanishes, is placed as
»(1) = 1, that is, whenever 6§ = 0. So it is clear that for a small enough 6y, it is
verified |¢(0y)| < 1, and therefore (D) N T # ¢F as we wanted to demonstrate.
[ |
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